
IBM WebSphere Application Server - Express for IBM i,
Version 8.5

Administering WebSphere applications

���



Note
Before using this information, be sure to read the general information under “Notices” on page 3705.

Compilation date: June 10, 2012

© Copyright IBM Corporation 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

How to send your comments . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Using this PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Chapter 1. Administering ActivitySessions. . . . . . . . . . . . . . . . . . . . . . . 1
Administering applications that use ActivitySessions . . . . . . . . . . . . . . . . . . . . 1

Enabling or disabling the ActivitySession service . . . . . . . . . . . . . . . . . . . . 1
Configuring the default ActivitySession timeout for an application server . . . . . . . . . . . . 2
ActivitySession service settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2. Administering Application profiling . . . . . . . . . . . . . . . . . . . . . 5
Managing application profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 3. Administering Asynchronous beans . . . . . . . . . . . . . . . . . . . . . 7
Administering asynchronous beans . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Configuring timer managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Configuring work managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 4. Administering with the batch administrative console help files . . . . . . . . . . 17
Job scheduler job class settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Maximum execution time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Maximum concurrent jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Maximum class space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Maximum file age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Maximum jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Maximum job age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Job scheduler job class collection . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Job scheduler classification rule settings . . . . . . . . . . . . . . . . . . . . . . . . 18
Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Classification rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Subexpression builder settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Select operand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Subexpression builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Append . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Custom property collection for the job scheduler . . . . . . . . . . . . . . . . . . . . . 20
Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Custom property settings for the job scheduler. . . . . . . . . . . . . . . . . . . . . . 21
Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Job scheduler configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Scheduler hosted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Database schema name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Data source JNDI name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Endpoint job log location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

© Copyright IBM Corp. 2012 iii



Record usage data in scheduler database . . . . . . . . . . . . . . . . . . . . . . 22
WebSphere grid endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Datasource JNDI name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Welcome to the job management console . . . . . . . . . . . . . . . . . . . . . . . 22
View jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Job ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Submitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Last update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Application server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

View job log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Submit a job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Local file system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Job repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Substitution properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Delay submission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

View saved jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

View saved job content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Save a job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Job name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
xJCL path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Replace the job if the specified job name exists . . . . . . . . . . . . . . . . . . . . 25

View schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Submitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Start date and time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Create a schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Step 1: Create schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Step 2: Specify job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Step 2.1: Specify substitution properties . . . . . . . . . . . . . . . . . . . . . . . 27
Step 3: Confirm create schedule . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Update schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Job. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 5. Administering Client applications . . . . . . . . . . . . . . . . . . . . . 29
Deploying client applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Deploying applet client code . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Running an ActiveX client application . . . . . . . . . . . . . . . . . . . . . . . . 30
Deploying and running a Java EE client application . . . . . . . . . . . . . . . . . . . 33
Running the IBM Thin Client for Enterprise JavaBeans (EJB) . . . . . . . . . . . . . . . 132
Running Java thin client applications . . . . . . . . . . . . . . . . . . . . . . . . 134

Managing resources for Java EE client applications . . . . . . . . . . . . . . . . . . . 137
Updating data source and data source provider configurations with the Application Client Resource

Configuration Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Updating URLs and URL provider configurations for application clients . . . . . . . . . . . 138
Updating mail session configurations for application clients. . . . . . . . . . . . . . . . 138

iv Administering WebSphere applications



Updating Java Message Service provider, connection factories, and destination configurations for
application clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Updating WebSphere MQ as a Java Message Service provider, and its JMS resource
configurations, for application clients . . . . . . . . . . . . . . . . . . . . . . . 139

Updating resource environment entry and resource environment provider configurations for
application clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Removing application client resources . . . . . . . . . . . . . . . . . . . . . . . 141
clientUpgrade script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Chapter 6. Administering Communications Enabled Applications . . . . . . . . . . . . . 143
Administering communications enabled applications . . . . . . . . . . . . . . . . . . . 143

Configuring services for communications enabled applications . . . . . . . . . . . . . . 143
Configuring communications enabled applications in a cluster. . . . . . . . . . . . . . . 145

Chapter 7. Administering Data access resources . . . . . . . . . . . . . . . . . . . 147
Deploying data access applications . . . . . . . . . . . . . . . . . . . . . . . . . 147

Available resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Map data sources for all 1.x CMP beans . . . . . . . . . . . . . . . . . . . . . . 150
Map default data sources for modules containing 1.x entity beans . . . . . . . . . . . . . 151
Map data sources for all 2.x CMP beans settings . . . . . . . . . . . . . . . . . . . 152
Map data sources for all 2.x CMP beans . . . . . . . . . . . . . . . . . . . . . . 154

Installing a resource adapter archive . . . . . . . . . . . . . . . . . . . . . . . . . 156
Installing resource adapters embedded within applications . . . . . . . . . . . . . . . . 157
Install RAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Deploying SQLJ applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Deploying SQLJ applications that use container-managed persistence (CMP) . . . . . . . . . 160
Deploying SQLJ applications that use bean-managed persistence, servlets, or sessions beans 162
Customizing and binding profiles for Structured Query Language in Java (SQLJ) applications 164
Using embedded SQLJ with the DB2 for z/OS Legacy driver . . . . . . . . . . . . . . . 172
Directory conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Administering data access applications . . . . . . . . . . . . . . . . . . . . . . . . 177
Configuring Java EE Connector connection factories in the administrative console . . . . . . . 178
Establishing custom finder SQL dynamic enhancement server-wide . . . . . . . . . . . . 211
Establishing custom finder SQL dynamic enhancement on a set of beans . . . . . . . . . . 212
CMP connection factories collection . . . . . . . . . . . . . . . . . . . . . . . . 212
Configuring resource adapters . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Updating a stand-alone resource adapter archive . . . . . . . . . . . . . . . . . . . 221
Mapping resource manager connection factory references to resource factories . . . . . . . . 225
Managing messages with message endpoints . . . . . . . . . . . . . . . . . . . . 226
Configuring a JDBC provider and data source . . . . . . . . . . . . . . . . . . . . 228
Configuring connection validation timeout . . . . . . . . . . . . . . . . . . . . . . 314
Resource references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Mapping-configuration alias . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Select a J2C authentication alias . . . . . . . . . . . . . . . . . . . . . . . . . 318
Considerations for isolated resource providers . . . . . . . . . . . . . . . . . . . . 319
Implicitly set client information . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Enabling client information tracing with the administrative console . . . . . . . . . . . . . 321
About Apache Derby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Managing resources through JCA lifecycle management operations . . . . . . . . . . . . 323

Chapter 8. Administering Dynamic caching . . . . . . . . . . . . . . . . . . . . . 327
Administering the dynamic cache service . . . . . . . . . . . . . . . . . . . . . . . 327

Using the dynamic cache service . . . . . . . . . . . . . . . . . . . . . . . . . 327
Disabling template-based invalidations during JSP reloads . . . . . . . . . . . . . . . . 356
Dynamic cache provider for the JPA 2.0 second level cache . . . . . . . . . . . . . . . 356

Contents v



Chapter 9. Administering EJB applications . . . . . . . . . . . . . . . . . . . . . 361
Deploying EJB 3.x enterprise beans . . . . . . . . . . . . . . . . . . . . . . . . . 361

EJB module settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Directory conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Deploying EJB modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
EJB 3.0 and EJB 3.1 deployment overview . . . . . . . . . . . . . . . . . . . . . 364
EJBDEPLOY relationships – troubleshooting tips . . . . . . . . . . . . . . . . . . . 366
Directory conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Administering entity beans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Enterprise beans back up and recovery best practices . . . . . . . . . . . . . . . . . 367

Managing EJB containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
EJB containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
EJB container settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
EJB container system properties . . . . . . . . . . . . . . . . . . . . . . . . . 372
Changing enterprise bean types to initialize at application start time using the administrative

console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Changing applications to WebSphere “version specific” setRollbackOnly behavior . . . . . . . 376
EJB cache settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Container interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Configuring a timer service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Caching data for a timer service . . . . . . . . . . . . . . . . . . . . . . . . . 382
Configuring the timer service using scripting . . . . . . . . . . . . . . . . . . . . . 384
EJB timer service settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

Managing message-driven beans . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Managing messages with message endpoints . . . . . . . . . . . . . . . . . . . . 391
Managing message listener resources for message-driven beans . . . . . . . . . . . . . 393

Administering applications that use the Java Persistence API . . . . . . . . . . . . . . . . 411
Configure JPA to work in your environment . . . . . . . . . . . . . . . . . . . . . 411
Configuring OpenJPA caching to improve performance . . . . . . . . . . . . . . . . . 426

Chapter 10. Administering Internationalization service . . . . . . . . . . . . . . . . . 431
Task overview: Globalizing applications . . . . . . . . . . . . . . . . . . . . . . . . 431

Globalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Working with locales and character encodings . . . . . . . . . . . . . . . . . . . . 433
Language versions offered by this product . . . . . . . . . . . . . . . . . . . . . . 434
Globalization: Resources for learning . . . . . . . . . . . . . . . . . . . . . . . . 435

Task overview: Internationalizing interface strings (localizable-text API) . . . . . . . . . . . . 435
Identifying localizable text . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
Creating message catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
Composing language-specific strings . . . . . . . . . . . . . . . . . . . . . . . . 437
Preparing the localizable-text package for deployment . . . . . . . . . . . . . . . . . 445

Task overview: Internationalizing application components (internationalization service). . . . . . . 446
Internationalization service. . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Assembling internationalized applications . . . . . . . . . . . . . . . . . . . . . . 448
Using the internationalization context API . . . . . . . . . . . . . . . . . . . . . . 452
Administering the internationalization service . . . . . . . . . . . . . . . . . . . . . 472

Chapter 11. Administering Mail, URLs, and other Java EE resources . . . . . . . . . . . 479
Configuring mail providers and sessions . . . . . . . . . . . . . . . . . . . . . . . 479

Mail provider collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Mail provider settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Protocol providers collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Protocol providers settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Mail session collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Mail session configuration settings. . . . . . . . . . . . . . . . . . . . . . . . . 483

Administering URLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

vi Administering WebSphere applications



URL provider collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
URL provider settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
URL configurations collection. . . . . . . . . . . . . . . . . . . . . . . . . . . 486
URL configuration settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Administering resource environment entries . . . . . . . . . . . . . . . . . . . . . . 488
Configuring new resource environment entries to map logical environment resource names to

physical names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Chapter 12. Administering Messaging resources . . . . . . . . . . . . . . . . . . . 495
Managing messaging with the default messaging provider . . . . . . . . . . . . . . . . . 495

Configuring resources for the default messaging provider . . . . . . . . . . . . . . . . 496
Interoperating with a WebSphere MQ network . . . . . . . . . . . . . . . . . . . . 526
Configuring the messaging engine selection process for JMS applications . . . . . . . . . . 565
Managing messages and subscriptions for default messaging JMS destinations . . . . . . . . 566
Using JMS from stand-alone clients to interoperate with service integration resources . . . . . . 568
Using JMS from a third party application server to interoperate with service integration resources 576

Managing messaging with the WebSphere MQ messaging provider . . . . . . . . . . . . . 690
Installing WebSphere MQ to interoperate with WebSphere Application Server . . . . . . . . . 691
Listing JMS resources for the WebSphere MQ messaging provider. . . . . . . . . . . . . 696
Configuring JMS resources for the WebSphere MQ messaging provider . . . . . . . . . . . 697
Configuring properties for the WebSphere MQ resource adapter . . . . . . . . . . . . . . 710
Disabling WebSphere MQ functionality in WebSphere Application Server . . . . . . . . . . 712

Managing messaging with a third-party messaging provider . . . . . . . . . . . . . . . . 913
Managing messaging with a third-party JCA 1.5 or 1.6-compliant messaging provider . . . . . . 913
Managing messaging with a third-party non-JCA messaging provider . . . . . . . . . . . . 915

Managing message-driven beans . . . . . . . . . . . . . . . . . . . . . . . . . . 951
Managing messages with message endpoints . . . . . . . . . . . . . . . . . . . . 952
Managing message listener resources for message-driven beans . . . . . . . . . . . . . 954

Chapter 13. Administering naming and directory . . . . . . . . . . . . . . . . . . . 973
Configuring namespace bindings . . . . . . . . . . . . . . . . . . . . . . . . . . 973

Name space binding collection . . . . . . . . . . . . . . . . . . . . . . . . . . 975
Specify binding type settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 975
String binding settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977
EJB binding settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978
CORBA object binding settings . . . . . . . . . . . . . . . . . . . . . . . . . . 979
Indirect lookup binding settings . . . . . . . . . . . . . . . . . . . . . . . . . . 980

Configuring name servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981
Name server settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981

Chapter 14. Administering Object pools . . . . . . . . . . . . . . . . . . . . . . . 983
Using object pools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983

Object pool managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 984
Object pool managers collection . . . . . . . . . . . . . . . . . . . . . . . . . 986
Object pool service settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 989
Object pools: Resources for learning . . . . . . . . . . . . . . . . . . . . . . . . 989
MBeans for object pool managers and object pools . . . . . . . . . . . . . . . . . . 990

Chapter 15. Administering Object Request Broker (ORB) . . . . . . . . . . . . . . . . 991
Administering Object Request Brokers . . . . . . . . . . . . . . . . . . . . . . . . 991

Object Request Broker service settings . . . . . . . . . . . . . . . . . . . . . . . 991
Object Request Broker custom properties . . . . . . . . . . . . . . . . . . . . . . 995
Character code set conversion support for the Java Object Request Broker service . . . . . . 1004

Chapter 16. Administering OSGi applications . . . . . . . . . . . . . . . . . . . . 1007
Updating bundle versions for an EBA asset . . . . . . . . . . . . . . . . . . . . . . 1008

Contents vii



Updating bundle versions for an EBA asset using the editAsset command. . . . . . . . . . 1009
Maintaining an OSGi composition unit . . . . . . . . . . . . . . . . . . . . . . . . 1012

Updating an OSGi composition unit . . . . . . . . . . . . . . . . . . . . . . . . 1013
Adding or removing extensions for an OSGi composition unit . . . . . . . . . . . . . . 1017
Modifying the configuration of an OSGi composition unit . . . . . . . . . . . . . . . . 1026

Checking the bundle download status of an EBA asset. . . . . . . . . . . . . . . . . . 1047
Checking the update status of an OSGi composition unit . . . . . . . . . . . . . . . . . 1048
Administering bundle repositories. . . . . . . . . . . . . . . . . . . . . . . . . . 1050

Moving bundles from an OSGi application to a bundle repository . . . . . . . . . . . . . 1050
Administering bundles in the internal bundle repository . . . . . . . . . . . . . . . . . 1051
Administering links to external bundle repositories . . . . . . . . . . . . . . . . . . 1060
Interacting with the OSGi bundle cache . . . . . . . . . . . . . . . . . . . . . . 1066

Exporting and importing a deployment manifest file . . . . . . . . . . . . . . . . . . . 1068
Exporting a deployment manifest . . . . . . . . . . . . . . . . . . . . . . . . . 1069
Importing a deployment manifest . . . . . . . . . . . . . . . . . . . . . . . . . 1071

OSGi applications administrative console panels . . . . . . . . . . . . . . . . . . . . 1075
Add extensions [Collection] . . . . . . . . . . . . . . . . . . . . . . . . . . . 1075
Add extensions [Settings] . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076
Application OSGi frameworks [Collection] . . . . . . . . . . . . . . . . . . . . . . 1077
Blueprint resource references [Settings] . . . . . . . . . . . . . . . . . . . . . . 1078
Bundle cache [Collection] . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080
Bundle cache [Settings] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1082
Bundle details [Settings] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083
Bundles in OSGi framework [Collection] . . . . . . . . . . . . . . . . . . . . . . 1084
Context root for web modules [Settings] . . . . . . . . . . . . . . . . . . . . . . 1085
EJB JNDI names [Settings] . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085
EJB message destination references [Settings]. . . . . . . . . . . . . . . . . . . . 1086
EJB references [Settings] . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087
EJB resource references [Settings] . . . . . . . . . . . . . . . . . . . . . . . . 1088
Extensions for this composition unit [Collection] . . . . . . . . . . . . . . . . . . . 1090
Extensions for this composition unit [Settings] . . . . . . . . . . . . . . . . . . . . 1091
External bundle repositories [Collection] . . . . . . . . . . . . . . . . . . . . . . 1092
External bundle repositories [Settings] . . . . . . . . . . . . . . . . . . . . . . . 1093
Import a deployment manifest into this application [Settings] . . . . . . . . . . . . . . . 1094
Internal bundle repository [Collection] . . . . . . . . . . . . . . . . . . . . . . . 1095
Internal bundle repository [Settings] . . . . . . . . . . . . . . . . . . . . . . . . 1095
Listeners for message-driven beans [Settings] . . . . . . . . . . . . . . . . . . . . 1097
Package details [Settings] . . . . . . . . . . . . . . . . . . . . . . . . . . . 1098
Packages in bundle [Collection] . . . . . . . . . . . . . . . . . . . . . . . . . 1099
Packages in OSGi framework [Collection] . . . . . . . . . . . . . . . . . . . . . 1099
Preview bundle versions update [Settings] . . . . . . . . . . . . . . . . . . . . . 1100
Preview composition unit upgrade [Settings] . . . . . . . . . . . . . . . . . . . . . 1100
RunAs roles for users [Collection] . . . . . . . . . . . . . . . . . . . . . . . . 1101
Security role to user or group mapping [Settings] . . . . . . . . . . . . . . . . . . . 1102
Service details [Settings] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103
Services in bundle [Collection] . . . . . . . . . . . . . . . . . . . . . . . . . . 1103
Services in OSGi framework [Collection] . . . . . . . . . . . . . . . . . . . . . . 1104
Update bundle versions in this application [Settings] . . . . . . . . . . . . . . . . . . 1104
Upload bundle [Settings] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105
Virtual hosts for web modules [Settings] . . . . . . . . . . . . . . . . . . . . . . 1107
Web module message destination references [Settings] . . . . . . . . . . . . . . . . 1108
Web module resource references [Settings] . . . . . . . . . . . . . . . . . . . . . 1109
Web module resource references: Available resources [Collection]. . . . . . . . . . . . . 1111

OSGiApplicationCommands: OSGi Applications administrative commands for the AdminTask object 1112
addExternalBundleRepository command . . . . . . . . . . . . . . . . . . . . . . 1112
addLocalRepositoryBundle command . . . . . . . . . . . . . . . . . . . . . . . 1113

viii Administering WebSphere applications



addOSGiExtension command . . . . . . . . . . . . . . . . . . . . . . . . . . 1114
addOSGiExtensions command . . . . . . . . . . . . . . . . . . . . . . . . . . 1115
exportDeploymentManifest command . . . . . . . . . . . . . . . . . . . . . . . 1117
importDeploymentManifest command . . . . . . . . . . . . . . . . . . . . . . . 1118
listExternalBundleRepositories command . . . . . . . . . . . . . . . . . . . . . . 1119
listLocalRepositoryBundles command . . . . . . . . . . . . . . . . . . . . . . . 1119
listOSGiExtensions command . . . . . . . . . . . . . . . . . . . . . . . . . . 1120
listAvailableOSGiExtensions command. . . . . . . . . . . . . . . . . . . . . . . 1121
modifyExternalBundleRepository command . . . . . . . . . . . . . . . . . . . . . 1122
removeExternalBundleRepository command . . . . . . . . . . . . . . . . . . . . . 1123
removeLocalRepositoryBundle command . . . . . . . . . . . . . . . . . . . . . . 1124
removeLocalRepositoryBundles command . . . . . . . . . . . . . . . . . . . . . 1125
removeOSGiExtension command . . . . . . . . . . . . . . . . . . . . . . . . . 1126
removeOSGiExtensions command . . . . . . . . . . . . . . . . . . . . . . . . 1127
showExternalBundleRepository command. . . . . . . . . . . . . . . . . . . . . . 1128
showLocalRepositoryBundle command. . . . . . . . . . . . . . . . . . . . . . . 1129

Chapter 17. Administering Portlet applications. . . . . . . . . . . . . . . . . . . . 1131
Portlet container settings and custom properties . . . . . . . . . . . . . . . . . . . . 1131

Portlet container settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
Portlet container custom properties . . . . . . . . . . . . . . . . . . . . . . . . 1131
Portlet and PortletApplication MBeans . . . . . . . . . . . . . . . . . . . . . . . 1132

Chapter 18. Administering Scheduler service . . . . . . . . . . . . . . . . . . . . 1135
Installing default scheduler calendars . . . . . . . . . . . . . . . . . . . . . . . . 1135

Scheduler calendars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135
Installing default scheduler calendars . . . . . . . . . . . . . . . . . . . . . . . 1136
Example: Using default scheduler calendars. . . . . . . . . . . . . . . . . . . . . 1138

Managing schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138
Managing schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138
Scheduler daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138
Example: Stopping and starting scheduler daemons using Java Management Extensions API 1139
Example: Dynamically changing scheduler daemon poll intervals using Java Management

Extensions API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139
Configuring schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140
Creating the database for schedulers . . . . . . . . . . . . . . . . . . . . . . . 1149

Chapter 19. Administering application security . . . . . . . . . . . . . . . . . . . 1167
Setting up, enabling and migrating security . . . . . . . . . . . . . . . . . . . . . . 1167

Migrating, coexisting, and interoperating – Security considerations . . . . . . . . . . . . 1167
Enabling security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180

Configuring multiple security domains . . . . . . . . . . . . . . . . . . . . . . . . 1229
Multiple security domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1233
Creating new multiple security domains . . . . . . . . . . . . . . . . . . . . . . 1249
Deleting multiple security domains . . . . . . . . . . . . . . . . . . . . . . . . 1252
Copying multiple security domains . . . . . . . . . . . . . . . . . . . . . . . . 1252
Configuring inbound trusted realms for multiple security domains . . . . . . . . . . . . . 1255
Configure security domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256
External realm name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262
Trust all realms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262
Security domains collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262
Authentication cache settings . . . . . . . . . . . . . . . . . . . . . . . . . . 1263

Authenticating users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264
Selecting a registry or repository . . . . . . . . . . . . . . . . . . . . . . . . . 1265
Selecting an authentication mechanism . . . . . . . . . . . . . . . . . . . . . . 1445
Integrating third-party HTTP reverse proxy servers . . . . . . . . . . . . . . . . . . 1466

Contents ix



Single sign-on for authentication . . . . . . . . . . . . . . . . . . . . . . . . . 1472
Implementing single sign-on to minimize web user authentications . . . . . . . . . . . . 1477
Configuring administrative authentication . . . . . . . . . . . . . . . . . . . . . . 1552
Java Authentication and Authorization Service . . . . . . . . . . . . . . . . . . . . 1553
Using the Java Authentication and Authorization Service programming model for web

authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556
Performing identity mapping for authorization across servers in different realms . . . . . . . 1571
Security attribute propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 1584
Propagating security attributes among application servers. . . . . . . . . . . . . . . . 1589
Configuring the authentication cache . . . . . . . . . . . . . . . . . . . . . . . 1601
Configuring Common Secure Interoperability Version 2 (CSIV2) inbound and outbound

communication settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 1602
Authentication protocol for EJB security . . . . . . . . . . . . . . . . . . . . . . 1634
Using Microsoft Active Directory for authentication . . . . . . . . . . . . . . . . . . 1642
SAML web single sign-on . . . . . . . . . . . . . . . . . . . . . . . . . . . 1656

Authorizing access to resources . . . . . . . . . . . . . . . . . . . . . . . . . . 1678
Authorization technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1678
Authorizing access to Java EE resources using Tivoli Access Manager . . . . . . . . . . . 1710
Authorizing access to administrative roles . . . . . . . . . . . . . . . . . . . . . 1745
Fine-grained administrative security . . . . . . . . . . . . . . . . . . . . . . . . 1754
Creating a fine-grained administrative authorization group using the administrative console 1768
Editing a fine-grained administrative authorization group using the administrative console . . . . 1770
Fine-grained administrative security in heterogeneous and single-server environments . . . . . 1772

Securing communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1773
Secure communications using Secure Sockets Layer (SSL) . . . . . . . . . . . . . . . 1774
Creating a Secure Sockets Layer configuration. . . . . . . . . . . . . . . . . . . . 1818
Creating a CA client in SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . 1868
Deleting a CA client in SSL . . . . . . . . . . . . . . . . . . . . . . . . . . . 1869
Viewing or modifying a CA client in SSL . . . . . . . . . . . . . . . . . . . . . . 1870
Creating a keystore configuration for a preexisting keystore file. . . . . . . . . . . . . . 1870
Creating a self-signed certificate . . . . . . . . . . . . . . . . . . . . . . . . . 1880
Creating a certificate authority request . . . . . . . . . . . . . . . . . . . . . . . 1884
Extracting a signer certificate from a personal certificate . . . . . . . . . . . . . . . . 1898
Retrieving signers from a remote SSL port . . . . . . . . . . . . . . . . . . . . . 1902
Adding a signer certificate to a keystore . . . . . . . . . . . . . . . . . . . . . . 1904
Adding a signer certificate to the default signers keystore . . . . . . . . . . . . . . . . 1906
Exchanging signer certificates . . . . . . . . . . . . . . . . . . . . . . . . . . 1908
Configuring certificate expiration monitoring . . . . . . . . . . . . . . . . . . . . . 1910
Key management for cryptographic uses . . . . . . . . . . . . . . . . . . . . . . 1915
Creating a key set configuration . . . . . . . . . . . . . . . . . . . . . . . . . 1916
Creating a key set group configuration . . . . . . . . . . . . . . . . . . . . . . . 1920

Auditing the security infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . 1928
Enabling the security auditing subsystem . . . . . . . . . . . . . . . . . . . . . . 1929
Creating security auditing event type filters . . . . . . . . . . . . . . . . . . . . . 1934
Configuring security audit subsystem failure notifications . . . . . . . . . . . . . . . . 1942
Configuring the default audit service providers for security auditing . . . . . . . . . . . . 1945
Configuring a third party audit service providers for security auditing . . . . . . . . . . . . 1949
Configuring audit event factories for security auditing . . . . . . . . . . . . . . . . . 1950
Protecting your security audit data . . . . . . . . . . . . . . . . . . . . . . . . 1953
Using the audit reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1959

Chapter 20. Administering Service integration . . . . . . . . . . . . . . . . . . . . 1965
Enabling or disabling service integration notification events . . . . . . . . . . . . . . . . 1965
Administering service integration buses . . . . . . . . . . . . . . . . . . . . . . . 1966

Configuring buses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1966
Operating buses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2024

x Administering WebSphere applications



Managing service integration buses with administrative commands . . . . . . . . . . . . 2025
Administering messaging engines . . . . . . . . . . . . . . . . . . . . . . . . . 2026

Configuring messaging engines . . . . . . . . . . . . . . . . . . . . . . . . . 2026
Starting a messaging engine . . . . . . . . . . . . . . . . . . . . . . . . . . 2033
Stopping a messaging engine . . . . . . . . . . . . . . . . . . . . . . . . . . 2034
Displaying the runtime properties of a messaging engine . . . . . . . . . . . . . . . . 2034
Displaying the runtime properties of a service integration bus link . . . . . . . . . . . . . 2035
Managing messaging engines with administrative commands . . . . . . . . . . . . . . 2036

Administering message stores . . . . . . . . . . . . . . . . . . . . . . . . . . . 2036
Administering file stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2036
Administering data stores . . . . . . . . . . . . . . . . . . . . . . . . . . . 2040
Avoiding message store errors when creating a messaging engine . . . . . . . . . . . . 2052
Avoiding errors when creating a messaging engine with a file store or a data store by using the

wsadmin tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2053
Administering bus destinations. . . . . . . . . . . . . . . . . . . . . . . . . . . 2053

Configuring bus destinations . . . . . . . . . . . . . . . . . . . . . . . . . . 2053
Managing bus destinations with administrative commands . . . . . . . . . . . . . . . 2083
Configuring message points. . . . . . . . . . . . . . . . . . . . . . . . . . . 2083
Managing messages on message points . . . . . . . . . . . . . . . . . . . . . . 2084
Administering durable subscriptions . . . . . . . . . . . . . . . . . . . . . . . . 2086

Administering mediations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2089
Securing mediations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2089
Configuring mediations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2091
Configuring mediation points . . . . . . . . . . . . . . . . . . . . . . . . . . 2102
Managing mediations with administrative commands . . . . . . . . . . . . . . . . . 2103
Operating mediations at mediation points . . . . . . . . . . . . . . . . . . . . . . 2104
Administering messages on mediation points . . . . . . . . . . . . . . . . . . . . 2106
Example: Using mediations to trace, monitor and log messages . . . . . . . . . . . . . 2107

Chapter 21. Administering Session Initiation Protocol (SIP) applications . . . . . . . . . 2537
Deploying SIP applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2537

Deploying SIP applications through the console . . . . . . . . . . . . . . . . . . . 2537
Deploying SIP applications through scripting . . . . . . . . . . . . . . . . . . . . 2538

Administering SIP applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 2539
Configuring the SIP container . . . . . . . . . . . . . . . . . . . . . . . . . . 2539
Configuring SIP application routers . . . . . . . . . . . . . . . . . . . . . . . . 2563
Configuring multihomed hosting . . . . . . . . . . . . . . . . . . . . . . . . . 2583
Configuring multiple proxy servers using a load balancer in a multihomed environment . . . . . 2587

Chapter 22. Administering Startup beans . . . . . . . . . . . . . . . . . . . . . . 2589
Using startup beans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2589

Enabling startup beans in the administrative console . . . . . . . . . . . . . . . . . 2590
Startup beans service settings . . . . . . . . . . . . . . . . . . . . . . . . . . 2591

Chapter 23. Administering Transactions . . . . . . . . . . . . . . . . . . . . . . 2593
Administering the transaction service . . . . . . . . . . . . . . . . . . . . . . . . 2593

Configuring transaction properties for an application server . . . . . . . . . . . . . . . 2593
Managing active and prepared transactions . . . . . . . . . . . . . . . . . . . . . 2608
Managing transaction logging for optimum server availability. . . . . . . . . . . . . . . 2613
Displaying transaction recovery audit messages . . . . . . . . . . . . . . . . . . . 2616
Delaying the cancelling of transaction timeout alarms . . . . . . . . . . . . . . . . . 2617
Removing entries from the transaction partner log . . . . . . . . . . . . . . . . . . 2617

Chapter 24. Administering web applications. . . . . . . . . . . . . . . . . . . . . 2619
Deploying JavaServer Pages and JavaServer Faces files . . . . . . . . . . . . . . . . . 2619

JSP class loading settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 2619

Contents xi



JavaServer Pages (JSP) runtime reloading settings . . . . . . . . . . . . . . . . . . 2620
JSP and JSF option settings . . . . . . . . . . . . . . . . . . . . . . . . . . 2625
JSP run time compilation settings . . . . . . . . . . . . . . . . . . . . . . . . 2627
Provide options to compile JavaServer Pages settings . . . . . . . . . . . . . . . . . 2627

Administering web applications . . . . . . . . . . . . . . . . . . . . . . . . . . 2629
Modifying the default web container configuration . . . . . . . . . . . . . . . . . . . 2629
Configuring JSP engine parameters . . . . . . . . . . . . . . . . . . . . . . . . 2661
Backing up and recovering servlets . . . . . . . . . . . . . . . . . . . . . . . . 2675
Backing up and recovering JavaServer Pages files . . . . . . . . . . . . . . . . . . 2676
Administering RRD applications . . . . . . . . . . . . . . . . . . . . . . . . . 2677
Asynchronous request dispatching settings . . . . . . . . . . . . . . . . . . . . . 2677

Asynchronous request dispatching settings . . . . . . . . . . . . . . . . . . . . . . 2678
Asynchronous request dispatching settings . . . . . . . . . . . . . . . . . . . . . 2678

Administering RRD applications . . . . . . . . . . . . . . . . . . . . . . . . . . 2679
Configuring HTTP sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2679

Configuring session management by level . . . . . . . . . . . . . . . . . . . . . 2679
Configuring session tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 2682
Configuring session tracking for Wireless Application Protocol (WAP) devices . . . . . . . . 2691
Configuring for database session persistence . . . . . . . . . . . . . . . . . . . . 2692
Configuring write contents . . . . . . . . . . . . . . . . . . . . . . . . . . . 2696
Configuring write frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 2697

Chapter 25. Administering web services . . . . . . . . . . . . . . . . . . . . . . 2699
Planning to use web services . . . . . . . . . . . . . . . . . . . . . . . . . . . 2699
Deploying web services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2700

Deploying web services applications onto application servers . . . . . . . . . . . . . . 2700
Using a third-party JAX-WS web services engine . . . . . . . . . . . . . . . . . . . 2706
Deploying web services client applications . . . . . . . . . . . . . . . . . . . . . 2707
Making deployed web services applications available to clients . . . . . . . . . . . . . . 2708
Running an unmanaged web services JAX-RPC client . . . . . . . . . . . . . . . . . 2722
Running an unmanaged web services JAX-WS client . . . . . . . . . . . . . . . . . 2724
Testing web services-enabled clients . . . . . . . . . . . . . . . . . . . . . . . 2726

Administering deployed web services applications . . . . . . . . . . . . . . . . . . . 2726
Overview of service and endpoint listeners . . . . . . . . . . . . . . . . . . . . . 2728
Administration of service and endpoint listeners . . . . . . . . . . . . . . . . . . . 2728
Viewing service providers at the cell level using the administrative console . . . . . . . . . 2729
Viewing service providers at the application level using the administrative console. . . . . . . 2731
Viewing the detail of a service provider and managing policy sets using the administrative console 2732
Managing policy sets and bindings for service providers at the application level using the

administrative console . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2738
Viewing WSDL documents for service providers using the administrative console . . . . . . . 2744
Viewing service clients at the cell level using the administrative console . . . . . . . . . . 2745
Viewing service clients at the application level using the administrative console. . . . . . . . 2746
Viewing detail of a service client and managing policy sets using the administrative console 2747
Managing policy sets and bindings for services references using the administrative console 2753
Managing policy sets and bindings for service clients at the application level using the

administrative console . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2760
Viewing web services deployment descriptors in the administrative console . . . . . . . . . 2766
Configuring the scope of a JAX-RPC web services port . . . . . . . . . . . . . . . . 2767
Suppressing the compensation service. . . . . . . . . . . . . . . . . . . . . . . 2769
JAX-WS timeout properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 2770

Managing policy sets using the administrative console . . . . . . . . . . . . . . . . . . 2771
Viewing policy sets using the administrative console. . . . . . . . . . . . . . . . . . 2772
Creating policy sets using the administrative console . . . . . . . . . . . . . . . . . 2773
Importing policy sets using the administrative console . . . . . . . . . . . . . . . . . 2780
Modifying policy sets using the administrative console . . . . . . . . . . . . . . . . . 2783

xii Administering WebSphere applications



Deleting policy sets using the administrative console . . . . . . . . . . . . . . . . . 2784
Defining and managing policy set bindings . . . . . . . . . . . . . . . . . . . . . 2785
Attaching a policy set to a service artifact. . . . . . . . . . . . . . . . . . . . . . 2800
Managing policies in a policy set using the administrative console. . . . . . . . . . . . . 2801
Exporting policy sets using the administrative console . . . . . . . . . . . . . . . . . 2849
Implementing policy sets for unmanaged clients . . . . . . . . . . . . . . . . . . . 2850
Application policy sets collection . . . . . . . . . . . . . . . . . . . . . . . . . 2852
Application policy set settings . . . . . . . . . . . . . . . . . . . . . . . . . . 2853
Search attached applications collection . . . . . . . . . . . . . . . . . . . . . . 2854
Web services policy sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2855
Overview of migrating policy sets and bindings. . . . . . . . . . . . . . . . . . . . 2860

Chapter 26. Administering web services - bus-enabled web services . . . . . . . . . . . 2863
Enabling web services through the service integration bus . . . . . . . . . . . . . . . . 2863

Installing and configuring the SDO repository . . . . . . . . . . . . . . . . . . . . 2864
Configuring web services for a service integration bus . . . . . . . . . . . . . . . . . 2869
Administering the bus-enabled web services resources. . . . . . . . . . . . . . . . . 2881
Creating a new WS-Security binding . . . . . . . . . . . . . . . . . . . . . . . 2907
Creating a new WS-Security configuration . . . . . . . . . . . . . . . . . . . . . 2912
Passing SOAP messages with attachments through the service integration bus. . . . . . . . 2916

Chapter 27. Administering web services - Invocation framework (WSIF) . . . . . . . . . . 3053
Administering WSIF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3053

Enabling a WSIF client to invoke a web service through JMS . . . . . . . . . . . . . . 3053
wsif.properties file - Initial contents . . . . . . . . . . . . . . . . . . . . . . . . 3057

Chapter 28. Administering web services - Notification (WS-Notification) . . . . . . . . . . 3059
Using WS-Notification for publish and subscribe messaging for web services . . . . . . . . . 3059

Accomplishing common WS-Notification tasks . . . . . . . . . . . . . . . . . . . . 3060
Configuring WS-Notification resources . . . . . . . . . . . . . . . . . . . . . . . 3083

Chapter 29. Administering web services - Policy (WS-Policy) . . . . . . . . . . . . . . 3197
Using WS-Policy to exchange policies in a standard format . . . . . . . . . . . . . . . . 3197

Configuring a service provider to share its policy configuration . . . . . . . . . . . . . . 3197
Configuring the client policy to use a service provider policy . . . . . . . . . . . . . . . 3204
Configuring security for a WS-MetadataExchange request . . . . . . . . . . . . . . . 3209

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) . . . 3211
Administering reliable web services . . . . . . . . . . . . . . . . . . . . . . . . . 3211

Configuring a WS-ReliableMessaging policy set by using the administrative console . . . . . . 3211
Attaching and binding a WS-ReliableMessaging policy set to a web service application by using

the administrative console . . . . . . . . . . . . . . . . . . . . . . . . . . 3216
Configuring endpoints to only support clients that use WS-ReliableMessaging . . . . . . . . 3219
Providing transactional recoverable messaging through WS-ReliableMessaging. . . . . . . . 3220
WS-ReliableMessaging - administrative console panels . . . . . . . . . . . . . . . . 3221

Chapter 31. Administering web services - RESTful services . . . . . . . . . . . . . . 3239
Planning JAX-RS web applications . . . . . . . . . . . . . . . . . . . . . . . . . 3239

Planning to use JAX-RS to enable RESTful services . . . . . . . . . . . . . . . . . 3239
Defining the resources in RESTful applications. . . . . . . . . . . . . . . . . . . . 3240
Defining the URI patterns for resources in RESTful applications . . . . . . . . . . . . . 3241
Defining resource methods for RESTful applications . . . . . . . . . . . . . . . . . . 3243
Defining the HTTP headers and response codes for RESTful applications. . . . . . . . . . 3245
Defining media types for resources in RESTful applications . . . . . . . . . . . . . . . 3246
Defining parameters for request representations to resources in RESTful applications . . . . . 3249
Defining exception mappers for resource exceptions and errors . . . . . . . . . . . . . 3252

Contents xiii



Deploying JAX-RS web applications. . . . . . . . . . . . . . . . . . . . . . . . . 3253

Chapter 32. Administering web services - Security (WS-Security) . . . . . . . . . . . . 3257
Deploying applications that use SAML . . . . . . . . . . . . . . . . . . . . . . . . 3257

Propagating SAML tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . 3257
Creating SAML attributes in SAML tokens . . . . . . . . . . . . . . . . . . . . . 3261
Establishing security context for web services clients using SAML security tokens . . . . . . . 3263

Administering Web Services Security . . . . . . . . . . . . . . . . . . . . . . . . 3265
Configuring HTTP outbound transport level security with the administrative console . . . . . . 3265
Configuring HTTP outbound transport level security using Java properties. . . . . . . . . . 3266
Configuring HTTP basic authentication for JAX-RPC web services with the administrative console 3267
Configuring custom properties to secure web services . . . . . . . . . . . . . . . . . 3268
Administering message-level security for JAX-WS web services . . . . . . . . . . . . . 3287
Administering message-level security for JAX-RPC web services . . . . . . . . . . . . . 3414
Enabling cryptographic keys stored in hardware devices for Web Services Security . . . . . . 3561
Configuring XML digital signature for Version 5.x web services with the administrative console 3563
Configuring XML encryption for Version 5.x web services with the administrative console . . . . 3580

Chapter 33. Administering web services - Transaction support (WS-Transaction) . . . . . . 3589
Using WS-Transaction policy to coordinate transactions or business activities for web services 3589

Configuring a JAX-WS client for WS-Transaction context . . . . . . . . . . . . . . . . 3589
Configuring a JAX-WS web service for WS-Transaction context . . . . . . . . . . . . . 3590
Configuring a WS-Transaction policy set by using wsadmin scripting. . . . . . . . . . . . 3591
Configuring Web Services Transaction support in a secure environment . . . . . . . . . . 3592
Configuring an intermediary node for web services transactions . . . . . . . . . . . . . 3593
Enabling WebSphere Application Server to use an intermediary node for web services

transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3594
Configuring a server to use business activity support . . . . . . . . . . . . . . . . . 3595

Chapter 34. Administering web services - Transports . . . . . . . . . . . . . . . . . 3597
Invoking JAX-WS web services asynchronously using the HTTP transport. . . . . . . . . . . 3597

Using the JAX-WS asynchronous response servlet . . . . . . . . . . . . . . . . . . 3597
Using the JAX-WS asynchronous response listener . . . . . . . . . . . . . . . . . . 3598

Invoking JAX-WS web services asynchronously using the SOAP over JMS transport. . . . . . . 3599
Using the JAX-WS JMS asynchronous response message listener . . . . . . . . . . . . 3599

Chapter 35. Administering web services - UDDI registry . . . . . . . . . . . . . . . . 3603
Administering the UDDI registry . . . . . . . . . . . . . . . . . . . . . . . . . . 3603

Setting up and deploying a new UDDI registry . . . . . . . . . . . . . . . . . . . . 3603
Removing a UDDI registry node . . . . . . . . . . . . . . . . . . . . . . . . . 3633
Reinstalling the UDDI registry application . . . . . . . . . . . . . . . . . . . . . . 3636
Applying an upgrade to the UDDI registry . . . . . . . . . . . . . . . . . . . . . 3642
Configuring SOAP API and GUI services for the UDDI registry . . . . . . . . . . . . . . 3642
Managing the UDDI registry. . . . . . . . . . . . . . . . . . . . . . . . . . . 3644
UDDI registry administrative (JMX) interface. . . . . . . . . . . . . . . . . . . . . 3660
User-defined value set support in the UDDI registry . . . . . . . . . . . . . . . . . . 3672
UDDI Utility Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3679

Chapter 36. Administering Work area . . . . . . . . . . . . . . . . . . . . . . . 3693
Managing the UserWorkArea partition . . . . . . . . . . . . . . . . . . . . . . . . 3693

Managing the UserWorkArea partition . . . . . . . . . . . . . . . . . . . . . . . 3693
Accessing the UserWorkArea partition . . . . . . . . . . . . . . . . . . . . . . . 3694
Managing local work with a work area . . . . . . . . . . . . . . . . . . . . . . . 3695

Managing local work with a work area . . . . . . . . . . . . . . . . . . . . . . . . 3700
Managing local work with a work area . . . . . . . . . . . . . . . . . . . . . . . 3700
Work area service settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 3702

xiv Administering WebSphere applications



Overriding work area properties . . . . . . . . . . . . . . . . . . . . . . . . . 3703
retrieveAllKeys method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3704

Notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3705

Trademarks and service marks . . . . . . . . . . . . . . . . . . . . . . . . . . 3707

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3709

Contents xv



xvi Administering WebSphere applications



How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an email
form appears.

3. Fill out the email form as instructed, and submit your feedback.

v To send comments on PDF books, you can email your comments to: wasdoc@us.ibm.com.

Your comment should pertain to specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. Be sure to include the document name and number, the WebSphere
Application Server version you are using, and, if applicable, the specific page, table, or figure number
on which you are commenting.

For technical questions and information about products and prices, please contact your IBM branch office,
your IBM business partner, or your authorized remarketer. When you send comments to IBM, you grant
IBM a nonexclusive right to use or distribute your comments in any way it believes appropriate without
incurring any obligation to you. IBM or any other organizations will only use the personal information that
you supply to contact you about your comments.

© Copyright IBM Corp. 2012 xvii



xviii Administering WebSphere applications



Using this PDF

Links

Because the content within this PDF is designed for an online information center deliverable, you might
experience broken links. You can expect the following link behavior within this PDF:

v Links to Web addresses beginning with http:// work.

v Links that refer to specific page numbers within the same PDF book work.

v The remaining links will not work. You receive an error message when you click them.

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The
information center is the official delivery format for IBM WebSphere Application Server documentation. If
you use the PDF books primarily for convenient printing, it is now easier to print various parts of the
information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon
is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation
tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a
separate browser window as one HTML file. The HTML file includes each of the topics in the section,
with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your
selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a
preferable limit. The feedback link is available at the end of most information center pages.

© Copyright IBM Corp. 2012 xix



xx Administering WebSphere applications



Chapter 1. Administering ActivitySessions

This page provides a starting point for finding information about ActivitySessions, a WebSphere extension
for reducing the complexity of commitment rules and limitations that are associated with one-phase commit
resources.

Use ActivitySessions to extend the scope and group multiple local transactions. With this capability, you
can commit these transactions based on either deployment criteria or through explicit program logic.

Administering applications that use ActivitySessions
You can enable or disable the ActivitySession service, and configure the default ActivitySession timeout for
an application server.

About this task

You can specify whether or not the ActivitySession service is started automatically for an application
server.

You can configure the default ActivitySession timeout for an application server, after which any started
ActivitySessions are completed automatically by the ActivitySession service.

Procedure
v Configure the default ActivitySession timeout for an application server.

v Enable or disable the ActivitySession service.

Enabling or disabling the ActivitySession service
You can specify whether or not the ActivitySession service is started automatically for an application
server.

About this task

To specify whether or not the ActivitySession service is started automatically for an application server, you
can use the administrative console to configure the ActivitySession Enable service at server startup
property.

Procedure
1. In the navigation pane of the administrative console, click Servers > Server Types > WebSphere

application servers.

2. Click the name of the application server that you want to configure. This displays the properties for the
application server in the content pane.

3. Click [Container Settings] Business Process Services > ActivitySession Service The
ActivitySession service properties are displayed.

4. Select or clear the Enable service at server startup property as needed:
Selected

The ActivitySession service is started when the application server is started. Applications that
specify use of ActivitySessions in their deployment descriptors can run on the application
server.

Cleared
[Default] The ActivitySession service is not started when the application server is started.
Applications that specify use of ActivitySessions in their deployment descriptors cannot start on
the application server.

© IBM Corporation 2009 1



Any attempt to start an application that uses ActivitySessions is rejected and a message
issued:

WACS0043E: Error found starting an application. application_name specified an
ActivitySession attribute that is not allowed when the ActivitySession service
is not enabled

If this happens during server startup, the server continues to start without the application.

5. Click OK.

6. Save your changes to the master configuration.

7. To have the changed configuration take effect, stop then restart the application server.

Configuring the default ActivitySession timeout for an application
server
Use this task to configure the default ActivitySession timeout for an application server, after which any
started ActivitySessions are completed automatically by the ActivitySession service.

About this task

The ActivitySession timeout is used to reset any ActivitySession whose remote client has failed to
complete the ActivitySession in a timely fashion. You can configure the initial default timeout separately for
each application server, and you can override the timeout programmatically by using the
setSessionTimeout method of the UserActivitySession interface. If an ActivitySession that contains a
transaction reaches the timeout, the transaction's timeout is accelerated so that it is timed out (and rolled
back) immediately before the ActivitySession is reset.

To configure the default ActivitySession timeout for an application server, you can use the administrative
console.

Procedure
1. In the navigation pane of the administrative console, click Servers > Server Types > WebSphere

application servers.

2. Click the name of the application server that you want to configure. This displays the properties for the
application server in the content pane.

3. Click [Container Settings] Business Process Services > ActivitySession Service The
ActivitySession service properties are displayed.

4. Ensure that Enable service at server startup is selected. You must enable the service for the timeout
to have an effect.

5. In the Default timeout field, set the default ActivitySession timeout in seconds.
v -1 indicates that ActivitySessions never time out
v 0 indicates that the default timeout, 300 seconds, applies
v Other values are an integer number of seconds

6. Click OK.

7. Save your changes to the master configuration.

8. For the changed configuration take effect, stop then restart the application server.

ActivitySession service settings
Use this page to configure the properties of the ActivitySession service. The ActivitySession service is a
unit-of-work service to coordinate one-phase resources or to extend the activation and passivation of an
enterprise bean.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > [Container Settings] Business Process Services > ActivitySession service.

2 Administering WebSphere applications



Enable service at server startup
Specifies whether the application server attempts to start the ActivitySession service when the server next
starts up.

Information Value
Default Cleared
Range Cleared

The server does not try to start the
ActivitySession service. If ActivitySessions are to
be used in applications that run on this server,
the system administrator must select this property
then restart the server.

Selected
When the application server starts, it attempts to
start the ActivitySession service automatically.

Default timeout
Specifies the default timeout for an activity session. A server automatically completes an activity session if
a remote client has failed to complete the activity session within this time period.

The initial default timeout can be configured separately for each application server, and can be overridden
programmatically by the UserActivitySession interface (setSessionTimeout).

Information Value
Data type Integer
Units Seconds
Default 300 (5 minutes)
Range -1 through 1000000000 seconds

v -1 indicates that ActivitySessions never timeout
v 0 indicates that the default timeout applies
v Other values are an integer number of seconds

Chapter 1. Welcome to administering ActivitySessions 3



4 Administering WebSphere applications



Chapter 2. Administering Application profiling

This page provides a starting point for finding information about application profiling, a WebSphere
extension for defining strategies to dynamically control concurrency, prefetch, and read-ahead.

Application profiling and access intent provide a flexible method to fine-tune application performance for
enterprise beans without impacting source code. Different enterprise beans, and even different methods in
one enterprise bean, can have their own intent to access resources. Profiling the components based on
their access intent increases performance in the application server run time.

Managing application profiles
Using the administrative console, you can add tasks to or remove tasks from application profiles.

Procedure
1. Start the administrative console.

2. Select Applications > Enterprise Applications > application_name > Application Profiles >
profile_name > Tasks.

3. On the Tasks collection page, you can add new tasks to the profile, delete tasks, edit current task
settings, and so on.

Note that, within the scope of an application, no task can be configured on more than one application
profile. In such a situation, your application cannot be restarted until you correct the configuration.

4. Save your configuration.

5. Restart the application in order for your changes to take effect.

© Copyright IBM Corp. 2012 5



6 Administering WebSphere applications



Chapter 3. Administering Asynchronous beans

This page provides a starting point for finding information about asynchronous beans.

Asynchronous beans and asynchronous scheduling facilities offer performance enhancements for
resource-intensive tasks by enabling single tasks to run as multiple tasks.

Administering asynchronous beans

Configuring timer managers
A timer manager acts as a thread pool for application components that use asynchronous beans. Use the
administrative console to configure timer managers. The timer manager service is enabled by default.

Before you begin

If you are not familiar with timer managers, review the conceptual section, Timer managers, in the
Asynchronous beans topic.

About this task

You can define multiple timer managers for each cell. Each timer manager is bound to a unique place in
Java Naming and Directory Interface (JNDI).

Important: The timer manager service is only supported from within the Enterprise Java Beans (EJB)
container or web container. Looking up and using a configured timer manager from a Java
Platform, Enterprise Edition (Java EE) application client container is not supported.

Procedure
1. Start the administrative console.

2. Select Resources > Asynchronous beans > Timer managers.

3. Specify a Scope value and click New.

4. Specify the following required properties:
Scope The scope of the configured resource. This value indicates the location for the configuration

file.
Name The display name for the timer manager.
JNDI Name

The Java Naming and Directory Interface (JNDI) name for the timer manager. This name is
used by asynchronous beans that must look up the timer manager. Each timer manager must
have a unique JNDI name within the cell.

Number of Timer Threads
The maximum number of threads that are used for timers.

5. [Optional] Specify a Description and a Category for the timer manager.

6. [Optional] Select the Service Names (Java EE contexts) on which you want this timer manager to be
made available. Any asynchronous beans that use this timer manager then inherit the selected Java
EE contexts from the component that creates the bean. The list of selected services also is known as
the "sticky" context policy for the timer manager. Selecting more services than required might impede
performance.

7. [Optional] Select Custom Properties > New. Other optional fields include:
Name lateTimerTime
Value Number of seconds
Description

Specify a description

© Copyright IBM Corp. 2012 7



Type Select java.lang.String

The lateTimerTime custom property is the number of seconds beyond which a late-firing timer causes
an informational message to be logged. The informational message is logged once per timer manager.
The default value is 5 seconds and a value of 0 disables this property.

8. Save your configuration.

Results

The timer manager is now configured and ready for access by application components that must manage
the start of asynchronous code.

Timer manager collection
Use this page to view the configuration properties of timer managers, which enable applications to
schedule future timer notifications and to receive timer notification callbacks to application-specified
listeners within a Java 2 Platform, Enterprise Edition (J2EE) environment. The timer manager binds to the
Java Naming and Directory Interface (JNDI) name space.

A timer manager contains a pool of threads bound into JNDI.

To view this administrative console page, click Resources > Asynchronous beans > Timer managers.

Name:

Specifies the name by which the timer manager is known for administrative purposes.

Information Value
Data type String

JNDI Name:

Specifies the JNDI name used to look up the timer manager in the name space.

Information Value
Data type String

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Description:

Specifies a description of this timer manager for administrative purposes.

Information Value
Data type String

Category:

Specifies a string that can be used to classify or group this timer manager.

Information Value
Data type String

Timer manager settings:

8 Administering WebSphere applications



Use this page to modify timer manager settings. Timer managers enable applications to schedule future
timer notifications and to receive timer notification callbacks to application-specified listeners within a Java
Platform, Enterprise Edition (Java EE) environment. The timer manager binds to the Java Naming and
Directory Interface (JNDI) name space.

A timer manager contains a pool of threads bound into JNDI.

To view this administrative console page, click Resources > Asynchronous beans > Timer managers
timermanager_name.

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Name:

Specifies the name by which the timer manager is known for administrative purposes.

Information Value
Data type String

JNDI name:

Specifies the JNDI name used to look up the timer manager in the namespace.

Information Value
Data type String

Description:

Specifies a description of this timer manager for administrative purposes.

Information Value
Data type String

Category:

Specifies a string that can be used to classify or group this timer manager.

Information Value
Data type String

Service names:

Specifies a list of services to make available to this timer manager.

Asynchronous beans can inherit Java EE context information by enabling one or more Java EE service
contexts on the timer manager resource in the product administrative console or by setting the
serviceNames attribute of the TimerManagerInfo configuration object. When specifying the serviceNames
attribute each enabled service should be separated by a semicolon, for example,
security;UserWorkArea;com.ibm.ws.i18n. When a Java EE service context is enabled, it propagates the
context from the scheduling thread to the target thread. If not enabled, the target thread does not inherit
the context of the scheduling thread and a default context is applied. Any related Java EE context that is
already present on the thread is suspended before any new Java EE context is applied.

Chapter 3. Welcome to administering Asynchronous beans 9



The context information of each selected service is propagated to each timer that is created using this
timer manager. Selecting services that are not needed can negatively impact performance.

Service name Description
Work area Use the administrative console or the UserWorkArea

service name to enable work area partitions. When
enabled, the work area context for every work area
partition that exists on the scheduling thread is available
on the target thread. This feature is optional.

Security Use the administrative console or the security service
name to enable the Java Authentication and Authorization
Service (JAAS) subject. When this feature and
administrative security are enabled, the JAAS subject that
is present on the scheduling thread is applied to the target
thread. If not enabled, the target thread is run
anonymously without a JAAS subject on the thread. This
feature is optional.

Internationalization Use the administrative console or the com.ibm.ws.i18n
service name to enable the internationalization context
information. When the internationalization context and the
Internationalization service is enabled, the
internationalization context that exists on the scheduling
thread is available on the target thread. This feature is
optional.

Number of timer threads:

Specifies the maximum number of threads that are used for timers.

Information Value
Data type Integer

Configuring work managers
A work manager acts as a thread pool for application components that use asynchronous beans. Use the
administrative console to configure work managers.

Before you begin

If you are not familiar with work managers, refer to the Work managers conceptual topic.

About this task

The work manager service is always enabled. In previous versions of the product, the work manager
service could be disabled using the administration console or configuration service. The work manager
service configuration objects are still present in the configuration service, but the enabled attribute is
ignored.

You can define multiple work managers for each cell. Each work manager is bound to a unique place in
the Java Naming and Directory Interface (JNDI) namespace.

Important: The work manager service is only supported from within the Enterprise JavaBeans (EJB)
Container or web container. Looking up and using a configured work manager from a Java
Platform, Enterprise Edition (Java EE) application client container is not supported.

10 Administering WebSphere applications



Procedure
1. Start the administrative console.

2. Select Resources > Asynchronous beans > Work managers.

3. Specify a Scope value and click New.

4. Specify the required properties for work manager settings.
Scope The scope of the configured resource. This value indicates the location for the configuration

file.
Name The display name for the work manager.
JNDI Name

The Java Naming and Directory Interface (JNDI) name for the work manager. This name is
used by asynchronous beans that must look up the work manager. Each work manager must
have a unique JNDI name within the cell.

Number of Alarm Threads
The maximum number of threads to use for processing alarms. Applies to a separate thread
pool that is used for running alarms. A single thread is used to monitor pending alarms and
dispatch them. An additional pool of threads is used for dispatching the threads. All alarm
managers on the asynchronous beans associated with this work manager share this set of
threads. A single alarm thread pool exists for each work manager, and all of the asynchronous
beans associated with the work manager share this pool of threads.

Minimum Number Of Threads
Applies to the main thread pool for work submitted to the work manager. The number of
threads to be kept in the thread pool, created as needed.

Maximum Number Of Threads

Note: Applies to the main thread pool for work submitted to the work manager. The maximum
number of threads to be created in the thread pool. The maximum number of threads
can be exceeded temporarily when the Growable check box is selected. These
additional threads are discarded when the work on the thread completes.

Thread Priority
The priority to assign to all threads in the thread pool.

Every thread has a priority. Threads with higher priority are run before threads with lower
priority. For more information about how thread priorities are used, see the Javadoc for the
setPriority method of the java.lang.Thread class in the Java Standard Edition specification.

5. [Optional] Specify a Description and a Category for the work manager.

6. [Optional] Select the Service Names (Java EE contexts) on which you want this work manager to be
made available. Any asynchronous beans that use this work manager then inherit the selected Java
EE contexts from the component that creates the bean. The list of selected services also is known as
the "sticky" context policy for the work manager. Selecting more services than are required might
impede performance.

Other optional fields include:

Work timeout
Specifies the number of milliseconds to wait before a scheduled work object is released. If a
value is not specified, then the timeout is disabled.

Work request queue size
Specifies the size of the work request queue. The work request queue is a buffer that holds
scheduled work objects and can be a value of 1 or greater. The thread pool pulls work from
this queue. If you do not specify a value or the value is 0, the queue size is managed
automatically. When the queue size is managed automatically, it is computed as the larger of
(maximum_number_of_threads) or 20. If this value computes to a zero value, a queue size of
1 is used. Large values can consume significant system resources.

Work request queue full action
Specifies the action taken when the thread pool is exhausted, and the work request queue is

Chapter 3. Welcome to administering Asynchronous beans 11



full. This action starts when you submit non-daemon work to the work manager. If set to FAIL,
the work manager API methods creates an exception instead of blocking.

7. [Optional] Select Custom Properties > New. Other optional fields include:
Name lateWorkTime
Value Number of seconds
Description

Specify a description
Type Select java.lang.String

The lateWorkTime custom property is the number of seconds beyond which late-starting work must
cause an informational message to be logged. The informational message is logged once per work
manager. The default value is 60 seconds and a value of 0 disables this property.
Name lateAlarmTime
Value Number of seconds
Description

Specify a description
Type Select java.lang.String

The lateAlarmTime custom property is the number of seconds beyond which a late-firing alarm must
cause an informational message to be logged. The informational message is logged once per work
manager. The default value is 5 seconds and a value of 0 disables this property.

8. Save your configuration.

Results

The work manager is now configured and ready for access by application components that must manage
the start of asynchronous code.

Work manager collection
Use this page to view the collection properties of work managers, which contain a pool of threads bound
into the Java Naming and Directory Interface.

To view this administrative console page, click Resources > Asynchronous beans > Work managers.

Name:

Specifies the name by which the work manager is known for administrative purposes.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name used to look up the work manager in the
namespace.

Information Value
Data type String

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Description:

Specifies the description of this work manager for administrative purposes.

Category:

Specifies a category name that is used to classify or group this work manager.

12 Administering WebSphere applications



Work manager settings:

Use this page to modify work manager settings. Work managers contain a pool of threads that are bound
into Java Naming and Directory Interface.

To view this administrative console page, click Resources > Asynchronous beans > Work managers >
workmanager_name.

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Name:

Specifies the name by which the work manager is known for administrative purposes.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name used to look up the work manager in the
namespace.

Description:

Specifies the description of this work manager for administrative purposes.

Category:

Specifies a string that you can use to classify or group this work manager.

Work timeout:

Specifies the number of milliseconds to wait before attempting to release a unit of work. The timeout
interval begins when the unit of work starts, rather than when the unit of work is submitted.

Information Value
Default 0
Range 0 to int.maxvalue

Work request queue size:

Specifies the size of the work request queue.

Note: The work request queue is a buffer that holds scheduled work objects and can be a value of 1 or
greater. The thread pool pulls work from this queue. If you do not specify a value or the value is 0,
the queue size is managed automatically. When the queue size is managed automatically, it is
computed as the larger of (maximum_number_of_threads) or 20. Large values can consume
significant system resources.

Information Value
Default 0

Work request queue full action:

Specifies the action taken when the thread pool is exhausted, and the work request queue is full. This
action starts when you submit non-daemon work to the work manager.

Chapter 3. Welcome to administering Asynchronous beans 13



If set to FAIL, the work manager API methods creates an exception instead of blocking.

Information Value
Default BLOCK
Range FAIL

Service names:

Specifies a list of services to make available to this work manager.

Asynchronous beans can inherit J2EE context information by enabling one or more J2EE service contexts
on the work manager resource in the WebSphere administrative console or by setting the serviceNames
attribute of the WorkManagerInfo configuration object. When specifying the serviceNames attribute each
enabled service should be separated by a semicolon. For example:
security;UserWorkArea;com.ibm.ws.i18n. When a J2EE service context is enabled, it propagates the
context from the scheduling thread to the target thread. If not enabled, the target thread does not inherit
the context of the scheduling thread and a default context is applied. Any related J2EE context that is
already present on the thread is suspended before any new J2EE context is applied.

The context information of each selected service is propagated to each work or alarm that is created using
this work manager. Selecting services that are not needed can negatively impact performance.

Service name Description
Application profile (deprecated) Use the administrative console or the AppProfileService service name to

enable the application profile tasks. Application profile context is not
supported and not available for J2EE 1.4 applications. For J2EE 1.3
applications, the application profile context is deprecated and is only available
when Application Profile Service 5.x Compatibility Mode is enabled and both
the scheduling thread and target thread are J2EE 1.3 applications. When
enabled, all application profile tasks that are available on the scheduling
thread are available on the target thread. The scheduled work that runs in a
J2EE 1.4 application does not get the application profiling task of the
scheduling thread. This feature is optional.

Work area Use the administrative console or the UserWorkArea service name to enable
work area partitions. When enabled, the work area context for every work
area partition that exists on the scheduling thread is available on the target
thread. This feature is optional.

Security Use the administrative console or the security service name to enable the
Java Authentication and Authorization Service (JAAS) subject. When this
feature and administrative security are enabled, the JAAS subject that is
present on the scheduling thread is applied to the target thread. If not
enabled, the target thread is run anonymously without a JAAS subject on the
thread. This feature is optional.

Internationalization Use the administrative console or the com.ibm.ws.i18n service name to
enable the internationalization context information. When the
internationalization context and the Internationalization service is enabled, the
internationalization context that exists on the scheduling thread is available on
the target thread. This feature is optional.

Thread pool properties:

Specifies the priority of the threads available in this work manager.

Properties Description
Number of alarm threads Specifies the desired maximum number of threads used for alarms.
Minimum number of threads Specifies the minimum number of threads available in this work manager.
Maximum number of threads Specifies the maximum number of threads available in this work manager.

14 Administering WebSphere applications



Properties Description
Thread priority Specifies the priority of the threads available in this work manager.
Growable Specifies whether the number of threads in this work manager can be

increased.

Chapter 3. Welcome to administering Asynchronous beans 15



16 Administering WebSphere applications



Chapter 4. Administering with the batch administrative
console help files

You can administer the batch environment using the job scheduler, which is used to submit jobs and
determine where to run them, and manage batch jobs using the job management console.

In a batch environment, many applications must complete batch work that is computational and resource
intensive. Batch work might take hours or even days to finish. The batch work can use large amounts of
memory or processing power while it runs.

Job scheduler job class settings
Use this page to create, edit, and delete job classes. Every batch job is associated with a job class. If you
do not define a class in the job, the default job class is used.

To view this page, click System administration > Job Scheduler > Job classes > job_class_name.

Use the following job class settings to manage the job specified.

Name
Specifies the name of the job class.

Maximum execution time
Maximum time in seconds that a job runs before being automatically canceled by the system.

Leaving the check box cleared means that there is no maximum run time. If you select this setting, then
you must enter an integer value with a range of 1 through 2147483647.

Maximum concurrent jobs
Maximum number of concurrently dispatched jobs of a given job class.

Leaving the check box cleared means that there is no maximum number of concurrent jobs. If you select
this setting, then you must enter an integer value with a range of 1 through 2147483647.

Maximum class space
Specified in megabytes. Job logs of the specified class are deleted on an endpoint beginning with oldest to
newest, if the size of the job logs exceeds the specified maximum class space.

Leaving the check box cleared means that there is no maximum class space. If you select this setting,
then you must enter an integer value with a range of 1 through 2147483647.

Maximum file age
Specified as an integer, in days. Job logs of the specified class older than the maximum number of days
are automatically deleted by the system.

Leaving the check box cleared means that there is no maximum file age. If you select this setting, then
you must enter a value with a range of 1 through 2147483647.

Maximum jobs
Specified as an integer. When jobs on the output queue of the specified class exceed the maximum
number of jobs, those jobs are deleted beginning with oldest to newest until the total number of jobs is
less than the specified maximum jobs.

© Copyright IBM Corp. 2012 17



Leaving the check box cleared means that there is no maximum number of jobs. If you select this setting,
then you must enter a value with a range of 1 through 2147483647.

Maximum job age
Specified as an integer, in days. Jobs on the output queue of the specified class older than the maximum
number of days are automatically deleted by the system.

Leaving the check box cleared means that there is no maximum job age. If you select this setting, then
you must enter a value with a range of 1 through 2147483647.

Description
Describes the job class.

Job scheduler job class collection
Use this page to manage your job classes. Every batch job is associated with a job class. If you do not
define a class in the job, the default job class is used.

To view this page, click System administration > Job scheduler > Job Classes.

Use the following job class settings to manage the job specified.

Name
Specifies the name of the job class.

Description
Describes the job class.

Job scheduler classification rule settings
Use this page to create and manage rules that are used by the scheduler to perform job classification
based on the rules or conditions that are defined.

To view this page, click System administration > Job scheduler > Classification rules.

To modify rules with the rule builder, you must have administrative privileges.

Table 1. Classification rule buttons. The table lists classification rule buttons and a description of each.

Button Description

Add rule Use to add a new rule either manually or by using the
Subexpression builder utility.

Delete rule Deletes an existing, selected rule.

Move up Prioritizes the rules in the case of multiple rules. The
order of rules is key in determining matches. If a match
occurs on the first rule, subsequent rules are not pursued.

Move down Prioritizes the rules in the case of multiple rules. The
order of rules is key in determining matches. If a match
occurs on the first rule, subsequent rules are not pursued.

Validate rule Specifies that the rule builder validates the rule when you
apply the changes and alerts you to mismatched
parentheses and unsupported logic operators.

18 Administering WebSphere applications



Order
Prioritizes the rules in the case of multiple rules.

The order of rules is key in determining matches. If a match occurs on the first rule, subsequent rules are
not pursued. Click Move up and Move down to prioritize rules.

Classification rule
Specifies the attributes of the selected classification rule.

Select the appropriate links to modify the classification rule.

Edit rule
Use to edit the existing rule manually or by using the Subexpression builder utility.

Syntax help
Use to determine syntax for rules that you are editing.

Subexpression builder
Use the Subexpression builder utility to build complex rule conditions from subexpressions by
using AND, OR, and parenthetical grouping. The rule builder validates the rule when you apply the
changes and alerts you to mismatched parentheses and unsupported logic operators.

Subexpression builder settings
Use this page to create and manage rules that are used by the scheduler to perform job classification
based on the rules or conditions defined.

To view this page, click System administration > Job Scheduler > Classification rules > Add Rule >
Subexpression builder.

Select operand
The operand is part of the classification rule that the run time uses to match a rule to a job. For instance, if
you specify an application type equal to j2ee, the runtime searches for a job that has an application type
of j2ee.

The following list includes operand choices:

v Job name

v Submitter group

v Submitter ID

v Job class

v Application type

v Application name

v Platform

v Time

Operator
The operator is specified in the classification rule and is applied to the operand. For example, you can use
= to specify an application type operand that is equal to j2ee. Depending on the operand you select,
various choices of operators are displayed. The following list includes operator choices:

= The equality operator expresses a case-sensitive match.

<> The less-than or greater-than operator is for use with numbers.

AND For xx AND yy, expresses matches that contain both xx, yy.

Chapter 4. Administering with the batch administrative console help files 19



IN This operator expresses an operand with multiple values in a single expression. For example, if,
for an operand called port, you want to express that the port value can be any or all of the values
such as 9080, 9090, and 9091, the expression fragment is port IN (9080,9090,9091). How the
values inside the brackets are expressed depends on the data type of port. If the port is an
integer, the correct syntax is to include the values without quotation marks. If the port is a string,
the correct syntax is port IN (‘9080',‘9090',‘9091').

IS NULL
This operator expresses that a validation of the query shows that the requested parameter does
not exist.

IS NOT NULL
This operator expresses that a validation of the query shows that the requested parameter exists.

LIKE This operator expresses pattern matching for string operand values. The value must contain the
wildcard character percent sign (%) in the position where the pattern matching starts. For example,
the expression, host LIKE %blanca, matches the word blanca, or any other word that ends in
blanca, while the expression host LIKE blanca% matches the word blanca or any other word that
starts with blanca. The expression, host LIKE %blanca% matches the word blanca or any word that
has blanca embedded in it.

CONTAIN(S)
This operator expresses the value returned if the value of submitter_group used in the expression
is present in the array of values returned by the submitter_group operand. For example, if the
submitter group returns the array of groups {sales, development, management}, and the value
used in the expression is development, then CONTAINS returns true. Otherwise, it is false.

CONTAINMATCH (CONTAINSMATCH)
CONTAINSMATCH is the same as CONTAINS, but has pattern matching capability. For example, if you
use %ment for the CONTAINMATCH operator, it matches because development and management both
contain the substring of ment in their elements.

Value
Depending on the operator that you choose, enter a value for the subexpression that you want to create.

Subexpression builder
Generates the subexpression as a result of the operand, operator, and values that you specified.

Append
Adds the subexpression to the new rule.

Custom property collection for the job scheduler
Use this page to view and manage arbitrary name-value pairs of data, where the name is a property key
and the value is a string value that is used to set internal system configuration properties.

The administrative console contains several custom properties pages that work similarly. To view one of
these administrative pages, click a custom properties link.

Name
Specifies the name (or key) for the property.

Each property name must be unique. If the same name is used for multiple properties, the value specified
for the first property that has that name is used. Do not start your property names with was. because this
prefix is reserved for properties that are predefined in WebSphere® Application Server.

20 Administering WebSphere applications



Value
Specifies the value that is paired with the specified name.

Description
Provides information about the name and value pair.

Custom property settings for the job scheduler
Use this page to configure arbitrary name-value pairs of data, where the name is a property key and the
value is a string value that can be used to set internal system configuration properties. You can define a
new property to configure a setting beyond what is available in the administrative console.

To view this administrative console page, click System administration > Job scheduler > Custom
Properties.

Name
Specifies the name (or key) for the property.

Each property name must be unique. If the same name is used for multiple properties, the value specified
for the first property that has that name is used. Do not start your property names with was. because this
prefix is reserved for properties that are predefined in WebSphere Application Server.

Data type String

Value
Specifies the value that is paired with the specified name.

Data type String

Description
Provides information about the name and value pair.

Data type String

Job scheduler configuration
Use this page to set up persistence of job information to the external job database. Configuration settings
include the deployment target of the job scheduler, the data source, the database schema name, and the
endpoint job log location.

To view this administrative console page, click System administration > Job scheduler.

Use this page to add custom properties, map security roles to users and groups for the job scheduler, and
view the grid endpoints.

Users in the lrsubmitter role can submit and manage their own jobs. Users in the lradmin role can perform
any action against any job.

Scheduler hosted by
Specifies the deployment target where the grid scheduler is hosted / running.

Chapter 4. Administering with the batch administrative console help files 21



Database schema name
Specifies the database schema name for the grid scheduler database.

Data source JNDI name
Specifies the data source Java Naming and Directory Interface (JNDI) where grid jobs are stored.

Endpoint job log location
Specifies a location on the endpoints where the job log is created.

Record usage data in scheduler database
Specifies whether to record usage data in the scheduler database.

WebSphere grid endpoints
Use this page to view servers or clusters that host grid applications and the data source Java Naming and
Directory Interface (JNDI) names used by the WebSphere grid endpoints.

To view this administrative console page, click System administration > Job Scheduler > WebSphere
grid endpoints.

Name
Specifies the name of the WebSphere grid endpoint.

Datasource JNDI name
Specifies the data source JNDI name used by the WebSphere grid endpoint.

Welcome to the job management console
The job management console is a stand-alone web interface for users to perform job operations.

To view this job management console page, click Help from the Welcome page of the job management
console.

You must be granted the lrsubmitter role, the lradmin role, or both roles through the administrative console
to access the job management console.

Depending on role privileges, users can perform various job operations. The job management console
provides controlled access when security is enabled.

View jobs
Use the page to view the list of all jobs submitted to the job scheduler and to view information about the
jobs.

To view this job management console page, click Job Management > View jobs.

To apply action on the jobs, select the jobs and the action, then click Apply.

Use the filter function to filter and sort jobs. Click the Show filter function icon , enter the filter criteria,
then click Go.

To refresh this panel, click View Jobs in the navigation or click the icon in the Status column.

22 Administering WebSphere applications



Privileges in the job management console vary, depending on assigned roles. For this console page, a
user can do the following actions:

v Manage jobs that the user owns with the lrsubmitter role.

v Manage jobs from all users with the lradmin role.

There are multiple types of actions to take, depending on the job type and state. From this console page,
users with the lrsubmitter or lradmin roles can complete actions such as cancel, purge, restart, remove,
suspend, or resume a job.

Job ID
Specifies the link to the job. To view the job log, click the link of the job ID.

Submitter
Specifics the ID of the user who submitted the job.

Last update
Specifies the date when the job was last updated.

State
Shows the state of the job.

Node
Specifies the node where the job is located.

Application server
Specifies the application server where the job is located.

Group
Specifies the group name assigned to a job when group-based security is enabled or when group-based
and role-based security is enabled.

View job log
Use this page to view job log information of all jobs submitted to the job scheduler, and to download a job
log to your local system.

To view this job management console page, click Job Management > View jobs > job name.

Use this panel to view job log information, or to download the log file to your local system.

Privileges in the job management console vary, depending on assigned roles. For this console page, a
user can do the following actions:

v Manage jobs that the user owns with the lrsubmitter role.

v Manage jobs from all users with the lradmin role.

Refresh
Click to refresh the screen.

Download
Click to download this job log to your local system.

Chapter 4. Administering with the batch administrative console help files 23



Back
Click to return to the view job panel.

Submit a job
Use this page to submit a job by specifying the job definition. The job definition can originate from the local
file system.

To view this job management console page, click Job Management > Submit a job.

Privileges in the job management console vary, depending on assigned roles. For this console page, users
with the lrsubmitter role or the lradmin role can submit jobs.

Local file system
Specify the path of the job definition to submit as a new job.

Use the Browse button to locate and specify the full path of a local file.

Job repository
Specify the name of the job.

Select Job repository if the job definition is stored in the job repository.

Substitution properties
Select to update the values of the substitution properties for the job.

If a job has substitution properties without values, you must specify them.

Delay submission
Select to delay the start date and time of when to run the job.

Click Submit to submit the job to the scheduler, or click Cancel to cancel the submission.

View saved jobs
Use the page to view the list of all jobs saved to the job repository.

To view this page, click Job Repository > View saved jobs.

The list of saved job definitions is displayed.

Privileges in the job management console vary depending on group security and assigned roles. A user in
the lrsubmitter role or the lradmin role can view saved jobs. When group security is enabled, a user in the
group can view saved jobs in the same group.

When the option for group security and role security is enabled, a user in the group can view saved jobs in
the group. A user can be in the lrsubmitter role or the lradmin role.

Name
Specifies the job name. To view the job definition, click the name link.

Click Delete to delete a job definition from the repository.

24 Administering WebSphere applications



View saved job content
Use the page to view the xJCL content of a saved job. You might view the save content to determine if it
is correct or if you must make adjustments.

To view this page, click Job Repository > View saved jobs > Select_job.

Privileges in the job management console vary depending on group security and assigned roles. A user in
the lrsubmitter role or the lradmin role can view saved job content. When group security is enabled, a user
in the group can view saved job content for a job in the group.

When the option for group security and role security is enabled, a user in the group can view saved job
content in the group. A user can be in the lrsubmitter role or the lradmin role.

Back
Click Back to return to the list of saved jobs.

Save a job
Use the page to save a job definition to the job repository.

To view this page, click Job Repository > Save a job.

Privileges in the job management console vary depending on group security and assigned roles.

v A user in the lradmin role can save a job, but a user in the lrsubmitter role or the lrmonitor role cannot.

v When group security is enabled, a user in the group can save a job in the group.

v When the option for group security and role security is enabled, a user in the group can save a job in
the group. The user must be in the lradmin role.

Job name
Specifies the job name.

Click Save to save the new job definition. Click Reset to start over.

xJCL path
Describes the xJCL path.

Replace the job if the specified job name exists
Specifies to replace the job definition in the repository if one exists. The job definition is replaced when
you click Save.

Leaving the check box cleared means that the job definition is not replaced when you click Save.

View schedules
Use this page to view schedule information or to cancel job schedules.

To view this page, click Schedule management > View schedules.

The page displays the list of schedules.

Privileges in the job management console vary, depending on group security and assigned roles.

v Users in the lradmin role can view schedules and can cancel schedules for jobs.

Chapter 4. Administering with the batch administrative console help files 25



v When group security is enabled, any user in the group can view schedules in the group and can cancel
schedules for jobs in the group.

v When the option for group security and role security is enabled, a user can complete the following
actions:

– View schedules and cancel schedules for jobs if the user is in the lradmin role.

Use the filter function to filter and sort schedules. Click the Show filter function icon , enter the filter
criteria, then click Go. To refresh this panel, click Refresh.

Name
Specifies the schedule name.

To view a schedule definition, click the Name link. To cancel a schedule, select the schedule and click
Cancel.

Submitter
Specifies the schedule submitter.

Start date and time
Specifies the start date and time for the schedule.

Interval
Specifies the time frame for when the schedule is run.

Create a schedule
Use the wizard to create a schedule of events that occur for a job.

To view this page, click Schedule management > Create a schedule.

Use the wizard to specify information.

Privileges in the job management console vary, depending on group security and assigned roles.

v Users in the lradmin role can create schedules.

v Users in the lrmonitor role or the lrsubmitter role cannot create schedules.

v When group security is enabled, any user in the group can create schedules for jobs in the group.

v When the option for group security and role security is enabled, a user in the group can create a
schedule for a job in the group. The user must be in the lradmin role.

Step 1: Create schedule
All of the fields on this panel are required.

Name Specify the name of the schedule you want to create.

Start date
Specify the start date for the schedule to begin. The start date must be in the format yyyy-MM-dd.

Start time
Specify the start time for the schedule to begin. The start time must be in the format HH:mm:ss.

Interval
Specify the interval period as either daily, weekly, or monthly for the schedule to run.

26 Administering WebSphere applications



Click Next.

Step 2: Specify job
Specifies the path of the job definition to submit as a new job.

Local file system
Browse for the job definition from the local file system.

Remote file system
Browse for the job definition from the job repository system.

Specify the path and click Next.

Step 2.1: Specify substitution properties
Specifies values for substitution properties for this job.

This step opens if the job definition contains substitution properties.

Specify values, and click Next.

Step 3: Confirm create schedule
Lists a summary of your selections.

To complete this schedule submission, click Finish.

Update schedule
Use this page to view or update a job and its schedule.

To view this page, click Schedule management > View schedules > Select_schedule.

Privileges in the job management console vary depending on group security and assigned roles.

v A user in the lradmin role can update a schedule.

v A user in the lrsubmitter role or the lrmonitor role cannot update a schedule.

v When group security is enabled, a user in the group can update a schedule for a job in the group.

v When the option for group security and role security is enabled, a user in the group can update a
schedule for a job in the group. The user must be in the lradmin role.

Click Apply or OK to save your changes. Click Cancel to cancel your changes. Click Reset to clear your
changes on the console panel and restore the most recently saved values.

Schedule
Change the start date, start time, and interval for the schedule.

Job
View the content of a job, or replace the job definition on this panel.

v Click the link next to Job to run to view the content of the job associated with the schedule you want to
change.

You can optionally update the substitution properties.

v Click the check box, Replace job definition, to change the definition of the job. You can replace the job
definition from a local file system or from the job repository.

Chapter 4. Administering with the batch administrative console help files 27



28 Administering WebSphere applications



Chapter 5. Administering Client applications

This page provides a starting point for finding information about application clients and client applications.
Application clients provide a framework on which application code runs, so that your client applications can
access information on the application server.

For example, an insurance company can use application clients to help offload work on the server and to
perform specific tasks. Suppose an insurance agent wants to access and compile daily reports. The
reports are based on insurance rates that are located on the server. The agent can use application clients
to access the application server where the insurance rates are located. More introduction...

Deploying client applications
Deploying a client application depends on installing appropriate supporting files on the client machine,
usually some configuring actions, and adding the program files for the client application. When the client
application has been deployed, the application can run.

About this task

The steps required to deploy and run a client application depend on the type of client and the
programming model used.

You can install an application client JAR file using the administrative console, wsadmin AdminApp install,
or update commands. Install the client module only on a Version 8.0 deployment target (such as server,
cluster, and so on).

Complete one or more of the following tasks:

Procedure
v Deploy the client application

v Run an ActiveX client application

v Deploy and run a Java EE client application

v Run the IBM Thin Client for Enterprise JavaBeans

Deploying applet client code
Applet clients are capable of communicating over the HTTP protocol and the RMI-IIOP protocol.

Before you begin

Applet clients have the following setup requirements:
v These clients are available on the Windows platforms. Check the prerequisites page for information on

platform support and product prerequisites.
v The browser installation precedes the client code installation.

About this task

Unlike typical applets that are on web servers or WebSphere Application Servers and can only
communicate over the HTTP protocol, applet clients can communicate over the HTTP protocol and the
RMI-IIOP protocol. This additional capability gives the applet direct access to enterprise beans.

The applet container is the web browser and the Java plug-in combination. You must first install the
Application Client for WebSphere Application Server so that the browser recognizes the IBM® product Java
plug-in.

© Copyright IBM Corp. 2012 29



Procedure
1. Install the Application Client for WebSphere Application Server.

2. Configure required Java runtime parameters.

a. Click Start > Control panel .

b. Select the IBM Control Panel for Java

c. On the Advanced tab, enter the following parameter values in the Java Runtime Parameters field.
-Xmx512M
-Djava.security.policy=<app_client_root>\properties\client.policy
-Dwas.install.root=<app_client_root>
-Djava.ext.dirs=<app_client_root>\java\jre\lib\ext;
<app_client_root>\lib;
<app_client_root>\plugins;
<app_client_root>\lib\ext;
<app_client_root>\installedConnectors\
-Djava.class.path=<app_client_root>\properties
-Dcom.ibm.CORBA.ConfigURL=file:<app_client_root>\properties\sas.client.props
-Dcom.ibm.SSL.ConfigURL=file:<app_client_root>\properties\ssl.client.props

Note: These parameter entries are automatically placed into the WebSphere Application Server
control panel for the Java plug-in user who installed the WebSphere Application Server
Application Client provided you are using a Java SE Development Kit (JDK) prior to JDK 1.5. If
the applet is being run by a user other than the person who installed the client, then that user
must enter the parameter entries.

For JDK 1.5 and later, this automatic parameter feature is removed.
v The Java Runtime Parameters field is similar to the command prompt when using command line

options. Therefore, you can enter most options available from the command prompt (for example,
-cp, classpath, and others) in this field as well.

3. Configure use of secure sockets layer (SSL) for secure access to resources. By default, the applet
client is configured to have security enabled. If you have administrative security turned on at the server
from which you are accessing resources, then you can use SSL when needed. If you decide that the
security requirements for applet client applications differ from other types of client applications, then
you can create special copies of client property files for applets to use.

Running an ActiveX client application
To run an ActiveX client application that is to use the ActiveX to Enterprise Java Beans (EJB) bridge, you
must perform some initial configuration to set appropriate environment variables and to enable the ActiveX
to EJB bridge to find its XJB.JAR file and the Java run time. This initial configuration sets up the
environment within which the ActiveX client application can run.

About this task

To perform the required configuration, complete one or more of the following tasks:

Procedure
1. Start an ActiveX application and configure service programs.

2. Start an ActiveX application and configuring non-service programs

Starting an ActiveX application and configuring service programs
To run an ActiveX service program such as Active Server Page (ASP) that is to use the ActiveX to the
Enterprise Java Bean (EJB) bridge, some initial configuration (to set appropriate environment variables
and to enable the ActiveX to EJB bridge to find its XJB.JAR file and the Java run time) is necessary. This
configuration sets up the environment within which the ActiveX service program can run.

30 Administering WebSphere applications



Before you begin

The XJB.JClassFactory must find the Java run time dynamic link library (DLL) when initializing. In a
service program such as Internet Information Server you cannot specify a path for its processes
independently; you must set the process paths in the system PATH variable. This limitation means that you
can only have a single Java virtual machine (JVM) version available on a machine using ASP.

About this task

To add the Java Runtime Environment (JRE) directories to your system path, complete one of the
following task.

Procedure

On Windows XP systems, complete the following steps:
1. Open the Control Panel, then double-click the System icon.
2. Click the Advanced tab on the System Properties window.
3. Click Environment Variables.
4. Edit the Path variable in the System Variables window.
5. Add the following information to the beginning of the path that is displayed in the Variable Value field:
C:\WebSphere\AppClient\Java\jre\bin;C:\WebSphere\AppClient\Java\jre\bin\classic;

where C:\WebSphere\AppClient is the directory in which you installed the Java client in the WebSphere
product.

6. Click OK in the Edit System Variable window to apply the changes.
7. Click OK in the Environment Variables window.
8. Click OK in the System Properties window.
9. Restart Windows XP.

What to do next

After you change the system PATH variable you must reboot the Internet Information Server machine so
that Internet Information Server can see the change.

Starting an ActiveX application and configuring non-service programs
To run an ActiveX program initiated from an icon or command line (a non-service program) that is to use
the ActiveX to the Enterprise Java Beans (EJB) bridge, you must perform some initial configuration to set
appropriate environment variables and to enable the ActiveX to EJB bridge to find its XJB.JAR file and the
Java run-time environment. This uses a batch file to set up the environment within which the ActiveX
program can run.

About this task

To perform the required configuration, complete the following steps:

Procedure
1. Edit the setupCmdLineXJB.bat file to specify appropriate values for the environment variables required

by the ActiveX to EJB bridge. For more information about these environment variables, see ActiveX to
EJB bridge, environment and configuration. For more information about creating a JVM for an ActiveX
program, see ActiveX to EJB bridge, initializing the Java virtual machine (JVM). After the ActiveX
program has created an XJB.JClassFactory object and called the XJBInit() method, the JVM is
initialized and ready for use.

2. Start the ActiveX client application by using one of the following methods:
v Use the launchClientXJB.bat file to start the application. For example:

launchClientXJB MyApplication.exe parm1 parm2

Chapter 5. Welcome to administering Client applications 31



or
launchClientXJB MyApplication.vbp

v Use the setupCmdLineXJB.bat file to create an environment in which to run the application, then start
the application from within that environment.

setupCmdLineXJB.bat, launchClientXJB.bat and other ActiveX batch files
This topic provides reference information about the aids that client applications and client services can use
to access the ActiveX to EJB bridge. These enable the ActiveX to Enterprise JavaBeans (EJB) bridge to
find its XJB.JAR file and the Java run-time environment.

Location

The include file is located in the was_client_home\aspIncludes directory. You can include the file into your
Active Server Pages (ASP) application with the following syntax in your ASP page:

<-- #include virtual ="/WSASPIncludes/setupASPXJB.inc" -->

This syntax assumes that you have created a virtual directory in Internet Information Server called
WSASPIncludes that points to the was_client_home\aspIncludes directory.

Usage notes

The following batch files are provided for client applications to use the ActiveX to EJB bridge:
v setupCmdLineXJB.bat

Sets the client environment variables.
v launchClientXJB.bat

Calls the setupCmdLineXJB.bat file and launches the application you specify as its arguments; for
example:

launchClientXJB.bat myapp.exe parm1 parm2

or

launchClientXJB MyApplication.vbp
v Active Server Pages (ASP) include file

An include file is provided for ASP users to automatically set the following page-level (local)
environment variables:
– com_ibm_websphere_javahome. Path to the Java run-time directory installed with the WebSphere

advanced server client.
– com_ibm_websphere_washome. Path to the WebSphere advanced server client directory.
– com_ibm_websphere_namingfactory. Sets the Java java.naming.factory.initial system property.
– com_ibm_websphere_computername. (Optional) Name of the computer where the WebSphere

Advanced Server Client is installed. If you intend to talk to a single specific computer, you are
recommended to change this value to become the server name that you intend to access.

v System settings

To enable the ActiveX to EJB bridge to access the Java run-time dynamic link library (DLL), the
following directories must exist in the system PATH environment variable:

was_client_home\java\jre\bin;was_client_home\java\jre\bin\classic

Where was_client_home is the name of the directory where you installed the WebSphere Application
Server client (for example, C:\WebSphere\AppClient).

Note: This technique enables only one Java run time to activate on a machine, therefore all client
services on that machine must use the same Java run time. Client applications do not have this
limitation because they each have their own private, non-system scope.

32 Administering WebSphere applications



Deploying and running a Java EE client application
You can use the launchClient command to run a Java Enterprise Edition (EE) client application in an
Application Client installation or in a WebSphere Application Server node. Alternatively, you can use Java
Web Start on a remote client machine to download and run a Java EE client application, including Thin
client application, with a single click from a web browser on that machine.

Procedure
1. Deploy and run a Java EE client application for use with the launchClient command.

After deploying a Java EE client application onto a machine with an Application Client installation or in
a WebSphere Application Server node, you can start the application by using the launchClient
command on that machine.

a. Deploy the Java EE client application

b. Start the Java EE client application

2. Deploy and run a Java EE client application by using Java Web Start.

a. Prepare the Java EE client application ready to be deployed by remote action.

b. Use Java Web Start on a remote client machine to download and run the Java EE client
application.

Deploying a Java EE client application
Deploying a Java EE client application onto the client machines where it is to run includes distributing the
EAR file for the client application and configuring resource references for use by the client application.

Before you begin

To run a deployed Java EE client application, the application needs access to a Application Client
installation or a WebSphere Application Server installation.

For information about installing the Application Client on a client machine, refer to the Installing Application
Client for WebSphere Application Server topic.

Attention: Application Client for WebSphere Application Server ships only with the 32-bit WebSphere
Application Server.

About this task

Use this topic only if you later want to use the want to launchClient command to run the Java client
application on an Application Client installation or in a WebSphere Application Server node.

If you want to download and run a Java EE client application remotely, you can use the Java Web Start to
deploy the application onto the remote client machine with a single click from a Web browser on the client
machine. For information about using Java Web Start to deploy Java EE client applications, see
“Downloading and running a Java EE client application by using Java Web Start”.

Procedure
1. Distribute the EAR file.

The client machines configured to run a client application must have access to the EAR file.

v If all the machines in your environment share the same image and platform, run the Application
Client Resource Configuration Tool (ACRCT) on one machine to configure the external resources,
then distribute the configured EAR file to the other machines.

v If your environment is set up with a variety of client installations and platforms, run the ACRCT for
each unique configuration.

v You can either distribute an EAR file to the correct client machines, or make it available on a
network drive.

Chapter 5. Welcome to administering Client applications 33



v Distributing EAR files is the responsibility of the system and network administrator.

2. Configure the resources for the application client. This generally involves using the Application Client
Resource Configuration Tool (ACRCT) to configure references for the resources that the application is
to use, including resource adapters, resource providers, data sources, and Java Message Service
resources. These configurations are stored in the client JAR file within the application EAR file. The
client runtime uses these configurations to resolve and create an instance of the resources for the
client application.

For some types of resources, other actions are needed; for example, to install a resource adapter and
define environment variable needed to start the client application. More information about the actions
for different types of resources is given in other configuring resources topics.

If you plan to deploy the client application on z/OS®, run the ACRCT on Windows. You can also run
the ACRCT for distributed platforms locally.

If the client application defines the local resources, but the resources are installed in a different
location, run the ACRCT (clientConfig command) on the local machine to change the configuration in
the EAR file. For example, the EAR file can contain a DB2® resource, configured as C:\DB2. If,
however, you installed DB2 in the D:\Program Files\DB2 directory, use the ACRCT to create a local
version of the EAR file.

What to do next

After deploying the Java EE client application, use the launchClient command to run the client
application.

Starting the Application Client Resource Configuration Tool and opening an EAR file:

You can perform many tasks by starting the Application Client Resource Configuration Tool (ACRCT).
Many of these tasks also involve then opening an EAR file.

Before you begin

Attention: This task only applies to Java Platform, Enterprise Edition (Java EE) application clients.

About this task

Use these steps to start the Application Client Resource Configuration Tool. When you start the tool, one
of the most common tasks that you perform is opening and modifying the components of EAR files.

Procedure

1. Open a command prompt and change to the app_server_root\bin directory.

2. Run the clientConfig.bat file.

3. Open an EAR file within the Application Client Resource Configuration Tool (ACRCT):
a. Click File > Open.
b. Select the file then click Open.

4. Save your changes to the file and close the tool:
a. Click File > Save.
b. Click File > Exit.

Deploying a resource adapter for a Java EE client application:

A Java EE client application can use a resource adapter to connect to an enterprise information system
(EIS). To use a resource adapter, you need to install it, configure it, and configure related resources.

34 Administering WebSphere applications



About this task

The resource adapter support provided for Java EE client applications is a subset of the support provided
for application servers. A client resource adapter is used in a non-managed environment and must conform
to the J2EE Connector Architecture Specification Version 1.5 or higher. Only outbound connections to the
EIS are supported through the ManagedConnectionFactory interfaces. The inbound messaging support
(from the EIS), life cycle management, and work management aspects of the specification are not
supported on the client.

When running Java EE application clients, the launchClient script specifies a system property called
com.ibm.ws.client.installedConnector, which is set to the same value as the
CLIENT_CONNECTOR_INSTALL_ROOT variable. This is the default location for installed resource
adapters and can be overridden for each launchClient call by specifying the -CCD parameter. When the
client container is activated, all resource adapter subdirectories under the specified default location for the
resource adapters directory are added to the classpath. This action allows the client application to use the
resource adapters without using the ACRCT to specify any of the client resources.

Procedure

1. Install the resource adapter archive (RAR) file

For a client application to use a resource adapter, the RAR file must be installed in the directory
specified by the environment variable, CLIENT_CONNECTOR_INSTALL_ROOT, defined when the
setupCmdLine script runs. The launchClient tool, Application Client Resource Configuration Tool
(ACRCT) and clientRAR tool all use this variable to find the default location of all installed resource
adapters.

To install a RAR file for a client application, use the clientRAR tool.

2. Configure the resource adapter and its resources for the client application Use the Application Client
Resource Configuration Tool (ACRCT) to define the resource adapter, connection factories, and
administered objects in the EAR file for the client application. The client application uses this
configuration to resolve and create an instance of the resource adapter and the other resources.

a. Configure the resource adapter

b. Configure a connection factory

c. Configure administered objects

clientRAR tool:

This topic describes the command line syntax for the client resource adapter installation tool.

If this tool is used to add or delete resource adapters on the server, then only the client can use the
resource adapter. If the resource adapter is installed on the server using the wsadmin tool or the
administrative console, then do not use the clientRAR tool remove it. Only resource adapters that are
installed using the clientRAR tool should be removed using the clientRAR tool.

The command line invocation syntax for the clientRAR tool follows:
clientRAR [-help | -?] [-CRDcom.ibm.ws.client.installedConnectors=<dir>] <task> <archive>

where
-help, -?
Print the usage information.
-CRDcom.ibm.ws.client.installedConnectors
The directory where resource adapters are installed.
This will override the system property of the same name
(com.ibm.ws.client.installedConnectors).

<task>
The task to perform: add - install, delete - uninstall.

Chapter 5. Welcome to administering Client applications 35



<archive>
if task=add then this is the fully qualified name of the resource adapter archive file.
If task=delete then this is the filename of the resource adapter archive to be uninstalled.

The following examples demonstrate correct syntax.

Configuring resource adapters for the client:

Use the Application Client Resource Configuration Tool (ACRCT) to configure resource adapters for the
client.

Procedure

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure new resource adapters. The EAR file contents
display in a tree view.

3. Select the JAR file in which you want to configure the new resource adapters from the tree.

4. Expand the JAR file to view its contents.

5. Right-click the Resource Adapters folder, and click New.

6. Configure the resource adapter settings in the resulting property dialog.

7. Click OK.

8. Click File > Save on the menu bar to save your changes.

Resource adapters for the client:

A resource adapter is a system-level software driver that a Java application uses to connect to an
enterprise information system (EIS). A resource adapter plugs into an application client and provides
connectivity between the EIS and the enterprise application.

Important: This topic is not relevant to the WebSphere MQ resource adapter. WebSphere MQ classes
are picked up automatically by the client container (for both stand alone and with a
WebSphere Application Server installation).

The resource adapter support for the Java EE client applications is a subset of the support for the server.
For any resource adapter installed using the clientRAR tool, the client resource adapter is used in a
non-managed environment and must conform to the Java EE Connector Architecture Specification Version
1.5 or higher. Only outbound connections to the EIS are supported through the
ManagedConnectionFactory interfaces. The inbound messaging support (from the EIS), life cycle
management, and work management aspects of the specification are not supported on the client.

For a client application to use a resource adapter, it must be installed in the directory specified by the
environment variable, CLIENT_CONNECTOR_INSTALL_ROOT, defined when the setupCmdLine script
runs. The launchClient tool, Application Client Resource Configuration Tool (ACRCT) and clientRAR tool all
use this variable to find the default location of all installed resource adapters. To install a resource adapter
in the client, use the clientRAR tool. Once the resource adapter is installed, it must be configured using
the ACRCT. The client configuration tool adds the resource adapter configuration to the EAR file. Then,
connection factories and administered objects are defined.

When running Java EE application clients, the launchClient script specifies a system property called
com.ibm.ws.client.installedConnector, which is set to the same value as the
CLIENT_CONNECTOR_INSTALL_ROOT variable. This is the default location for installed resource adapters and
can be overridden for each launchClient call by specifying the -CCD parameter. When the client container
is activated, all resource adapter subdirectories under the specified default location for the resource
adapters directory are added to the classpath. This action allows the client application to use the resource
adapters without using the ACRCT to specify any of the client resources.

36 Administering WebSphere applications



Using resource adapters is a new mechanism for easily extending client applications.

Resource adapter settings:

Use this panel to view or change the configuration properties of the resource adapter. These configuration
properties control how resource adapters are created.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapter. Right-click
Resource Adapter and click New. The following fields appear on the General tab.

Name:

The name by which this Resource Adapter is known for administrative purposes within IBM WebSphere
Application Server. The name must be unique within the Resource Adapters across the product
administrative domain.

Information Value
Data type String

Description:

A description of this resource adapter for administrative purposes within IBM WebSphere Application
Server.

Information Value
Data type String

Class Path:

Any additional class path. The path to the resource adapter directory is automatically added.

Information Value
Data type String
Default The path to your Resource Adapter directory.

Native Path:

The native path where the Resource Adapter is located. Enter any additional native class path here.

Information Value
Data type String

Resource Adapter Name:

A mandatory field that points to an installed resource adapter subdirectory. The entry does not represent
the full directory name for the resource adapter. The full directory name is the installed resource adapter
path, plus the resource adapter name.

Information Value
Data type String

Installed Resource Adapter Path:

Chapter 5. Welcome to administering Client applications 37



The directory where resource adapters are installed. If you do not complete this field, then the default
takes effect.

If you specify the value, ${CONNECTOR_INSTALL_ROOT}, then this value replaces the value of the
CLIENT_CONNECTOR_INSTALL_ROOT variable on the machine on which the client application runs. This action
allows the application to run easily on different machines, where the client installation might be in different
locations.

Information Value
Data type String
Default ${CONNECTOR_INSTALL_ROOT}

Configuring new connection factories for resource adapters for the client:

Use the Application Client Resource Configuration Tool (ACRCT) to configure new connection factories for
resource adapters for the client.

About this task

Complete this task to configure new connection factories for resource adapters.

Procedure

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure new connection factories. The EAR file contents
display in a tree view.

3. Select the JAR file in which you want to configure the new connection factories from the tree.

4. Expand the JAR file to view its contents.

5. Click the Resource Adapters folder.

6. Expand the resource adapter for which you want to create connection factories.

7. Right-click the Connection Factories folder and click New.

8. Configure the connection factory properties in the resulting property dialog.

9. Click OK.

10. Click File > Save on the menu bar to save your changes.

Resource adapter connection factory settings:

Use this panel to view or change the configuration properties of the selected resource adapter connection
factory.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapters. Right-click the
Connection Factories folder, and click New. The following fields appear on the General tab.

Name:

The name by which this connection factory is known for administrative purposes within WebSphere
Application Server. The name must be unique within the resource adapter connection factories across the
product administrative domain.

Information Value
Data type String

Description:

38 Administering WebSphere applications



An optional description of this connection factory for administrative purposes within IBM WebSphere
Application Server.

Information Value
Data type String

JNDI Name:

The JNDI name that is used to match this resource adapter connection factory definition to the deployment
descriptor. This entry should be a resource-ref name.

Information Value
Data type String

User Name:

The User Name used, with the Password property, for authentication if the calling application does not
provide a userid and password explicitly when getting a connection. If this field is used, then the Properties
field UserName is ignored.

If you specify a value for the User Name property, you must also specify a value for the Password
property.

The connection factory User Name and Password properties are used if the calling application does not
provide a userid and password explicitly when getting a connection.

Information Value
Data type String

Password:

Specifies an encrypted password. If you complete this field, then the Password field in the Properties box
is ignored.

If you specify a value for the UserName property, you must also specify a value for the Password
property.

Information Value
Data type String

Re-Enter Password:

Confirms the password.

Type:

A drop-down list of all the connectionFactoryInterfaces as defined for the factories in the Resource
Adapter Archive.

For each Type, there is a set of properties specified in the Properties box. This set of properties is
constructed by retrieving the properties from each connection definition object. For any existing connection
factories that are displayed for updating, this list of properties is overlaid with the properties specified for
the objects. When the Type field is changed, the properties also change to reflect the correct properties for
that type.

Chapter 5. Welcome to administering Client applications 39



Information Value
Data type String

Configuring administered objects for resource adapters for the client:

This section helps you configure new administered objects for the client.

Before you begin

Before you configure new administered objects, you must complete the following prerequisites:

1. Install the Resource Adapter Archive file (RAR) using the clientRAR tool.

2. Configure the resource adapter for the .ear file, using the Application Client Resource Configuration
Tool (ACRCT) tool.

About this task

Complete this task to configure new administered objects for installed resource adapters.

Procedure

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure new administered objects. The EAR file contents
display in a tree view.

3. Select the JAR file in which you want to configure the new administered objects from the tree.

4. Expand the JAR file to view its contents.

5. Click the Resource Adapters folder.

6. Expand the resource adapter for which you want to create administered objects.

7. Right-click the Administered Objects folder and click New.

8. Configure the administered object properties in the resulting property dialog.

9. Click OK.

10. Click File > Save on the menu bar to save your changes.

Administered objects settings:

Use this panel to view or change the configuration properties of the selected administered objects.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapters >
resource_adapter_instance. Right-click Administered Objects and click New. The following fields appear
on the General tab.

The settings for administered objects are handled similarly to connection factories. When updating
administered objects, use the same panels that you used to create administered objects.

Name:

The name by which this administered object is known for administrative purposes within IBM WebSphere
Application Server. The name must be unique within the resource adapter administered objects across the
product administrative domain.

Information Value
Data type String

40 Administering WebSphere applications



Description:

An optional description of this connection factory for administrative purposes within IBM WebSphere
Application Server.

Information Value
Data type String

JNDI Name:

This entry is a resource-env-ref name, a message-destination-ref name (if the message-destination-
ref has no link), or a message-destination link.

Information Value
Data type String

Type:

A drop-down list of all the administered object class-interface pairs as defined for the admin objects in the
Resource Adapter Archive (RAR) file.

For each Type, there is a set of properties specified in the Properties box. This set of properties is
constructed by retrieving the properties from each administered object definition. For any existing
administered objects that are displayed for updating, this list of properties is overlaid with the properties
specified for the objects. When the Type field is changed, the properties also change to reflect the correct
properties for that type.

Information Value
Data type String

Enabling client use of data sources:

If a Java EE client application accesses a database directly, you must provide the database drivers on the
client machine, and configure the data source provider (JDBC provider) and data sources. Instead of
accessing the database directly, it is recommended that your client application access the database
through an enterprise bean.

About this task

WebSphere Application Server and the Application Client for WebSphere Application Server do not provide
client database drivers to be used directly from a Java EE client application. You can contact your
database vendor to get client database driver code and licenses.

Data sources configured on the server and looked up on the client do not participate in global transactions.

Instead of accessing the database directly, it is recommended that your client application access the
database through an enterprise bean. This technique eliminates the need to have database drivers on the
client machine, because the database access is handled by the enterprise bean running on WebSphere
Application Server. It also enables the client application to take advantage of the pooling and additional
database functions provided by the server.

For a current list of data source providers that are supported on WebSphere Application Server, see the
WebSphere Application Server prerequisite website.

Chapter 5. Welcome to administering Client applications 41

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921


Procedure

1. For direct access from a client to the database, install the client database drivers on the client
machine. For information about installing database drivers, see the documentation provided by your
database vendor.

2. Configure a data source provider and a data source for the client application Use the Application Client
Resource Configuration Tool (ACRCT) to define the data source provider and a data source in the
EAR file for the client application. The client application uses this configuration to resolve and create
an instance of the data source provider and data source.

a. Configure a new data source provider. This provider describes the JDBC database implementation
for your client application.

b. Configuring a new data source This describes the client properties of the database your client
application uses.

Configuring new data source providers (JDBC providers) for application clients:

You can create new data source providers, also known as JDBC providers, for your application client using
the Application Client Resource Configuration Tool (ACRCT).

Before you begin

During this task, you create new data source providers, also known as JDBC providers, for your
application client. In a separate administrative task, install the Java code for the required data source
provider on the client machine on which the application client resides.

About this task

Use this task to connect application clients to relational databases.

Procedure

1. Start the Application Client Resource Configuration Tool (ACRCT) and open the EAR file for which you
want to configure the new data source provider. The EAR file contents display in a tree view.

2. Select the JAR file in which you want to configure the new data source provider from the tree.

3. Expand the JAR file to view its contents.

4. Click the Data Source Providers folder. Do one of the following:
v Right-click the folder and click New Provider.
v Click Edit > New on the menu bar.

5. Configure the data source provider properties in the resulting property dialog.

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

Example

You can configure data source provider and data source settings.

v Configuring data source provider and data source settings

The following code examples illustrates how to use configure data source provider and data source
settings:
<resources.jdbc:JDBCProvider xmi:id="JDBCProvider_1" name="jdbcProvider:name"
description="jdbcProvider:description" implementationClassName="jdbcProvider:
ImplementationClass">
<classpath>jdbcProvider:classPath</classpath>
<factories xmi:type="resources.jdbc:WAS40DataSource" xmi:id="WAS40DataSource_1"
name="jdbcFactory:name" jndiName="jdbcFactory:jndiName"
description="jdbcFactory:description" databaseName="jdbcFactory:databasename">

42 Administering WebSphere applications



<propertySet xmi:id="J2EEResourcePropertySet_13">
<resourceProperties xmi:id="J2EEResourceProperty_13" name="jdbcFactory:customName"
value="jdbcFactory:customValue"/>
<resourceProperties xmi:id="J2EEResourceProperty_14" name="user"
value="jdbcFactory:user"/>
<resourceProperties xmi:id="J2EEResourceProperty_15" name="password"
value="{xor}NTs9PBk+PCswLSZlMT4yOg=="/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_14">
<resourceProperties xmi:id="J2EEResourceProperty_16" name="jdbcProvider:customName"
value="jdbcProvider:customeValue"/>
</propertySet>
</resources.jdbc:JDBCProvider>
v Required fields:

– Data Source Provider Properties page: name
– Data Source Properties page: name, jndiName

v Special cases:
– The user name and password fields have no equivalent XMI tags. You must specify these fields in

the custom properties.
– The password is encrypted when you use the Application Client Resource Configuration Tool

(ACRCT). If you do not use the ACRCT the field cannot be encrypted.

Example: Configuring data source provider and data source settings:

You can configure data source provider and data source settings.

The purpose of this article is to help you to configure data source provider and data source settings.
v Required fields:

– Data Source Provider Properties page: name
– Data Source Properties page: name, jndiName

v Special cases:
– The user name and password fields have no equivalent XMI tags. You must specify these fields in

the custom properties.
– The password is encrypted when you use the Application Client Resource Configuration Tool

(ACRCT). If you do not use the ACRCT the field cannot be encrypted.
v Example:
<resources.jdbc:JDBCProvider xmi:id="JDBCProvider_1" name="jdbcProvider:name"
description="jdbcProvider:description" implementationClassName="jdbcProvider:
ImplementationClass">
<classpath>jdbcProvider:classPath</classpath>
<factories xmi:type="resources.jdbc:WAS40DataSource" xmi:id="WAS40DataSource_1"
name="jdbcFactory:name" jndiName="jdbcFactory:jndiName"
description="jdbcFactory:description" databaseName="jdbcFactory:databasename">
<propertySet xmi:id="J2EEResourcePropertySet_13">
<resourceProperties xmi:id="J2EEResourceProperty_13" name="jdbcFactory:customName"
value="jdbcFactory:customValue"/>
<resourceProperties xmi:id="J2EEResourceProperty_14" name="user"
value="jdbcFactory:user"/>
<resourceProperties xmi:id="J2EEResourceProperty_15" name="password"
value="{xor}NTs9PBk+PCswLSZlMT4yOg=="/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_14">
<resourceProperties xmi:id="J2EEResourceProperty_16" name="jdbcProvider:customName"
value="jdbcProvider:customeValue"/>
</propertySet>
</resources.jdbc:JDBCProvider>

Data source provider settings for application clients:

Chapter 5. Welcome to administering Client applications 43



Use this page to create a data source under a JDBC provider which provides the specific JDBC driver
implementation class.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file. Right-click Data Source Providers >
and click New. The following fields appear on the General tab:

Name:

Specifies the display name for the data source.

For example you can set this field to Test Data Source.

Information Value
Data type String

Description:

Specifies a text description for the resource.

Information Value
Data type String

Class Path:

A list of paths or .jar file names which together form the location for the resource provider classes.

Implementation class:

Use this setting to perform database specific functions.

Information Value
Data type String
Default Dependent on JDBC driver implementation class

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring new data sources for application clients:

Learn how to create date sources for application clients.

About this task

During this task, you create new data sources for your application client.

44 Administering WebSphere applications



Procedure

1. Click the data source provider for which you want to create a data source in the tree. Take one of the
following actions as needed:
v Configure a new data source provider.
v Click an existing data source provider.

2. Expand the data source provider to view its Data Sources folder.

3. Click the data source folder. Take one of the following actions as needed:
v Right click the data source folder and click New Factory.
v Click Edit > New on the menu bar.

4. Configure the data source properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Data source properties for application clients:

Use this page to create or modify the data sources.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Data Source Providers > Data source
provider instance. Right-click Data Sources and click New. The following fields are displayed on the
General tab:

Name:

Specifies the display name of this data source.

Information Value
Data type String

Description:

Specifies a text description of the data source.

Information Value
Data type String

JNDI Name:

The application client run time uses this field to retrieve configuration information.

Database Name:

The name of the database to which you want to connect.

User:

Use the user ID with the Password property, for authentication if the calling application does not provide a
user ID and password explicitly.

If you specify a value for the User ID property, then you must also specify a value for the Password
property. The connection factory User ID and Password properties are used if the calling application does
not provide a user ID and password explicitly.

Password:

Chapter 5. Welcome to administering Client applications 45



Use the password with the User ID property, for authentication if the calling application does not provide a
user ID and password explicitly.

If you specify a value for the Password property, then you must also specify a value for the User ID
property.

Re-Enter Password:

Confirms the password.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring mail providers and sessions for application clients:

You can edit the configurations of mail sessions and providers for your application clients using the
Application Client Resource Configuration Tool (ACRCT).

About this task

Use the Application Client Resource Configuration Tool (ACRCT) to edit the configurations of mail sessions
and providers for your application clients to use.

Procedure

1. Start the ACRCT.

2. Open an EAR file.

3. Locate the mail objects in the tree that is displayed for the EAR file. For example, if your file contains
mail sessions, expand Resources > application.jar > Mail Providers >
java_mail_provider_instance > Mail Sessions.

In this example, java_mail_provider_instance is a particular mail provider.

Results

The mail session instances are located in the JavaMail Sessions folder.

Example

You can configure mail provider and mail session settings.

v Configuring mail provider and mail session settings for application clients

The following code examples illustrates how to configure mail provider and mail session settings for
application clients:
<resources.mail:MailProvider xmi:id="builtin_mailprovider" name="Built-in Mail Provider" description="The built-in mail provider">
<factories xmi:type="resources.mail:MailSession"

xmi:id="MailSession_1207766754834" name="MailSession"
jndiName="mail/session" description="Sample mail session" category="Sample"
mailTransportHost="smtp.coldmail.com" mailTransportUser="transportUser"
mailTransportPassword="{xor}Lz4sLChvLTs="
mailFrom="smith@coldmail.com" mailStoreHost="imap.coldmail.com" mailStoreUser="storeUser"
mailStorePassword="{xor}Lz4sLChvLTs="
debug="true" strict="true"
mailTransportProtocol="builtin_smtp" mailStoreProtocol="builtin_imap">

<propertySet xmi:id="J2EEResourcePropertySet_1207766778585">

46 Administering WebSphere applications



<resourceProperties xmi:id="J2EEResourceProperty_1207766778585" name="key" type="java.lang.String" value="value" required="false"/>
</propertySet>

</factories>
<protocolProviders xmi:id="builtin_smtp" protocol="smtp" classname="com.sun.mail.smtp.SMTPTransport" type="TRANSPORT"/>
<protocolProviders xmi:id="builtin_pop3" protocol="pop3" classname="com.sun.mail.pop3.POP3Store" type="STORE"/>
<protocolProviders xmi:id="builtin_imap" protocol="imap" classname="com.sun.mail.imap.IMAPStore" type="STORE"/>
<protocolProviders xmi:id="builtin_smtps" protocol="smtps" classname="com.sun.mail.smtp.SMTPSSLTransport" type="TRANSPORT"/>
<protocolProviders xmi:id="builtin_pop3s" protocol="pop3s" classname="com.sun.mail.pop3.POP3SSLStore" type="STORE"/>
<protocolProviders xmi:id="builtin_imaps" protocol="imaps" classname="com.sun.mail.imap.IMAPSSLStore" type="STORE"/>

</resources.mail:MailProvider>

v Required fields:
– Mail Provider Properties page: name, and at least one protocol provider
– Mail Session Properties page: name, jndiName, outgoing server and protocol, and/or incoming server

and protocol
v Special cases:

– If you use the ACRCT tool, the password field will be encrypted. You cannot encrypt the password
field if you do not use the ACRCT tool.

Mail provider settings for application clients:

Use this page to implement the JavaMail API and create mail sessions.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file. Right-click Mail Providers > and click
New. The following fields appear on the General tab:

Name:

The name of the JavaMail resource provider.

Description:

An optional description for the resource provider.

Class Path:

Specifies a list of paths or JAR file names which together form the location for the resource provider
classes.

Protocol:

Specifies the name of the protocol.

Classname:

Specifies the name of the class implementing the protocol. Leave this field blank if you want to use the
default implementation.

Type:

This menu contains the following two values: TRANSPORT or STORE.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Chapter 5. Welcome to administering Client applications 47



Mail session settings for application clients:

Use this page to configure mail session properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Mail Providers > mail provider
instance. Right-click Mail Sessions and click New. The following fields appear on the General tab:

Name:

Represents the administrative name of the JavaMail session object.

Description:

Provides an optional description for your administrative records.

JNDI Name:

The application client run time uses this field to retrieve configuration information.

Mail Transport Host:

Specifies the server to connect to when sending mail.

Mail Transport Protocol:

Specifies the transport protocol to use when sending mail.

Mail Transport User:

Specifies the user ID to use when the mail transport host requires authentication.

Mail Transport Password:

Specifies the password to use when the mail transport host requires authentication.

Enable strict Internet address parsing:

Specifies whether the recipient addresses must be parsed strictly in compliance with RFC 822, which is a
specifications document issued by the Internet Architecture Board.

This setting is not generally used for most mail applications. RFC 822 syntax for parsing addresses
effectively enforces a strict definition of a valid email address. If you select this setting, JavaMail will
adhere to RFC 822 syntax and reject recipient addresses that do not parse into valid email addresses (as
defined by the specification). If you do not select this setting, JavaMail will not adhere to RFC 822 syntax
and will accept recipient addresses that do not comply with the specification. By default, this setting is
deselected. You can view the RFC 822 specification at the following URL for the World Wide Web
Consortium (W3C): http://www.w3.org/Protocols/rfc822/.

Re-Enter Password:

Confirms the password.

Mail From:

Specifies the mail originator.

48 Administering WebSphere applications



Mail Store Host:

Specifies the mail account host (or "domain") name.

Mail Store User:

Specifies the user ID of the mail account.

Mail Store Password:

Specifies the password of the mail account.

Re-Enter Password:

Confirms the password.

Mail Store Protocol:

Specifies the protocol to be used when receiving mail.

Mail Debug:

When true, JavaMail interaction with mail servers, along with these mail session properties are printed to
the stdout file.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring mail provider and mail session settings for application clients:

You can configure mail provider and mail session settings. This topic provides the required fields, special
cases, and an example.

The purpose of this topic is to help you configure mail provider and mail session settings.
v Required fields:

– Mail Provider Properties page: name, and at least one protocol provider
– Mail Session Properties page: name, jndiName, outgoing server and protocol, and/or incoming server

and protocol
v Special cases:

– If you use the ACRCT tool, the password field will be encrypted. You cannot encrypt the password
field if you do not use the ACRCT tool.

v Example:
<resources.mail:MailProvider xmi:id="builtin_mailprovider" name="Built-in Mail Provider" description="The built-in mail provider">
<factories xmi:type="resources.mail:MailSession"

xmi:id="MailSession_1207766754834" name="MailSession"
jndiName="mail/session" description="Sample mail session" category="Sample"
mailTransportHost="smtp.coldmail.com" mailTransportUser="transportUser"
mailTransportPassword="{xor}Lz4sLChvLTs="
mailFrom="smith@coldmail.com" mailStoreHost="imap.coldmail.com" mailStoreUser="storeUser"
mailStorePassword="{xor}Lz4sLChvLTs="
debug="true" strict="true"
mailTransportProtocol="builtin_smtp" mailStoreProtocol="builtin_imap">

<propertySet xmi:id="J2EEResourcePropertySet_1207766778585">
<resourceProperties xmi:id="J2EEResourceProperty_1207766778585" name="key" type="java.lang.String" value="value" required="false"/>

</propertySet>

Chapter 5. Welcome to administering Client applications 49



</factories>
<protocolProviders xmi:id="builtin_smtp" protocol="smtp" classname="com.sun.mail.smtp.SMTPTransport" type="TRANSPORT"/>
<protocolProviders xmi:id="builtin_pop3" protocol="pop3" classname="com.sun.mail.pop3.POP3Store" type="STORE"/>
<protocolProviders xmi:id="builtin_imap" protocol="imap" classname="com.sun.mail.imap.IMAPStore" type="STORE"/>
<protocolProviders xmi:id="builtin_smtps" protocol="smtps" classname="com.sun.mail.smtp.SMTPSSLTransport" type="TRANSPORT"/>
<protocolProviders xmi:id="builtin_pop3s" protocol="pop3s" classname="com.sun.mail.pop3.POP3SSLStore" type="STORE"/>
<protocolProviders xmi:id="builtin_imaps" protocol="imaps" classname="com.sun.mail.imap.IMAPSSLStore" type="STORE"/>

</resources.mail:MailProvider>

Configuring new mail sessions for application clients:

You can use the Application Client Resource Configuration Tool (ACRCT) to configure new mail sessions
for your application client.

Before you begin

During this task, you configure new mail sessions for your application client. The mail sessions are
associated with the pre-configured default mail provider supplied by the product.

Procedure

1. Start the Application Client Resource Configuration Tool (ACRCT) and open the EAR file. The EAR file
contents are displayed in a tree view.

2. Select the JAR file in which you want to configure the new JavaMail session.

3. Expand the JAR file to view its contents.

4. Click Mail Providers > Mail Provider > Mail Sessions. Complete one of the following actions:
v Right click the Mail Sessions folder and select New Factory.
v Click Edit > New on the menu bar.

5. Configure the Mail Session properties in the displayed fields.

6. Click OK.

7. Click File > Save on the menu bar to save your changes.

Configuring new URL providers for application clients:

You can create URL providers and URLs for your client application using the Application Client Resource
Configuration Tool (ACRCT).

Before you begin

During this task, you create URL providers and URLs for your client application. In a separate
administrative task, you must install the Java code for the required URL provider on the client machine on
which the client application resides.

About this task

Procedure

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new URL provider. The EAR file contents
display in a tree view.

3. Select the JAR file in which you want to configure the new URL provider from the tree.

4. Expand the JAR file to view the contents.

5. Click the folder called URL Providers. Complete one of the following actions:
v Right click the folder and select New.
v Click Edit > New on the menu bar.

6. Configure the URL provider properties in the resulting property dialog.

7. Click OK.

50 Administering WebSphere applications



8. Click File > Save on the menu bar to save your changes.

Example

v Configuring URL and URL provider settings for application clients

This code example illustrates how to configure URL and URL provider settings for application clients:
<resources.url:URLProvider xmi:id="URLProvider_1" name="urlProvider:name"
description="urlProvider:description"
streamHandlerClassName="urlProvider:streamHandlerClass"
protocol="urlProvider:protocol">
<classpath>urlProvider:classpath</classpath>
<factories xmi:type="resources.url:URL" xmi:id="URL_1" name="urlFactory:name"
jndiName="urlFactory:jndiName" description="urlFactory:description"
spec="urlFactory:url">
<propertySet xmi:id="J2EEResourcePropertySet_18">
<resourceProperties xmi:id="J2EEResourceProperty_20" name="urlFactory:customName"
value="urlFactory:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_19">
<resourceProperties xmi:id="J2EEResourceProperty_21" name="urlProvider:customName"
value="urlProvider:customValue"/>
</propertySet>
</resources.url:URLProvider>
v Required fields:

– URL Properties page: name, jndiName, url
– URL Provider Properties page: name

URLs for application clients:

A Uniform Resource Locator (URL) is an identifier that points to an electronically accessible resource, such
as a directory file on a machine in a network, or a document stored in a database.

URLs appear in the format scheme:scheme_information.

You can represent a scheme as http, ftp, file, or another term that identifies the type of resource and
the mechanism by which you can access the resource.

In a web browser location or address box, a URL for a file available using HyperText Transfer Protocol
(HTTP) starts with http:. An example is http://www.ibm.com. Files available using File Transfer Protocol
(FTP) start with ftp:. Files available locally start with file:.

The scheme_information commonly identifies the Internet machine making a resource available, the path
to that resource, and the resource name. The scheme_information for HTTP, FTP and File generally starts
with two slashes (//), then provides the Internet address separated from the resource path name with one
slash (/). For example,

http://www.ibm.com/software/webservers/appserv/library.html.

For HTTP and FTP, the path name ends in a slash when the URL points to a directory. In such cases, the
server generally returns the default index for the directory.

URL providers for the Application Client Resource Configuration Tool:

A URL provider implements the function for a particular URL protocol, such as HyperText Transfer Protocol
(HTTP). This provider, comprised of a pair of classes, extends the java.net.URLStreamHandler and
java.net.URLConnection classes.

Configuring URL providers and sessions using the Application Client Resource Configuration Tool:

Chapter 5. Welcome to administering Client applications 51



You can edit the configurations of URL providers and URLs to be used by your application clients using
the Application Client Resource Configuration Tool (ACRCT).

Before you begin

Use the Application Client Resource Configuration Tool (ACRCT) to edit the configurations of URL
providers and URLs to be used by your application clients.

About this task

Procedure

1. Start the ACRCT.

2. Open an EAR file.

3. Locate the URL objects in the tree that displays. For example, if your file contains URL providers and
URLs, expand Resources > application > .jar > URL Providers > url_provider_instance

where url_provider_instance is a particular URL provider.

4. If you expand the tree further, you will also see the URLs folders containing the URL instances for
each URL provider instance.

URL settings for application clients:

Use this page to implement the function for a particular URL protocol, such as Hyper Text Transfer
Protocol (HTTP).

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > URL Providers > URL provider
instance. Right-click URLs and click New. The following fields appear on the General tab.

This provider, comprised of classes, extends the java.net.URLStreamHandler and java.net.URLConnection
classes.

Name:

The administrative name for the URL.

Description:

This is an optional description of the URL for your administrative records.

JNDI Name:

The application client run time uses this field to retrieve configuration information.

URL:

A Uniform Resource Locator (URL) name that points to an Internet or intranet resource. For example:
http://www.ibm.com.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

52 Administering WebSphere applications



You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

URL provider settings for application clients:

Use this page create new URL providers.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file. Right click URL Providers, and click
New. The following fields appear on the General tab.

A URL provider implements the function for a particular URL protocol, such as Hyper Text Transfer
Protocol (HTTP). This provider, comprised of classes, extends the java.net.URLStreamHandler and
java.net.URLConnection classes.

Name:

Administrative name for the URL.

Description:

Optional description of the URL, for your administrative records.

Class Path:

A list of paths or JAR file names which together form the location for the resource provider classes.

Protocol:

Protocol supported by this stream handler. For example, nntp, smtp, ftp, and so on.

To use the default protocol, leave this field blank.

Stream handler class:

Fully qualified name of a User-defined Java class that extends the java.net.URLStreamHandler for a
particular URL protocol, such as FTP.

To use the default stream handler, leave this field blank.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring URL and URL provider settings for application clients:

You can configure URL and URL provider settings. This topic provides the required fields and an example.

The purpose of this article is to help you to configure URL and URL provider settings.
v Required fields:

– URL Properties page: name, jndiName, url

Chapter 5. Welcome to administering Client applications 53



– URL Provider Properties page: name
v Example:
<resources.url:URLProvider xmi:id="URLProvider_1" name="urlProvider:name"
description="urlProvider:description"
streamHandlerClassName="urlProvider:streamHandlerClass"
protocol="urlProvider:protocol">
<classpath>urlProvider:classpath</classpath>
<factories xmi:type="resources.url:URL" xmi:id="URL_1" name="urlFactory:name"
jndiName="urlFactory:jndiName" description="urlFactory:description"
spec="urlFactory:url">
<propertySet xmi:id="J2EEResourcePropertySet_18">
<resourceProperties xmi:id="J2EEResourceProperty_20" name="urlFactory:customName"
value="urlFactory:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_19">
<resourceProperties xmi:id="J2EEResourceProperty_21" name="urlProvider:customName"
value="urlProvider:customValue"/>
</propertySet>
</resources.url:URLProvider>

Configuring new URLs with the Application Client Resource Configuration Tool:

You can use URLs for your client application using the Application Client Resource Configuration Tool
(ACRCT).

Before you begin

During this task, you create URLs for your client application.

About this task

Procedure

1. Click the URL provider for which you want to create a URL in the tree. Complete one of the following:
v Configure a new URL provider.
v Click an existing URL provider.

2. Expand the URL provider to view the URLs folder.

3. Click the URL folder. Complete one of the following actions:
v Right click the folder and click New.
v Click Edit -> New on the menu bar.

4. Configure the URL properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save in the menu bar to save your changes.

Configuring Java messaging client resources:

To configure Java messaging client resources, you create new JMS provider configurations for your
application client. The application client can use a messaging service through the Java Message Service
APIs. A JMS provider provides two kinds of J2EE factories. One is a JMS connection factory, and the
other is a JMS destination factory.

Before you begin

In a separate administrative task, install the Java Message Service (JMS) client on the client machine
where the application client resides. The messaging product vendor must provide an implementation of the
JMS client. For more information, see your messaging product documentation.

54 Administering WebSphere applications



Attention: When completing this task, you can either create a new messaging provider, or you can use
an existing one.

Procedure

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new JMS provider. The EAR file contents are in
the displayed tree view.

3. Select the JAR file in which you want to configure the new JMS provider from the tree.

4. Expand the JAR file to view its contents.

5. Optionally right-click Messaging Providers and select New, if you want to create and use a new
messaging provider.

6. Configure the JMS provider properties in the resulting property dialog.

7. Click OK.

8. Click File > Save.

Asynchronous messaging in WebSphere Application Server using JMS:

WebSphere Application Server supports asynchronous messaging as a method of communication based
on the Java Message Service (JMS) programming interface. The JMS interface provides a common way
for Java programs (clients and Java Platform, Enterprise Edition (Java EE) applications) to create, send,
receive, and read asynchronous requests as JMS messages.

This topic provides a generic overview of asynchronous messaging using the JMS support provided by
WebSphere Application Server.

The base support for asynchronous messaging using the JMS API provides the common set of JMS
interfaces and associated semantics that define how a JMS client can access the facilities of a JMS
provider. This support enables WebSphere product Java EE applications, as JMS clients, to exchange
messages asynchronously with other JMS clients, by using JMS destinations (queues or topics). A Java
EE application can use JMS queue destinations for point-to-point messaging and JMS topic destinations
for publish and subscribe messaging. A Java EE application can explicitly poll for messages on a
destination, and then retrieve messages for processing by business logic beans (enterprise beans).

With the base JMS and XA support, the Java EE application uses standard JMS calls to process
messages, including any responses or outbound messaging. An enterprise bean can handle responses
acting as a sender bean, or within the enterprise bean that receives the incoming messages. Optionally,
this process can use two-phase commit within the scope of a transaction. This level of function for
asynchronous messaging is called bean-managed messaging, and gives an enterprise bean complete
control over the messaging infrastructure, for example, connection and session pool management. The
common container has no role in bean-managed messaging.

WebSphere Application Server also supports automatic asynchronous messaging using message-driven
beans (a type of enterprise bean defined in the Enterprise JavaBeans (EJB) 2.0 specification) and JMS
listeners (part of the JMS application server facilities). Messages are automatically retrieved from JMS
destinations, optionally within a transaction, then sent to the message-driven bean in a Java EE
application, without the application having to explicitly poll JMS destinations.

Java Message Service providers for clients:

Client applications can use messaging resources from three main types of Java Message Service (JMS)
providers in WebSphere Application Server: The WebSphere Application Server default messaging
provider (which uses service integration as the provider), the WebSphere MQ messaging provider (which
uses your WebSphere MQ system as the provider) and third-party messaging providers (which use
another company's product as the provider).

Chapter 5. Welcome to administering Client applications 55



IBM WebSphere Application Server supports asynchronous messaging through the use of a JMS provider
and its related messaging system. JMS providers must conform to the JMS specification version 1.1. To
use message-driven beans the JMS provider must support the optional Application Server Facility (ASF)
function defined within that specification, or support an inbound resource adapter as defined in the JCA
specification version 1.5.

Default messaging provider
If you mainly want to use messaging between applications in WebSphere Application Server,
perhaps with some interaction with a WebSphere MQ system, the default messaging provider is
the natural choice. This provider is based on service integration technologies and is fully integrated
with the WebSphere Application Server runtime environment.

WebSphere MQ messaging provider
If your business also uses WebSphere MQ, and you want to integrate WebSphere Application
Server messaging applications into a predominately WebSphere MQ network, choose the
WebSphere MQ messaging provider, which allows you to define resources for connecting to any
queue manager on the WebSphere MQ network.

Third-party messaging provider
You can configure any third-party messaging provider that supports the JMS Version 1.1 unified
connection factory. You might want to do this, for example, because of existing investments.

WebSphere applications can use messaging resources provided by any of these JMS providers. However
the choice of provider is most often dictated by requirements to use or integrate with an existing
messaging system. For example, you may already have a messaging infrastructure based on WebSphere
MQ. In this case you may either connect directly using the included support for WebSphere MQ as a JMS
provider, or configure a service integration bus with links to a WebSphere MQ network and then access
the bus through the default messaging provider.

Configuring new JMS providers with the Application Client Resource Configuration Tool:

You can create new Java Message Service (JMS) provider configurations for the Application Client. The
Application Client makes use of a messaging service through the JMS interfaces.

About this task

During this task, you create new Java Message Service (JMS) provider configurations for the Application
Client. The Application Client makes use of a messaging service through the JMS interfaces. A JMS
provider provides two kinds of Java Platform, Enterprise Edition (Java EE) resources. One is a JMS
connection factory, and the other is a JMS destination.

In a separate administrative task, you must install the JMS client on the client machine where your
particular application client resides. The messaging product vendor must provide an implementation of the
JMS client. For more information, see your messaging product documentation.

Procedure

1. Start the Application Client Resource Configuration Tool and open the EAR file for which you want to
configure the new JMS provider. The EAR file contents are displayed in a tree view.

2. From the tree, select the JAR file in which you want to configure the new JMS provider.

3. Expand the JAR file to view its contents.

4. Right-click Messaging Providers. Complete one of the following actions:
v Right click the folder and select New.
v On the menu bar, click Edit > New.

5. In the resulting property dialog, configure the JMS provider properties.

6. Click OK when finished.

7. Click File > Save on the menu bar to save your changes.

56 Administering WebSphere applications



Example

The following code example illustrates how to configure JMS Provider, JMS Connection Factory and JMS
Destination settings for application clients.
<resources.jms:JMSProvider xmi:id="JMSProvider_3" name="genericJMSProvider:name"
description="genericJMSProvider:description"
externalInitialContextFactory="genericJMSProvider:contextFactoryClass"
externalProviderURL="genericJMSProvider:providerUrl">
<classpath>genericJMSProvider:classpath</classpath>
<factories xmi:type="resources.jms:GenericJMSDestination"
xmi:id="GenericJMSDestination_1" name="jmsDestination:name"
jndiName="jmsDestination:jndiName" description="jmsDestination:description"
externalJNDIName="jmsDestination:externalJndiName" type="QUEUE">
<propertySet xmi:id="J2EEResourcePropertySet_15">
<resourceProperties xmi:id="J2EEResourceProperty_17" name="jmsDestination:customName"
value="jmsDestination:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms:GenericJMSConnectionFactory"
xmi:id="GenericJMSConnectionFactory_1" name="jmsCF:name" jndiName="jmsCF:jndiName"
description="jmsCF:description" userID="jmsCF:user" password="{xor}NTIsHBllMT4yOg=="
externalJNDIName="jmsCF:externalJndiName" type="QUEUE">
<propertySet xmi:id="J2EEResourcePropertySet_16">
<resourceProperties xmi:id="J2EEResourceProperty_18" name="jmsCF:customName"
value="jmsCF:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_17">
<resourceProperties xmi:id="J2EEResourceProperty_19"
name="genericJMSProvider:customName" value="genericJMSProvider:customValue"/>
</propertySet>
</resources.jms:JMSProvider>

Required fields include:
v JMS Provider Properties page: name, and at least one protocol provider
v JMS Connection Factory Properties page: name, jndiName, destination type
v JMS Destination Properties page: name, jndiName, destination type

Special cases:
v The destination type must be QUEUE, or TOPIC.

JMS provider settings for application clients:

Use this page to configure properties of the Java Message Service (JMS) provider, if you want to use a
JMS provider other than the default messaging provider or the WebSphere MQ as a JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file. Right click Messaging Providers, and
click New. The following fields appear on the General tab.

Name:

The name by which the JMS provider is known for administrative purposes.

Information Value
Data type String

Description:

A description of the JMS provider, for administrative purposes.

Chapter 5. Welcome to administering Client applications 57



Information Value
Data type String

Class Path:

A list of paths or .jar file names which together form the location for the resource provider classes.

Context factory class:

The Java class name of the initial context factory for the JMS provider.

For example, for an LDAP service provider the value has the form: com.sun.jndi.ldap.LdapCtxFactory.

Information Value
Data type String

Provider URL:

The JMS provider URL for external JNDI lookups.

For example, an LDAP URL for a JMS provider has the form: ldap://hostname.company.com/contextName.

Information Value
Data type String

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Default Provider connection factory settings:

Use this panel to view or change the configuration properties of the selected JMS connection factory for
use with the internal product Java Message Service (JMS) provider that is installed with WebSphere
Application Server. These configuration properties control how connections are created between the JMS
provider and the service integration bus that it uses

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default
Provider. Right-click Connection Factories and click New. The following fields appear on the General
tab.

Settings that have a default value display the appropriate value. Any settings that have fixed values have a
drop down menu.

Name:

The name of the connection factory.

58 Administering WebSphere applications



Information Value
Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application
Server.

Information Value
Data type String

JNDI Name:

The JNDI name that is used to match this Resource Adapter connection factory definition to the
deployment descriptor. This entry is a resource-ref name.

Information Value
Data type String

User Name:

The User Name used with the Password property for connecting to an application.

If you specify a value for the User Name property, you must also specify a value for the Password
property.

The connection factory User ID and Password properties are used if the calling application does not
provide a userid and password explicitly. If a user name and password are specified, then an
authentication alias is created for the factory where the password is encrypted.

Information Value
Data type String

Password:

The password used to authenticate connection to an application.

If you specify a value for the User Name property, you must also specify a value for the Password
property.

Information Value
Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

The name of the bus to which the connection factory connects.

Information Value
Data type String

Chapter 5. Welcome to administering Client applications 59



Client Identifier:

The name of the client. Required for durable topic subscriptions.

Information Value
Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

If you want different reliability delivery options for individual JMS destinations, you can set this property to
As bus destination. The reliability is then defined by the Reliability property of the bus destination to which
the JMS destination is assigned.

Information Value
Default ReliablePersistent
Range

None There is no message reliability for nonpersistent
messages. If a nonpersistent message cannot be
delivered, it is discarded.

Best effort nonpersistent
Messages are never written to disk, and are
thrown away if memory cache overruns.

Express nonpersistent
Messages are written asynchronously to
persistent storage if memory cache overruns, but
are not kept over server restarts.

Reliable nonpersistent
Messages can be lost if a messaging engine
fails, and can be lost under normal operating
conditions.

Reliable persistent
Messages can be lost if a messaging engine
fails, but are not lost under normal operating
conditions.

Assured persistent
Highest degree of reliability where assured
message delivery is supported.

As Bus destination
Use the delivery option configured for the bus
destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

If you want different reliability delivery options for individual JMS destinations, you can set this property to
As bus destination. The reliability is then defined by the Reliability property of the bus destination to
which the JMS destination is assigned.

60 Administering WebSphere applications



Information Value
Default ReliablePersistent
Range

None There is no message reliability for nonpersistent
messages. If a nonpersistent message cannot be
delivered, it is discarded.

Best effort nonpersistent
Messages are never written to disk, and are
thrown away if memory cache overruns.

Express nonpersistent
Messages are written asynchronously to
persistent storage if memory cache overruns, but
are not kept over server restarts.

Reliable nonpersistent
Messages can be lost if a messaging engine
fails, and can be lost under normal operating
conditions.

Reliable persistent
Messages can be lost if a messaging engine
fails, but are not lost under normal operating
conditions.

Assured persistent
Highest degree of reliability where assured
message delivery is supported.

As Bus destination
Use the delivery option configured for the bus
destination.

Durable Subscription Home:

The name of the durable subscription home.

Information Value
Data type String

Share durable subscriptions:

Controls whether or not durable subscriptions are shared across connections with members of a server
cluster.

Normally, only one session at a time can have a TopicSubscriber for a particular durable subscription. This
property enables you to override this behavior, to enable a durable subscription to have multiple
simultaneous consumers.

Information Value
Data type Selection list
Default In cluster

Chapter 5. Welcome to administering Client applications 61



Information Value
Range

In cluster
Allows sharing of durable subscriptions when
connections are made from within a server
cluster.

Always shared
Durable subscriptions can be shared across
connections.

Never shared
Durable subscriptions are never shared across
connections.

Read Ahead:

Controls the read-ahead optimization during message delivery.

Information Value
Default Default
Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

Information Value
Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

Information Value
Default BusMember
Range BusMember, Custom, ME

Target Significance:

The priority of significance for the target specified.

Information Value
Default Preferred
Range Preferred, Required

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

Information Value
Data type String

Provider Endpoints:

62 Administering WebSphere applications



The list of comma separated endpoints used to connect to a bootstrap server.

Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

Information Value
Example merlin:7276:BootstrapBasicMessaging,Gandalf:

5557:BootstrapSecureMessaging where

BootstrapBasicMessaging corresponds to the remote
protocol InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default
localhost is used as a default value.

v If the port number is not specified, then 7276 is used as
a default value.

v If the chain name is not specified, a predefined chain,
such as BootstrapBasicMessaging, is used as a default
value.

Connection Proximity:

The proximity that the messaging engine should have to the requester.

Information Value
Default Bus
Range Bus, Host, Cluster, Server

Temporary Queue Name Prefix:

The prefix to apply to the names of temporary queues. This name is a maximum of 12 characters.

Information Value
Data type String

Temporary Topic Name Prefix:

The prefix to apply to the names of temporary topics. This name is a maximum of 12 characters.

Information Value
Data type String

Default Provider queue connection factory settings:

Use this panel to view or change the configuration properties of the selected JMS queue connection
factory for use with the internal product Java Message Service (JMS) provider that is installed with
WebSphere Application Server. These configuration properties control how connections are created
between the JMS provider and the service integration bus that it uses

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default
Provider. Right-click Queue Connection Factories and click New. The following fields appear on the
General tab.

Settings that have a default value display the appropriate value. Any settings that have fixed values have a
drop down menu.

Chapter 5. Welcome to administering Client applications 63



Name:

The name of the queue connection factory.

Information Value
Data type String

Description:

A description of this queue connection factory for administrative purposes within WebSphere Application
Server.

Information Value
Data type String

JNDI Name:

The JNDI name that is used to match this queue connection factory definition to the deployment
descriptor. This entry is a resource-ref name.

Information Value
Data type String

User Name:

The User Name used, with the Password property, for authentication if the calling application does not
provide a userid and password explicitly. If this field is used, then the Properties field UserName is ignored.

If you specify a value for the User Name property, you must also specify a value for the Password
property.

The connection factory User Name and Password properties are used if the calling application does not
provide a userid and password explicitly. If a user name and password are specified, then an
authentication alias is created for the factory where the password is encrypted.

Information Value
Data type String

Password:

The password used to create an encrypted. If you complete this field, then the Password field in the
Properties box is ignored.

If you specify a value for the User Name property, you must also specify a value for the Password
property.

Information Value
Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

64 Administering WebSphere applications



The name of the bus to which the queue connection factory connects.

Information Value
Data type String

Client Identifier:

The client identifier. Required for durable topic subscriptions.

Information Value
Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

If you want different reliability delivery options for individual JMS destinations, you can set this property to
As bus destination. The reliability is then defined by the Reliability property of the bus destination to which
the JMS destination is assigned.

Information Value
Default ReliablePersistent
Range

None There is no message reliability for nonpersistent
messages. If a nonpersistent message cannot be
delivered, it is discarded.

Best effort nonpersistent
Messages are never written to disk, and are
thrown away if memory cache overruns.

Express nonpersistent
Messages are written asynchronously to
persistent storage if memory cache overruns, but
are not kept over server restarts.

Reliable nonpersistent
Messages can be lost if a messaging engine
fails, and can be lost under normal operating
conditions.

Reliable persistent
Messages can be lost if a messaging engine
fails, but are not lost under normal operating
conditions.

Assured persistent
Highest degree of reliability where assured
message delivery is supported.

As Bus destination
Use the delivery option configured for the bus
destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

Chapter 5. Welcome to administering Client applications 65



If you want different reliability delivery options for individual JMS destinations, you can set this property to
As bus destination. The reliability is then defined by the Reliability property of the bus destination to
which the JMS destination is assigned.

Information Value
Default ReliablePersistent
Range

None There is no message reliability for nonpersistent
messages. If a nonpersistent message cannot be
delivered, it is discarded.

Best effort nonpersistent
Messages are never written to disk, and are
thrown away if memory cache overruns.

Express nonpersistent
Messages are written asynchronously to
persistent storage if memory cache overruns, but
are not kept over server restarts.

Reliable nonpersistent
Messages can be lost if a messaging engine
fails, and can be lost under normal operating
conditions.

Reliable persistent
Messages can be lost if a messaging engine
fails, but are not lost under normal operating
conditions.

Assured persistent
Highest degree of reliability where assured
message delivery is supported.

As Bus destination
Use the delivery option configured for the bus
destination.

Read Ahead:

Controls the read-ahead optimization during message delivery.

Information Value
Default Default
Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

Information Value
Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

Information Value
Default BusMember
Range BusMember, Custom, Destination, ME

66 Administering WebSphere applications



Target Significance:

The priority of significance for the target specified.

Information Value
Default Preferred
Range Preferred, Required

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

Information Value
Data type String

Provider Endpoints:

The list of comma separated endpoints used to connect to a bootstrap server.

Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

Information Value
Example localhost:7777:BootstrapBasicMessaging

where

BootstrapBasicMessaging corresponds to the remote
protocol InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default
localhost is used as a default value.

v If the port number is not specified, then 7276 is used as
a default value.

v If the chain name is not specified, a predefined chain,
such as BootstrapBasicMessaging, is used as a default
value.

Connection Proximity:

The proximity that the messaging engine should have to the requester.

Information Value
Default Bus, Cluster, Server
Range Bus, Host

Temporary Queue Name Prefix:

The prefix to apply to the names of temporary queues. This name is a maximum of 12 characters.

Information Value
Data type String

Default Provider topic connection factory settings:

Chapter 5. Welcome to administering Client applications 67



Use this panel to view or change the configuration properties of the selected JMS topic connection factory
for use with the internal product Java Message Service (JMS) provider that is installed with WebSphere
Application Server. These configuration properties control how connections are created between the JMS
provider and the service integration bus that it uses.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default
Provider. Right-click Topic Connection Factories and click New. The following fields appear on the
General tab.

Settings that have a default value display that appropriate value. Any settings that have fixed values have
a drop down menu.

Name:

The name of the topic connection factory.

Information Value
Data type String

Description:

A description of this topic connection factory for administrative purposes within IBM WebSphere Application
Server.

Information Value
Data type String

JNDI Name:

The JNDI name that is used to match this topic connection factory definition to the deployment descriptor.
This entry is a resource-ref name.

Information Value
Data type String

User Name:

The User Name used, with the Password property, for authentication if the calling application does not
provide a userid and password explicitly. If this field is used, then the Properties field UserName is ignored.

If you specify a value for the User Name property, you must also specify a value for the Password
property.

The connection factory User Name and Password properties are used if the calling application does not
provide a userid and password explicitly. If a user name and password are specified, then an
authentication alias is created for the factory where the password is encrypted.

Information Value
Data type String

Password:

68 Administering WebSphere applications



The password used to create an encrypted. If you complete this field, then the Password field in the
Properties box is ignored.

If you specify a value for the User Name property, you must also specify a value for the Password
property.

Information Value
Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

The name of the bus to which the topic connection factory connects.

Information Value
Data type String

Client Identifier:

The name of the client. This field is required for durable topic subscriptions.

Information Value
Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

If you want different reliability delivery options for individual JMS destinations, you can set this property to
As bus destination. The reliability is then defined by the Reliability property of the bus destination to which
the JMS destination is assigned.

Information Value
Default ReliablePersistent

Chapter 5. Welcome to administering Client applications 69



Information Value
Range

None There is no message reliability for nonpersistent messages. If a
nonpersistent message cannot be delivered, it is discarded.

Best effort nonpersistent
Messages are never written to disk, and are thrown away if memory
cache overruns.

Express nonpersistent
Messages are written asynchronously to persistent storage if
memory cache overruns, but are not kept over server restarts.

Reliable nonpersistent
Messages can be lost if a messaging engine fails, and can be lost
under normal operating conditions.

Reliable persistent
Messages can be lost if a messaging engine fails, but are not lost
under normal operating conditions.

Assured persistent
Highest degree of reliability where assured message delivery is
supported.

As Bus destination
Use the delivery option configured for the bus destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

If you want different reliability delivery options for individual JMS destinations, you can set this property to
As bus destination. The reliability is then defined by the Reliability property of the bus destination to
which the JMS destination is assigned.

Information Value
Default ReliablePersistent
Range

None There is no message reliability for nonpersistent messages. If a
nonpersistent message cannot be delivered, it is discarded.

Best effort nonpersistent
Messages are never written to disk, and are thrown away if memory
cache overruns.

Express nonpersistent
Messages are written asynchronously to persistent storage if
memory cache overruns, but are not kept over server restarts.

Reliable nonpersistent
Messages can be lost if a messaging engine fails, and can be lost
under normal operating conditions.

Reliable persistent
Messages can be lost if a messaging engine fails, but are not lost
under normal operating conditions.

Assured persistent
Highest degree of reliability where assured message delivery is
supported.

As Bus destination
Use the delivery option configured for the bus destination.

70 Administering WebSphere applications



Durable Subscription Home:

The name of the durable subscription home.

Information Value
Data type String

Share durable subscriptions:

Controls whether or not durable subscriptions are shared across connections with members of a server
cluster.

Normally, only one session at a time can have a TopicSubscriber for a particular durable subscription. This
property enables you to override this behavior, to enable a durable subscription to have multiple
simultaneous consumers.

Information Value
Data type Selection list
Default In cluster
Range

In cluster
Allows sharing of durable subscriptions when connections are made
from within a server cluster.

Always shared
Durable subscriptions can be shared across connections.

Never shared
Durable subscriptions are never shared across connections.

Read Ahead:

Controls the read-ahead optimization during message delivery.

Information Value
Default Default
Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

Information Value
Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

Information Value
Default BusMember
Range BusMember, Custom, ME

Target Significance:

Chapter 5. Welcome to administering Client applications 71



The priority of significance for the target specified.

Information Value
Default Preferred
Range Preferred, Required

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

Information Value
Data type String

Provider Endpoints:

The list of comma separated endpoints used to connect to a bootstrap server.

Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

Information Value
Example localhost:7777:BootstrapBasicMessaging

where

BootstrapBasicMessaging corresponds to the remote protocol
InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default localhost is used as a
default value.

v If the port number is not specified, then 7276 is used as a default value.

v If the chain name is not specified, a predefined chain, such as
BootstrapBasicMessaging, is used as a default value.

Connection Proximity:

The proximity that the messaging engine should have to the requester.

Information Value
Default Bus
Range Bus, Host, Cluster, Server

Temporary Topic Name Prefix:

The prefix to apply to the names of temporary topics. This name is a maximum of 12 characters.

Information Value
Data type String

Default Provider queue destination settings:

Use this panel to view or change the configuration properties of the selected JMS queue destination for
use with the internal product Java Message Service (JMS) provider that is installed with WebSphere
Application Server.

72 Administering WebSphere applications



To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default
Provider. Right-click Queue Destinations. Click New. The following fields appear on the General tab.

Name:

The name of the queue destination factory. You must complete this field.

Information Value
Data type String

Description:

A description of this queue destination for administrative purposes within WebSphere Application Server.

Information Value
Data type String

JNDI Name:

The JNDI name used to match this definition to a deployment descriptor resource-env-ref name.

Information Value
Data type String

Queue Name:

The name of the queue.

Information Value
Data type String

Delivery Mode:

The delivery mode for messages sent to this destination.

Information Value
Data type String
Range Application, Persistent or NonPersistent
Default Application

Time to Live:

The default length of time from its dispatch time that a message sent to this destination should be retained
by the system, where 0 indicates that time to live value does not expire. Value from the producer is used if
the Time to Live field is not completed.

Information Value
Data type Integer
Units Milliseconds

Priority:

Chapter 5. Welcome to administering Client applications 73



The priority for messages sent to this destination. The value from the producer is used if not completed.

Information Value
Data type Integer
Range 0 to 9 with 0 as the lowest priority and 9 as the highest

priority

Read Ahead:

Used to control read-ahead optimization during message delivery.

Information Value
Data type String
Range AsConnection, AlwaysOn and AlwaysOff
Default AsConnection

Default Provider topic destination settings:

Use this panel to view or change the configuration properties of the selected JMS topic destination for use
with the internal product Java Message Service (JMS) provider that is installed with WebSphere
Application Server.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default
Provider. Right-click Topic Destinations, and click New. The following fields appear on the General tab.

Name:

The name of the topic destination entry.

Information Value
Data type String

Description:

A description of the entry.

Information Value
Data type String

JNDI Name:

The JNDI name used to match this definition to a deployment descriptor resource-env-ref name.

Information Value
Data type String

Topic Space:

The name of the topic space. This field is required.

Information Value
Data type String
Default DEFAULT_TOPIC_SPACE

74 Administering WebSphere applications



Topic Name:

The name of the topic. This field is required.

Information Value
Data type String

Delivery Mode:

The default mode for messages sent to this destination.

Information Value
Data type String
Range Application, Persistent or NonPersistent
Default Application

Time to Live:

The default length of time from its dispatch time that a message sent to this destination should be retained
by the system, where 0 indicates that time to live value does not expire. Value from the producer is used if
not completed.

Information Value
Data type Long
Units Milliseconds

Priority:

The priority for messages sent to this destination. Value from producer is used if not completed.

Information Value
Data type Integer
Range 0 to 9 with 0 as the lowest priority and 9 as the highest

priority

Read Ahead:

Used to control read-ahead optimization during message delivery.

Information Value
Data type String
Range AsConnection, AlwaysOn and AlwaysOff
Default AsConnection

WebSphere MQ Provider queue connection factory settings for application clients:

Use this panel to view or change the configuration properties of the selected queue connection factory for
use with the WebSphere MQ Java Message Service (JMS) provider. These configuration properties control
how connections are created between the JMS provider and WebSphere MQ.

Chapter 5. Welcome to administering Client applications 75



To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file and click Messaging Providers >
WebSphere MQ Provider. Right click Queue Connection Factories, and click New. The following fields
are displayed on the General tab.

Note:
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for
JMS resources, see the Using Java section of the WebSphere MQ information center.

v In WebSphere MQ, names can have a maximum of 48 characters, except for channels which
have a maximum of 20 characters.

A queue connection factory for the JMS provider has the following properties.

Name:

The name by which this queue connection factory is known for administrative purposes within WebSphere
Application Server. The name must be unique within the JMS connection factories across the WebSphere
administrative domain.

Information Value
Data type String

Description:

A description of this connection factory for administrative purposes within WebSphere Application Server.

Information Value
Data type String
Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

The user ID used, with the password property, for authentication if the calling application does not provide
a user ID and password explicitly.

If you specify a value for the user ID property, you must also specify a value for the password property.

The connection factory user ID and password properties are used if the calling application does not
provide a user ID and password explicitly; for example, if the calling application uses the method
createQueueConnection(). The JMS client flows the user ID and password to the JMS server.

Information Value
Data type String

Password:

The password used, with the user ID property, for authentication if the calling application does not provide
a user ID and password explicitly.

If you specify a value for the user ID property, you must also specify a value for the password property.

76 Administering WebSphere applications



Information Value
Data type String
Default Null

Re-Enter Password:

Confirms the password.

Queue Manager:

The name of the WebSphere MQ queue manager for this connection factory.

Connections created by this factory connect to that queue manager.

Information Value
Data type String

Enter Hostname and Port Information:

This radio button is selected by default and, if selected, enables the host and port properties and disables
the connection name list property.

Information Value
Data type Radio button
Default Selected

Host:

The name of the host on which the WebSphere MQ queue manager runs for client connection only.

Information Value
Data type String
Default Null
Range A valid TCP/IP host name

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection
only.

This port must be configured on the WebSphere MQ queue manager.

Information Value
Data type Integer
Default Null
Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Enter Connection Name List Information:

If selected, this radio button enables the connection name list property and disables the host and port
name properties. Select this radio button if you want to connect to a multi-instance queue manager.

Chapter 5. Welcome to administering Client applications 77



Information Value
Data type Radio button
Default Cleared

Connection Name List:

A comma-separated list of host and port information which can be used to connect to a multi-instance
queue manager.

The format of the list is:

host[(port)],[host[(port)]]

where port is optional and defaults to 1414 if it is not set. For example:

hostname1,hostname2(1415)

For further information about multi-instance queue managers, see the WebSphere MQ information center.

This property must only be used for connecting to a multi-instance queue manager. It must not be used for
connecting to a list of distinct queue managers as that can result in transaction integrity issues.

Channel:

The name of the channel used for connection to the WebSphere MQ queue manager, for client connection
only.

Information Value
Data type String
Default Null
Range 1 through 20 ASCII characters

Transport type:

Specifies whether the WebSphere MQ client connection or JNDI bindings are used for connection to the
WebSphere MQ queue manager. The external JMS provider controls the communication protocols
between JMS clients and JMS servers. Tune the transport type when you are using non-ASF
nonpersistent, nondurable, nontransactional messaging or when you want to satisfy security issues and
the client is local to the queue manager node.

Information Value
Data type Enum
Units Not applicable
Default BINDINGS

78 Administering WebSphere applications



Information Value
Range BINDINGS

JNDI bindings are used to connect to the queue manager. BINDINGS is a
shared memory protocol and can only be used when the queue manager is on
the same node as the JMS client and poses security risks that must be
addressed through the use of EJB roles.

CLIENT
WebSphere MQ client connection is used to connect to the queue manager.
CLIENT is a typical TCP-based protocol.

DIRECT
For WebSphere MQ Event Broker using DIRECT mode. DIRECT is a
lightweight sockets protocol used in nontransactional, nondurable, and
nonpersistent Publish/Subscribe messaging. DIRECT only works for clients
and message-driven beans using the non-ASF protocol.

QUEUED
QUEUED is a standard TCP protocol.

Recommended Queue connection factory transport type
BINDINGS is faster by 30% or more, but it requires correctly set up EJB roles
to guarantee security. If you have security concerns and need to use CLIENT
then you should make appropriate use of SSL to secure the connection to the
queue manager.

Topic connection factory transport type
DIRECT is the fastest type and must be used where possible. Use BINDINGS
when you want to satisfy additional security tasks and the queue manager is
local to the JMS client. QUEUED is the fallback for all other cases.
WebSphere MQ 5.3 before CSD2 with the DIRECT setting can lose messages
when used with message-driven beans and under load. This loss also
happens with client-side applications unless the broker maxClientQueueSize is
set to 0. You can set this value to 0 with the command:

#wempschangeproperties WAS_nodeName_server1
-e default -o DynamicSubscriptionEngine -n
maxClientQueueSize -v 0 -x executionGroupUUID

where executionGroupUUID can be found by starting the broker and looking in
the Event Log/Applications for event 2201. This value is usually
ffffffff-0000-0000-000000000000.

Note: The WebSphere MQ 5.3 JMS cannot be used within WebSphere Application
Server Version 6.1 because WebSphere Application Server Version 6.1 has a Java 5
runtime. Therefore, cross-memory connections cannot be established with WebSphere
MQ 5.3 queue managers. This can result in a performance degradation if you were
previously using WebSphere MQ 5.3 and BINDINGS for your connections and move to
CLIENT network connections in migrating to WebSphere Application Server Version 6.1.

Client ID:

The JMS client identifier used for connections to the WebSphere MQ queue manager.

Information Value
Data type String

CCSID:

The coded character set identifier for use with the WebSphere MQ queue manager.

This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

Chapter 5. Welcome to administering Client applications 79



Information Value
Data type String

For more information about supported CCSIDs, and about converting between message data from one
coded character set to another, see the System Administration and Application Programming Reference
sections of the WebSphere MQ information center.

Message Retention:

Select this check box to specify that unwanted messages are to be left on the queue. Otherwise,
unwanted messages are handled according to their disposition options.

Information Value
Data type Enum
Units Not applicable
Default Cleared
Range Selected

Unwanted messages are left on the queue.
Cleared

Unwanted messages are handled according to
their disposition options.

Temporary model:

The name of the model definition used to create temporary connection factories if a connection factory
does not already exist.

Information Value
Data type String
Range 1 through 48 ASCII characters

Temporary queue prefix:

The prefix used for dynamic queue naming.

Information Value
Data type String

Fail if quiesce:

Specifies whether applications return from a method call if the queue manager has entered a controlled
failure.

Information Value
Data type Check box
Default Selected

Local Server Address:

Specifies the local server address.

Information Value
Data type String

80 Administering WebSphere applications



Polling Interval:

Specifies the interval, in milliseconds, between scans of all receivers during asynchronous message
delivery

Information Value
Data type Integer
Units Milliseconds
Default 5000

Rescan interval:

Specifies the interval in milliseconds between which a topic is scanned to look for messages that have
been added to a topic out of order.

This interval controls the scanning for messages that have been added to a topic out of order with respect
to a WebSphere MQ browse cursor.

Information Value
Data type Integer
Units Milliseconds
Default 5000

SSL cipher suite:

Specifies the cipher suite to use for SSL connection to WebSphere MQ.

Set this property to a valid cipher suite provided by your JSSE provider. The value must match the
CipherSpec specified on the SVRCONN channel as the Channel property.

You must set this property, if you set the SSL Peer Name property.

SSL certificate store:

Specifies a list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate
revocation. If you specify a value for this property, you must use WebSphere MQ JVM at Java 2 version
1.4.

The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

A single slash (/) follows this value. If port is omitted, the default LDAP port of 389 is assumed. At
connect-time, the SSL certificate presented by the server is checked against the specified CRL servers.
For more information about CRL security, see the information about “Working with Certificate Revocation
Lists” in the Security section of the WebSphere MQ information center.

SSL peer name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue
manager. The distinguished name is used to check the identifying certificate presented by the server at
connection time.

If this property is not set, such certificate checking is performed.

The SSL peer name property is ignored if SSL Cipher Suite property is not specified.

Chapter 5. Welcome to administering Client applications 81



This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the
connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at
least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is
not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the information about
“Distinguished Names” in the WebSphere MQ information center.

Connection pool:

Specifies an optional set of connection pool settings.

Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.
This connection pooling is independent from any WebSphere MQ connection pooling. You must configure
the connection and session pool properties appropriately for your applications, otherwise you might not get
the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the
default value. The size of the connection pool is set on a per queue or topic basis.

Information Value
Data type Check box
Default Selected

Client reconnect options:

Specifies whether a client mode connection reconnects automatically, or not, in the event of a
communications or queue manager failure. This property is ignored unless the connection factory is being
used in a thin or managed client environment.

Information Value
Data type Drop-down list
Default DISABLED
Range

DISABLED
The client reconnection does not automatically
occur.

ASDEF The value from the DefRecon attribute from the
channels stanza of the client configuration file is
used. If there is no DefRecon value specified
then this setting has the same effect as a value
of DISABLED.

RECONNECT
Reconnection occurs to any queue manager
consistent with the value of the queue manager
attribute, which might be a different queue
manager from that to which the connection was
originally connected.

QMGR Reconnection only occurs to the queue manager
to which the connection was originally connected.

82 Administering WebSphere applications



For more information about automatic client reconnection, see the WebSphere MQ information center.

Client reconnect timeout:

The maximum number of seconds that a client mode connection spends attempting to automatically
reconnect to a queue manager after a communications or queue manager failure. This parameter is
ignored unless the connection factory is being used in a thin or managed client environment. Whether this
parameter is used or not depends on the value of the client reconnect options parameter.

Information Value
Data type Integer
Units Seconds
Default 1800
Range A value greater than zero and up to 2147483647

For more information about automatic client reconnection, see the WebSphere MQ information center.

WebSphere MQ Provider topic connection factory settings for application clients:

Use this panel to view or change the configuration properties of the selected topic connection factory for
use with the WebSphere MQ Java Message Service (JMS) provider. These configuration properties control
how connections are created between the JMS provider and WebSphere MQ.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere
MQ Provider. Right-click Topic Connection Factories and click New.

Note:
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ product JMS resources. For more information about configuring WebSphere MQ
JMS resources, see the Using Java section of the WebSphere MQ information center.

v In WebSphere MQ, names can have a maximum of 48 characters, except for channels which
have a maximum of 20 characters.

MA0C broker: When creating a WebSphere Application Server Version 6 topic connection factory
for the MA0C broker, consider the following attribute values:

BrokerControlQueue
This value is fixed at SYSTEM.BROKER.CONTROL.QUEUE for the MA0C broker and is
the queue the broker reads from.

BrokerVersion
Set this value to BASIC for the MA0C broker.

ClientID
Set this value to whatever you like for the MA0C broker (the value is string and is merely
an identifier for your client application).

XA Enabled
Set this value to TRUE or FALSE for the MA0C broker (the setting you use is a
performance enhancement flag - you probably want to set this value to 'true' most of the
time).

BrokerMessage Selection
This value is fixed at CLIENT for the MA0C broker because the broker relies on client side
message selection.

Direct Broker Authorization Type
This value is not required by the MA0C broker.

Chapter 5. Welcome to administering Client applications 83



A topic connection factory for the WebSphere MQ JMS provider has the following properties.

Name:

The name by which this topic connection factory is known for administrative purposes within WebSphere
Application Server. The name must be unique within the JMS provider.

Information Value
Data type String

Description:

A description of this topic connection factory for administrative purposes within WebSphere Application
Server.

Information Value
Data type String

JNDI Name:

The Java Naming and Directory Interface (JNDI) name that is used to bind the topic connection factory
into the application server name space.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined
by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the
platform.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 45 ASCII characters

User ID:

The user ID used, with the password property, for authentication if the calling application does not provide
a user ID and password explicitly.

If you specify a value for the user ID property, you must also specify a value for the password property.

The connection factory user ID and password properties are used if the calling application does not
provide a user ID and password explicitly, for example, if the calling application uses the method
createTopicConnection(). The JMS client flows the user ID and password to the JMS server.

Information Value
Data type String

Password:

The password used, with the user ID property, for authentication if the calling application does not provide
a user ID and password explicitly.

84 Administering WebSphere applications



If you specify a value for the user ID property, you must also specify a value for the password property.

Information Value
Data type String

Re-Enter Password:

Confirms the password.

Queue Manager:

The name of the WebSphere MQ queue manager for this connection factory. Connections created by this
connection factory connect to this queue manager.

Information Value
Data type String

Enter Hostname and Port Information:

This radio button is selected by default and, if selected, enables the host and port properties and disables
the connection name list property.

Information Value
Data type Radio button
Default Selected

Host:

The name of the host on which the WebSphere MQ queue manager runs for client connections only.

Information Value
Data type String
Range A valid TCP/IP host name

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection
only.

This port must be configured on the WebSphere MQ queue manager.

Information Value
Data type Integer
Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Enter Connection Name List Information:

If selected, this radio button enables the connection name list property and disables the host and port
name properties. Select this radio button if you want to connect to a multi-instance queue manager.

Information Value
Data type Radio button
Default Cleared

Chapter 5. Welcome to administering Client applications 85



Connection Name List:

A comma-separated list of host and port information which can be used to connect to a multi-instance
queue manager.

The format of the list is:

host[(port)],[host[(port)]]

where port is optional and defaults to 1414 if it is not set. For example:

hostname1,hostname2(1415)

For further information about multi-instance queue managers, see the WebSphere MQ information center.

This property must only be used for connecting to a multi-instance queue manager. It must not be used for
connecting to a list of distinct queue managers as that can result in transaction integrity issues.

Channel:

The name of the channel used for client connections to the WebSphere MQ queue manager, for client
connection only.

Information Value
Data type String
Range 1 through 20 ASCII characters

Transport Type:

Whether WebSphere MQ client connection or JNDI bindings are used for connection to the WebSphere
MQ queue manager.

Information Value
Data type Enum
Default BINDINGS
Range CLIENT

WebSphere MQ client connection is used to
connect to the WebSphere MQ queue manager.

BINDINGS
JNDI bindings are used to connect to the
WebSphere MQ queue manager.

Client ID:

The JMS client identifier used for connections to the WebSphere MQ queue manager.

Information Value
Data type String

CCSID:

The coded character set identifier to use with the WebSphere MQ queue manager.

This coded character set identifier (CCSID) must be one of the CCSIDs that WebSphere MQ supports.
See the properties for the topic destination for more details.

86 Administering WebSphere applications



Information Value
Data type String
Units Integer
Range 1 through 65535

Broker Control Queue:

The name of the broker control queue to which all command messages (except publications and requests
to delete publications) are sent.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

Broker Queue Manager:

The name of the WebSphere MQ queue manager that provides the Publisher and Subscriber message
broker.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

Broker Publish Queue:

The name of the broker input queue that receives all publication messages for the default stream.

The name of the broker's input queue (stream queue) that receives all publication messages for the
default stream. Applications can also send requests to delete publications on the default stream to this
queue.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

Broker Subscribe Queue:

The name of the broker queue from which nondurable subscription messages are retrieved.

The name of the broker queue from which nondurable subscription messages are retrieved. The
subscriber specifies the name of the queue when it registers a subscription.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

Broker CCSubQ:

Chapter 5. Welcome to administering Client applications 87



The name of the broker queue from which nondurable subscription messages are retrieved for a
ConnectionConsumer request. This property applies only for use of the web container.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

Broker Version:

Whether the message broker is provided by the WebSphere MQ MA0C SupportPac or newer versions of
WebSphere family message broker products.

Information Value
Data type Enum
Default Advanced
Range Advanced

The message broker is provided by newer
versions of WebSphere family message broker
products (WebSphere MQ Integrator and
WebSphere MQ Publish and Subscribe).

Basic The message broker is provided by the
WebSphere MQ MA0C SupportPac (WebSphere
MQ - Publish and Subscribe).

Cleanup level:

The level of cleanup provided by the publish or subscribe cleanup utility.

Information Value
Data type Enum
Default SAFE
Range

ASPROP

NONE

STRONG

Cleanup interval:

The interval, in milliseconds, between background executions of the publish/subscribe cleanup utility.

Information Value
Data type Integer
Units Milliseconds
Default 6000

Message selection:

Where broker message selection is performed.

Information Value
Data type Enum
Default BROKER

88 Administering WebSphere applications



Information Value
Range

BROKER
Message selection is performed at the broker
location.

Message CLIENT
Message selection is performed at the client
location.

Publish acknowledge interval:

The interval, in number of messages, between publish requests that require acknowledgment from the
broker.

Information Value
Data type Integer
Default 25

Sparse subscriptions:

Enables sparse subscriptions.

Information Value
Data type Check box
Default Cleared

Status refresh interval:

The interval, in milliseconds, between transactions to refresh the publish or subscribe status.

Information Value
Data type Integer
Default 6000

Subscription store:

Where WebSphere MQ stores data relating to active JMS subscriptions.

Information Value
Data type Enum
Default MIGRATE
Range

MIGRATE

QUEUE

BROKER

Multicast:

Whether this connection factory uses multicast transport.

Information Value
Data type Enum

Chapter 5. Welcome to administering Client applications 89



Information Value
Default NOT USED
Range

NOT USED
This connection factory does not use multicast
transport.

ENABLED
This connection factory always uses multicast
transport.

ENABLED_IF_AVAILABLE
This connection factory uses multicast transport.

ENABLED_RELIABLE
This connection factory uses reliable multicast
transport.

ENABLED_RELIABLE_IF_AVAILABLE
This connection factory uses reliable multicast
transport if available.

Direct authentication:

Whether to use direct broker authorization.

Information Value
Data type Enum
Default NONE
Range

NONE Direct broker authorization is not used.

PASSWORD
Direct broker authorization is authenticated with a
password.

CERTIFICATE
Direct broker authorization is authenticated with a
certificate.

Proxy Host Name:

The host name of a proxy to be used for communication with WebSphere MQ.

Information Value
Data type String

Proxy Port:

The port number of a proxy to be used for communication with WebSphere MQ.

Information Value
Data type Integer
Default 0

Fail if quiesce:

Whether applications return from a method call if the queue manager has entered a controlled failure.

90 Administering WebSphere applications



Information Value
Data type Check box
Default Selected

Local Server Address:

The local server address.

Information Value
Data type String

Polling Interval:

The interval, in milliseconds, between scans of all receivers during asynchronous message delivery.

Information Value
Data type Integer
Units Milliseconds
Default 5000

Rescan interval:

The interval in milliseconds between which a topic is scanned to look for messages that have been added
to a topic out of order.

The rescan interval controls the scanning for messages that have been added to a topic out of order with
respect to a WebSphere MQ browse cursor.

Information Value
Data type Integer
Units Milliseconds
Default 5000

SSL cipher suite:

The cipher suite to use for SSL connection to WebSphere MQ.

Set this property to a valid cipher suite provided by your JSSE provider. The value must match the
CipherSpec specified on the SVRCONN channel as the Channel property.

You must set this property, if you set the SSL Peer Name property.

SSL certificate store:

A list of zero or more Certificate Revocation List (CRL) servers that are used to check for SSL certificate
revocation. If you specify a value for this property, you must use WebSphere MQ JVM at Java 2 version
1.4.

The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

A single slash (/) follows this value. If port is omitted, the default LDAP port of 389 is assumed. At
connect-time, the SSL certificate presented by the server is checked against the specified CRL servers.

Chapter 5. Welcome to administering Client applications 91



For more information about CRL security, see the information about “Working with Certificate Revocation
Lists” in the Security section of the WebSphere MQ information center.

SSL peer name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue
manager. The distinguished name is used to check the identifying certificate presented by the server at
connection time.

If this property is not set, such certificate checking is performed.

The SSL peer name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the
connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at
least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is
not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the information about
“Distinguished Names” in the Security section of the WebSphere MQ information center.

Connection pool:

An optional set of connection pool settings.

Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.
This connection pooling is independent from any WebSphere MQ connection pooling. You must configure
the connection and session pool properties appropriately for your applications, otherwise you might not get
the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the
default value. The size of the connection pool is set on a per queue or topic basis.

Information Value
Data type Check box
Default Selected

Client reconnect options:

Specifies whether a client mode connection reconnects automatically, or not, in the event of a
communications or queue manager failure. This property is ignored unless the connection factory is being
used in a thin or managed client environment.

Information Value
Data type Drop-down list
Default DISABLED

92 Administering WebSphere applications



Information Value
Range

DISABLED
The client reconnection does not automatically
occur.

ASDEF The value from the DefRecon attribute from the
channels stanza of the client configuration file is
used. If there is no DefRecon value specified
then this setting has the same effect as a value
of DISABLED.

RECONNECT
Reconnection occurs to any queue manager
consistent with the value of the queue manager
attribute, which might be a different queue
manager from that to which the connection was
originally connected.

QMGR Reconnection only occurs to the queue manager
to which the connection was originally connected.

For more information about automatic client reconnection, see the WebSphere MQ information center.

Client reconnect timeout:

The maximum number of seconds that a client mode connection spends attempting to automatically
reconnect to a queue manager after a communications or queue manager failure. This parameter is
ignored unless the connection factory is being used in a thin or managed client environment. Whether this
parameter is used or not depends on the value of the client reconnect options parameter.

Information Value
Data type Integer
Units Seconds
Default 1800
Range A value greater than zero and up to 2147483647

For more information about automatic client reconnection, see the WebSphere MQ information center.

WebSphere MQ Provider queue destination settings for application clients:

Use this panel to view or change the configuration properties of the selected queue destination for use
with the WebSphere MQ product Java Message Service (JMS) provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file and click Messaging Providers >
WebSphere MQ Provider. Right-click Queue Destinations and click New. The following fields are
displayed on the General tab.

Note:
v The property values that you specify must match the values that you specified when configuring

JMS resources for WebSphere MQ. For more information about configuring JMS resources for
WebSphere MQ, see Using Java in the WebSphere MQ information center.

v In WebSphere MQ, names can have a maximum of 48 characters.

A queue for use with the WebSphere MQ product JMS provider has the following properties.

Name:

Chapter 5. Welcome to administering Client applications 93



The name by which the queue is known for administrative purposes within WebSphere Application Server.

Information Value
Data type String

Description:

A description of the queue, for administrative purposes within WebSphere Application Server.

Information Value
Data type String

JNDI Name:

The application client runtime environment uses this field to retrieve configuration information.

Persistence:

Whether all messages sent to the destination are persistent, nonpersistent or have their persistence
defined by the application.

Information Value
Data type Enum
Default APPLICATION_DEFINED
Range Application defined

Messages on the destination have their persistence defined by the
application that put them onto the queue.

Queue defined
[WebSphere MQ destination only] Messages on the destination have
their persistence defined by the WebSphere MQ queue definition
properties.

Persistent
Messages on the destination are persistent.

Nonpersistent
Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority
property.

Information Value
Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range Application defined

The priority of messages on this destination is defined by the
application that put them onto the destination.

Queue defined
[WebSphere MQ destination only] Messages on the destination have
their persistence defined by the WebSphere MQ queue definition
properties.

Specified
The priority of messages on this destination is defined by the
Specified priority property. If you select this option, you must define
a priority on the Specified priority property.

94 Administering WebSphere applications



Specified Priority:

If the Priority property is set to Specified, specify the message priority for this queue, in the range 0
(lowest) through 9 (highest).

Information Value
Data type Integer
Units Message priority level
Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout value for this queue is defined by the application or the by Specified expiry
property or whether messages on the queue never expire (have an unlimited expiry time out).

Information Value
Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range Application defined

The expiry timeout for messages on this queue is defined by the
application that put them onto the queue.

Specified
The expiry timeout for messages on this queue is defined by the
Specified expiry property. If you select this option, you must define
a timeout on the Specified expiry property.

Unlimited
Messages on this queue have no expiry timeout and those
messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)
after which messages on this queue expire.

Information Value
Data type Integer
Units Milliseconds
Range Greater than or equal to 0

v 0 indicates that messages never time out
v Other values are an integer number of milliseconds

Base Queue Name:

The name of the queue to which messages are sent, on the queue manager specified by the Base queue
manager name property.

Information Value
Data type String

Base Queue Manager Name:

The name of the WebSphere MQ queue manager to which messages are sent.

This queue manager provides the queue specified by the Base queue name property.

Chapter 5. Welcome to administering Client applications 95



Information Value
Data type String
Units En_US ASCII characters
Range A valid WebSphere MQ Queue Manager name, as 1 through 48 ASCII

characters

CCSID:

The coded character set identifier to use with the WebSphere MQ queue manager.

This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ
queue manager. See the WebSphere MQ messaging provider queue and topic advanced properties
settings for more details.

Information Value
Data type String

Integer encoding:

If native encoding is not enabled, select whether integer encoding is normal or reversed.

Information Value
Data type Enum
Default NORMAL
Range NORMAL

Normal integer encoding is used.
REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see Using Java in the
WebSphere MQ information center.

Decimal encoding:

If native encoding is not enabled, select whether decimal encoding is normal or reversed.

Information Value
Data type Enum
Default NORMAL
Range NORMAL

Normal decimal encoding is used.
REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see Using Java in the
WebSphere MQ information center.

Floating point encoding:

If native encoding is not enabled, select the type of floating point encoding.

Information Value
Data type Enum
Default IEEENORMAL

96 Administering WebSphere applications



Information Value
Range IEEENORMAL

IEEE normal floating point encoding is used.
IEEEREVERSED

IEEE reversed floating point encoding is used.
S390 S390 floating point encoding is used.

For more information about encoding properties, see Using Java in the
WebSphere MQ information center.

Native encoding:

Indicates that the queue destination uses native encoding (appropriate encoding values for the Java
platform) when you select this check box.

Information Value
Data type Enum
Default Cleared
Range Cleared

Native encoding is not used, so specify the following properties for
integer, decimal and floating point encoding.

Selected
Native encoding is used (to provide appropriate encoding values for
the Java platform).

For more information about encoding properties, see Using Java in the
WebSphere MQ information center.

Target client:

Whether the receiving application is JMS compliant or is a traditional WebSphere MQ application.

Information Value
Data type Enum
Default WebSphere MQ
Range WebSphere MQ

The target is a traditional WebSphere MQ application that does not
support JMS.

JMS The target application supports JMS.

Message body:

Specifies whether an application processes the RFH version 2 header of a WebSphere MQ message as
part of the JMS message body.

Information Value
Data type Drop-down list
Default UNSPECIFIED

Chapter 5. Welcome to administering Client applications 97



Information Value
Range UNSPECIFIED

When sending messages, the WebSphere MQ messaging provider
does or does not generate and include an RFH version 2 header,
depending on the value of the Append RFH version 2 headers to
messages sent to this destination property. When receiving
messages, the WebSphere MQ messaging provider acts as if the
value is set to JMS.

JMS When sending messages, the WebSphere MQ messaging provider
automatically generates an RFH version 2 header and includes it in
the WebSphere MQ message. When receiving messages, the
WebSphere MQ messaging provider sets the JMS message
properties according to values in the RFH version 2 header (if these
value are present); it does not present the RFH version 2 header as
part of the JMS message body.

MQ When sending messages, the WebSphere MQ messaging provider
does not generate an RFH version 2 header. When receiving
messages, the WebSphere MQ messaging provider presents the
RFH version 2 header as part of the JMS message body.

ReplyTo destination style:

Specifies the format of the JMSReplyTo field.

Information Value
Data type Drop-down list
Default DEFAULT
Range DEFAULT

The default value is equivalent to the information in the RFH version
2 header.

MQMD Use the value supplied in the MQMD. This populates the reply to
queue manager field with the value from the MQMD, equivalent to
the default behaviour of WebSphere MQ Version 6.0.2.4 and 6.0.2.5.

RFH2 Use the value supplied in the RFH version 2 header. If the sending
application set a JMSReplyTo value, then that value is used.

MQMD read enabled:

Specifies whether an application can read the values of MQMD fields from JMS messages that have been
sent or received using the WebSphere MQ messaging provider.

Information Value
Data type Check box
Default Cleared
Range Cleared

Applications cannot read the values of the MQMD fields.
Selected

Applications can read the values of the MQMD fields.

MQMD write enabled:

Specifies whether an application can write the values of MQMD fields to JMS messages that will be sent
or received using the WebSphere MQ messaging provider.

Information Value
Data type Check box

98 Administering WebSphere applications



Information Value
Default Cleared
Range Cleared

Applications cannot write the values of the MQMD fields.
Selected

Applications can write the values of the MQMD fields.

MQMD message context:

Defines the message context options specified when sending messages to a destination.

Information Value
Data type Drop-down list
Default DEFAULT
Range DEFAULT

The MQOPEN API call and the MQPMO structure specify no explicit
message context options.

SET_IDENTITY_CONTEXT
The MQOPEN API call specifies the message context option
MQOO_SET_IDENTITY_CONTEXT, and the MQPMO structure
specifies MQPMO_SET_IDENTITY_CONTEXT.

SET_ALL_CONTEXT
The MQOPEN API call specifies the message context option
MQOO_SET_ALL_CONTEXT, and the MQPMO structure specifies
MQPMO_SET_ALL_CONTEXT.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

WebSphere MQ Provider topic destination settings for application clients:

Use this panel to view or change the configuration properties of the selected topic destination for use with
the WebSphere MQ product Java Message Service (JMS) provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere
MQ Provider. Right click Topic Destinations, and click New. The following fields are displayed on the
General tab.

Note:
v The property values that you specify must match the values that you specified when configuring

JMS resources for WebSphere MQ. For more information about configuring JMS resources for
WebSphere MQ, see Using Java in the WebSphere MQ information center.

v In WebSphere MQ, names can have a maximum of 48 characters.

A topic destination is used to configure the properties of a JMS topic for the associated JMS provider. A
topic for use with the WebSphere MQ product JMS provider has the following properties.

Name:

Chapter 5. Welcome to administering Client applications 99



The name by which the topic is known for administrative purposes within WebSphere Application Server.

Information Value
Data type String

Description:

A description of the topic for administrative purposes within WebSphere Application Server.

Information Value
Data type String

JNDI Name:

The application client runtime environment uses this field to retrieve configuration information.

Persistence:

Whether all messages sent to the destination are persistent, nonpersistent, or have their persistence
defined by the application.

Information Value
Data type Enum
Default APPLICATION_DEFINED
Range Application defined

Messages on the destination have their persistence defined by the application
that put them in the queue.

Queue defined
[WebSphere MQ destination only] Messages on the destination have their
persistence defined by the WebSphere MQ queue definition properties.

Persistent
Messages on the destination are persistent.

Nonpersistent
Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority
property.

Information Value
Data type Enum
Default APPLICATION_DEFINED
Range Application defined

The priority of messages on this destination is defined by the application that
put them in the destination.

Queue defined
[WebSphere MQ destination only] Messages on the destination have their
persistence defined by the WebSphere MQ queue definition properties.

Specified
The priority of messages on this destination is defined by the Specified
priority property. If you select this option, you must define a priority for the
Specified priority property.

Specified Priority:

100 Administering WebSphere applications



If the Priority property is set to Specified, specify the message priority for this queue, in the range 0
(lowest) through 9 (highest).

If the Priority property is set to Specified, messages sent to this queue have the priority value specified
by this property.

Information Value
Data type Integer
Units Message priority level
Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or by the Specified expiry
property, or whether messages on the queue never expire (have an unlimited expiry timeout).

Information Value
Data type Enum
Default APPLICATION_DEFINED
Range Application defined

The expiry timeout for messages on this queue is defined by the application
that put them in the queue.

Specified
The expiry timeout for messages in this queue is defined by the Specified
expiry property. If you select this option, you must define a timeout value for
the Specified expiry property.

Unlimited
Messages on this queue have no expiry timeout, and these messages never
expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, type the number of milliseconds (greater than 0) after
which messages on this queue expire.

Information Value
Data type Integer
Units Milliseconds
Range Greater than or equal to 0

v 0 indicates that messages never time out.
v Other values are an integer number of milliseconds.

Base Topic Name:

The name of the topic to which messages are sent.

Information Value
Data type String

CCSID:

The coded character set identifier to use with the WebSphere MQ queue manager.

This coded character set identifier (CCSID) must be one of the CCSIDs that WebSphere MQ supports.

Chapter 5. Welcome to administering Client applications 101



Information Value
Data type String
Units Integer
Range 1 through 65535

Integer encoding:

If native encoding is not enabled, select whether integer encoding is normal or reversed.

Information Value
Data type Enum
Default NORMAL
Range NORMAL

Normal integer encoding is used.
REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see Using Java in the WebSphere MQ
information center.

Decimal encoding:

If native encoding is not enabled, select whether decimal encoding is normal or reversed.

Information Value
Data type Enum
Default NORMAL
Range NORMAL

Normal decimal encoding is used.
REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see Using Java in the WebSphere MQ
information center.

Floating point encoding:

If native encoding is not enabled, select the type of floating point encoding.

Information Value
Data type Enum
Default IEEENORMAL
Range IEEENORMAL

IEEE normal floating point encoding is used.
IEEEREVERSED

IEEE reversed floating point encoding is used.
S390 S/390® floating point encoding is used.

For more information about encoding properties, see Using Java in the WebSphere MQ
information center.

Native encoding:

Indicates that the queue destination uses native encoding (appropriate encoding values for the Java
platform) when you select this check box.

102 Administering WebSphere applications



Information Value
Data type Enum
Default Cleared
Range Cleared

Native encoding is not used, so specify the previous properties for integer,
decimal and floating point encoding.

Selected
Native encoding is used (to provide appropriate encoding values for the Java
platform).

For more information about encoding properties, see Using Java in the WebSphere MQ
information center.

BrokerDurSubQueue:

The name of the broker queue from which durable subscription messages are retrieved.

The subscriber specifies the name of the queue when it registers a subscription.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

BrokerCCDurSubQueue:

The name of the broker queue from which durable subscription messages are retrieved for a
ConnectionConsumer. This property applies only for use of the web container.

Information Value
Data type String
Units En_US ASCII characters
Range 1 through 48 ASCII characters

Target Client:

Whether the receiving application is JMS compliant or is a traditional WebSphere MQ application.

Information Value
Data type Enum
Default WebSphere MQ
Range WebSphere MQ

The target is a traditional WebSphere MQ application that does not support
JMS.

JMS The target application supports JMS.

Message body:

Specifies whether an application processes the RFH version 2 header of a WebSphere MQ message as
part of the JMS message body.

Information Value
Data type Drop-down list
Default UNSPECIFIED

Chapter 5. Welcome to administering Client applications 103



Information Value
Range UNSPECIFIED

When sending messages, the WebSphere MQ messaging provider does or
does not generate and include an RFH version 2 header, depending on the
value of the Append RFH version 2 headers to messages sent to this
destination property. When receiving messages, the WebSphere MQ
messaging provider acts as if the value is set to JMS.

JMS When sending messages, the WebSphere MQ messaging provider
automatically generates an RFH version 2 header and includes it in the
WebSphere MQ message. When receiving messages, the WebSphere MQ
messaging provider sets the JMS message properties according to values in
the RFH version 2 header (if these value are present); it does not present the
RFH version 2 header as part of the JMS message body.

MQ When sending messages, the WebSphere MQ messaging provider does not
generate an RFH version 2 header. When receiving messages, the
WebSphere MQ messaging provider presents the RFH version 2 header as
part of the JMS message body.

ReplyTo destination style:

Specifies the format of the JMSReplyTo field.

Information Value
Data type Drop-down list
Default DEFAULT
Range DEFAULT

The default value is equivalent to the information in the RFH version 2 header.
MQMD Use the value supplied in the MQMD. This populates the reply to queue

manager field with the value from the MQMD, equivalent to the default
behaviour of WebSphere MQ Version 6.0.2.4 and 6.0.2.5.

RFH2 Use the value supplied in the RFH version 2 header. If the sending application
set a JMSReplyTo value, then that value is used.

Multicast:

Whether this connection factory uses multicast transport.

Information Value
Data type Enum
Default AS_CF
Range

AS_CF This connection factory uses multicast transport.

DISABLED
This connection factory does not use multicast transport.

NOT_RELIABLE
This connection factory always uses multicast transport.

RELIABLE
This connection factory uses multicast transport when the topic destination is
not reliable.

ENABLED
This connection factory uses reliable multicast transport.

MQMD read enabled:

104 Administering WebSphere applications



Specifies whether an application can read the values of MQMD fields from JMS messages that have been
sent or received using the WebSphere MQ messaging provider.

Information Value
Data type Check box
Default Cleared
Range Cleared

Applications cannot read the values of the MQMD fields.
Selected

Applications can read the values of the MQMD fields.

MQMD write enabled:

Specifies whether an application can write the values of MQMD fields to JMS messages that will be sent
or received using the WebSphere MQ messaging provider.

Information Value
Data type Check box
Default Cleared
Range Cleared

Applications cannot write the values of the MQMD fields.
Selected

Applications can write the values of the MQMD fields.

MQMD message context:

Defines the message context options specified when sending messages to a destination.

Information Value
Data type Drop-down list
Default DEFAULT
Range DEFAULT

The MQOPEN API call and the MQPMO structure specify no explicit message
context options.

SET_IDENTITY_CONTEXT
The MQOPEN API call specifies the message context option
MQOO_SET_IDENTITY_CONTEXT, and the MQPMO structure specifies
MQPMO_SET_IDENTITY_CONTEXT.

SET_ALL_CONTEXT
The MQOPEN API call specifies the message context option
MQOO_SET_ALL_CONTEXT, and the MQPMO structure specifies
MQPMO_SET_ALL_CONTEXT.

Generic JMS connection factory settings for application clients:

Use this panel to view or change the configuration properties of the selected Java Message Service (JMS)
connection factory for use with the associated JMS provider. These configuration properties control how
connections are created between the JMS provider and the messaging system that it uses.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers >
new_JMS_Provider_instance. Right-click Connection Factories, and click New. The following fields are
displayed on the General tab.

Chapter 5. Welcome to administering Client applications 105



A Java Message Service (JMS) connection factory creates connections to JMS destinations. The JMS
connection factory is created by the associated JMS provider. A JMS connection factory for a generic JMS
provider (other than the internal default messaging provider or WebSphere MQ as a JMS provider) has the
following properties:

Name:

The name by which this JMS connection factory is known for administrative purposes within IBM
WebSphere Application Server. The name must be unique within the associated JMS provider.

Information Value
Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application
Server.

Information Value
Data type String
Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

Indicates the user ID used with the Password property, for authentication if the calling application does
not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not
provide a userid and password explicitly; for example, if the calling application uses the method
createQueueConnection(). The JMS client flows the userid and password to the JMS server.

Information Value
Data type String

Password:

The password used with the User ID property for authentication if the calling application does not provide
a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for the Password property.

Information Value
Data type String
Default Null

Re-Enter Password:

Confirms the password entered in the Password field.

106 Administering WebSphere applications



External JNDI Name:

The JNDI name that is used to bind the queue into the application server name space.

As a convention, use the fully qualified JNDI name, for example, jms/Name, where Name is the logical
name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined
by the deployment descriptor of the module to the actual (physical) resources bound into JNDI API by the
platform.

Information Value
Data type String

Connection Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publication or subscription).

Select one of the following options:
Queue

A JMS queue destination for point-to-point messaging.
Topic A JMS topic destination for publish subscribe messaging.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Generic JMS destination settings for application clients:

Use this panel to view or change the configuration properties of the selected JMS destination for use with
the associated JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > new JMS
Provider instance. Right-click Destinations, and click New. The following fields are displayed on the
General tab.

A JMS destination is used to configure the properties of a JMS destination for the associated generic JMS
provider. Connections to the JMS destination are created by the associated JMS connection factory. A
JMS destination for use with a generic JMS provider (not the default messaging provider or WebSphere
MQ as a JMS provider) has the following properties.

Name:

The name by which the queue is known for administrative purposes within WebSphere Application Server.

Information Value
Data type String

Description:

Chapter 5. Welcome to administering Client applications 107



A description of the queue, for administrative purposes.

JNDI Name:

The JNDI name of the actual (physical) name of the JMS destination bound into JNDI.

External JNDI Name:

The JNDI name that is used to bind the queue into the application server name space.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined
by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the
platform.

Information Value
Data type String

Destination Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publishing or subscribing).

Select one of the following options:
Queue

A JMS queue destination for point-to-point messaging.
Topic A JMS topic destination for pub/sub messaging.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring JMS provider, JMS connection factory and JMS destination settings for application
clients:

You can configure JMS Provider, JMS Connection Factory and JMS Destination settings. This topic
provides the required fields, special cases, and an example.

The purpose of this article is to help you to configure JMS Provider, JMS Connection Factory and JMS
Destination settings.
v Required fields include:

– JMS Provider Properties page: name, and at least one protocol provider
– JMS Connection Factory Properties page: name, jndiName, destination type
– JMS Destination Properties page: name, jndiName, destination type

v Special cases:
– The destination type must be QUEUE, or TOPIC.

v Example:
<resources.jms:JMSProvider xmi:id="JMSProvider_3" name="genericJMSProvider:name"
description="genericJMSProvider:description"
externalInitialContextFactory="genericJMSProvider:contextFactoryClass"

108 Administering WebSphere applications



externalProviderURL="genericJMSProvider:providerUrl">
<classpath>genericJMSProvider:classpath</classpath>
<factories xmi:type="resources.jms:GenericJMSDestination"
xmi:id="GenericJMSDestination_1" name="jmsDestination:name"
jndiName="jmsDestination:jndiName" description="jmsDestination:description"
externalJNDIName="jmsDestination:externalJndiName" type="QUEUE">
<propertySet xmi:id="J2EEResourcePropertySet_15">
<resourceProperties xmi:id="J2EEResourceProperty_17" name="jmsDestination:customName"
value="jmsDestination:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms:GenericJMSConnectionFactory"
xmi:id="GenericJMSConnectionFactory_1" name="jmsCF:name" jndiName="jmsCF:jndiName"
description="jmsCF:description" userID="jmsCF:user" password="{xor}NTIsHBllMT4yOg=="
externalJNDIName="jmsCF:externalJndiName" type="QUEUE">
<propertySet xmi:id="J2EEResourcePropertySet_16">
<resourceProperties xmi:id="J2EEResourceProperty_18" name="jmsCF:customName"
value="jmsCF:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_17">
<resourceProperties xmi:id="J2EEResourceProperty_19"
name="genericJMSProvider:customName" value="genericJMSProvider:customValue"/>
</propertySet>
</resources.jms:JMSProvider>

Configuring new JMS connection factories for application clients:

Use this task to create a new Java Message Service (JMS) connection factory configuration for your
application client.

Procedure

1. Click the JMS provider for which you want to create a connection factory in the tree. Complete one of
the following actions:
v Configure a new JMS provider.
v Click an existing JMS provider.

2. Expand the JMS provider to view its Connection Factories folder.

3. Click the connection factory folder, and complete one of the following actions:
v Right-click the folder and selectNew.
v Click Edit > New on the menu bar.

4. Configure the JMS connection factory properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Configuring new JMS destinations for application clients:

Use this task to create a new Java Message Service (JMS) destination configuration for your application
client.

Procedure

1. Click the JMS provider in the tree for which you want to create a destination. Complete one of the
following actions:
v Configure a new JMS provider.
v Click an existing JMS provider.

2. Expand the JMS provider to view its Destinations folder.

3. Click the provider folder, and complete one of the following actions:
v Right-click the folder and select New.
v Click Edit > New on the menu bar.

Chapter 5. Welcome to administering Client applications 109



4. Configure the JMS destination properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Configuring new resource environment providers for application clients:

You can create new resource environment provider configurations for your application client using the
Application Client Resource Configuration Tool (ACRCT).

Before you begin

During this task, you create new resource environment provider configurations for your application client.

About this task

To configure a new resource environment provider, perform the following steps:

Procedure

1. Start the Application Configuration Resource Tool and open the EAR file for which you want to
configure the new Java Message Service (JMS) provider. The EAR file contents display in a tree view.

2. Select from the tree the JAR file in which you want to configure the new JMS provider.

3. Expand the JAR file to view its contents.

4. Click the Resource Environment Providers folder. Take one of the following actions:
v Right-click the provider folder, and click New.
v Click Edit > New on the menu bar.

5. Configure the JMS provider properties in the displayed fields.

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

Resource environment provider settings for application clients:

Use this page to specify resource environment entry properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected Java Archive (JAR) file. Right-click Resource
Environment Providers, and click New. The following fields are displayed on the General tab:

Name:

Specifies the administrative name for the resource environment provider.

Description:

Specifies a description of the resource environment provider for your administrative records.

Class Path:

Specifies the path to the JAR file that contains the implementation classes for the resource environment
provider.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

110 Administering WebSphere applications



You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring new resource environment entries for application clients:

You can create new resource environment entries for your client application using the Application Client
Resource Configuration Tool (ACRCT).

Before you begin

During this task, you create new resource environment entries for your client application.

About this task

Procedure

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new resource environment entry. The EAR file
contents are in the displayed tree view.

3. Click the desired resource environment provider, and complete the following action to configure new
providers:
v Configure a new resource environment provider.

4. Expand the resource environment provider to view the Resource Environment Entries folder.

5. Click the resource environment entries folder, and complete one of the following actions:
v Right-click the folder and select New.
v Click Edit > New on the menu bar.

6. Configure the resource environment entry properties in the displayed fields.

7. Click OK.

8. Click File > Save on the menu bar to save your changes.

Resource environment entry settings for application clients:

Use this page to specify resource environment entry properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you
browse for an EAR file, click Open. Expand the selected JAR file > Resource Environment Providers >
resource environment instance. Right-click Resource Environment Entries, and click New. The following
fields appear on the General tab:

Name:

Specifies the administrative name for the resource environment entry.

Description:

Specifies a description of the URL for your administrative records.

JNDI Name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including any naming
subcontexts.

Chapter 5. Welcome to administering Client applications 111



Use this name to link to the binding information of the platform. The binding associates the resources
defined in the deployment descriptor of the module to the actual (or physical) resources bound into JNDI
by the platform.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this
resource.

You must enter a name that is a public property on the object and a value that can be converted from a
string to the type required by the set method of the property. The acceptable properties and values depend
on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring Resource Environment settings:

You can configure Resource Environment settings. This topic provides the required fields and an example.

The purpose of this topic is to help you configure Resource Environment settings.
v Required fields:

– Resource Environment Provider page: Name
– Resource Environment Entry page: Name, JNDI Name

v Example:
<resources.env:ResourceEnvironmentProvider xmi:id="ResourceEnvironmentProvider_1"
name="resourceEnvProvider:name" description="resourceEnvProvider:description">
<classpath>resourceEnvProvider:classpath</classpath>
<factories xmi:type="resources.env:ResourceEnvEntry" xmi:id="ResourceEnvEntry_1"
name="resourceEnvEntry:name" jndiName="resourceEnvEntry:jndiName"
description="resourceEnvEntry:description">
<propertySet xmi:id="J2EEResourcePropertySet_20">
<resourceProperties xmi:id="J2EEResourceProperty_22"
name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_21">
<resourceProperties xmi:id="J2EEResourceProperty_23"
name="resourceEnvProvider:customName" value="resourceEnvProvider:customValue"/>
</propertySet>
</resources.env:ResourceEnvironmentProvider>

Example: Configuring resource environment custom settings for application clients:

You can configure resource environment custom settings.

The purpose of this topic is to help you configure resource environment custom settings.
v The custom page applies to every resource type. You can specify as many custom names and values

as you need.
v Example:
<propertySet xmi:id="J2EEResourcePropertySet_20">
<resourceProperties xmi:id="J2EEResourceProperty_22"
name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>
</propertySet>

Running a Java EE client application with launchClient
After deploying a Java EE client application onto a machine with an Application Client installation or in a
WebSphere Application Server node, you can start the application by using the launchClient command on
that machine.

112 Administering WebSphere applications



Before you begin

Before you can use the launchclient command to run a Java EE client application, you must have
deployed the application.

This task only applies to Java EE client applications.

About this task

The Java Platform, Enterprise Edition (Java EE) specification requires support for a client container that
runs Java applications (known as Java EE client applications) and provides Java EE services to the
applications. Java EE services include naming, security, and resource connections.

Procedure
1. Start the Qshell environment.

On the CL command line, type the command:
STRQSH

2. Enter the following command to launch Java EE application clients:
app_client_root/bin/launchClient

where app_client_root is /QIBM/ProdData/WebSphere/AppServer/V85/Base or
/QIBM/ProdData/WebSphere/AppServer/V85/ND.

3. Pass parameters to the launchClient command or to your application client program as well. The
launchClient command allows you to do both. The launchClient command requires that the first
parameter is either:
v An EAR file specifying the application client to launch.
v A request for launchClient usage information.

The following example illustrates the command line invocation syntax for the launchClient tool:
launchClient [-profileName pName | -JVMOptions options | -help | -?] userapp [-CCname=value] [app args]

where

v userapp is the path and the name of the EAR file that contains the application client.

v -CCname=value is the client container name-value pair parameter. See the client container
parameters section, for supported name-value pair arguments.

v app args are arguments that pass to the application client.

v -profileName defines the profile of the Application Server process in a multi-profile installation. The
-profileName option is not required for running in a single profile environment or in an Application
Clients installation.

v -JVMOptions is a valid Java standard or non-standard option string. Insert quotation marks around
the string.

v -help, -? prints the usage information.

All other parameters intended for the launchClient command must begin with the -CC prefix.

Parameters that are not EAR files, or usage requests, or that do not begin with the -CC prefix, are
ignored by the application client run time, and are passed directly to the application client program.

The launchClient command retrieves parameters from three places:
v The command line
v A properties file
v System properties

The parameters are resolved in the order listed above, with command line values having the highest
priority and system properties the lowest. Using this prioritization you can set and override default
values.

4. Specify the server name.

Chapter 5. Welcome to administering Client applications 113



By default, the launchClient command uses your_server_name for the BootstrapHost
property value.

This setting is effective for testing your application client when it is installed on the same computer as
the server. However, in other cases override this value with the name of your server. You can override
the BootstrapHost value by invoking launchClient command with the following parameters:
launchClient myapp.ear -CCBootstrapHost=abc.midwest.mycompany.com

You can also override the default by specifying the value in a properties file and passing the file name
to the launchClient shell.

Security is controlled by the server. You do not need to configure security on the client because the
client assumes that security is enabled. If server security is not enabled, then the server ignores the
security request, and the application client functions as expected.

Example

You can store launchClient values in a properties file, which is a good method for distributing default
values. You can then override one or more values on the command line. The format of the file is one
launchClient -CC parameter per line without the -CC prefix. For example:

verbose=true classpath=/usr/lpp/mydir/util.jar;/usr/lpp/mydir/harness.jar;/usr/lpp
/production/G19/global.jar BootstrapHost=abc.westcoast.mycompany.com tracefile=/usr
/lpp/WebSphere/mylog.txt

launchClient tool:

This topic describes the Java Platform, Enterprise Edition (Java EE) command line syntax for the
launchClient tool for WebSphere Application Server.

Important: All users who run commands from a specific profile must have authority to modify files that are
created by other users that use the same profile. Otherwise, you might see a permission
denied error in the log files. To avoid this issue, consider one of the following policies:

v Use specific profiles for distinct user authorities

v Always use the same user for all of the commands that are run in a given profile

v Ensure that all users of a specific profile belong to the same group. In addition, ensure that
each user of a group has the read and write authority to the files that are created by other
members in the same profile.

The following example illustrates the command line invocation syntax for the launchClient tool:
launchClient [-profileName pName | -JVMOptions options | -help | -?] userapp [-CCname=value] [app args]

where

v userapp is the path and the name of the EAR file that contains the application client.

v -CCname=value is the client container name-value pair parameter. See the client container parameters
section, for supported name-value pair arguments.

v app args are arguments that pass to the application client.

v -profileName defines the profile of the Application Server process in a multi-profile installation. The
-profileName option is not required for running in a single profile environment or in an Application
Clients installation.

v -JVMOptions is a valid Java standard or nonstandard option string, except -cp or -classpath. Insert
quotation marks around the string.

v -help, -? prints the usage information.

114 Administering WebSphere applications



The first parameter must be -help, -? or contain no parameter at all. The -profileName pName and
-JVMOptions options are optional parameters. If used, they must appear before the <userapp> parameter.
All other parameters are optional and can appear in any order after the userapp parameter. The Java EE
Application client run time ignores any optional parameters that do not begin with a -CC prefix and passes
those parameters to the application client.

Client container parameters

Supported arguments include:

-CCadminConnectorHost
Specifies the host name of the server from which configuration information is retrieved.

The default is the value of the -CCBootstrapHost parameter or the value,
your.server.name, if the -CCBootstrapHost parameter is not specified.

-CCadminConnectorPort
Indicates the port number for the administrative client function to use. The default value is 8880 for
SOAP connections and 2809 for Remote Method Invocation (RMI) connections.

-CCadminConnectorType
Specifies how the administrative client connects to the server. Specify RMI to use the RMI connection
type, or specify SOAP to use the SOAP connection type. The default value is SOAP.

-CCadminConnectorUser
Administrative clients use this user name when a server requires authentication. If the connection type
is SOAP, and security is enabled on the server, this parameter is required.

-CCadminConnectorPassword
The password for the user name that the -CCadminConnectorUser parameter specifies.

-CCaltDD
The name of an alternate deployment descriptor file. This parameter is used with the -CCjar parameter
to specify the deployment descriptor to use. Use this argument when a client JAR file is configured
with more than one deployment descriptor. Set the value to null to use the client JAR file standard
deployment descriptor.

-CCBootstrapHost
The name of the host server you want to connect to initially. The format is:
your_server_of_choice.com

-CCBootstrapPort
The server port number. If you do not specify this argument, the WebSphere Application Server default
value is used.

-CCclassLoaderMode
Specifies the class loader mode. If PARENT_LAST is specified, the class loader loads classes from
the local class path before delegating the class loading to its parent. The classes loaded for the
following are affected:

v Classes defined for the Java EE application client

v Resources defined in the Java EE application

v Classes specified on the manifest of the Java EE client JAR file

v Classes specified using the -CCclasspath option

If PARENT_LAST is not specified, then the default mode, PARENT_FIRST, causes the class loader to
delegate the loading of classes to its parent class loader before attempting to load the class from its
local class path.

-CCclasspath
A class path value. When you launch an application, the system class path is used. If you want to

Chapter 5. Welcome to administering Client applications 115



access classes that are not in the EAR file or part of the system class paths, specify the appropriate
class path here. Multiple paths can be concatenated.

-CCD
Use this option to have the WebSphere Application Server set the specified system property during
initialization. Do not use the equals (=) character after the -CCD. For example:
-CCDcom.ibm.test.property=testvalue. You can specify multiple -CCD parameters. The general format
of this parameter is -CCD<property key>=<property value>. For example,
-CCDI18NService.enable=true.

-CCdumpJavaNameSpace
Controls generation of a dump of the java: name space for the application that is launched, which can
be used for debugging purposes. A value of true generates a dump in short format, and includes the
name and object type for each binding. A value of long generates a dump in long format, and includes
additional information for each binding over short format, such as the local object type and string
representation of the local object. The default value is false, and does not generate a dump.

-CCexitVM
Use this option to have the WebSphere Application Server call the System.exit() method after the
client application completes. The default is false.

-CCinitonly
Use this option to initialize application client run time for ActiveX application clients without launching
the client application. The default is false.

-CCjar
The name of the client Java Archive (JAR) file that resides within the EAR file for the application you
wish to launch. Use this argument when you have multiple client JAR files in the EAR file.

-CCpropfile
Indicates the name of a properties file that contains launchClient properties. Specify the properties
without the -CC prefix in the file, with the exception of the securityManager, securityMgrClass and
securityMgrPolicy properties. See the following example: verbose=true.

-CCproviderURL
Provides bootstrap server information that the initial context factory can use to obtain an initial context.
WebSphere Application Server initial context factory can use either a Common Object Request Broker
Architecture (CORBA) object URL or an Internet Inter-ORB Protocol (IIOP) URL. CORBA object URLs
are more flexible than IIOP URLs and are the recommended URL format to use. This value can
contain more than one bootstrap server address. This feature can be used when attempting to obtain
an initial context from a server cluster. You can specify bootstrap server addresses, for all servers in
the cluster, in the URL. The operation will succeed if at least one of the servers is running, eliminating
a single point of failure. The address list does not process in a particular order. For naming operations,
this value overrides the -CCBootstrapHost and -CCBootstrapPort parameters. A CORBA object URL
specifying multiple systems is illustrated in the following example:
-CCproviderURL=corbaloc:iiop:myserver.mycompany.com:9810,:mybackupserver.mycompany.com:2809

This value is mapped to the java.naming.provider.url system property.

-CCsecurityManager
Enables and runs the WebSphere Application Server with a security manager. The default is disable.

-CCsecurityMgrClass
Indicates the fully qualified name of a class that implements a security manager. Only use this
argument if the -CCsecurityManager parameter is set to enable. The default is
java.lang.SecurityManager.

-CCsecurityMgrPolicy
Indicates the name of a security manager policy file. Only use this argument if the -CCsecurityManager
parameter is set to enable. When you enable this parameter, the java.security.policy system
property is set. The default is app_server_root/properties/client.policy.

116 Administering WebSphere applications



-CCsoapConnectorPort
The Simple Object Access Protocol (SOAP) connector port. If you do not specify this argument, the
WebSphere Application Server default value is used.

-CCtrace
Use this option to obtain debug trace information. You might need this information when reporting a
problem to IBM customer support. The default is false. For more information, read the Enabling trace
topic.

-CCtracefile
Indicates the name of the file to which trace information is written. The default is to write output to the
console.

-CCtraceMode
Specifies the trace format to use for tracing. If the valid value, basic, is not specified the default is
advanced. Basic tracing format is a more compact form of tracing.

For more information on basic and advanced trace formatting, refer to the Interpreting trace
output topic.

-CCverbose
This option displays additional information messages. The default is false.

If you are using an EJB client application with security enabled, edit the sas.client.props file, which is
located in the profile_root/properties directory. Within the file, change the com.ibm.CORBA.loginSource
value to none.

For more information on the sas.client.props utility, refer to the Manually encoding passwords in
properties files and the PropFilePasswordEncoder command reference topics.

RMI connection with security. Used with the EJB and administrative client application.
Using Jacl:

wsadmin -conntype RMI -port rmiportnumber -user userid
-password password

Using Jython:

wsadmin -lang jython -conntype RMI -port rmiportnumber -user userid
-password password

rmiportnumber for your connection displays in the administrative console as
BOOTSTRAP_ADDRESS.

Attention: On the AIX®, HP-UX, Linux, IBM i, Solaris, and z/OS operating systems, the use of
-password option may result in security exposure as the password information becomes visible to
the system status program, such as ps command, which can be invoked by other users to display
all of the running processes. Do not use this option if security exposure is a concern. Instead,
specify user and password information in the soap.client.props file for SOAP connector or
sas.client.props file for RMI connector. The soap.client.props and sas.client.props files are
located in the properties directory of your WebSphere Application Server profile.

If Kerberos (KRB5) is enabled for administrative authentication, the authentication target supports
BasicAuth and KRB5. To use KRB5, update the sas.client.props, soap.client.props, and
ipc.client.props files, according to the connector type.

Attention: When using Kerberos authentication, the user password does not flow across the
wire. A one-way hash of password is used to identify the client.

Chapter 5. Welcome to administering Client applications 117



The following examples demonstrate correct syntax.

/QIBM/ProdData/WebSphere/AppServer/V61/Base/bin/launchClient /home/earfiles/myapp.ear
-profileName myprofile -CCBootstrapHost=myWASServer -CCverbose=true app_parm1 app_parm2

Specifying the directory for an expanded EAR file:

You can archive the Manifest.mf client Java Archive (JAR) files instead of automatically cleaning them up
after the application exits.

Before you begin

Each time the launchClient tool is called, it extracts the Enterprise Archive (EAR) file to a random directory
name in the temporary directory on your hard drive. Then the tool sets up the thread ClassLoader to use
the extracted EAR file directory and JAR files included in the Manifest.mf client Java Archive (JAR) file. In
a normal J2EE Java client, these files are automatically cleaned up after the application exits. This
cleanup occurs when the client container shutdown hook is called. To avoid extracting the EAR file (and
removing the temporary directory) each time the launchClient tool is called, complete the following steps:

Procedure

1. Specify a directory to extract the EAR file by setting the
com.ibm.websphere.client.applicationclient.archivedir Java system property. If the directory does
not exist or is empty, the EAR file is extracted normally. If the EAR file was previously extracted, the
launchClient tool reuses the directory.

2. Delete the directory before running the launchClient tool again, if you need to update your EAR file.
When you call the launchClient command, it extracts the new EAR file to the directory. If you do not
delete the directory or change the system property value to point to a different directory, the
launchClient tool reuses the currently extracted EAR file and does not use your changed EAR file.
When specifying the com.ibm.websphere.client.applicationclient.archivedir property, make sure
that the directory you specify is unique for each EAR file you use. For example, do not point the
MyEar1.ear and the MyEar2.ear files to the same directory.

Downloading and running a Java EE client application using Java Web Start
Learn about the Java Web Start technology that is provided by the Java Standard Edition runtime
environment to deploy Java Enterprise Edition application clients, including Thin application clients, on the
remote client machine with a single click from a web browser on the client machine.

Before you begin

The supported client platforms for deploying application clients using the Java Web Start are the same as
the IBM Application Client for WebSphere Application Server supported platforms, except Linux on Power®

and OS/400® operating systems.

Before you begin this task, see the following topics to understand Java Web Start technology and its
components:

v “Java Web Start architecture for deploying application clients” on page 120

v “Client application Java Network Launcher Protocol deployment descriptor file” on page 121

v “ClientLauncher class” on page 125

Note: The Sun Java Web Start, which is available from Sun Microsystems, is not compatible with the IBM
Runtime Environment, Java 2 Technology Edition, which is provided by WebSphere Application
Server and the IBM Application Client. The IBM Runtime Environment contains some additional

118 Administering WebSphere applications



functionality that is not supported in the Sun Java Web Start. Also, the IBM Runtime Environment
uses a different packaging structure than the Sun Java Web Start. Use the IBM Runtime
Environment.

About this task

To deploy application clients using Java Web Start, the client machine must have at least a Java SE
runtime environment installed. The Java SE runtime environment includes the Java Web Start, which
implements the JSR 56: Java Network Launching Protocol and API. The application clients Enterprise
Archive (EAR) file is a Java archive (JAR) resource in a JNLP descriptor file that resides on a central
server. The JNLP descriptor file also specifies the runtime environment requirement for running the
application.

WebSphere Application Server provides a launcher class to launch the Java EE application client in the
application client container inside of Java Web Start. The client machine might not have the IBM
Application Client for WebSphere Application Server installed. If this is the case, create and install an
application client container and runtime package as a runtime environment through Java Web Start. The
JNLP descriptor file specifies this runtime environment as the required runtime environment for running the
Java EE application client.

WebSphere Application Server also provides command-line utility programs to create this application client
container and runtime package from an existing IBM Application Client for WebSphere Application Server
installation, as well as an installer class to install this package as a runtime environment for the application
client container and also the Java Runtime Environment (JRE) in the IBM Application Client for
WebSphere Application Server installation. To run the Java EE application client, the EAR file is deployed
as a JAR resource that is described in the JNLP descriptor file.

Procedure
1. Identify the client machine operating system, and install the corresponding IBM Application Client for

WebSphere Application Server on a development machine. For example, if the Java EE application
clients are targeted to run on Windows operating systems, install the IBM Application Client for
WebSphere Application Server for Windows.

2. Run the utility programs to create the application client container and runtime package.

a. Use the “buildClientRuntime tool” on page 129 utility to create the package.

b. Use the “buildClientLibJars tool” on page 121 utility to create the JAR files containing the launcher
and the installer class. This utility also zips up the properties files in the <app_client_root>/
properties directory.

3. Create the runtime installer JNLP descriptor file. The JNLP response must be included in the JNLP
version ID to indicate the current runtime version in the response header, for example,
x-java-jnlp-version-id=1.6.0. Using a servlet of a JavaServer Pages (JSP) file to provide a dynamic
JNLP response.

4. Create the Java EE application client launch JNLP descriptor file.

5. Package the application client container runtime environments and the Java EE application in an
Enterprise Archive (EAR) file. Depending on your preferred deployment strategy, the files can be in two
separate Web modules, or combined into one.

6. All JAR resources must be Java signed, including the Java EE application client EAR file.

7. Deploy the Enterprise Archive file on an application server, and start the application. The Java EE
application client is ready to be deployed.

Example

A Java Web Start deployment Sample is included in the client samples. This Sample demonstrates the
steps to deploy a Java EE application client with an automated ANT script. The Sample has a servlet to
generate the runtime installer JNLP response with JNLP version ID, for example, x-java-jnlp-version-id.

Chapter 5. Welcome to administering Client applications 119



Important: When the application client initially launches using Java Web Start from Sun Microsystems
Java SE Runtime Environment 6.0, it installs the Application Client runtime, which includes the
IBM JRE. An null pointer exception (NPE) is thrown from the
com.sun.deploy.services.WPlatformService.getSecureRandom() method. This is a known bug
in Sun Java SE 6 (http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6505528). If you
experience this exception, relaunch the application. The NPE only occurs on the first launch of
the application client.

Java Web Start architecture for deploying application clients:

Java Web Start is an application-deployment technology that includes the portability of applets, the
maintainability of servlets and JavaServer Pages (JSP) file technology, and the simplicity of mark-up
languages such as XML and HTML. It is a Java application that allows full-featured Java EE client
applications to be launched, deployed and updated from a standard Web server. The Java Web Start client
is used with platforms that support a web browser.

Java Web Start is not supported.

Upon launching Java Web Start for the first time, you might download new client applications from the
Web. Each time you launch JWS thereafter, you can initiate applications either through a link on a web
page or (in Windows) from desktop icons or the Start menu. You can deploy applications quickly using
Java Web Start, cache applications on the client machine, and launch applications remotely offline.
Additionally, because Java Web Start is built from the Java Platform, Enterprise Edition (Java EE)
infrastructure, the technology inherits the complete security architecture of the Java EE platform.

The technology underlying Java Web Start is the Java Network Launching Protocol & API (JNLP). Java
Web Start is a JNLP client and it reads and parses a JNLP descriptor file (JNLP file). Based on the JNLP
descriptor, it downloads appropriate pieces of a client application and any of its dependencies. If any of the
pieces of the application are already cached on the client machine, then those components are not
downloaded again, unless they have been updated on the server machine. After you download and cache
the client application, JWS launches it natively on the client machine.

The following diagram shows an overview of launching a client application, include the Application Client
for WebSphere Application Server as a dependent resource, using Java Web Start.

120 Administering WebSphere applications

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6505528


The web browser running on a client machine connects to a web application located on a server machine.
The client application JNLP descriptor file is downloaded and processed by Java Web Start on the client
machine.

In this diagram, there are two JNLP descriptor files:

v Client application JNLP descriptor (application-desc in the diagram)

v Application Clients run-time installer JNLP descriptor (installer-desc in the diagram)

Each of these JNLP descriptor files, the client application (JAR or EAR) and the dependent resource JAR
files are packaged as web applications in an EAR file. This EAR file is deployed to an Application server.
The client machine with JWS installed uses a web browser to connect to the URL of the client application
JNLP descriptor file to download and run the client application.

Using Java Web Start from Java SE Runtime Environment 6.0 or later is highly recommended. All the
platforms supported by the application client for WebSphere Application Server are supported with the
exception Linux on Power and OS/400 platforms.

You can use the following:

v Java Web Start on the Java Standard Edition Developer Kits that IBM provides, packaged in Application
Client for WebSphere Application Server

v Java Web Start on Java SE 6 Development Kit or Java SE Runtime Environment 6.0, which you can
download from the Oracle website for Windows, Linux and Solaris operating systems

v Java Web Start on HP-UX JDK or JRE for Java Platform, Standard Edition, Version 6, which you can
download from the HP website

buildClientLibJars tool:

For a Java Platform, Enterprise Edition (Java EE) application client application and or Thin application
client application to be launched using Java Web Start (JWS), the properties files bundled in Application
Client for WebSphere Application Server must be installed in the Java Web Start. Use this tool to create
those property JAR files. The Java Web Start client is used with platforms that support a web browser.

Java Web Start is not supported on WebSphere Application Server for IBM i.

The buildClientLibJars tool copies the JAR files from the Application Client for WebSphere Application
Server installation and creates a properties.jar file, which contains the properties files from the
Application Clients installation properties directory to a specified location. When this property is created,
the tool uses the value of keystore, storepass, alias and storetype to sign all of the JAR files in the
specified location.
Windows usage: buildClientLibJars.bat [-help] [-verbose] destdir keystore storepass alias storetype

Unix usage: buildClientLibJars.sh [-help] [-verbose] destdir keystore storepass alias storetype

where:

v -help will display the message

v -verbose will turn on verbose message

v destdir will output the destination directory name

v keystore is the key store file

v storepass is the key store password

v alias key is the alias name

v storetype is the key store type

Client application Java Network Launcher Protocol deployment descriptor file:

Chapter 5. Welcome to administering Client applications 121

http://www.oracle.com/us/sun/index.htm
http://www.hp.com


The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the
client application.

Location

The client application has an Application Clients runtime dependency that provides the following:

v Java SE Runtime Environment from IBM

v Application Clients run-time properties

v SSL KeyStore and TrustStore file

v Application Clients run-time library JAR files (optional for Thin Application client applications)

If the Application Clients run-time dependency is not met, it is downloaded and installed in Java Web Start
(JWS), as described by the Application Clients run-time installer JNLP descriptor file. For example:
<j2se version="1.6" href="http://your_server.com/jws/wasappclient/download.jnlp"/>

Usage notes

The client application must also include the WebSphereClientLauncher.jar file, which contains the launcher
class, com.ibm.websphere.client.launcher.ClientLauncher, that completes one of the following actions:

v If it is a Java Platform, Enterprise Edition (Java EE) Application client application (that is the resources
for the application contain an EAR file with a client application), the EAR file must be specified as a JAR
resource so that it can be downloaded to JWS and specified in the system property,
com.ibm.websphere.client.launcher.ear. See “JNLP descriptor file for a Java EE Application client
application” on page 123 for an example.

v If it is a Thin Application client application, the Thin Application client application JAR file must be
specified as a JAR resource so that it can be downloaded to JWS and the name of the class containing
main method entry point is specified in the system property, com.ibm.websphere.launcher.main. See
“JNLP descriptor file for a Thin Application client application” on page 124 for an example.

The JNLP specification requires all the resource (JAR or EAR) files used in a JNLP file to be signed.

You can specify the –CC arguments defined in the launchClient tool for a J2EE Application client
application in application arguments section of the JNLP descriptor files. However, only –CCD is supported
for a Thin Application client application to define system properties and the JNLP <property> tag can also
be used to define system properties. See the following example for details:
<property name="java.naming.provider.url" value="corbaloc:iiop:myserver.com:9089"/>

For a J2EE Application client application, specify the following application arguments as defined in the
JNLP.

1. Specify your target server provider URL, as shown in the following example:
<argument> >-CCDjava.naming.provider.url =corbaloc:iiop:myserver.mydomain.com:9080 </argument>

2. Specify the SSL Key File and SSL Trust File location. These files are expected to be available in the
client machine. To use the ones in the Application Clients run-time dependency installed in JWS cache,
specify these application arguments:
<argument> -CCDcom.ibm.ssl.keyStore=${WAS_ROOT}/etc/key.p12 </argument>
<argument> -CCDcom.ibm.ssl.trustStore=${WAS_ROOT}/etc/trust.p12 </argument>

3. Specify the initial naming context factor, as shown in the following example:
<argument>-CCDjava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory </argument>

For a Thin Application client application, you also need to specify the actual location of the
sas.client.props and ssl.client.props files located in the Application Clients runtime dependency
that is installed in the JWS cache.
<argument>-CCDcom.ibm.CORBA.ConfigURL=file:${WAS_ROOT}/properties/sas.client.props </argument>
<argument>-CCDcom.ibm.SSL.ConfigURL=file:${WAS_ROOT}/properties/ssl.client.props </argument>

122 Administering WebSphere applications



If any of the default settings in the sas.client.props and sas.client.props file need modifying, use
the –CCD to change the settings through the system properties, as shown in the following example:
<argument>-CCDjavacom.ibm.CORBA.securityEnabled=false </argument>

Important: The ${WAS_ROOT} token used in the JNLP file is replaced by the launcher class,
com.ibm.websphere.client.launcher.ClientLauncher, to the actual location of the Application
Clients run-time dependency installation in the JWS cache. If you are using JSP to
dynamically create this JNLP description file, you must escape this token because it has a
different meaning in JSP 2.0. See the following example for details:
<argument>-CCDcom.ibm.ssl.keyStore=\${WAS_ROOT}/etc/key.p12 </argument>
<argument>-CCDcom.ibm.ssl.trustStore=\${WAS_ROOT}/etc/trust.p12 </argument>

JNLP descriptor file for a Java EE Application client application:

The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the
client application.

Here is an example of the client application JNLP descriptor file for a Java EE Application client
application:
<?xml version="1.0" encoding="utf-8"?>
<!--
This sample program is provided AS IS and may be used, executed, copied and modified
without royalty payment by customer (a) for its own instruction and study, (b) in order
to develop applications designed to run with an IBM WebSphere product, either for customer’s
own internal use or for redistribution by customer, as part of such an application, in
customer’s own products.

Licensed Materials - Property of IBM

5724-I63, 5724-H88, 5724-H89, 5655-N02, 5724-J08

Copyright IBM Corp. 2008 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
-->

<jnlp spec="1.0+" codebase="http://your_server:port_number/jws/wasappclient/apps/">
<information>
<title>Java EE Client Example</title>
<vendor>IBM</vendor>
<homepage href="null"/>
<description>Java WebStart example: Launching Java EE Application Client</description>
<description kind="short">Java EE Applicaiton Client</description>
<description kind="tooltip">Java EE Application Client</description>
</information>

<security>
<all-permissions/>
</security>

<resources>
<j2se href="http://your_server:port_number/jws/wasappclient/JREDownload.xjnlp" version="1.6"/>
<jar href="../lib/WebSphereClientLauncher.jar" download="eager" main="false"/>
<jar href="../lib/properties.jar" download="eager" main="false"/>
<jar href="SwingCalculator.ear" download="eager" main="false"/>

<property name="com.ibm.websphere.client.launcher.ear" value="SwingCalculator.ear"/>
</resources>

<application-desc main-class="com.ibm.websphere.client.launcher.ClientLauncher">

Chapter 5. Welcome to administering Client applications 123



<argument>-CCproviderURL=corbaloc:iiop:tiu03.torolab.ibm.com:2809</argument>
</application-desc>

</jnlp>

JNLP descriptor file for a Thin Application client application:

The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the
client application. If it is a Thin Application client application, then the launcher class uses the current JVM
from the Application Clients run-time dependency and invokes the Thin Application client application main
method.

Here is an example of the JNLP descriptor file for a Thin Application client application.
This sample program is provided AS IS and may be used, executed, copied and modified
without royalty payment by customer (a) for its own instruction and study, (b) in order
to develop applications designed to run with an IBM WebSphere product, either for customer’s
own internal use or for redistribution by customer, as part of such an application, in
customer’s own products.

Licensed Materials - Property of IBM

5724-I63, 5724-H88, 5724-H89, 5655-N02, 5724-J08

Copyright IBM Corp. 2008 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Licensed Materials - Property of IBM

5724-I63, 5724-H88, 5724-H89, 5655-N02, 5724-J08

Copyright IBM Corp. 2008 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
-->

<!-
====================================================================
->
<!-- TODO: change "codebase" to the actual URL location of the jnlp file ->
====================================================================
->
<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+"
codebase="http://your_server:port_number/jws/wasappclient/apps">
<information>
<title>Thin Base Calculator Client Samples</title>
<vendor>IBM</vendor>
<description>Thin Base Calculator Client Samples</description>
<offline-allowed/>
</information>

<security>
<all-permissions/>
</security>
<resources>
<j2se version="1.6" href="http://your_server:port_number/jws/wasappclient/JREDownload.xjnlp"/>

<jar href="/jws/wasappclient/lib/WebSphereClientLauncher.jar" main="true"/>
<jar href="BasicCalculatorClientCommon.jar"/>
<jar href="BasicCalculatorEJB.jar"/>
<jar href="BasicCalculatorThinClient.jar"/>

<property name="com.ibm.websphere.client.launcher.main"
value="com.ibm.websphere.samples.technologysamples.basiccalcthinclient.BasicCalculatorClientThinMain"/>

124 Administering WebSphere applications



<property name="java.naming.factory.initial"
value="com.ibm.websphere.naming.WsnInitialContextFactory" />

<property name="java.naming.provider.url"
value="corbaloc:iiop:tiu03:2809"/>

</resources>

<add</argument>
<argument>1</argument>
<argument>2</argument>
</application-desc>

</jnlp>

ClientLauncher class:

The class, com.ibm.websphere.client.installer.ClientLauncher, contains a main() method that is called by
Java Web Start (JWS) to launch the client application. The Java Web Start client is used with platforms
that support a web browser.

Java Web Start is not supported.

This client is packaged in the WebSphereClientLauncher.jar file that is located in the Application Client for
WebSphere Application Server installation under the <app_client_root>/ lib/webstart directory.

The launcher class requires that the following properties are defined. These properties are not defined in a
separate properties file. Instead, the properties are defined as part of the Java Network Launching
Protocol (JNLP) files.

com.ibm.websphere.client.launcher.main
If the client application is a Thin Application client, then this property should be specified. It
specifies the class where the main entry point of the client application resides.

com.ibm.websphere.client.launcher.ear
If the client application is a Java Platform, Enterprise Edition (Java EE) Application client, then this
property should be specified. It specifies the name of the EAR file to be executed. This property
takes precedence over com.ibm.websphere.client.launcher.main. However, only one of the two
properties should be specified.

Application client launcher for Java Web Start:

The application client launcher for Java Web Start is a Java class,
com.ibm.websphere.client.installer.ClientLauncher, which has a main() method that Java Web Start calls to
start the application client container and to invoke the application client's main() method. It provides similar
functions as the lauchClient command line tool to start application clients from the command line.

The com.ibm.websphere.client.launcher.ClientLauncher class is packaged in the
WebSphereClientLauncher.jar file under the <app_client_root>/lib/webstart directory.

The launcher tool requires that the following properties are defined.

com.ibm.websphere.client.launcher.main
If the client that is to be run is a thin client, then this property should be specified. It specifies the
class where the main entry point of the application resides. It is the main class name for a Thin
application client. If it is set, the launcher will not start the client container, it will rather invoke the
main method for the application directly. However, if com.ibm.websphere.client.launcher.ear is
also set, it will be ignored.

com.ibm.websphere.client.launcher.ear
If the client that is to run is the Java Platform, Enterprise Edition (Java EE) client, then this

Chapter 5. Welcome to administering Client applications 125



property should be specified. It specifies the name of the ear file to be executed. This property
takes precedence over com.ibm.websphere.client.launcher.main although only one of the two
properties should be specified.

These properties are not defined in a separate properties file. Instead, they are defined as part of the Java
Network Launching Protocol files.

When com.ibm.websphere.client.launcher.ear is set, the application client launcher for JWS supports
almost all of the –CC arguments as the lauchClient command line tool supports. However, if only
com.ibm.websphere.client.launcher.main is set, the launcher will only support the –CCD argument. The
following table shows the comparison of the supported –CC arguments for the launchClient command line
tool and the application client launcher for JWS:

Table 2. Comparison of the supported –CC arguments for the launchClient command line tool and the application
client launcher for JWS. Comparison of the supported –CC arguments

-CC argument launchClient Application client launcher for JWS

-CCverbose Yes Yes

-CCjar Yes Yes

-CCclasspath Yes N/A

-CCadminConnectorHost Yes Yes

-CCadminConnectorPort Yes Yes

-CCadminConnectorType Yes Yes

-CCadminConnectorUser Yes Yes

-CCaltDD Yes Yes

-CCBootstrapHost Yes Yes

-CCBootstrapPort Yes Yes

-CCproviderURL Yes Yes

-CCinitonly Yes N/A

-CCtrace Yes Yes

-CCtracefile Yes Yes

-CCsecurityManager Yes N/A

-CCsecurityMgrClass Yes N/A

-CCsecurityMgrPolicy Yes N/A

-CCD Yes Yes

-CCexitVM Yes Yes

-CCdumpJavaNameSpace Yes Yes

-CCsoapConnectorPort Yes Yes

-CCtraceMode Yes Yes

-CCclassLoaderMode Yes Yes

Macro expansion is supported for the –CCD argument by the application client launcher for JWS. The
launcher will automatically substitute certain macro keys (enclosed with ${...}) with the calculated value at
runtime. For example, if a macro key is used in the –CCD argument in the application client JNLP
manifest file,
<argument>-CCDcom.ibm.ssl.keyStore= ${WAS_ROOT}/etc/key.p12</argument>

it will be expanded to the JWS cache installation root location and the argument will become:

126 Administering WebSphere applications



-CCDcom.ibm.ssl.keyStore=/home/tiu/.java/deployment/cache/javaws/ext/E1134532441112/etc/key12.p12

The following table shows the three macro keys that are currently supported and will be substituted by the
launcher:

Table 3. Currently supported macro keys. Supported macro keys

Macro key Value

${WAS_ROOT} Installation root location within the JWS cache that is
used by the application client container and runtime
installer for JWS.

${JAVA_HOME} Location of Java home. The return value of
System.getProperty(“java.home”).

${USER_HOME} Location of user home. The return value of
System.getProperty(“user.home”).

Preparing the application client run time dependency component for Java Web Start:

To launch a Java Platform, Enterprise Edition (Java EE) application client application, a Thin application
client application, or both using Java Web Start (JWS), a Java Runtime Environment implementation Java
archive (JAR) that IBM provides, the library JAR files and properties files bundled in Application Client for
WebSphere Application Server must be installed in the JWS. Learn the steps to build the application client
run time dependency component from an application client installation. It is packaged as a web application
archive (WAR) file that can be installed in an application Server.

Before you begin

Install the Application Client for WebSphere Application Server for the operating system to which the client
application deploys. If there is a requirement to deploy the client application to multiple operating systems,
the application client run time dependency component must be built separately for each operating system
that client application supports.

Procedure

1. Install the Application Client for WebSphere Application Server for the client application supported
operating systems.

2. Change the directory to the installation bin directory.

3. Run the “buildClientRuntime tool” on page 129 to generate the application client run time JAR file,
which contains the Java Standard Edition Runtime Environment, the run time library JAR files,
properties files, and the SSL KeyStore and TrustStore files from the application client installation.

4. Run the buildClientLibJars tools to package up the properties files in the properties directory of the
application client installation into a properties.jar file in the specified location. The buildClientLibJars
tools will also copy the WebSphereClientLauncher.jar file and WebSphereClientRuntimeInstaller.jar
file from the application client installation to the specified location. All jar files in the specified location
will be signed by the provided certificate.

For example, if you are using Version 7.0 and using the test certificate that is included in the
application client installation:
buildClientLibJars C:\Temp\webstart ..\etc\DummyClientKeyFilejar WebAS "websphere dummy client" JKS

5. Create a JavaServer Pages (JSP) file or use a servlet to generate the application client run time
installer Java Network Launching Protocol (JNLP) descriptor to respond to Java Web Start request.
See the Java Web Start deployment sample in the application client installation.

6. Package the two signed JAR files, WASClient7.0_windows.jar and
WebSphereClientRuntimeInstaller.jar, and the JSP file or servlet for generating the Application Client

Chapter 5. Welcome to administering Client applications 127



run time installer JNLP descriptor into a web application archive (WAR) file. This WAR file is packaged
into an EAR file that can be deployed to an application server. See the Java Web Start deployment
sample in the application client installation.

Results

Your web application is ready to serve the application client run time and the JRE environment.

Example
<!-- This sample program applies to WebSphere Application Server, Version 6.1.
It is provided AS IS and may be used, executed, copied and modified
without royalty payment by customer (a) for its own instruction and study, (b) in order
to develop applications designed to run with an IBM WebSphere product, either for customer’s
own internal use or for redistribution by customer, as part of such an application, in
customer’s own products.

Product 5630-A36, (C) COPYRIGHT International Business Machines Corp., 2005
All Rights Reserved * Licensed Materials - Property of IBM
-->

<%-- // to set the Last_Modified header so that the JNLP client will know whether to download
// the JNLP file again and update the cached copy.
String jspPath = application.getRealPath(request.getServletPath());
java.io.File jspFile = new java.io.File(jspPath);
long lastModified = jspFile.lastModified();

%><%
// locally declared variables
String url=request.getRequestURL().toString();
String jnlpCodeBase=url.substring(0,url.lastIndexOf(’/’));
String jnlpRefURL=url.substring(url.lastIndexOf(’/’)+1,url.length());

// Need to set a JNLP mime type - if WebStart is installed on the client,
// this header will induce the browser to drive the WebStart Client
response.setContentType("application/x-java-jnlp-file"); 1
response.setHeader("Cache-Control", null);
response.setHeader("Set-Cookie", null);
response.setHeader("Vary", null);
response.setDateHeader("Last-Modified", lastModified);

// An installer must reply with the version number for a given install
if (response.containsHeader("x-java-jnlp-version-id"))
response.setHeader("x-java-jnlp-version-id", "WASClient6.1.0"); 2

else
response.addHeader("x-java-jnlp-version-id", "WASClient6.1.0");

%>

<?xml version="1.0" encoding="utf-8"?>

<!-- ============================================================== -->
<!-- TODO: change "codebase" to the actual url location of this jsp -->
<!-- ============================================================== -->

<jnlp spec="1.0+"
codebase="http://YOUR_APP_SERVER:PORTNUMBER/WEBAPP_CONTEXT_ROOT/Runtime/WebSphereJre">

<information>
<title>Application Client Java Runtime Environment</title>
<vendor>IBM</vendor>
<icon href="icon.gif"/>
<description>Application Client Java Runtime Environment</description>
<description kind="short">Application Client JRE</description>

128 Administering WebSphere applications



<description kind="tooltip">Application Client JRE</description>
<offline-allowed/>

</information>

<security>
<all-permissions/>
</security>

<resources>
<j2se version="1.4+"/><%-- The installer can use any 1.4 JRE --%> 3
<jar href="WebSphereClientRuntimeInstaller.jar" main="true"/> 4

<!-- JRE version registration with Web Start -->
<property name="com.ibm.websphere.client.jre.version" value="WASClient6.1.0"/> 5
</resources>

<resources os="Windows"> 6
<!-- ============================================================== -->
<!-- TODO: the property value for unix platform is "java/jre/bin/javaw" -->
<!-- and the "os" value match to your target client machine platform -->
<!-- ============================================================== -->

<jar href="WASClient6.1.0_Windows.jar"/> 7

<!-- ============================================================== -->
<!-- TODO: property value for unix platform is "java/jre/bin/javaw" -->
<!-- ============================================================== -->
<!-- relative path of the jre executable —->

<property name="com.ibm.websphere.client.jre.launch.java"
value="java\jre\bin\javaw.exe"/> 8

</resources>
<installer-desc main-class="com.ibm.websphere.client.installer.ClientRuntimeInstaller"/>
</jnlp>

1. Specifies that the file is a JNLP mime type so that the browser can process the JNLP file.

2. Specifies the exact version of this Application Client run time dependency component in the response
by setting the HTTP header field: x-java-jnlp-version-id.

3. Specifies the required JRE version to run the installer program.

4. Specifies the installer WebSphereClientRuntimeInstaller.jar file, which contains the
ClientRuntimeInstaller class.

5. Specifies a system property that defines the version of Application Client run time dependency
component. This version is registered to the JNLP client.

6. Specifies resources for a particular platform. Each supported client application platform needs its own
separate JAR file.

7. Specifies the Application Client run time dependency component JAR file.

8. Specifies the program to call that starts a JVM for the client application.

buildClientRuntime tool:

For a Java Platform, Enterprise Edition (Java EE) application client application and or Thin application
client application to be launched using Java Web Start (JWS), the library JAR files bundled in Application
Client for WebSphere Application Server must be installed in the Java Web Start. Use this tool to build
those JAR files. The Java Web Start client is used with platforms that support a web browser.

The Java Web Start client is not supported on WebSphere Application Server for OS/400.

Chapter 5. Welcome to administering Client applications 129



The buildClientRuntime tool builds the required components from the WebSphere Application Server
clients installation into the JAR file specified on the command. This JAR file contains:

v License files

v Java SE Runtime Environment 6 (JRE 6) that IBM provides

v Application Clients runtime properties and configuration

v SSL KeyStore and TrustStore files

v Runtime library JAR files

In the case of building an Application Clients runtime JAR file only for serving Thin Application client
applications and not for Java EE Application client applications, the runtime library JAR files and the
Application Clients runtime properties files are not included, except the configuration files,
sas.client.props, ssl.client.props and soap.client.props, located in the WAS_ROOT/properties
directory. The Java Web Start client is used with platforms that support a web browser.

The command-line invocation syntax for the buildClientRuntime tool is shown in the following example:
Windows Usage: buildClientRuntime.bat [-help] [-verbose] outfile keystore storepass alias storetype

Unix Usage: buildClientRuntime.sh [-help] [-verbose] outfile keystore storepass alias storetype

where:

v -help will display the message

v -verbose will turn on verbose message

v outfile is the output file name

v keystore is the key store file

v storepass is the key store password

v alias is the key alias name

v storetype is the key store type

ClientRuntimeInstaller class:

This section provides information on the ClientRuntimeInstaller class.

This class, com.ibm.websphere.client.installer.ClientRuntimeInstaller, contains a main() method that Java
Web Start (JWS) calls to install the Application Client for WebSphere Application Server run-time
dependency component in JWS cache. It is packaged in WebSphereClientRuntimeInstaller.jar file
located in the Application Client for WebSphere Application Server installation in the <app_server_root>/
JWS directory.

Specify the WebSphereClientRuntimeInstaller.jar file and the Application Client run-time dependency
component JAR file as JAR resources in the Application Client run-time installer Java Network Launcher
Protocol (JNLP) descriptor file. See the following example for details:
<jar href="Launcher/WebSphereClientRuntimeInstall.jar" main="true"/>
<jar href="Launcher/WASClient6.1_windows.jarRuntimeInstall.jar" main="true"/>

The ClientRuntimeInstaller class main method requires the following properties to be set in the JNLP file:

com.ibm.websphere.client.jre.version
Specifies a Java Runtime Environment (JRE) version name that is to be used when referring to
the Application Client run-time dependency component.

com.ibm.websphere.client.jre.launch.java
Specifies the relative location of the javaw.exe program in the Application Client run-time
dependency component JAR file.

130 Administering WebSphere applications



The previously mentioned properties, JRE version name and the location of the javaw.exe program are
registered to the Java Web Start Application Manager, as shown in the following example:
<property name="com.ibm.websphere.client.jre.version" value="WASclient6.1"/>
<property name="com.ibm.websphere.client.jre.launch.java" value="java\jre\bin\javaw.exe"/>

Using the Java Web Start sample:

The EAR file, WasAppClientRuntime.ear, is provided in the app_client_root/samples/bin/
WasAppClientRuntime directory of the Client Application for WebSphere Application Server installation. This
EAR file provides a sample Application Clients run-time installer JNLP descriptor file and a sample
Application Clients run-time library component JNLP descriptor file. Follow the steps in this task to build
the Application Clients run-time dependency component and the Application Clients run-time library
component. Add these components to the WebSphereClientRuntime.ear file, and then install the EAR file in
an Application Server to be used by the client application.

About this task

There is a new Java Web Start sample available in the client sample gallery for WebSphere Application
Server V7.0. Refer to the client sample gallery in the Application Client for WebSphere Application Server
product. The name of the new sample is “Java Web Start Deployment Sample”.

Installing Java Web Start:

Learn about the steps that are necessary to install Java Web Start (JWS).. Java Web Start technology is
provided by the Java SE runtime environment to deploy Java EE application clients (including Thin
application clients) on the remote client machine with a single click from a web browser on the client
machine.

Before you begin

Before you begin this task, see the “Preparing the application client run time dependency component for
Java Web Start” on page 127 topic to understand Java Web Start (JWS) technology and components.

Note: The Sun Java Web Start, which is available from Sun Microsystems, is not compatible with the IBM
Runtime Environment, Java 2 Technology Edition, which is provided by WebSphere Application
Server and the IBM Application Client. The IBM Runtime Environment contains some additional
functionality that is not supported in the Sun Java Web Start. Also, the IBM Runtime Environment
uses a different packaging structure than the Sun Java Web Start. Use the IBM Runtime
Environment.

About this task

Complete the following steps to install JWS:

Procedure

1. Install IBM Application Client for WebSphere Application Server.

2. Change your directory to the javaws path.

v client_install_root\java\jre\lib\javaws

3. Run the update settings script from the path mentioned in the previous step.

v Run the updateSetting.sh script

4. Change your path to the JWS installed path. For example, enter:

v client_install_root\java\jre\javaws

5. Run javaws from the path mentioned in the previous step.

v Run ./javaws command.

Chapter 5. Welcome to administering Client applications 131



Using a static JNLP file with Java Web Start for Application clients:

Do not use JSP to dynamically generate a JNLP file, otherwise the JNLP jsp page cannot be opened in
some IE browsers.

About this task

To use a static JNLP file, you will need to add the following mime type mapping in the web.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<web-app id="WebApp_ID" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<display-name>
WAS Client runtime for Java Web Start</display-name>
<welcome-file-list>

<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>default.html</welcome-file>
<welcome-file>default.htm</welcome-file>
<welcome-file>default.jsp</welcome-file>

</welcome-file-list>
<mime-mapping>
<extension>jnlp</extension>
<mime-type>application/x-java-jnlp-file</mime-type>
</mime-mapping>

</web-app>

Running the IBM Thin Client for Enterprise JavaBeans (EJB)
An EJB Client is a Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) Java Platform,
Standard Edition (Java SE) application that accesses remote Enterprise Java Beans from a server through
Java Naming and Directory Interface (JNDI) look up. IBM Thin Client for EJB offers a smaller footprint and
is easy to deploy to a Java SE environment and an Eclipse Rich Client Platform (RCP) environment. You
can bundle the IBM Thin Client for EJB library using the WebSphere Application Server installation or the
Application Client for WebSphere Application Server installation with your application. The IBM Thin Client
for EJB also extends the choice of Java SE runtime. It can be run in the Java Runtime Environment (JRE)
that is packaged with the WebSphere Application Server product, the JRE that is downloaded from the
Oracle website, or the JRE that is downloaded from the HP website.

Before you begin

The IBM ORB implementation library is required if the IBM Thin Client for EJB is running with a
non-IBM product JRE on a non-IBM product platform. For example, running the IBM Thin Client for EJB
with Sun Microsystems JRE on Windows, Linux, or Solaris, and with the HP JRE on HP-UX. The
IBM-provided Solaris hybrid and HP hybrid JRE are not considered non-IBM product JRE environments.

The IBM Thin Client for EJB can access version 2.x and version 3.x EJB on the WebSphere Application
Server using the JNDI lookup, but it cannot access version 3.x EJB through resource injection. Resource
injection is supported if the client application is a Java Platform, Enterprise Edition (Java EE) Application
Client running within the Java Platform, Enterprise Edition (Java EE) Application Client Container.

Before you set up an EJB Thin Client environment, obtain the Java archive (JAR) file for the EJB Thin
Client for WebSphere Application Server. To obtain the EJB Thin Client for WebSphere Application Server,
install WebSphere Application Server or Application Client. The EJB Thin Client for WebSphere Application
Server file, com.ibm.ws.ejb.thinclient_8.5.0.jar, is located in the app_server_root\runtimes directory.
Use the com.ibm.ws.ejb.thinclient.jar for any client that runs on distributed platforms. Determining the
client to use depends on the client platform, and not the platform of the server you are connecting to.

132 Administering WebSphere applications



Copy the Java archive (JAR) file for the IBM Thin Client for EJB with WebSphere Application Server
product, com.ibm.ws.ejb.thinclient_8.5.0.jar and the endorsed_apis_8.5.0.jar files, to other machines
to create a lightweight client environment that enables communications with the products. Copies of the
IBM Thin Client for EJB are subject to the same terms and conditions of the license agreement for the
WebSphere product where you obtained the Thin Client for EJB. Refer to the license agreements for
correct usage and other limitations.

Copy the app_server_root\runtimes\endorsed\endorsed_apis_8.5.0.jar file into the default directory,
JAVA_JRE\lib\endorsed. Alternatively, you can use the java.endorsed.dirs property to specify a directory of
your choice. If you choose to use an alternative directory, it is a best practice to only include the
endorsed_apis JAR file.

The IBM Thin Client for EJB with WebSphere Application Server runs on distributed operating
systems with JDK support, including both Version 6 and Version 7. When using the IBM Thin Client for
EJB as a standalone Java SE application with a non-IBM product JRE, you must override the default ORB
implementation for the JRE through one of following methods:

v Include the com.ibm.ws.orb_8.5.0.jar file in the Java system classpath.

v Override the default ORB implementation in the JRE, using Java Endorsed Standards Override
Mechanism.

v Set the java.endorsed.dirs path to a directory that contains the com.ibm.ws.orb_8.5.0.jar file.

When running the IBM Thin Client for EJB as an Eclipse RCP application, it is recommended to use
method two, to override the default JRE ORB implementation.

Important: The Pluggable Application Client is deprecated. It is replaced by the IBM Thin Client for EJB.

Attention: When running the IBM Thin Client for EJB, and the
-Djava.util.logging.manager=com.ibm.ws.bootstrap.WsLogManager command line option is used, a
ClassDefNotFoundError error is thrown. The use of WsLogManager is not supported in the IBM Thin Client
for EJB, but you can use another Java logging manager.

About this task

Run the IBM Thin Client for EJB, by completing the following steps.

Procedure
1. Invoke the client application. Run the following Java command:

Add the following system properties to the Java command if you want authentication and SSL enabled:

2. Provide IIOP authentication configuration and Client SSL Configuration. Add the following system
properties to the Java command:
-Dcom.ibm.SSL.ConfigURL=file:///home/user1/ssl.client.props
-Dcom.ibm.CORBA.ConfigURL=file:///home/user1/sas.client.props

You can obtain the ssl.client.props file and sas.client.props file from the WebSphere Application
Server installation and modify the file to suit your environment. You must, at a minimum, update the
location of the key files in the ssl.client.props file to the match location of your target environment.
For example,
-Dcom.ibm.ssl.keyStore=/home/user1/etc/key.p12
-Dcom.ibm.ssl.trustStore=/home/user1/etc/trust.p12

Recommended SSL configuration settings when running the application with a non-IBM
product JRE:
com.ibm.ssl.protocol=SSL
com.ibm.ssl.trustManager=SunX509
com.ibm.ssl.keyManager=SunX509
com.ibm.ssl.contextProvider=SunJSSE

Chapter 5. Welcome to administering Client applications 133



com.ibm.ssl.keyStoreType=JKS
com.ibm.ssl.keyStoreProvider=SUN
com.ibm.ssl.keyStore=/home/user1/etc/key.jks

com.ibm.ssl.trustStoreType=JKS
com.ibm.ssl.trustStoreProvider=SUN
com.ibm.ssl.trustStore=/home/user1/etc/trust.jks

The key store file and trust store file must be created using the Java keytool utility before
the application runs. The automatic key file generation is not supported with a non-IBM product JRE.

You must override the default ORB implementation of the non-IBM product JRE with the
com.ibm.ws.orb_8.5.0.jar file, or add it to the classpath.

3. Run your client application:

v Enter the following command if you have copied the endorsed_apis_8.5.0.jar file into the
JAVA_JRE\lib\endorsed default directory; for example:

$JAVA_HOME/bin/java -Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props <your_client_application>

v Enter the following command if you have copied the endorsed_apis_8.5.0.jar file into a directory
other than the default JAVA_JRE\lib\endorsed directory; for example:

$JAVA_HOME/bin/java
-Djava.endorsed.dirs=<directory_that_includes_endorsed_apis_8.5.0.jar>
-Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props <your_client_application>

What to do next

Enable trace for the IBM Thin Client for EJB by adding the following to the Java command.
-Dcom.ibm.ejs.ras.lite.traceSpecification=*=all

Running Java thin client applications
You can run Java thin client applications on machines installed with either a WebSphere Application Client
installation or a WebSphere Application Server installation.

About this task

Important: Java thin clients are not packaged with JDBC provider classes. For example, the WebSphere
Application Server Version 7.0 Java thin client is not packaged with Apache Derby 10.2
classes. Likewise, the version 6.1 Java thin client is not packaged with Cloudscape Version
5.1, Cloudscape Version 10.0, or Cloudscape version 10.1 classes. Therefore, to utilize the
JDBC provider classes (such as Apache Derby, Oracle, DB2, Informix®, or Sybase) on a Java
thin client, you must:

1. Add the classes to your Java thin client application environment.

2. Make the classes visible to the Java thin client application. To do this, add the path to the
classes in the client classpath within the script that launched the client program.

Otherwise, any attempt to load a database class (such as through the JNDI lookup of a
datasource) results in a ClassNotFoundException.

The Java invocation to run a Java thin client application varies between a client and a server. If your Java
thin client application needs to run on both a client installation and a server installation, follow the steps in
the Running a Java thin client application on a server machine topic.

Procedure
v “Running a Java thin client application on a client machine” on page 136

v “Running a Java thin client application on a server machine” on page 136

134 Administering WebSphere applications



Example

Your Java thin application client no longer needs additional code to set security providers if you have
enabled security for your WebSphere Application Server instance. This code found in IBM i Java thin or
pluggable application clients should be removed to prevent migration and compatibility problems. The
java.security file from your WebSphere instance in the properties directory is now used to configure the
security providers.

v Running the thin or pluggable application client with security enabled

Running the thin or pluggable application client with security enabled. The following code examples
illustrates how security providers were set programmatically in the main() method and occurred prior to
any code that accessed enterprise beans:
import java.security.*;

...
if (System.getProperty("os.name").equals("OS/400")) {

// Set the default provider list first.
Provider jceProv = null;
Provider jsseProv = null;
Provider sunProv = null;

// Allow for when the Provider is not needed, when
// it is not in the client application’s classpath.
try {

jceProv = new com.ibm.crypto.provider.IBMJCE();
}
catch (Exception ex) {

ex.printStackTrace();
throw new Exception("Unable to acquire provider.");

}

try {
jsseProv = new com.ibm.jsse.JSSEProvider();

}
catch (Exception ex) {

ex.printStackTrace();
throw new Exception("Unable to acquire provider.");

}

try {
sunProv = new sun.security.provider.Sun();

}
catch (Exception ex) {

ex.printStackTrace();
throw new Exception("Unable to acquire provider.");

}

// Enable providers early and ahead of other providers
// for consistent performance and function.
if ( (null != sunProv) && (1 != Security.insertProviderAt(sunProv, 1)) ) {

Security.removeProvider(sunProv.getName());
Security.insertProviderAt(sunProv, 1);

}
if ( (null != jceProv) && (2 != Security.insertProviderAt(jceProv, 2)) ) {

Security.removeProvider(jceProv.getName());
Security.insertProviderAt(jceProv, 2);

}
if ( (null != jsseProv) && (3 != Security.insertProviderAt(jsseProv, 3)) ) {

Security.removeProvider(jsseProv.getName());
Security.insertProviderAt(jsseProv, 3);

}

// Adjust default ordering based on admin/startstd properties file.
// Maximum allowed in property file is 20.

Chapter 5. Welcome to administering Client applications 135



String provName;
Class provClass;
Object provObj = null;

for (int i = 0; i < 21; i++) {
provName = System.getProperty("os400.security.provider."+ i);

if (null != provName) {

try {
provClass = Class.forName(provName);
provObj = provClass.newInstance();

}
catch (Exception ex) {

// provider not found
continue;

}

if (i != Security.insertProviderAt((Provider) provObj, i)) {

// index 0 adds to end of existing list
if (i != 0) {

Security.removeProvider(((Provider) provObj).getName());
Security.insertProviderAt((Provider) provObj, i);

}
}

} // end if (null != provName)
} // end for (int i = 0; i < 21; i++)

} // end if ("os.name").equals("OS/400")

For examples of Java thin client applications, refer to the Samples section of the information center.

Running a Java thin client application on a client machine
To run a Java thin client application on a machine with Application Client for WebSphere Application
Server installed, use the setup Client command then start the application.

Before you begin

Before performing this task, you must install the Java thin application client from the Application Client for
WebSphere Application Server installation.

Procedure
1. Set up the client application environment. Run the setupClient command.

Use the setupClient script.
a. Start the Qshell environment. On the CL command line, run the STRQSH command.
b. On the Qshell command line, run the following command using the dot (.) operator:

. app_client_root/bin/setupClient [-profileName profileName]

2. Run a Java command to invoke your client application.

Run the following command on the Qshell command line:
java ${JAVA_FLAGS_EXT} -classpath "$WAS_CLASSPATH:jars_and_classes" -Djava.naming.provider.url=URL class_name app_parm

Running a Java thin client application on a server machine
To run a Java thin client application on a machine with WebSphere Application Server installed, use the
setupClient command then start the application.

Before you begin

You must install WebSphere Application Server before performing this task.

136 Administering WebSphere applications



Procedure
1. Set up the Thin application client environment.

Use the setupClient script.
a. Start the Qshell environment. On the CL command line, run the STRQSH command.
b. On the Qshell command line, run the following command using the dot (.) operator:

. app_server_root/bin/setupClient [-profileName profileName]

2. Run the application client.

Run the following command on a Qshell command line.
java ${JAVA_FLAGS_EXT} -classpath "$WAS_CLASSPATH:jars_and_classes" -Djava.naming.provider.url=URL class_name app_parm

When using the WebSphere Application Server launcher, run the following command on a Qshell
command line:

java ${JAVA_FLAGS_EXT} -classpath "$WAS_CLASSPATH:jars_and_classes" -Djava.naming.provider.url=URL com.ibm.ws.bootstrap.WSLauncher class_name app_parm

Managing resources for Java EE client applications
You can manage resources for Java Platform, Enterprise Edition (Java EE) application clients by using the
Application Client Resource Configuration Tool (ACRCT).

Before you begin

Before you can manage resources for a Java EE client application, you must have deployed that
application.

About this task

After deploying a Java EE client application client, you might want to or need to update the resources that
you configured for that client application.

If you want to manage the resources of a Java EE client application deployed on z/OS, you can run the
Application Client Resource Configuration Tool (ACRCT) on Windows, according to the following steps,
and then reinstall the application on z/OS.

Updating data source and data source provider configurations with the
Application Client Resource Configuration Tool
You can update the configuration of an existing data source or data source provider using the Application
Client Resource Configuration Tool (ACRCT).

About this task

During this task, you update the configuration of an existing data source or data source provider. Perform
this task when your database configuration changes.

Procedure
1. Start the Application Client Resource Configuration Tool (ACRCT), and open the Enterprise Archive

(EAR) file containing the data source or data source provider. The EAR file contents display in a tree
view.

2. Select Java Archive (JAR) file from the navigation tree containing the data source or data source
provider to update.

3. Expand the JAR file to view its contents until you locate the particular data source or data source
provider to update. Take one of the following actions:
v Right-click the data source object and click Properties.
v Click Edit > Properties on the menu bar.

Chapter 5. Welcome to administering Client applications 137



4. Update the properties in the displayed fields. For detailed field help, refer to the Data source provider
properties topic.

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Updating URLs and URL provider configurations for application clients
You can update URLs and URL provider configurations for application clients using the Application Client
Resource Configuration Tool (ACRCT).

Procedure
1. Start the tool and open the Enterprise Archive (EAR) file containing the URL or URL provider. The EAR

file contents are displayed in a tree view.

2. Select from the tree the Java Archive (JAR) file containing the URL or URL provider to update.

3. Expand the JAR file to view its contents.

4. Keep expanding the JAR file contents until you locate the particular URL or URL provider to update.
Take one of the following actions:

a. Right-click the URL object and click Properties.

b. Click Edit > Properties on the menu bar.

5. Update the properties in the displayed fields.

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

Updating mail session configurations for application clients
You can update the configuration of an existing JavaMail session using the Application Client Resource
Configuration Tool (ACRCT).

About this task

During this task, you update the configuration of an existing JavaMail session. You cannot update the
name of the default JavaMail provider, and you cannot delete the default JavaMail provider from the
navigation tree.

Procedure
1. Start the tool and open the Enterprise Archive (EAR) file containing the JavaMail session. The EAR file

contents are displayed in the navigation tree view.

2. Select the Java Archive (JAR) file containing the JavaMail session to update from the navigation tree.

3. Expand the JAR file to view its contents.

4. Keep expanding the JAR file contents until you locate the particular JavaMail session to update. Take
one of the following actions:

a. Right-click the object and click Properties

b. Click Edit > Properties from the menu bar.

5. Update the properties in the displayed fields.

6. Click OK when you finish.

7. Select File > Save from the menu bar to save your changes.

Updating Java Message Service provider, connection factories, and
destination configurations for application clients
You can update the configuration of an existing Java Message Service (JMS) provider, connection factory
or destination using the Application Client Resource Configuration Tool (ACRCT).

138 Administering WebSphere applications



About this task

During this task, you update the configuration of an existing Java Message Service (JMS) provider,
connection factory or destination.

Procedure
1. Start the tool and open the Enterprise Archive (EAR) file containing the Java Message Service (JMS)

provider, connection factory, or destination. The EAR file contents display in a tree view.

2. Select the Java Archive (JAR) file containing the JMS provider, connection factory, or destination to
update from the navigation tree.

3. Expand the JAR file to view its contents until you locate the particular JMS provider, connection
factory, or destination to update. When you find it, do one of the following actions:
v Right-click the provider, and click Properties.
v Click Edit > Properties on the menu bar.

4. Update the properties in the displayed fields. For detailed field help, see:
v JMS provider properties
v WebSphere Application Server Queue connection factory properties
v WebSphere Application Server Topic connection factory properties
v WebSphere Application Server Queue destination properties
v WebSphere Application Server Topic destination properties

5. Click OK.

6. Click File > Save to save your changes.

Updating WebSphere MQ as a Java Message Service provider, and its
JMS resource configurations, for application clients
You can update an existing configuration of WebSphere MQ as a Java Message Service (JMS) provider,
and update the configuration of WebSphere MQ connection factories or WebSphere MQ destinations.

About this task

Use this task to update an existing configuration of WebSphere MQ as a Java Message Service (JMS)
provider, and to update the configuration of WebSphere MQ connection factories or WebSphere MQ
destinations.

Procedure
1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the Enterprise Archive (EAR) file containing the WebSphere MQ JMS provider, WebSphere MQ
connection factory, or WebSphere MQ destination. The EAR file contents are displayed in the
navigation tree view.

3. Select the Java Archive (JAR) file containing the JMS provider, connection factory, or destination to
update.

4. Expand the JAR file to view its contents until you locate the particular JMS provider, connection
factory, or destination that you want to update. Complete one of the following actions:
v Right-click the appropriate object and click Properties.
v Click Edit > Properties on the menu bar.

5. Update the properties in the displayed fields. For detailed field help, see:
v JMS provider properties
v MQ Queue connection factory properties
v MQ Topic connection factory properties
v MQ Queue destination properties
v MQ Topic destination properties

6. Click OK.

Chapter 5. Welcome to administering Client applications 139



7. Click File > Save to save your changes.

Updating resource environment entry and resource environment
provider configurations for application clients
You can update the configuration of an existing resource environment entry or resource environment
provider using the Application Client Resource Configuration Tool (ACRCT).

About this task

During this task, you update the configuration of an existing resource environment entry or resource
environment provider.

Procedure
1. Start the tool and open the Enterprise Archive (EAR) file containing the resource environment entry or

resource environment provider. The EAR file contents display in a navigation tree view.

2. Select from the tree the Java Archive (JAR) file containing the resource environment entry or resource
environment provider to update.

3. Expand the JAR file to view its contents until you locate the resource environment entry or resource
environment provider to update. Take one of the following actions:
v Right-click the resource environment object, and click Properties.
v Click Edit > Properties on the menu bar.

4. Update the properties in the displayed fields. For detailed field help, see:
v Resource environment provider properties
v Resource environment entry properties

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Example
v Configuring resource environment custom settings for application clients

v Configuring Resource Environment settings

Configuring resource environment custom settings for application clients: This code example illustrates
how the custom page applies to every resource type. You can specify as many custom names and values
as you need:
<propertySet xmi:id="J2EEResourcePropertySet_20">
<resourceProperties xmi:id="J2EEResourceProperty_22"
name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>
</propertySet>

Configuring Resource Environment settings: This code example illustrates how to configure Resource
Environment settings:
<resources.env:ResourceEnvironmentProvider xmi:id="ResourceEnvironmentProvider_1"
name="resourceEnvProvider:name" description="resourceEnvProvider:description">
<classpath>resourceEnvProvider:classpath</classpath>
<factories xmi:type="resources.env:ResourceEnvEntry" xmi:id="ResourceEnvEntry_1"
name="resourceEnvEntry:name" jndiName="resourceEnvEntry:jndiName"
description="resourceEnvEntry:description">
<propertySet xmi:id="J2EEResourcePropertySet_20">
<resourceProperties xmi:id="J2EEResourceProperty_22"
name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_21">

140 Administering WebSphere applications



<resourceProperties xmi:id="J2EEResourceProperty_23"
name="resourceEnvProvider:customName" value="resourceEnvProvider:customValue"/>
</propertySet>
</resources.env:ResourceEnvironmentProvider>
v Required fields:

– Resource Environment Provider page: Name
– Resource Environment Entry page: Name, JNDI Name

Removing application client resources
You can remove Java Platform, Enterprise Edition (Java EE) application client resources using the
Application Client Resource Configuration Tool (ACRCT).

Before you begin

The option to delete an item does not offer a confirmation dialog. As a safeguard, consider saving your
work right before you begin this task. If you change your mind after removing an item, you can close the
EAR file without saving your changes, canceling your deletion. Remember to close the EAR file
immediately after the deletion, or you also lose any unsaved work that you performed since the deletion.

This task only applies to Java EE application clients.

Procedure
1. Start the Application Client Resource Configuration Tool (ACRCT) and open the Enterprise Archive

(EAR) file from which you want to remove an object. The EAR file contents display in the navigation
tree view. If you already have an EAR file open and have made some changes, click File > Save to
save your work before preceding to delete an object.

2. Locate the object that you want to remove in the tree.

3. Right-click the object, and click Delete.

4. Click File > Save.

clientUpgrade script
The clientUpgrade script migrates application client modules and their resources in an enterprise archive
(EAR) file so that these application clients can run in WebSphere Application Server Version 8.5. The
script converts an EAR file that you want to migrate and then overwrites the original EAR file with the
converted EAR file.

The following title provides information about the clientUpgrade script.

Attention: This command was deprecated in Version 6.1.

Type Description

Product The clientUpgrade script is available in the WebSphere Application Server (WebSphere
Application Server, Express and WebSphere Application Server (base)) product only.

Authority To run this script, your user profile must have *ALLOBJ authority.

Syntax The syntax of the clientUpgrade script is:

clientUpgrade EAR_file [ -clientJAR client_JAR_file ]
[ -logFileLocation logFileLocation ]
[ -traceString trace_spec [ -traceFile file_name ] ]

Chapter 5. Welcome to administering Client applications 141



Type Description

Parameters The parameters of the clientUpgrade script are:

v EAR_file -- This is a required parameter. The value EAR_file specifies the fully-qualified path
of the EAR file that contains the application client modules that you want to migrate.

v -clientJAR -- This is an optional parameter. The value client_JAR_file specifies a JAR file that
you want to migrate. The script overwrites the original EAR file with a new EAR file that
contains only the specified JAR files. If you do not specify this parameter, the clientUpgrade
script migrates all client JAR files in the EAR file.

v -logFileLocation -- Use this optional parameter to specify an alternate location to store the log
output.

v -traceString -- This is an optional parameter. The value trace_spec specifies the trace
information that you want to collect. To gather all trace information, specify "*=all=enabled"
(including the double quotation marks (")). By default, the script does not gather trace
information. If you specify this parameter, you must also specify the -traceFile parameter.

v -traceFile -- This is an optional parameter. The value file_name The value file_name specifies
the name of the output file for trace information. If you specify the -traceString parameter but
do not specify the -traceFile parameter, the script does not generate a trace file.

Logging The clientUpgrade script displays status while it runs. It also saves more extensive logging
information to the clientupgrade.log file. This file is located in the /QIBM/UserData/WebSphere/
AppServer/V85/edition/profiles/default/logs directory (for a default installation using the
default profile) or in the location specified by the -logFileLocation parameter.

These examples demonstrate correct syntax. In this example, the My51Application.ear file is migrated
from WebSphere Application Server Version 5.1, The script overwrites the original EAR file with a new file
that you can deploy in your WebSphere Application Server Version 8.5 profile.
clientUpgrade /My51Application/My51Application.ear

In this example, only the myJarFile.jar client JAR file is migrated. The script overwrites
My51Application.ear with an EAR file that contains myJarFile.jar. You can deploy the new EAR file in
your WebSphere Application Server profile.
clientUpgrade /My51Application/My51Application.ear -clientJAR myJarFile.jar

142 Administering WebSphere applications



Chapter 6. Administering Communications Enabled
Applications

Communications Enabled Applications (CEA) is a functionality that provides the ability to add dynamic web
communications to any application or business process. The product provides a suite of integrated
telephony and collaborative web services that extends the interactivity of enterprise and web commerce
applications. With the CEA capability, enterprise solution architects and developers can use a single core
application to enable multiple modes of communication. Enterprise developers do not need to have
extensive knowledge of telephony or Session Initiation Protocol (SIP) to implement CEA. The CEA
capability delivers call control, notifications, and interactivity and provides the platform for more complex
communications.

Administering communications enabled applications

Configuring services for communications enabled applications

CEA settings
Use this page to configure the Representational State Transfer (REST) interface and the
computer-telephony integration (CTI) gateway to enable Communications Enabled Applications (CEA). A
CTI application manages the event flow that is generated by the telephony switch, IP PBX, during the life
cycle of a call.

v To view this administrative console page in a single-server environment, click Servers > Server Types
> WebSphere application servers > server_name > Communications Enabled Applications (CEA).

Enable communications service:

Specifies to enable or disable the communications service for this server or cluster. Disabling the field
prevents the service from starting and saves system resources.

Context root:

Specifies the context root of the REST interface. Use this field to assign a different context root to the
REST interface.

The context root is combined with the defined servlet mapping for the REST interface to compose the full
URL that users type to make a REST request. For example, if the context root is /gettingstarted and the
servlet mapping is CommServlet/call, then the URL is http://host:port/gettingstarted/CommServlet/
call.

Virtual host:

Specifies the name of the virtual host to which the REST interface is currently mapped.

Expanding the menu list displays a list of the defined virtual hosts. To change a mapping, select a different
virtual host from the list.

Maximum hold time:

Specifies the time in seconds in which a GET /event call to the REST interface waits for new or changed
data or status before timing out.

Information Value
Data Type Integer
Default 30

© Copyright IBM Corp. 2012 143



Use SIP CTI (ECMA TR/87) gateway for telephony access:

Select this option to use the SIP CTI gateway for telephony access.

Host name or IP address:

Specifies the address or fully qualified domain name, FQDM, of the CTI gateway to be connected to by
the CEA service.

Information Value
Data Type string
Default localhost

Port:

Specifies the port of the CTI gateway to be connected to by the CEA service.

Information Value
Data Type integer
Default 5060

Protocol:

Specifies the protocol to be used when connecting to the CTI, TR/87, gateway. The default value is TCP.

Extract user name from request:

When enabled, an attempt is made to extract the user name from the HTTP request. If the name cannot
be extracted, the Superuser name is used. This name is used when opening a new TR/87 session to the
CTI gateway.

Attention: After you enable the Extract user name from request option, an attempt is made to extract
the user name from the HTTP request. However, the user name has a null value even for authenticated
users. The CEA Rest Service Servlet is an unprotected URI. Thus, you also must enable the Use
available authentication data when an unprotected URI is accessed option. Use the administrative
console to enable the Use available authentication data when an unprotected URI is accessed option
under Security > Global security > Web and SIP security > General settings. After you enable this
option, the user name is available to the CEA Rest Service Servlet during the request.

Superuser name:

Specifies the name that is used when opening a new TR/87 session to the configured CTI gateway. This
requires that the CTI gateway be configured with a superuser account that is used to create phone calls
on behalf of all end users.

Information Value
Data Type string
Default ceauser

Attention: You can specify a Superuser name on the CEA settings page. The superuser corresponds to
a user, who is configured on the PBX, and has the ability to control any phone that is
configured on the PBX. Also, the superuser has the ability to control multiple phones
concurrently. This functionality, however, is not supported on every PBX. The Cisco PBX

144 Administering WebSphere applications



requires that you set a user name for each phone that you want to control. The Superuser
name field on the CEA settings page can only pass a single user name; therefore, it can only
control a single device. To control multiple phones concurrently using the Cisco PBX, you must
derive the user name from the user credentials for this PBX. To accomplish this task, ensure
that the Extract user name from request check box is selected on the CEA settings page.

Use a third-party Web services provider for telephony access:

Select this option to specify a third-party Web services provider for telephony access. Instead of using SIP
CTI, this approach uses a third-party service that has implemented specific Web services to utilize a
different method to connect to the telephony infrastructure.

Third-party Web services provider's WSDL:

The URL path pointing to a third-party Web services provider's WSDL. If a value is specified, the SIP CTI
gateway is not used.

CEA custom properties
This topic discusses the CEA custom properties that you can set on the administrative console.

To view the administrative console page associated with this topic, click Servers > Clusters >
WebSphere application server clusters > server_cluster > Communications Enabled Applications
(CEA) > Custom properties.

Specify a property and its value as a name-value pair on the Custom properties page. You can use the
custom properties page to define the following CEA custom properties:

v “SIP_RFC3263_auto_resolve”

v “sipOverTlsPbxOverride”

SIP_RFC3263_auto_resolve:

Disables the automatic DNS resolve for SIP messages. If this property is set to false for a SIP container,
DNS resolve is only triggered by application APIs.

Information Value
Data type Boolean
Default True

sipOverTlsPbxOverride:

Changes proxy behavior to send "sip:" formatted messages over a TLS connection instead of the default
"sips:" message format.

Information Value
Data type String
Default True

Configuring communications enabled applications in a cluster
You can configure multiple application servers to use the Communications Enabled Applications (CEA)
capability in a cluster environment to balance workload demands.

Chapter 6. Welcome to administering Communications Enabled Applications 145



About this task

To scale to two or more application servers running CEA, you must create a cluster that includes each
application server. Clusters are groups of servers that are managed together and participate in workload
management. You must use proxy servers to distribute the requests to the CEA application servers, but
not IBM HTTP Servers. CEA is implemented as a converged application that combines both HTTP and
session initiation protocol (SIP) protocols. However, IBM HTTP Server is limited to handling the HTTP
protocol. The proxy server is a converged proxy so it handles both HTTP and SIP protocols.

Procedure
1. Identify the application servers or nodes that are running CEA that you want to manage as a cluster.

2. Create the cluster using the administrative console. For details on creating the cluster, read about
creating a cluster using basic cluster settings.

3. Install a SIP proxy server. The SIP proxy server routes HTTP and SIP requests to the back-end
application servers. This proxy server provides high performance SIP proxy capabilities that you can
use at the edge of the network to route, load balance, and improve response times for SIP dialogs to
backend SIP resources. For details on installing a SIP proxy server, read about installing a SIP proxy
server.

4. Configure the SIP converged proxy server. Select the default cluster to specify where you want the SIP
proxy to route requests. After you choose a default cluster, your SIP proxy server is functional.

Results

You have successfully configured a cluster environment for CEA applications.

146 Administering WebSphere applications



Chapter 7. Administering Data access resources

This page provides a starting point for finding information about data access. Various enterprise
information systems (EIS) use different methods for storing data. These backend data stores might be
relational databases, procedural transaction programs, or object-oriented databases.

The flexible IBM WebSphere Application Server provides several options for accessing an information
system backend data store:

v Programming directly to the database through the JDBC 4.0 API, JDBC 3.0 API, or JDBC 2.0 optional
package API.

v Programming to the procedural backend transaction through various J2EE Connector Architecture (JCA)
1.0 or 1.5 compliant connectors.

v Programming in the bean-managed persistence (BMP) bean or servlets indirectly accessing the
backend store through either the JDBC API or JCA-compliant connectors.

v Using container-managed persistence (CMP) beans.

v Using the IBM data access beans, which also use the JDBC API, but give you a rich set of features and
function that hide much of the complexity associated with accessing relational databases.

Service Data Objects (SDO) simplify the programmer experience with a universal abstraction for messages
and data, whether the programmer thinks of data in terms of XML documents or Java objects. For
programmers, SDOs eliminate the complexity of the underlying data access technology such as, JDBC,
RMI/IIOP, JAX-RPC, and JMS, and message transport technology such as, java.io.Serializable, DOM
Objects, SOAP, and JMS.

Deploying data access applications
Deploying a data access application includes more than installing your web application archive (WAR) or
enterprise archive (EAR) file onto a server. Deployment can include tasks for configuring your application
to use the data access resources of the server and overall runtime environment.

Before you begin

You can deploy only application code that is assembled into the appropriate modules. See the topic,
Assembling data access applications for guidelines, for this process.

About this task

Perform the following steps if your application requires access to a relational database (RDB). When your
application requires access to a different type of enterprise information system (EIS), such as an
object-oriented database or the Customer Information Control System (CICS®), consult the topics,
Relational resource adapters and JCA, and Accessing data using Java EE Connector Architecture
connectors.

Procedure
1. If your RDB configuration does not exist, do the following steps:

a. Create a database to hold the data.

b. Create tables required by your application.
If your application uses container managed persistence (CMP) entity beans to access the
data You can create the tables using the data definition language (DDL) generated from the

enterprise bean configuration. For more information, see the topic, Recreating database
tables from the exported table data definition language.

© IBM Corporation 2009 147



If your application uses bean managed persistence (BMP) entity beans, or does not use
entity beans

You must use your database server interfaces to create the tables.

The Enterprise JavaBeans (EJB) to RDB Mapping wizard of an assembly tool is also used to
create your database tables for either type of entity bean. Select the top-down mapping option in
the wizard. However, this option does not give you direct control in naming the RDB elements or
choosing column types. Additionally, because the top-down process is automatic, it might not
provide mappings to reflect the precise relationships that you intend.

If you use Rational® Application Developer, consult the information center about the mapping
wizard. To learn about all of your assembly tool options, see the assembly tools topic in this
information center.

c. Check the data source minimum required settings by vendor to see any database vendor
requirements for connecting to an application server. See the topic, Data source minimum required
settings, by vendor, for instructions.

2. Optional: Map your entity beans to the database tables through the meet-in-the-middle mapping option
of an assembly tool. Complete this step only if you did not create your database schema through the
top-down mapping option, did not generate your mapping relationships through bottom-up mapping, or
did not generate mappings during the application assembly process. For information about the
top-down mapping option see the information center for Rational Application Developer.

3. Install your application onto the application server. See the topic, Installing enterprise application files.
When you install the application, you can alter data access settings that were made during application
assembly, or, if they were omitted from the assembly process, set them for the first time. These
settings include resource bindings and resource authentication aliases, which are addressed in the
following substeps:

a. Bind application resource references to the data sources, or other resource objects, that provide
database connectivity. For details on the concept of binding, see the topic, Data source lookups for
enterprise beans and web modules.

Tip: After deployment, you can use the WebSphere Application Server administrative console to
alter resource bindings. Click Applications > Application Types > Webphere enterprise
applications > application_name, and select the link to the appropriate mapping page. For
example, if you want to alter the binding of an EJB module resource, you might click Map
data sources for all 2.x CMP beans. For a web module resource, click Resource
references.

b. Define authentication alias data for resources that must be authenticated with the backend through
container-managed authorization. In this security configuration, WebSphere Application Server
performs EIS signon for data source or connection factory connections. Consult the topic, J2EE
connector security for detailed reference on resource authentication.

4. Start the deployed application files using the administrative console, the wsadmin scripting tool
startApplication command, or your own Java program.

5. Save the changes to your administrative configuration.

6. Test the application. For example, point a web browser at the URL for a deployed application and
examine the performance of the application.

Results

When you deploy an application that uses a DB2 UDB for IBM i back-end database, you might find the
following exception in the SystemOut.log file:
PMGR6022E: Error using adapter to create or execute an Interaction

This type of error indicates that you deployed an application with container-managed persistence (CMP)
enterprise beans that were originally configured to access a DB2 database on Windows, Linux, or a

148 Administering WebSphere applications



supported UNIX system. Using the administrative console, uninstall the affected CMP applications, then
reinstall the applications with the new database setting. Remember to select Deploy enterprise beans; on
the EJB deploy panel, select the appropriate version of your DB2 UDB for IBM i database.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

What to do next

If the application does not perform as wanted, update the application, then save and test it again.

Available resources
Use this page to select configured resources that you want to bind to the resource references of the
enterprise beans or web modules in your application.

To view this administrative console page:

1. Click Applications > Application Types > Websphere enterprise applications > application_name.

2. Click the link for any of these resource configuration pages:

v Resource references

v Map data sources for all 2.x CMP beans

v Provide default data source mapping for modules containing 2.x entity beans

3. Locate the table row of the EJB or web module that you want to map to a different resource.

4. Within the row, locate the JNDI name of the resource that is currently bound to the EJB or web
module.

5. Click Browse.

You now see Available resources.

Each table row corresponds to a resource that you can bind to your enterprise bean or web module.

Select
Select the resource that you want to bind to the resource reference of your module.

JNDI name
The Java Naming and Directory Interface (JNDI) name of the resource that you want to bind to the
resource reference of your module.

Information Value
Data type String

Scope
The scope of the resource. Note that this administrative console page displays only resources that are
configured for a scope at which your application operates.

Description
The text description of the resource.

Chapter 7. Welcome to administering Data access resources 149



Map data sources for all 1.x CMP beans
Use this page to designate how the container-managed persistence (CMP) 1.x beans of an application
map to data sources that are available to the application.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Map data sources for all 1.x CMP beans.

Guidelines for using this administrative console page:

v The table depicts the 1.x CMP bean contents of your application.

v Each table row corresponds to a CMP bean within a specific EJB module. A row shows the JNDI name
of the data source mapping target of the bean only if you bound them together during application
assembly or installation. For every data source that is displayed, you see the corresponding security
configuration.

v To set your mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the data source mapping target
that you select in step 2 applies to all of those CMP beans.

2. Click Browse to select a data source from the new page that is displayed, the Available Resources
page. The Available Resources page shows all data sources that are available mapping targets for
your CMP beans.

3. Click Apply. The console displays the 1.x CMP bean data sources page again. In the rows that you
previously selected, you now see the JNDI name of the new resource mapping target.

4. Before you click OK to save your new configuration, set the security parameters for the data source.
Use the following steps.

v To specify data source security settings:

1. Select one or more rows in the table.

2. Type in a user name and password that comprise the authentication alias for signing on to the data
source. If these entries are not listed in the application Java Platform, Enterprise Edition (Java EE)
Connector (J2C) authentication data list, you must input them into the list after saving your settings
on this page. Read the information center topic on managing Java EE Connector Architecture
authentication data entries for more information.

3. Click Apply that immediately follows the user name and password input fields.

v Repeat all of the previous steps as necessary.

v Click OK to save your settings.

Select
Select the check boxes of the rows that you want to edit.

EJB
The name of an enterprise bean in the application.

EJB Module
The name of the module that contains the enterprise bean.

URI
Specifies location of the module relative to the root of the application EAR file.

JNDI name
The Java Naming and Directory Interface (JNDI) name of the data source that is configured for the
enterprise bean.

Information Value
Data type String

150 Administering WebSphere applications



User name
The user name and password that comprise the authentication alias for securing the data source.

Map default data sources for modules containing 1.x entity beans
Use this page to set the default data source mapping for EJB modules that contain 1.x container-managed
persistence (CMP) beans. Unless you configure individual data sources for your 1.x CMP beans, this
default mapping applies to all beans within the module.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Map default data sources for modules containing 1.x
entity beans.

Guidelines for using this administrative console page:

v The page displays a table that depicts the EJB modules in your application that contain 1.x CMP beans.

v Each table row corresponds to a module. A row shows the JNDI name of the data source mapping
target of the EJB module only if you bound them together during application assembly. For every data
source that is displayed, you see the corresponding security configuration.

v To set your default data source mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the data source mapping target
that you select in step 2 applies to all of those EJB modules.

2. Click Browse to select a data source from the new page that is displayed, the Available Resources
page. The Available Resources page shows all data sources that are available mapping targets for
your EJB modules.

3. Click Apply. The console displays the 1.x entity bean data sources page again. In the rows that you
previously selected, you now see the JNDI name of the new resource mapping target.

4. Before you click OK to save your new configuration, set the security parameters for the data source.
Use the following steps.

v To specify security settings for the default data source:

1. Select a row. Be aware that if you check multiple rows on this page, the security settings that you
select later apply to all of those data sources.

2. Type in a user name and password that comprise the authentication alias for signing on to the data
source. If these entries are not listed in the application Java Platform, Enterprise Edition (Java EE)
Connector (J2C) authentication data list, you must input them into the list after saving your settings
on this page. Read the information center topic on managing Java EE Connector Architecture
authentication data entries for more information.

3. Click Apply that immediately follows the user name and password input fields.

v Repeat all of the previous steps as necessary.

v Click OK to save your work.

Select
Select the check boxes of the rows that you want to edit.

EJB Module
The name of the module that contains the 1.x enterprise beans.

URI
Specifies location of the module relative to the root of the application EAR file.

Chapter 7. Welcome to administering Data access resources 151



JNDI name
The Java Naming and Directory Interface (JNDI) name of the default data source for the EJB module.

Information Value
Data type String

User name
The user name and password that comprise the authentication alias for securing the data source.

Map data sources for all 2.x CMP beans settings
Use this page to map container-managed persistence (CMP) 2.x beans of an application to data sources
that are available to the application.

To view this administrative console page, click Applications > Application Types > Websphere
enterprise applications > application_name > Map data sources for all 2.x CMP beans.

Each table row corresponds to a CMP bean within a specific EJB module. A row shows the JNDI name of
the data source mapping target of the bean only if you bound them together during application assembly.
For every data source that is displayed, you see the corresponding security configuration.

Set Multiple JNDI names
Specify the Java Naming and Directory Interface (JNDI) name for multiple EJB modules. Select one or
more EJB modules from the table, and select a JNDI name from this list to configure the EJB modules
with that JNDI name.

Information Value
Data type Drop-down list

Set Authorization Type
Specify the authorization type for securing the data source. Select one or more EJB modules from the
table to set the authorization type.

Select either Container or Application from the displayed list. Container-managed authorization indicates
that WebSphere Application Server performs signon to the data source. Application-managed authorization
indicates that the enterprise bean code performs signon.

Modify Resource Authentication Method
Specify the authorization type and the authentication method for securing the data source. Select one or
more EJB modules from the table to modify the resource authentication method.

You can choose between the following authentication methods:

v None:

1. Determine which data source configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Select None from the list of authentication method options that precede the table.

4. Click Apply.

v Use default method (many-to-one mapping):

1. Determine which data source configurations to designate with the WebSphere Application Server
DefaultPrincipalMapping login configuration. Apply this option to each data source individually if you
want to designate different authentication data aliases. See the information center topic on J2EE
Connector security for more information on the default mapping configuration.

2. Select the appropriate table rows.

152 Administering WebSphere applications



3. Select Use default method (many-to-one mapping) from the list of authentication method options
that precede the table.

4. Select an authentication data entry or alias from the list.

5. Click Apply.

v Use Kerberos authentication: Specifies to use the Kerberos authentication method.

1. Ensure that you have configured the Kerberos authentication mechanism in the application server.

2. Select the appropriate table row.

3. Select Use Kerberos authentication from the list of authentication method options that precede the
table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Use trusted connections (one-to-one mapping):

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Ensure that the database to which the modules will connect is configured for trusted connections.

4. Select Use trusted connections (one-to-one mapping) from the list of authentication method
options that precede the table.

5. Select an application login configuration from the list.

6. Click Apply.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Custom login configuration:

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Select Use custom login configuration from the list of authentication method options that precede
the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

Select
Select the check boxes of the rows that you want to edit.

EJB
The name of an enterprise bean in the application.

EJB Module
The name of the module that contains the enterprise bean.

URI
Specifies location of the module relative to the root of the application EAR file.

Chapter 7. Welcome to administering Data access resources 153



Target resource JNDI name
Specifies the resource to which the CMP bean is bound.

Resource authorization
Specifies the current setting for the resource authorization type.

Modify this setting with Set authorization type.

Map data sources for all 2.x CMP beans
Use this page to set the default data source mapping for EJB modules that contain 2.x container-managed
persistence (CMP) beans. Unless you configure individual data sources for your 2.x CMP beans, this
default mapping applies to all beans within the module.

To view this administrative console panel, click Applications > Application Types > Websphere
enterprise applications > application_name > Map data sources for all 2.x CMP beans .

This panel displays a table that depicts the EJB modules in your application that contain 2.x CMP beans.
Each table row corresponds to a module. A row shows the JNDI name of the data source mapping target
of the EJB module only if you bound them together during application assembly. For every data source
that is displayed, you see the corresponding security configuration.

Set Multiple JNDI Names
Specifies the JNDI name to bind to one or more modules. Select one or more modules, click Set Multiple
JNDI Names, and select the JNDI name for the resource to which you would like to bind the module.

Set Authorization Type
Specifies the authorization type that you to use for the modules. Select one or more modules, click Set
Authorization Type, and select the authorization type.

You can choose:

v Per application - indicates that the enterprise bean code performs signon.

v Container - indicates that the application server performs signon to the data source.

Modify Resource Authentication Method
Specifies the resource authentication method for the modules that you have configured with
container-managed authorization. Select one or more modules, click Modify Resource Authentication
Method, and select the authentication method.

You can choose between the following authentication methods:

v None:

1. Determine which data source configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Select None from the list of authentication method options that precede the table.

4. Click Apply.

v Use default method (many-to-one mapping):

1. Determine which data source configurations to designate with the WebSphere Application Server
DefaultPrincipalMapping login configuration. Apply this option to each data source individually if you
want to designate different authentication data aliases. See the information center topic on J2EE
Connector security for more information on the default mapping configuration.

2. Select the appropriate table rows.

3. Select Use default method (many-to-one mapping) from the list of authentication method options
that precede the table.

4. Select an authentication data entry or alias from the list.

154 Administering WebSphere applications



5. Click Apply.

v Use Kerberos authentication: Specifies to use the Kerberos authentication method.

1. Ensure that you have configured the Kerberos authentication mechanism in the application server.

2. Select the appropriate table row.

3. Select Use Kerberos authentication from the list of authentication method options that precede the
table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Use trusted connections (one-to-one mapping):

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Ensure that the database to which the modules will connect is configured for trusted connections.

4. Select Use trusted connections (one-to-one mapping) from the list of authentication method
options that precede the table.

5. Select an application login configuration from the list.

6. Click Apply.

The application server will attempt to verify that you are connecting to the correct type of database
when you select this option.

v Custom login configuration:

1. Determine which data source configurations to designate with a custom Java Authentication and
Authorization Service (JAAS) login configuration. See the information center topic on J2EE
Connector security for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Select Use custom login configuration from the list of authentication method options that precede
the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table cell.

Select
Select the check boxes of the rows you want to edit.

EJB Module
Specifies the name of the module that contains the 2.x enterprise beans.

URI
Specifies location of the module relative to the root of the application EAR file.

JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name of the default data source for the EJB
module.

Information Value
Data type String

Chapter 7. Welcome to administering Data access resources 155



Resource authorization
Specifies the authorization type and the authentication method for securing the data source.

Extended Datasource Properties
When selected, you will be directed to a panel on which you can specify extended properties that the
module can use for the DB2 data source.

The application server will attempt to verify that you are connecting to the correct type of database when
you select this option.

Installing a resource adapter archive
The application server uses the classes and other code that comprise a resource adapter archive (RAR) to
support the resource adapters that you configure.

Before you begin

A RAR file, which is often called a Java EE Connector Architecture (JCA) connector, must comply with the
JCA Specification. You can meet these requirements by using a supported assembly tool to assemble a
collection of Java archive (JAR) files, other runnable components, and utility classes into a deployable
resource adapter archive (RAR). You can then install the RAR file in the application server.

About this task

A resource adapter archive provides the classes and other code to support a resource adapter for access
to a specific EIS, such as the Customer Information Control System (CICS). Therefore, you can only
configure resource adapters for an EIS after you install the appropriate RAR file.

Important: When you use the Install RAR dialog to install a RAR file, the scope you define on the
Resource Adapters page has no effect on where the RAR file is installed. You can install RAR
files only at the node level, which you specify on the Install RAR page. To set the scope of an
RAR file to a specific cluster, or server, after you install the RAR file at each node level, create
a copy of the RAR file with the appropriate cluster or server scope.

Procedure
1. Navigate to the Resource adapter panel. Click Resources > Resource Adapters > Resource

adapters.

2. Install a new resource adapter archive.

a. Click Install RAR. A dialog opens for installing a RAR file and configuring the associated resource
adapter. Only click New if you want to configure a new resource adapter for a previously installed
RAR file.

b. Browse to find the appropriate RAR file.

v If your RAR file is located on your local workstation, select Local path, and browse to find the
file.

v If your RAR file is located on your server, select Remote file system, and specify the fully
qualified path to the file.

c. Click Next.

3. Configure the resource adapter name and any other properties needed under General Properties. For
more details on the settings that you can configure, such as the J2C connection factories, see the
topics Installing resource adapters within applications and Configuring resource adapters.

4. Click OK.

156 Administering WebSphere applications



5. Optional: Create a copy of the RAR file with a different scope level. After you install the RAR file at
each node level, you can create another copy of the file that has a specific server or cluster as the
scope for that file.

Note:

v If you do not create a copy of your RAR at the cluster scope, then you must create identical
factories (connection factories, admin object, and activation specifications) at the node level
for each of your nodes in the cluster. By creating the copy of your RAR, you provide a
placeholder for your factories and circumvent the need to create identical factories at the
node level for each of your nodes in the cluster.

v You must still install the RAR binaries (files, such as jars and xml deployment files) on each
node for the RAR to operate successfully.

a. Click Resources.

b. Click Resource Adapters.

c. Select the scope level and then click NEW.

d. Choose the RAR file from the installed archive path.

e. Click OK.

Results

You have installed a resource adapter archive that provide access to the EIS when it is properly
configured. If you must configure more settings, or change some settings that were configured during the
installation process, refer to the topic on configuring a resource adapter in the administrative console for
more information.

Installing resource adapters embedded within applications
Install resource adapters in your applications so they can access outside data sources.

Before you begin

The JCA Version 1.6 specification adds support for Java annotations in RAR modules. For more
information on annotation support see the topic, JCA 1.6 support for annotations in RAR modules.

About this task

Procedure
1. Assemble an application with RAR modules in it. See the topic Assembling applications for more

information.

2. Install the application. Follow the steps in the topic Installing a new application.

In the Map modules to servers step, specify target servers or clusters for each RAR file. Be sure to
map all other modules that use the resource adapters defined in the RAR modules to the same
targets. Also, specify the web servers as targets that serve as routers for requests to this application.
The plug-in configuration file (plugin-cfg.xml) for each web server is generated based on the
applications that are routed through it.

In the Metadata for modules step of installing an application, you can set or unset the
metadata-complete flag as discussed in the topic, JCA 1.6 support for annotations in RAR modules.

Note: When installing a RAR file on a server, the application server looks for the manifest
(MANIFEST.MF) for the connector module. The application server first looks for the RAR file's
connectorModule.jar file and loads the manifest from the connectorModule.jar file. If the class
path entry is in the manifest from the connectorModule.jarfile, the RAR uses that class path.

Chapter 7. Welcome to administering Data access resources 157



To ensure that the installed connector module finds the classes and resources that it needs,
check the Class path setting for the RAR using the administrative console. For more information
on how to check this setting, see the topics Resource adapter settings and WebSphere
relational resource adapter settings.

3. Click Finish > Save to save the changes.

4. Create connection factories for the newly installed application.

See the topic, Configuring connection factories for resource adapters within applications to view the
steps to complete this step.

Results

Note: A given native library can only be loaded one time for each instance of the Java virtual machine
(JVM). Because each application has its own class loader, separate applications with embedded
RAR files cannot both use the same native library. The second application receives an exception
when it tries to load the library.

If any application deployed on the application server uses an embedded RAR file that includes
native path elements, then you must always ensure that you shut down the application server
cleanly, with no outstanding transactions. If the application server does not shut down cleanly it
performs recovery upon server restart and loads any required RAR files and native libraries. On
completion of recovery, do not attempt any application-related work. Shut down the server and
restart it. No further recovery is attempted by the application server on this restart, and normal
application processing can proceed.

Install RAR
Use this page to install a resource archive (RAR) file in one of two ways. You can either upload a RAR file
from the local file system, or specify an existing RAR file on a server. The RAR file must be installed at the
node level, and you can select the node on this page.

To view this page in the administrative console click Resources > Resource Adapters > Resource
Adapters > Install RAR.

For information about installing a resource adapter, see the topic, Installing a resource adapter archive
(RAR) file.

Scope
Specifies the scope of the resource adapter. Only applications that are installed within this scope can use
this adapter.

Local file system
Specifies the path of a RAR that resides on the same server as the console.

Information Value
Data type String

Remote file system
Specifies the path of a RAR that resides on one of the nodes of the cell.

Information Value
Data type String

158 Administering WebSphere applications



Deploying SQLJ applications
Use Structured Query Language in Java (SQLJ) to develop data access applications that connect to DB2
databases. SQLJ is a set of programming extensions that enable you to use the Java programming
language to embed statements that provide SQL (Structured Query Language) database requests.

About this task

The advantages of developing applications with SQLJ include improved performance and a shorter, more
efficient development cycle. You can achieve the following with SQL:
v Improve performance by using static SQL statements.
v Reduce the development cycle:

– Write less code with the simpler SQLJ syntax, which reduces the number of lines of code that is
required to execute statements, set parameters, and retrieve parameters.

– Detect programming errors earlier in the development phase with the online check function, which
performs data type validation and schema validation. See the DB2 documentation for a complete list
of customization options.

Consider using SQLJ in situations where dynamic SQL is not needed, and where applications use DB2 as
the database server.

The application server includes enhanced SQLJ support for applications that use container-managed
persistence (CMP). The enhanced support includes the following items: include:

v Deploying CMP beans during the application installation in the application server.

v Customizing and binding SQLJ profiles with the administrative console or scripting.

v Customizing and binding SQLJ applications again without needing to reinstall the application.

These enhancements reduce the complexity of installing, deploying, and customizing SQLJ applications for
both container-managed and bean-managed persistence.

Procedure
1. Acquire the required drivers to deploy an SQLJ application in the application server. You need the

following files, depending on the JDBC provider that you use:

JDBC provider type Required files

DB2 Using IBM JCC Driver

This driver is also known as:

v IBM Data Server Driver for JDBC and SQLJ

v IBM DB2 Driver for JDBC and SQLJ

v IBM DB2 Universal JDBC Driver.

db2jcc.jar or db2jcc4.jar

DB2 Universal JDBC driver (deprecated) db2jcc.jar

2. Deploy the SQLJ application.

v Deploy applications that use container-managed persistence (CMP):

– “Deploying SQLJ applications that use container-managed persistence (CMP)” on page 160 with
the DB2 Using IBM JCC Driver.

– “Deploying SQLJ applications that use container-managed persistence (CMP) with the ejbdeploy
tool” on page 161.

v “Deploying SQLJ applications that use bean-managed persistence, servlets, or sessions beans” on
page 162.

v “Using embedded SQLJ with the DB2 for z/OS Legacy driver” on page 172 (deprecated).

3. Customize and bind the SQLJ profiles. Before the application server can use an SQLJ application, the
SQLJ statements must be processed for the database server. By default, four DB2 packages are

Chapter 7. Welcome to administering Data access resources 159



created in the database; one package is created for each isolation level. The customization process
augments the profiles with information that is specific to the database. If you do not customize the
SQLJ profiles, the SQLJ application uses dynamic SQL like a JDBC application.

v “Customizing and binding profiles for Structured Query Language in Java (SQLJ) applications” on
page 164.

v Customize and bind SQLJ profiles with the wsadmin scripting tool. See the topic, Customizing and
binding SQLJ profiles with the wsadmin tool.

v “Customizing and binding SQLJ profiles with the db2sqljcustomize tool” on page 166.

Deploying SQLJ applications that use container-managed persistence
(CMP)
Embed Structured Query Language in Java (SQLJ) statements in your applications to maximize the
efficiency of transactions with your databases. Before your applications can take advantage of SQLJ, you
must deploy the application and customize the SQLJ profiles that are created. The application server
provides functionality to use SQLJ as the persistence mechanism for enterprise beans that use
container-managed persistence. Deploy the CMP beans in the application server to enable SQLJ support.

Before you begin

You need an application that uses SQLJ and container-managed persistence. Develop this application in
Rational Application Developer or another development tool.

About this task

Deploy SQLJ applications in the application server to simplify the process of SQLJ translation and bean
deployment. The application server includes these new features for SQLJ support:

v Deploying CMP beans during the application installation in the application server.

v Customizing and binding SQLJ profiles with the administrative console or scripting.

v Customizing and binding SQLJ applications again without needing to reinstall the application.

You can also deploy the SQLJ application using the ejbdeploytool. Read the topic on deploying SQLJ
applications that use container-managed persistence (CMP) with the ejbdeploy tool for more information.

Procedure
1. Create a top-down mapping to a DB2 database.

2. From your DB2 installation, copy the sqlj.zip file to a directory on your workstation.

3. Deploy the EAR file in the administrative console.

a. Click Applications > Install New application.

b. Select Local file system or Remote file system, and browse to the EAR file.

c. Select Detailed - Show all installation options and parameters. Click Next.

d. In Step 1: Select installation options, select Deploy enterprise beans. Configure any other
options, and click Next.

e. In Step 3: Provide options to perform the EJB deploy, select SQLJ for Deploy EJB option -
Database access type.

f. Enter the location of the sqlj.zip file in the SQLj class path field.

g. Complete the installation process for the application.

What to do next

After the enterprise application is deployed, customize the SQLJ profiles using the administrative console,
scripting, or the db2sqljcustomize tool:

160 Administering WebSphere applications



v For administrative console support, read the topic on customizing and binding profiles for Structured
Query Language in Java (SQLJ) applications.

v For scripting support, read the topic on the application management command group for the AdminTask
object.

v For use of the db2sqljcustomize tool, read the topic on customizing and binding SQLJ profiles with the
db2sqljcustomize tool.

Deploying SQLJ applications that use container-managed persistence (CMP) with
the ejbdeploy tool
Embed Structured Query Language in Java (SQLJ) statements in your applications to maximize the
efficiency of transactions with your databases. Before your applications can take advantage of SQLJ, you
must deploy the application and customize the SQLJ profiles that are created. The application server
provides functionality to use SQLJ as the persistence mechanism for enterprise beans that use
container-managed persistence. Use the ejbdeploy tool to deploy the application.

About this task

You can deploy SQLJ applications with the ejbdeploy tool to deploy the enterprise application in a
stand-alone environment.

Alternatively, the application server includes enhanced SQLJ support for applications that use
container-managed persistence (CMP). The new features include:

v Deploying CMP beans during the application installation in the application server.

v Customizing and binding SQLJ profiles with the administrative console or scripting.

v Customizing and binding SQLJ applications again without needing to reinstall the application.

These enhancements reduce the complexity of installing, deploying, and customizing SQLJ applications for
both container-managed and bean-managed persistence.Read the topic on deploying SQLJ applications
that use container-managed persistence (CMP) for more information.

Procedure
1. Create a top-down mapping to a DB2 database.

2. From your DB2 installation, copy the sqlj.zip file to a directory on your workstation.

3. Modify the Java build path of your enterprise bean JAR project to include the sqlj.zip file.

4. Use Rational Application Developer or the DB2 SQLJ translator to automatically translate SQLJ.

v Use Rational Application Developer:

a. From the Project Navigator, click EJB_JAR_PROJECT_NAME > SOURCE_FOLDER >
META-INF > backends > database_version.

b. Open Map.mapxmi in the Mapping editor.

c. On the Overview panel, highlight the name of your JAR project in the Enterprise Beans column.
You must highlight the name of the JAR project, not the name of one of the enterprise beans
that is listed.

d. On the Properties panel, expand SQLJ.

e. Set Is using SQLJ? to True.

f. Set Translator Module to the fully qualified path of the sqlj.zip file on your workstation.

g. Save the Map.mapxmi file.

h. Export the enterprise archive (EAR) file.

v Use the DB2 SQLJ translator. This tool creates a .java version of your .sqlj file and a serialized
profile, with a .ser extension, that is used later in processing. Refer to the DB2 documentation for
more information on the SQLJ translator tool.

5. Deploy the EAR file with the ejbdeploy tool.

Chapter 7. Welcome to administering Data access resources 161



a. Verify that the app_server_root/bin directory is in your class path.

b. Run the ejbdeploy command utility with the -sqlj option. The ejbdeploy command will generate an
EAR file with the name you specify and an Ant script with the name application_name.ear.xml.

For example: :
ejbdeploy d:\application_name.ear

working d:\deployed_application_name.ear
-sqlj
-dbvendor DB2UDB_V81
-cp "C:\PROGRA~1\IBM\SQLLIB\java\sqlj.zip"

Note: Supply the location of the SQLJ translator sqlj.zip file with -cp, which is the class path option
The ejbdeploy command does not access sqlj.zip from your system class path.

6. Choose the option for customization.

v Use the application server's SQLJ support. Install the deployed application to customize the SQLJ
profiles with the application server or scripting.

a. Install the enterprise application in the application server.

Note: Do not select Deploy enterprise beans during the application installation process in the
administrative console. If you redeploy the enterprise beans from the administrative
console, you will lose the customization changes that you have made.

b. Customize the SQLJ profiles.

– For administrative console support, read the topic on customizing and binding profiles for
Structured Query Language in Java (SQLJ) applications.

– For scripting support, read the topic on the application management command group for the
AdminTask object.

v Customize and bind the SQLJ profiles with the db2sqljcustomize tool. Read the topic on customizing
and binding SQLJ profiles with the db2sqljcustomize tool.

Deploying SQLJ applications that use bean-managed persistence,
servlets, or sessions beans
You can embed Structured Query Language in Java (SQLJ) statements in your applications to maximize
the efficiency of transactions with your databases. Before your applications can take advantage of SQLJ,
deploy the application and customize the created SQLJ profiles. You can use Rational Application
Developer or the DB2 SQLJ translator to translate the application before deploying it on the application
server.

Before you begin

Create an SQLJ application using Rational Application Developer or another development tool.

About this task

To deploy SQLJ applications that do not use container-managed persistence, translate the SQLJ
application first to configure it for the application server environment. After translation, customize the SQLJ
profiles in the application server, with scripting, or with the db2sqljcustomizer tool.

SQLJ support for applications that use bean-managed persistence include these features:

v Customizing and binding SQLJ profiles with the administrative console or scripting.

v Customizing and binding SQLJ applications again without reinstalling the application.

Procedure
1. Optional: Create a backup copy of your .java file. For example if your file is called MyServlet.java,

copy MyServlet.java to MyServlet.java.bkup.

162 Administering WebSphere applications



2. Optional: Rename your .java file to a file name with an .sqlj extension. For example, if your
application is a servlet named MyServlet.java, rename MyServlet.java to MyServlet.sqlj

3. Optional: Edit the SQLJ file to convert the JDBC syntax to SQLJ syntax. When using SQLJ, if you
want connection management for the application server to function properly, specify correct connection
contexts.

For example, convert the following JDBC operation:
Connection con = dataSource.getConnection();
Statement stmt = con.createStatement();
stmt.execute("INSERT INTO users VALUES (1, ’user1’)");
con.commit();

to the following SQLJ:
// At the top of the file and just below the import statements, define Connection_Context
#sql context Connection_context;
.
.
Connection con = dataSource.getConnection();
.
.
Connection_context ctx1 = new Connection_context(con);
.
.
#sql [ctx1] {INSERT INTO users VALUES (1, ’user1’)};
.
.
con.commit(); ctx1.close();

When you run the SQLJ translator, the .java file that is created has the same name as your old .java
file. This provides you with a seamless transition to the SQLJ technology.

4. From your DB2 installation, copy the sqlj.zip file to a directory on your workstation. Modify the Java
build path of your enterprise bean Java archive (JAR) file project to include the sqlj.zip file.

5. Use Rational Application Developer or the DB2 SQLJ translator to automatically translate SQLJ.

v Use Rational Application Developer:

a. In the Project Navigator, right-click your JAR project, and select Add SQLJ Support....

b. Select the check boxes for the applications for which you want SQLJ support.

c. In the SQLJ JAR file field, type the fully qualified path to the sqlj.zip file that you previously
copied to your workstation.

d. Click Finish.

e. Export the enterprise archive (EAR) file.

v Use the DB2 SQLJ translator. This tool creates a .java version of the .sqlj file and a serialized
profile, with an .ser extension, that is used later in processing. Refer to the DB2 documentation for
more information about the SQLJ translator tool.

6. Package your JAR file for the enterprise application.

7. Install the application onto the application server, or customize the profiles with the db2sqljcustomize
tool.

v Customize the profiles with the application server.

a. Package the JAR file for your enterprise beans, servlets, and any .ser files into an enterprise
archive.

b. Install the application in the application server, and customize SQLJ profiles with the
administrative console or the wsadmin tool.

Note: Do not select Deploy enterprise beans during the application installation process in the
administrative console. If you redeploy the enterprise beans from the administrative
console, you lose the customization changes that you have made.

Chapter 7. Welcome to administering Data access resources 163



The application server provides enhanced support for SQLJ applications. Install the SQLJ
application in the application server, and you can customize and bind SQLJ profiles through the
administrative console or scripting:

– To customize the SQLJ profiles with the administrative console, read the topic about
customizing and binding profiles for Structured Query Language in Java (SQLJ) applications.

– To customize SQLJ profiles with scripting, read the topic about the application management
command group for the AdminTask object.

v To use the db2sqljcustomize tool, read the topic about customizing and binding SQLJ profiles with
the db2sqljcustomize tool for more information.

Customizing and binding profiles for Structured Query Language in
Java (SQLJ) applications
Simplify the process of customizing and binding SQLJ profiles for your applications by performing these
functions in the administrative console or with scripting. SQLJ profiles must be customized and bound
before the enterprise application can use the application's embedded SQL.

Before you begin

You must have an SQLJ application that has already been deployed and installed in the application server.

For SQLJ applications that use container-managed persistence, you can deploy the application in two
ways:

v Deploy the SQLJ application in the application server. See the topic on deploying SQLJ applications that
use container-managed persistence (CMP) for more information.

v Deploy SQLJ applications with the ejbdeploy tool. See the topic on deploying SQLJ applications that
use container-managed persistence (CMP) with the ejbdeploy tool.

For SQLJ application that use bean-managed persistence, see the topic on deploying SQLJ applications
that use bean-managed persistence, servlets, or session beans.

About this task

To take advantage of SQLJ applications in the application server, you need to customizing the SQLJ
profiles that contain the embedded SQL statements. By default, four DB2 packages are created in the
database; one for each isolation level. The customization process augments the profiles with information
that is specific to the DB2 database. The database uses this information at run time.

In addition to profile customization, you need to bind the customized profiles to the DB2 database. Profile
binding should only take place after the SQLJ profiles are customized.

You can also customize and bind profiles with scripting or the db2sqljcustomize tool:

v For scripting support, read the topic on the application management command group for the AdminTask
object.

v For information on the db2sqljcustomize tool, read the topic on customizing and binding SQLJ profiles
with the db2sqljcustomize tool for more information. If you customize profiles with the db2sqljcustomize
tool, you will need to reinstall the application.

Procedure
1. Make sure the necessary database tables exist, as described in the topic on deploying data access

applications.

2. Navigate to the SQLJ application that is installed in the application server. Click Applications >
Websphere enterprise applications > app_name.

164 Administering WebSphere applications



Note: Do not run multiple sessions of the administrative console to customize and bind profiles that
are in the same EAR file.

3. Navigate to the SQLJ profiles section. Click SQLj profiles. When you click this link, the application
server expands the EAR file for the application into a temporary directory; there might be a delay
before the panel for SQLJ profiles is displayed.

4. Select Customize and bind profiles or Bind packages. Choose your option based on the profiles
with which you are working:

v If your profiles have not been customized, or you want to customize the profiles again, choose
Customize and bind profiles.

v If the profiles are already customized, choose Bind packages.

5. Choose to select profiles or a profile group to customize and bind.

v Select profiles from the list that is provided.

a. Select the profiles from the list and click Add. The list displays the SQLJ profiles that are
present in the enterprise application.

Note:
– Select more than one profile by holding CTRL.
– Select a contiguous list of profiles by selecting the first profile name, holding SHIFT,

and selecting the last profile. You will select the first profile, last profile, and any
profiles in the middle.

b. Select Customize/bind the selected SQLj profiles as a group This option specifies that the
application server will create a .grp file that contains the SQLj profiles that are processed. You
can use the .grp file for other binding operations in the future. After you have completed this
panel and click OK, you will be given an option to download the .grp file.

v Select Use a profile group file to specify profiles to customize/bind. Select this to specify a
profile group to process. Click Browse... to locate the file on the system.

6. Complete the necessary information to connect to the database. You need to complete the following
fields:

Database URL
Specifies the URL of the database to which the profile/s will be bound. The typical syntax is:
jdbc:db2://<host name="">:<port>/<database name="">.</database></port></host> or

or
fully_qualified_host_name:port

User Specifies the user ID for the database administrator on the server where the database is
located.

Password
Specifies the password for the database administrator on the server where the database is
located.

Additional options
Specifies additional options to use during the customization and bind processes. See the DB2
documentation for a complete list of customization options.

Class path
Specifies the class path where sqlj.zip, and db2jcc.jar or db2jcc4.jar are located.

7. Click OK.

Note: If you are processing a large enterprise application, or you are processing many SQLJ profiles,
the process might take longer than the default timeout for the administrative console. The
default connection timeout for the application server's administrative console is set to 30

Chapter 7. Welcome to administering Data access resources 165



minutes. If the default timeout is reached and you lose the connection to the server, you can
check the system output log for the final results of the customization and bind process.

To prevent this disconnection, configure the console session timeout to a longer period of time.
After a successful customization and binding process, check the system output log for the total
processing time. Use that time period as a basis for the new timeout value. For information
about how to configure the console timeout, see the topic on changing the console session
expiration.

Results

After the application server finishes processing the SQLJ profiles, you will see the results from the
customization and binding. The results panel displays messages from the database server, as well as
summary results from the application server.

If the operation completed successfully, the following message will be printed to the system log:
ADMA0507I=ADMA0507I: The SQLJ operation on application {0} completed successfully. Exit code: {1}
ADMA0507I.explanation=This informational message indicates the program status.
ADMA0507I.useraction=No user action is required.

If the operation did not complete successfully, the following message will be printed to the system out log:
ADMA0506I=ADMA0506I: The SQLJ operation on application {0} did not complete successfully. Exit code: {1}
ADMA0506I.explanation=The SQLJ operation encountered a problem. This informational message indicates
the program status. Prior messages in the command output give details of the problem.
ADMA0506I.useraction=Check the command output for the cause of the problem.

Customizing and binding SQLJ profiles with the db2sqljcustomize tool
Customize and bind SQLJ profiles with the db2sqljcustomize tool before you install the SQLJ application in
the application server.

Before you begin

To perform this task, you must have SQLJ application that has been deployed, but the application should
not be installed in the application server. If the application is already installed in the application server, you
will need to reinstall the application after you customize the profiles. You also need serialized profiles for
the SQLJ application.

For SQLJ applications that use container-managed persistence, you can deploy the application in two
ways:

v Deploy the SQLJ application in the application server. See the topic on deploying SQLJ applications that
use container-managed persistence (CMP) for more information.

v Deploy SQLJ applications with the ejbdeploy tool. See the topic on deploying SQLJ applications that
use container-managed persistence (CMP) with the ejbdeploy tool.

For SQLJ application that use bean-managed persistence, see the topic on deploying SQLJ applications
that use bean-managed persistence, servlets, or sessions beans.

About this task

To take advantage of SQLJ applications in the application server, you need to customize the SQLJ
profiles. The customization process augments the profiles with information that is specific to the DB2
database. The database uses this information at run time. By default, four DB2 packages are created in
the database; one package is created for each isolation level.

The application server supports customizing and binding the SQLJ profiles in the administrative console or
with scripting:

166 Administering WebSphere applications



v For administrative console support, read the topic on customizing and binding profiles for Structured
Query Language in Java (SQLJ) applications.

v For scripting support, see the topic on the application management command group for the AdminTask
object.

Procedure
1. Make sure the necessary database tables exist, as described in the topic on deploying data access

applications.

2. Transfer the serialized profiles to the environment on which you installed your application.
Alternatively, use the Java jar command to extract the serialized profiles from the JAR file in your
installed EAR directory.

3. Add the location for the SQLJ profiles and the application's JAR file to your environment's class path.

4. Make sure the necessary database tables exist, as described in the topic on deploying data access
applications.

5. Optional: If your application is not running in a clustered environment, you can use the Ant script to
make customization easier. If you run a batch SQLJ customization against an EAR file with the
ejbdeploy tool, the tool produces an Ant script that is named application_name.ear.xml. You can use
this script file to run the DB2 customizer program against the serialized profiles in all of the enterprise
bean JAR files for the associated EAR file. The script updates each enterprise bean's JAR file with a
serialized profile and replaces the JAR files in the existing EAR file with the modified versions.

a. Change the values of the database URL, and the database user and password properties in
ejbdeploy.sqlj.properties. This file is a common file to all Ant scripts that are generated by the
ejbdeploy command. The ejbdeploy.sqlj.properties script defines the global properties for:
v Database URL - db.url
v User - db.user
v Password - db.password

The Ant script uses the URL, user, and password properties in the serialized profile to customize
the profile. By default, the properties for the serialized profile are created from the global
properties.

b. Run the Ant script, specifying the properties target. For example:
ws_ant -buildfile application_name.ear.xml properties

This script creates the properties file, application_name.ear.properties. The
application_name.ear.properties file contains properties that specify the default names for the
packages corresponding to each serialized profile in the EAR file. This is a sample properties file:
url.MyEJB1.jar.DB2UDBNT_V8_1=jdbc:db2://localhost:50000/MyDB1
user.MyEJB1.jar.DB2UDBNT_V8_1=dbuser
password.MyEJB1.jar.DB2UDBNT_V8_1=dbpassword
pkg.MyEJB1.jar.DB2UDBNT_V8_1=TEST
url.MyEJB2.jar.DB2UDBNT_V8_1=jdbc:db2://localhost:50000/MyDB2
user.MyEJB2.jar.DB2UDBNT_V8_1=dbuser
password.MyEJB2.jar.DB2UDBNT_V8_1=dbpassword
pkg.MyEJB2.jar.DB2UDBNT_V8_1=WORK

c. Use the DB2 Control Center to identify the packages that are installed in the database. The DB2
SQLJ customizer requires a type 4 database URL in the form of:
jdbc:db2://host-name:port/database-name

It also requires a user and password. The value of the port is 50000, unless you change it when
you install DB2.

d. Change the names that are used by the script file to ensure that the names for each
customization profile do not conflict with existing package names that are in the database. Ant
scripts that are generated for different EAR files use the same package names by default, and the
script will overwrite existing packages unless you change the names. Overwritten packages can
cause errors at run time.

Chapter 7. Welcome to administering Data access resources 167



DB2 uses the first seven characters of the package name. The DB2 customizer uses this name to
create four packages in the database. For example, if you specify the name TEST, the DB2
customizer will create packages called TEST1, TEST2, TEST3, and TEST4.

e. Run the Ant script. The Ant script updates the original EAR file with the modified serialized
profiles.

Note: Verify that you have db2jcc.jar in the class path. This file should have been added to the
class path environment variable when DB2 V8 FixPak1 was installed.

A sample Ant command looks like this:
ws_ant -Dwork.dir=tmp

-Dscript.property.file=other.properties
-buildfile application_name.ear.xml

where:

v -buildfile specifies the XML file to create.

v -Dscript.property.file specifies a different properties file. This parameter is optional. If you
want your Ant script to use a another file instead of application_name.ear.properties, specify the
Dscript.property.file property when you run the script.

v -Dwork.dir specifies a temporary working directory for the script. The script will create and
delete files and subdirectories in this directory. If the working directory contains existing files
and directories with the same name as the files and directories used by the script, the script
will erase or overwrite the files and directories. This script creates and uses a directory called
tmp as its working directory.

f. Proceed to installing the application in the application server..

6. Run the db2sqljcustomize tool to customize the SQLJ profiles that correspond to each enterprise
bean's JAR file. When you generate your deployment code, serialized profiles (files with a .ser
extension) that are specific to your application are created. These profiles exist in the same directory
as your SQLJ files, and the files must be customized to the environment before they can be used.
When you run the DB2 SQLJ customizer against the serialized profiles, you create static SQL in the
database that DB2 will use at run time. The customization phase creates four database packages that
contain static SQL, one for each isolation level.

a. Optional: Consider using the SQLJ customizer tool to enable context caching for your
application's data source connections. DB2 V8.1 fix pack 6 provides the new caching option with
the db2sqljcustomize tool called db2optimize. You can run this option if your application uses the
explicit connection context instead of the default context.

Note:

v SQLJ context caching support requires the DB2 with IBM JCC driver or Version 2.2 or
later of the DB2 Universal JDBC Driver with APAR PQ87786 applied.

v If you want to enable context caching for an application or BMP bean that caches
connections across transaction boundaries, you cannot use shareable connections. Use
the get/use/close pattern of connection usage when you invoke the db2optimize option,
or an object closed exception occurs. The following code gives an example of incorrect
connection usage for context caching:
utx.begin();

cons =ds.getConnection(
request.getParameter("db.user"),
request.getParameter("db.password"));

cmctx1 = new CM_context(cons);
#sql [cmctx1] {DELETE FROM cmtest WHERE id=1};

utx.commit();
//The next statement verifies the result:

#sql [cmctx1] cursor1 = {SELECT id, name FROM cmtest WHERE id=1};

168 Administering WebSphere applications



In this case, the Select statement elicits an object closed exception. To prevent the
exception from occurring, close the connection before committing the transaction. Then
get a new connection and a new context before running the Select statement.

The following example code demonstrates proper syntax for running the option on the serialized
profile:
sqlj -db2optimize SQLJTransactionTest.sqlj
db2sqljcustomize -url jdbc:db2://localhost:50000/dbname -user USER_NAME -password PASSWORD
SQLJTransactionTest_SJProfile0.ser

b. Run the db2sqljcustomize tool to customize the SQLJ profiles. After you successfully run the
db2sqljcustomize command, customized profiles exist in the directory from which you issued the
command. If you run the db2sqljcustomize command from the directory that contains the
serialized profiles that were not customized, the customized versions will overwrite previous
versions that have the same file names.

The recommended syntax for running the db2sqljcustomize command is:
db2sqljcustomize -url JDBC_URL -user USER_NAME -password PASSWORD
[-rootpkgname PACKAGE_NAME] SERIALIZED_PROFILE1 SERIALIZED_PROFILE2 ...

where:

v JDBC_URL is the JDBC URL that is used to access the DB2 system where your tables reside.

v USER_NAME is a valid user name for the DB2 system where your tables reside.

v PASSWORD is the password for the specified user name.

v PACKAGE_NAME is a valid partitioned data set (PDS) member name, up to seven characters
long. Each of the four packages that are created by the profile customizer begin with this name
and are appended with a number from 1 to 4. If you customize only one serialized profile, this
value defaults to a shortened version of the serialized profile name and the -rootpkgname
parameter is not required. If you customize more than one serialized profile with the same
command, there is no default value and the -rootpkgname parameter is required.

v SERIALIZED_PROFILE# is the name of the serialized profile that you are customizing.

– To customize more than one serialized profile with the same command, list multiple files,
separated by spaces.

– Alternatively, you can specify the -rootpkgname parameter to customize more than one
serialized profile with the same command.

Note: The following options provide more control over the customization process:

v -automaticbind yes specifies to run the DB2 SQLJ customizer against the serialized
profiles to create static SQL in the database that the database will use at run time. The
customization phase creates four database packages that contain static SQL, one for
each isolation level.

v -onlinecheck NO and -bindoptions "VALIDATE RUN" specifies settings to bypass errors
during a profile customization and ensure a successful customization.

7. Update the JAR file for the enterprise beans with the serialized profiles.

8. Use the jar command to replace the serialized profiles in your JAR file with the customized profiles.

Note: The customized files must be placed in a location that is part of the application class path, and
they must exist ahead of the serialized profiles that are not customized in your JAR file. If you
decide to replace the serialized profiles in your JAR file, maintain the directory structure in
which the profiles exist.

9. Package the JAR file for the enterprise bean, servlets, and serialized profiles into an enterprise
archive (EAR) file.

10. Install the application in the application server.

Chapter 7. Welcome to administering Data access resources 169



Note: Do not select Deploy enterprise beans during the application installation process in the
administrative console. If you redeploy the enterprise beans from the administrative console,
you will lose the customization changes that you have made.

SQLJ profiles and pureQuery bind files settings
Use this page to do customization and binding for the Structured Query Language in Java (SQLJ) profiles
for DB2 that are included in this application. You can also use this page to do binding for pureQuery bind
files in the application. You can view SQLJ profiles for other database types, but you cannot change these
profiles. PureQuery bind files are only valid for DB2. Use SQLJ or pureQuery to develop data access
applications that connect to DB2 databases. SQLJ is a set of programming extensions that enable a
programmer to use the Java programming language to embed statements that provide SQL database
requests. PureQuery provides an alternate set of APIs that can be used instead of JDBC to access the
DB2 database.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > SQLJ profiles and pureQuery bind files.

Advantages of developing applications with SQLJ include improved performance and a shorter, more
efficient development cycle. With SQLJ, you can:

v Improve performance by using static SQL statements.

v Reduce the development cycle by:

– Writing less code with the simpler SQLJ syntax, which reduces the amount of code that is required
to execute statements, and set and retrieve parameters.

– Detecting programming errors earlier in the development phase with the online check function, which
performs data type and schema validation. Activate this function by running it as an option with the
db2sqljcustomize command. See the DB2 documentation for a complete description of the SQLJ
customize command.

DB2 pureQuery run time is an alternative set of APIs to JDBC or SQLJ. Advantages of developing
applications with pureQuery include allowing SQL execution to be either dynamic or static. In addition to
improved performance by using static SQL statements, pureQuery has better problem determination and
diagnosis because it allows for errors at the DB2 server to be related back to application artifacts rather
than to SQL that was generated by an application generator.

Customize and bind profiles:

Specifies that the application server processes the SQLJ profiles that you select from this application.

Note: This selection does not apply to pureQuery. If selected, this option is ignored when processing
pureQuery bind files.

By default, one DB2 package is created in the database for each isolation level. The customization
process augments the profile or profiles with information that is specific for the DB2 database for use at
run time. Typically, the customization process should run after the SQLJ application has been translated
and before the application is started. If you do not run the customization step, the SQLJ application uses
dynamic SQL like a JDBC application.

Binding DB2 SQLJ profiles involves the process of binding the customized SQLJ profiles to the DB2
database.

Bind packages:

Specifies that the application server binds the SQLJ profiles that you select to the DB2 database server.

170 Administering WebSphere applications



Note: This selection does not apply to pureQuery. If selected, this option is ignored when processing
pureQuery bind files.

Bind packages from the SQLJ application that have already been customized.

Select and order the profiles to customize/bind:

Specifies the profiles to process from the list that is provided.

v Select a profile or group of profiles from the Available profiles, and click Add to add the profile that is
selected to Selected Profiles.

v Select a profile or group of profiles from the Selected Profiles, and click Remove to add the profile that
is selected to Available profiles.

When SQLJ or pureQuery profiles have been added to Selected Profiles, select profiles from that list and
use Move Up or Move Down to change the order in which the profiles are processed.

Customize/bind the selected SQLJ profiles as a group:

Specifies that the application server creates a .grp file that contains the SQLJ profiles that you selected.

Note: This selection does not apply to pureQuery. If selected, this option is ignored when processing
pureQuery bind files.

When you click OK, there is an option on the next page to download the .grp file.

Use a profile group file to specify profiles to customize/bind:

Specifies a profile group file from the local file system to customize or bind.

Database URL:

Specifies the URL of the database to which the profile or profiles are bound.

The typical syntax is:
jdbc:db2://host_name:port_name/database_name

User:

Specifies the user ID for the database administrator on the server where the database is located.

Password:

Specifies the password for the database administrator on the server where the database is located.

Additional options:

Specifies additional options to use during the customization and bind processes.

Options for pureQuery binding uses the following syntax:
-bindoptions "BLOCKING NO"

For more information about pureQuery bind options, refer to the DB2 pureQuery Bind Utility topic.

Class path:

Chapter 7. Welcome to administering Data access resources 171



Specifies the class path where the sqlj.zip, and db2jcc.jar or db2jcc4.jar files for SQLJ are located.
Specifies the class path where the pdq.jar, pdqmgt.jar, db2jcc.jar, and db2jcc_license_cisuz.jar files
for pureQuery are located.

Download SQLJ profile group
Use this panel to download the group file for the Structured Query Language in Java (SQLJ) profiles that
are bound together as a single package on the DB2 database server. You can use the file when
performing future customization or binding work on the application. Click the link that is provided to
download the profile group to your local file system. The group file has a filename extension of .grp and a
HTTP Content-Type of text/plain.. Your web browser settings might cause the browser to display the file
contents rather than prompting you for a download destination. If this happens, you can manually copy
and paste the contents into your own .grp file.

Note: This topic does not apply to IBM Optim™ PureQuery Runtime. IBM Optim PureQuery Runtime does
not support binding pureQuery bind files as a group.

Click Applications > Application Types > WebSphere enterprise applications > app_name > SQLJ
profiles and pureQuery bind files. When you are selecting the profiles to customize and bind, select
Customize/bind the selected SQLJ profiles as a group to view this console panel.

Review results
Use this panel to review the results from the customization and binding process for the Structured Query
Language in Java (SQLJ) profiles or pureQuery bind files. Use SQLJ or IBM Optim PureQuery Runtime to
develop data access applications that connect to DB2 databases. SQLJ is a set of programming
extensions that enable a programmer to use the Java programming language to embed statements that
provide SQL (Structured Query Language) database requests. IBM Optim PureQuery Runtime provides an
alternate set of APIs that can be used instead of JDBC to access the DB2 database.

Click Applications > Application Types > WebSphere enterprise applications > application_name >
SQLj profiles and pureQuery bind. Select profiles to customize and bind, complete the necessary fields,
and click OK to view this console panel.

Review results:

Displays the results of the customization and bind process. The field shows information that is received
from the database and summary statements from the application server.

Using embedded SQLJ with the DB2 for z/OS Legacy driver
Structured Query Language in Java (SQLJ) is a set of programming extensions that enable a programmer,
using the Java programming language, to embed statements that provide Structured Query Language
(SQL) database requests. You can use the DB2 for z/OS Legacy driver with your data access applications.

About this task

Notes:

1. To use SQLJ with WebSphere Application Server for z/OS and the DB2 for z/OS Legacy
Driver, install DB2 APAR PQ76442.

2. Container Managed Persistence (CMP) beans generated using SQLJ are not supported by the
DB2 for z/OS Legacy Driver. Use the DB2 Universal Driver for CMPs that are generated using
SQLJ.

Following are the steps required to develop applications with SQLJ that run on WebSphere Application
Server for z/OS v6.0 using the DB2 for z/OS Legacy driver.

172 Administering WebSphere applications



Procedure
1. Design your application in Rational Application Developer according to your requirements, using SQLJ

when necessary. For example, if you develop a bean called Test that uses BMP, code TestBean.sqlj
(instead of TestBean.java).

a. From your DB2 for z/OS installation, copy the db2sqljclasses.zip file to a directory on your
workstation, then modify the Java Build Path of your EJB Java archive (JAR) project to include the
db2sqljclasses.zip file.

b. Translate your SQLJ code according to the following steps:

1) Locate your SQLJ file, then use ASCII mode transfer to FTP it to an HFS in your z/OS
environment.

2) Use the sqlj command to translate your SQLJ code into Java code. Two files are produced,
one with a .java extension and the other with an .ser extension.
sqlj -compile=false SQLJ_FILE_NAME

3) Use ASCII mode transfer for the .java file and BINARY mode transfer for the .ser file to move
these files back to the directory on your workstation where the SQLJ file resides.

4) Refresh the project.

c. Generate deployment code for your application.

d. Export your EAR file.

2. Install your application

a. Create a data source with the DB2 for zOS Local JDBC Provider (RRS). When you define your
JDBC Provider and data source, the default values are sufficient for providing SQLJ support.

b. Install your application into WebSphere Application Server.

Use the data source you created in Step 1 to resolve your resource references.

3. Customize your serialized profiles When you generate your deployment code, serialized profiles, or
files with an .ser extension, that are specific to your application, are created. These profiles must be
customized in a z/OS environment before they can be used.

a. Use binary transfer to transfer the serialized profiles to the z/OS environment on which you
installed your application. Alternatively, use the Java jar command to extract the serialized profiles
from the EJB JAR file in your installed EAR directory.

b. Use the db2profc command to customize your serialized profiles. You can get information about the
various options associated with this command from the DB2 documentation; however, here are the
minimum requirements to customize your profile:
db2profc -pgmname=PROGRAM_NAME PROFILE_NAME

v Where:

– PROGRAM_NAME must be a valid MVS™ PDS member name, and can be up to seven
characters.

– PROFILE_NAME is the name of the serialized profile that you want to customize. You must
run db2profc one time for each profile.

v The profile customizer creates four DBRM data sets in the PDS USERNAME.DBRMLIB.DATA.
The member names of the DBRMs begin with what you specified as PROGRAM_NAME.

v Ensure that your CLASSPATH environment variable includes:

– The location of the serialized profile

– The EJB JAR file in your installed EAR directory

v Allocate a PDS to contain the DBRMs that are created. Name this PDS
USERNAME.DBRMLIB.DATA, where USERNAME is the user who implements the db2profc
command.

The following fields are an example:
Space units=TRACK
Primary quantity=15
Secondary quantity=5

Chapter 7. Welcome to administering Data access resources 173



Directory blocks=10
Record format=FB
Record length=80
Block size=27920
Data set name type=PDS

c. Place the existing serialized profiles, which are now customized, into a location that is part of the
application classpath and that is ahead of the serialized profiles that exist in your EJB JAR file.

The output of the DB2 profile customizer and the input file have the same name. Move the output
file ahead of the original serialized profile in the classpath. Alternatively, you can move the
customized profile into the EJB JAR file, replacing the original. It is recommended that you replace
the original file.

IMPORTANT: If you run the db2profc command from the directory where the serialized profile
exists, the profile customizer overwrites the serialized profile. Because you need only the
customized version after the profile customizer has run, this is not a problem.

d. Bind your DBRMs into a package.

Note: You must create your database tables before binding your DBRMs. If you do not, the bind
job fails.

The db2profc customization command creates a series of DBRMs that must be bound into
packages. For each customized profile, four DBRMs are created.

These DBRMs:

v Are located in USERNAME.DBRMLIB.DATA

v All have names that begin with what you specified as PROGRAM_NAME

v Are numbered from 1-through-4

For example, if you log in as IBMUSER, and you specify -pgmname=TESTBMP, then run the
db2profc command, the four data sets, TESTBMP1, TESTBMP2, TESTBMP3, AND TESTBMP4
are created and placed in the PDS IBMUSER.DBRMLIB.DATA.

These data sets must be bound into packages with isolation of UR, CS, RS, and RR. You must
run a bind for each serialized profile that you customize.

e. After you bind all of the DBRMs into packages, bind the packages into a plan. Name the plan
whatever you like.

IMPORTANT: You must also include the JDBC packages in the package list (PKLIST) of your new
plan. The default names for the JDBC packages to include are DSNJDBC.DSNJDBC1, ...,
DSNJDBC.DSNJDBC4. If your installation did not use the default names for the JDBC packages,
contact your DB2 administrator to determine the names of the JDBC packages that you need to
include.

Following is a sample job used to bind a new plan.

v One serialized profile was created while logged on as IBMUSER.

v -pgmname=TESTBMP was specified to run db2profc.

v The new plan is named SQLJPLAN.
//BBOOLS JOB (516B,1025),’IBMUSER’,MSGCLASS=H,CLASS=A,PRTY=14,
// NOTIFY=&SYSUID,TIME=1440,USER=IBMUSER,PASSWORD=IBMUSER,
// MSGLEVEL=(1,1)
//********************************************************************
//BINDOLS EXEC PGM=IKJEFT01,DYNAMNBR=20
//DBRMLIB DD DSN=IBMUSER.DBRMLIB.DATA,DISP=SHR
//* DD DSN=MVSDSOM.DB2710.SDSNDBRM,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *

DSN SYSTEM(DB2)

BIND -

174 Administering WebSphere applications



PACKAGE(TESTBMP) -
QUALIFIER(IBMUSER) -
MEMBER(TESTBMP1) -
VALIDATE(BIND) -
ISOLATION(UR) -
SQLERROR(NOPACKAGE) -

BIND -
PACKAGE(TESTBMP) -
QUALIFIER(IBMUSER) -
MEMBER(TESTBMP2) -
VALIDATE(BIND) -
ISOLATION(CS) -
SQLERROR(NOPACKAGE) -

BIND -
PACKAGE(TESTBMP) -
QUALIFIER(IBMUSER) -
MEMBER(TESTBMP3) -
VALIDATE(BIND) -
ISOLATION(RS) -
SQLERROR(NOPACKAGE) -

BIND -
PACKAGE(TESTBMP) -
QUALIFIER(IBMUSER) -
MEMBER(TESTBMP4) -
VALIDATE(BIND) -
ISOLATION(RR) -
SQLERROR(NOPACKAGE) -

BIND PLAN(SQLJPLAN) -
QUALIFIER(IBMUSER) -
PKLIST(TESTBMP.* -

DSNJDBC.* ) -
ACTION(REPLACE) RETAIN -
VALIDATE(BIND)

END
/*

f. Grant the appropriate authority to your new plan. Use an interface to DB2, such as SPUFI, to grant
the authority. Issue this command:
GRANT EXECUTE ON PLAN PLANNAME TO APPSERVERID

Where:

v PLANNAME is the name of the plan that you bound.

v APPSERVERID is the ID under which WebSphere Application Server runs; for example,
CBSYMSR1.

4. Configure your data source to use your new plan

a. From the WebSphere Application Server for z/OS Administrative Console, navigate to your Data
Source and select Custom Properties.

b. Select the Custom Property planName.

c. Update the value of planName with what you named your plan when it was bound.

d. Set enableSQLJ to true.

5. Stop and restart your server.

6. Run your application.

Chapter 7. Welcome to administering Data access resources 175



Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations - IBM i

These file paths are default locations. You can install the product and other components in any directory
where you have write access. You can create profiles in any valid directory where you have write access.
Multiple installations of WebSphere Application Server products or components require multiple locations.

app_client_root
The default installation root directory for the Application Client for IBM WebSphere Application
Server is the /QIBM/ProdData/WebSphere/AppClient/V85/client directory.

app_client_user_data_root
The default Application Client for IBM WebSphere Application Server user data root is the
/QIBM/UserData/WebSphere/AppClient/V85/client directory.

app_client_profile_root
The default Application Client for IBM WebSphere Application Server profile root is the
/QIBM/UserData/WebSphere/AppClient/V85/client/profiles/profile_name directory.

app_server_root
The default installation root directory for WebSphere Application Server - Express is the
/QIBM/ProdData/WebSphere/AppServer/V85/Express directory.

java_home

Table 4. Root directories for supported Java Virtual Machines.

This table shows the root directories for all supported Java Virtual Machines (JVMs).
JVM Directory

32–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit

64–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root
The default Web Server Plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver/profiles/profile_name directory.

plugins_root
The default installation root directory for Web Server Plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V85/webserver directory.

plugins_user_data_root
The default Web Server Plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver directory.

product_library
product_lib

This is the product library for the installed product. The product library for each Version 8.5
installation on the system contains the program and service program objects (similar to .exe, .dll,
.so objects) for the installed product. The product library name is QWAS85x (where x is A, B, C, and
so on). The product library for the first WebSphere Application Server Version 8.5 product installed
on the system is QWAS85A. The app_server_root/properties/product.properties file contains the
value for the product library of the installation, was.install.library, and is located under the
app_server_root directory.

176 Administering WebSphere applications



profile_root
The default directory for a profile named profile_name for WebSphere Application Server - Express
is the /QIBM/UserData/WebSphere/AppServer/V85/Express/profiles/profile_name directory.

shared_product_library
The shared product library, which contains all of the objects shared by all installations on the
system, is QWAS85. This library contains objects such as the product definition, the subsystem
description, the job description, and the job queue.

user_data_root
The default user data directory for WebSphere Application Server - Express is the
/QIBM/UserData/WebSphere/AppServer/V85/Express directory.

The profiles and profileRegistry subdirectories are created under this directory when you install
the product.
The user_data_root directory contains the default locations for WLP_USR_DIR and WLP_OUTPUT_DIR
when the Liberty profile is installed. These directories are user_data_root/wlp/usr and
user_data_root/wlp/output/servers, respectively.

web_server_root
The default web server path is /www/web_server_name.

Administering data access applications
These administrative tasks consist primarily of configuring the objects, or resources, through which
applications connect with a backend, and tuning those resources to handle the volume of connection
requests.

Procedure
1. If your application contains web modules or EJB modules that require access to a backend, configure

resources according to your type of enterprise information system (EIS):

v For a relational database, follow the steps outlined in the topic, Configuring a JDBC provider and
data source. If you are using a DB2 database, the topic, Configuring an application to use
pureQuery is another option. IBM Optim PureQuery Runtime provides an alternative to JDBC as a
way to access the DB2 database.

v For a non-relational database, or another type of EIS such as the Customer Information Control
System (CICS), you must configure a resource adapter and connection factories. The topic,
Accessing data using Java EE Connector Architecture connectors, provides information on setting
up these objects.

Note: When you specify the Java Naming and Directory Interface (JNDI) name for resources, adhere
to the following requirements:

v Do not assign duplicate JNDI names across different resource types (such as data sources
versus J2C connection factories or JMS connection factories).

v Do not assign duplicate JNDI names for multiple resources of the same type in the same
scope.

2. Configure an authentication alias for the new web module resource or EJB module resource only if the
application code, rather than WebSphere Application Server, authenticates connections with the
backend. This security configuration is called component-managed authorization, and is indicated in
the application deployment descriptor as res-auth = Application.

Container-managed authorization, which is designated as res-auth = Container, indicates that
Application Server performs signon for backend connections. The container-managed authentication
alias must be specified on the application resource reference. This task can be done during application
assembly or deployment, along with mapping the resource reference to a data source or connection
factory resource. After application deployment, however, you can alter the container-managed
authentication alias using the administrative console. Click Applications > Websphere enterprise

Chapter 7. Welcome to administering Data access resources 177



applications > application_name, and select the link to the appropriate mapping page. For example,
if you want to alter the alias of an EJB module resource, you might click Map data sources for all 2.x
CMP beans. For a web module resource, click Resource References.

Read the J2EE connector security topic for detailed reference on resource authentication.

3. If your application contains a client module that requires data access, see the topic, Configuring data
access for application clients. In this single configuration process, you can define authentication data
for either component-managed or container-managed signon.

4. Specify connection pool settings.

5. Test a connection to the new data source. See the article, Test connection service, for information on
the available methods for testing connections. This article also addresses important data source
settings that can affect the accuracy of your test connection results.

6. Set the JDBC trace service. The JDBC trace log information augments the JVM log data for data
source failures.

To activate the trace using the administrative console, read the topic, Enabling trace at server startup..
Specify WAS.database as the trace group and select com.ibm.ws.db2.logwriter as the trace string.

7. Gather connection pool statistics by activating the JDBC connection pool counters or the J2C
connection pool counters. Alternatively, you can use Performance Monitoring Infrastructure (PMI)
method calls to gather connection statistics; see the topic, Connection and connection pool statistics.

8. Tune your database to accommodate the connection volume. If you use DB2 UDB for
iSeries®, see the topic, DB2 Universal Database performance tips, as a starting point reference.

Configuring Java EE Connector connection factories in the
administrative console
To access an enterprise information system (EIS), configure connection factories, which instantiate
resource adapter classes for establishing and maintaining resource connections.

About this task

An application component uses a connection factory to access a connection instance, which the
component then uses to connect to the underlying enterprise information system (EIS). Examples of
connections include database connections, Java Message Service connections, and SAP R/3 connections.

Procedure
1. Click Resources > Resource Adapters > Resource adapters.

2. In the Resource adapters panel, select the resource adapter that you want to configure.

3. From the Additional Properties heading, click J2C connection factories.

a. Click New.

b. Specify any properties for the connection factory in the General Properties panel.

c. Select the authentication preference.

d. Select the aliases for Component-managed authentication, Container-managed authentication,
or both. Some choices for the mapping-configuration alias do not use a container-managed
authentication alias, so you will not be able to select a container-managed alias if one of those
mapping-configuration aliases is selected.

If you have defined security domains in the application server, you can click Browse... to select an
authentication alias for the resource that you are configuring. Security domains allow you to isolate
authentication aliases between servers. The tree view is useful in determining the security domain
to which an alias belongs, and the tree view can help you determine the servers that will be able to
access each authentication alias. The tree view is tailored for each resource, so domains and
aliases are hidden when you cannot use them.

178 Administering WebSphere applications



Note: If the resource adapter supports XA, an option for Authentication alias for XA recovery
will be available.

If there are no aliases that are available, or you want to define a different alias:

1) Click Apply to save the current settings.

2) Click JAAS - J2C authentication data from the Related Items heading.

3) Click New.

4) Define the properties for the alias in General Properties.

5) Click OK.

e. Click OK.

4. Click the name of the J2C connection factory that you created.

5. From the Additional Properties heading, click Connection pool properties.

a. Change any values by clicking the property name. For more information on the settings for
connection pools, read the topic Tuning connection pools, or the topic, Connection pool settings.

a. Click OK.

6. Click Custom properties from the Additional Properties heading.

a. Click any property name to change its value. If the UserName and Password properties are
defined, they will be overridden by the component-managed authentication alias that you specified
in the previous step.

b. Click Save.

7. Restart the application server for the changes to take effect.

Configuring connection factories for resource adapters within applications
To access an enterprise information system (EIS), configure connection factories, which instantiate
resource adapter classes for establishing and maintaining resource connections.

About this task

An application component uses a connection factory to access a connection instance, which the
component then uses to connect to the underlying enterprise information system (EIS). Examples of
connections include database connections, Java Message Service connections, and SAP R/3 connections.

Procedure
1. Optional: Install the application if it is not already installed on the application server.

a. Click Applications > Install New Application.

b. Browse to find the appropriate EAR file, which contains an RAR file.

c. Click Next.

d. Select Resource ref mapping to a J2C Connection Factory, then click Next.

e. In Step 2: Map module to servers, select the resource adapters with which to associate your
application and click Next.

f. Complete the installation process for the application. For more information on installing applications,
refer to the topic, Installing enterprise application files with the console.

2. Select the application that you want to configure.

3. Click Modules > Manage Modules.

4. Select the name of the RAR file in the Manage Modules panel.

5. Click Resource Adapter under the Additional Properties heading.

6. Under the Additional Properties heading, click J2C connection factories.

a. Click New.

b. Specify any properties for the connection factory in the General Properties panel.

c. Select the authentication preference.

Chapter 7. Welcome to administering Data access resources 179



d. Select an alias for Component-managed authentication if any application components with
Application or Per connection factory authentication specified in the resource reference are going to
be getting connections from this connection factory using the empty-argument getConnection()
method. For resources that support XA, you can specify an Authentication alias for XA recovery. If
there are no aliases that are available, or you want to define a different alias:

1) Click Apply to save the current settings.

2) Click JAAS - J2C authentication data under the Related Items heading.

3) Click New.

4) Define the properties for the alias in General Properties.

5) Click OK.

e. Click OK.

7. Click the name of the J2C connection factory that you created.

8. Under the Additional Properties heading, click Connection pool properties.

a. Change any values by clicking on the property name. For more information on the settings for
connection pools, refer to the topic, Tuning connection pools, or the topic, Connection pool settings.

a. Click OK.

9. Click Custom properties under the Additional Properties heading.

a. Click any property name to change its value. If the UserName and Password properties are
defined, they will be overridden by a component-managed authentication alias that you might
have configured.

b. Click Save.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations - IBM i

These file paths are default locations. You can install the product and other components in any directory
where you have write access. You can create profiles in any valid directory where you have write access.
Multiple installations of WebSphere Application Server products or components require multiple locations.

app_client_root
The default installation root directory for the Application Client for IBM WebSphere Application
Server is the /QIBM/ProdData/WebSphere/AppClient/V85/client directory.

app_client_user_data_root
The default Application Client for IBM WebSphere Application Server user data root is the
/QIBM/UserData/WebSphere/AppClient/V85/client directory.

app_client_profile_root
The default Application Client for IBM WebSphere Application Server profile root is the
/QIBM/UserData/WebSphere/AppClient/V85/client/profiles/profile_name directory.

app_server_root
The default installation root directory for WebSphere Application Server - Express is the
/QIBM/ProdData/WebSphere/AppServer/V85/Express directory.

java_home

180 Administering WebSphere applications



Table 5. Root directories for supported Java Virtual Machines.

This table shows the root directories for all supported Java Virtual Machines (JVMs).
JVM Directory

32–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit

64–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root
The default Web Server Plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver/profiles/profile_name directory.

plugins_root
The default installation root directory for Web Server Plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V85/webserver directory.

plugins_user_data_root
The default Web Server Plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver directory.

product_library
product_lib

This is the product library for the installed product. The product library for each Version 8.5
installation on the system contains the program and service program objects (similar to .exe, .dll,
.so objects) for the installed product. The product library name is QWAS85x (where x is A, B, C, and
so on). The product library for the first WebSphere Application Server Version 8.5 product installed
on the system is QWAS85A. The app_server_root/properties/product.properties file contains the
value for the product library of the installation, was.install.library, and is located under the
app_server_root directory.

profile_root
The default directory for a profile named profile_name for WebSphere Application Server - Express
is the /QIBM/UserData/WebSphere/AppServer/V85/Express/profiles/profile_name directory.

shared_product_library
The shared product library, which contains all of the objects shared by all installations on the
system, is QWAS85. This library contains objects such as the product definition, the subsystem
description, the job description, and the job queue.

user_data_root
The default user data directory for WebSphere Application Server - Express is the
/QIBM/UserData/WebSphere/AppServer/V85/Express directory.

The profiles and profileRegistry subdirectories are created under this directory when you install
the product.
The user_data_root directory contains the default locations for WLP_USR_DIR and WLP_OUTPUT_DIR
when the Liberty profile is installed. These directories are user_data_root/wlp/usr and
user_data_root/wlp/output/servers, respectively.

web_server_root
The default web server path is /www/web_server_name.

Connection pool settings
Use this page to configure connection pool settings.

This administrative console page is common to JDBC data sources and JMS connection factories (unified,
queue, or topic connection factories). To view this page, the path depends on the type of resource, but
generally you select an instance of the resource type then click Connection Pool. For example:

v Click Resources > JDBC > Data Sources > data_source > [Additional Properties] Connection pool
properties

Chapter 7. Welcome to administering Data access resources 181



v Click Resources > JMS->Queue connection factories->queue_connection_factory->[Additional
Properties] Connection pool

Note: Connection pooling is not supported in an application client. The application client calls the
database directly and does not go through a data source. If you want to use the getConnection()
request from the application client, configure the JDBC provider in the application client deployment
descriptors, using Rational Application Developer or an assembly tool. The connection is
established between application client and the database. Application clients do not have a
connection pool, but you can configure JDBC provider settings in the client deployment descriptors.

Connection timeout:

Specifies the interval, in seconds, after which a connection request times out and a
ConnectionWaitTimeoutException is thrown.

This value indicates the number of seconds that a connection request waits when there are no
connections available in the free pool and no new connections can be created. This usually occurs
because the maximum value of connections in the particular connection pool has been reached.

For example, if Connection timeout is set to 300, and the maximum number of connections are all in use,
the pool manager waits for 300 seconds for a physical connection to become available. If a physical
connection is not available within this time, the pool manager initiates a ConnectionWaitTimeout exception.
In most cases, you should not retry the getConnection() method; if a longer wait time is required you
should increase the Connection timeout setting value. If a ConnectionWaitTimeout exception is caught by
the application, review the expected connection pool usage of the application and tune the connection pool
and database accordingly.

If the Connection timeout is set to 0, the pool manager waits as long as necessary until a connection
becomes available. This happens when the application completes a transaction and returns a connection
to the pool, or when the number of connections falls below the value of Maximum Connections, and a new
physical connection is created.

If Maximum Connections is set to 0, an infinite number of physical connections are enabled, and the
Connection timeout value is ignored.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Maximum connections:

Specifies the maximum number of physical connections that you can create in this pool.

These are the physical connections to the backend resource. When this number is reached, no new
physical connections are created. The requester waits until a physical connection that is currently in use
returns to the pool, or until a ConnectionWaitTimeoutException error displays. For example, if the Max
Connections value is set to 5, and there are 5 physical connections in use, the pool manager waits for the
amount of time specified in Connection timeout for a physical connection to become free.

Knowing the number of connection pools that can potentially request connections from the backend, such
as a DB2 database or a CICS server, helps you determine a value for the Maximum Connections property.

182 Administering WebSphere applications



For multiple stand-alone application servers that use the same data source configuration, or
J2C connection factory configuration, a separate physical connection pool exists for each server. If you
clone these same application servers, WebSphere Application Server (base) implements a separate
connection pool for each clone.

All of these connection pools correspond to the same data source or connection factory
configuration. Therefore all of these connection pools can potentially request connections from the same
backend resource, at the same time. The single Maximum Connections value that you set on this console
panel applies to every one of these connection pools. Consequently, setting a high Maximum Connections
value can result in a load of connection requests that overwhelms your backend resource.

Information Value
Data type Integer
Default 10
Range 0 to maximum integer

If Max Connections is set to 0, the Connection timeout
value is ignored.

Tip: For better performance, set the value for the connection pool lower than the value for the maximum
thread pool connections of the web container. To configure this setting click Servers > Server types
> WebSphere application servers > server > Thread Pools, and modify the web container
property. Lower settings, such as 10-30 connections, perform better than higher settings, such as
100.

You can use the Tivoli® Performance Viewer to find the optimal number of connections in a pool. If
the number of concurrent waiters is greater than 0, but the processor load is not close to 100%,
consider increasing the connection pool size. If the Percent Used value is consistently low under
normal workload, consider decreasing the number of connections in the pool.

Minimum connections:

Specifies the minimum number of physical connections to maintain.

If the size of the connection pool is at or below the minimum connection pool size, the Unused timeout
thread does not discard physical connections. However, the pool does not create connections solely to
ensure that the minimum connection pool size is maintained. Also, if you set a value for Aged timeout,
connections with an expired age are discarded, regardless of the minimum pool size setting.

For example, if the Minimum Connections value is set to 3, and one physical connection is created, the
Unused timeout thread does not discard that connection. By the same token, the thread does not
automatically create two additional physical connections to reach the Minimum Connections setting.

Information Value
Data type Integer
Default 1
Range 0 to max int

Reap time:

Specifies the interval, in seconds, between runs of the pool maintenance thread.

For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap
Time interval affects the accuracy of the Unused timeout and Aged timeout settings. The smaller the
interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less

Chapter 7. Welcome to administering Data access resources 183



than the values of Unused timeout and Aged timeout. When the pool maintenance thread runs, it discards
any connections remaining unused for longer than the time value specified in Unused timeout, until it
reaches the number of connections specified in Minimum Connections. The pool maintenance thread also
discards any connections that remain active longer than the time value specified in Aged timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread
runs more often and degrades performance.

To disable the pool maintenance thread, set Reap Time to 0, or set both Unused timeout and Aged timeout
to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, and Unused
timeout and Aged timeout are ignored. However, if Unused Timeout and Aged Timeout are set to 0, the
pool maintenance thread runs. Physical connections which timeout due to non-zero timeout values are
discarded as well as those connections that reside in a used pool (or shared pool) because they have
been held longer than the time interval set for Aged Timeout.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Unused timeout:

Specifies the interval in seconds after which an unused or idle connection is discarded.

Set the Unused timeout value higher than the Reap timeout value for optimal performance. Unused
physical connections are only discarded if the current number of connections exceeds the Minimum
Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance
thread is enabled (Reap Time is not 0), any physical connection that remains unused for 2 minutes is
discarded.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on
page 183 for more information.

Information Value
Data type Integer
Units Seconds
Default 1800
Range 0 to max int

Aged timeout:

Specifies the interval in seconds before a physical connection is discarded.

Setting Aged timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the
Aged timeout value higher than the Reap timeout value for optimal performance.

For example, if the Aged timeout value is set to 1200, and the Reap Time value is not 0, any physical
connection that remains in existence for 1200 seconds (20 minutes) is discarded from the pool. The only
exception is if the connection is involved in a transaction when the aged timeout is reached, the
application server will not discard the connection until after the transaction is completed and the
connection is closed.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on
page 183 for more information.

184 Administering WebSphere applications



Information Value
Data type Integer
Units Seconds
Default 0
Range 0 to max int

Purge policy:

Specifies how to purge connections when a stale connection or fatal connection error is detected.

Valid values are EntirePool and FailingConnectionOnly.

Information Value
Data type String
Defaults v EntirePool for J2C connection factories and

JMS-related connection factories

v EntirePool for WebSphere Version 4.0 data sources

v EntirePool for current version data sources that you
create through the administrative console

v EntirePool for current version data sources that you
script through wsadmin AdminConfig commands,
starting JDBC templates that are built into WebSphere
Application Server. For information about the command
createUsingTemplate, see the topic, Commands for the
AdminConfig object.

v FailingConnectionOnly for data sources that you script
in wsadmin tool without starting JDBC templates

:

Chapter 7. Welcome to administering Data access resources 185



Information Value
Range

EntirePool
All connections in the pool are marked stale. Any
connection not in use is immediately closed. A
connection in use is closed and issues a stale
connection Exception during the next operation
on that connection. Subsequent getConnection()
requests from the application result in new
connections to the database opening. When
using this purge policy, there is a slight possibility
that some connections in the pool are closed
unnecessarily when they are not stale. However,
this closure is a rare occurrence. In most cases,
a purge policy of EntirePool is the best choice.

FailingConnectionOnly
Only the connection that caused the stale
connection exception is closed. Although this
setting eliminates the possibility that valid
connections are closed unnecessarily, it makes
recovery from an application perspective more
complicated. Because only the currently failing
connection is closed, there is a possibility that the
next getConnection() request from the application
can return a connection from the pool that is also
stale. The result is more stale connection
exceptions.

The connection pretest function attempts to
insulate an application from pooled connections
that are not valid. When a backend resource,
such as a database, goes down, pooled
connections that are not valid might exist in the
free pool. This is especially true when the purge
policy is failingConnectionOnly; in this case, the
failing connection is removed from the pool.
Depending on the failure, the remaining
connections in the pool might not be valid.

Connection pool advanced settings
Use this page to specify connection pooling related settings.

This administrative console page is common to a range of resource types: for example, JDBC data
sources and JMS queue connection factories. To view this page, the path depends on the type of
resource, but generally you select an instance of the resource provider, then an instance of the resource
type, then click Connection pool properties > Advanced connection pool properties.

For example, click:

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources > data_source >
Connection pool properties > Advanced connection pool properties

v Resources > JMS > JMS provider > Default messaging > Queue connection factory >
JMS_queue_connection_factory > Connection pool properties > Advanced connection pool
properties.

The Connection Pool Partition Support creates buckets and hashes on the buckets for optimizing the
connection pool for getConnection method requests. The number of shared partitions, the number of free
pool partitions, and the free pool distribution table size are properties that are related to reducing the time

186 Administering WebSphere applications



a thread must wait for a synchronization lock. On systems with a single processor, these values do not
make a difference. On systems with multiple processors, these settings can reduce the performance cost
that is associated with managing multiple threads.

When the default values are used, which means that the partitions are set to 0, the connection pool
automatically selects the best values. The ability to change the default values is primarily provided for
connection pools that exceed 500 maximum connections. When the connection pool exceeds 500
maximum connections, the formula that is used for auto-tuning the connection pool might create large
objects whose size you might want to reduce. Performance might be reduced by reducing the partition
size. However, that impact is normal when you weigh memory versus performance.

Number of shared partitions:

Specifies the number of partitions that are created in each of the shared pools.

Partition support is always enabled. The default values of 0 should be used to enable the connection pool
to pick the best values for performance. In some cases where large multiprocessor systems are used,
adjusting the partition support properties might help performance.

Information Value
Data type integer
Default value 0
Range 0 to max int

Number of free pool partitions:

Specifies the number of partitions that are created in each of the free pools.

Information Value
Data type integer
Default value 0
Range 0 to max int

Free pool distribution table size:

Determines the distribution of Subject and CRI hash values in the table that indexes connection usage
data.

These hash values are used to match connection request credentials with the connections. A free pool
distribution table size larger than 1 can yield more efficient distribution of hash values, to help minimize
search collisions within the table. Fewer collisions can result in faster retrieval of a connection that
matches a request. Use a larger value for free pool distribution table size if your resource receives many
incoming requests with varying credentials. Smaller values (1) should be used if the same credentials
apply to all incoming requests for the resource. The value of 0 means random distribution.

Information Value
Data type integer
Default value 0
Range 0 to max int

Surge threshold:

Specifies the number of connections created before surge protection is activated.

Chapter 7. Welcome to administering Data access resources 187



Surge protection is designed to prevent overloading of a data source when too many connections are
created at the same time. Surge protection is controlled by two properties, surge threshold and surge
creation interval.

The surge threshold property specifies the number of connections created before surge protection is
activated. After you reach the specified number of connections, you enter surge mode.

The surge creation interval property specifies the amount of time, in seconds, between the creation of
connections when in surge mode.

For example, assume the follow settings:
v maxConnections = 50
v surgeThreshold = 10
v surgeCreationInterval = 30 seconds

If the connection pool receives 15 connection requests, 10 connections are created at about the same
time. The 11th connection is created 30 seconds after the first 10 connections. The 12th connection is
created 30 seconds after the 11th connection. Connections continue to be created every 30 seconds until
there are no more new connections needed or you reach the maxConnections value.

Surge connection support starts if the surge threshold is > -1 and the surge creation interval is > 0. The
surge threshold property has a default value of -1, which indicates that it is turned off.

Information Value
Data type integer
Default value -1
Range -1 to max int

Surge creation interval:

Specifies the amount of time between connection creates when you are in surge protection mode.

When the number of connections specified for the surge threshold property is reached, the surge creation
interval property dictates how much time each new connection request must wait before fulfillment.

Restriction: Surge protection does not work for a connection pool that is managed through an activation
specification that coordinates with a JMS queue connection factory and default messaging
provider. To control incoming connections for JMS calls such as onMessage, see the help
topic for the administrative console page JMS > Activation specification >
activation_specification_name.

Information Value
Data type integer
Default value 0
Range 0 to max int

Stuck timer interval:

A stuck connection is an active connection that is not responding or returning to the connection pool. If the
pool is stuck (you have reached the stuck threshold), a resource exception is given to all new connection
requests until the pool is unstuck. The stuck timer interval property is the interval for the timer, for
example, how often the connection pool checks for stuck connections. The default value is 0 seconds.

If an attempt to change the stuck time, stuck timer interval, or stuck threshold properties using the
wsadmin scripting tool fails, an IllegalState exception occurs. The pool cannot have any active requests

188 Administering WebSphere applications



or active connections during this request. For the stuck connection support to start, the stuck time and the
stuck threshold property values must be greater than 0 and maximum connections must be greater than 0.

Also, the stuck timer interval, if it is set, must be less than the stuck time value. In fact, it is suggested that
the stuck timer interval be one-quarter to one-sixth the value of stuck time so that the connection pool
checks for stuck connections 4 - 6 times before a connection is declared stuck. This interval check
reduces the likelihood of false positives.

Information Value
Data type integer
Default value 0
Range 0 to max int

Stuck time:

A stuck connection is an active connection that is not responding or returning to the connection pool. If the
pool is stuck (you have reached the stuck threshold), a resource exception is given to all new connection
requests until the pool is unstuck. The stuck time property is the interval, in seconds, allowed for a single
active connection to be in use to the backend resource before it is considered to be stuck.

Information Value
Data type integer
Default value 0
Range 0 to max int

Stuck threshold:

A stuck connection is an active connection that is not responding or returning to the connection pool. If the
pool is stuck (you have reached the stuck threshold), a resource exception is given to all new connection
requests until the pool is unstuck. An application can explicitly catch this exception and continue
processing. The pool continues to periodically check for stuck connections when the number of stuck
connections is past the threshold. If the number of stuck connections drops below the stuck threshold, the
pool detects this during its periodic checks and enables the pool to begin servicing requests again. The
stuck threshold is the number of connections that must be considered stuck for the pool to be in stuck
mode.

Information Value
Data type integer
Default value 0
Range 0 to max int

Connection pool (Version 4) settings
Use this page to create a connection pool for a Version 4.0 data source.

You can access this administrative console page in one of two ways:

v Resources > JDBC > JDBC Providers > JDBC_provider > Data sources (WebSphere Application
Server V4) > data_source > Connection pool properties (version 4)

v Resources > JDBC > Data sources (WebSphere Application Server V4) > data_source >
Connection pool properties (version 4)

Scope: Resources such as JDBC providers, namespace bindings, or shared libraries can be defined at
multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at
more general scopes.

Chapter 7. Welcome to administering Data access resources 189



Note that no matter what the scope of a defined resource, the resource's properties only apply at an
individual server level. For example, if you define the scope of a data source at the cell level, all users in
that cell can look up and use that data source, which is unique within that cell. However, resource property
settings are local to each server in the cell. For example, if you define max connections to 10, then each
server in that cell can have 10 connections.

When resources are created, they are always created into the current scope selected in the panel. To view
resources in other scopes, specify a different node or server in the scope selection form.

For general information, see Administrative console scope settings in the Related Reference section.

Information Value
Data type String

Minimum pool size:

Specifies the minimum number of connections to maintain in the pool.

The minimum pool size can affect the performance of an application. Smaller pools require less overhead
when the demand is low because fewer connections are held open to the database. When the demand is
high, the first applications experience a slow response because new connections are created if all others
in the pool are in use.

Information Value
Data type Integer
Default 1
Range Any non-negative integer.

Maximum pool size:

Specifies the maximum number of connections to maintain in the pool.

If the maximum number of connections is reached and all connections are in use, additional requests for a
connection wait up to the number of seconds specified as the connection timeout. The maximum pool size
can affect the performance of an application. Larger pools require more overhead when demand is high
because there are more connections open to the database at peak demand. These connections persist
until idled out of the pool. If the maximum value is smaller, longer wait times or possible connection
timeout errors during peak times can occur. Ensure that the database can support the maximum number
of connections in the application server, in addition to any load that it has outside of the application server.

Information Value
Data type Integer
Default 10
Range Any positive integer

Connection timeout:

Specifies the maximum number of seconds an application waits for a connection from the pool before
timing out and triggering a ConnectionWaitTimeout exception. WebSphere Application Server acts on this
value only if you set the maximum pool size property, in which case the number of maximum connections
serves as a trigger for enforcing the wait timeout property.

Information Value
Data type Integer

190 Administering WebSphere applications



Information Value
Units Seconds
Default 180
Range Any non-negative integer

Setting this value to 0 disables the connection timeout.

If you accept the default value, Application Server issues the ResourceAllocation exception immediately
after the pool manager indicates that the maximum number of connections are in use. If you disable
connection timeout, Application Server does not issue an exception. Instead, the pool manager queues
subsequent connection requests until it can allocate a connection.

Idle timeout:

Specifies the maximum number of seconds that an idle (unallocated) connection can remain in the pool
before being removed to free resources.

Connections need to idle out of the pool because keeping connections open to the database can cause
database memory problems. However, not all connections are idled out of the pool, even if they are older
than the Idle Timeout setting. A connection is not idled if removing the connection would cause the pool to
shrink below its minimum size. Setting this value to 0 disables the idle timeout.

Information Value
Data type Integer
Units Seconds
Default 1800
Range Any non-negative integer

Orphan timeout:

Specifies the maximum number of seconds that an application can hold a connection without using it
before the connection returns to the pool

If there is no activity on an allocated connection for longer than the Orphan Timeout setting, the
connection is marked for orphaning. After another Orphan Timeout number of seconds, if the connection
still has no activity, the connection returns to the pool. If the application tries to use the connection again, it
is issued a stale connection exception. Connections that are enlisted in a transaction are not orphaned.
Setting this value to 0 disables the orphan timeout.

Information Value
Data type Integer
Units Seconds
Default 1800
Range Any non-negative integer

Statement cache size:

Specifies the number of cached prepared statements to keep per connection.

The largest value you would need to set your cache size to if you do not want any cache discards is
determined as follows: for each application that uses this data source on a particular server, add up the
number of unique prepared statements (as determined by the sql string, concurrency, and the scroll type).
This is the maximum number of possible prepared statements that can be cached on a given connection

Chapter 7. Welcome to administering Data access resources 191



over the life of the server. Setting the cache size to this value means you never have cache discards. This
provides better performance. However, because of potential resource limitations, this might not always be
possible.

Information Value
Data type Integer
Default 10
Range Any non-negative integer

Disable auto connection cleanup:

Specifies whether the connection pooling software automatically closes connections from the data source
at the end of a transaction. Set this property if you want to maintain and reuse the same connection
across multiple transactions.

The default is false, which indicates that when a transaction completes, the application server closes the
connection and returns it to the pool. Any use of the connection after the transaction has ended results in
a stale connection exception, because the connection is closed and has returned to the pool. This
mechanism ensures that connections are not held indefinitely by the application. If the value is set to true,
the connection is not returned to the pool at the end of a transaction. In this case, the application must
return the connection to the pool by calling the close() method. If the application does not close the
connection, the pool can run out of connections for other applications to use.

Information Value
Data type Boolean (check box)
Default False (clear)

J2C Connection Factories collection
Use this page to view Java 2 Connector (J2C) connection factories, which represent sets of connection
configuration values.

Application components such as enterprise beans have resource reference descriptors that refer to the
connection factory, not the resource adapter. The connection factory is really a configuration properties list
holder. In addition to the arbitrary set of configuration properties defined by the vendor of the resource
adapter, there are several standard configuration properties that apply to the connection factory. These
standard properties are used by the Java 2 Connectors connection pool manager in the application server
run time and are not known by the vendor-supplied resource adapter code.

You can access this administrative console page in one of two ways:

v Resources > Resource Adapters > J2C connection factories

v Resources > Resource Adapters > Resource adapters > resource_adapter > J2C connection
factories

Name:

Specifies the display name of a connection factory.

Information Value
Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name of this connection factory.

192 Administering WebSphere applications



Information Value
Data type String

Scope:

Specifies the scope of the connection factory. Only applications that are installed within this scope can use
this connection factory.

Provider:

Specifies the resource adapter that WebSphere Application Server uses for this connection factory.

Description:

Specifies a text description of this connection factory.

Information Value
Data type String

Connection factory interface:

Specifies the fully qualified name of the interface that provides the implementation class for the connection
factory.

Category:

Specifies a string that you can use to classify or group this connection factory.

Information Value
Data type String

J2C connection factories settings:

Use this page to specify settings for a connection factory.

You can access this administrative console page in one of two ways:

v Resources > Resource Adapters > J2C connection factories > J2C_connection_factory

v Resources > Resource Adapters > Resource adapters > resource_adapter > J2C connection
factories > J2C_connection_factory

Scope:

Specifies the scope of the resource adapter that connects applications to an enterprise information system
(EIS) through this connection factory. Only applications that are installed within this scope can use this
connection factory.

Provider:

Specifies the resource adapter that WebSphere Application Server uses for this connection factory.

Provider can be set only when you create a new connection factory. The list shows all of the existing
resource adapters that are defined at the relevant scope. Select one from the list if you want to use an
existing resource adapter as Provider.

Chapter 7. Welcome to administering Data access resources 193



Create new provider:

Provides the option of configuring a new resource adapter for the new connection factory.

Create New Provider is displayed only when you create, rather than edit, a connection factory.

Clicking Create New Provider triggers the console to display the resource adapter configuration page,
where you create a new adapter. After you click OK to save your settings, you see the connection factory
collection page. Click New to define a new connection factory for use with the new resource adapter; the
console now displays a configuration page that lists the resource adapter as the new connection factory
Provider.

Name:

Specifies the name of this connection factory.

This is a required property.

Information Value
Data type String

JNDI name:

Specifies the JNDI name of this connection factory.

For example, the name could be eis/myECIConnection.

After you set this value, save it and restart the server. You can see this string when you run the
dumpNameSpace tool. This is a required property. If you do not specify a JNDI name, it is completed by
default using the Name field.

Information Value
Data type String
Default eis/display name

Important: Adhere to the following requirements for JNDI names:

v Do not assign duplicate JNDI names across different resource types (such as data sources
versus J2C connection factories or JMS connection factories).

v Do not assign duplicate JNDI names for multiple resources of the same type in the same
scope.

Description:

Specifies a text description of this connection factory.

Information Value
Data type String

Connection factory interface:

Specifies the fully qualified name of the Connection Factory Interfaces supported by the resource adapter.

This is a required property. For new objects, the list of available classes is provided by the resource
adapter in a drop-down list. After you create the connection factory, the field is a read only text field.

194 Administering WebSphere applications



Information Value
Data type Drop-down list or text

Category:

Specifies a string that you can use to classify or group this connection factory.

Information Value
Data type String

Authentication alias for XA recovery:

Specifies the authentication alias that is used during XA recovery processing. If this alias name is changed
after a server failure, the subsequent XA recovery processing uses the original setting that was in effect
before the failure.

Select an alias from the list.

To define a new alias that is not displayed in the list:

1. Click Apply. Under Related Items, you now see a listing for Java Platform, Enterprise Edition (Java
EE) Connector Architecture (J2C) authentication data entries.

2. Click JAAS - J2C authentication data.

3. Click New.

4. Define an alias.

5. Click OK and Save. The console now displays an alias collection page that lists all configured aliases.
Above the table, this page also displays the name of your connection factory in the breadcrumb path.

6. Click the name of your J2C connection factory to return to the configuration page for the connection
factory that you are creating.

7. Select the new alias in the container-managed authentication alias list.

8. Click Apply.

If the resource adapter does not support XA transactions, this field is not displayed. The default value
comes from the selected alias for application authentication, if specified.

If you have defined multiple security domains and multiple authentication aliases in the application server,
you can click Browse... to select an authentication alias for the resource that you are configuring. Security
domains allow you to isolate authentication aliases between servers. The tree view is useful in determining
the security domain to which an alias belongs, and the tree view can help you determine the servers that
is able to access each authentication alias. The tree view is tailored for each resource, so domains and
aliases are hidden when you cannot use them.

The browse button is only accessible if at least one security domain is defined and assigned a scope that
is applicable to the resource that is being edited. Additionally, that security domain must contain at least
one JAAS J2C Authentication alias.

Information Value
Data type Drop-down list

Component-managed authentication alias:

Specifies authentication data for component-managed signon to the resource.

Chapter 7. Welcome to administering Data access resources 195



Select an alias from the list.

To define a new alias that is not displayed in the list:

1. Click Apply. Under Related Items, you now see a listing for Java Platform, Enterprise Edition (Java
EE) Connector Architecture (J2C) authentication data entries.

2. Click JAAS - J2C authentication data.

3. Click New.

4. Define an alias.

5. Click OK and Save. The console now displays an alias collection page that lists all configured aliases.
Above the table, this page also displays the name of your connection factory in the breadcrumb path.

6. Click the name of your J2C connection factory to return to the configuration page for the connection
factory that you are creating.

7. Select the new alias in the container-managed authentication alias list.

8. Click Apply.

If you have defined multiple security domains and multiple authentication aliases in the application server,
you can click Browse... to select an authentication alias for the resource that you are configuring. Security
domains allow you to isolate authentication aliases between servers. The tree view is useful in determining
the security domain to which an alias belongs, and the tree view can help you determine the servers that
is able to access each authentication alias. The tree view is tailored for each resource, so domains and
aliases are hidden when you cannot use them.

The browse button is only accessible if at least one security domain is defined and assigned a scope that
is applicable to the resource that is being edited. Additionally, that security domain must contain at least
one JAAS J2C Authentication alias.

Information Value
Data type List

The alias that you configure for component-managed authentication does not apply to all clients that must
access the secured resource. External Java clients with Java Naming and Directory Interface (JNDI)
access can look up a Java 2 Connector (J2C) resource such as a data source or Java Message Service
(JMS) queue. However, they are not permitted to take advantage of the component-managed
authentication alias defined on the resource. This alias is the default value that is used when the
getConnection() method does not specify any authentication data, like user and password, or a value for
ConnectionSpec. If an external client needs a connection, it must assume responsibility for the
authentication by passing it through arguments on the getConnection() call.

Mapping-configuration alias:

Specifies the authentication alias for the Java Authentication and Authorization Service (JAAS) mapping
configuration that is used by this connection factory.

The DefaultPrincipalMapping JAAS configuration maps the authentication alias to the user ID and
password. You can define and use other mapping configurations.

Note: Some mapping-configuration aliases do not use container-managed authentication aliases, so you
cannot select a container-managed authentication alias if one of those mapping-configuration
aliases is selected.

Information Value
Data type Pick-list

196 Administering WebSphere applications



Container-managed authentication alias:

Specifies authentication data, which is a JAAS - J2C authentication data entry, for container-managed
signon to the resource. This setting can be disabled depending on the value that is selected for the
Mapping-configuration alias setting.

Select an alias from the list.

To define a new alias that is not displayed in the list:

1. Click Apply. Under Related Items, you now see a listing for Java Platform, Enterprise Edition (Java
EE) Connector Architecture (J2C) authentication data entries.

2. Click JAAS - J2C authentication data.

3. Click New.

4. Define an alias.

5. Click OK and Save. The console now displays an alias collection page that lists all configured aliases.
Above the table, this page also displays the name of your connection factory in the breadcrumb path.

6. Click the name of your J2C connection factory to return to the configuration page for the connection
factory that you are creating.

7. Select the new alias in the container-managed authentication alias list.

8. Click Apply.

If you have defined multiple security domains and multiple authentication aliases in the application server,
you can click Browse... to select an authentication alias for the resource that you are configuring. Security
domains allow you to isolate authentication aliases between servers. The tree view is useful in determining
the security domain to which an alias belongs, and the tree view can help you determine the servers that
are able to access each authentication alias. The tree view is tailored for each resource, so domains and
aliases are hidden when you cannot use them.

The browse button is only accessible if at least one security domain is defined and assigned a scope that
is applicable to the resource that is being edited. Additionally, that security domain must contain as least
one JAAS J2C Authentication alias.

Information Value
Data type Pick-list

Authentication preference:

Specifies the authentication mechanisms defined for this connection factory.

This setting specifies which of the authentication mechanisms defined for the corresponding resource
adapter applies to this connection factory. Common values, depending on the capabilities of the resource
adapter, are: KERBEROS, BASIC_PASSWORD, and None.

If None is chosen, the application component is expected to manage authentication (<res-
auth>Application</res-auth>). In this case, the user ID and password are taken from one of the following:
v The component-managed authentication alias
v UserName, Password Custom Properties
v Strings passed on the getConnection method

For example, if two authentication mechanism entries are defined for a resource adapter in the ra.xml
document:
v <authentication-mechanism-type>BasicPassword</authentication-mechanism-type>
v <authentication-mechanism-type>Kerbv5</authentication-mechanism-type>

Chapter 7. Welcome to administering Data access resources 197



The authentication preference specifies the mechanism to use for container-managed authentication. An
exception is issued during server startup if a mechanism that is not supported by the resource adapter is
selected.

Information Value
Data type Pick-list
Default BASIC_PASSWORD

J2C Connection Factory advanced settings:

Use this page to specify settings for a Java 2 Connector (J2C) connection factory.

You can access this administrative console page in one of two ways:

v Resources > Resource Adapters > J2C connection factories > J2C_connection_factory >
Advanced connection factory properties

v Resources > Resource Adapters > resource_adapter > J2C connection factories >
J2C_connection_factory > Advanced connection factory properties

Log missing transaction contexts:

Specifies whether the container logs that there is a missing transaction context when a connection is
obtained.

Information Value
Data type Boolean
Default True (enabled)

Cached handles:

Specifies whether cached handles are tracked by the container. Cached handles are handles that are held
in inst vars in a bean.

Information Value
Data type Boolean
Default False (clear)

Resource workload routing:

Use this topic to learn how to enable resource routing in your environment.

Configure an alternate resource

A data source and connection factory can fail over and fail back automatically when a specified or default
failure threshold value is reached. When fail over occurs, the application switches from using the primary
resource to using the alternate resource. Fail back occurs when the application switches back from the
alternate resource to the primary resource.

The alternate resource is created the same way that other connection factories or data sources are
created. The alternate resource configuration should mirror the primary resource configuration. For
example, the alternate resource security configuration and the primary resource configuration, with respect
to the application and resources, should mirror each other so that the application and database can
access the required data. After the alternate resource is created, you can change the database values that
are necessary for the alternate resource backend configuration. If the alternate resource is not compatible,
it is likely that fail over will fail. If the resources are not compatible, the following errors might occur: tables

198 Administering WebSphere applications



or fields that do not exist, an expected record does not exist and unexpected resource errors exist. As a
test option, before the alternate resource is configured to the primary data source, you can test the
application by changing the JNDI name in the application from the primary JNDI name to the alternate
JNDI name.

When the primary resource is used, the alternate resource is paused. Before the alternate resource is
paused, the alternate resource can be available before the primary is used. Using the alternate before it is
paused is not recommended unless there is a special reason the alternate needs to be accessed before
the primary resource. An example of a special reason is testing the application for compatability.

An alternate resource cannot be used as a primary. When using the fail over feature with non-relational
resource adapters that have back-ends that also support fail over, you must verify that fail over is not
configured for these back-ends. Fail over works with non-relational resource adapters that have a
ManagedConnection object that implements a testConnection method. The testConnection method is used
to ping the alternate and primary resources for success before re-establishing a connection to the currently
available resource. If the resource adapter does not implement a testConnection method or testConnection
throws a javax.resource.NotSupportedException error, the fail over feature is disabled.

For resource adapters that do not meet the requirement for testConnection, partial fail over can be used.
You must manually fail back using Mbeans to the primary resource when the primary resource is available.
Partial fail over can be enabled by setting the property, enablePartialResourceAdapterFailoverSupport to
true.

You are encouraged to test the suitability of this feature with your system environment and resources
before enabling fail over support.

Mbean operations properties

failOverToAlternateResource

Values: none, hold or automated; default is hold without automated fail back.

Description: Manual fail over to alternate resource. This action is issued on the primary resource.

failBackToPrimaryResource

Values: none, hold or automated; default is automated with automated fail over.

Description: Manual fail back to primary resource. This action is issued on the primary resource.

Mbean attribute properties

resourceFailOver

Values: boolean

Description: False - Disables resource fail over. True - Enables resource fail over. This action is
issued on the primary resource.

resourceFailBack

Values: boolean

Description: False - Disables resource fail back. True - Enables resource fail back. This action is
issued on the primary resource.

populateAlternateResource

Values: boolean

Description: False - Disables populate alternate resource. True - Enables populate alternate
resource. This action is issued on the alternate resource.

Chapter 7. Welcome to administering Data access resources 199



Custom properties

All properties for this feature must be created as new custom properties on the connection pool for a
particular data source or connection factory. In the administrative console, navigate to the data source or
connection factory that notification is to be enabled for. Click the Connection pool properties link. On the
Pool Properties panel, click Connection pool custom properties link. The Custom properties panel for
the resource connection pool displays. Click New to create the custom properties described as follows:

failureThreshold

Values: Must be an integer and > 0.

Description: The failureThreshold property is only read if the failureNotificationActionCode or
alternateResourceJNDIName property is set to valid value. If the failureThreshold property is not
set or is set to an invalid number the default value of 5 is used. The integer value specified for the
failureThreshold is the number of consecutive resource exceptions that must occur for a particular
resource before notification is sent or failover occurs.

The following is an example of how this value works: If the failureThreshold property is set to 5 for
data source B, then data source B must get five consecutive resource exceptions while attempting
to establish connections, with no successful attempts in-between these failures, before notification
is sent or the resource can fail over. An attempt to send the notification or fail over is made after
five consecutive resource exceptions occur. However, in a multi-threaded environment, after the
failure threshold value is reached, the timing of the notification or fail over might occur after
additional resource exceptions.

Attention: Resource exception counters are not shared between resources. Resource exceptions
must be consecutive to reach failure threshold.

alternateResourceJNDIName

Values: String value containing a direct JNDI name.

Description: An alternate connection factory or data source resource should be like the primary
resource. Provide the JNDI name of the alternate resource to enable the fail over feature.

Advanced fail over properties

resourceAvailabilityTestRetryInterval

Values: int value, default is 10.

Description: The test connection interval by default is 10 seconds. Every 10 seconds, the test
connection thread attempts to test the primary resource. Depending on system resources, this
value can be change from 1 - MAXINIT seconds.

enablePartialResourceAdapterFailoverSupport

Values: boolean value, default is false.

Description: If this value is true, fail over to the alternate resource occurs, but fail back to the
primary is manual. This property can be set if the resource adapter being used does not meet the
requirements for connection fail over, for example, it does not have testConnection implemented or
it throws a not supported exception.

disableResourceFailOver

Values: boolean value, default is false.

Description: If this value is true, automatic fail over does not occur.

disableResourceFailBack

Values: boolean value, default is false.

200 Administering WebSphere applications



Description: If this value is true, automatic fail back does not occur.

populateAlternateResource

Values: boolean value, default is false.

Description: If this value is true, the alternate resource is populated with connections to
maximum connections. Every attempt is made to keep the alternate resource at maximum
connections. If the database goes down for the alternate resource, the stale connections are
removed and the populate thread repopulates the alternate resource when the database is
available. You can dynamically enable and disable the populate alternate resource using the
Mbean operations, disablePopulateAlternateResource and enablePopulateAlternateResource.

Attention: You might see performance gains during a failover with populate alternate resource
enabled, but, the cost is high to keep the alternate resource populated. Most of the
cost is in keeping twice the number of connections typically required for one data
source. Because connections are large objects, keeping the connections uses
additional memory resource on the server and extra resource on the database.

currentActivePool

Values: A string value returned containing a JNDI name.

Description: A primary or alternate JNDI name is returned depending on which one is currently
being used.

Data source resource definition in applications:

In support of the Java Enterprise Edition (Java EE) 6 specification, applications can define data sources in
annotations or in the deployment descriptor. This topic reviews similarities and compatibility with
WebSphere Application Server data sources defined at the server, node, cluster, or cell level. Optional
features in data source definition are also discussed.

Standard properties for data source definition

Table 6. Standard properties for data source definition. Use this table to learn about standard properties for data
source definitions

Annotation element Descriptor element Comments

name name JNDI name for the data source. The
name must be in one of the
java:global, java:app, java:module, or
java:comp name spaces.

className class-name Fully qualified class name from the
JDBC driver that implements
javax.sql.XADataSource,
javax.sql.ConnectionPoolDataSource,
or javax.sql.DataSource.

databaseName database-name Value is supplied to JDBC driver.

description description Value is supplied to DataSource
MBean.

initialPoolSize initial-pool-size Value of property is ignored. In
WebSphere Application Server, initial
pool size is always 0.

isolationLevel isolation-level Equivalent to WebSphere Application
Server data source custom property,
webSphereDefaultIsolationLevel. This
is a default transaction isolation level
for new connections.

Chapter 7. Welcome to administering Data access resources 201



Table 6. Standard properties for data source definition (continued). Use this table to learn about standard properties
for data source definitions

Annotation element Descriptor element Comments

loginTimeout login-timeout Value is supplied to JDBC driver.

maxIdleTime max-idle-time Equivalent to WebSphere Application
Server connection pooling property,
unusedTimeout. This property is
ignored in the client container where
connection pooling is not provided.

maxPoolSize max-pool-size Equivalent to WebSphere Application
Server connection pooling property,
maxConnections. This property is
ignored in the client container where
connection pooling is not provided.

maxStatements max-statements Defines the maximum number of
statements for the connection pool. In
WebSphere Application Server, each
pooled connection has its own
statement cache. Consequently,
maxStatements is divided (equally,
rounding down) between the
maxPoolSize for the pool. If
maxPoolSize is unlimited, then
statement pooling is disabled.

minPoolSize min-pool-size Equivalent to WebSphere Application
Server connection pooling property,
minConnections. This property is
ignored in the client container where
connection pooling is not provided.

password password Default password for connection
requests that do not specify a
password. Consider using an
authentication alias instead of
hard-coding the user name and
password into the application.

portNumber port-number Value is supplied to JDBC driver.

serverName server-name Value is supplied to JDBC driver.

transactional transactional In WebSphere Application Server, the
property, transactional, controls
whether the connection is enlisted in
JTA transactions. When
transactional=false, connections are
not enlisted in JTA transactions, but
you can still run transactions against
the database using autocommit=true
or connection.commit/rollback with
autocommit=false. Equivalent to the
opposite of the WebSphere
Application Server data source
custom property,
nonTransactionalDataSource.

url url Value is supplied to the JDBC driver
unless any of the following are also
specified: databaseName,
serverName, portNumber.

202 Administering WebSphere applications



Table 6. Standard properties for data source definition (continued). Use this table to learn about standard properties
for data source definitions

Annotation element Descriptor element Comments

user user Default user name for connection
requests that do not specify a user
name. Consider using an
authentication alias instead of
hard-coding the user name and
password into the application.

Vendor properties and custom properties

JDBC driver vendor properties can be included in the data source definition. Most of the WebSphere
Application Server custom properties can also be included in the data source definition.

With annotations, this is done through the properties element; for example,
@DataSourceDefinition
(

name="java:app/env/myDataSource",
className="org.apache.derby.jdbc.EmbeddedXADataSource40",
databaseName="myDB",
properties=
{

// Vendor properties for Derby Embedded JDBC driver:
"createDatabase=create",
"connectionAttributes=upgrade=true",

// Custom properties for WebSphere Application Server:
"connectionTimeout=60",
"dataStoreHelperClass=com.ibm.websphere.rsadapter.DerbyDataStoreHelper",
"validateNewConnection=true",
"validateNewConnectionRetryCount=5"

},
serverName=""

)

The following example illustrates how the data source definition is included in the deployment descriptor:
<data-source>
<name>java:app/env/myDataSource</name>
<class-name>org.apache.derby.jdbc.EmbeddedXADataSource40</class-name>
<database-name>myDB</database-name>
<property><name>createDatabase</name><value>create</value></property>
<property><name>connectionAttributes</name><value>upgrade=true</value></property>
<property><name>connectionTimeout</name><value>60</value></property>
<property><name>dataStoreHelperClass</name><value>com.ibm.websphere.rsadapter.DerbyDataStoreHelper</value></property>
<property><name>validateNewConnection</name><value>true</value></property>
<property><name>validateNewConnectionRetryCount</name><value>5</value></property>
<server-name/>
</data-source>

The following is a list of WebSphere Application Server custom properties that can be configured in this
manner:

v Connection pooling properties:

– agedTimeout

– authDataAlias

– authMechanismPreference

– connectionTimeout

Chapter 7. Welcome to administering Data access resources 203



– defaultConnectionTypeOverride

– globalConnectionTypeOverride

– mappingConfigAlias

– purgePolicy

– reapTime

– stuckThreshold

– stuckTime

– stuckTimerTime

– surgeCreationInterval

– surgeThreshold

– testConnection

– testConnectionInterval

– XA_RECOVERY_AUTH_ALIAS

v Data source custom properties:

– beginTranForResultSetScrollingAPIs

– beginTranForVendorAPIs

– connectionSharing

– enableMultithreadedAccessDetection

– errorDetectionModel

– freeResourcesOnClose

– oracleRACXARecoveryDelay (Oracle only)

– preTestSQLString

– userDefinedErrorMap

– validateNewConnection

– validateNewConnectionRetryCount

– validateNewConnectionRetryInterval

– validateNewConnectionTimeout

Resource references

It is recommended for applications to always use resource references when accessing data sources, which
makes it easier for the deployer to override.

Connection sharing

By default, for data source definition, a connection request can share an existing in-use connection if it
matches the originally requested settings for that connection (connectionSharing=MatchOriginalRequest).
Alternately, connection sharing can be done by matching the connection request against the current state
of the connection (connectionSharing=MatchCurrentState).

Life cycle

The life cycle of a data source definition is tied to the life cycle of the applications that define it.
Consequently, you can update your application to change the data source definition without needing to
restart the server. If multiple applications include the same data source definition, for example, both data
source definitions have identical java:global names, identical set of properties configured, and identical
values for properties, then all of the applications must be uninstalled before updating the data source
definition and reinstalling the applications.

204 Administering WebSphere applications



Conflicts between data source definitions

Applications, modules, and components should take care not to define data sources with the same
java:global name as another application, because that process makes it impossible for the applications to
coexist. Within an application, modules and components should take care not to define data sources with
the same java:app name as another module or component. The conflict causes the application installation
to fail. Within a module, components should take care not to define data sources with the same
java:module name as other components. The conflict causes the application installation to fail. Within the
web module, components should take care not to define data sources with the same java:comp name as
other components. The conflict causes the application installation to fail.

Bean validation in RAR modules:

WebSphere Application Server validates resource adapter archive (RAR) JavaBeans constraints in
compliance with the Java Connector Architecture (JCA) version 1.6 specification.

Resource adapters can specify the validation requirements of configuration properties to the Application
Server through annotations in the source code of the resource adapter, constraint specifications in a
resource adapter validation descriptor, or a mixture of both. In specifying these constraints, resource
adapters can use the built-in bean validation constraints supplied with the Application Server, custom bean
validation constraints supplied either by the application developer or a third party, or a mixture of both.
Resource adapter developers can apply constraints to the fields and JavaBeans-compliant properties of
the following JCA types:

v ResourceAdapter

v ManagedConnectionFactory

v ActivationSpec

v AdministeredObject

At run time, the application server creates instances of bean types declared by the resource adapter. Each
instance is validated immediately upon setting its configuration properties, before placing the instance into
service.

When validating a RAR bean, the Application Server creates an instance of a validator factory according to
the bean validation deployment descriptor discovered by the Application Server. A validator instance is
then obtained from the factory and used to validate the bean instance.

If validation fails, the Application Server throws a constraint violation exception and reports all violations to
the system log. The effects of the exception for each RAR bean type and problem determination
information are documented in the topic, Troubleshooting bean validation in RAR modules.

Note: The Bean Validation specification requires that no more than one validation.xml is visible on the
class path. This requirement is violated whenever two or more stand-alone RARs provide a
validation descriptor. See the section, “RAR bean validation descriptor” in this topic, for more
information. When more than one validation.xml is visible to the Application Server class loaders,
the Application Server or application modules might fail to acquire the default ValidatorFactory and
subsequently cannot perform bean validation. For example, the server cannot validate beans of a
RAR embedded in an application whenever the embedded RAR lacks a validation configuration,
and two or more stand-alone RARs provide configurations. To avoid trouble, install stand-alone
RARs that provide a bean validation descriptor as isolated whenever possible.

Built-in constraint annotations

Note: Use built-in constraint annotations to specify the range and mandatory attributes of configuration
properties rather than provide custom annotations for the same purpose. The following constraints
are useful, but you can use all bean validation built-in constraints. See the topic Bean validation
built-in constraints for a complete list of the constraints.

Chapter 7. Welcome to administering Data access resources 205



v @Min

Specifies the minimum value of the configuration property decorated with this annotation. The value
must be greater than or equal to the specified minimum.

v @Max

Specifies the maximum value of the configuration property decorated with this annotation. The value
must less than or equal to the specified maximum.

v @Size

Specifies the range of values of the configuration property decorated with this annotation. The value
must be greater than or equal to the specified minimum and be less than or equal to the specified
maximum.

v @NotNull

Specifies the value of the configuration property decorated with this annotation must not be null. That is,
the property is required.

The following example is a RAR bean class that is decorated with built-in constraint annotations.

The value of the serverName configuration property must not be null, and the value of the instanceCount
property must be at least 1 when the Application Server creates and configures an instance of the
MyConnector class. Otherwise, a constraint validation exception occurs and, in the case of
ResourceAdapter bean, the resource adapter fails to start. See the topic Troubleshooting bean validation
in RAR modules for more information.
package com.my.company;

@Connector(...)
public class MyConnector implements ResourceAdapter, Serializable
{
@ConfigProperty(type=java.lang.String.class,defaultValue="WAS")
private String serverName;

@NotNull()
public String getServerName() {return serverName;}

private Integer instanceCount = 0;

@Min(value=1)
public Integer getInstanceCount() {return instanceCount;}
...

RAR bean validation descriptor

Bean validation constraints can be declared through an XML descriptor supplied by a RAR module. In the
simplest case, a RAR validation descriptor consists of the validation configuration declared in the
validation.xml file and zero or more XML files that declare RAR bean validation constraints. Files
containing constraint declarations are specified in the constraint-mapping elements of the validation
configuration (validation.xml).

You must package the validation descriptor in the META-INF directory of a RAR module. Any custom
constraint annotation classes that are declared in the validation descriptor must also be packaged in the
RAR module.

The following example is a simple RAR validation descriptor that declares constraint metadata like the
code shown in the section, “Built-in constraint annotations.”
<?xml version="1.0" encoding="UTF-8"?>
<validation-config
xmlns=http://jboss.org/xml/ns/javax/validation/configuration
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation=http://jboss.org/xml/ns/javax/validation/configuration validation-configuration-1.0.xsd>

<constraint-mapping>META-INF/constraints.xml</constraint-mapping>
</validation-config>

The constraints XML file is also located in the META-INF directory and looks like the following:

206 Administering WebSphere applications



<constraint-mappings
xmlns=http://jboss.org/xml/ns/javax/validation/mapping
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation=http://jboss.org/xml/ns/javax/validation/mapping validation-mapping-1.0.xsd>
<default-package>com.my.company</default-package>
<bean class="MyConnector" ignore-annotations="true">
<field name="serverName">
<valid/>
<!-- @NotNull() -->
<constraint annotation="javax.validation.constraints.NotNull">
<message>Value is not null</message>
</constraint>
</field>
<field name="instanceCount">
<valid/>
<!-- @Min(1) -->
<constraint annotation="javax.validation.constraints.Min">
<message>Minimum possible value is 1</message>
<element name="value">1</element>
</constraint>
</field>
</bean>
<constraint-mapping>

The packaged RAR module, MyResourceAdapter.rar, looks like the following:
my/
company/
MyConnector.class

. . .
META-INF
/validation.xml
/constraints.xml

Third-party bean validation

WebSphere Application Server supports using different bean validation implementations. If a resource
adapter requires a bean validation implementation different from the implementation that is provided by the
product, and the RAR provides the bean validation implementation, you must package the JAR file that
contains the bean validation implementation in the RAR module root directory.

The RAR module must also contain a single validation configuration descriptor (validation.xml), which
can be packaged in the META-INF directory of the RAR module, or in the META-INF/services directory of
the bean validation JAR file, but not both.

RAR bean validation configuration discovery

When validating RAR beans, the Application Server bootstraps the bean validation configuration, specific
to the RAR, according to the bean validation descriptor supplied in the RAR META-INF directory. If the
descriptor does not exist, the server bootstraps the configuration using the first validation descriptor
discovered in the RAR class loading context, such as that supplied in a third-party bean validation that is
packaged in the RAR. Finally, the server uses the default validation configuration provided by the product.

The server then creates a validator factory specific to the discovered bean validation configuration and
uses this factory to create validator instances for validating the RAR bean instances. When you deploy a
RAR that supplies a bean validation descriptor, you must take additional steps to ensure that the class
loader that loads the RAR loads the bean validation descriptor and classes packaged in the RAR.

For an embedded RAR, after you have deployed the application that embeds the RAR, you must set the
delegation mode of the application class loader to Parent-Last (Child-First). See the topic Configuring
application class loaders for more information.

For a stand-alone RAR, you must install the RAR as an isolated resource provider. See the topic
Resource Adapter settings for more information.

Troubleshooting bean validation in RAR modules:

Chapter 7. Welcome to administering Data access resources 207



RAR beans that fail validation are not placed into service. When constraint violations occur, applications
encounter resource connectivity issues that are different according to the bean type and how the RAR is
deployed. This topic explains how to understand, service, and prevent these known issues.

RAR bean constraint violations

WebSphere Application Server displays a constraint violation exception and reports all constraint violations
to the system log when it validates RAR bean instances that violate one or more constraints. The cause of
all constraint violation must be determined and resolved to restore full connectivity to the affected
resource.

Problem determination starts with consulting the RAR provider documentation for the valid values of the
configuration properties that are indicated in the violations. If the property values are invalid, you must
reconfigure them according to the documentation and restart the resource adapter. If the adapter is
embedded in an application, then restart the application to restart the adapter; if the adapter is
stand-alone, then restart the application server.

If a valid configuration property value is indicated in a violation, then the constraint might be incorrectly
specified for the bean, or the bean is incorrectly computing the property value. In these cases, the RAR
vendor must correct the problem.

If the problem is caused by a faulty constraint definition (implementation), then the bean validation provider
must correct the problem. In these cases, if the RAR is provided by IBM, or the RAR uses the bean
validation implementation supplied by the Application Server, then contact IBM support to continue problem
determination.

ResourceAdapter beans

ResourceAdapter beans are validated when the server starts a Java 2 Connector (J2C) resource adapter.
When validation fails, the server rejects the ResourceAdapter instance and the resulting constraint
violation exception causes the J2C resource adapter to fail. Applications cannot establish outbound
connections to the resource, and the resource cannot deliver messages to applications. For an embedded
adapter, the application that embeds the adapter fails to start. In-doubt transactions that involve the
resource cannot be recovered.

The following example is a ResourceAdapter bean, MyConnector, at heap address 7efa7efa. Two
validation constraints are violated. The constraint violation exception causes
J2CResourceAdapter_1285109360562 to fail:
[9/29/10 10:51:24:125 CDT] 00000000 BeanValidatio E
J2CA0238E: JavaBean com.my.company.adapter.MyConnector@7efa7efa failed Bean Validation due to one or more invalid
configuration settings indicated in the following list of constraint violations:

ConstraintViolationImpl{interpolatedMessage=’The minimum size is 2’, propertyPath=dataBaseName, rootBeanClass=class
com.my.company.adapter.MyConnector, messageTemplate=’The minimum size is 2’}

ConstraintViolationImpl{interpolatedMessage=’must be greater than or equal to 10’, propertyPath=idleTimeout, rootBeanClass=class
com.my.company.adapter.MyConnector, messageTemplate=’{javax.validation.constraints.Min.message}’}

...
[9/29/10 10:51:24:468 CDT] 00000000 RALifeCycleMa E
J2CA0128E: An Exception occurred while trying to start ResourceAdapter
cells/IBM-46DF84D297BNode01Cell/nodes/IBM-46DF84D297BNode01/resources.xml#J2CResourceAdapter_1285109360562. The exception is:

com.ibm.ejs.j2c.metadata.ConstraintViolationException
at com.ibm.ejs.j2c.metadata.BeanValidationHelper.validate(
at com.ibm.ejs.j2c.RAWrapperImpl.createAndConfigureRA(
at com.ibm.ejs.j2c.RAWrapperImpl.startRA(
at com.ibm.ejs.j2c.RALifeCycleManagerImpl.startRA(
at com.ibm.ejs.j2c.RALifeCycleManagerImpl.resourceProviderEvent(
. . .

ManagedConnectionFactory beans

ManagedConnectionFactory JavaBeans are validated during the initial Java Naming and Directory
Interface (JNDI) lookup of a J2C connection factory.

208 Administering WebSphere applications



When validation fails, the Application Server rejects the ManagedConnectionFactory instance and displays
a naming exception to the application that performs the lookup. This exception indicates the causal
constraint violation exception (javax.validation.ConstraintValidationException).

Applications cannot establish outbound connections to the resource. In-doubt transactions started over
connections to the resource that were created by the connection factory cannot be recovered.

The following example is a ManagedConnectionFactory bean, MyMcf, at heap address 7dd07dd0, Two
validation constraints are violated. The constraint violation exception causes the application to not obtain a
connection factory that is required to create a connection to the resource, MyConnector:
[9/30/10 7:58:58:734 CDT] 00000023 BeanValidatio E
J2CA0238E: JavaBean com.my.company.adapter.MyMcf@7dd07dd0 failed Bean Validation due to one or more invalid
configuration settings indicated in the following list of constraint violations:
ConstraintViolationImpl{interpolatedMessage=’must be less than or equal to 30’, propertyPath=mcfProperty2,

rootBeanClass=class com.my.company.adapter.MyMcf, messageTemplate=’{javax.validation.constraints.Max.message}’}
ConstraintViolationImpl{interpolatedMessage=’The value should be greater than 10’, propertyPath=mcfProperty4,

rootBeanClass=class com.my.company.adapter.MyMcf, messageTemplate=’The value should be greater than 10’}
....
[9/30/10 7:58:58:765 CDT] 00000023 ConnectionFac E
J2CA0009E: An exception occurred while trying to instantiate the ManagedConnectionFactory class com.my.company.adapter.MyMcf
used by resource j2c/MyConnector : com.ibm.ejs.j2c.metadata.ConstraintViolationException
at com.ibm.ejs.j2c.metadata.BeanValidationHelper.validate(
at com.ibm.ejs.j2c.ServerFunction.validate(
at com.ibm.ejs.j2c.J2CUtilityClass.createMCFEntry(
...
at javax.naming.InitialContext.lookup(
at com.my.company.app.MyEjbImpl.testJbv(
. . .

ActivationSpec bean violations

ActivationSpec beans are validated when the applications starts. This is when the Application Server
initially activates message endpoints bound to J2C activation specifications. These activation specifications
name the bean class in their configuration. When validation fails, the endpoint fails to activate and the
resulting constraint violation exception causes the application hosting the endpoint to fail.

Because the J2C resource adapter that contains the activation specification is started, applications can still
establish connections to the resource. The resource can deliver messages to endpoints that have
successfully activated. If the activation specification is defined within an embedded resource adapter, the
server stops the adapter in the course of stopping the application. Failed transactional messages delivered
by previous instances of the resource adapter that contains the activation specification cannot be
recovered.

The following example is an ActivationSpec bean, MyActSpec, at heap address 51625162. Two validation
constraints are violated. The log shows the constraint violation exception that causes the application,
my_company_app, to fail:
[9/29/10 10:52:05:125 CDT] 00000009 BeanValidatio E
J2CA0238E: JavaBean com.my.company.adapter.MyActSpec@51625162 failed Bean Validation due to one or more invalid
configuration settings indicated in the following list of constraint violations:
ConstraintViolationImpl{interpolatedMessage=’Size should be between 2 and 4’, propertyPath=asProperty1,

rootBeanClass=class com.my.company.adapter.MyActSpec, messageTemplate=’Size should be between 2 and 4’}
ConstraintViolationImpl{interpolatedMessage=’Should be < 30’, propertyPath=asProperty2,

rootBeanClass=class com.my.company.adapter.MyActSpec, messageTemplate=’Should be < 30’}
[9/29/10 10:52:05:171 CDT] 00000009 RAWrapperImpl E
J2CA0089E: The method activateEndpoint on ResourceAdapter JavaBean
cells/IBM-46DF84D297BNode01Cell/nodes/IBM-46DF84D297BNode01/resources.xml#J2CResourceAdapter_1285109389828

failed with the following exception:
javax.resource.ResourceException: com.ibm.ejs.j2c.metadata.ConstraintViolationException
at com.ibm.ejs.j2c.ActivationSpecWrapperImpl.validateActivation...( at com.ibm.ejs.j2c.ActivationSpecWrapperImpl.createAndInitializ...(
at com.ibm.ejs.j2c.ActivationSpecWrapperImpl.activateEndpoint(
...
[9/29/10 10:52:05:750 CDT] 00000009 ApplicationMg A WSVR0217I: Stopping application: my_company_app
. . .

Chapter 7. Welcome to administering Data access resources 209



AdministeredObject beans

AdministeredObject beans are validated when the server starts a J2C resource adapter that contains the
administered object in its configuration. When validation fails, the server rejects the AdministeredObject
instance and the resulting constraint violation exception causes the resource adapter to fail.

The following example is an AdministeredObject beans, MyAdminObj, at heap address 3a803a80. Two
validation constraints are violated. The log shows the constraint violation exception that causes resource
adapter to fail:
[9/29/10 10:51:25:125 CDT] 00000000 BeanValidatio E
J2CA0238E: JavaBean com.my.company.adapter.MyAdminObj@3a803a80 failed Bean Validation due to one or more invalid
configuration settings indicated in the following list of constraint violations:
ConstraintViolationImpl{interpolatedMessage=’The value should be greater than 10’, propertyPath=aoProperty4,
rootBeanClass=class com.my.company.adapter.MyAdminObj, messageTemplate=’The value should be greater than 10’}

...
[9/29/10 10:51:25:218 CDT] 00000000 AdminObjectSe A
J2CA0017I: An exception occurred while building the serializable for JNDI deployment of jms/MyAdminObj :
com.ibm.ejs.j2c.metadata.ConstraintViolationException
at com.ibm.ejs.j2c.metadata.BeanValidationHelper.validate(
at com.ibm.ejs.j2c.metadata.BeanValidationHelper.validate(
at com.ibm.ejs.j2c.AdminObjectSerBuilderImpl._createAndValidate...(
at com.ibm.ejs.j2c.AdminObjectSerBuilderImpl.createAndValidate...(
at com.ibm.ejs.j2c.RALifeCycleManagerImpl.startRA(
. . .

JCA 1.6 support for annotations in RAR modules:

The Java Connector Architecture (JCA) Version 1.6 specification adds support for Java annotations in
resource archive (RAR) modules. Annotations are a means of specifying metadata, or configuration data,
for a RAR module in the class files that make up the module.

Before JCA 1.6, this metadata was specified only in the deployment descriptor, but now you can specify
this metadata using either a deployment descriptor or annotations. Metadata that is specified in
annotations is merged into the deployment descriptor of a RAR module when it is updated, if the module is
not marked metadata-complete in the deployment descriptor and if the module version is 1.6 or later.

The metadata-complete element defines whether the deployment descriptor for the resource adapter
module is complete or whether the class files that are available to the module and packaged with the
resource adapter should be examined for annotations that specify deployment information. If the
metadata-complete is set to true, the application server deployment tool must ignore any annotations that
specify deployment information, which might be present in the class files of the application. If
metadata-complete is not specified, or is set to false, the deployment tool must examine the class files of
the application for annotations, as specified by the JCA 1.6 Specification. If the deployment descriptor is
not included, or is included but not marked metadata-complete, the deployment tool processes
annotations.

Application servers must assume that metadata-complete is true for resource adapter modules with
deployment descriptors that meet the requirements of JCA specification 1.5 and earlier. For a complete list
of the supported annotations and their usage, consult the JCA specification.

The JCA Version 1.6 specification also adds support for Bean Validation constraint annotations in RAR
modules. You can specify Bean Validation constraint metadata for RAR JavaBeans by decorating your
classes with Bean Validation constraint annotations or by supplying XML validation descriptors. The
Application Server validates the constraints of all JCA 1.6 RAR JavaBeans instances before placing them
into service at run time.

Connection factory JNDI name practices
Observe the conventions of the Java Naming and Directory Interface (JNDI) service in WebSphere
Application Server when you create connection factory JNDI names.

210 Administering WebSphere applications



Distributed computing environments often employ naming and directory services to obtain shared
components and resources. Naming and directory services use name-to-object mappings to associate
names with objects such locations, services, information, and resources. The Java Naming and Directory
Interface (JNDI) provides a common interface that is used to access the various naming and directory
services.

Naming your resources indirectly

When creating a connection factory or data source, a JNDI name is given by which the connection factory
or data source can be looked up by a component. WebSphere Application Server uses an indirect name
with the java:comp/env prefix:

v When you create a WebSphere Application Server data source, the default JNDI name is set to
jdbc/data_source_name.

v When you create a connection factory, its default name is eis/j2c_connection_factory_name.

If you override these values by specifying your own, retain the java:comp/env prefix. An indirect name
makes any resource-reference data associated with the application available to the connection
management runtime, to better manage resources based on the res-auth, res-isolation-level,
res-sharing-scope, and res-resolution-control settings.

Naming your resources for use with CMP

In addition, if you click the checkbox for the Use this data source for container managed persistence
(CMP) option when you create the data source, another reference is created with the name of
eis/jndi_name_of_datasource_CMP. For example, if a data source has a JNDI name of jdbc/myDatasource,
the CMP JNDI name is eis/jdbc/myDatasource_CMP. This name is used internally by CMP and is provided
simply for informational purposes.

Establishing custom finder SQL dynamic enhancement server-wide
Enable support for dynamic SQL enhancement of all custom finders, defined in all beans, by modifying the
custom properties of your application server in the administrative console.

About this task

To establish this support on a server-wide basis (that is, dynamic SQL enhancement of all custom finders
defined in all beans is enabled), use the following steps.

Procedure
1. Open the administrative console.

2. Select Servers.

3. Select Application Servers.

4. Select the server you want to configure.

5. In the Additional Properties area, select Process Definition.

6. In the Additional Properties area, select Control or Servant. Select Control to define the property in
the Control, Servant to define the property in the Servant.

7. In the Additional Properties area, select Java Virtual Machine.

8. Select Custom Properties.

9. Select com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent and enter a value of all.
If the property is not present in the list, create a new property name, enter the name
com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent and the value all.

Chapter 7. Welcome to administering Data access resources 211



Establishing custom finder SQL dynamic enhancement on a set of
beans
You can enable support for all custom finders defined on beans by modifying your application server's
custom properties through the administrative console.

About this task

To establish this support for all custom finders defined on a set of beans use the following steps.

Procedure
1. Open the administrative console.

2. Select Servers.

3. Select Application Servers.

4. Select the server you want to configure.

5. Select Server Infrastructure > Java and Process Management > Process Definition.

6. Select Java Virtual Machine.

7. Select Custom Properties.

8. Select com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent and enter a value that
corresponds to a list of beans that need this support, with each bean's name separated from the
others by a colon (:). For example, beanA:beanB:beanC.

If the property is not present in the list, create a new property name, enter the name
com.ibm.websphere.ejbcontainer.customfinder.honorAccessIntent and enter the list as the value.

CMP connection factories collection
Use this page to view existing container managed persistence (CMP) connection factories settings.

These connection factories are used by a CMP bean to access any backend data store. A CMP
connection factory is used by EJB model 2.x Entities with CMP version 2.x. Connection factories listed on
this page are created automatically under the WebSphere Relational Resource Adapter when you check
the box Use this Data Source in container managed persistence (CMP) in the General Properties area
on the Data Source page. You cannot modify the settings for a CMP connection factory, and you cannot
delete CMP connection factories from this collection. To remove the CMP connection factory object, you
must navigate to the data source associated with the CMP connection factory and uncheck the Use this
Data Source for CMP check box.

To view this administrative console page:

1. Click Resources > Resource Adapters > Resource adapters.

2. View the built-in resources. Click Preferences, select Show built-in resources and click Apply.

3. Click WebSphere Relational Resource Adapter > CMP connection factories

Name
Specifies the display name for the resource.

Information Value
Data type String

JNDI Name
Specifies the JNDI name of the resource.

Information Value
Data type String

212 Administering WebSphere applications



Description
Specifies a description for the resource.

Information Value
Data type String

Category
Specifies a category string which can be used to classify or group the resource.

Information Value
Data type String

CMP connection factory settings
Use this page to view the settings of a connection factory that is used by a container-managed persistence
(CMP) bean to access any database server. Because the connection factory is created and managed
automatically, the settings of the connection factory cannot be modified.

To view this administrative console page:

1. Click Resources > Resource Adapters > Resource adapters.

2. Click Preferences, select Show built-in resources and click Apply.

3. Click WebSphere Relational Resource Adapter > CMP Connection Factories >
connection_factory.

Name:

Specifies the display name for the resource.

JNDI name:

Specifies the JNDI name of the resource.

Description:

Specifies a description for the resource.

Category:

Specifies a category string which can be used to classify or group the resource.

Authentication preference:

Specifies which of the authentication mechanisms that are defined for the corresponding resource adapter
applies to this connection factory. This property is deprecated starting with version 6.0.

For example, if two authentication mechanism entries are defined for a resource adapter (KerbV5 and
Basic Password), this specifies one of those two types. If the authentication mechanism preference
specified is not an authentication mechanism available on the corresponding resource adapter, it is
ignored.

Information Value
Data type String

Component-managed authentication alias:

Chapter 7. Welcome to administering Data access resources 213



References authentication data for component-managed signon to the resource.

Information Value
Data type Drop-down list

Container-managed authentication alias:

References authentication data for container-managed signon to the resource.

Information Value
Data type Drop-down list

Configuring resource adapters
You can view a list of installed and configured resource adapters in the administrative console. Also, you
can use the administrative console to install new resource adapters, create additional configurations of
installed resource adapters, or delete resource adapter configurations.

Before you begin

A resource adapter is an implementation of the Java EE Connector Architecture (JCA) specification. The
JCA specification provides access for applications to resources outside of the server or provides access
for an enterprise information system (EIS) to applications on the server. It can provide application access
to resources such as DB2, Customer Information Control System (CICS), Information Management
Systems (IMS™), SAP, and PeopleSoft.

It can provide an EIS with the ability to communicate with message-driven beans that are configured on
the server. Some resource adapters are provided by IBM; however, third-party vendors can provide their
own resource adapters. A resource adapter implementation is provided in a resource adapter archive
(RAR)file; this file has an extension,RAR. A resource adapter can be provided as a stand-alone adapter or
as part of an application, in which case it is called an embedded adapter.

The Java Connector Architecture (JCA) Version 1.6 specification adds support for Java annotations and
Bean Validation in RAR modules. For more information about annotation support and metadata, see the
topic, JCA 1.6 support for annotations in RAR modules.

About this task

Use this task to configure a stand-alone resource adapter archive file. Embedded adapters are installed as
part of the application installation. This panel can be used to work with either type adapter.

Procedure
1. Open the product administrative console.

2. Select Resources > Resource adapters > resource_adapter.

3. Set the scope setting. This field specifies the level to which this resource definition is visible. For
general information, see the topic, Administrative console scope settings, in the Related Reference
section. The Scope field is a read-only string field that shows where the particular definition for a
resource adapter is located. This field is set either when the resource adapter is installed, which can
only be at the node level, or when a new resource adapter definition is added.

4. Configure the description. This field specifies a text description of the resource adapter. Use a
free-form text string to describe the resource adapter and its purpose.

5. Set the archive path. Use this field to specify the path to the RAR file containing the module for this
resource adapter. This property is required.

214 Administering WebSphere applications



6. Set the class path. The list of paths or JAR file names that together form the location for the resource
adapter classes is set here. This includes any additional libraries needed by the resource adapter. The
resource adapter code base is automatically added to the class path, but if anything outside the RAR
is needed it can be specified here.

7. Set the native path. The list of paths that form the location for the resource adapter native libraries is
set here. The resource adapter code base is automatically added to the class path, but if anything
outside the RAR is needed it can be specified here.

8. Set the ThreadPool alias. The name of a thread pool that is configured in the server that is used by
the resource adapter Work Manager is specified in this field. If there is no thread pool configured in the
server with this name, the default configured thread pool instance, named Default, is used. This
property is only necessary if this resource adapter uses Work Manager. This field does not apply for
the z/OS platform.

Resource adapters collection
Use this panel to perform the following actions on stand-alone resource adapters: view the list of installed
resource adapters, install additional resource adapters, create additional configurations of already installed
resource adapters and delete resource adapter configurations.

A resource adapter can be provided as a stand-alone adapter or as part of an application, in which case
the resource adapter is referred to as an embedded adapter. Refer to related task, Installing resource
adapters within applications, for more information on embedded resource adapters. A resource adapter is
an implementation of the Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA)
specification. Enterprise applications can use a resource adapter to access resources outside of the
application server including relational databases like DB2, online transaction processing (OLTP) systems
like CICS, and enterprise information system (EIS) like SAP and PeopleSoft. A resource adapter can
provide an EIS with the ability to communicate with message-driven beans (MDB) that are configured on
the server. Resource adapters are provided by IBM or third party vendors. A resource adapter
implementation is provided in a resource adapter archive file; this file has an extension of .rar.

To view this administrative console page, click Resources > Resource Adapters > Resource adapters.

To display a list of all of the resource adapters that are defined for a specific scope, select that scope.

To view the stand-alone resource adapters that are provided with the application server, select the Show
built-in resources checkbox in the Preferences section.

To view additional information about, or to change the settings of a specific resource adapter, click the
resource adapter name.

To perform an action on a specific resource adapter, select the checkbox beside the resource adapter
name and click the appropriate button detailed below.

Install RAR:

Install a resource archive (RAR).

You can upload a RAR file from the local file system, or specify a RAR file on a remote file system. The
RAR file must be installed at the node level.

New:

Create a copy of the selected resource archive which is already installed on the application server.

If you want to create a copy of an installed resource adapter, specify a server for the scope, and click
New. You cannot create a copy of a resource adapter at the node scope. If you want to install a new
resource adapter, click Install RAR.

Chapter 7. Welcome to administering Data access resources 215



Delete:

Delete the selected resource adapter.

Update RAR:

Update the selected resource adapter. Update a resource adapter archive (RAR) file when you determine
that a resource adapter, or a set of resource adapters, needs to be updated with a different version or
implementation.

Different versions or implementations of resource adapters can include different settings, therefore,
updating your adapter might be beneficial if you require a specific set of configuration options. You can
update the resource adapter for all of the nodes in a cell or all the nodes in a cluster. If some of your
nodes are earlier than Version 7.0, the RAR update is not supported until those nodes are migrated to
Version 7.0 or later.

Name:

Specifies the name of the resource adapter.

Description:

Specifies a text description of the resource adapter.

This description is a free-form text string to describe the resource adapter and its purpose.

Scope:

Specifies the level at which this resource adapter is visible. For general information, read about
administrative console scope settings.

Some considerations that you should keep in mind for this particular panel are:

v Changing the scope enables you to see which resource adapter definitions exist at that level.

v Changing the scope does not have any effect on installation. Installations are always done under a
scope of node, no matter what you set the scope to.

v When you create a new resource adapter from this panel, you must change the scope to what you want
it to be before you click New.

Resource adapter settings:

Use this page to specify settings for a resource adapter.

A resource adapter is an implementation of the Java Platform, Enterprise Edition (Java EE) Connector
Architecture (JCA) specification that provides access for applications to resources outside of the server,
provides access for applications to an enterprise information system (EIS), or provides access for an EIS
to applications on the server. Resource adapters provide applications access to resources such as DB2,
CICS, SAP and PeopleSoft. Resource adapters can provide an EIS with the ability to communicate with
message driven beans that are configured on the server. Some resource adapters are provided by IBM;
however, third party vendors can provide their own resource adapters. A resource adapter implementation
is provided in a resource adapter archive file (RAR); this file has an extension of .rar. A resource adapter
can be provided as a stand alone adapter or as part of an application, in which case the resource adapter
is referred to as an embedded adapter.

The JCA Version 1.6 specification adds support for Java annotations in RAR modules. For more
information on annotation support see the topic, JCA 1.6 support for annotations in RAR modules.

216 Administering WebSphere applications



To view this administrative console page, click one of the following paths:

v Resources > Resource Adapters > Resource adapters > New.

v Resources > Resource Adapters > Resource adapters > resource_adapter.

v Applications > WebSphere enterprise applications > enterprise_application > Manage Modules >
connector_module > Resource Adapter.

v Install a new resource adapter archive:

1. Click Resources > Resource Adapters > Resource adapters > Install RAR.

2. Specify a full path for the local file system or remote file system, and click Next.

Scope:

Specifies the highest topological level at which application servers can use this adapter.

The Scope field is a read-only string field that specifies where the particular definition for a resource
adapter is located. The Scope field is set when the resource adapter is installed, which can only be at the
node level, or when a new resource adapter definition is added.

Name:

Specifies the name of the resource adapter definition.

This property is a required string containing no spaces that is a meaningful text identifier for the resource
adapter.

Description:

Specifies a text description of the resource adapter.

This description is a free-form text string to describe the resource adapter and its purpose.

Archive path:

Specifies the path to the installed resource archive file that contains the module for this resource adapter.

You can only select RAR files that are installed on the nodes within the selected scope, preventing you
from configuring a selection that might fail for some of your nodes.

Note: For resources at the cell scope, the RAR files that are available are those that are installed on each
individual node in the entire cell. For resources at a cluster scope, the RAR files that are available
are those that are installed on each individual node in that particular cluster.

This property is required.

Information Value
Data type String

Class path:

Specifies a list of paths or Java archive file (JAR) names that together form the location for the resource
adapter classes.

Class path entries are separated by using the ENTER key and must not contain path separator characters
like ';' or ':'. Class paths can contain variable (symbolic) names that can be substituted using a variable
map. Check your driver installation notes for specific JAR file names that are required.

Chapter 7. Welcome to administering Data access resources 217



Native library path:

Specifies an optional path to any native libraries, which are .dll or .so files.

Native path entries are separated by using the ENTER key and must not contain path separator
characters like ';' or ':'. Native paths can contain variable (symbolic) names that can be substituted using a
variable map.

Isolate this resource provider:

Specifies that this resource provider will be loaded in its own class loader. This allows different versions of
the same resource provider to be loaded in the same Java Virtual Machine. Give each version of the
resource provider a unique class path that is appropriate for that version.

Ensure that all copies of a resource adapter have the same value for this option. For example, if you
create a resource adapter at the cluster scope, the value of this option will be taken from the resource
adapter archive (RAR) that you copy. When you create the copy, you cannot modify the value for any
instances of that RAR, which would be the copies at the node or cluster scope in this example. If you
need to modify the value, you have to delete the copies of the RAR until there is only one instance of that
particular RAR that is left.

Note: You cannot isolate a resource provider if you specify a native library path.

Thread pool alias:

Specifies the name of a thread pool that is part of the server configuration for this resource adapter. Set
this property only if the resource adapter uses the work manager service.

If you input a thread pool name that does not exist in the server configuration, the application server uses
the name DEFAULT.

Advanced resource adapter properties:

Use this page to specify advanced settings for resource adapters that comply with the Version 1.5 and 1.6
Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) specification.

A resource adapter is an implementation of the JCA specification that provides access for applications to
an enterprise information system (EIS), like DB2, CICS, SAP and PeopleSoft, or provides access for an
EIS to applications on the server. A resource adapter can also provide an EIS with the ability to
communicate with message-driven beans that are configured on the server. Some resource adapters are
provided by IBM, but third party vendors can provide their own resource adapters.

A resource adapter implementation is provided in a resource adapter archive file; this file has an extension
of .rar. A resource adapter can be provided as a stand-alone adapter or as part of an application, in which
case it is referred to as an embedded adapter.

To view this administrative console page, click Resources > Resource Adapters > Resource adapters >
resource_adapter > Advanced resource adapter properties.

Restrict the JVM to allow only one instance of this resource adapter:

Prevents more than one instance of a resource adapter JavaBeans with a unique resource adapter
implementation class name from existing in the same Java Virtual Machine (JVM). This field is only
available on resource archives that allow definitions for activation specifications.

218 Administering WebSphere applications



Note: Enabling this setting imposes a restrictive condition on the inbound communications. For example, if
two applications embed the same resource adapter, only the first application to start will be able to
access resources through its embedded resource adapter. If a stand-alone resource adapter is
configured for a single instance, no applications that embed that same resource adapter will be able
to access resources.

Information Value
Data type Boolean (checkbox)
Default False (disabled)

Register this resource adapter with the high availability manager:

Specifies that the high availability (HA) manager will manage the lifecycle of a JCA resource adapter in a
cluster. This option is only applicable to resource adapters with a version greater than JCA 1.0 and running
on the Network Deployment version of WebSphere. Do not select this option without first consulting the
product documentation for the resource adapter, because this option requires the resource adapter to
support high availability of inbound messaging. This field is only available on resource archives that allow
definitions for activation specifications.

Note: Enabling this setting imposes a restrictive condition on the inbound communications.

This setting can be implemented with:

v Endpoint failover: allows only one resource adapter in an HA group to receive messages across
multiple servers. The result is that only one resource adapter can have endpoints active at one time.

v Resource adapter instance failover: allows only one resource adapter in an HA group to be started
across multiple servers. Inbound or outbound communication is limited to one resource adapter in the
cluster.

Information Value
Data type Boolean (checkbox with implementation options)
Default False (disabled)

Directory conventions:

References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations - IBM i

These file paths are default locations. You can install the product and other components in any directory
where you have write access. You can create profiles in any valid directory where you have write access.
Multiple installations of WebSphere Application Server products or components require multiple locations.

app_client_root
The default installation root directory for the Application Client for IBM WebSphere Application
Server is the /QIBM/ProdData/WebSphere/AppClient/V85/client directory.

app_client_user_data_root
The default Application Client for IBM WebSphere Application Server user data root is the
/QIBM/UserData/WebSphere/AppClient/V85/client directory.

app_client_profile_root
The default Application Client for IBM WebSphere Application Server profile root is the
/QIBM/UserData/WebSphere/AppClient/V85/client/profiles/profile_name directory.

Chapter 7. Welcome to administering Data access resources 219



app_server_root
The default installation root directory for WebSphere Application Server - Express is the
/QIBM/ProdData/WebSphere/AppServer/V85/Express directory.

java_home

Table 7. Root directories for supported Java Virtual Machines.

This table shows the root directories for all supported Java Virtual Machines (JVMs).
JVM Directory

32–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit

64–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root
The default Web Server Plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver/profiles/profile_name directory.

plugins_root
The default installation root directory for Web Server Plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V85/webserver directory.

plugins_user_data_root
The default Web Server Plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver directory.

product_library
product_lib

This is the product library for the installed product. The product library for each Version 8.5
installation on the system contains the program and service program objects (similar to .exe, .dll,
.so objects) for the installed product. The product library name is QWAS85x (where x is A, B, C, and
so on). The product library for the first WebSphere Application Server Version 8.5 product installed
on the system is QWAS85A. The app_server_root/properties/product.properties file contains the
value for the product library of the installation, was.install.library, and is located under the
app_server_root directory.

profile_root
The default directory for a profile named profile_name for WebSphere Application Server - Express
is the /QIBM/UserData/WebSphere/AppServer/V85/Express/profiles/profile_name directory.

shared_product_library
The shared product library, which contains all of the objects shared by all installations on the
system, is QWAS85. This library contains objects such as the product definition, the subsystem
description, the job description, and the job queue.

user_data_root
The default user data directory for WebSphere Application Server - Express is the
/QIBM/UserData/WebSphere/AppServer/V85/Express directory.

The profiles and profileRegistry subdirectories are created under this directory when you install
the product.
The user_data_root directory contains the default locations for WLP_USR_DIR and WLP_OUTPUT_DIR
when the Liberty profile is installed. These directories are user_data_root/wlp/usr and
user_data_root/wlp/output/servers, respectively.

web_server_root
The default web server path is /www/web_server_name.

220 Administering WebSphere applications



Updating a stand-alone resource adapter archive
Use the resource adapter archive (RAR) update wizard to update the stand-alone RAR files to a newer
version. The application server uses the classes and other code that comprise a resource adapter archive
to support the resource adapters that you configure.

Before you begin

A resource adapter must be installed on the application server, and you must have a new version of the
resource adapter that is compatible with the old version. You can create the RAR file with an assembly
tool, or the vendor for the resource adapter can provide the new version. If the new version of a RAR file
is not compatible with the old version of the resource adapter, an update is not possible.

The Java Connector Architecture (JCA) Version 1.6 specification adds support for Java annotations in RAR
modules. For more information on annotation support and metadata, see the topic JCA 1.6 support for
annotations in RAR modules.

About this task

Update a RAR file when you determine that a resource adapter or a set of resource adapters needs to be
updated with a different version. Different versions of resource adapters can include different settings, so
updating your adapter might be beneficial if you require a certain set of configuration options.

If you prefer to have more than one version of a resource adapter active in a given Java Virtual Machine
(JVM), the update wizard does not provide the option of creating another version and keeping the old. In
this case, you need to create an isolated resource adapter and configure it accordingly. Refer to the topic
on configuring a resource adapter for more information.

Procedure
1. Save all configuration changes.

2. Back up your configuration settings with the backupConfig tool. The backupConfig tool is located in the
app_server_root/bin directory. Read the topic on the backupConfig command for more information
about how to use this command.

3. Click Resources > Resource Adapters > Resource Adapters.

4. Select the check box next to the RAR file to update, and click Update RAR.

5. Specify the installation path for the RAR file, and click Next.

v If your RAR file is located on the same workstation as your browser, select Local file system, and
browse to find the file.

v If your RAR file is located on the server workstation where the application server is installed, select
Remote file system, and specify the fully qualified path to the file.

6. Review the configuration information that is provided for the RAR file. The following information is
displayed for the RAR file:

v Name

v Current® RAR version

v New RAR version

v Scope

v Any existing copies of the resource adapter. The resource adapters with an asterisk (*) are copies of
the resource adapter and must also be updated at the same time.

Click Next when you are finished.

7. Optional: Edit any properties that were added by the new version of the resource adapter. You can
also edit these properties after completing the update.

Chapter 7. Welcome to administering Data access resources 221



a. Select a resource in the list to edit the new properties. Only resources with new properties are
included in the list.

b. Edit the resource properties. Use the table that is provided to set the values for new properties of
the selected resource.

v Select the Set for all check box to apply the property value to all the resources of the same
type.

v Click the Reset to Default button to reset all the properties to the default values that are defined
in the RAR file. This property reset only affects the selected resource.

c. Click Next.

8. Review the summary panel, and click Finish when you are satisfied with the configuration settings.
When you click Finish, all the configuration changes are saved automatically. To revert to an older
version of the resource adapter you must perform the update process again, and specify the older
version of the RAR file.

What to do next

If you are not satisfied with the results, and you backed up your configuration with backupConfig tool, use
the restoreConfig tool to restore your backup configuration. Read the topic on the restoreConfig command
for more information about how to use this command.

RARUpdate command group
Use the resource adapter archive (RAR) update wizard to upgrade the RAR module and property
configuration of J2C Resource Adapters. The application server uses the classes and other code that
comprise a resource adapter archive to support the resource adapters that you configure.

To avoid problems, use the administrative console RAR update wizard. For more information, see the topic
Updating a resource adapter archive.

The RARUpdate command group contains the following commands:

v “compareResourceAdapterToRAR”

v “getNewRAObjectProperties” on page 223

v “findOtherRAsToUpdate” on page 223

v “updateRAR” on page 224

compareResourceAdapterToRAR

The compareResourceAdapterToRAR command determines whether a resource adapter is compatible with
a new RAR file. A resource adapter may be updated with a RAR only when the two are compatible.

Target object

Resource adapter Object ID - The configuration object of the resource adapter that will be compared for
update.

Result

The command returns true if the resource adapter is compatible with the specified RAR. It also displays
the versions of the resource adapter and new RAR file. If the resource adapter is not compatible with the
specified RAR, then the command returns false and provides a message explaining why they are not
compatible.

Required parameters

222 Administering WebSphere applications



-rarPath
The absolute path to a RAR file. (String, required)

Examples

Batch mode example usage:
AdminTask.compareResourceAdapterToRAR("Test Resource Adapter(cells/cell/nodes/node|resources.xml#J2CResourceAdapter_1169157308943"),

’[-rarPath "c:\tra\rar\TRA.rar"]’)

getNewRAObjectProperties

The getNewRAObjectProperties command obtains the list of new properties within a RAR file that may be
configured when updating a resource adapter.

Target object

Resource adapter Object ID - The configuration object of the resource adapter that will be updated.

Result

You receive the list of new properties that may be configured on the resource adapter when updating a
RAR.

Required parameters

-rarPath
The absolute path to a RAR file. (String, required)

-returnType
The type of value to return, "String" or “Hashtable. When returnType is “String", the command
returns a String intended for input to the updateRAR command; if returnType is “Hashtable“, then
the command returns a java.util.Hashtable which is intended for use with the Admin console. The
returnType defaults to "String". (String, optional)

Examples

Batch mode example usage:

v Using Jython:
AdminTask.getNewRAObjectProperties(’"Test Resource Adapter(cells/cell/nodes/node|resources.xml#J2CResourceAdapter_1169157308943)"’,

’[-rarPath c:/tra/RAR/TRA.rar -returnType String]’)

findOtherRAsToUpdate

The findOtherRAsToUpdate command locates other resource adapters in the configuration that are similar
to the resource adapter to be updated. The resulting resource adapters should also be updated.

Target object

Resource adapter Object ID - The configuration object of the resource adapter that will be compared for
update.

Result

The command returns a list of resource adapter Object ID Strings that may be input as the target object of
RARUpdate commands.

Examples

Chapter 7. Welcome to administering Data access resources 223



Batch mode example usage:

v Using Jython:
AdminTask.findOtherRAsToUpdate(’"Test Resource Adapter(cells/cell/nodes/node|resources.xml#J2CResourceAdapter_1169157308943)"’)

updateRAR

The updateRAR command updates the RAR and configuration of a resource adapter at a specific scope.

Target object

Resource adapter Object ID - The configuration object of the resource adapter that will be updated.

Result

This command returns a message of success or failure upon completion.

Required parameters

-rarPath
The absolute path to the new RAR file. (String, required)

Optional parameters

-ResourceAdapterProps
A list of [name value] pairs of new properties to set on the ResourceAdapter implementation class.
You can specify the following parameters for this step:

-name The name of the resource adapter property. (String, optional)

-value The value of the resource adapter property. (String, optional)

-ConnectionFactoryProps
A list of [id name value] triplets of new properties to set on the connection factories in the resource
adapter configuration. You can specify the following parameters for this step:

-id The Java Naming and Directory Interface (JNDI) name of the connection factory. (String,
optional)

-name The name of the connection factory property. (String, optional)

-value The value of the resource adapter property. (String, optional)

-ActivationSpecProps
A list of [id name value] triplets of new properties to set on the activation specifications in the
resource adapter configuration. You can specify the following parameters for this step:

-id The Java Naming and Directory Interface (JNDI) name of the activation specification.
(String, optional)

-name The name of the activation specification property. (String, optional)

-value The value of the activation specification property. (String, optional)

-AdminObjectProps
A list of [id name value] triplets of new properties to set on the administered objects in the
resource adapter configuration. You can specify the following parameters for this step:

-id The Java Naming and Directory Interface (JNDI) name of the activation specification.
(String, optional)

-name The name of the administered object property. (String, optional)

-value The value of the administered object property. (String, optional)

224 Administering WebSphere applications



Examples

Batch mode example usage:

v Using Jython:
AdminTask.updateRAR(’"Test Resource Adapter(cells/cell/nodes/node|resources.xml#J2CResourceAdapter_1169157308943)"’,

’[-rarPath c:/tra/RAR/TRA.rar -ResourceAdapterProps [[RAProp1 RAProp1Val] [RAProp2 RAProp2Val]]
-ConnectionFactoryProps [[eis/TRA_CF_1 CFProp1 CFProp1Val] [eis/TRA_CF_2 CFProp1 CFProp1Val2] [eis/TRA_DIF_CF CFProp2 CFProp2val]]
-ActivationSpecProps [[eis/TRA_AS_1 ASProp1 ASProp1Val] [eis/TRA_AS_1 ASProp2 ASProp2Val] [eis/TRA_AS_2 ASProp3 ASProp3val] [eis/TRA_AS_2 ASProp4 ASProp4Val]]
-AdminObjectProps [[eis/TRA_AO_1 AOProp1 AOProp1Val] [eis/TRA_AO_1 AOProp2 AOProp2Val] [eis/TRA_AO_2 AOProp1 AOProp1Val] [eis/TRA_AO_3 AOProp2 AOProp2Val]]]’)

Interactive mode example usage:

v Using Jython:
AdminTask.updateRAR(’-interactive’)

Mapping resource manager connection factory references to resource
factories
You can use the administrative console to bind the resource manager connection factory references to one
of the configured resource factories.

Before you begin

Before you can map the resource manager connection factory references to a configured resource factory,
your enterprise application must contain configured resource references. You must use an assembly tool,
such as Rational Application Developer, to assemble the application before deploying it through the
administrative console.

Important: If your application does not contain resource references, the Resource references link does
not display in the administrative console.

For more information on resource references, see the following topics:

v Creating or changing a resource reference

v Resource reference benefits

About this task

If the value of the res-auth element is Container within the deployment descriptor for your application, then
you must specify the mapping configuration.

Procedure
1. Click Applications > Enterprise applications > application_name.

2. From Resources, select Resource references.

3. Select the application module and specify an authentication method for the selected connection
factory reference binding. Select either Use default method, Use custom login configuration or
Use trusted connections. If you select the Use default method option, the DefaultPrincipalMapping
login configuration is selected. If you select the Use trusted connections option, then the
TrustedConnectionMapping login configuration is selected. You must select an authentication data
alias from the list.

4. After you make a selection, click Apply for the configuration to take effect.

5. If you select the Use trusted connection option, then you must select an authentication data alias
from the menu list. The alias that is specified is what the application server uses to get the initial
trusted connection.

6. Click Apply. The selected login configuration name and an Mapping properties button is displayed
in the Login configuration field of the particular connection factory reference binding.

Chapter 7. Welcome to administering Data access resources 225



7. Click Mapping properties > New to specify the properties for your configuration. Click OK after
specifying the properties on the Mapping properties panel.

8. If you select the Use trusted connection option, then you must select an authentication data alias
from the menu list.

9. Click Apply. The Mapping properties button is displayed in the login configuration field of the
particular connection factory reference binding.

10. Click Mapping properties to modify the properties of the trusted connection. See the topic, Setting
the security properties for trusted connections, for information on tuning the mapping properties for
the trusted connection.

11. Click OK and Save on the Resource references panel to save your changes to the master
configuration.

Managing messages with message endpoints
Manage message delivery for message-driven beans (MDB) that are deployed as message endpoints. The
message endpoints are managed beans (MBeans) for inbound resource adapters that are compliant with
Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) Version 1.5.

About this task

The application server provides message endpoint MBeans to assist you in managing the delivery of a
message to your message-driven beans that are acting as listeners on specific endpoints, which are
destinations, and in managing the enterprise information system (EIS) resources that are utilized by these
message-driven beans. Message-driven beans that are deployed as message endpoints are not the same
as message-driven beans that are configured against a listener port. Message-driven beans that are used
as message endpoints must be deployed using an ActivationSpecification that is defined within a resource
adapter configuration for JCA Version 1.5.

With message endpoint MBeans, you can activate and deactivate specific endpoints within your
applications to ensure that messages are delivered only to listening message-driven beans that are
interacting with healthy EIS resources. This capability allows you to optimize the performance of your JMS
applications in situations where an EIS resource is not behaving as expected. Message delivery to an
endpoint typically fails when the message driven bean that is listening invokes an operation against a
resource that is not healthy. For example, a messaging provider, which is an inbound resource adapter
that is JCA Version 1.5 compliant, might fail to deliver messages to an endpoint when its underlying
message-driven bean attempts to commit transactions against a database server that is not responding.

Note: Design your message-driven beans to delegate business processing to other enterprise beans. Do
not access the EIS resources directly in the message-driven bean, but do so indirectly through a
delegate bean.

Message endpoint MBeans alleviate two problems that are inherent to applications that provide message
endpoints that access resources:

v Failed messages require additional processing, such as delivering them to the listening endpoint again
or redirecting them to alternate destinations that process failed messages. In addition, a resource
adapter might redeliver a message to an endpoint an infinite number of times.

v Message redirection requires the implementation of specialized destinations (queues and listeners) to
process failed messages, as well as the logic to detect message failures. Message redirection is
potentially error prone and computationally expensive due to its complexity.

The capability to deactivate (pause) and reactivate (resume) a specific message endpoint alleviates these
problems by enabling the administrator to deactivate the endpoint from processing messages that are
destined to fail. When the message endpoint is deactivated, you can repair the resource that is causing
the problems and reactivate the endpoint to resume handling message requests. In the course of
troubleshooting, you will not affect the resource adapter or the application that is hosting the endpoint.

226 Administering WebSphere applications



If you are connecting to WebSphere MQ, you can also use the WAS_EndpointInitialState custom property
in the activation specification to make the message endpoint start out in a deactivated state. When you set
this property to Inactive, the message-driven bean connects with the destination, but does not start
receiving messages. Use this setting to automatically deactivate a message endpoint when you know that
certain tasks must be completed, services must be started, or checks must be carried out, before message
handling begins. You activate the message endpoint in the same way as you would reactivate a message
endpoint that you paused during its operation.

Procedure
1. Using the administrative console, navigate to the Message Endpoints panel for the application that is

hosting the message endpoint.

a. Select the Applications > Application Types > Websphere enterprise applications >
application_name.

b. Select the Runtime panel.

c. Select Message Endpoints. The panel lists the set of message endpoints that are hosted by the
application.

2. Optional: Temporarily disable a message endpoint from handling messages and troubleshoot the
problem.

a. Deactivate the message endpoint by selecting the appropriate endpoint and clicking Pause.

b. When the message endpoint is inactive, diagnose and repair the underlying cause of the delivery
failures.

c. Reactivate the message endpoint by selecting the appropriate endpoint and clicking Resume.

3. Optional: Activate a message endpoint that started out in a deactivated state. Select the appropriate
endpoint and click Resume.

Results

The behavior you will observe when you deactivate (pause) a message endpoint using the message
endpoint MBean is dependent upon a variety of factors, including the resource adapter that manages the
message endpoint, the configuration of the message endpoint and the application server topology. Some
specific examples of interest are as follows:

v MDB listening on a non-durable topic (dependent on configuration): The behavior that is implied by
the deactivation (pause) of a message endpoint is often dependent upon the function that it is fulfilling.
For example, if you have configured a message-driven bean to listen on a non-durable topic on the
service integration bus, deactivating the message endpoint is analogous to stopping the application and
will cause the subscription to be closed. This means that any messages that are published during the
time that the message endpoint is paused will not be received by the message-driven bean.

v Clustered message-driven bean (dependent on topology): In this scenario a message-driven bean
application has been deployed to a cluster of servers. A given message endpoint MBean controls only
the behavior of the MDB in one server from the cluster, so will cause only one server to stop processing
messages. Depending upon the messaging configuration and the specific resource adapter in use the
messages that would have been consumed by the paused message endpoint may be consumed by the
active message endpoints in the cluster, or they may remain unconsumed until the paused message
endpoint is resumed.

v Clustered message-driven bean, a non-clustered queue: In this scenario, you have a cluster of
servers with the same message-driven bean deployed to them. This is similar to the case, in which you
have different message-driven beans with the same message selection criteria, except that in this case
the message-driven beans are logically the same message-driven bean. Pausing the endpoint will
cause only one of the servers to stop receiving messages, and the other message-driven beans will
receive all the messages; none of the messages will be orphaned. To stop all of the endpoints, you
must direct each server in the cluster to stop the local message endpoint.

v Clustered message-driven bean, clustered queue: In this scenario, each message-driven bean is
pulling messages from a different partition of the queue. Messaging through WebSphere MQ and the

Chapter 7. Welcome to administering Data access resources 227



Service Integration Bus have similar, but different, capabilities. If you are using WebSphere MQ, then
pausing one endpoint will not allow the other instances of the message-driven bean to receive the
messages. In the Service Integration Bus, messages from a paused endpoint will be redirected to the
other message-driven beans.

Manage message endpoints
Use this panel to manage situations where messaging providers fail to deliver messages to their intended
destinations. For example, a provider might fail to deliver messages to a message endpoint when its
underlying message driven bean attempts to commit transactions against a database server that is not
responding.

To view this administrative console panel:

1. Select the Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Select the Runtime panel. You will only see the Runtime panel if you have an application installed that
is hosting message-driven beans.

3. Select Message Endpoints. The panel lists the set of message endpoints that are hosted by the
application.

Name:

Specifies the name of the message endpoint.

Click the name of the message endpoint to view the configuration binding for the underlying endpoint
message-driven bean and Activation Specification.

Running object scope:

Specifies the server where the endpoint is running.

For more information on scope, see the topic, Administrative console scope settings.

Status:

Indicates whether the message endpoint is active or inactive.

Click Pause to deactivate a message endpoint and stop it from handling messages.

Click Resume to reactivate a message endpoint that is inactive.

Configuring a JDBC provider and data source
For access to relational databases, applications use the Java Database Connectivity (JDBC) drivers and
data sources that you configure for the application server.

Before you begin

Each vendor database requires different JDBC driver implementation classes for JDBC connectivity. A
JDBC provider encapsulates those vendor-specific driver files. Through the data source that you associate
with the JDBC provider, an application server obtains and manages the physical connections for
transactions between applications and the database.

Attention: If you are accessing a DB2 database, IBM Optim pureQuery Runtime is an alternative to
JDBC. For more information on pureQuery, see the topic, Task overview: IBM Optim pureQuery Runtime,
in the related links section.

228 Administering WebSphere applications



Before starting this task, determine the version of data source that you need according to the API
specification of your applications.

v Data sources (WebSphere Application Server Version 4) are for use with the Enterprise JavaBeans
(EJB) 1.0 specification and the Java Servlet 2.2 specification.

v Data sources of the latest standard version are for use with applications that implement the more
advanced releases of these specifications.

Procedure
1. Verify that all of the necessary JDBC driver files are installed on your application server. Consult the

article, Data source minimum required settings, by vendor for that information. If you opt to configure a
user-defined JDBC provider, check your database documentation for information about the driver files.

2. Create a JDBC provider.

When you create a JDBC provider from the administrative console, see the topic, Configuring a JDBC
provider using the administrative console; or

Using the wsadmin scripting client, see the topic, Configuring a JDBC provider using the scripting; or

Using the Java Management Extensions (JMX) API, see the topic, Creating a JDBC provider and data
source using the JavaManagement Extensions API.

3. Create a data source.

From the administrative console, see the topic, Creating a data source using the administrative
console; or

Using the wsadmin scripting client, see the topic, Configuring new data sources using scripting. For V4
data sources, see the topic, Configuring new WAS40 data sources using scripting; or

Using the JMX API, see the topic, Creating a JDBC provider and data source using the
JavaManagement Extensions API.

Required properties: Different database vendors require different properties for implementations of
their JDBC drivers. Set these properties on the WebSphere Application Server
data source. Because Application Server contains templates for many vendor
JDBC implementations, the administrative console surfaces the required
properties and prompts you for them as you create a data source. However, if
you script your data access configurations, you must consult the article Data
source minimum required settings, by vendor, for the required properties and
settings options.

4. Optional: Configure custom properties.

Like the required properties, custom properties for specific vendor JDBC drivers must be set on the
application server data source. Consult your database documentation for information about available
custom properties. To configure a custom class to facilitate the handling of database properties that are
not recognized natively by the Application Server, refer to the topic, Developing a custom
DataStoreHelper class.

There are also optional data source properties, such as the DB2 sslConnection custom property, that
you might want to configure. Refer to the Application Programming Guide and Reference for Java for
your version of DB2 for z/OS if you use the DB2 Universal JDBC Driver provider for more information
about these custom properties.

5. Bind resource references to the data source. See the article, Data source lookups for enterprise beans
and web modules.

6. Test the connection (for non-container-managed persistence usage). See the topic, Test connection
service.

Results

If you use the DB2 JDBC Universal Driver, you might experience data source failures that the application
server JVM log does not document. Check the DB2 database log or the WebSphere Application Server

Chapter 7. Welcome to administering Data access resources 229



JDBC trace log (if JDBC trace was active). You might find that a bad authentication credential is the cause
of failure. Currently the DB2 JDBC Universal Driver does not identify or surface the errors that are
produced by non-valid authentication credentials in a proper or consistent way.

Even if you receive information about a bad credential, check the database and JDBC trace logs. These
logs provide more reliable, detailed error data on authentication failures.

Note: The JDBC trace log exists only if the JDBC trace service is active during server start up. Activate
the service in the administrative console. For more information, see the topic, Enabling trace at
server startup. Specify WAS.database as the trace group and select com.ibm.ws.db2.logwriter as
the trace string.

Data source minimum required settings, by vendor
These properties vary according to the database vendor requirements for Java Database Connectivity
(JDBC) driver implementations. You must set the appropriate properties on every data source that you
configure.

Use these tables for quick reference on the JDBC providers that represent your JDBC driver classes. Each
table corresponds to a specific database vendor, product, and platform.

Following the tables are links to detailed requirements for creating data sources that correspond to each
JDBC provider that the application server supports . The list includes information about connection
properties that are required by the database and any optional properties that the JDBC driver supports.
Use the administrative console or the wsadmin scripting tool to define these properties on your data
sources.

Table 8. Apache Derby JDBC providers. Use the table for quick reference on database-specific JDBC providers.

Apache Derby

JDBC provider Transaction support Version and other considerations

Derby JDBC Provider One-phase v Does not support Version 4 data
sources

v Configurable only in nodes at
version 6.0.2 and later

v Not for use in clustered
environment: accessible from a
single JVM only

Derby JDBC Provider (XA) One and two phase v Does not support Version 4 data
sources

v Configurable only in nodes at
version 6.0.2 and later

v Not for use in clustered
environment: accessible from a
single JVM only

Derby JDBC Provider 40 One-phase v Configurable only in nodes at
version 7.0 and later

v Does not support Version 4 data
sources

Derby JDBC Provider 40 (XA) One and two phase v Configurable only in nodes at
version 7.0 and later

v Does not support Version 4 data
sources

230 Administering WebSphere applications



Table 8. Apache Derby JDBC providers (continued). Use the table for quick reference on database-specific JDBC
providers.

Apache Derby

JDBC provider Transaction support Version and other considerations

Derby Network Server Using Derby
Client

One-phase v Does not support Version 4.0 data
sources.

v Configurable only in nodes at
version 6.1 and later

v Can be used in clustered
environment: a database instance
can be accessed by multiple JVMs

v Only for use with Apache Derby
databases that run on the same
node as the application server

Derby Network Server Using Derby
Client (XA)

One and two phase v Does not support Version 4 data
sources

v Configurable only in nodes at
version 6.1 and later

v Can be used in clustered
environment: a database instance
can be accessed by multiple JVMs

v Only for use with Apache Derby
databases that run on the same
node as the application server

Derby Network Server Using Derby
Client 40

One-phase v Configurable only in nodes at
version 7.0 and later

v Does not support Version 4 data
sources

Derby Network Server Using Derby
Client 40 (XA)

One and two phase v Configurable only in nodes at
version 7.0 and later

v Does not support Version 4 data
sources

Table 9. DB2 on AIX, HP-UX, Linux, Solaris, and Windows systems JDBC providers. Use the table for quick
reference on database-specific JDBC providers.

DB2 on AIX, HP-UX, Linux, Solaris, and Windows systems

JDBC provider Transaction support Version and other considerations

DB2 Using IBM JCC Driver One-phase v Configurable in nodes that are at
version 7.0 and later.

DB2 Using IBM JCC Driver (XA) One and two phase v Configurable in nodes that are at
version 7.0 and later.

DB2 Universal JDBC Provider One-phase N/A

DB2 Universal JDBC Provider (XA) One and two phase N/A

Chapter 7. Welcome to administering Data access resources 231



Table 10. DB2 UDB for iSeries JDBC providers. Use the table for quick reference on database-specific JDBC
providers.

DB2 UDB for iSeries

JDBC provider Transaction support Version and other considerations

DB2 UDB for iSeries
(Native)

One-phase Recommended when you run the
application server on iSeries.

DB2 UDB for iSeries
(Native XA)

One and two phase Recommended when you run the
application server on iSeries.

DB2 UDB for iSeries (Toolbox) One-phase N/A

DB2 UDB for iSeries (Toolbox XA) One and two phase N/A

Table 11. DB2 on z/OS JDBC providers. Use the table for quick reference on database-specific JDBC providers.

DB2 on z/OS

JDBC provider Transaction support Version and other considerations

DB2 Using IBM JCC Driver One-phase Configurable in version 7.0 and later
nodes.

DB2 Using IBM JCC Driver (XA) One and two phase Configurable version 7.0 and later
nodes.

DB2 Universal JDBC Provider One-phase when
connecting to the application server
that is on AIX, HP-UX, Linux, Solaris,
Windows, and iSeries systems

DB2 Universal JDBC Provider (XA) One and two phase

Table 12. Informix JDBC providers. Use the table for quick reference on database-specific JDBC providers.

Informix

JDBC provider Transaction support Version and other considerations

Informix Using IBM JCC Driver One phase This provider is configurable in nodes
that are at version 7.0 and later.

Informix Using IBM JCC Driver (XA) One and two phase This provider is configurable in nodes
that are at version 7.0 and later.

Informix JDBC Driver One-phase N/A

Informix JDBC Driver (XA) One and two phase N/A

Informix using IBM DB2 JDBC
Universal Driver

One phase This provider is configurable in nodes
that are at version 7.0 and later.

Informix using IBM DB2 JDBC
Universal Driver (XA)

One and two phase This provider is configurable in nodes
that are at version 7.0 and later.

Table 13. Microsoft SQL Server JDBC providers. Use the table for quick reference on database-specific JDBC
providers.

Microsoft SQL Server

JDBC provider Transaction support Version and other considerations

Microsoft SQL Server JDBC Driver One-phase N/A

Microsoft SQL Server JDBC Driver
(XA)

One and two phase N/A

232 Administering WebSphere applications



Table 13. Microsoft SQL Server JDBC providers (continued). Use the table for quick reference on database-specific
JDBC providers.

Microsoft SQL Server

JDBC provider Transaction support Version and other considerations

DataDirect ConnectJDBC Provider
type 4 driver for MS SQL Server

One-phase N/A

DataDirect ConnectJDBC Provider,
type 4 driver, for MS SQL Server (XA)

One and two phase N/A

Table 14. Oracle JDBC providers. Use the table for quick reference on database-specific JDBC providers.

Oracle

JDBC provider Transaction support Version and other considerations

Oracle JDBC Driver One-phase Must use the ojdbc6.jar driver to
connect to any version of Oracle
database.

Oracle JDBC Driver(XA) One and two phase Must use the ojdbc6.jar driver to
connect to any version of Oracle
database.

Table 15. Sybase JDBC providers. Use the table for quick reference on database-specific JDBC providers.

Sybase

JDBC provider Transaction support Version and other considerations

Sybase JDBC 4 Driver One-phase jConnect v7.0

Sybase JDBC 4 Driver (XA) One and two phase jConnect v7.0

Sybase JDBC 3 Driver One-phase jConnect v6.05

Sybase JDBC 3 Driver (XA) One and two phase jConnect v6.05

Sybase JDBC 2 Driver One-phase jConnect v5.5

Sybase JDBC 2 Driver (XA) One and two phase jConnect v5.5

depfeat: Support for Sybase jConnect 5.5 is deprecated. You might want to use a later provider that uses Sybase
jConnect 6.05 or jConnect 7.0.

Detailed requirements

The following list identifies required class files and connection properties per JDBC provider.

After you determine the JDBC provider that suits your application and environment, ensure that you
acquire the corresponding JDBC driver at a release level supported by this version of the application
server. Consult the IBM support website for supported hardware and software.

Use the following links to navigate to the requirements list. Each link corresponds to a specific database
vendor, product, and platform.

v Apache Derby or Cloudscape 10.x

v DB2 Universal Database for iSeries

v Informix

v Microsoft SQL Server

v Oracle

v Sybase

Chapter 7. Welcome to administering Data access resources 233



Data source minimum required settings for Apache Derby:

These properties vary according to the database vendor requirements for JDBC driver implementations.
You must set the appropriate properties on every data source that you configure. These settings are for
Apache Derby and Cloudscape data sources.

You can configure the following types of providers:

v Derby JDBC Provider

v Derby JDBC Provider (XA)

v Derby JDBC Provider 40

v Derby JDBC Provider 40 (XA)

v Derby Network Server using Derby Client

v Derby Network Server using Derby Client (XA)

v Derby Network Server using Derby Client 40

v Derby Network Server using Derby Client 40 (XA)

v Derby JDBC Provider

The Derby JDBC driver provides JDBC access to the Apache Derby database by using the framework
that is already embedded in the application server. You cannot use any Version 4.0 data sources with
this provider.

This provider:

– Is configurable only in nodes at version 6.0.2 and later

– Supports one phase data source with the following class:
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource

– Requires the JDBC driver file:

- derby.jar

The full path name is ${DERBY_JDBC_DRIVER_PATH}/derby.jar. When you create a connection
through the application server, the environment variables are set automatically.

– Requires the following DataStoreHelper class:
com.ibm.websphere.rsadapter.DerbyDataStoreHelper

– Requires the following properties:

databaseName
The name of the database from which the data source obtains connections. If you do not
specify a fully qualified path name, the application server uses the default location of
app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system
environments. An example for the database path name is:

If no database exists for the path name that you want to specify, configure the custom property,
createDatabase, to a value of create to create the database dynamically.

v Derby JDBC Provider (XA)

The Derby JDBC driver (XA) provides JDBC access to the Apache Derby database by using the
framework that is already embedded in the application server.

This provider:

– Does not support use Version 4.0 data sources.

– Is configurable only in nodes at version 6.0.2 and later

– Supports the two-phase data source with the following class:
org.apache.derby.jdbc.EmbeddedXADataSource

– Requires JDBC driver file:

- derby.jar

234 Administering WebSphere applications



The full path name is ${DERBY_JDBC_DRIVER_PATH}/derby.jar. When you create a connection
through the application server, the environment variables are set automatically.

– Requires the following DataStoreHelper class:
com.ibm.websphere.rsadapter.DerbyDataStoreHelper

– Does not require a valid authentication alias.

– Requires the following properties:

databaseName
The name of the database from which the data source obtains connections. If you do not
specify a fully qualified path name, the application server uses the default location of
app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system
environments. An example for the database path name is:

If no database exists for the path name that you want to specify, configure the custom property,
createDatabase, to a value of create to create the database dynamically.

v Derby JDBC Provider 40

The Derby JDBC Provider 40 provides JDBC access to the Apache Derby database by using the
framework that is already embedded in the application server.

This provider:

– Is configurable only in nodes at version 7.0 and later.

– Does not support Version 4.0 data sources.

– Supports one phase data source with the following class:
org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource40

– Requires the JDBC driver file:

- derby.jar

The full path name is ${DERBY_JDBC_DRIVER_PATH}/derby.jar. When you create a connection
through the application server, the environment variables are set automatically.

– Requires the following DataStoreHelper class:
com.ibm.websphere.rsadapter.DerbyDataStoreHelper

– Requires the following properties:

databaseName
The name of the database from which the data source obtains connections. If you do not
specify a fully qualified path name, the application server uses the default location of
app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system
environments. An example for the database path name is:

If no database exists for the path name that you want to specify, configure the custom property,
createDatabase, to a value of create to create the database dynamically.

v Derby JDBC Provider 40 (XA)

The Derby JDBC Provider 40 (XA) provides JDBC access to the Apache Derby database by using the
framework that is already embedded in the application server.

This provider:

– Is configurable only in nodes at version 7.0 and later.

– Does not support Version 4.0 data sources.

– Supports one phase data source with the following class:
org.apache.derby.jdbc.EmbeddedXADataSource40

– Requires the JDBC driver file:

- derby.jar

The full path name is ${DERBY_JDBC_DRIVER_PATH}/derby.jar. When you create a connection
through the application server, the environment variables are set automatically.

Chapter 7. Welcome to administering Data access resources 235



– Requires the following DataStoreHelper class:
com.ibm.websphere.rsadapter.DerbyDataStoreHelper

– Requires the following properties:

databaseName
The name of the database from which the data source obtains connections. If you do not
specify a fully qualified path name, the application server uses the default location of
app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system
environments. An example for the database path name is:

If no database exists for the path name that you want to specify, configure the custom property,
createDatabase, to a value of create to create the database dynamically.

v Derby Network Server using Derby Client

Use this provider to access only Apache Derby databases that run on the same node as the application
server.

This provider:

– Does not support Version 4.0 data sources.

– Is configurable only in nodes at version 6.1 and later

– Uses the following one phase data source for the Derby Network Server using Derby Client provider:
org.apache.derby.jdbc.ClientConnectionPoolDataSource

– Requires the following JDBC driver file:

- derbyclient.jar

– Requires DataStoreHelper class:
com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

– Requires the following property:

databaseName
The name of the database from which the data source obtains connections. If you do not
specify a fully qualified path name, the application server uses the default location of
app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system
environments. An example for the database path name is:

If no database exists for the path name that you want to specify, configure the custom property,
createDatabase, to a value of create to create the database dynamically.

v Derby Network Server using Derby Client (XA)

Use this provider to access only Apache Derby databases that run on the same node as the application
server.

This provider:

– Does not support Version 4.0 data sources.

– Is configurable only in nodes at version 6.1 and later

– Uses the following XA data source for this Derby Network Server using Derby Client provider:
org.apache.derby.jdbc.ClientXADataSource

– Requires the following JDBC driver file:

- derbyclient.jar

– Requires the DataStoreHelper class:
com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

– Requires the following property:

databaseName
The name of the database from which the data source obtains connections. If you do not
specify a fully qualified path name, the application server uses the default location of

236 Administering WebSphere applications



app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system
environments. An example for the database path name is:

If no database exists for the path name that you want to specify, configure the custom property,
createDatabase, to a value of create to create the database dynamically.

v Derby Network Server using Derby Client 40

Use this provider to access only Apache Derby databases that run on the same node as the application
server.

This provider:

– Is configurable only in nodes at version 7.0 and later

– Does not support Version 4.0 data sources.

– Uses the following one phase data source for the Derby Network Server using Derby Client provider:
org.apache.derby.jdbc.ClientConnectionPoolDataSource40

– Requires the following JDBC driver file:

- derbyclient.jar

– Requires DataStoreHelper class:
com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

– Requires the following property:

databaseName
The name of the database from which the data source obtains connections. If you do not
specify a fully qualified path name, the application server uses the default location of
app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system
environments. An example for the database path name is:

If no database exists for the path name that you want to specify, configure the custom property,
createDatabase, to a value of create to create the database dynamically.

v Derby Network Server using Derby Client 40 (XA)

Use this provider to access only Apache Derby databases that run on the same node as the application
server.

This provider:

– Is configurable only in nodes at version 7.0 and later

– Does not support Version 4.0 data sources.

– Uses the following one phase data source for the Derby Network Server using Derby Client provider:
org.apache.derby.jdbc.ClientXADataSource40

– Requires the following JDBC driver file:

- derbyclient.jar

– Requires DataStoreHelper class:
com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

– Requires the following property:

databaseName
The name of the database from which the data source obtains connections. If you do not
specify a fully qualified path name, the application server uses the default location of
app_server_root/derby or the equivalent default for AIX, HP-UX, Linux, or Solaris system
environments. An example for the database path name is:

If no database exists for the path name that you want to specify, configure the custom property,
createDatabase, to a value of create to create the database dynamically.

Data source minimum required settings for DB2 Universal Database for IBM i:

Chapter 7. Welcome to administering Data access resources 237



These properties vary according to the database vendor requirements for JDBC driver implementations.
You must set the appropriate properties on every data source that you configure. These settings are for a
DB2 UDB data source.

What type of configuration do you have?

v “DB2 UDB for iSeries with the application server for AIX, HP-UX, IBM i, Linux, Solaris, or
Windows”

DB2 UDB for iSeries with the application server for AIX, HP-UX, IBM i, Linux, Solaris, or Windows

You can configure the following types of providers:

v DB2 UDB for iSeries (Native)

v DB2 UDB for iSeries (Native XA)

v DB2 UDB for iSeries (Toolbox)

v DB2 UDB for iSeries (Toolbox XA)

v DB2 UDB for iSeries (Native)

The iSeries Developer Kit for Java contains this Type 2 JDBC driver that is built on top of the iSeries
DB2 Call Level Interface (CLI) native libraries.

This provider:

– Is for local DB2 connections on iSeries. It is not recommended for remote access.

– Supports the one-phase data source:
com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource

– Requires the following JDBC driver files:

- db2_classes16.jar - for nodes that are running at Version 7.0 or later. The location of the jar file is
/QIBM/Proddata/java400/jdk6/lib/ext/db2_classes16.jar.

- db2_classes.jar - for nodes that are running at Version 6.1 or earlier. The location of the jar file is
/QIBM/ProdData/Java400/ext/db2_classes.jar.

– Requires the following DataStoreHelper class:
com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

– Does not require an authentication alias.

– Requires the following properties:

- databaseName - The name of the relational database to which the data source connections are
established. This name must appear in the iSeries Relational Database Directory. The default is
*LOCAL.

v DB2 UDB for iSeries (Native XA)

The iSeries Developer Kit for Java contains this XA-compliant Type 2 JDBC driver built on top of the
iSeries DB2 Call Level Interface (CLI) native libraries.

This provider:

– Is for local DB2 connections on iSeries. It is not recommended for remote access.

– Supports the following two-phase data source:
com.ibm.db2.jdbc.app.UDBXADataSource

– Requires the following JDBC driver files:

- db2_classes16.jar - for nodes that are running at Version 7.0 or later. The location of the jar file is
/QIBM/Proddata/java400/jdk6/lib/ext/db2_classes16.jar.

- db2_classes.jar - for nodes that are running at Version 6.1 or earlier. The location of the jar file is
/QIBM/ProdData/Java400/ext/db2_classes.jar.

– Requires the following DataStoreHelper class:
com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

238 Administering WebSphere applications



– Does not require an authentication alias.

– Requires the following properties:
- databaseName - The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is
*LOCAL.

v DB2 UDB for iSeries (Toolbox)

This JDBC driver, also known as iSeries Toolbox driver for Java, is provided in the DB2 for iSeries
database server.

This provider:

– Is for remote DB2 connections on iSeries. Use this driver instead of the IBM Developer Kit for Java
JDBC Driver to access remote DB2 UDB for iSeries systems.

– Supports the following one-phase data source:
com.ibm.as400.access.AS400JDBCConnectionPoolDataSource

– Requires the following JDBC driver files:

- jt400.jar

– Requires the following DataStoreHelper class:
com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

– Does not require an authentication alias if the application server and DB2 UDB for iSeries are
installed in the same server. If they are installed in different servers, the user ID and password are
required.

– Requires the following properties:

- serverName - The name of the server from which the data source obtains connections. Example:
myserver.mydomain.com.

v DB2 UDB for iSeries (Toolbox XA)

This XA compliant JDBC driver, also known as iSeries Toolbox XA compliant driver for Java, is provided
in the DB2 for iSeries database server.

This provider:

– Is for remote DB2 connections on iSeries. Use this driver instead of the IBM Developer Kit for Java
JDBC Driver to access remote DB2 UDB for iSeries systems.

– Supports the following two-phase data source:
com.ibm.as400.access.AS400JDBCXADataSource

– Requires the following JDBC driver files:

- jt400.jar

– Requires the following DataStoreHelper class:
com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

– Does not require an authentication alias if the application server and DB2 UDB for iSeries are
installed in the same server. If they are installed in different servers, the user ID and password are
required.

– Requires the following properties:
- serverName - The name of the server from which the data source obtains connections. Example:

myserver.mydomain.com.

Data source minimum required settings for Informix:

These properties vary according to the database vendor requirements for JDBC driver implementations.
You must set the appropriate properties on every data source that you configure. These settings are for
Informix data sources.

You can configure the following types of providers:

v Informix JDBC Driver

Chapter 7. Welcome to administering Data access resources 239



v Informix JDBC Driver (XA)

v Informix Using IBM JCC Driver

v Informix Using IBM JCC Driver (XA)

v Informix Using IBM DB2 JDBC Universal Driver

v Informix Using IBM DB2 JDBC Universal Driver (XA)

v Informix JDBC Driver

The Informix JDBC Driver is a Type 4 JDBC driver that provides JDBC access to the Informix database.

Informix JDBC Driver supports one phase data source:

com.informix.jdbcx.IfxConnectionPoolDataSource

Requires the following JDBC driver files:

ifxjdbc.jar
ifxjdbcx.jar

Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixDataStoreHelper

Requires a valid authentication alias.

Requires the following properties:

– serverName

The name of the Informix instance on the server. Example: ol_myserver.

– portNumber

The port on which the instances listen. Example: 1526.

– ifxIFXHOST

Either the IP address or the host name of the machine that is running the Informix database to which
you want to connect. Example: myserver.mydomain.com.

To support IPv6: On AIX and Solaris, IBM Informix Dynamic Server 10.00 with fix pack 1 supports
the IPv6 standard. To enable IPv6 on your WebSphere Application Server connection with one of
these Informix releases, input your full IPv6 host name for the ifxIFXHOST property.

– databaseName

The name of the database from which the data source obtains connections. Example: Sample.

– informixLockModeWait

Although not required, this property enables you to set the number of seconds that Informix software
waits for a lock. By default, Informix code throws an exception if it cannot immediately acquire a lock.
Example: 2.

v Informix JDBC Driver (XA)

The Informix JDBC Driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC access to the
Informix database.

Informix JDBC Driver (XA) supports two phase data source:

com.informix.jdbcx.IfxXADataSource

Requires the following JDBC driver files:

ifxjdbc.jar
ifxjdbcx.jar

To use SQLJ: This provider also requires driver file ifxsqlj.jar if you plan to use SQLJ for queries.

Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixDataStoreHelper

Requires a valid authentication alias.

Requires the following properties:

240 Administering WebSphere applications



– serverName

The name of the Informix instance on the server. Example: ol_myserver.

– portNumber

The port on which the instances listen. Example: 1526.

– ifxIFXHOST

Either the IP address or the host name of the machine that is running the Informix database to which
you want to connect. Example: myserver.mydomain.com.

To support IPv6: On AIX and Solaris, IBM Informix Dynamic Server 10.00 with fix pack 1 supports
the IPv6 standard. To enable IPv6 on your WebSphere Application Server connection with one of
these Informix releases, input your full IPv6 host name for the ifxIFXHOST property.

– databaseName

The name of the database from which the data source obtains connections. Example: Sample.

– ifxIFX_XASPEC

Turn on this property when multiple users access the same database. Activating the property
enforces tight coupling of XA transactions within the same global transaction ID, and requires the
transactions to share lock space.

These parameters help prevent transaction management errors from occurring in the case of multiple
client requests.

Turn on the ifxIFX_XASPEC property by assigning it the value of Y or y; either character works
because the setting is not case-specific. Turn the property off by assigning it the value of N or n.
WebSphere Application Server ignores all other values. Your setting for the property overrides the
Informix database system setting.

– informixLockModeWait

Although not required, this property enables you to set the number of seconds that Informix software
waits for a lock. By default, Informix code throws an exception if it cannot immediately acquire a lock.
Example: 2.

v Informix Using IBM JCC Driver

The Informix IBM JCC Driver is a one-phase commit provider for Informix that uses the IBM Data
Server Driver for JDBC and SQLJ. The IBM Data Server Driver is JDBC 4.0 compliant and is the next
generation of the Universal JCC driver.

This provider is configurable in version 7.0 and later nodes.

The following one-phase data source is supported:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

The following JDBC driver files are required:

db2jcc4.jar
db2jcc_license_cu.jar
db2jcc_license_cisuz.jar

as well as the following DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixJccDataStoreHelper

This provider requires a valid authentication alias.

The following properties are required:

– serverName - The TCP/IP address or host name for the Informix server.

– portNumber - The TCP/IP port number where the Informix server resides.

– databaseName - The name of the database from which the data source obtains connections.
Example: Sample.

v Informix Using IBM JCC Driver (XA)

Chapter 7. Welcome to administering Data access resources 241



The Informix IBM JCC Driver (XA) is a two-phase commit provider for Informix that uses the IBM Data
Server Driver for JDBC and SQLJ. The IBM Data Server Driver is JDBC 4.0 compliant and is the next
generation of the Universal JCC driver.

This provider is configurable in version 7.0 and later nodes.

The following two-phase data source is supported:

com.ibm.db2.jcc.DB2XADataSource

The following JDBC driver files are required:

db2jcc4.jar
db2jcc_license_cu.jar
db2jcc_license_cisuz.jar

as well as the following DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixJccDataStoreHelper

Note: If you plan to use SQLJ for queries, this provider also requires driver file ifxsqlj.jar.

This provider requires a valid authentication alias.

The following properties are required:

– serverName - The TCP/IP address or host name for the Informix server.

– portNumber - The TCP/IP port number where the Informix server resides.

– databaseName - The name of the database from which the data source obtains connections.
Example: Sample.

Note: You cannot use Informix XA data sources with ANSI databases if SQL statements are issued in
local transactions instead of global transactions. This scenario might occur within the application
code or within a component of Application Server such as scheduler. The following message
might be logged if you are experiencing this problem:
java.sql.SQLException: Already in transaction.

at com.informix.util.IfxErrMsg.getSQLException(IfxErrMsg.java:398)
at com.informix.jdbc.IfxSqli.a(IfxSqli.java:3247)
at com.informix.jdbc.IfxSqli.E(IfxSqli.java:3556)
at com.informix.jdbc.IfxSqli.dispatchMsg(IfxSqli.java:2382)
at com.informix.jdbcx.IfxXASqli.receiveMessage(IfxXASqli.java:120)
at com.informix.jdbc.IfxSqli.X(IfxSqli.java:7926)
at com.informix.jdbc.IfxSqli.a(IfxSqli.java:854)
at com.informix.jdbc.IfxSqli.executeCommand(IfxSqli.java:749)
at com.informix.jdbc.IfxResultSet.b(IfxResultSet.java:293)
at com.informix.jdbc.IfxStatement.c(IfxStatement.java:1269)
at com.informix.jdbc.IfxStatement.b(IfxStatement.java:423)
at com.informix.jdbc.IfxStatement.executeUpdate(IfxStatement.java:277)
at com.informix.jdbc.IfxSqliConnect.setTransactionIsolation(IfxSqliConnect.java:2565)

To avoid this issue:

– Switch to a non-ANSI database.

– If the error is triggered by an application, update the application such that it always runs in a global
transaction.

v Informix Using IBM DB2 JDBC Universal Driver

The Informix JDBC Driver is a Type 4 JDBC driver that is JDBC 3.0 compliant and provides access to
the Informix database.

This provider supports the following one-phase data source:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

The following JDBC driver files are required:

db2jcc.jar
db2jcc_license_cu.jar
db2jcc_license_cisuz.jar

as well as the following DataStoreHelper class:

242 Administering WebSphere applications



com.ibm.websphere.rsadapter.InformixJccDataStoreHelper

This provider requires a valid authentication alias.

The following properties are required:

– serverName - The TCP/IP address or host name for the Informix server.

– portNumber - The TCP/IP port number where the Informix server resides.

– databaseName - The name of the database from which the data source obtains connections.
Example: Sample.

v Informix Using IBM DB2 JDBC Universal Driver (XA)

The Informix Using JDBC Driver (XA) is a Type 4 JDBC driver that is JDBC 3.0 compliant and provides
XA-compliant JDBC access to the Informix database.

This provider supports the following two-phase data source:

com.ibm.db2.jcc.DB2XADataSource

The following JDBC driver files are required:

db2jcc.jar
db2jcc_license_cu.jar
db2jcc_license_cisuz.jar

as well as the following DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixJccDataStoreHelper

This provider requires a valid authentication alias.

The following properties are required:

– serverName - The TCP/IP address or host name for the Informix server.

– portNumber - The TCP/IP port number where the Informix server resides.

– databaseName - The name of the database from which the data source obtains connections.
Example: Sample.

Note: You cannot use Informix XA data sources with ANSI databases if SQL statements are issued in
local transactions instead of global transactions. This scenario might occur within the application
code or within a component of Application Server such as scheduler. The following message
might be logged if you are experiencing this problem:
java.sql.SQLException: Already in transaction.

at com.informix.util.IfxErrMsg.getSQLException(IfxErrMsg.java:398)
at com.informix.jdbc.IfxSqli.a(IfxSqli.java:3247)
at com.informix.jdbc.IfxSqli.E(IfxSqli.java:3556)
at com.informix.jdbc.IfxSqli.dispatchMsg(IfxSqli.java:2382)
at com.informix.jdbcx.IfxXASqli.receiveMessage(IfxXASqli.java:120)
at com.informix.jdbc.IfxSqli.X(IfxSqli.java:7926)
at com.informix.jdbc.IfxSqli.a(IfxSqli.java:854)
at com.informix.jdbc.IfxSqli.executeCommand(IfxSqli.java:749)
at com.informix.jdbc.IfxResultSet.b(IfxResultSet.java:293)
at com.informix.jdbc.IfxStatement.c(IfxStatement.java:1269)
at com.informix.jdbc.IfxStatement.b(IfxStatement.java:423)
at com.informix.jdbc.IfxStatement.executeUpdate(IfxStatement.java:277)
at com.informix.jdbc.IfxSqliConnect.setTransactionIsolation(IfxSqliConnect.java:2565)

Data source minimum required settings for Microsoft SQL Server:

These properties vary according to the database vendor requirements for Java Database Connectivity
(JDBC) driver implementations. You must set the appropriate properties on every data source that you
configure. These settings are for Microsoft SQL Server data sources.

The application server also supports two options for setting isolation level in Microsoft SQL Server:
SNAPSHOT and READ_COMMITTED_SNAPSHOT.

Chapter 7. Welcome to administering Data access resources 243



Table 16. Isolation levels in Microsoft SQL Server. The following table describes these isolation levels and
configuration considerations.
JDBC provider Microsoft SQL Server feature Configuration consideration

Microsoft SQL Server JDBC Driver SNAPSHOT isolation level Set the isolation level constant by invoking the
setTransactionIsolation method with one of the
following attributes:

v conn.setTransactionIsolation
(com.microsoft.sqlserver.jdbc.
SQLServerConnection.
TRANSACTION_SNAPSHOT)

v

conn.setTransactionIsolation(value_of_constant)

READ_COMMITTED_SNAPSHOT isolation level This isolation level is an implementation of the
Read committed isolation level. The policy
enforces optimistic locking for read operations
with Microsoft SQL Server.

1. Configure the isolation level on the database.

2. Invoke the setTransactionIsolation method
with the conn.setTransactionIsolation
(java.sql.Connection.
TRANSACTION_READ_COMMITTED)
attribute.

DataDirect ConnectJDBC type 4 driver for
Microsoft SQL Server

SNAPSHOT isolation level This isolation level implements optimistic locking
for transactions in which Microsoft SQL Server
serializes the data.

Configure the ALLOW_SNAPSHOT_ISOLATION
setting on the database, and then set the
isolation level in one of two ways:

v By isolation level constant. Invoke the
setTransactionIsolation method with one of
the following attributes:

– conn.setTransactionIsolation
(com.ddtek.jdbc.extensions.
ExtConstants.TRANSACTION_SNAPSHOT)

– conn.setTransactionIsolation(16)

v By the custom data source property:

– Set the data source custom property
snapshotSerializable to true.

– Invoke the setTransactionIsolation method
with the conn.setTransactionIsolation
(java.sql.Connection.
TRANSACTION_SERIALIZABLE) attribute:

READ_COMMITTED_SNAPSHOT isolation level This isolation level is an implementation of the
Read committed isolation level. The policy
enforces optimistic locking for read operations
with Microsoft SQL Server.

1. Configure the isolation level on the database.

2. Invoke the setTransactionIsolation method
with the conn.setTransactionIsolation
(java.sql.Connection.
TRANSACTION_READ_COMMITTED)
attribute.

Consult the Backward Compatibility for Microsoft SQL Server components web page for a complete list of
deprecated items, as well as backward compatibility provisions, for Microsoft SQL Server.

You can configure the following types of providers:

v Microsoft SQL Server JDBC Driver

v Microsoft SQL Server JDBC Driver (XA)

v DataDirect ConnectJDBC type 4 driver for Microsoft SQL Server

v DataDirect ConnectJDBC type 4 driver for Microsoft SQL Server (XA)
v Microsoft SQL Server JDBC Driver

The Microsoft SQL Server JDBC driver supports this data source:

244 Administering WebSphere applications



com.microsoft.sqlserver.jdbc.SQLServerConnectionPoolDataSource

The JDBC provider requires the following Java archive (JAR) files:
sqljdbc4.jar

The JDBC provider requires the following DataStoreHelper class:
com.ibm.websphere.rsadapter.MicrosoftSQLServerDataStoreHelper

The JDBC provider requires a valid authentication alias.

The JDBC driver requires the following properties:
serverName

Specifies the name of the server in which Microsoft SQL Server resides. Example:
myserver.mydomain.com

portNumber
Specifies the TCP/IP port that Microsoft SQL Server uses for communication. Port 1433 is the
default.

databaseName
Specifies the name of the database from which the data source obtains connections. Example:
Sample.

v Microsoft SQL Server JDBC Driver (XA)

This JDBC provider supports this data source:
com.microsoft.sqlserver.jdbc.SQLServerXADataSource

The JDBC provider requires the following Java archive (JAR) files:
sqljdbc4.jar

The JDBC provider requires the following DataStoreHelper class:
com.ibm.websphere.rsadapter.MicrosoftSQLServerDataStoreHelper

The JDBC provider requires a valid authentication alias.

The JDBC driver requires the following properties:
serverName

Specifies the name of the server in which Microsoft SQL Server resides. Example:
myserver.mydomain.com

portNumber
Specifies the TCP/IP port that Microsoft SQL Server uses for communication. Port 1433 is the
default.

databaseName
Specifies the name of the database from which the data source obtains connections. Example:
Sample.

v DataDirect ConnectJDBC type 4 driver for Microsoft SQL Server

DataDirect ConnectJDBC type 4 driver for Microsoft SQL Server is a Type 4 JDBC driver that provides
JDBC access to the Microsoft SQL Server databases. This provider is for use only with the Connect
JDBC driver purchased from DataDirect Technologies.

This JDBC provider supports the following data source:
com.ddtek.jdbcx.sqlserver.SQLServerDataSource

Requires JDBC driver files:
sqlserver.jar

Requires DataStoreHelper class:
com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:
– serverName The name of the server in which Microsoft SQL Server resides. Example:

myserver.mydomain.com

Chapter 7. Welcome to administering Data access resources 245



– portNumber The TCP/IP port that Microsoft SQL Server uses for communication. Port 1433 is the
default.

– databaseName The name of the database from which the data source obtains connections. Example:
Sample.

v DataDirect ConnectJDBC type 4 driver for Microsoft SQL Server (XA)

DataDirect ConnectJDBC type 4 driver for Microsoft SQL Server (XA) is a Type 4 JDBC driver which
provides XA-compliant JDBC access to the Microsoft SQL Server databases. This provider is for use
only with the Connect JDBC driver purchased from DataDirect Technologies.

This JDBC provider supports this data source:
com.ddtek.jdbcx.sqlserver.SQLServerDataSource.

Requires JDBC driver files:
sqlserver.jar

Requires DataStoreHelper class:
com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:
– serverName The name of the server in which Microsoft SQL Server resides. Example:

myserver.mydomain.com
– portNumber The TCP/IP port that Microsoft SQL Server uses for communication. Port 1433 is the

default.
– databaseName The name of the database from which the data source obtains connections. Example:

Sample.

Data source minimum required settings for Oracle:

These properties vary according to the database vendor requirements for JDBC driver implementations.
You must set the appropriate properties on every data source that you configure. These settings are for
Oracle data sources.

You can configure the following types of providers:

v Oracle JDBC Driver

v Oracle JDBC Driver (XA)
v Oracle JDBC Driver

The Oracle JDBC Driver provides JDBC access to the Oracle database. This JDBC driver supports both
Type 2 JDBC access and Type 4 JDBC access.

This provider:
– Supports one-phase data source:

oracle.jdbc.pool.OracleConnectionPoolDataSource
– Requires the following JDBC driver files:

- ojdbc6.jar or ojdbc5.0

Note: Be aware of the following:
v Oracle does not support the use of the JDBC 4.0 APIs that are part of the Java SE

Development Kit Version 6 or later when using ojdbc5.jar
v In mixed node environments, the data source wizard in the administrative console allows

you to choose a class path for ojdbc6.jar or ojdbc5.jar.
v For Oracle trace, use ojdbcversion_g.jar.

– Requires the following DataStoreHelper class:
com.ibm.websphere.rsadapter.Oracle11gDataStoreHelper

Note: You must use the Oracle11gDataStoreHelper with the ojdbc6.jar driver file, regardless of
whether you use an Oracle 11g or Oracle 10g database server.

– Requires a valid authentication alias.

246 Administering WebSphere applications

|

|
|
|
|
|
|
|



– Requires properties:
URL The URL that indicates the database from which the data source obtains connections. For

example:
jdbc:oracle:thin:@//myServer:1521/myDatabase

where myServer is the server name, 1521 is the port that the server uses for communication,
and myDatabase is the database name.

v Oracle JDBC Driver (XA)

The Oracle JDBC Driver (XA) provides XA-compliant JDBC access to the Oracle database. This JDBC
driver supports both Type 2 JDBC access and Type 4 JDBC access.

This provider:
– Supports two-phase data source:

oracle.jdbc.xa.client.OracleXADataSource
– Requires the following JDBC driver files:

- ojdbc6.jar or ojdbc5.0

Note: Be aware of the following notes regarding the use of these driver files:
v Oracle does not support the use of the JDBC 4.0 APIs that are part of the Java SE

Development Kit Version 6 or later when using ojdbc5.jar
v In mixed node environments, the data source wizard in the administrative console allows

you to choose a class path for ojdbc6.jar or ojdbc5.jar.
v For Oracle trace, use ojdbcversion_g.jar.

– Requires the following DataStoreHelper class:
com.ibm.websphere.rsadapter.Oracle11gDataStoreHelper

Note: You must use the Oracle11gDataStoreHelper with the ojdbc6.jar driver file, regardless of
whether you use an Oracle 11g or Oracle 10g database server.

– Requires a valid authentication alias.
– Requires properties:

URL Indicates the database from which the data source obtains connections. For example:
jdbc:oracle:thin:@//myServer:1521/myDatabase

where myServer is the server name, 1521 is the port that the server uses for communication,
and myDatabase is the database name.

Data source minimum required settings for Sybase:

These properties vary according to the database vendor requirements for JDBC driver implementations.
You must set the appropriate properties on every data source that you configure. These settings are for
Sybase data sources.

What types of providers can you configure?

You can configure the following types of providers:
v Sybase JDBC 4 Driver
v Sybase JDBC 4 Driver (XA)
v Sybase JDBC 3 Driver
v Sybase JDBC 3 Driver (XA)
v Sybase JDBC 2 Driver
v Sybase JDBC 2 Driver (XA)

Chapter 7. Welcome to administering Data access resources 247

|

|
|
|
|
|
|
|



Sybase JDBC 4 Driver

The Sybase JDBC 4 Driver is a Type 4 JDBC driver that provides JDBC access to the Sybase database.

This provider:
v Uses jConnect Version 7.0
v Supports one phase data source:

com.sybase.jdbc4.jdbc.SybConnectionPoolDataSource
v Requires the following JDBC driver files:

jconn4.jar
v Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper
v Requires a valid authentication alias.
v Requires the following properties:

– serverName - The name of the database server. Example: myserver.mydomain.com.
– databaseName - The name of the database from which the data source obtains connections.

Example: Sample.
– portNumber - The TCP/IP port number through which all communications to the server take place.

Example: 5000.
– connectionProperties - A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true (Type: java.lang.String)

Sybase JDBC 4 Driver (XA)

The Sybase JDBC 4 Driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC access to the
Sybase database.

This provider:
v Uses jConnect Version 7.0
v Supports two phase data source:

com.sybase.jdbc4.jdbc.SybXADataSource
v Requires JDBC driver files:

jconn4.jar
v Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper
v Requires a valid authentication alias.
v Requires the following properties:

– serverName - The name of the database server. Example: myserver.mydomain.com
– databaseName - The name of the database from which the data source obtains connections.

Example: Sample.
– portNumber - The TCP/IP port number through which all communications to the server take place.

Example: 5000.
– connectionProperties - A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true (Type: java.lang.String)

Sybase JDBC 3 Driver

The Sybase JDBC 3 Driver is a Type 4 JDBC driver that provides JDBC access to the Sybase database.

This provider:
v Uses jConnect Version 6.05
v Supports one phase data source:

com.sybase.jdbc3.jdbc.SybConnectionPoolDataSource
v Requires the following JDBC driver files:

248 Administering WebSphere applications



jconn3.jar
v Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper
v Requires a valid authentication alias.
v Requires the following properties:

– serverName - The name of the database server. Example: myserver.mydomain.com.
– databaseName - The name of the database from which the data source obtains connections.

Example: Sample.
– portNumber - The TCP/IP port number through which all communications to the server take place.

Example: 5000.
– connectionProperties - A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true (Type: java.lang.String)

Sybase JDBC 3 Driver (XA)

The Sybase JDBC 3 Driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC access to the
Sybase database.

This provider:
v Uses jConnect Version 6.05
v Supports two phase data source:

com.sybase.jdbc3.jdbc.SybXADataSource
v Requires JDBC driver files:

jconn3.jar
v Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper
v Requires a valid authentication alias.
v Requires the following properties:

– serverName - The name of the database server. Example: myserver.mydomain.com
– databaseName - The name of the database from which the data source obtains connections.

Example: Sample.
– portNumber - The TCP/IP port number through which all communications to the server take place.

Example: 5000.
– connectionProperties - A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true (Type: java.lang.String)

Sybase JDBC 2 Driver

The Sybase JDBC 2 Driver is a Type 4 JDBC driver that provides JDBC access to the Sybase database.

This provider:
v Uses jConnect Version 5.5

depfeat: Support for Sybase jConnect 5.5 is deprecated. You might want to use a later provider that
uses Sybase jConnect 6.05 or jConnect 7.0.

v Supports one phase data source:

com.sybase.jdbc2.jdbc.SybConnectionPoolDataSource
v Requires the following JDBC driver files:

jconn2.jar
v Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper
v Requires a valid authentication alias.
v Requires the following properties:

– serverName - The name of the database server. Example: myserver.mydomain.com.

Chapter 7. Welcome to administering Data access resources 249



– databaseName - The name of the database from which the data source obtains connections.
Example: Sample.

– portNumber - The TCP/IP port number through which all communications to the server take place.
Example: 5000.

– connectionProperties - A custom property required for applications containing EJB 2.0 enterprise
beans. Value: SELECT_OPENS_CURSOR=true (Type: java.lang.String)

Sybase JDBC 2 Driver (XA)

The Sybase JDBC 2 Driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC access to the
Sybase database.

This provider:
v Uses jConnect Version 5.5

depfeat: Support for Sybase jConnect 5.5 is deprecated. You might want to use a later provider that
uses Sybase jConnect 6.05 or jConnect 7.0.

v Supports two phase data source:

com.sybase.jdbc2.jdbc.SybXADataSource
v Requires JDBC driver files:

jconn2.jar
v Requires the following DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper
v Requires a valid authentication alias.
v Requires the following properties:

– serverName - The name of the database server. Example: myserver.mydomain.com
– databaseName - The name of the database from which the data source obtains connections.

Example: Sample.
– portNumber - The TCP/IP port number through which all communications to the server take place.

Example: 5000.
– connectionProperties - A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true (Type: java.lang.String)

Configuring a JDBC provider using the administrative console
To create connections between an application and a relational database, the application server uses the
driver implementation classes that are encapsulated by the Java Database Connectivity (JDBC) provider.

Before you begin

Each JDBC provider is essentially an object that represents vendor-specific JDBC driver classes to the
application server, for establishing access to that particular vendor database. JDBC providers are
prerequisites for data sources, which supply applications with the physical connections to a database.
Consult the JDBC provider table to identify the appropriate JDBC provider for your database and
application requirements.

About this task

Configure at least one JDBC provider for each database server that you plan to use at a particular scope
within your application server environment.

Procedure
1. Open the administrative console.

2. Click Resources > JDBC > JDBC Providers.

3. Select the scope at which applications can use the JDBC provider. The scope that you select
becomes the scope of any data source that you associate with this provider. You can choose a cell,

250 Administering WebSphere applications



node, cluster, or server. For more information about scope and how it can affect resources, see the
information center topic on administrative scope settings.

4. Click New. This action causes the Create a new JDBC Provider wizard to launch.

5. Use the first drop-down list to select the database type of the JDBC provider that you must create.

The User-Defined option: Select User-Defined for your database type if you encounter either of the
following scenarios:

v You do not see your database type.

v You cannot select the JDBC provider type that you need in the next
step.

The user-defined selection triggers the wizard panel to display your
provider type as a user-defined JDBC provider, and your implementation
type as user-defined. Consult your database documentation for the JDBC
driver class files, data source properties, and so on, that are required for
your user-defined provider. You must supply this information about the
next two panels:

v database class path

v database-specific properties

6. Select your JDBC provider type if it is displayed in the second drop-down list. Select Show
Deprecated to trigger the display of both current and deprecated providers. If you cannot find your
provider in this expanded list, then select User-Defined from the previous list of database types.

7. From the third drop-down list, select the implementation type that is necessary for your application. If
your application does not require that connections support two-phase commit transactions, choose
Connection Pool Data Source. Choose XA Data Source, however, if your application requires
connections that support two-phase commit transactions. Applications that use this data source
configuration have the benefit of container-managed transaction recovery.

After you select an implementation type, the wizard fills the name and the description fields for your
JDBC provider. You can type different values for these fields; they exist for administrative purposes
only.

8. Click Next to see the Enter database class path information wizard panel.

9. In the class path field, type the full path location of the database JDBC driver class files. Your class
path information becomes the value of the WebSphere environment variable that is displayed on this
panel, in the form of ${DATABASE_JDBC_DRIVER_PATH}. The application server uses the variable
to define your JDBC provider; this practice eliminates the must specify static JDBC class paths for
individual applications. Remember that if you do not provide the full, correct JDBC driver class path
for the variable, your data source ultimately fails. If the field already displays a fully qualified class
path, you can accept that variable definition by completing the rest of this wizard panel and clicking
Next.

Note: The application server supports multiple versions of the selected JDBC driver for the
DataDirect ConnectJDBC type 4 driver for MS SQL Server. Each version of the JDBC driver
has a unique class path. Select the appropriate version of the JDBC driver so the class path is
populated correctly.

10. Use the Native library path field to specify additional class files that your JDBC driver might require
to function properly on your application server platform. Type the full directory path name of these
class files.

gotcha: If you are using an Oracle OCI driver as your JDBC provider, you must specify the path to
where the native libraries are stored. If you do not specify a native library path, the first time
you try to connect using this provider, class loader errors occur.

11. Click Next to see a summary of your JDBC provider settings.

Chapter 7. Welcome to administering Data access resources 251



12. Click Finish if you are satisfied with the JDBC provider configuration. You now see the JDBC provider
collection panel, which displays your new JDBC provider in a table along with other providers that are
configured for the same scope.

What to do next

The next step is to create a data source to associate with your JDBC provider. For detailed information,
see the information center topic on configuring a data source using the administrative console.

Remember: If you modify configuration of a JDBC provider, like the class path, native library path, or
custom properties, click OK and then restart every application server within the scope of that
JDBC provider. Otherwise, the new configuration does not work and you receive data source
failure messages.

JDBC provider collection:

Use this page to view JDBC providers. The JDBC provider object encapsulates the specific JDBC driver
implementation class for the data sources that you define and associate with the provider.

To view this administrative console page, click Resources > JDBC > JDBC providers.

Name:

Specifies a text identifier for this provider.

For example, this field can be DB2 JDBC Provider (XA).

Information Value
Data type String

Scope:

Specifies the scope of the JDBC provider; if you use any scope other than the default of Node, the provider
might not be available in other scope contexts. Data sources that are created with this JDBC provider
inherit this scope.

Description:

Specifies a text string describing this provider.

Information Value
Data type String

JDBC provider settings:

Use this page to modify the settings for a JDBC provider.

To view this administrative console page, click Resources > JDBC > JDBC providers > JDBC_provider.

Important: If you use this page to modify the class path or native library path of an existing JDBC
provider: After you apply and save the new settings, you must restart every application server
within the scope of that JDBC provider for the new configuration to work. Otherwise, you
receive a data source failure message.

Scope:

252 Administering WebSphere applications



Specifies the scope of the JDBC provider; data sources that are created with this JDBC provider inherit
this scope.

Name:

Specifies the name of the resource provider.

Information Value
Data type String

Description:

Specifies a text description for the resource provider.

Information Value
Data type String

Class path:

Specifies a list of paths or JAR file names which together form the location for the resource provider
classes.

For example:

v QIBM/ProdData/Java400/ext/db2_classes.jar for iSeries platforms.

Class path entries are separated by using the ENTER key and must not contain path separator characters
(such as ';' or ':'). Class paths contain variable (symbolic) names which you can substitute using a variable
map. Check the driver installation notes for the specific required JAR file names.

Information Value
Data type String

Native Library Path:

Specifies a list of paths that forms the location for the resource provider native libraries.

Native path entries are separated by using the ENTER key and must not contain path separator
characters (such as ';' or ':'). Native paths can contain variable (symbolic) names which you can substitute
using a variable map.

Information Value
Data type String

Isolate this resource provider:

Specifies that this resource provider will be loaded in its own class loader. This allows different versions or
implementations of the same resource provider to be loaded in the same Java Virtual Machine. Give each
version of the resource provider a unique class path that is appropriate for that version or implementation.

Note: Be aware of the following:

v You cannot isolate a resource provider if you specify a native library path. The Application Server
will define a value for the native library path for some JDBC providers; this behavior is intended

Chapter 7. Welcome to administering Data access resources 253



to help you configure your provider when a native library path is necessary. If you do not require
the native library path, delete the value, and you will be able to select the option to isolate the
resource provider.

v If you are running a mixed cell environment, the application server will remove any isolated
JDBC providers from nodes that are running at versions earlier than 7.0 if the provider is scoped
for a version 7.0 cell, and you have not migrated the provider from an older release. If you want
to use isolated resources at the cell level, do not use the resources in nodes that are running at
versions earlier than 7.0. Define a resource at the node level, or avoid using the resource in
nodes that are earlier than version 7.0, because this will result in a “Naming not found” exception
when the application server attempts to perform a lookup on an isolated resource at the cell
level.

Implementation class name:

Specifies the Java class name of the JDBC driver implementation.

This class is available in the driver file mentioned in the class path description above.

For example, com.ibm.db2.jdbc.app.UDBXADataSource for iSeries platforms.

Note: If you modify the implementation class name of the JDBC provider after you have created the
provider, you might disconnect the provider from the template used to create it. As a result, data
sources created from this JDBC provider do not have an associated template; you must manually
configure a working data source through setting custom properties.

Information Value
Data type String

JDBC provider summary:

JDBC providers are prerequisites for data sources, which supply applications with the physical connections
to a database.

Use these tables for quick reference on database-specific JDBC providers.

Table 17. Apache Derby JDBC providers. Use the table for quick reference on database-specific JDBC providers.

Apache Derby

JDBC provider Transaction support Version and other considerations

Derby JDBC Provider One-phase v Does not support Version 4 data
sources

v Configurable only in nodes at
version 6.0.2 and later

v Not for use in clustered
environment: accessible from a
single JVM only

Derby JDBC Provider (XA) One and two phase v Does not support Version 4 data
sources

v Configurable only in nodes at
version 6.0.2 and later

v Not for use in clustered
environment: accessible from a
single JVM only

254 Administering WebSphere applications



Table 17. Apache Derby JDBC providers (continued). Use the table for quick reference on database-specific JDBC
providers.

Apache Derby

JDBC provider Transaction support Version and other considerations

Derby JDBC Provider 40 One-phase v Configurable only in nodes at
version 7.0 and later

v Does not support Version 4 data
sources

Derby JDBC Provider 40 (XA) One and two phase v Configurable only in nodes at
version 7.0 and later

v Does not support Version 4 data
sources

Derby Network Server Using Derby
Client

One-phase v Does not support Version 4.0 data
sources.

v Configurable only in nodes at
version 6.1 and later

v Can be used in clustered
environment: a database instance
can be accessed by multiple JVMs

v Only for use with Apache Derby
databases that run on the same
node as the application server

Derby Network Server Using Derby
Client (XA)

One and two phase v Does not support Version 4 data
sources

v Configurable only in nodes at
version 6.1 and later

v Can be used in clustered
environment: a database instance
can be accessed by multiple JVMs

v Only for use with Apache Derby
databases that run on the same
node as the application server

Derby Network Server Using Derby
Client 40

One-phase v Configurable only in nodes at
version 7.0 and later

v Does not support Version 4 data
sources

Derby Network Server Using Derby
Client 40 (XA)

One and two phase v Configurable only in nodes at
version 7.0 and later

v Does not support Version 4 data
sources

Table 18. DB2 on AIX, HP-UX, Linux, Solaris, and Windows systems JDBC providers. Use the table for quick
reference on database-specific JDBC providers.

DB2 on AIX, HP-UX, Linux, Solaris, and Windows systems

JDBC provider Transaction support Version and other considerations

DB2 Using IBM JCC Driver One-phase v Configurable in nodes that are at
version 7.0 and later.

DB2 Using IBM JCC Driver (XA) One and two phase v Configurable in nodes that are at
version 7.0 and later.

Chapter 7. Welcome to administering Data access resources 255



Table 18. DB2 on AIX, HP-UX, Linux, Solaris, and Windows systems JDBC providers (continued). Use the table for
quick reference on database-specific JDBC providers.

DB2 on AIX, HP-UX, Linux, Solaris, and Windows systems

JDBC provider Transaction support Version and other considerations

DB2 Universal JDBC Provider One-phase N/A

DB2 Universal JDBC Provider (XA) One and two phase N/A

Table 19. DB2 UDB for iSeries JDBC providers. Use the table for quick reference on database-specific JDBC
providers.

DB2 UDB for iSeries

JDBC provider Transaction support Version and other considerations

DB2 UDB for iSeries
(Native)

One-phase Recommended when you run the
application server on iSeries.

DB2 UDB for iSeries
(Native XA)

One and two phase Recommended when you run the
application server on iSeries.

DB2 UDB for iSeries (Toolbox) One-phase N/A

DB2 UDB for iSeries (Toolbox XA) One and two phase N/A

Table 20. DB2 on z/OS JDBC providers. Use the table for quick reference on database-specific JDBC providers.

DB2 on z/OS

JDBC provider Transaction support Version and other considerations

DB2 Using IBM JCC Driver One-phase Configurable in version 7.0 and later
nodes.

DB2 Using IBM JCC Driver (XA) One and two phase Configurable version 7.0 and later
nodes.

DB2 Universal JDBC Provider One-phase when
connecting to the application server
that is on AIX, HP-UX, Linux, Solaris,
Windows, and iSeries systems

DB2 Universal JDBC Provider (XA) One and two phase

Table 21. Informix JDBC providers. Use the table for quick reference on database-specific JDBC providers.

Informix

JDBC provider Transaction support Version and other considerations

Informix Using IBM JCC Driver One phase This provider is configurable in nodes
that are at version 7.0 and later.

Informix Using IBM JCC Driver (XA) One and two phase This provider is configurable in nodes
that are at version 7.0 and later.

Informix JDBC Driver One-phase N/A

Informix JDBC Driver (XA) One and two phase N/A

Informix using IBM DB2 JDBC
Universal Driver

One phase This provider is configurable in nodes
that are at version 7.0 and later.

Informix using IBM DB2 JDBC
Universal Driver (XA)

One and two phase This provider is configurable in nodes
that are at version 7.0 and later.

256 Administering WebSphere applications



Table 22. Microsoft SQL Server JDBC providers. Use the table for quick reference on database-specific JDBC
providers.

Microsoft SQL Server

JDBC provider Transaction support Version and other considerations

Microsoft SQL Server JDBC Driver One-phase N/A

Microsoft SQL Server JDBC Driver
(XA)

One and two phase N/A

DataDirect ConnectJDBC Provider
type 4 driver for MS SQL Server

One-phase N/A

DataDirect ConnectJDBC Provider,
type 4 driver, for MS SQL Server (XA)

One and two phase N/A

Table 23. Oracle JDBC providers. Use the table for quick reference on database-specific JDBC providers.

Oracle

JDBC provider Transaction support Version and other considerations

Oracle JDBC Driver One-phase Must use the ojdbc6.jar driver to
connect to any version of Oracle
database.

Oracle JDBC Driver(XA) One and two phase Must use the ojdbc6.jar driver to
connect to any version of Oracle
database.

Table 24. Sybase JDBC providers. Use the table for quick reference on database-specific JDBC providers.

Sybase

JDBC provider Transaction support Version and other considerations

Sybase JDBC 4 Driver One-phase jConnect v7.0

Sybase JDBC 4 Driver (XA) One and two phase jConnect v7.0

Sybase JDBC 3 Driver One-phase jConnect v6.05

Sybase JDBC 3 Driver (XA) One and two phase jConnect v6.05

Sybase JDBC 2 Driver One-phase jConnect v5.5

Sybase JDBC 2 Driver (XA) One and two phase jConnect v5.5

depfeat: Support for Sybase jConnect 5.5 is deprecated. You might want to use a later provider that uses Sybase
jConnect 6.05 or jConnect 7.0.

Configuring a data source using the administrative console
Application components use a data source to access connection instances to a relational database.

Before you begin

The application server supports two different versions of data source. Determine the data source for your
environment according to the enterprise bean and servlet specification levels that are the basis of your
applications:

v Data sources (WebSphere Application Server Version 4) are for use with the Enterprise JavaBeans
(EJB) 1.0 specification and the Java Servlet 2.2 specification.

v Data sources of the latest standard version are for use with applications that implement the more
advanced releases of these specifications.

Chapter 7. Welcome to administering Data access resources 257



About this task

When you create a data source, you associate it with a Java Database Connectivity (JDBC) provider that
is configured for access to a specific vendor database. The application server requires both objects for
your applications to make calls to that particular database and receive data from it. The data source
provides connection management capabilities that physically make possible these exchanges between
your applications and the database.

Procedure
1. Open the administrative console.

2. Access the necessary console panel. Use one of the following paths:

v Click Resources > JDBC > Data sources.

v Click Resources > JDBC > Data sources (WebSphere Application Server Version 4)

v Click Resources > JDBC > JDBC providers > JDBC_provider > Data sources

v Click Resources > JDBC > JDBC providers > JDBC_provider > Data sources (WebSphere
Application Server Version Version 4).

3. Select the scope at which applications can use the data source. You can choose a cell, node, cluster,
or server. For more information, see the topic on scope settings.

Version 4 only: From this point onward, the steps for creating WebSphere Application Server
Version 4 data sources differ from the steps for creating data sources of the latest
standard version. To configure a Version 4 data source:

v Click New to proceed to the console panel for defining required properties.

v On this properties panel specify values for the fields that are grouped under the
heading Configuration. The application server requires these properties to
implement your JDBC driver classes.

v Save your configuration by clicking OK. You are now finished with the primary
data source configuration tasks.

v Define other properties that your database vendor might require, or offer as
options, for using the JDBC driver. The application server calls them custom
properties, and requires that you set them on the data source. Begin by clicking
the Custom Properties link that is now displayed on the administrative console
panel. Consult your database documentation to learn about these required and
optional properties.

4. Click New. This action causes the Create a data source wizard to launch and display the Enter
basic data source information panel. The first field is the scope field, which is read-only. This field
displays your previous scope selection.

5. Type a data source name in the Data source name field. This name identifies the data source for
administrative purposes only.

6. Type a Java Naming and Directory Interface (JNDI) name in the JNDI name field. The application
server uses the JNDI name to bind resource references for an application to this data source. Follow
these requirements when you specify JNDI names:

v Do not assign duplicate JNDI names across different resource types, such as data sources versus
J2C connection factories or JMS connection factories.

v Do not assign duplicate JNDI names for multiple resources of the same type in the same scope.

For more information on JNDI, consult the topic on naming.

7. Click Next to see the Select JDBC provider panel. The Select JDBC provider panel is skipped if
you do not have any JDBC providers that are configured at the current scope.

8. Select an existing JDBC provider, or create a new provider.

v Select an existing JDBC provider.

258 Administering WebSphere applications



a. Click Select an existing JDBC provider.

b. Select a JDBC driver from the list.

c. Click Next. You now see the panel entitled Enter database specific properties for the data
source.

v Create a new JDBC provider.

a. Click Create new JDBC provider.

b. Click Next to see the Create JDBC provider panel.

c. Use the first drop-down list to select the database type of the JDBC provider that you need to
create.

The User-Defined option: Select User-Defined for your database type if you encounter either
of the following scenarios:

– You do not see your database type.

– You cannot select the JDBC provider type that you need in the
next step.

The user-defined selection triggers the wizard panel to display your
provider type as a User-defined JDBC provider, and your
implementation type as User-defined. Consult your database
documentation for the JDBC driver class files, data source
properties, and so on that are required for your user-defined
provider. You must supply this information on the next two wizard
panels:

– database class path information

– database-specific properties

d. If the JDBC provider type is displayed in the second list, select your JDBC provider type. Select
Show Deprecated to trigger the display of both current and deprecated providers. If you
cannot find your provider in this expanded list, then select User-Defined from the previous list
of database types.

e. From the third list, select the implementation type that is necessary for your application. If your
application does not require that connections support two-phase commit transactions, choose
Connection Pool Data Source. Choose XA Data Source, however, if your application
requires connections that support two-phase commit transactions. Applications that use this
data source configuration have the benefit of container-managed transaction recovery.

After you select an implementation type, the wizard fills the name and the description fields for
your JDBC provider. You can type different values for these fields; they exist for administrative
purposes only.

f. Click Next after you have defined your database type, provider type, and implementation type.
Now you see the wizard panel Enter database class path information.

g. In the class path field, type the full path location of the database JDBC driver class files. Your
class path information becomes the value of the WebSphere environment variable that is
displayed on this panel, in the form of ${DATABASE_JDBC_DRIVER_PATH}. The application
server uses the variable to define your JDBC provider; this practice eliminates the need to
specify static JDBC class paths for individual applications. Remember that if you do not provide
the full, correct JDBC driver class path for the variable, your data source ultimately fails. If the
field already displays a fully qualified class path, you can accept that variable definition by
completing the rest of this wizard panel and clicking Next.

h. Use the Native library path field to specify additional class files that your JDBC driver might
require to function properly on your application server platform. Type the full directory path
name of these class files.

i. Click Next. You now see the Enter database specific properties for the data source panel.

9. Complete all of the fields on the Enter database specific properties for the data source panel.

Chapter 7. Welcome to administering Data access resources 259



v Click Use this data source in container managed persistence (CMP) if container managed
persistence (CMP) enterprise beans must access this data source.

v Any other property fields that are displayed on this wizard panel are specific to your database type.
See the topic, Data source minimum required settings, by vendor, for information on these property
settings. The article addresses both current and deprecated JDBC providers that are predefined in
the application server.

User-defined data sources: This wizard panel does not display additional property fields for data
sources that correspond with your user-defined JDBC providers.
However, from the JDBC driver class files that you installed, the
application server can generally extract the necessary data source
property names. The application server defines them as data source
custom properties, displays them on a custom properties console
panel, and assigns them default values. Consult your database
documentation about setting these properties and any other
requirements for your user-defined data source. After you create the
data source, navigate to the corresponding custom properties
collection panel in the administrative console by clicking Data
sources > data_source > Custom properties. Review the property
default values and modify them if necessary.

10. Optional: Configure the security aliases for the data source. You can select none for any of the
authentication methods, or choose one of the following types:

v Component-managed authentication alias - specifies an authentication alias to use when the
component resource reference res-auth value is Application. To define a new alias, navigate to
Related Items > J2EE Connector Architecture (J2C) authentication data entries. A
component-managed alias represents a combination of ID and password that is specified in an
application for data source authentication. Therefore, the alias that you set on the data source
must be identical to the alias in the application code.

a. Use the drop-down list to select an existing component-managed authentication alias.

b. To create a new alias, click the links that are provided. This action closes the data source
wizard and triggers the administrative console to display the J2C authentication data panel.
Click New to define a new alias. Click OK to save your settings and view the new alias on the
J2C authentication data panel. Restart the data source wizard by navigating back to the data
source collection panel, selecting the appropriate scope, and clicking New.

For more information on Java 2 Connector (J2C) security, see the topic on managing Java 2
Connector Architecture authentication data entries.

v Mapping-configuration alias - is used only in the absence of a login configuration on the
component resource reference. The specification of a login configuration and the associated
properties on the component resource reference is the preferred way to define the authentication
strategy when the res-auth value is set to Container. If you specify the DefaultPrincipalMapping
login configuration, the associated property is a JAAS - J2C authentication data entry alias.

v Container-managed authentication alias - is used only in the absence of a login configuration on
the component resource reference. The specification of a login configuration and the associated
properties on the component resource reference determines the container-managed authentication
strategy when the res-auth value is set to Container.

Note: If you have defined security domains in the application server, you can click Browse... to
select an authentication alias for the resource that you are configuring. Security domains
support isolating authentication aliases between servers. The tree view is useful in determining
the security domain to which an alias belongs, and the tree view can help you determine the
servers that are able to access each authentication alias. The tree view is tailored for each
resource, so domains and aliases are hidden when you cannot use them.

260 Administering WebSphere applications



11. Click Next to view the Summary panel, and review any information for the data source. If any
information is not correct, you can click Previous to go back and correct it.

12. Click Finish to save the configuration and exit the wizard. You now see the Data sources panel,
which displays your new configuration in a table along with other data sources that are configured for
the same scope.

What to do next
v You can override the default values for some data source properties.

v You can configure additional properties that your database vendor might require or offers as options.
Consult your database documentation about these settings.

v You can add the commitOrRollbackOnCleanup custom property to the settings of a JDBC data source if
you want a specific action taken with any uncommitted work if your JDBC data source unexpectedly
closes. The values that can be specified for this property are commit or rollback.

If your JDBC data source supports Unit of Work (UOW) detection, this property only applies when you
are working within a discrete unit of work. If your JDBC data source does not support UOW detection,
this property always applies.

If you do not add this property to your JDBC data source settings, any detected implicit transaction is
rolled back, and your application must deal with any undetected implicit transactions.

To add this custom property to your JDBC data source configuration settings:

1. In the administrative console, click JDBC providers > JDBC_provider > Data sources >
data_source > Custom properties > New.

2. Enter commitOrRollbackOnCleanup in the Name field, and either commit or rollback in the Value
field.

3. Save your changes.

The following topics in this information center inform you of how to use the administrative console to
assign the property values:

v “Connection pool settings” on page 181

v Tuning connection pools

v “WebSphere Application Server data source properties” on page 267

v “Java EE resource provider or connection factory custom properties collection” on page 274

Disabling statement pooling:

Disable statement pooling when performing some Data Definition Language (DDL) operations, which might
not be compatible with statement pooling. DDL operations, such as dropping and recreating tables, are not
compatible with statement pooling when using the IBM Informix database. DDL operations invalidate the
pooled statements or cause them to produce unexpected results.

About this task

Complete the following steps to use the administrative console to disable statement pooling. Statement
pooling is disabled by specifying a value of zero for the statement cache size setting for your datasource.

Procedure

1. From the administrative console, select Resources > JDBC > Data sources > datasource_name.

2. Under Additional properties, click WebSphere Application Server data source properties.

3. Enter a value of zero (0) in the Statement cache size field.

4. Click OK, and then click Save.

Data source collection:

Chapter 7. Welcome to administering Data access resources 261



Use this page to view configured data sources, which are the resources that provide connections to your
relational database.

You can access this administrative console page in one of two ways:

v Resources > JDBC > Data sources.

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources.

Version requirement: If you are using the Enterprise JavaBeans (EJB) 1.0 specification and the Java
Servlet 2.2 specification, you must use the Data sources (WebSphere
Application Server Version 4) console page.

Name:

Specifies the display name of this data source.

Click a data source name to edit the data source configuration settings.

Information Value
Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for this data source.

Information Value
Data type String

Scope:

Specifies the scope of the JDBC provider that encapsulates the driver implementation classes to support
this data source. Only applications that are installed within this scope can use this data source.

Provider:

Specifies the JDBC provider that encapsulates the appropriate classes.

Description:

Specifies a text description of the data source.

Information Value
Data type String

Category:

Specifies a string that you can use to classify or group a data source.

Information Value
Data type String

Data source settings:

Use this page to edit the properties of a data source.

262 Administering WebSphere applications



You can access this administrative console page in one of two ways:

v Resources > JDBC > Data sources > data_source

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources > data_source

Note: If your application uses an Enterprise JavaBeans (EJB) 1.1 or a Java Servlet 2.2 module, use the
Data sources (WebSphere Application Server V4) > data_source console page.

Test connection:

Activates the test connection service for validating application connections to the data source.

Before you click Test connection, set your data source properties and click Apply.

Scope:

Specifies the scope of the JDBC provider that supports this data source. Only applications that are
installed within this scope can use this data source.

Provider:

Specifies the resource adapter that WebSphere Application Server uses for this connection factory.

Provider can be set only when you create a new connection factory. The list shows all the existing
resource adapters that are defined at the relevant scope. Select one from the list if you want to use an
existing resource adapter as Provider.

Name:

Specifies the display name for the data source.

Valid characters for this name include letters and numbers, but NOT most of the special characters. For
example, you can set this field to Test Data Source. But any name starting with a period (v) or containing
special characters (\ /,: ; " *? < > | = + & % ' ` @) is not a valid name.

Information Value
Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name.

Distributed computing environments often employ naming and directory services to obtain shared
components and resources. Naming and directory services associate names with locations, services,
information, and resources.

Naming services provide name-to-object mappings. Directory services provide information about objects
and the search tools required to locate those objects.

There are many naming and directory service implementations, and the interfaces to them vary. JNDI
provides a common interface that is used to access the various naming and directory services.

For example, you can use the namejdbc/markSection.

If you leave this field blank a JNDI name is generated from the name of the data source. For example, a
data source name, markSection, generates a JNDI name of jdbc/markSection.

Chapter 7. Welcome to administering Data access resources 263



After you set this value, save it, and restart the server, you can see this string when you run the memory
dump name space tool.

Information Value
Data type String

Use this data source in container-managed persistence (CMP):

Specifies if this data source is used for container-managed persistence of enterprise beans.

This option triggers creation of a CMP connection factory, which corresponds to this data source, for the
relational resource adapter.

Information Value
Data type Boolean
Default True (enabled)

Description:

Specifies a text description for the resource.

Information Value
Data type String

Category:

Specifies a category string you can use to classify or group the resource.

Information Value
Data type String

Data store helper class name:

Specifies the name of the DataStoreHelper implementation class that extends the capabilities of your
selected JDBC driver implementation class to perform database-specific functions.

The application server provides a set of DataStoreHelper implementation classes for each of the JDBC
provider drivers that it supports. These implementation classes are in the package
com.ibm.websphere.rsadapter. For example, if your JDBC provider is DB2, then your default
DataStoreHelper class is com.ibm.websphere.rsadapter.DB2DataStoreHelper. The administrative console
page you are viewing, however, might make multiple DataStoreHelper class names available to you in a
drop-down list; be sure to select the one required by your database configuration. Otherwise, your
application might not work correctly. If you want to use a DataStoreHelper class that is not listed in the
drop-down list, select Specify a user-defined DataStoreHelper, and type a fully qualified class name.
See the information center for instructions on creating a custom DataStoreHelper class.

Information Value
Data type Drop-down list or string (if user-defined DataStoreHelper

is selected)

Authentication alias for XA recovery:

264 Administering WebSphere applications



This field is used to specify the authentication alias that you must use during XA recovery processing. If
this alias name is changed after a server failure, the subsequent XA recovery processing uses the original
setting that was in effect before the failure.

Select an alias from the list.

To define a new alias that is not displayed in the list:

1. Click Apply. Under Related Items, you now see a listing for Java Platform, Enterprise Edition (Java
EE) Connector Architecture (J2C) authentication data entries.

2. Click J2EE Connector Architecture (J2C) authentication data entries.

3. Click New.

4. Define an alias.

5. Click OK and Save. The console now displays an alias collection page that lists all of your configured
aliases. Above the table, this page also displays the name of your connection factory in the
breadcrumb path.

6. Click the name of your J2C connection factory to return to the configuration page for the connection
factory that you are creating.

7. Select the new alias in the Container-managed authentication alias list.

8. Click Apply.

The database identity for the XA recovery authentication alias on a data source must have authorization to
do XA recovery. Depending on the authorization schema for your installation, this level of authorization
might be different from the level of authorization that the identity must use to access database tables for
an application.

If the resource adapter does not support XA transactions, this field does not display. The default value for
this field is derived from the selected alias for application authentication, if one is specified.

If you have defined multiple security domains and multiple authentication aliases in the application server,
you can click Browse... to select an authentication alias for the resource that you are configuring. The
Browse button is only accessible if at least one security domain is defined and assigned a scope which is
applicable to the resource that is being edited. Additionally, that security domain must contain at least one
Java Authentication and Authorization Service (JAAS) Java 2 Connector (J2C) Authentication alias.

Security domains allow you to isolate authentication aliases between servers. The tree view is useful in
determining the security domain to which an alias belongs, and the tree view can help you determine the
servers that are able to access each authentication alias. The tree view is tailored for each resource, so
domains and aliases that you cannot use do not display.

Information Value
Data type Drop-down list

Component-managed authentication alias:

This alias is used for database authentication at run time.

If your database is not secured, setting database authentication is not required. This is not recommended
for a production environment.

Note: If you have a database that does not support user ID and password, like Cloudscape, do not set
the alias in the component-managed authentication alias or container-managed authentication alias

Chapter 7. Welcome to administering Data access resources 265



fields. Otherwise, you see the warning message in the system log to indicate that the user and
password are not valid properties. This message is only a warning message; the data source is still
created successfully.

Select an alias from the list.

To define a new alias that is not displayed in the list:

1. Click Apply. Under Related Items, you now see a listing for Java Platform, Enterprise Edition (Java
EE) Connector Architecture (J2C) authentication data entries.

2. Click J2EE Connector Architecture (J2C) authentication data entries.

3. Click New.

4. Define an alias.

5. Click OK and Save. The console now displays an alias collection page that lists all of your configured
aliases. Above the table, this page also displays the name of your connection factory in the
breadcrumb path.

6. Click the name of your J2C connection factory to return to the configuration page for the connection
factory that you are creating.

7. Select the new alias in the Container-managed authentication alias list.

8. Click Apply.

If you have defined multiple security domains and multiple authentication aliases in the application server,
you can click Browse... to select an authentication alias for the resource that you are configuring. The
Browse button is only accessible if at least one security domain is defined and assigned a scope which is
applicable to the resource that is being edited. Additionally, that security domain must contain at least one
JAAS J2C Authentication alias.

If you do not set an alias through the component-managed authentication or otherwise, and your database
requires the user ID and password to get a connection, an exception occurs during run time.

Information Value
Data type Drop-down list

Container-managed authentication alias:

Specifies authentication data, which is a JAAS - J2C authentication data entry, for container-managed
signon to the resource. Depending on the value that is selected for the Mapping-configuration alias
setting, you can disable this setting.

Select an alias from the list.

To define a new alias that is not displayed in the list:

1. Click Apply. Under Related Items, you now see a listing for J2EE Connector Architecture (J2C)
authentication data entries.

2. Click JAAS - J2C authentication data.

3. Click New.

4. Define an alias.

5. Click OK and Save. The console now displays an alias collection page that lists all of your configured
aliases. Above the table, this page also displays the name of your connection factory in the
breadcrumb path.

6. Click the name of your J2C connection factory to return to the configuration page for the connection
factory that you are creating.

7. Select the new alias in the Container-managed authentication alias list.

266 Administering WebSphere applications



8. Click Apply.

If you have defined multiple security domains and multiple authentication aliases in the application server,
you can click Browse... to select an authentication alias for the resource that you are configuring. The
Browse button is only accessible if at least one security domain is defined and assigned a scope which is
applicable to the resource that is being edited. Additionally, that security domain must contain at least one
JAAS J2C Authentication alias.

Security domains allow you to isolate authentication aliases between servers. The tree view is useful in
determining the security domain to which an alias belongs, and the tree view can help you determine the
servers that can access each authentication alias. The tree view is tailored for each resource, so domains
and aliases that you cannot use do not display.

Information Value
Data type Drop-down list

Mapping-configuration alias:

Specifies the authentication alias for the Java Authentication and Authorization Service (JAAS) mapping
configuration that is used by this connection factory.

The DefaultPrincipalMapping JAAS configuration maps the authentication alias to the user ID and
password. You can define and use other mapping configurations.

Information Value
Data type Drop-down list

Common and required data source properties: These properties are specific to the data source that
corresponds to your selected JDBC provider. They are either required by the data source, or are especially
useful for the data source. You can find a complete list of the properties required for all supported JDBC
providers in the information center.

WebSphere Application Server data source properties:

Use this page to set advanced data source properties in the application server. These properties activate
and configure services that the application server applies to data sources to customize connections within
an application server. These properties do not affect connections within the database.

To access this administrative console page complete one of the following paths:

v Resources > JDBC > Data sources > data_source > WebSphere Application Server data source
properties

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources > data_source >
WebSphere Application Server data source properties

v Applications > Application Types > WebSphere enterprise applications > application_name >
Application scoped resources > data_source > WebSphere Application Server data source
properties.

Statement cache size:

Specifies the number of statements that can be cached per connection. The application server caches a
statement after you close that statement.

Chapter 7. Welcome to administering Data access resources 267



The WebSphere Application Server data source optimizes the processing of prepared statements and
callable statements by caching those statements that are not used in an active connection. Both statement
types help maximize the performance of transactions between your application and data store.

v A prepared statement is a precompiled SQL statement that is stored in a PreparedStatement object.
The application server uses this object to run the SQL statement multiple times, as required by your
application run time, with values that are determined by the run time.

v A callable statement is an SQL statement that contains a call to a stored procedure, which is a series of
precompiled statements that perform a task and return a result. The statement is stored in the
CallableStatement object. The application server uses this object to run a stored procedure multiple
times, as required by your application run time, with values that are determined by the run time.

If the statement cache is not large enough, useful entries are discarded to make room for new entries. To
determine the highest value for your cache size to avoid any cache discards, add the number of uniquely
prepared statements and callable statements, as determined by the SQL string, concurrency, and the scroll
type, for each application that uses this data source on a particular server. This value is the maximum
number of possible statements that can be cached on a given connection over the life of the server.
Setting the cache size to this value means that you never have cache discards. In general, configure a
larger cache for applications with a greater number of statements.

You can also use the Tivoli Performance Viewer to minimize cache discards. Use a standard
workload that represents a typical number of incoming client requests, use a fixed number of iterations,
and use a standard set of configuration settings.

Note: The higher the statement cache, the more system resources are delayed. Therefore, if you set the
number too high, you might lack resources because your system cannot open multiple prepared
statements.

If there is a particular statement that you do not want the application server to cache, configure the
statement poolability hint to false. The application server does not cache a statement if the poolability hint
is set to false. The application specifies the statement poolability hints at run time.

In test applications, tuning the statement cache improves throughput from 10% to 20%. However, because
of potential resource limitations, this tuning process might not always be possible.

Information Value
Data type Integer
Default Default values depend on the database. Typically, this

value is 10. For Informix versions 7.3, 9.2, 9.3, and 9.4,
without the respective latest fixes, the default value must
be 0. A default value of 0 means that there is no cache
statement.

Enable multithreaded access detection: If checked, the following warning message is entered in the
WebSphere Application Server system out log if multiple threads attempt to concurrently use the same
connection handle. You can use this property to debug connection problems if you think the problems
might be caused by multiple threads trying to use the same connection handle. Having multiple threads
concurrently using the same connection handle is a programming model violation.

J2CA0167W: An attempt to concurrently use the same connection handle by multiple threads has
been detected. The connection handle is: {0}.

Enable database reauthentication: Indicates that the exact match on connections retrieved out of the
application server connection pool (the connection pool search criteria does not include a user name and
password) cannot exist. Instead, the connection reauthentication is done in the
doConnectionSetupPerTransaction() of the DataStoreHelper class. The application server does not provide

268 Administering WebSphere applications



a connection reauthentication implementation at run time. Therefore, when you check this box, you must
extend the DataStoreHelper class to provide implementation of the doConnectionSetupPerTransaction()
method where the reauthentication occurs. If you do not complete this process, the application server
might return unusable connections. For more information, read the API documentation for the
com.ibm.websphere.rsadapter.DataStoreHelper#doConnectionSetupPerTransaction method.

Connection reauthentication can help improve performance by reducing opening and closing connections,
particularly for applications that frequently request connections with different user names and passwords.

Note: You cannot enable database reauthentication if you select TrustedConnectionMapping for the
mapping configuration alias.

Enable JMS one-phase optimization support: When you check this option, the application server uses
Java Message Service (JMS) to get optimized connections from this data source. This property prevents
Java database connectivity (JDBC) applications from sharing connections with container-managed
persistence (CMP) applications. This option is not available if the JDBC provider of the data source is an
XA provider.

Manage cached handles: Specifies whether the container tracks cached handles, which are connection
handles that an application component holds active across transaction and method boundaries. You can
use this property to debug connection problems, but tracking handles can cause large performance issues
during run time.

If the Manage cached handles property is selected in the administrative console, and you clear it, the
field is no longer visible for resources that are at Version 7.0 or greater of the application server. This field
is only displayed if the manageCachedHandles property is set to true in the resources.xml file. To make
the field available, change the value for the manageCachedHandles entry from false to true in the
resources.xml file, or enter the following Jython command from the wsadmin tool:
AdminConfig.modify(myDataSourceVariable, ’[[manageCachedHandles "true"]]’)

Note: For any resources that are running at Version 6.x of the application server, the Manage cached
handles property is always visible. For example, if you have a node that is at Version 6.1, the entry
in the resources.xml file does not affect how the field is displayed in the administrative console.

For a different method to debug problems, use the multi-thread and cross-component diagnostic alerts to
detect violations in the Java Connector Architecture (JCA) programming model. To enable these alerts,
select those options from Servers > Application servers > application_server > Performance >
Performance and Diagnostic Advisor Configuration > Performance and Diagnostic Advice
configuration panel. These alerts force the connection manager to manage cached handles, detect the
connection conditions, and send alerts.

Note: For these alerts to be active, you must also select Enable Performance and Diagnostic Advisor
Framework (Runtime Performance Advisor) from the Servers > Application servers >
application_server > Performance > Performance and Diagnostic Advisor Configuration
panel.

Log missing transaction context: Specifies whether the container issues an entry to the activity log when
an application obtains a connection without a transaction context. These are exceptions to the Java
Platform, Enterprise Edition (Java EE) programming model connection requirements.

Non-transactional data source: Specifies that the application server does not enlist the connections from
this data source in global or local transactions. Applications must explicitly call setAutoCommit(false) on
the connection if they want to start a local transaction on the connection, and they must commit or roll
back the transaction that they started.

Chapter 7. Welcome to administering Data access resources 269



Note: Set this property to true in rare circumstances, except when a Java Persistence API (JPA)
application requires both JTA and non-JTA data sources. The non-JTA data source requires this
property to be set to true.

Use WebSphere Application Server exception checking model:

Specifies that the application server uses the error mapping facility that is defined in the data store helper
to identify errors. The application server does not replace exceptions that are thrown by the JDBC driver
with exceptions that are defined in the error map of the data store helper.

Use WebSphere Application Server exception mapping model:

Specifies that the application server uses the error mapping facility that is defined in the data store helper
to identify errors, and the application server replaces the exceptions that are thrown by the JDBC driver
with exceptions that are defined in the error map of the data store helper.

Note: This error detection model functions with JDBC Version 3.0 and earlier.

Validate new connections: Specifies whether the connection manager tests newly created connections to
the database.

Number of retries: Specifies the number of times you want to retry making the initial connection to a
database after the first pretest operation fails.

Retry interval: If you select Validate new connections, this option specifies the length of time, in
seconds, that the application server waits before retrying to make a connection if the initial attempt fails.

Validate existing pooled connections: Specifies whether the connection manager tests the validity of
pooled connections before returning them to applications.

Retry interval: If you select Pretest existing pooled connections, this option specifies the length of
time, in seconds, to allot to the JDBC driver for validating a connection.

Validation by JDBC driver:

Specifies that the application server uses the JDBC driver to validate the connections. The JDBC provider
must support JDBC 4.0 or greater to use this option. This option is available only if either Validate new
connections or Validate existing pooled connections is selected.

gotcha: For an Oracle data source, Validation by JDBC Driver displays on the administrative console
only after the validateNewConnectionTimeout property is added to the custom properties of
WebSphere Application Server data source properties. The validateNewConnectionTimeout
property is used for JDBC 4.0 driver validation and can be specified with the administrative
console.

Timeout: Specifies the timeout in seconds for testing connections, either new or pooled by the application
server, to the database. If the timeout expires before validating then the connection is considered
unusable. If retries are configured, the full value of the timeout applies to each retry. A value of 0 indicates
the JDBC driver does not impose a timeout on validation attempts.

Note: This option is only available for JDBC drivers that are JDBC 4.0 compliant.

Validation by SQL string (deprecated):

Specifies an SQL statement that the application server sends to the database to test the connection. Use
a query that is likely to have low impact on performance. This option is available only if either Validate
new connections or Validate existing pooled connections is selected.

270 Administering WebSphere applications



Optimize for get/use/close connection pattern with heterogenous pooling:

Optimizes the data source for applications that use the get/use/close connection pattern. This optimization
enables the connection pool for the data source to share connections that are in the same transaction.
With this optimization pattern, you can share one connection during a transaction even if connections use
different connection properties.

If you use the heterogeneous pooling feature, you must first extend the data source definition so that you
can specify different custom properties or applications to override non-core properties for the data source.
For more information about extending data sources, see the information on extending DB2 data source
definitions at the application level.

Note: This field is only available for DB2 data sources.

Retry interval for client reroute: Specifies the amount of time, in seconds, between retries for automatic
client reroute.

Note: This field is only available for DB2 data sources.

Maximum retries for client reroute: Specifies the maximum number of connection retries that are
attempted by the automatic client reroute function if the primary connection to the server fails. The
property is only used when Retry interval for client reroute is set.

Note: This field is only available for DB2 data sources.

Alternate server names: Specifies the list of alternate server name or names for the DB2 server. If more
than one alternate server name is specified, the names must be separated by commas. For example:
host1,host2

Note: This field is only available for DB2 data sources.

Alternate port numbers: Specifies the list of alternate server port or ports for the DB2 server. If more than
one alternate server port is specified, the ports must be separated by commas. For example:
5000,50001

Note: This field is only available for DB2 data sources.

Client reroute server list JNDI name: Specifies the JNDI name that is used to bind the DB2 client reroute
server list into the JNDI name space. The DB2 database server uses this name to look up the alternate
server name list when the alternate server information is not already in memory. This option is not
supported for type 2 data sources.

Note: This field is only available for DB2 data sources.

Unbind client reroute list from JNDI: Used with test connection only. When set to true, the Client reroute
server list JNDI name is unbound from the JNDI name space after a test connection is issued.

Note: This field is only available for DB2 data sources.

Data source (WebSphere Application Server V4) collection:

Use this page to view the settings of a WebSphere Application Server Version 4.0 data source.

These data sources use the WebSphere Application Server Version 4.0 Connection Manager architecture.
All Enterprise JavaBeans (EJB) 1.x modules must use a WebSphere Application Server Version 4.0 data
source.

Chapter 7. Welcome to administering Data access resources 271



You can access this administrative console page in one of two ways:

v Resources > JDBC > Data sources (WebSphere Application Server V4).

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources (WebSphere Application
Server V4).

Name:

Specifies a text identifier of the data source.

Information Value
Data type String

JNDI Name:

Specifies the Java Naming and Directory Interface (JNDI) name of the data source.

Information Value
Data type String

Scope:

Specifies the scope of the JDBC provider that encapsulates the driver implementation classes to support
this data source. Only applications that are installed within this scope can use this data source.

Provider:

Specifies the JDBC provider that encapsulates the appropriate classes.

Description:

Specifies a text description of the data source.

Information Value
Data type String

Category:

Specifies a text string that you can use to classify or group the data source.

Information Value
Data type String

Data source (WebSphere Application Server Version 4) settings:

Use this page to create a Version 4.0 style data source. This data source uses the WebSphere Application
Server Version 4.0 connection manager architecture. All Enterprise JavaBeans (EJB) 1.x modules must
use a Version 4.0 data source.

You can access this administrative console page in one of two ways:

v Resources > JDBC > Data sources(WebSphere Application Server V4) > data_source.

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources(WebSphere Application
Server V4) > data_source.

272 Administering WebSphere applications



Scope:

Specifies the scope of the JDBC provider that encapsulates the driver implementation classes to support
this data source. Only applications that are installed within this scope can use this data source.

Provider:

Specifies the JDBC provider that WebSphere Application Server uses for this data source.

The list shows all of the existing JDBC providers that are defined at the relevant scope. Select one from
the list if you want to use an existing JDBC provider as Provider.

Create new provider:

Provides the option of configuring a new JDBC provider for the new data source.

Create New Provider is displayed only when you create, rather than edit, a data source.

If you click Create New Provider the Create a new JDBC provider wizard launches. Complete all of the
wizard panels and click Finish. The administrative console now displays the Data sources (WebSphere
Application Server V4) configuration page again, where you see the new JDBC provider name in the
Provider field.

Name:

Specifies the display name for the resource.

For example, you can set this field to Test Data Source.

Information Value
Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name.

Distributed computing environments often employ naming and directory services to obtain shared
components and resources. Naming and directory services associate names with locations, services,
information, and resources.

Naming services provide name-to-object mappings. Directory services provide information about objects
and the search tools required to locate those objects.

There are many naming and directory service implementations, and the interfaces to them vary. JNDI
provides a common interface that is used to access the various naming and directory services.

For example, you can use the name jdbc/markSection.

If you leave this field blank a JNDI name is generated from the name of the data source. For example, a
data source name of markSection generates a JNDI name of jdbc/markSection.

After you set this value, save it, and restart the server, you can see this string when you run the memory
dump name space tool.

Information Value
Data type String

Chapter 7. Welcome to administering Data access resources 273



Description:

Specifies a text description for the resource.

Information Value
Data type String

Category:

Specifies a category string that you can use to classify or group the resource.

Information Value
Data type String

Database name:

Specifies the name of the database of the data source to access.

For example, you can call the database SAMPLE.

Information Value
Data type String

Default user ID:

Specifies the user name to use for connecting to the database.

For example, you can use the ID db2admin.

Information Value
Data type String

Default password:

Specifies the password used for connecting to the database.

For example, you can use the password db2admin.

Information Value
Data type String

Java EE resource provider or connection factory custom properties collection:

Use this page to view the custom properties of a Java Platform, Enterprise Edition (Java EE) resource
provider or connection factory.

You can configure custom property collections for numerous resource types. According to the resource
type with which a collection is associated, your ability to add, delete, and modify individual properties and
settings varies. Begin the configuration process by clicking the Required field to sort those column values
in descending order. All of the required (true) values are then sorted at the beginning of the page. Be sure
to set all required properties.

274 Administering WebSphere applications



Note: The following list displays three custom properties that are deprecated in WebSphere Application
Server Version 6.10. The product now offers these properties as pre-configured options, which are
the replacement properties in the following list. To avoid runtime error messages, permanently
disable the original custom properties by deleting them from the table on this administrative console
page.

v validateNewConnection -- replaced by Pretest new connection

v validateNewConnectionRetryCount -- replaced by Number of retries

v validateNewConnectionRetryInterval -- replaced by Retry interval

To set the replacement properties, click Data sources > data_source > WebSphere Application
Server data source properties in the administrative console.

Name:

Specifies the property name.

Information Value
Data type String

Value:

Specifies the property value.

Information Value
Data type Variable; see “Custom property settings” for more

information.

Description:

Specifies text to describe any bounds or well-defined values for this property.

Information Value
Data type String

Required:

Specifies whether this property is required for the resource provider.

Information Value
Data type Boolean or check box

Custom property settings:

Use this page to specify the attributes of custom properties that might be required for resource providers
and resource factories.

According to the resource type with which a property collection is associated, your ability to modify
individual property settings varies. Therefore, consider the following descriptions as a general reference for
custom property settings. (The administrative console page that you are using to configure your custom
property might only allow you to modify a subset of the following settings.)

You can access this administrative console page through several different paths, depending on the type of
resource to which the custom properties belong, for example: Resources > Resource Adapters >
Resource adapters > resource_adapter > Custom Properties.

Chapter 7. Welcome to administering Data access resources 275



Required:

Specifies that a value must be provided for this property of the resource, otherwise a warning occurs. If
you are creating a new custom property, this field is not available.

Information Value
Data type Check box

Name:

Specifies the name associated with this property, for example, PortNumber, ConnectionURL.

Information Value
Data type String

Value:

Specifies the value associated with this property of the resource.

Information Value
Data type Determined by the Type field. If the Type is

java.lang.String, the text entered into the Value field is
interpreted as a string. Similarly, if the Type is
java.lang.Integer, the Value field is interpreted as
numeric. This means that the text that is entered for the
Value field must be able to be interpreted as indicated by
the Type field, otherwise an error occurs. For example,
attempting to create a property with a Type of
java.lang.Integer and a Value of someValue results in
an error. Only a numeric value can be properly interpreted
for any of the available numeric types.

Description:

Specifies text to describe any bounds or well-defined values for this property.

Information Value
Data type String

Type:

Specifies the fully qualified Java data type of this property.

There are specific types that are valid:
v java.lang.Boolean
v java.lang.String
v java.lang.Integer
v java.lang.Double
v java.lang.Byte
v java.lang.Short
v java.lang.Long
v java.lang.Float

Information Value
Data type Drop-down list

276 Administering WebSphere applications



Custom Properties (Version 4) collection:

Use this page to view properties for a WebSphere Application Server Version 4.0 data source.

You can access this administrative console page in one of two ways:

v Resources > JDBC > Data sources (WebSphere Application Server V4) > data_source > Custom
properties

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources (WebSphere Application
Server V4) > data_source > Custom properties

Name:

Specifies the name of the custom property

Information Value
Data type String

Value:

Specifies the value of the custom property.

Information Value
Data type Integer

Description:

Specifies text to describe any bounds or well-defined values for this property.

Information Value
Data type String

Required:

Specifies properties that are required for this resource.

Information Value
Data type String

Custom property (Version 4) settings:

Use this page to add properties for a WebSphere Application Server Version 4.0 data source.

To view this administrative console page, click Resources > JDBC > JDBC Providers> JDBC_provider >
Data Sources (WebSphere Application Server V4) > data_source > Custom Properties >
custom_property.

Required:

Specifies properties that are required for this resource.

Information Value
Data type Check box

Chapter 7. Welcome to administering Data access resources 277



Name:

Specifies the name associated with this property (PortNumber, ConnectionURL, etc).

Information Value
Data type String

Value:

Specifies the value associated with this property in this property set.

Information Value
Data type Integer

Description:

Specifies text to describe any bounds or well-defined values for this property.

Information Value
Data type String

Type:

Specifies the fully qualified Java type of this property (java.lang.Integer, java.lang.Byte).

Information Value
Data type String

ResourceManagement command group for the AdminTask object
You can use the Jython or Jacl scripting languages to configure resource providers with the wsadmin tool.
The commands and parameters in the ResourceManagement group can be used to define and display
properties for resource providers.

The ResourceManagement command group for the AdminTask object includes the following commands:

v “setResourceProperty”

v “showResourceProperties” on page 279

setResourceProperty

Use the setResourceProperty command to set the value of a specified property defined on a resource
provider such as JDBCProvider or a connection factory such as DataSource or JMSConnectionFactory. If
the property with specified key is defined already, then this command overrides the value. If no property
with a specified key is defined, this command will add the property with specified key and value.

Target object

The configuration object ID of a resource provider or a connection factory.

Required parameters

-propertyName
Specifies the name of the property. (String, required)

278 Administering WebSphere applications



-propertyValue
Specifies the value of a property. (String, required)

Optional parameters

-propertyType
Specifies the type of the property. The default value is java.lang.String. (String, optional)

-propertyDescription
Specifies the description of the defined property. (String, optional)

Sample output

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:
$AdminTask setResourceProperty {-propertyName test.property -propertyValue testValue}

v Using Jython string:
AdminTask.setResourceProperty(’[-propertyName test.property -propertyValue testValue]’)

v Using Jython list:
AdminTask.setResourceProperty([’-propertyName’, ’test.property’, ’-propertyValue’, ’testValue’])

Interactive mode example usage:

v Using Jacl:
$AdminTask setResourceProperty {-interactive}

v Using Jython:
AdminTask.setResourceProperty(’-interactive’)

showResourceProperties

Use the showResourceProperties command to list all of the property values that are defined on a resource
provider such as JDBC provider or a connection factory such as data source or JMS connection factory.

Target object

The configuration object ID of a resource provider or a connection factory.

Required parameters

None.

Optional parameters

-propertyName
Specifies the name of the property. If you specify the property name, the value of the specified
property name is returned. If you do not specify the property name, all property values will be listed.
Each element in the list is a property name value pair. (String, optional)

Sample output

The command returns the property values that are defined on the resource provider or the connection
factory that you specified.

Chapter 7. Welcome to administering Data access resources 279



Examples

Batch mode example usage:

v Using Jacl:
$AdminTask showResourceProperties {-propertyName test.property}

v Using Jython string:
print AdminTask.showResourceProperties(’[-propertyName test.property]’)

v Using Jython list:
print AdminTask.showResourceProperties([’-propertyName’, ’test.property’])

Interactive mode example usage:

v Using Jacl:
$AdminTask showResourceProperties {-interactive}

v Using Jython:
print AdminTask.showResourceProperties(’-interactive’)

Creating and configuring a JDBC provider and data source using the JMX API
If your application requires access to a relational database using the Java Database Connectivity (JDBC)
API, you can create the necessary JDBC provider and data source objects using the Java Management
Extensions (JMX) API exclusively. Alternatively, you can use the JMX API in combination with the wsadmin
scripting tool.

About this task

bprac: If you are using the JMX API to create a data source, you should use one of the product-provided
templates if one exists for your specific JDBC provider. The product provides a template for every
supported JDBC provider. See the topic, Data source minimum required settings, by vendor, for a
list of all of the supported JDBC providers. When you use the administrative console to select one
of the provided templates, the administrative console prompts you for values for all of the required
properties for that data source. See the topic, Configuring a JDBC provider and data source, for
more information about how to use the administrative console to create a data source. If you
decide to use the wsadmin scripting tool to create a data source, see the topic, Data source
minimum required settings, by vendor, for a list of the required settings.

Example

Using the JMX API to create the configuration objects necessary to access relational databases.
This code sample demonstrates how to use the WebSphere Application Server MBeans to create and
configure the objects which are required to access a relational database from an enterprise application.
These objects include: a JDBC provider, either XA or non-XA capable, a data source, an authentication
alias, and optionally a Container Managed Persistence (CMP) connection factory. Details of configuring
these options can be found in the header comments of the following source code. The sample also
demonstrates how to use the data source MBean to reload the configuration changes into the running
server.

/**
* COPYRIGHT LICENSE: This information contains sample code provided in
* source code form. You may copy, modify, and distribute this sample
* program in any form without payment to IBM for the purposes of
* developing, using, marketing or distributing application programs
* conforming to the application programming interface for the operating
* platform for which the sample code is written. Notwithstanding anything
* to the contrary, IBM PROVIDES THE SAMPLE SOURCE CODE ON AN "AS IS" BASIS
* AND IBM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
* LIMITED TO, ANY IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY,
* SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND ANY
* WARRANTY OR CONDITION OF NON-INFRINGEMENT. IBM SHALL NOT BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING
* OUT OF THE USE OR OPERATION OF THE SAMPLE SOURCE CODE. IBM HAS NO

280 Administering WebSphere applications



* OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS OR
* MODIFICATIONS TO THE SAMPLE SOURCE CODE.
*
* © Copyright IBM Corp. 2011.
* All Rights Reserved. Licensed Materials - Property of IBM.
*/

import java.util.Properties;
import java.util.Set;

import javax.management.Attribute;
import javax.management.AttributeList;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.Session;
import com.ibm.websphere.management.configservice.ConfigServiceHelper;
import com.ibm.websphere.management.configservice.SystemAttributes;
import com.ibm.websphere.management.exception.ConnectorException;

/**
* This sample code demonstrates the use of the WebSphere JMX APIs to create
* a DB2 jdbc provider and data source with an authentication alias.
* This sample code may be configured to:
* - Create either node or server scoped objects
* - Create either an XA or non-XA jdbc provider
* - Create a connection factory so the data source may be used by CMP beans,
* otherwise the data source may be used by BMP beans, session beans, or
* servlets
* These are configured by setting the value of class constants
* (see "Program configuration settings" below)
* The jdbc provider, data source and CMP connection factory (if configured)
* are created using predefined templates, which is a best practice.
* Note: there are templates which will create both the jdbc provider and a
* data source at once, this sample intentionally creates both objects
* separately for thoroughness
*
* To compile and run this program, put the admin client bundle
* was_install_root\runtimes\com.ibm.ws.admin.client_8.0.0.jar
* on the classpath in addition to the classfile that was obtained when
* this source file was built.
*
* Once compiled, this program is run in it’s own JVM and
* uses the WebSphere Admin Client API to interact with a WebSphere
* Application Server either locally or remotely to create the
* JDBC resources discussed above.
*/

public class JDBCResourcesWithJMX {

// program configuration settings
// if true, an XA capable jdbc provider is created, otherwise non-XA
private static final boolean createXAJDBCProvider = true;
// if true, a CMP connection factory will be created for use by CMP beans,
// otherwise the data source created can be used with BMP beans, session
// beans, or servlets
private static final boolean createCMPConnectionFactory = true;
// if true, create node-scoped objects, otherwise create server
private static final boolean createNodeScopedCfgObjs = true;
// end program configuration settings

private static final String jdbcProviderName =
"Sample DB2 JDBC Provider";

private static final String jdbcProviderTemplateNameXA =
"DB2 Using IBM JCC Driver Provider Only (XA)";

private static final String jdbcProviderTemplateName =
"DB2 Using IBM JCC Driver Provider Only";

// an alias for authentication data
private static final String authDataAlias = "db2admin";
private static final String authAliasDescription =

"Sample authentication alias";
private static final String authAliasUserID = "db2admin"; // user ID
private static final String authAliasPassword = "db2admin"; // password
private static final String dataSourceProviderTemplateNameXA =

"DB2 Using IBM JCC Driver - XA DataSource";
private static final String dataSourceHelperClassName =

"com.ibm.websphere.rsadapter.DB2DataStoreHelper";
private static final String cmpConnFactTemplateName =

"CMPConnectorFactory";
// display name for data source(DS)and connection factory(CF)
private static final String dataSourceName = "SampleDataSource";
private static final String dataSourceTemplateName =

"DB2 Using IBM JCC Driver - DataSource";

@SuppressWarnings("unused")
private static final String dbName = "SamplesDB"; // the database name

public static void main(String[] args) {

Chapter 7. Welcome to administering Data access resources 281



JDBCResourcesWithJMX cds = new JDBCResourcesWithJMX();

try {
cds.run(args);

}
catch (Exception ex) {

System.out.println("Caught exception: " + ex);
ex.printStackTrace();

}
}

/**
* Creates a jdbc provider, data source, auth alias and connection
* factory, if so configured. Neither the data source or conn factory, if
* created, is bound into namespace until the server is restarted or an
* application using it is started
*/
private void run(String[] args) throws Exception {

// Initialize the AdminClient.
Properties adminProps = new Properties();
adminProps.setProperty(AdminClient.CONNECTOR_TYPE,

AdminClient.CONNECTOR_TYPE_SOAP);
adminProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");
adminProps.setProperty(AdminClient.CONNECTOR_PORT, "8880");
AdminClient adminClient =

AdminClientFactory.createAdminClient(adminProps);

Session session = new Session();

// use node scope to create config objects
ObjectName scope = null;
if (createNodeScopedCfgObjs) {

scope = ConfigServiceHelper.createObjectName(null, "Node", null);
}
else { // unless server scope is configured

scope = ConfigServiceHelper.createObjectName(null, "Server",
"server1");

}

// retrieve the ConfigService MBean
ObjectName configServiceMBean =

retrieveJMXMBean(adminClient, "ConfigService");

// invoke mbean queryConfigObjects operation
// to find either a server or node
ObjectName[] matches = (ObjectName[])adminClient.invoke(

configServiceMBean,
"queryConfigObjects",
// parameters for operation
new Object[] {session, null, scope, null},
// signature of bean method to invoke
new String[] {"com.ibm.websphere.management.Session",

"javax.management.ObjectName",
"javax.management.ObjectName",
"javax.management.QueryExp"});

scope = matches[0]; // use the first server or node object found

// create a jdbc provider at the specified scope
ObjectName jdbcProv =

createJDBCProvider(adminClient, session, scope,
configServiceMBean);

// create an auth alias for the data source
createAuthAlias(adminClient, session, configServiceMBean);

// Retrieve built-in WebSphere Relational Resource Adapter (RRA) at
// same scope as above
ObjectName rra =

ConfigServiceHelper.createObjectName(null, "J2CResourceAdapter",
null);

// invoke mbean queryConfigObjects operation
matches = (ObjectName[])adminClient.invoke(

configServiceMBean,
"queryConfigObjects",
// parameters for operation
new Object[] {session, scope, rra, null},
// signature of bean method to invoke
new String[] {"com.ibm.websphere.management.Session",

"javax.management.ObjectName",
"javax.management.ObjectName",
"javax.management.QueryExp"});

rra = matches[0]; // use the first object found at this scope

// create a data source using the jdbc provider
ObjectName dataSource =

createDataSource(adminClient, session, scope, jdbcProv, rra,
configServiceMBean);

282 Administering WebSphere applications



// if configured to do so, create a Connection Factory on the
// built-in WebSphere RRA for use by CMP beans
if (createCMPConnectionFactory) {

createConnectionFactory(adminClient, session, rra, dataSource,
configServiceMBean);

}

// invoke mbean save operation to persist the changes
// to the configuration repository, if platform is ND
// will also need to perform a node sync
adminClient.invoke(

configServiceMBean,
"save",
// parameters for operation
new Object[] {session, false},
// signature of bean method to invoke
new String[] {"com.ibm.websphere.management.Session",

"boolean"});

System.out.println("Configuration changes saved");

// reload data source MBean
reload(adminClient, session);

}

/**
* Use the ConfigService MBean to create an authentication alias
*/
private void createAuthAlias(AdminClient adminClient, Session session,

ObjectName configServiceMBean) throws Exception {

// Find the parent security object
ObjectName security =

ConfigServiceHelper.createObjectName(null, "Security", null);
// invoke mbean queryConfigObjects operation
Object result = adminClient.invoke(

configServiceMBean,
"queryConfigObjects",
// parameters for operation
new Object[] {session, null, security, null},
// signature of bean method to invoke
new String[] {"com.ibm.websphere.management.Session",

"javax.management.ObjectName",
"javax.management.ObjectName",
"javax.management.QueryExp"});

security = ((ObjectName[])result)[0];

// Prepare the attribute list
AttributeList authAliasAttrs = new AttributeList();
authAliasAttrs.add(new Attribute("alias", authDataAlias));
authAliasAttrs.add(new Attribute("userId", authAliasUserID));
authAliasAttrs.add(new Attribute("password", authAliasPassword));
authAliasAttrs.add(

new Attribute("description", authAliasDescription));

// invoke jmx createConfigData operation
result = adminClient.invoke(configServiceMBean, "createConfigData",

// parameters for operation
new Object[] {session, security, "authDataEntries",
"JAASAuthData", authAliasAttrs},
// signature of bean method to invoke
new String[] {"com.ibm.websphere.management.Session",

"javax.management.ObjectName",
"java.lang.String",
"java.lang.String",
"javax.management.AttributeList"});

System.out.println("Created authorization alias: " + authDataAlias);
}

/*
* Use the ConfigService MBean to create a CMP connection factory
* on the built-in WebSphere RRA
*/
private void createConnectionFactory(AdminClient adminClient,

Session session, ObjectName rra, ObjectName dataSource,
ObjectName configServiceMBean)
throws Exception {

// Prepare the attribute list
AttributeList cfAttrs = new AttributeList();
cfAttrs.add(new Attribute("name", dataSourceName + "_CF"));
cfAttrs .add(new Attribute("authMechanismPreference",

"BASIC_PASSWORD"));
cfAttrs.add(new Attribute("authDataAlias", authDataAlias));
cfAttrs.add(new Attribute("cmpDatasource", dataSource));

// invoke jmx queryTemplates operation
Object result = adminClient.invoke(

configServiceMBean,

Chapter 7. Welcome to administering Data access resources 283



"queryTemplates",
// parameters for operation
new Object[] {session, "CMPConnectorFactory",},
// signature of bean method to invoke
new String[] {"com.ibm.websphere.management.Session",

"java.lang.String"});

// find the template with the desired display name attribute
ObjectName connFactTemplate = null;
if (result != null) {

ObjectName[] templates = (ObjectName[])result;
for (ObjectName template: templates) {

if (cmpConnFactTemplateName.equals(template.getKeyProperty(
SystemAttributes._WEBSPHERE_CONFIG_DATA_DISPLAY_NAME))) {
connFactTemplate = template;

}
}

}

// use the template found above to create the CMP connection factory
// invoke jmx createConfigDataByTemplate operation
adminClient.invoke(

configServiceMBean,
"createConfigDataByTemplate",
// parameters for operation
new Object[] {session, rra, "CMPConnectorFactory",

cfAttrs, connFactTemplate},
// signature of bean method to invoke
new String[] {"com.ibm.websphere.management.Session",

"javax.management.ObjectName",
"java.lang.String",
"javax.management.AttributeList",
"javax.management.ObjectName"
});

System.out.println("Created CMP Connection factory: " +
dataSourceName + "_CF");

}

/**
* Use the ConfigService MBean to create a data source at the
* specified scope from one of the predefined templates
*/
private ObjectName createDataSource(AdminClient adminClient,

Session session, ObjectName scope, ObjectName jdbcProv,
ObjectName rra, ObjectName configServiceMBean)
throws Exception {

// the template name to use based on whether this example is
// configured to use an XA data source or not
String templateName = dataSourceProviderTemplateNameXA;
if (!createXAJDBCProvider) {

templateName = dataSourceTemplateName;
}

// the attribute DataSource.relationResourceAdapter is required
// in addition to the attributes in the template
AttributeList dsAttrs = new AttributeList();
dsAttrs.add(new Attribute("name", dataSourceName));
// override some other props in the template
dsAttrs.add(new Attribute("description", dataSourceName));
dsAttrs.add(new Attribute("jndiName", "jdbc/" + dataSourceName));
dsAttrs.add(new Attribute("datasourceHelperClassname",

dataSourceHelperClassName));
// link to the built-in WebSphere RRA
dsAttrs.add(new Attribute("relationalResourceAdapter", rra));
dsAttrs.add(new Attribute("authDataAlias", authDataAlias));

// invoke jmx queryTemplates operation
Object result = adminClient.invoke(

configServiceMBean,
"queryTemplates",
// parameters for operation
new Object[] {session, "DataSource"},
// signature of bean method to invoke
new String[] {"com.ibm.websphere.management.Session",

"java.lang.String"});

// find the template with the desired display name attribute
ObjectName db2Template = null;
if (result != null) {

ObjectName[] templates = (ObjectName[])result;
for (ObjectName template: templates) {

if (templateName.equals(template.getKeyProperty(
SystemAttributes._WEBSPHERE_CONFIG_DATA_DISPLAY_NAME))) {
db2Template = template;

}
}

}

284 Administering WebSphere applications



// use the template found above to create the data source
// invoke jmx createConfigDataByTemplate operation
ObjectName dataSource = (ObjectName)adminClient.invoke(

configServiceMBean,
"createConfigDataByTemplate",
// parameters for operation
new Object[] {session, jdbcProv, "DataSource",

dsAttrs, db2Template},
// signature of bean method to invoke
new String[] {"com.ibm.websphere.management.Session",

"javax.management.ObjectName",
"java.lang.String",
"javax.management.AttributeList",
"javax.management.ObjectName"
});

System.out.println("Created data source: " + dataSourceName +
" at " + (createNodeScopedCfgObjs ? "node" : "server") +
" scope");

return dataSource;
}

/**
* Get the DataSourceCfgHelper MBean and call reload() on it
* This causes the newly created configuration objects to
* be available.
*/
private void reload(AdminClient adminClient, Session session)

throws Exception {

// retrieve the DataSourceCfgHelper MBean
ObjectName mBean =

retrieveJMXMBean(adminClient, "DataSourceCfgHelper");

// call the reload operation
Object result =

adminClient.invoke(
mBean,
"reload",
new Object[] {},
new String[] {});

if (result != null) {
System.err.println(

"DataSourceCfgHelper MBean reload operation failed: "
+ result);

}
else {

System.out.println("Reloaded DataSourceCfgHelper MBean");
}

}

/**
* Use the ConfigService MBean to create a jdbc provider at the specified
* scope from one of the predefined templates
*/
private ObjectName createJDBCProvider(

AdminClient adminClient, Session session, ObjectName scope,
ObjectName configServiceMBean) throws Exception {

// the template name to use based on whether this example is
// configured to use an XA jdbc provider or not
String templateName = jdbcProviderTemplateNameXA;
if (!createXAJDBCProvider) {

templateName = jdbcProviderTemplateName;
}

// invoke jmx queryTemplates operation
Object result = adminClient.invoke(

configServiceMBean,
"queryTemplates",
// parameters for operation
new Object[] {session, "JDBCProvider"},
// signature of bean method to invoke
new String[] {"com.ibm.websphere.management.Session",

"java.lang.String"});

// find the template with the desired display name attribute
ObjectName db2Template = null;
if (result != null) {

ObjectName[] templates = (ObjectName[])result;
for (ObjectName template: templates) {

if (templateName.equals(template.getKeyProperty(
SystemAttributes._WEBSPHERE_CONFIG_DATA_DISPLAY_NAME))) {
db2Template = template;

}
}

}

// the attribute JDBCProvider.name is required in addition

Chapter 7. Welcome to administering Data access resources 285



// to the attributes in the template
AttributeList provAttrs = new AttributeList();
provAttrs.add(new Attribute("name", jdbcProviderName

+ (createXAJDBCProvider ? " (XA)" : "")));
// override the description in the template
provAttrs.add(new Attribute("description", jdbcProviderName

+ (createXAJDBCProvider ? " (XA)" : "")));

// use the template found above to create the jdbc provider
// invoke jmx createConfigDataByTemplate operation
ObjectName jdbcProvider = (ObjectName)adminClient.invoke(

configServiceMBean,
"createConfigDataByTemplate",
// parameters for operation
new Object[] {session, scope, "JDBCProvider",

provAttrs, db2Template},
// signature of bean method to invoke
new String[] {"com.ibm.websphere.management.Session",

"javax.management.ObjectName",
"java.lang.String",
"javax.management.AttributeList",
"javax.management.ObjectName"
});

System.out.println("Created JDBC provider: " + jdbcProviderName
+ (createXAJDBCProvider ? " (XA)" : "") +
" at " + (createNodeScopedCfgObjs ? "node" : "server") +
" scope");

return jdbcProvider;
}

// find the specified MBean
@SuppressWarnings("unchecked")
private ObjectName retrieveJMXMBean(AdminClient adminClient,

String beanName)
throws MalformedObjectNameException, ConnectorException {
// retrieve the ConfigService MBean
ObjectName mBean = null;
ObjectName queryName =

new ObjectName("WebSphere:type=" + beanName + ",*");
Set names = adminClient.queryNames(queryName, null);
if (!names.isEmpty()) {

mBean = (ObjectName) names.iterator().next();
}
return mBean;

}
}

Example: Creating a JDBC provider and data source using Java Management Extensions API and
the wsadmin scripting tool:

The following sample code is a JACL (wsadmin - scripting tool) script used to create a data source.

Use this script to create only data sources for which the product does not provide a template. For every
JDBC provider WebSphere Application Server supports, the product provides a corresponding data source
template. See the topic, Creating configuration objects using the wsadmin tool, for instructions on how to
use the createUsingTemplate command to establish these data sources. For a complete list of supported
JDBC providers (and therefore a complete list of data sources that must be created using a template),
refer to the topic, Data source minimum required settings, by vendor.

This script sets up the following sample JDBC objects:
v Creates a data source fvtDS_1
v Creates a 4.0 data source fvtDS_3
v Creates a container-managed persistence (CMP) data source linked to fvtDS_1

Attention: If you later modify the class path or native library path of the JDBC provider associated with
your data source, you must restart every application server within the scope of that JDBC provider for the
new configuration to work. Otherwise, you receive a data source failure message.
#AWE -- Set up XA DB2 data sources, both Version 4.0 and Connector architecture (JCA)-compliant data sources

#UPDATE THESE VALUES:
#The classpath that will be used by your database driver
set driverClassPath "c:/sqllib/java/db2java.zip"

286 Administering WebSphere applications



set server "server1"

set fvtbase "c:/wssb/fvtbase"

#Users and passwords..
set defaultUser1 "dbuser1"
set defaultPassword1 "dbpwd1"
set aliasName "alias1"

set databaseName1 "jtest1"
set databaseName2 "jtest2"
#END OF UPDATES

puts "Add an alias alias1"
set cell [$AdminControl getCell]
set sec [$AdminConfig getid /Cell:$cell/Security:/]

#---------------------------------------------------------
# Create a JAASAuthData object for component-managed authentication
#---------------------------------------------------------
puts "create JAASAuthData object for alias1"

set alias_attr [list alias $aliasName]
set desc_attr [list description "Alias 1"]
set userid_attr [list userId $defaultUser1]
set password_attr [list password $defaultPassword1]
set attrs [list $alias_attr $desc_attr $userid_attr $password_attr]

set authdata [$AdminConfig create JAASAuthData $sec $attrs]
$AdminConfig save

set dm [$AdminControl queryNames type=Server,name=dmgr,*]
$AdminControl invoke $dm restart "true true"

puts "Installing DB2 datasource for XA"

puts "Finding the old JDBCProvider.."
#Remove the old jdbc provider...
set jps [$AdminConfig list JDBCProvider]
foreach jp $jps {
set jpname [lindex [lindex [$AdminConfig show $jp {name}] 0] 1]
if {($jpname == "FVTProvider")} {
puts "Removing old JDBC Provider"
$AdminConfig remove $jp
$AdminConfig save
}
}

#Get the server name...
puts "Finding the server $server"
set servlist [$AdminConfig list Server]
set servsize [llength $servlist]
foreach srvr $servlist {
set sname [lindex [lindex [$AdminConfig show $srvr {name}] 0] 1]
if {($sname == $server)} {

puts "Found server $srvr"
set serv $srvr
}
}

set desiredNodeName "myNode"
puts "Finding the Node"
set nodelist [$AdminConfig list Node]
foreach node $nodelist {

set nodename [lindex [lindex [$AdminConfig show $node {name}] 0] 1]
if {($nodename == $desiredNodeName)} {

Chapter 7. Welcome to administering Data access resources 287



puts "node = $node"
break

}
}

puts "Finding the Resource Adapter"
set ralist [$AdminConfig list J2CResourceAdapter $node]
set ralistlen [llength $ralist]
foreach ra $ralist {

set raname [lindex [lindex [$AdminConfig show $ra {name}] 0] 1]
if {($raname == "WebSphere Relational Resource Adapter")} {

set rsadapter $ra
}

}

#Create an iSeries JDBC Provider for the data sources
puts "Creating the provider for com.ibm.db2.jdbc.app.UDBXADataSource"
set attrs1 [subst {{classpath $driverClassPath}
{implementationClassName com.ibm.db2.jdbc.app.UDBXADataSource}{name "FVTProvider2"}
{description "DB2 UDB for iSeries JDBC Provider"} {xa "true"}}]

set provider1 [$AdminConfig create JDBCProvider $serv $attrs1]

#Create the first data source
puts "Creating the datasource fvtDS_1"
set attrs2 [subst {{name fvtDS_1} {description "FVT DataSource 1"}}]
set ds1 [$AdminConfig create DataSource $provider1 $attrs2]

#Set the properties for the data source.
set propSet1 [$AdminConfig create J2EEResourcePropertySet $ds1 {}]

set attrs3 [subst {{name databaseName} {type java.lang.String} {value $databaseName1}}]
$AdminConfig create J2EEResourceProperty $propSet1 $attrs3

set attrs10 [subst {{jndiName jdbc/fvtDS_1} {statementCacheSize 10}
{datasourceHelperClassname com.ibm.websphere.rsadapter.DB2DataStoreHelper}
{relationalResourceAdapter {$rsadapter}} {authMechanismPreference "BASIC_PASSWORD"}
{authDataAlias $aliasName}}]

$AdminConfig modify $ds1 $attrs10

#Create the connection pool object
$AdminConfig create ConnectionPool $ds1 {{connectionTimeout 1000}
{maxConnections 30} {minConnections 1} {agedTimeout 1000}
{reapTime 2000} {unusedTimeout 3000} }

#Create the 4.0 data sources
puts "Creating the 4.0 datasource fvtDS_3"
set ds3 [$AdminConfig create WAS40DataSource $provider1 {{name fvtDS_3} {description "FVT 4.0 DataSource"}}]

#Set the properties on the data source
set propSet3 [$AdminConfig create J2EEResourcePropertySet $ds3 {}]

#These attributes should be the same as fvtDS_1
set attrs4 [subst {{name user} {type java.lang.String} {value $defaultUser1}}]
set attrs5 [subst {{name password} {type java.lang.String} {value $defaultPassword1}}]
$AdminConfig create J2EEResourceProperty $propSet3 $attrs3
$AdminConfig create J2EEResourceProperty $propSet3 $attrs4
$AdminConfig create J2EEResourceProperty $propSet3 $attrs5
set attrs10 [subst {{jndiName jdbc/fvtDS_3} {databaseName $databaseName1}}]
$AdminConfig modify $ds3 $attrs10

$AdminConfig create WAS40ConnectionPool $ds3 {{orphanTimeout 3000} {connectionTimeout 1000}
{minimumPoolSize 1} {maximumPoolSize 10} {idleTimeout 2000}}

#Add a CMP connection factory for the JCA-compliant data source. This step is not necessary for

288 Administering WebSphere applications



#Version 4 data sources, as they contain built-in CMP connection factories.
puts "Creating the CMP Connector Factory for fvtDS_1"
set attrs12 [subst {{name "FVT DS 1_CF"} {authMechanismPreference BASIC_PASSWORD}
{cmpDatasource $ds1} {authDataAlias $aliasName}}]
set cf1 [$AdminConfig create CMPConnectorFactory $rsadapter $attrs12]

#Set the properties for the data source.
$AdminConfig create MappingModule $cf1 {{mappingConfigAlias "DefaultPrincipalMapping"} {authDataAlias "alias1"}}

$AdminConfig save

Using the DB2 Universal JDBC Driver to access DB2 for z/OS
The z/OS operating system requires that you configure the DB2 Universal JDBC Driver and your database
to ensure interoperability. Within WebSphere Application Server, configure a Java Database Connectivity
(JDBC) provider object and a data source object to implement the driver capabilities for your applications.

Before you begin

The available versions of the DB2 Universal JDBC Driver to connect with DB2 on z/OS are as follows:

v The DB2 Universal JDBC Driver in DB2 UDB for z/OS Version 8. This version supports both driver
Types 2 and 4.

v The DB2 Universal JDBC Driver for DB2 UDB for OS/390® and z/OS Version 7, as documented in
APAR PQ80841. This version supports both driver Types 2 and 4.

v The DB2 Universal JDBC Driver with the feature z/OS Application Connectivity to DB2 for z/OS, which
provides Type 4 connectivity only. If you install this version of the driver, you must configure a DB2
Universal JDBC Driver provider (XA) to access remote DB2 databases.

Consult the DB2 service updates for available enhancements on the version that use.

Migration tip: If you are replacing the DB2 for 390 and z/OS Legacy JDBC driver with the DB2 Universal
JDBC Driver, you can migrate your existing JDBC provider settings. See the topic Migrating
from the JDBC/SQLJ Driver for OS/390 and z/OS to the DB2 Universal JDBC Driver in the
Information Management Software for z/OS Solutions Information Center for more
information.

Procedure
1. Install the driver class files and any necessary native files in an available HFS directory.

Native files are class files that some versions of the DB2 Universal JDBC Driver require for running on
the z/OS operating system.

2. Configure the driver and database for interoperability

a. Bind the required DB2 packages

Any application that executes SQL statements in DB2 for z/OS, the Universal JDBC driver must
first bind with DB2 the packages that represent the SQL statements to be executed.

The specific details of the bind utility and bind process are described by the readme file provided
with the installed DB2 Universal JDBC Driver. Refer to this readme file for details on how to set up
and perform the required binding.

The utility requires the server name or IP address, the port number, and the database name (the
database location on z/OS) for the target DB2. To get this information, issue a DB2 -DISPLAY DDF
command on the target DB2 system. This command displays the IPADDR (IP address), the SQL
DOMAIN (server name), the TCPPORT number, and the LOCATION (database name/location) for
you to use as input to the utility.

You must perform the bind process for each target DB2 accessed using the DB2 Universal JDBC
Driver.

b. Set up to handle in-doubt transactions

Chapter 7. Welcome to administering Data access resources 289



Perform this setup once for each target DB2 for z/OS Version 7 location that is accessed using the
DB2 Universal JDBC Driver Type 4 XA support.

DB2 for z/OS Version 7 does not implement Java Platform, Enterprise Edition (Java EE) XA
support, therefore, the Type 4 driver XA processing uses DB2 V7 two-phase commit protocol and a
table in each location (database) to store a list of global transactions that are in doubt or finished
but not committed.

This table must be set up at each DB2 V7 location that is accessed. To do the set up, use the
In-Doubt Utility, which is included as part of the installed DB2 Universal JDBC Driver. The utility
creates the SYSIBM.INDOUBT Table that stores information about In-Doubt Global Transactions.
This utility also binds the package T4XAIndbtPkg, which contains the SQL statements to insert and
delete from the SYSIBM.INDOUBT Table. The T4XAIndbtPkg package is written with SQLJ.

This installation process requires that the target DB2 subsystem is configured with DDF enabled for
incoming TCP/IP connections.

1) To enable DDF on the target DB2, issue the DB2 -START DDF command on that system.

2) This utility requires the server name or IP address and the port number for the target DB2 V7.
To obtain this information, issue a DB2 -DISPLAY DDF command on the target DB2 V7
system. The IPADDR (IP address), the SQL DOMAIN (server name), and the TCPPORT
number that can be used as input to the utility are displayed.

To find more detailed information about the In-Doubt utility, refer to the DB2 Universal Database™

for z/OS Version 7 Application Programming Guide and Reference for JavaTM publication. You can
download it from the Library section of the DB2 Universal Database for z/OS Version 7 product
information web pages. Within this publication, search for discussion about the utility under
DB2T4XAIndoubtUtil, which is the official name of the In-Doubt utility.

Note: The previously described setup for in-doubt transactions is not a requirement for DB2 FOR
z/OS Version 8 servers because DB2 FOR z/OS Version 8 natively supports XA commands
over DRDA® and manages the In-Doubt Global Transactions internally.

c. Define a db2.jcc.propertiesFile

A db2.jcc.propertiesFile for use by DB2 Universal JDBC Driver Type 2 processing under
WebSphere Application Server for z/OS can be created and specified as input to the driver. This
runtime properties file is for use in specifying various runtime options that the DB2 Universal JDBC
Driver uses for Type 2 connectivity. These options are specified as properties in the form of
parameter=value. Refer to the README file packaged with the installed DB2 Universal JDBC
Driver for a detailed description of each of the properties.

This file is not required; however, if it is not provided, universal driver default processing is
performed.

Of specific interest is the db2.jcc.ssid property. This property specifies the DB2 subsystem identifier
(not location name), to be used by the DB2 Universal JDBC Driver Type 2 processing as the local
subsystem name to which it connects. If this property is not provided, the driver uses the
subsystem identifier that it finds in the DSNHDECP load module. If the installation wants to use the
DSNHDECP load module to specify the subsystem identifier, this load module must be included in
a steplib data set in the servant region PROCs associated with each server that uses the DB2
identified by the subsystem ID. Refer to the readme file packaged with the universal driver for more
information about using this load module. If that DSNHDECP load module does not accurately
reflect the wanted subsystem, or if multiple subsystems might be using a generic DSNHDECP, the
db2.jcc.ssid property must be specified.

Although the db2.jcc.propertiesFile is not required, if you choose to define the file, you must specify
the fully qualified HFS file name as a JVM System property as follows:

v db2.jcc.propertiesFile = <fully-qualified-hfs-filename>

The driver-general properties are typically specific to a driver load, for example, server, rather than
all servers using the JDBC provider, therefore, it is best to set this JVM property at the server level.
To define the db2.jcc.propertiesFile= property to the server level using the WebSphere Application
Server for z/OS administrative console:

290 Administering WebSphere applications



1) Under the WebSphere Application Server for z/OS administrative console, go to Servers >
Application Servers, then click the server to which you want to add the JVM property.

2) On the selected server page, expand Java and Process Management and click Process
Definition > Servant.

3) On the Servant page, click Additional Properties, then click Java Virtual Machine.

4) On the Java Virtual Machine page, click Additional Properties, then click Custom Properties.

5) On the Custom Properties page, scroll down and click New to configure a new JVM property
for the selected server. The name of the property is db2.jcc.propertiesFile. The value of the
property is the fully qualified HFS file name that you created and initialized with the DB2
Universal JDBC Driver properties. The Type 2 driver uses these properties for the selected
server

6) Click Ok.

7) Click Save to save the new JVM property.

3. Define a JDBC provider for the DB2 Universal JDBC Driver. The JDBC provider object encapsulates
the driver classes for implementation in WebSphere Application Server.

a. From the WebSphere Application Server for z/OS administrative console, click Resources > JDBC
> JDBC Providers.

b. Select the scope at which applications can use the JDBC provider. This scope becomes the scope
of any data source that you associate with this provider. You can choose a cell, node, cluster, or
server. For more information, see the topic, administrative console scope settings.

c. Click New. This action causes the Create a new JDBC Provider wizard to launch.

d. Use the first drop-down list to select DB2 for z/OS as your database type.

e. Select the DB2 Universal JDBC Driver provider as your JDBC provider type in the second
drop-down list.

f. From the third drop-down list, select the implementation type that is necessary for your application.

If your application does not require that connections support two-phase commit transactions, and
you plan to use type 4 connectivity, choose Connection Pool Data Source. If you use the
connection pool data source with type 2 connectivity, however, Application Server on z/OS uses
RRS to process both one-phase and two-phase transactions.

Restriction: Do not select Connection Pool Data Source if your installation has the z/OS
Application Connectivity to DB2 for z/OS feature defined to WebSphere Application
Server for z/OS. Only the XA implementation of the DB2 Universal JDBC Driver
supports this feature.

Choose XA Data Source if you plan to use driver type 4, and your application requires connections
that support two-phase commit transactions. Use only driverType 4 connectivity for the XA data
source.

After you select an implementation type, the wizard fills the name and the description fields for your
JDBC provider. You can type different values for these fields; they exist for administrative purposes
only.

g. Click Next after you have defined your database type, provider type, and implementation type. Now
you see the wizard page Enter database class path information.

Typically you do not need to change the class path that already populates the field. (That class
path is the value of the WebSphere environment variable that is displayed on this page, in the form
of ${DATABASE_JDBC_DRIVER_PATH}.) Most likely you also do not need to change the native
library path or the data source implementation class name.

h. Click Next to see a summary of your JDBC provider settings.

i. Click Finish if you are satisfied with the entire JDBC provider configuration. The JDBC provider
collection page displays, which shows your new JDBC provider in a table along with other providers
that are configured for the same scope.

Chapter 7. Welcome to administering Data access resources 291



4. Define a data source. WebSphere Application Server uses the data source object to obtain database
connections and manage those connections.

a. From the WebSphere Application Server for z/OS administrative console, access the page for the
data source version that your applications require. If you need support for two-phase transactions,
use only a data source of the latest standard version. Version 4 data sources do not support
connections that participate in two-phase transactions.

Navigate to the appropriate page in one of two ways:

v Click Resources > JDBC > Data sources, or Data sources (WebSphere Application Server
Version 4).

v Click Resources > JDBC > JDBC providers > JDBC_provider > Data sources, or Data
sources (WebSphere Application Server Version 4).

b. Select the scope at which applications can use the data source. You can choose a cell, node,
cluster, or server. For more information, see the topic Administrative console scope settings.

Version 4 only: From this point onward, the steps for creating data sources (WebSphere
Application Server Version 4) differ from the steps for creating data sources of the
latest standard version. To configure a Version 4 data source complete the
following steps:

v Click New to proceed to the console page for defining required properties.

v On this properties page specify values for the fields that are grouped under the
heading Configuration. Application Server requires these properties to
implement your JDBC driver classes; see the topic, Data source minimum
required settings, by vendor to learn about acceptable values.

v Save your configuration by clicking OK. You are now finished with the primary
data source configuration tasks.

v Optional: Define additional properties that are supported by the DB2 Universal
JDBC provider. Application Server calls them custom properties, and requires
that you set them on the data source as well. Begin by clicking the Custom
Properties link that is now displayed on the administrative console page. You
can learn about optional data source properties in the Application Programming
Guide and Reference for Java for your version of DB2 for z/OS.

c. Click New. This action causes the Create a data source wizard to launch and display the Enter
basic data source information page. The first field is the scope field, which is read-only. This field
displays your previous scope selection.

d. Type a data source name in the Data source name field. This name identifies the data source for
administrative purposes only.

e. Type a Java Naming and Directory Interface (JNDI) name in the JNDI name field. WebSphere
Application Server uses the JNDI name to bind application resource references to this data source.
For more information about JNDI, see the topic, Naming.

f. Configure a component-managed alias to secure your data source if you plan to implement
driverType 4 connectivity with the DB2 Universal JDBC Driver. If you plan to use driverType 2
connectivity, you do not have to set an alias. In this case the connection manager uses a default
authentication alias, which is the user identity of a thread when that thread delivers a getConnection
request.

A component-managed alias consists of an ID and password that are specified in an application for
data source authentication. Therefore, the alias that you set on the data source must be identical to
the alias in the application code. For more information about Java 2 Connector (J2C) security, see
the topic, Managing Java 2 Connector Architecture authentication data entries.

To set a component-managed alias, either select an existing alias or create a new one.

v Use the drop-down list to select an existing component-managed authentication alias.

v To create an alias, click the create a new one link. This action closes the data source wizard
and triggers the administrative console to display the J2C authentication data collection page.

292 Administering WebSphere applications



Click New to define a new alias. Click OK to save your settings and view the new alias on the
J2C authentication data collection page. Restart the data source wizard by navigating back to the
data source collection page, selecting the appropriate scope, and clicking New.

g. Click Next to see the wizard page Select JDBC provider.

h. Either select an existing JDBC provider, or create a provider.

To select an existing JDBC provider:

1) Click Select an existing JDBC provider.

2) Select a JDBC driver from the drop-down list.

3) Click Next. You now see the page entitled Enter database-specific properties for the data
source.

To create a JDBC provider:

1) Click Create new JDBC provider.

2) Click Next to see the Create JDBC provider page.

3) Use the first drop-down list to select DB2 for z/OS as your database type.

4) Select the DB2 Universal JDBC Driver provider as your JDBC provider type in the second
drop-down list.

5) From the third drop-down list, select the implementation type that is necessary for your
application.

If your application does not require that connections support two-phase commit transactions,
choose Connection Pool Data Source. Both driverType 2 and driverType 4 connectivity
implementations of the DB2 Universal JDBC Driver support connection pool data sources.

Restriction: Do not select this provider if your installation has the z/OS Application
Connectivity to DB2 for z/OS feature defined to WebSphere Application Server for
z/OS. Only the XA implementation of the DB2 Universal JDBC Driver supports
this feature.

Choose XA Data Source if your application requires connections that support two-phase
commit transactions. Applications that use this data source configuration have the benefit of
container-managed transaction recovery. Use only driverType 4 connectivity for the XA
implementation.

After you select an implementation type, the wizard fills the name and the description fields for
your JDBC provider. You can type different values for these fields; they exist for administrative
purposes only.

6) Click Next after you have defined your database type, provider type, and implementation type.
Now you see the wizard page Enter database class path information.

Typically you do not need to change the class path that already populates the field. (That class
path is the value of the WebSphere environment variable that is displayed on this page, in the
form of ${DATABASE_JDBC_DRIVER_PATH}.) Most likely you also do not need to change the
native library path or the data source implementation class name.

7) Click Next. You now see the page entitled Enter database-specific properties for the data
source.

i. Click Use this data source in container managed persistence (CMP) if container managed
persistence (CMP) enterprise beans must access this data source.

j. Specify all the remaining properties, as they are required for implementation of the DB2 Universal
JDBC Driver. These properties include:

v Database name, which is the location name of the target database used when establishing
connections with this data source

v driverType, which is the JDBC connectivity type used by the data source

v Server name, which is the TCP/IP address or host name for the Distributed Relational Database
Architecture™ (DRDA) server.

Chapter 7. Welcome to administering Data access resources 293



This property is required only if driverType is set to 4. This property is not used if driverType is
set to 2.

v Port number, which is the TCP/IP port number where the DRDA server resides.

Provide a value for this property only if driverType is set to 4. Do not set this property if
driverType is set to 2.

k. Click Finish to save the configuration and exit the wizard. The Data source collection page
displays, which shows your new configuration in a table along with other data sources that are
configured for the same scope.

What to do next

You can override the default values for some data source properties. Click your new data source link in
the table to view the general configuration page for required data source properties. You can also define
additional properties that are supported by the DB2 Universal JDBC Driver. Application Server requires
that you set them as custom properties on the data source. Learn about optional data source properties in
the Application Programming Guide and Reference for Java for your version of DB2 for z/OS.

Extended data source properties:

Use this page to set the extended data source properties for a DB2 database. You can use these
properties to allow an application to extend the custom properties for a data source or override any
non-core properties that already exist for that data source.

To access this administrative console page:

v For applications that do not use container-managed persistence click Applications > Application
Types > WebSphere enterprise applications > application_name > Resource references

v For applications that use container-managed persistence click Applications > Application Types >
WebSphere enterprise applications > application_name > Provide default data source mapping
for modules containing 2.x entity beans.

For data sources that use the DB2 Universal JDBC driver or DB2 Using IBM JCC Driver, click Extended
properties... in the Target Resource JNDI Name column.

gotcha: If you include multiple values for an extended data source property, you must enclose those
values in quotation marks.

Name: Specifies the name (or key) for the property.

Each property name must be unique. If the same name is used for multiple properties, the value specified
for the first property that has that name is used.

Do not start your property names with was, because this prefix is reserved for properties that are
predefined in the application server.

Information Value
Data type String

Value:

Specifies the property value.

Information Value
Data type Variable

294 Administering WebSphere applications



Configuring two resource reference files on the same data source:

You can configure two resource reference files on the same data source. This allows you to extend the
custom properties for the data source to be extended to include two different schema names
(currentSQLId on z/OS or currentSchema name in the custom properties) that can be used to exploit the
capabilities of the application server.

About this task

When an EntityManager is created, the application server obtains a connection to the database. When you
are using a pessimistic transaction, the EntityManager will retain that connection until the EntityManager is
closed. When there are two EntityManagers that extend the data source definitions, the
openjpa.jdbc.TransactionIsolation property might cause a problem with the transaction. This property
can be found in the persistence.xml file in the following entry:
property name="openjpa.jdbc.TransactionIsolation" value="read-committed"

In order to satisfy this request, Java Persistence API (JPA) will obtain a connection and immediately call
setTransactionIsolation(READ_COMMITTED). When you have two EntityManagers share a single physical
connection to the database, the first EntityManager creates a connection to the database and involves that
connection in a transaction. When the second EntityManager creates a connection, it is not able to change
the isolation level.

You can avoid this problem by creating two resource reference files in the same data source. You can
create the resource references with Rational Application Developer or by editing the XML files. You will
need to make changes to the ejb-jar.xml, ibm-ejb-jar-bnd.xml, ibm-ejb-jar-ext.xml, persistence.xml
files.

Note: For IBM Optim PureQuery Runtime, if this is an XA data source you must define a new custom
property on the data source where property_name = downgradeHoldCursorsUnderXa and boolean
value = true.

See the following sections for information on how to accomplish this:

v Configure two resource reference files on the same data source using Rational Application Developer.

v Configure two resource reference files on the same data source by editing the XML files.

Procedure

v Configure two resource reference files on the same data source using Rational Application Developer.

1. Edit the ejb-jar.xml file

a. Create the deployment descriptor if it doesn't already exist:

1) Go to the context menu of the Enterprise Java beans (EJB) project and select Java EE >
Generate Deployment Descriptor Stub.

b. Edit the deployment descriptor:

1) Go to the project's META-INF directory and select the ejb-jar.xml file.

c. Add the enterprise bean's element to the deployment descriptor if it doesn't already exist:

1) In the left hand pane, select EJB Project node. Click Add.

2) In the dialog, select Enterprise Beans. Click OK.

d. Add the session bean to the deployment descriptor if it's not already there:

1) In the left pane, select Enterprise Beans. Click Add.

2) Select Session Bean. Click OK.

3) Enter the name of the session bean in the dialog. Click OK.

4) In the right-side pane, enter the EJB Class, the business local, and the business remote
interfaces.

e. Add the resource reference elements to the session bean:

Chapter 7. Welcome to administering Data access resources 295



1) Select the session bean in the left pane and click Add.

2) Select Resource Reference. Click OK.

3) In the Add Resource Reference dialog, enter the name, type, authentication and sharing
scope fields. Click OK.

4) Repeat for the second resource reference.

f. Save the editor

2. Edit the ibm-ejb-jar-bnd.xml file

a. Create the WebSphere EJB bindings descriptor if it doesn't already exist

1) Go to the context menu of the Enterprise JavaBeans (EJB) project and select Java EE >
Generate WebSphere Bindings Deployment Descriptor.

b. Edit the bindings descriptor:

1) In the project's META-INF directory, select the ibm-ejb-jar-bnd.xml file.

c. Add a binding element for the session bean to the bindings descriptor:

1) In the left pane, select EJB Jar Bindings node and click Add.

2) In the dialog, select Session and click OK.

3) In the right pane, enter the name of the session bean.

d. Add the bindings for the resource references to the session bean:

1) In the left pane, select the session bean and click Add.

2) In the dialog, select Resource Reference and click OK.

3) In the left pane, select the resource reference.

4) In the right pane, enter the name and binding name for the reference

5) Repeat for the second resource reference.

e. Save the editor

3. Edit the ibm-ejb-jar-ext.xml file.

a. Create the WebSphere EJB extensions descriptor if it doesn't already exist:

1) Go to the context menu of the Enterprise JavaBeans (EJB) project and select Java EE >
Generate WebSphere Extensions Deployment Descriptor.

b. Edit the extensions descriptor:

1) In the project's META-INF directory, select the ibm-ejb-jar-ext.xml file.

c. Add an extensions element for the session bean to the extensions descriptor:

1) In the left pane, select the EJB Jar Extensions node and click Add.

2) In the dialog, select Session and click OK.

3) In the right pane, enter the name of the session bean.

d. Define the isolation level for the resource references:

1) In the left pane, select the session bean and click Add.

2) In the dialog, select Resource Reference and click OK.

3) In the left pane, select the resource reference.

4) In the right pane, enter the name and the isolation level.

5) Repeat for the second resource reference.

e. Save the editor

4. Edit the persistence.xml file.

a. Add JPA support to the EJB project, which will create the persistence.xml file:

1) From the project's context menu, select Properties.

2) In the left pane, select the Project Facets node.

3) In the right pane, check the box beside Java Persistence.

296 Administering WebSphere applications



4) Click OK.

b. Edit the persistence.xml file:

1) In the project's META-INF directory, select the persistence.xml file

c. The created persistence.xml file already contains a persistence unit definition. Edit this
persistence.xml file

1) In the left pane, select the Persistence Unit node. Set the name, JTA data source and
exclude the unlisted classes fields.

d. Create a new persistence unit definition in the file:

1) In the left pane, select the Persistence node and click Add .

2) In the dialog, select Persistence Unit and click OK.

3) In the left pan, select the Persistence Unit node. Set the name, JTA data source and
exclude the unlisted classes fields.

e. Add classes to the persistence unit:

1) In the left pane, select the persistence unit node and click Add .

2) In the dialog, select Class and click OK.

3) In the right pane, enter the name of the class.

4) Repeat for each class.

f. Add properties to the persistence unit

1) If there is not already a Properties element in the file, select the persistence unit node in the
left pane and click Add.

2) In the dialog, select Properties and click OK.

3) In the left pane, select the Properties node and click Add.

4) In the dialog, select Property and click OK.

5) In the right pane, enter the name and value for the property

6) Repeat the previous three steps to add the additional properties.

g. Save the editor

v Configure two resource reference files on the same data source by editing the XML files.

1. Edit the ejb-jar.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar id="ejb-jar_ID" metadata-complete="false" version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd">

<enterprise-beans>
<session>

<ejb-name>NewOrderSessionFacadeBean</ejb-name>
<business-local>newordersession.ejb3.NewOrderSessionFacade</business-local>
<business-remote>newordersession.ejb3.NewOrderSessionFacadeRemote</business-remote>
<ejb-class>newordersession.ejb3.NewOrderSessionFacadeBean</ejb-class>
<session-type>Stateless</session-type>

<resource-ref>
<description></description>
<res-ref-name>jdbc/ERWWDataSourceV5</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>
<resource-ref>
<description></description>
<res-ref-name>jdbc/ERWWDataSourceV5_HP</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

</session>
</enterprise-beans>

</ejb-jar>

2. Edit the ibm-ejb-jar-bnd.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar-bnd xmlns="http://websphere.ibm.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-ejb-jar-bnd_1_0.xsd"
version="1.0">

Chapter 7. Welcome to administering Data access resources 297



<session name="NewOrderSessionFacadeBean" simple-binding-name="ejb/session/NewOrderSessionFacadeBean">
<resource-ref name="jdbc/ERWWDataSourceV5" binding-name="jdbc/ERWWDataSourceV5"></resource-ref>
<resource-ref name="jdbc/ERWWDataSourceV5_HP" binding-name="jdbc/ERWWDataSourceV5"></resource-ref>
</session>
</ejb-jar-bnd>

3. Edit the ibm-ejb-jar-ext.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar-ext xmlns="http://websphere.ibm.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-ejb-jar-ext_1_0.xsd"
version="1.0" metadata-complete="true">
<session name="NewOrderSessionFacadeBean">
<resource-ref name="jdbc/ERWWDataSourceV5"
isolation-level="TRANSACTION_READ_COMMITTED" />
<resource-ref name="jdbc/ERWWDataSourceV5_HP"
isolation-level="TRANSACTION_READ_COMMITTED" />

</session>
</ejb-jar-ext>

4. Edit the persistence.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="1.0" xsi:schemaLocation=
"http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">

<persistence-unit name="NewOrderSessionEJB3">
<jta-data-source>java:comp/env/jdbc/ERWWDataSourceV5</jta-data-source>
<class>warehouseejb3.WarehouseJPA</class>
<class>districtejb3.DistrictJPA</class>
<class>customerejb3.CustomerJPA</class>
<class>stockejb3.StockJPA</class>
<class>orderejb3.OrderJPA</class>
<class>orderlineejb3.OrderlineJPA</class>
<class>neworderejb3.NewOrderJPA</class>
<exclude-unlisted-classes>true</exclude-unlisted-classes>
<properties>

<property name="openjpa.LockManager" value="pessimistic"/>
<property name="openjpa.ReadLockLevel" value="read"/>
<property name="openjpa.WriteLockLevel" value="write"/>
<property name="openjpa.LockTimeout" value="30000"/>

<property name="openjpa.FetchBatchSize" value="1" />
<property name="openjpa.jdbc.TransactionIsolation" value="read-committed" />
<property name="openjpa.Log" value="none"/>
</properties>
</persistence-unit>
<persistence-unit name="ItemEJB3">

<jta-data-source>java:comp/env/jdbc/ERWWDataSourceV5_HP</jta-data-source>
<class>itemejb3.ItemJPA</class>
<exclude-unlisted-classes>true</exclude-unlisted-classes>
<properties>

<property name="openjpa.LockManager" value="pessimistic"/>
<property name="openjpa.ReadLockLevel" value="read"/>
<property name="openjpa.WriteLockLevel" value="write"/>
<property name="openjpa.LockTimeout" value="30000"/>

<property name="openjpa.FetchBatchSize" value="1" />
<property name="openjpa.jdbc.TransactionIsolation" value="read-committed" />
<property name="openjpa.Log" value="none"/>
</properties>
</persistence-unit>

</persistence>

Configuring Oracle Real Application Cluster (RAC) with the application server
Oracle Real Application Cluster (RAC) is a "share-everything" database architecture in which two or more
Oracle RAC nodes are clustered together and share the same storage. The RAC nodes are connected
together with a high-speed interconnect that enables fast communication between the Oracle nodes. The
nodes can exchange various categories of data block ownership information during startup, lock
information, exchange transaction information and data, and so on.

About this task

Using the Oracle JDBC driver, you can configure failover support, load balancing, or both, in an Oracle
Real Application Clusters (RAC) environment. Oracle RAC is an option of an Oracle database that brings
together two or more computers to form a clustered database that behaves as a single system. In a RAC

298 Administering WebSphere applications



database, Oracle processes that are running in separate nodes access the same data from a shared disk
storage. First introduced in Oracle Version 9i, RAC provides both high availability and flexible scalability.

A typical Oracle RAC cluster consists of the following:

v Cluster nodes – 2 to n nodes or hosts, running the Oracle database server.

v Network Interconnect – a private network used for cluster communications and cache fusion. This is
typically used for transferring database blocks between node instances.

v Shared Storage – used to hold the database system and data files. The shared storage is accessed by
the cluster nodes.

v Production network – used by clients and application servers to access the database.

The following figure depicts a typical configuration for Oracle RAC:

High speed
interconnect

WebSphere Application Server

..... ..... ..... .....
RAC node1 RAC node2 RAC node3 RAC node4

Shared cache with Oracle Cache Fusion

SAN
FabricStorage Area

Network

Shared
storage

Production
Network

.....
.....

.....
.....

Users

Here are two of the many features that Oracle RAC provides:

v Oracle Notification Service (ONS) allows for Oracle RAC to communicate the status for the nodes,
which are typically UP and DOWN events, to the Oracle JDBC driver and the driver's connection cache.
To take advantage of ONS, you must configure the application server to use Oracle's connection
caching instead of the application server's connection pooling feature. Read the topic Configuring
Oracle connection caching in the application server for more information on this process.

v Distributed Transaction Processing (DTP) is a feature that was introduced in Oracle 10gR2. When this
feature is enabled, Oracle will ensure that all in-flight prepared transactions that belong to a DTP
service for failed RAC instances are pushed to disk. Then, Oracle will restart the DTP service on any of
the RAC instances that are still operational.

For more information on Oracle RAC and how it works with the application server, refer to Building a high
availability database environment using WebSphere middleware: Part 3: Handling two-phase commit in

Chapter 7. Welcome to administering Data access resources 299



WebSphere Application Server using Oracle RAC on the developerWorks® website.

Procedure
v “Configuring a simple RAC configuration in an application server cluster.”

v “Configuring Oracle connection caching in the application server” on page 301.

v “Configuring two-phase commit distributed transactions with Oracle RAC” on page 303.

Configuring a simple RAC configuration in an application server cluster:

Oracle Real Application Cluster (RAC) is a "share-everything" database architecture that can provide high
availability and load balancing. A typical configuration for an Oracle RAC contains two or more Oracle RAC
nodes that are clustered together and share the same storage.

About this task

This figure depicts a typical RAC physical topology in a cluster environment for the application server, and
both the failover and load balancing are enabled:

Load balance = on
Failover = on

Router

WebSphere Application Server Cluster

cluster-member1 cluster-member1

rac-node1 rac-node2

Interconnect

Shared disk

P. Primary

In the figure above, the application server cluster consists of two members: cluster-member1 and
cluster-member2. The Oracle RAC physical configuration contains two nodes: rac-node1 and rac-node2.
The RAC nodes can be located in the same physical machine with the cluster members, or they could be
placed in entirely different machines. The actual placement does not impact the fundamental qualities of
the services provided by RAC. To achieve both high availability and load-balancing, you can specify the

300 Administering WebSphere applications



Oracle data source URL for both cluster members in the application server with the required properties.

Procedure

1. Navigate to the Oracle data source. Click Resources > JDBC > Data sources >
oracle_data_source. If you don't already have an Oracle data source, create a new data source by
clicking New and completing the wizard. For the URL, substitute the properties in the next step.

2. Set the URL for the Oracle database with the required configuration parameters.
jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=

(ADDRESS=(PROTOCOL=TCP)(HOST=rac-node1)(port=1521))
(ADDRESS=(PROTOCOL=TCP)(HOST=rac-node2)(port=1521)))
(FAILOVER=on)(LOAD_BALANCE=on)
(CONNECT_DATA=(SERVER=DEDICATED)
(SERVICE_NAME=<service_name>)))

Note: Be aware of these configuration options:

v If you are not using Oracle services, then service_name will be the database name in the
example. If you are using Oracle services, then service_name will be the name of the
services.

v The example has FAILOVER and LOAD_BALANCE turned on. To turn one or both of these
features off, change on to off in the above example.

3. Click Apply or OK.

Configuring Oracle connection caching in the application server:

You can elect to configure an Oracle data source to use the Oracle connection caching feature instead of
using the application server connection pooling. Connection caching for Oracle databases is similar to
connection pooling in the application server.

About this task

Currently, Oracle supports connection caching only with data sources that use the
oracle.jdbc.pool.OracleDataSource implementation class, instead of the
oracle.jdbc.pool.OracleConnectionPoolDataSource or oracle.jdbc.xa.client.OracleXADataSource classes.
By default, the Oracle JDBC providers in the application server are configured to use the
oracle.jdbc.pool.OracleConnectionPoolDataSource for non-XA data sources, or
oracle.jdbc.xa.client.OracleXADataSource for XA data sources. To enable Oracle connection caching, you
must configure and use a new JDBC provider in the application server that implements the
oracle.jdbc.pool.OracleDataSource class.

Note: Oracle connection caching does not support XA.

Procedure

1. Create a data source and user-defined JDBC provider.

a. Click Resources > JDBC > Data sources

b. Select a server from the Scope drop-down list.

c. Click New.

d. Enter the name and JNDI name for the data source. Click Next.

e. Create a JDBC provider. Select Create new JDBC provider, and click Next.

f. Define the required properties for the JDBC provider. Use the following configuration settings:

v Database type: User-defined

v Implementation class name: oracle.jdbc.pool.OracleDataSource

Click Next.

Chapter 7. Welcome to administering Data access resources 301



g. Enter the class path for ojdbc6.jar, and click Next.

h. For Data store helper class name, enter
com.ibm.websphere.rsadapter.Oracle11gDataStoreHelper. Click Next.

i. Define the security aliases for this data source, and click Next.

j. Finish the wizard.

k. Save the configuration changes.

2. Configure the data source that you created.

a. Click the name of the data source. The configuration panel displays.

b. Select Custom properties, and create or modify the properties for this data source. Enter or
update the following custom properties:

Name Value

disableWASConnectionPooling true
gotcha: You must also set the maximumPoolSize
attribute to 0 on WebSphere Application Server
connection pool settings to allow Oracle to control the
pool boundaries.

connectionCachingEnabled true

connectionCacheName your_cache_name

removeExistingOracleConnectionPoolIfExists true
Note: The removeExistingOracleConnectionPoolIfExists
property must be set to true so the application server
removes any existing Oracle connection pools with an
identical name. Otherwise, the Oracle data source fails
the getConnection method if the pool name that is
created has a name that is identical to an existing pool.

For example, if you run a test connection, the test
connection process creates an Oracle connection pool
that prevents the application server from working properly
at run time.

URL Oracle_URL

Note: The order in which the custom properties are set is important. The setting order can be an
issue because the application server passes the properties as a collection and the order is
not guaranteed. If you encounter this issue, contact Oracle and reference Oracle bug
#6638862.

3. Click Apply or OK.

4. Save the changes to the application server configuration.

5. Restart the application server.

Results

Oracle does not display a message if the pool creation fails, and a normal connection is returned instead.
You can confirm that the Oracle connection pool is created by using the administrative console test
connection function for the data source. First, turn on trace with the trace string, "RRA=all", for the server
that runs your application. Then, issue a test connection. Issue a second test connection. Both test
connections should work. Examine the trace log.

If the Oracle connection pool was created successfully, the trace shows that the second test connection
detected that the Oracle connection cache exists because of the first test connection, and was successful
in removing it so that it can be created again by the second test.

302 Administering WebSphere applications



Configuring two-phase commit distributed transactions with Oracle RAC:

Real Application Cluster (RAC) configurations for Oracle 10g have an inherent issue with the transaction
manager when Oracle attempts to recover two-phase commit distributed transactions that span over
multiple Oracle RAC nodes. A problem can occur when one node fails, and Oracle opens up the other
surviving nodes for business before the Oracle RAC completes the necessary recovery action for the node
that has failed. The application server's ability to maintain transaction affinity provides you the ability to
circumvent this issue.

About this task

Errors can occur when the recovery process attempts to commit or rollback a transaction branch through a
RAC node that was previously active but later failed. The transaction manager would receive the following
exception:
ORA- 24756: transaction does not exist

If this error is encountered, the Oracle database administrator might need to manually resolve the in-doubt
transaction by forcing a rollback or commit process. If you do not desire a manual intervention, however,
you might want to configure an automatic and transparent strategy for transaction recovery.

If the in-doubt transaction is not resolved, any subsequent transactions will receive the following exception:
ORA-01591 lock held by in-doubt distributed transaction

The result is that portions of the database will not be usable.

The key to a transparent recovery strategy is to eliminate the possibility of a global transaction spanning
more than one transaction branch over multiple RAC nodes. A transaction branch corresponds to a
database connection that is enlisted in a global transaction. If all connections in a global two-phase commit
transaction originate from the same node, transaction recovery problems should not arise. Configure an
Oracle RAC with the application server to prevent errors with two-phase transactions.

The application server maintains transaction affinity for incoming connections, and you can take advantage
of this feature to configure automatic recovery for Oracle RAC with two-phase commit transactions. If you
implement this configuration, all connections from a given application server will be received from the
same Oracle node, and the connections will finish on that same node. This configuration will avoid
situations in which transactions span multiple nodes, and you should not experience a recovery problem if
one or more Oracle nodes go down.

Procedure

v You can elect to manually resolve the in-doubt transaction.

1. Get the orphaned transaction ID. Issue the following command:
sql > select state, local_tran_ID, Global_tran_Id from dba_2pc_pending where state = "prepared"

2. Roll back all of the transaction IDs that are in the prepared phase.
sql > rollback force ’’;

v Configure an automatic strategy for transaction recovery.

1. Create an Oracle service that has only one primary node. Creating the service with one primary
node will ensure that load balancing is disabled. You can also specify one or more alternate nodes
with the -a parameter. Run this command to create the service:
srvctl add service -d <database_name> -s <service_name> -r <primary nodes> -a <alternate_nodes>

2. Enable Distributed Transaction Processing (DTP) on the Oracle service. DTP was first introduced in
Oracle 10gR2. Each DTP service is a singleton service that is available on only one Oracle RAC
instance. Run this command:
execute dbms_service.modify_service (service_name => ’<service_name>’ , dtp => true);

Chapter 7. Welcome to administering Data access resources 303



3. Configure each cluster member in the application server to use the Oracle DTP service.

Results

If you configured an automatic recovery strategy, the DTP service will start automatically on the preferred
instance. However, if the database is restarted, the DTP service will not start automatically. You can start
the DTP service using this command:
srvctl start service -d -s

If a RAC node stops working, Oracle will not failover the DTP service until the Oracle RAC cleanup and
recovery is complete. Even if the Oracle nodes come back up, the Oracle DTP service will not return to
the freshly restarted RAC node. Instead, you will have to manually move the service to the restarted RAC
node.

When you configure DTP on the Oracle service, you have transferred load balancing from the Oracle
JDBC provider to the application server. The workload will be distributed by the application server instead
of Oracle, which is why you created services that do not implement load balancing and only use one
primary node. This configuration prevents situations in which transaction processes span multiple RAC
nodes and alleviates recovery problems that can arise when one or more RAC nodes fail.

Configuring client reroute for applications that use DB2 databases
The client reroute feature enables you to configure your client applications for a DB2 universal database to
recover from a communication loss, and the applications can continue to work with minimal interruption.
Rerouting is central to the support of continuous operations, but rerouting is only possible when there is an
alternate location that is identified to the client connection.

Before you begin

This task assumes the following:

v You have a DB2 data source defined in the application server. See the topic, Configuring a data source
using the administrative console, for information about creating a data source.

v The DB2 data source to which your application connects is running one of the following:

– DB2 for z/OS Version 9.1 or later

– DB2 Database for Linux, UNIX, and Windows Version 9.5 or later

v You have implemented the DB2 database with a redundant setup or the ability to fail the DB2 server to
a standby node.

About this task

Client reroute for DB2 allows you to provide an alternate server location, in case the connection to the
database server fails. If you decide to use client reroute with the persistence option, the alternate server
information persists across Java Virtual Machines (JVMs). In the event of an application server crash, the
alternate server information is not lost when the application server is restored and attempts to connect to
the database.

Without any configuration on the client side, a JDBC driver for DB2 supports the client reroute capability, if
it is enabled, when the driver makes an initial connection to the DB2 server. When the JDBC driver
connects to a DB2 server that has an alternate server configured, the primary server sends information
about the alternate server to the JDBC driver. If the connection to the primary server fails, the JDBC driver
is able to reroute connections to the alternate server. If the client process crashes, however, the alternate
server information is lost, and the client needs to connect to the primary server again. If the client cannot
make an initial connection to the primary server, the client has no knowledge of the alternate server and
cannot reroute.

304 Administering WebSphere applications



To overcome this problem, you can configure a DB2 data source in the application server with the
Alternate server name and Alternate port number fields, or with the clientRerouteAlternateServerName
and clientRerouteAlternatePortNumber data source custom properties, to support client reroute even on
the initial connection attempt. If the JDBC driver is not able to connect to the primary DB2 server, the
information that is necessary for a client reroute is already present, and the JDBC driver can reroute the
connection to an alternate server.

Attention: The data source custom property, enableClientAffinitiesList, changes the semantics of the
clientRerouteAlternateServerName and clientRerouteAlternatePortNumber properties.

To learn more about these properties, see the DB2 information center topic, Common IBM Data Server
Driver for JDBC and SQLJ properties for all supported database products. To learn more about client
affinity, see the topic, .Configuring client affinity for applications that use DB2 databases.

Additionally, if you have configured a DB2 data source as a Type 4 JDBC driver, you can use the Client
reroute server list JNDI name field, or the clientRerouteServerListJNDIName data source custom
property, to enable persistence of the client reroute state. Typically, when a connection is rerouted and the
JDBC driver has connected to the alternate DB2 server, the alternate server sends information about its
own alternate server to the JDBC driver. The JDBC driver will then have the information that is required to
reroute the connection again if the alternate DB2 server is not available. Effectively, the server that was
originally the alternate server is now the primary server, and a new alternate server has been established.
If you enable persistence for client reroute, this new state can be remembered. If the application server
crashes and is restarted, the JDBC driver can connect to the DB2 server that was considered the primary
server at the time of the crash. Without the persistence feature, the JDBC driver would have to start from
the original server configuration and attempt to connect to the server that was originally considered the
primary server.

You can use the automatic client rerouting feature within the following DB2 configurable environments:

v Enterprise Server Edition (ESE) with the data partitioning feature (DPF)

v Data Propagator (DPROPR)-style replication

v High availability cluster multiprocessor (HACMP™)

v High availability disaster recovery (HADR).

Procedure
1. In the administrative console, click Resources > JDBC > Data sources > data_source.

2. Click WebSphere Application Server data source properties.

3. In the DB2 automatic client reroute options section, fill in the fields to enable client rerouting.
Complete the following fields:

Alternate server names
Specifies the list of alternate server name or names for the DB2 server. If more than one
alternate server name is specified, the names must be separated by commas. For example:
host1,host2

Alternate port numbers
Specifies the list of alternate server port or ports for the DB2 server. If more than one alternate
server port is specified, the ports must be separated by commas. For example:
5000,50001

Note: Ensure that an equal number of entries must be specified for both alternate ports and
hosts. Otherwise, a warning is displayed and client reroute is not enabled.

4. Optional: Enable client reroute with the persistence option.

Chapter 7. Welcome to administering Data access resources 305



a. Complete the field for Client reroute server list JNDI name. The field specifies the JNDI name
that is used to bind the DB2 client reroute server list into the JNDI name space. The DB2 database
server uses this name to look up the alternate server name list when the alternate server
information is not already in memory.

Note: Be aware of the following:

v This option is not supported for Type 2 data sources. If you use a DB2 data source that is
configured as a Type 2 JDBC driver, the JDBC driver uses a catalog to persist the client
reroute information. If this property is configured with a Type 2 driver, the application
server will issue a warning.

v Use different JNDI names among different data sources. Otherwise, when you delete a
data source, and the JNDI entry is removed from the name space, the other data sources
that share the JNDI entry will be affected.

5. Configure the retry count and interval for the client reroute function. Complete these two fields:

Retry interval for client reroute
Specifies the amount of time, in seconds, between retries for automatic client reroute.

Maximum retries for client reroute
Specifies the maximum number of connection retries that are attempted by the automatic client
reroute function if the primary connection to the server fails. The property is only used when
Retry interval for client reroute is set.

Attention: If you do not specify a value for these properties, DB2 failover processing (client
rerouting) does not occur.

6. Click OK and save the changes.

7. Restart the application server.

What to do next

If you later want to remove the client reroute information that is bound in JNDI, you can do so by deleting
the data source. You can also use the unbind feature with the test connection service to delete the JNDI
binding for the client reroute function from the application server's JNDI name space without deleting the
data source.

To delete the JNDI binding for client reroute:

1. Select Unbind client reroute list from JNDI.

2. Click OK.

3. Save the configuration.

4. Click Test connection for the data source.

5. Deselect Unbind client reroute list from JNDI.

6. Click OK.

7. Save the configuration.

Configuring client affinities for applications that use DB2 databases
The client affinities feature is an alternative to automatic client reroute when enabling your data source to
use other servers when a connection fails. In this client-only method, the client determines the order that
alternate servers run during failover. For more information about client affinities, see the topic, Client
affinities for DB2 Database for Linux, UNIX, and Windows, in the DB2 information center.

Before you begin

This task assumes that:

306 Administering WebSphere applications



v You have a DB2 data source defined in the application server. See the topic, Configuring a data source
using the administrative console, for information about creating a data source.

v The DB2 data source to which your application connects is running one of the following databases:

– DB2 for z/OS Version 9.1 or later

– DB2 Database for Linux, UNIX, and Windows Version 9.5 or later

v You have implemented the DB2 database with a redundant setup or the ability to fail the DB2 server to
a standby node.

About this task

In WebSphere Application Server, client affinities allows the DB2 data source on the client or application
server to control the order of servers that are tried during initial connection processing.

For WebSphere Application Server, the data source custom property, enableClientAffinitiesList, is used to
enable client affinities. If you want to use the administrative console to configure client affinities, use the
DB2 automatic client reroute options section of the WebSphere Application Server data source properties
panel to configure the following properties: Alternate server names, Alternate port numbers, Retry interval
for client reroute, and Maximum retries for client reroute. You can also use the Custom properties panel to
configure other client affinities properties as needed, including enableSeamlessFailover and
affinityFailbackInterval.

The data source custom property, enableClientAffinitiesList, changes the semantics of the
clientRerouteAlternateServerName and clientRerouteAlternatePortNumber properties.

Attention:

To learn more about these properties, see the DB2 information center topic, Configuration of client
affinities for Java clients for DB2 Database for Linux, UNIX, and Windows connections.

To configure client affinities in the application server, complete the following steps:

Procedure
1. Configure a JDBC provider as usual with the JCC driver for DB2 in the class path.

2. Create a data source that uses the JDBC provider that was created in step 1. The server name and
port information must be the name of the preferred primary server from your DB2 WLB environment.

3. After the data source is created, navigate to its primary panel in the administrative console by clicking
Resources > JDBC > Data sources > data_source.

4. Click WebSphere Application Server data source properties located under Additional Properties.

5. Scroll down to the section DB2 automatic client reroute options.

6. In the DB2 automatic client reroute options section, configure the Alternate server names, Alternate
port numbers, Retry interval for client reroute, and Maximum retries for client reroute.

7. Click OK, and save the changes.

8. Navigate back to the data source primary panel, and click Custom properties located under
Additional Properties.

9. On the Custom properties panel, configure other client affinities properties as needed, including
enableClientAffinitiesList, enableSeamlessFailover and affinityFailbackInterval. Read about the
configuration of client affinities for Java clients for DB2 Database for Linux, UNIX, and Windows
connections, in the DB2 information center, for the recommended values for these properties.

10. Click OK and save the changes.

11. Restart the application server.

Chapter 7. Welcome to administering Data access resources 307



Verifying a data source connection
Many connection problems can be easily fixed by verifying configuration parameters. There are steps that
you must complete to enable a successful connection.

About this task

If your connection is still not successful after completing these steps and reviewing the
applicable information, check the SystemOut.log for warning or exception messages. Then use the
technical support search function to find known problems. See the IBM Suggests section of this topic for a
link to the IBM support and downloads page, which contains the search function.

Procedure
1. Create the authentication data alias. See the topic, Managing Java 2 Connector Architecture

authentication data entries.

2. Create the JDBC provider. See the topic, Configuring JDBC providers using the administrative console.

3. Create a data source. See the topic, Configuring a data source using the administrative console

4. Save the data source.

5. Verify the connectivity if you created an authentication alias. To verify connectivity, restart the server for
which you must verify connectivity.

If you are using scripting or Java Management Extensions (JMX) to create the authentication alias, you
can use the updateAuthDataCfg MBean. You can use this MBean method to refresh the authentication
data in each server where it is needed. When you create a data source and the data source has not
been used, you can use the updateAuthDataCfg MBean method. After a data source is used, its
contents are instantiated in the server memory and generally cannot be changed.

For more information about the updateAuthDataCfg MBean method, see the SecurityAdmin MBean
documentation under Reference > Programming interfaces > Mbean interfaces.

6. Test the connection.

You can test your connection from the data source collection view or the data source details view.
Access either view in the administrative console, and then select a connection from the list. Click Test
Connection on the connection. See the topic, Test the connection service.

Test connection service
WebSphere Application Server provides a test connection service for validating data source configurations.
The testConnection operation instantiates the data source configuration, gets a connection, and then
immediately closes the connection.

If you associate your data sources with WebSphere variables, see the topic, Creating, editing, and deleting
WebSphere variables, to verify that you configure them correctly. A variable cannot be found exception
results from attempted use of a data source that is invoked through an incorrectly defined variable.

Activating the test connection service

There are three ways to activate the test connection service: through the administrative console, the
wsadmin tool, or a Java stand-alone program. Each process invokes the same methods on the same
MBean.

Administrative console

WebSphere Application Server allows you to test a connection from the administrative console by simply
pushing a button: the Data source collection, Data source settings, Version 4 data source collection, and
Version 4 data source settings pages all have Test Connection buttons. After you define and save a data
source, you can click this button to ensure that the parameters in the data source definition are correct. On

308 Administering WebSphere applications



the collection page, you can select several data sources and test them all at once. Note that there are
certain conditions that must be met first. For more information, see the topic, Testing a connection with the
administrative console.

Note: The following exception occurs when you click Test Connection to connect a Sybase data source
from the administrative console.
Test connection failed for data source isagent on server server1 at node
svtaix24Node01 with the following exception: java.lang.Exception:
java.sql.SQLException: JZ006: Caught IOException: java.net.ConnectException: A
remote host refused an attempted connect operation.DSRA0010E: SQL State = JZ006,
Error Code = 0

This exception occurs when the Sybase data source port number is not matched to the port
configured in Sybase server. The default port number is 5000. Check the port number of your
Sybase server in the interfaces file under /<sybase install directory>.

WsAdmin tool

The wsadmin tool provides a scripting interface to a full range of WebSphere Application Server
administration activities. Because the Test Connection functionality is implemented as a method on an
MBean, and wsadmin can invoke MBean methods, wsadmin can be utilized to test connections to data
sources. You have two options for testing a data source connection through wsadmin:

The AdminControl object of wsadmin has a testConnection operation that tests the configuration properties
of a data source object. For information, see the topic, Testing a connection using wsadmin.

You can also test a connection by invoking the MBean operation. Use the example in the topic, Example:
Testing data source connection using wsadmin, as a guide for this technique.

Java stand-alone program

Finally, you can test a connection by executing the testConnection method on the DataSourceCfgHelper
MBean. This method allows you to pass the configuration ID of the configured data source. The Java
program connects to a running Java Management Extensions (JMX) server to access the MBean. In a
base installation of Application Server, you connect to the JMX server running in the application server,
usually on port 8880.

The return value from this invocation is either 0, a positive number, or an exception. 0 indicates that the
operation completed successfully, with no warnings. A positive number indicates that the operation
completed successfully, with the number of warnings. An exception indicates that the test of the connection
failed.

Note: Example: Testing a connection using testConnection(ConfigID).

The following sample code creates a data source instance and an associated connection instance, and
tests them to ensure database connectivity.

This program uses JMX to connect to a running server and invoke the testConnection method on the
DataSourceCfgHelper MBean. The acronym ND in a comment line indicates that the following code applies
to WebSphere Application Server WebSphere Application Server, Network Deployment. The word Base in a
comment line indicates that the following code applies to WebSphere Application Server.
/**
* Description
* Resource adapter test program to make sure that the MBean interfaces work.
* Following interfaces are tested
*
* --- testConnection()

Chapter 7. Welcome to administering Data access resources 309



*
*
* We need following to run
* C:\src>java -Djava.ext.dirs=C:\WebSphere\AppServer\lib;C:\WebSphere\AppServer\java\jre\lib\ext testDSGUI
* must include jre for log.jar and mail.jar, else get class not found exception
*
*
*/

import java.util.Iterator;
import java.util.Locale;
import java.util.Properties;
import java.util.Set;

import javax.management.InstanceNotFoundException;
import javax.management.MBeanException;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.RuntimeMBeanException;
import javax.management.RuntimeOperationsException;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.ws.rsadapter.exceptions.DataStoreAdapterException;

public class testDSGUI {

//Use port 8880 for a Base installation or port 8879 for ND installation
String port = "8880";
// String port = "8879";
String host = "localhost";
final static boolean verbose = true;

// eg a configuration ID for DataSource declared at the node level for Base
private static final String resURI = "cells/cat/nodes/cat:resources.xml#DataSource_1";

// eg a 4.0 DataSource declared at the node level for Base
// private static final String resURI = "cells/cat/nodes/cat:resources.xml#WAS40DataSource_1";

// eg Apache Derby DataSource declared at the server level for Base
//private static final String resURI = "cells/cat/nodes/cat/servers/server1/resources.xml#DataSource_6";

// eg node level DataSource for ND
//private static final String resURI = "cells/catNetwork/nodes/cat:resources.xml#DataSource_1";

// eg server level DataSource for ND
//private static final String resURI = "cells/catNetwork/nodes/cat/servers/server1:resources.xml#DataSource_4";

// eg cell level DataSource for ND
//private static final String resURI = "cells/catNetwork:resources.xml#DataSource_1";

public static void main(String[] args) {
testDSGUI cds = new testDSGUI();
cds.run(args);
}

/**
* This method tests the ResourceMbean.
*
* @param args
* @exception Exception
*/
public void run(String[] args) {

try {

System.out.println("Connecting to the application server.......");

310 Administering WebSphere applications



/*************************************************************************/
/** Initialize the AdminClient */
/*************************************************************************/

Properties adminProps = new Properties();
adminProps.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);
adminProps.setProperty(AdminClient.CONNECTOR_HOST, host);
adminProps.setProperty(AdminClient.CONNECTOR_PORT, port);
AdminClient adminClient = null;
try {

adminClient = AdminClientFactory.createAdminClient(adminProps);
} catch (com.ibm.websphere.management.exception.ConnectorException ce) {

System.out.println("NLS: Cannot make a connection to the application server\n");
ce.printStackTrace();
System.exit(1);

}

/*************************************************************************/
/** Locate the Mbean */
/*************************************************************************/

ObjectName handle = null;
try {

// Send in a locator string
// eg for a Base installation this is enough
ObjectName queryName = new ObjectName("WebSphere:type=DataSourceCfgHelper,*");

// for ND you need to specify which node/process you would like to test from
// eg run in the server

//ND: ObjectName queryName = new OjectName
("WebSphere:cell=catNetwork,node=cat,process=server1,type=DataSourceCfgHelper,*");

// eg run in the node agent
//ND: ObjectName queryName = new ObjectName

("WebSphere:cell=catNetwork,node=cat,process=nodeagent,type=DataSourceCfgHelper,*");
//ND: eg run in the Manager
//ND: ObjectName queryName = new ObjectName

("WebSphere:cell=catNetwork,node=catManager,process=dmgr,type=DataSourceCfgHelper,*");
Set s = adminClient.queryNames(queryName, null);
Iterator iter = s.iterator();
while (iter.hasNext()) {

// use the first MBean that is found
handle = (ObjectName) iter.next();
System.out.println("Found this ->" + handle);
}
if (handle == null) {
System.out.println("NLS: Did not find this MBean>>" + queryName);
System.exit(1);
}
} catch (MalformedObjectNameException mone) {
System.out.println("Check the program variable queryName" + mone);
} catch (com.ibm.websphere.management.exception.ConnectorException ce) {
System.out.println("Cannot connect to the application server" + ce);
}

/*************************************************************************/
/** Build parameters to pass to Mbean */
/*************************************************************************/

String[] signature = { "java.lang.String" };
Object[] params = { resURI };
Object result = null;

if (verbose) {
System.out.println("\nTesting connection to the database using" + handle);
}

try {
/*************************************************************************/
/** Start to test the connection to the database */

Chapter 7. Welcome to administering Data access resources 311



/*************************************************************************/
result = adminClient.invoke(handle, "testConnection", params, signature);
} catch (MBeanException mbe) {
// ****** all user exceptions come in here
if (verbose) {
Exception ex = mbe.getTargetException(); // this is the real exception from the Mbean
System.out.println("\nNLS:Mbean Exception was received contains" + ex);
ex.printStackTrace();
System.exit(1);
}
} catch (InstanceNotFoundException infe) {
System.out.println("Cannot find" + infe);
} catch (RuntimeMBeanException rme) {
Exception ex = rme.getTargetException();
ex.printStackTrace(System.out);
throw ex;
} catch (Exception ex) {
System.out.println("\nUnexpected Exception occurred:" + ex);
ex.printStackTrace();
}

/*************************************************************************/
/** Process the result. The result will be the number of warnings */
/** issued. A result of 0 indicates a successful connection with */
/** no warnings. */
/*************************************************************************/

//A result of 0 indicates a successful connection with no warnings.
System.out.println("Result=" + result);

} catch (RuntimeOperationsException roe) {
Exception ex = roe.getTargetException();
ex.printStackTrace(System.out);
} catch (Exception ex) {
System.out.println("General exception occurred");
ex.printStackTrace(System.out);
}
}

}

Tip: Ensure that you run the test connection service at the same level as an existing data source. For
example, do not run the test connection service at the node level if your data source is configured on
the server level. If the test connection service and the data source configuration do not exist on the
same level, a failure to load exception might result. In this situation, source the db2profile script on
the machine and ensure that the environment contains pointers to the DB2 native libraries. The
db2profile script exists in the root directory of the DB2 user ID.

Testing a connection with the administrative console
After you have defined and saved a data source, you can click the Test Connection button to ensure that
the parameters in the data source definition are correct.

Before you begin

About this task

You can select multiple data sources on the data source collection page and test them as a group. Be
sure that the following conditions are met before using the Test Connection button:

Procedure
v If you are testing a connection using a WebSphere Application Server Version 4.0 type of data source,

ensure that the user and password information is set.

v Designate variables appropriately.

312 Administering WebSphere applications



– WebSphere Application Server automatically sets environment variables for Java database
connectivity (JDBC) driver class paths on the IBM i platform. Application Server names the variable
according to your driver, either ${OS400_NATIVE_JDBC_DRIVER_PATH} or
${OS400_TOOLBOX_JDBC_DRIVER_PATH}. In the administrative console, you designate the
complete path location of your driver as the value of the environment variable. See the “JDBC
provider settings” on page 252 article for more information.

– If you download the latest JTOpen version of the jt400.jar file, use one of two placement strategies to
keep the value of your environment variable accurate. You can place the file in the same directory
that you specify for the ${OS400_TOOLBOX_JDBC_DRIVER_PATH} variable. Alternatively, you can
place the jt400.jar file in a different directory and change the value of
${OS400_TOOLBOX_JDBC_DRIVER_PATH} to this different path.

v Restart the application server after you define or edit WebSphere variables.

v Restart the application server after you create or edit an authentication alias for the data source.

v You can now test a connection to the data source. On the data source collection page in the
administrative console, select the data source and click Test Connection .

A Test Connection operation can have three different outcomes, each resulting in a different message
being displayed in the messages panel of the page on which you press the Test Connection button.
1. The test can complete successfully, meaning that a connection is successfully obtained to the

database using the configured data source parameters. The resulting message states: Test
Connection for data source DataSourceName on process ProcessName at node NodeName was
successful.

2. The test can complete successfully with warnings. This means that while a connection is
successfully obtained to the database, warnings were issued. The resulting message states: Test
Connection for data source DataSourceName on process ProcessName at node NodeName was
successful with warnings. View the JVM Logs for more details.

The View the JVM Logs text is a hyperlink that takes you to the JVM Logs console screen for the
process.

3. The test can fail. A connection to the database with the configured parameters is not obtained. The
resulting message states: Test Connection failed for data source DataSourceName on process
ProcessName at node NodeName with the following exception: ExceptionText. View the JVM Logs
for more details.

Again, the text for View the JVM Logs is a hyperlink to the appropriate logs screen.

Testing a connection using wsadmin
The AdminControl object of the wsadmin scripting tool has a testConnection operation that tests the
configuration properties of a data source object.

Before you begin

About this task

The testConnection operation takes a data source configuration ID as an argument.

Note: This invocation cannot accept user IDs and passwords that must be defined in the database itself.
This invocation can be used only for databases that do not require a user ID and password to make
a connection (such as DB2 on a Windows machine), or for data sources that have a
component-managed or container-managed authentication alias set on the data source object.

Procedure
1. Start the getid() method for your data source.

2. Set the value of the configuration ID to a variable.
set myds [$AdminConfig getid /JDBCProvider:mydriver/DataSource:mydatasrc/]

Chapter 7. Welcome to administering Data access resources 313



where JDBCProvider:mydriver/DataSource:mydatasrc is the data source you want to test. After you
have the configuration ID of the data source, you can test the connection to the database.

3. Test the connection to the database. Use the following command:
$AdminControl testConnection $myds

Configuring connection validation timeout
You can configure a timeout for connection validation by the Java Database Connectivity (JDBC) driver
through a data source custom property in the data source configuration panels.

About this task

You can choose between validating connections with the JDBC driver or by having the application server
run a SQL query. Select one or both of the following connection pretest attributes:

v Validate new connections

v Validate existing pooled connections

By default, connection validation is disabled. When you save the configuration for the data source, the
administrative console supplies only the option that is selected. The administrative console will select
validation by timeout or validation by a query, but if validation is not enabled then the application server
will select neither option.

Procedure
1. Open the administrative console.

2. Go to the WebSphere Application Server Data Source properties panel for the data source.

a. Select Resources > JDBC > Data Sources > data_source

b. Select WebSphere Application Server Data Source properties.

3. Go to the Connection Validation Properties section.

4. Select the type of connections that the application server will validate.

v Select Validate new connections. This option specifies that the connection manager tests newly
created connections to the database.

v Select Validate existing pooled connections. This options specifies that the connection manager
tests the validity of pooled connections before returning them to applications.

v You can also select both options

Note: You must make a selection here. If you do not select one or both of these options, you will
not be able to select Validation by JDBC Driver. The Validation by JDBC Driver timeout
feature is only available for JDBC providers that comply with the JDBC 4.0 specification.

For an Oracle datasource, Validation by JDBC Driver appears on the administrative console
only after the validateNewConnectionTimeout property is added to the custom properties of
WebSphere Application Server datasource properties. The validateNewConnectionTimeout
property is used for JDBC 4.0 driver validation and can be specified using administrative
console.

.

5. Click Validation by JDBC Driver. The application server issues a warning if Validation by JDBC
driver is configured and the JDBC driver does not implement JDBC 4.0, or if the Connection.isValid
method raises an error.

Note: Connection validation by SQL query is deprecated. Use validation by JDBC Driver instead.

6. Enter the timeout value in the input box. The timeout value is in seconds.

314 Administering WebSphere applications



Note: If retries are configured, meaning the retry interval is not set to 0, for Validate new
connections or Validate existing pooled connections, then the full value of the timeout
applies to each retry. For each retry, the application server waits for the retry interval. Then the
JDBC driver uses the full value of the timeout to validate the connection

7. Save the data source configuration.

What to do next

If you are modifying an existing data source, restart your server for this change to go into effect. If this is a
new data source, restarting the server is not necessary.

Resource references
Use this page to designate how the resource references of application modules map to the actual
resources that are configured for the application.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Resource references.

You can also view this page during the Map resource references to resources step when you install an
application.

v If your application uses any of the following resource types, you can set or reset their mapping
configurations:

– Default messaging JMS queues destinations

– Default messaging JMS topic destinations

– Data source

– Generic JMS connection factory

– Mail session

– J2C connection factory

– JMS queue connection factory for the JMS provider of WebSphere MQ

– JMS queue destination for WebSphere MQ

– JMS topic connection factory for WebSphere MQ

– JMS topic destination for WebSphere MQ

– Unified JMS connection factory for WebSphere MQ

– URL configuration

v The page is composed of sections that correspond to each applicable resource type. Each section
heading is the class name for the resource. If your application contains only one applicable resource
type, you see only one section.

v Each section contains a table. Each table row depicts a resource reference within a specific module of
your application.

v The rows contain the JNDI names of resource mapping targets for your references only if you bound
them together during application assembly. You can modify those bindings on this administrative
console page.

v To set your mappings:

1. Select a row. If you want to apply the same mapping to multiple rows, complete the steps in the
section, Set multiple JNDI names.

2. Click Browse to view a new page listing of all resources that are available mapping targets for your
application references.

3. Select a resource and click Apply. The console displays the Resource references page again. The
JNDI name of the selected resource mapping displays in the Target Resource JNDI Name field.

4. Repeat the previous steps as necessary.

Chapter 7. Welcome to administering Data access resources 315



5. If you are editing the resource references of an existing enterprise application, click OK. You now
return to the general configuration page for your enterprise application. If you are installing the
application and have completed the Map resource references to resources step, continue to the
next step.

v For data sources and connection factories: Sections for these resource types contain an additional
set of steps for modifying your security settings. Use the last column in the displayed table to view the
authorization type for each resource configuration per application module. You can modify the
corresponding authentication method only if the authorization type is container. Container-managed
authorization indicates that the product performs signon to the resource rather than the enterprise bean
code. The reconfiguring process differs slightly for each authentication method option:

– When you want to assign no authentication method to a resource:

1. Determine which resource configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Click Modify Resource Authentication Method and select None from the authentication
method options that are displayed above the table.

4. Click Apply.

– When you want to assign the WebSphere Application Server DefaultPrincipalMapping login
configuration to a resource:

1. You must apply this option to each resource individually if you want to designate different
authentication data aliases. See the topic, J2EE connector security, for more information about
the default mapping configuration.

2. Select the appropriate table rows.

3. Click Modify Resource Authentication Method and select Use default method from the list of
authentication method options that are displayed above the table.

4. Select an authentication data entry or alias from the list.

5. Click Apply.

– When you want to assign a trusted context to a resource:

1. You must have a data source that is running at least DB2 Version 9.1 for z/OS, and the data
source must have trusted context enabled.

2. You must have a data source server that is running at least DB2 Version 9.1 for z/OS, and the
data source must have trusted context enabled.

3. Select the appropriate table rows that have trusted context enabled.

4. Click Modify Resource Authentication Method and select Use trusted connections from the
authentication method options that are displayed above the table.

5. Select an authentication alias from the list that matches an alias that is already defined in the
DB2 data source. If you do not have an alias defined that is suitable, you must define a new
alias.

6. Click Apply.

7. To edit the properties of the custom login configuration, click Mapping Properties in the table
cell.

– When you want to assign a custom Java Authentication and Authorization Service (JAAS) login
configuration to a resource:

1. See the topic, J2EE connector security, for more information about custom JAAS login
configurations.

2. Select the appropriate table row.

3. Click Modify Resource Authentication Method and select Use custom login configuration
from the authentication method options that are displayed above the table.

4. Select an application login configuration from the list.

5. Click Apply.

316 Administering WebSphere applications



6. To edit the properties of the custom login configuration, click Mapping Properties in the table
cell.

Set multiple JNDI names
Use this option to set the same JNDI name on multiple resources with one operation.

Click Set multiple JNDI names to display a menu of JNDI names. If you make a selection from this list, it
is applied to the Target Resource JNDI Name field of all the selected rows of the table.

Modify Resource Authentication Method
Use this panel to toggle the display of a panel above the table rows.

This use of this panel is described in the For data sources and connection factories section.

Extended Properties
Use this panel to set additional properties on the selected resource.

Select a single table row and click Extended Properties to set additional properties on the selected
resource. For more details on using this function, see the documentation on extending DB2 data source
definitions at the application level.

Select
Select the check boxes of the rows that you want to edit.

Module
The name of a module in the application.

Bean
The name of an enterprise bean that is contained by the module.

URI
Specifies location of the module relative to the root of the application EAR file.

Resource Reference
The name of a resource reference that is used in the enterprise bean, if applicable, and is declared in the
deployment descriptor of the application module.

Target Resource JNDI name
The Java Naming and Directory Interface (JNDI) name of the resource that is the mapping target of the
resource reference.

Information Value
Data type String

Login configuration
This column applies to data sources and connection factories only and refers to the authorization type and
the authentication method for securing the resource.

Mapping-configuration alias
This panel allows you to select a mapping configuration alias for the resource that you are configuring.
This panel is only available when security domains are defined. Security domains allow you to isolate
mapping configuration aliases between servers. The tree view is useful in determining the security domain
to which an alias belongs, and the tree view can help you determine the servers that will be able to access
each authentication alias. The tree view is tailored for each resource, so domains and aliases are hidden
when you cannot use them. For example, a cell-scoped security domain will be hidden from the tree if all
servers and clusters in the tree have defined their own security domain. If you are looking for an alias that

Chapter 7. Welcome to administering Data access resources 317



is not visible in the tree, it is because the alias cannot be used by any servers that have visibility to this
resource. In this case, you must define the alias at the global scope or in a different security domain that
is visible to this resource.

To view this administrative console panel:

1. You must have a security domain defined in the application server.

2. Click one of the following paths in the administrative console:

v Resources > JDBC > Data sources > data_source. Click Browse... in the security section for
Component-managed authentication alias or Container-managed authentication alias.

v Resources > JDBC > JDBC Providers > jdbc_provider > Data sources > data_source. Click
Browse... in the security section for Component-managed authentication alias or
Container-managed authentication alias.

v Resources > Resource Adapters > J2C connection factories > j2c_connection_factory. Click
Browse... in the security section for Component-managed authentication alias or
Container-managed authentication alias.

Note: Be careful when selecting an alias, because it is possible to select an alias that is only accessible
by a subset of the servers that will use the resource. If you select a global alias, you are
guaranteed that an alias by that name will be accessible to all users of the resource. If the alias has
been overridden in a security domain, however, that alias will be used instead of the global one.
The tree view includes icons to help you select the proper alias:

v The alias is accessible by all servers that can access this resource.

v There is at least one server that cannot access the alias. Check the tree view to see if this is
OK for the application that will be using this resource.

v The alias is defined in multiple places.

Select a J2C authentication alias
Use this page to select a Java 2 Connector (J2C) authentication alias for the resource that you are
configuring. This page is available only when at least one security domain is defined and assigned a
scope that is applicable to the resource that is being edited. Additionally, that security domain must contain
at least one JAAS J2C Authentication alias. Security domains isolate J2C authentication aliases between
servers.

The tree view is useful in determining the security domain to which an alias belongs, and the tree view can
help you determine the servers that are able to access each authentication alias. The tree view is tailored
for each resource, so domains and aliases are hidden when you cannot use them. For example, a
cell-scoped security domain is hidden from the tree if all servers and clusters in the tree have defined their
own security domain. If you are looking for an alias that is not visible in the tree, it is because the alias
cannot be used by any servers that have visibility to this resource. In this case, you must define the alias
at the global scope or in a different security domain that is visible to this resource.

To view this administrative console page:

1. Read the preceding introduction for conditions under which this page is accessible.

2. Click one of the following paths in the administrative console:

v Resources > JDBC > Data sources > data_source. Click Browse... in the security settings
section for the applicable authentication classes.

v Resources > JDBC > JDBC providers > jdbc_provider > Data sources > data_source. Click
Browse... in the security settings section for the applicable authentication classes.

v Resources > Resource Adapters > J2C connection factories > j2c_connection_factory. Click
Browse... in the security settings section for the applicable authentication classes.

318 Administering WebSphere applications



v Resources > Resource Adapters > J2C activation specifications >
j2c_activation_specification. Click Browse... in the security settings section for the applicable
authentication classes.

v Resources > JMS > Connection factories > connection_factory. Click Browse... in the security
settings section for the applicable authentication classes.

v Resources > JMS > JMS providers > jms_provider > [Additional properties] Queue
connection factories > connection_factory. Click Browse... in the security settings section for the
applicable authentication classes.

v Applications > Application Types > WebSphere enterprise applications > application >
[Modules] Manage Modules > module > [Additional Properties] Resource Adapter >
[Additional Properties] J2C connection factories > connection_factory. Click Browse... in the
security settings section for the applicable authentication classes.

v Applications > Application Types > WebSphere enterprise applications > application >
[Modules] Manage Modules > module > [Additional Properties] Resource Adapter >
[Additional Properties] J2C activation specifications > activation_spec. Click Browse... in the
security settings section for the applicable authentication classes.

Note: Be careful when selecting an alias, because it is possible to select an alias that is only accessible
by a subset of the servers that use the resource. If you select a global alias, you are guaranteed
that an alias by that name is accessible to all users of the resource. If the alias has been
overridden in a security domain, however, that alias is used instead of the global one. The tree view
includes icons to help you select the proper alias:

v The alias is accessible by all servers that can access this resource.

v There is at least one server that cannot access the alias. Check the tree view to see if this is
OK for the application that will be using this resource.

v The alias is defined in multiple places.

Considerations for isolated resource providers
There are some design considerations that you should be aware of when working with resource providers
that you have specified to be isolated in their own class loaders.

Be aware of the following issues that you need to address if you isolate a resource provider in it's own
class loader:

v Client container

The client container does not manage the class path of resource providers, so resource providers that
are isolated will not be supported in the client container.

v Multiple resource provider versions per application

If an application refers to resources from multiple versions or implementations of the same resource
provider, then all of the resource providers that are referenced must be isolated.

v References to isolated resource provider classes

If a module directly refers to classes that are loaded by an isolated resource provider, which means the
module has import statements of resource provider classes, the following restrictions are in place:

– The module can only refer to resources from one version or implementation of an isolated resource
provider. This is an inherent class loading restriction, because a module class loader can only refer
to one version of a class.

– The module cannot perform direct JNDI lookup without the use of Java EE resource reference
meta-data. This restriction is required, because without resource reference metadata the application
server has no mechanism to link the class loader of the module to the class loader of the isolated
resource provider.

Chapter 7. Welcome to administering Data access resources 319



The relational resource adapter does not generally allow direct access to resource provider classes, so
these restrictions will typically only affect modules that implement the
com.ibm.websphere.rsadapter.WSCallHelper class. For mail providers, these restrictions will most likely
be in place, because the javax.mail API relies heavily on classes rather than interfaces. Therefore, the
implementation details are necessarily part of the API.

Implicitly set client information
If you track client information in your database, you can choose one of two ways to pass WebSphere
Application Server client data on database connections.

You can choose to explicitly pass the information about connections by calling an IBM proprietary API,
setClientInformation(Properties), on the com.ibm.websphere.rsadapter.WSConnection object within your
application code. The com.ibm.websphere.rsadapter.WSConnection object is located in the
plugins_root/com.ibm.ws.runtime.jar file. In some cases, however, you might want WebSphere
Application Server to handle the passing of client information to database connections. This method of
setting the client information is referred to as implicit. You might choose the implicit method because:

v You want to keep your application free of proprietary APIs, or

v Your application uses container-managed persistence (CMP), in which case you cannot use the
proprietary API to set client information on database connections.

The WebSphere Application Server trace facility provides the capability for setting client information
implicitly. You can designate one of two special trace groups to enable or disable client information
passing: “WAS.clientinfo trace” on page 321 or “WAS.clientinfopluslogging trace” on page 321.

Possible runtime scenarios
v Connection sharing

In the case of connection sharing, WebSphere Application Server sets the client information on the first
acquired connection handle only. If connection sharing is enabled and two or more getConnection
methods are called (resulting in two handles on the same connection), only the first getConnection call
causes the client information to pass to the backend database. This scenario does not apply to the
explicit process of passing client information; in such cases every setClientInformation method is
relayed to the database regardless of connection sharing.

v Implicit/explicit co-existence

When you use both the explicit and implicit procedures for relaying client information, some combination
of the explicitly set data and implicitly set data is combined, but the explicit setting usually takes
precedence. For example, if the application sets the client accounting information to "myAccountingInfo",
the final accountingInfo string that is passed to the backend database looks something like the following
sample code:

000325_WSRdbManagedConnectionImpl@1234_myAccountingInfo:

Where 000325 is the thread ID and WSRdbManagedConnectionImpl@1234 is the WebSphere connection
instance.

v Client information reset

When you configure Application Server to pass client information, it does reset client information when a
connection is returned to the pool, but only if the WAS.clientinfo and WAS.clientinfopluslogging trace
mechanisms are disabled (that is, WAS.clientinfo=all=disabled:WAS.clientinfopluslogging=all=disabled).

In the explicit case, however, the reset operation is done only when the application issues
setClientInformation(null) on the WSConnection connection.

320 Administering WebSphere applications



WAS.clientinfo trace

By default, the implicit mechanism is disabled. You can turn on this mechanism dynamically, without
stopping and starting your application server, or statically by setting the WebSphere Application Server
trace group WAS.clientinfo=all=enabled.

The information implicitly collected and set on the database connection consists of the user
name, user location and application name.

Important: User name and user location can be implicitly collected and set only on the database
connection if you enable Java 2 security.

user name
The name of the user that initiates the application request. This option is collected and passed to
the backend database (when supported). Information here is collected by calling the
WSSecurityHelper.getFirstCaller method.

user location
The name of the location of the user, in the form of cell:node:server. This option is collected and
passed to the backend database (when appropriate). Information here is collected by calling the
WSSecurityHelper.getFirstServer method.

application name
The name of the application running. This value is the output of the getApplication method from
the Java EE Name object. This value is collected regardless of the Global Security setting.

WAS.clientinfopluslogging trace

When debugging database problems, such as deadlocks, there is a set of information that may help with
the debugging effort. This information is typically obtained by enabling a WebSphere Relational Resource
Adapter (RRA) trace, and an Enterprise JavaBeans (EJB) container trace. However, there are some cases
where timing is an issue when reproducing a given problem. Having too much tracing information can alter
the behavior of the application, such as change the timing, and the problem might no longer occur.

Because of this situation, a new trace group is provided where only a minimum set of information is
collected. This trace group is WAS.clientinfopluslogging. This function sets the client information implicitly
on the connection, just like the WAS.clientinfo trace, and, logs and traces important application activities.
Those activities are:

v SQL strings that are run (such as, select userId from tabl1 where id=? for update).

v Start, commit, and rollback of transactions.

v EJB calls (such as, Create, Remove, findByPrimaryKey).

Enabling client information tracing with the administrative console
Use either of the methods outlined in this task to enable the passing and tracing of client information about
a database connection.

About this task

Refer to the Implicitly set client information topic to determine which of the two available levels of client
information passing and tracing is appropriate for your configuration. Once a level is selected, there are
two methods of enabling it:

v Enable either of the WebSphere Application Server trace groups: WAS.clientinfo or
WAS.clientinfopluslogging. Enabling either of these trace groups enables client information passing for
all data sources of the application server. If client information is only required for a specific data source,
consider using the method below.

Chapter 7. Welcome to administering Data access resources 321



v Create a data source custom property to enable client information tracing. This method is functionally
equivalent to enabling WAS.clientinfo as described above, except that it is enabled only on the specified
data source. A data source custom property does not exist to provide the equivalent functionality of the
WAS.clientinfopluslogging trace group. If that level of tracing is required, use that trace group setting
instead.

Procedure
1. Open the administrative console.

2. If you choose to enable client information passing and tracing by using a trace group:

a. Select Troubleshooting.

b. Select Log and Trace.

c. Select the server you want to use.

d. Select Diagnostic Trace.

e. Select Change log detail levels.

f. Select the Configuration or Runtime tab. Changes made to the Configuration are applied after a
server restart. Changes made to the Runtime are applied immediately.

g. In the Trace Specification entry field, type either WAS.clientinfo=all or
WAS.clientinfopluslogging=all. To deactivate either trace, replace =all with =off (without
spacing between characters) or delete the trace string entry.

3. If you choose to enable client information passing by using a data source custom property:

a. Select Resources.

b. Select JDBC > Data sources.

c. Select the datasource on which you want to enable client information tracing.

d. Select Custom Properties under the Additional Properties section.

e. Press New....

f. Enter enableClientInformation in the Name field.

g. Enter true in the Value field.

h. Optional: Enter a description in the Description field, if desired.

i. Select java.lang.Boolean in the Type field.

4. Press OK.

5. Save the changes to the configuration when prompted to do so.

About Apache Derby
The Apache Derby package that is bundled with the application server is backed by full IBM Quality
Assurance (QA).

Note: WebSphere Application Server supports direct customer use of the Apache Derby database in test
environments only. The product does not support direct customer use of Apache Derby database in
production environments.

Unlike versions 5.1.60x and earlier, Apache Derby is a pure Java database server. The Apache Derby
code base, which the open source community calls Derby, is a product of the Apache Software Foundation
(ASF) open source relational database project. Apache Derby includes the Derby base code without any
modification to the underlying source code. You can investigate more incompatibilities about Derby code at
the Apache Derby website.

Note: Earlier versions of Apache Derby cannot conduct two phase-commit transactions over the Network
Server framework, but later versions of the Derby Client JDBC driver provides Apache Derby with
support for XA transactions. Only the Network Server framework provides support for multiple Java
virtual machines (JVMs), such as application servers, to access Apache Derby.

322 Administering WebSphere applications



Apache Derby is equipped with the following .bat/sh tools:
v sysinfo: displays database version information
v ij: manipulates the database instances

transition: Use ij as an alternative for the Cloudscape cview tool, which does not exist in Derby.
When you run the ij tool, surround the dbname by double quotation marks (“”) if it includes the full path
name; for example:
ij> connect ’“c:\temp;create=true”’

This is '“” ' without spaces.
v dblook: dumps DDL information
v networkServerControl: controls the networkServer process (can be used for functions such as ping and

trace)
v startNetworkServer: starts the networkServer process
v stopNetworkServer: stops the networkServer process

Attention: If you use non-English characters in your Derby database name, you need to update the ij
script to specify the file encoding property to the JVM: -Dfile.encoding=XXXXXX, where
XXXXXX is the encoding used to create the non-English characters.

Managing resources through JCA lifecycle management operations
You can manage the run-time status of your data source and connection factory resources to perform
some data access administrative tasks without restarting the application server. This topic outlines the
process for managing those resources through the administrative console.

Before you begin

When you manage the run-time status of connection factories or data sources, you are applying Java
Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) lifecycle management operations to
the MBeans that are associated with these resources. The management operations are PAUSE and
RESUME. Pausing an MBean halts outbound communication to the backend, such as a database. This
action affects all applications that use the corresponding connection factory or data source on the same
server.

About this task

With these management operations, you can perform some administrative tasks dynamically, without
restarting your application server:

v Respond to a security threat, and prevent new connection requests from reaching the backend

v Perform maintenance on the backend

v Apply configuration changes to non-required properties of the connection factory or data source, such
as turning JDBC trace on or off, or modifying preferences for collecting client information

Procedure
1. Navigate to the administrative console page that corresponds to the resource type that you want to

manage.

v For connection factories, use either of the following paths:

– Resources > Resource Adapters > J2C connection factories

– Resources > Resource Adapters > Resource Adapters > resource_adapter > J2C
connection factories

v For data sources, use either of the following paths:

– Resources > JDBC > Data sources

– Resources > JDBC > JDBC providers > JDBC_provider > Data sources

Chapter 7. Welcome to administering Data access resources 323



2. Select the connection factory or data source configurations that you want to manage, and click
Manage state. The administrative console now displays the JCA lifecycle management page, which
contains a table that depicts the full scope configuration of your previous selection.

The table is comprised of three columns:

v JNDI name: The Java Naming and Directory Interface (JNDI) name of the connection factory or
data source configuration.

v Running object scope: The server that is running the connection factory or data source MBean.

v Status: The status of the connection factory or data source MBean.

3. Select the rows that represent each invocation of the resource, per running server, that you want to
manage. Be aware that when you click your management operation, WebSphere Application Server
applies it to every resource object in your selection.

Restriction: If the MBean status of a row has a value of NOT_ACCESSED, you cannot apply JCA
lifecycle management operations to that MBean. The NOT_ACCESSED state indicates
that the MBean exists on the specified server, but no applications performed a JNDI
namespace lookup on the corresponding connection factory or data source.

4. Click Pause or Resume. The status column of the table changes to reflect the new state of the
MBean.

JCA life cycle management
Use this page to perform JCA life cycle management operations on data source and connection factory
MBeans. With these management operations, you can control the runtime status of the corresponding data
source and connection factory resources.

You can view this administrative console page in different locations, depending on whether you want to
manage data sources or J2C connection factories. For example:

v For connection factories: Click Resources > Resource adapters > J2C connection factories. Select
the connection factory configurations that you want to manage, and click Manage state.

v For data sources, click Resources > JDBC > Data sources. Select the data source configurations that
you want to manage, and click Manage state.

Guidelines for using this administrative console page:

v The table displays a list of MBeans that correspond to the data sources or connection factories in your
selection from the previous console page. These MBeans are compatible with Version 6.0.2 and later of
the application server.

v You can only perform JCA life cycle management actions on MBeans that are in the active state. In this
context, an MBean is considered active when an application performs a Java Naming and Directory
Interface (JNDI) name space lookup on the corresponding data source or connection factory resource.

v Pausing an MBean halts outbound communication to the backend, such as a database. This action
affects all applications that use the resource on the selected server.

Pause:

Specifies to pause the MBean that is selected. Pausing an MBean halts outbound communication to the
back-end resource, and this action affects all applications that use the resource on the selected server.

Resume:

Specifies to resume the MBean that is selected. Resuming an MBean enables outbound communication to
the back-end resource. This action affects all applications that use the resource on the selected server.

Purge:

324 Administering WebSphere applications



Specifies to purge the contents of the connection pool for the data source or connection factory that is
specified. Purging the pool does not affect ongoing transactions.

Name (JNDI name):

Specifies the name of the connection factory or data source configuration, followed by the Java Naming
and Directory Interface (JNDI) name in parenthesis.

Running object scope:

Specifies the server that is running the connection factory or data source MBean.

Status:

Specifies the state of the connection factory or data source MBean.

Possible values:

State Indications
ACTIVE v The resource that corresponds with the MBean is ready

to provide an application with connections to a
backend.

v An application performed a JNDI namespace lookup on
this resource.

You can apply the JCA life cycle management operation of
PAUSE to an MBean in this state.

PAUSED v All outbound communication to the backend through the
corresponding resource is stopped, as a result of a JCA
life cycle management operation that was applied
previously to the MBean.

v An application performed a JNDI namespace lookup on
the resource.

You can apply the JCA life cycle management operation of
RESUME to an MBean in this state.

NOT_ACCESSED v The MBean exists on the specified server, but no
applications performed a JNDI name space lookup on
the corresponding connection factory or data source.

You cannot apply JCA life cycle management operations
to an MBean in this state.

Chapter 7. Welcome to administering Data access resources 325



326 Administering WebSphere applications



Chapter 8. Administering Dynamic caching

This page provides a starting point for finding information about the dynamic cache service, which
improves performance by caching the output of servlets, commands, web services, and JavaServer Pages
(JSP) files.

Dynamic caching features include replication of cache entries, cache disk offload, Edge-Side Include
caching, web services, and external caching. Use external caching to control caches outside of the
application server.

Administering the dynamic cache service

Using the dynamic cache service
Use the dynamic cache service to improve application performance by caching the output of servlets, web
services, and WebSphere Application Server commands into memory.

Before you begin

Develop a cache policy for your application. The cache policy defines rules for what responses to cache
and the amount of time the responses should be held in the cache. Refer to the Configuring cacheable
objects with the cachespec.xml file article for more information.

About this task

The dynamic cache service is enabled by default. You can configure the default cache instance, as
follows:

Procedure
1. Click Servers > Server Types > WebSphere® application servers > server_name > Container

services > Dynamic cache service.

2. Configure the default cache instance or follow the links to enable servlet or portlet caching. Refer to
the Dynamic cache service settings article for more information about default cache settings.

Example

This example puts all of the steps together for configuring the dynamic cache service with the
cachespec.xml file, showing the use of the cache ID generation rules, dependency IDs, and invalidation
rules.

Suppose that a servlet manages a simple news site. This servlet uses the query parameter "action" to
determine if the request views (query parameter "view") news or updates (query parameter "update") news
(used by the administrator). Another query parameter "category" selects the news category. Suppose that
this site supports an optional customized layout that is stored in the user's session using the attribute
name "layout". Here are example URL requests to this servlet:

v http://yourhost/yourwebapp/newscontroller?action=view&category=sports (Returns a news page for the
sports category )

v http://yourhost/yourwebapp/newscontroller?action=view&category=money (Returns a news page for the
money category)

v http://yourhost/yourwebapp/newscontroller?action=update&category=fashion (Allows the administrator to
update news in the fashion category)

The following steps illustrate how to configure the dynamic cache service for this example with the
cachespec.xml file:

© Copyright IBM Corp. 2012 327



1. Define the <cache-entry> elements that are necessary to identify the servlet. In this case, the URI for
the servlet is "newscontroller", so this is the cache-entry <name> element. Because this example
caches a servlet or JavaServer Pages (JSP) file, the cache entry class is "servlet".
<cache-entry>
<name> /newscontroller </name>
<class>servlet </class>
</cache-entry>

2. Define cache ID generation rules. This servlet caches only when action=view, so one component of the
cache ID is the parameter "action" when the value equals "view". The news category is also an
essential part of the cache ID. The optional session attribute for the user's layout is included in the
cache ID. The cache entry is now:
<cache-entry>
<name> /newscontroller </name>
<class>servlet </class>
<cache-id>
<component id="action" type="parameter">
<value>view</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>
</component>
<component id="layout" type="session">
<required>false</required>
</component>
</cache-id>
</cache-entry>

3. Define dependency ID rules. For this servlet, a dependency ID is added for the category. Later, when
the category is invalidated due to an update event, all views of that news category are invalidated.
Following is an example of the cache entry after adding the dependency ID:
<cache-entry>
<name>newscontroller </name>
<class>servlet </class>
<cache-id>
<component id="action" type="parameter">
<value>view</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>
</component>
<component id="layout" type="session">
<required>false</required>
</component>
</cache-id>
<dependency-id>category
<component id="category" type="parameter">
<required>true</required>
</component>
</dependency-id>
</cache-entry>

4. Define invalidation rules. Because a category dependency ID is already defined, define an invalidation
rule to invalidate the category when action=update. To incorporate the conditional logic, add
"ignore-value" components into the invalidation rule. These components do not add to the output of the
invalidation ID, but only determine whether or not the invalidation ID creates and runs. The final
cache-entry now looks like the following:
<cache-entry>
<name>newscontroller </name>
<class>servlet </class>
<cache-id>
<component id="action" type="parameter">
<value>view</value>
<required>true</required>

328 Administering WebSphere applications



</component>
<component id="category" type="parameter">
<required>true</required>
</component>
<component id="layout" type="session">
<required>false</required>
</component>
</cache-id>
<dependency-id>category
<component id="category" type="parameter">
<required>true</required>
</component>
</dependency-id>
<invalidation>category
<component id="action" type="parameter" ignore-value="true">
<value>update</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>

</component>
</invalidation>
</cache-entry>

What to do next

You might want to enable dynamic cache disk offload. This option moves cache entries that are expired
from memory to disk for potential future access. Refer to the Configuring dynamic cache disk offload for
more information about enabling disk offload.

Dynamic cache service settings
Use this page to configure and manage the dynamic cache service settings.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Container services > Dynamic cache service.

Enable service at server startup:

The dynamic servlet cache service starts when the server starts.

Attention: This option displays on WebSphere Application Server V6.1 servers but is not available on
WebSphere Application Server V7.0 servers.

Enable servlet caching:

The dynamic servlet cache service starts when servlet caching is enabled in Web Container panel.

Enable portlet caching:

Start the dynamic portlet cache service by enabling servlet caching, then, enabling portlet fragment
caching under Portlet Container panel.

Cache provider:

Specifies whether to configure the server to use the default dynamic cache provider or an alternate cache
provider. If an alternate cache provider is available, it appears in the list of available cache providers.

gotcha: If WebSphere eXtreme Scale is available as an alternate cache provider, see the topics
“Introduction: Dynamic cache,” and “Configuring dynamic cache (DynaCache) to use the

Chapter 8. Welcome to administering Dynamic caching 329



WebSphere eXtreme Scale dynamic cache provider” for more information about setting up and
using WebSphere eXtreme Scale with WebSphere Application Server.

Cache size:

Specifies a positive integer as the value for the maximum number of entries that the cache holds.

Enter a cache size value in this field that is between the range of 100 through 200,000.

Default priority:

Specifies the default priority for cache entries, determining how long an entry stays in a full cache.

Information Value
Default 1
Range 1 to 255

Limit memory cache size:

Specifies the size of the memory cache.

Use this feature to constrain the cache in terms of the JVM heap. In addition to specifying the cache size
in MB, dynamic cache also enables you to set a high watermark and low watermark for the cache heap
that is consumed. When the cache heap memory reaches the high watermark, dynamic cache either
discards or is evicted from the disk using the least recently used (LRU) algorithm, until the cache is
brought down to the low watermark. This functionality of limiting the cache in terms of the JVM heap is
only available if the objects that are put into the cache implement the sizeable interface. This interface has
one method that returns the size of the object in bytes put into the cache. Dynamic cache uses the
sizeable interface to estimate the heap size of the cache.

Information Value
Default -1 to disable limiting the memory cache size
Range 1 to maximum integer

Memory cache size:

Specifies a value for the maximum memory cache size in megabytes (MB).

High threshold:

Specifies a high watermark when the memory cache eviction policy starts. The threshold is expressed in
terms of the percentage of the memory cache size in megabytes (MB). The default value is 95%

Information Value
Values 1 to 100

Low threshold:

Specifies a low watermark when the memory cache eviction policy ends. The threshold is expressed in
terms of the percentage of the memory cache size in megabytes (MB). The default value is 80%.

Information Value
Values 1 to 100

330 Administering WebSphere applications



Enable disk offload:

Specifies whether disk offload is enabled.

By default, the dynamic cache maintains the number of entries that are configured in memory. If new
entries are created while the cache is full, the priorities that are configured for each cache entry, and a
least recently used algorithm, are used to remove entries from the cache. In addition to having a cache
entry removed from memory when the cache is full, you can enable disk offload to have a cache entry
copied to the file system (the location is configurable). Later, if that cache entry is needed, it is moved
back to memory from the file system.

Before you enable disk offload, consider the following:

v You cannot specify the number of cache entries that are offloaded to disk.

v You cannot specify the amount of disk space to use.

Offload location:

Specifies the location on the disk to save cache entries when disk offload is enabled.

If disk offload location is not specified, the default location, ${WAS_TEMP_DIR}/node/server
name/_dynacache/cache JNDI name is used. If disk offload location is specified, the node, server name,
and cache instance name are appended. For example, ${USER_INSTALL_ROOT}/diskoffload generates the
location as ${USER_INSTALL_ROOT}/diskoffload/node/server name/cache JNDI name. This value is ignored
if disk offload is not enabled.

The default value of the ${WAS_TEMP_DIR} property is ${USER_INSTALL_ROOT}/temp. If you change the
value of the ${WAS_TEMP_DIR} property after starting WebSphere Application Server, but do not move
the disk cache contents to the new location:

v The application server creates a disk cache file at the new disk offload location.

v If the Flush to disk setting is enabled, all of the disk cache content at the old location is lost when you
restart the application server

When you are specifying a directory, consider the following:

v If you use the default directory and the disk fills up, WebSphere Application Server could possibly stall if
it must write messages to log files, and there is no more space.

v Depending on the operating system, you might see disk full messages on the console.

Flush to disk:

Specifies if in-memory cached objects are saved to disk when the server is stopped. This value is ignored
if Enable disk offload is not selected.

Information Value
Default false

Limit disk cache size in GB:

Specifies a value for the maximum disk cache size in GB. When you select this option, you can specify a
positive integer value. Leaving this option blank indicates an unlimited size. This setting applies only if
enable disk offload is specified for the cache.

Information Value
Value 3 and above.

Chapter 8. Welcome to administering Dynamic caching 331



Limit disk cache size in entries:

Specifies a value for the maximum disk cache size in number of entries. When you select this option, you
can specify a positive integer value. Leaving this option blank indicates an unlimited size. This setting
applies only if enable disk offload is specified for the cache.

Information Value
Value 0 to MAXINT. A value of 0 indicates unlimited size.

Limit disk cache entry size:

Specifies a value for the maximum size of an individual cache entry in MB. Any cache entry larger than
this value, when evicted from memory, is not offloaded to disk. When you select this option, you can
specify a positive integer value. Leaving this option blank indicates an unlimited size. This setting applies
only if enable disk offload is specified for the cache.

Information Value
Value 0 to MAXINT. A value of 0 indicates unlimited size.

Disk cache performance settings:

Specifies the level of performance that is required by the disk cache. This setting applies only if
enableDiskOffload is specified for the cache. Performance levels determine how memory resources
should be used on background activity such as cache cleanup, expiration, garbage collection, and so on.
This setting applies only if enable disk offload is specified for the cache.

Information Value
High performance and high memory usage Indicates that all metadata is kept in memory.
Balanced performance and balanced memory usage Indicates some metadata is kept in memory. This is the

default performance setting and provides an optimal
balance of performance and memory usage for most
users.

Low performance and low memory usage Indicates that limited metadata is kept in memory.
Custom performance Indicates that the administrator explicitly configures the

memory settings that are used to support the above
background activity. The administrator sets these values
using the DiskCacheCustomPerformanceSettings
object.

Disk cache cleanup frequency:

Specifies a value for the disk cache cleanup frequency, in minutes. If this value is set to 0, the cleanup
runs only at midnight. This setting applies only when the Disk Offload Performance Level is low, balanced,
or custom. The high performance level does not require disk cleanup, and this value is ignored.

Information Value
Value 0 to 1440

Maximum buffer for cache identifiers per metaentry:

Specifies a value for the maximum number of cache identifiers that are stored for an individual
dependency ID or template in the disk cache metadata in memory. If this limit is exceeded the information
is offloaded to the disk. This setting applies only when the disk offload performance level is CUSTOM.

332 Administering WebSphere applications



Information Value
Value 100 to MAXINT

Maximum buffer for dependency identifiers:

Specifies a value for the maximum number of dependency identifier buckets in the disk cache metadata in
memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the
disk cache performance level is custom.

Information Value
Value 100 to MAXINT

Maximum buffer for templates:

Specifies a value for the maximum number of template buckets that are in the disk cache metadata in
memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the
disk cache performance level is custom.

Information Value
Value 10 to MAXINT

Disk cache eviction algorithm:

Specifies the eviction algorithm that the disk cache uses to evict entries when the high threshold is
reached. This setting applies only if enable disk offload is specified for the cache. This setting does not
apply when the disk cache eviction policy is set to none.

Information Value
None No eviction policy, so the disk cache can grow until it

reaches its limit at which time the dynamic cache service
stops writing to disk

Random When the disk size reaches a high threshold limit, the disk
cache garbage collector wakes up and randomly picks
entries on the disk and evicts them until the size reaches
a low threshold limit.

Size When the disk size reaches a high threshold limit, the disk
cache garbage collector wakes up and picks the largest
entries on the disk and evicts them until the disk size
reaches a low threshold limit.

High threshold:

Specifies when the eviction policy runs. The threshold is expressed in terms of the percentage of the disk
cache size in GB or entries. The lower value is used when limit disk cache size in GB and limit disk cache
size in entries are specified. This setting does not apply when the disk cache eviction policy is set to none.

Information Value
Values 1 to 100

Low threshold:

Specifies when the eviction policy ends. The threshold is expressed in terms of the percentage of the disk
cache size in GB or entries. The lower value is used limit disk cache size in GB and limit disk cache size
in entries are specified. This setting does not apply when the disk cache eviction policy is set to none.

Chapter 8. Welcome to administering Dynamic caching 333



Information Value
Values 1 to 100

Configuring dynamic cache (DynaCache) to use the WebSphere eXtreme Scale
dynamic cache provider
The dynamic cache engine is the default cache provider for the dynamic cache APIs and framework.
However, dynamic cache allows WebSphere eXtreme Scale to act as its core caching engine. You can
configure dynamic cache to use WebSphere eXtreme Scale as your cache provider instead of the default
dynamic cache engine. Configuring dynamic cache to use WebSphere eXtreme Scale lets you leverage
transactional support, improved scalability, high availability, and other WebSphere eXtreme Scale features
without changing your existing dynamic cache caching code.

Before you begin
v Read the Introduction: Dynamic cache topic for an overview of WebSphere eXtreme Scale functionality.

v Determine whether using WebSphere eXtreme Scale is beneficial to the applications running in your
application servers.

The WebSphere eXtreme Scale features significantly increase the distributed capabilities of the dynamic
cache function beyond what is offered by the default dynamic cache engine and data replication service.
With WebSphere eXtreme Scale, you can create caches that are truly distributed between multiple
servers, rather than just replicate and synchronize caches between the servers. WebSphere eXtreme
Scale caches are transactional and highly available, ensuring that each server sees the same dynamic
cache content. WebSphere eXtreme Scale also offers a higher quality of service for cache replication
than what is provided through the data replication service (DRS).

However, these advantages do not mean that the eXtreme Scale dynamic cache provider is the right
choice for every application. Use the decision trees and feature comparison matrix provided in the See
the topic Configuring the dynamic cache provider for WebSphere eXtreme Scale in the WebSphere
eXtreme Scale Version 7.0 Information Center for a overview of this cache provider.

If you decide that is beneficial for your applications, use the information provided in the “Configuring the
dynamic cache provider for WebSphere eXtreme Scale” section of the WebSphere eXtreme Scale Version
7.0 Product Overview to determine the appropriate WebSphere eXtreme Scale topology for your caching
deployment.

If you use WebSphere eXtreme Scale, instead of the default dynamic cache engine, dynamic cache has
the following limitations:

v No disk cache support. The following custom properties do not work:

– com.ibm.ws.cache.CacheConfig.enableDiskOffload

– com.ibm.ws.cache.CacheConfig.diskOffloadLocation

– com.ibm.ws.cache.CacheConfig.flushToDiskOnStop

– com.ibm.ws.cache.CacheConfig.htodCleanupFrequency

– com.ibm.ws.cache.CacheConfig.htodDelayOffload

– com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit

– com.ibm.ws.cache.CacheConfig.htodDelayOffloadDepIdBuckets

– com.ibm.ws.cache.CacheConfig.htodDelayOffloadTemplateBuckets

– com.ibm.ws.cache.CacheConfig.diskCachePerformanceLevel

– com.ibm.ws.cache.CacheConfig.diskCacheEvictionPolicy

– com.ibm.ws.cache.CacheConfig.diskCacheHighThreshold

– com.ibm.ws.cache.CacheConfig.diskCacheLowThreshold

– com.ibm.ws.cache.CacheConfig.diskCacheSize

– com.ibm.ws.cache.CacheConfig.diskCacheSizeInGB

334 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp?topic=/com.ibm.websphere.extremescale.admin.doc/txsdyncache.html


– com.ibm.ws.cache.CacheConfig.diskCacheEntrySizeInMB

– com.ibm.ws.cache.CacheConfig.explicitBufferLimitOnStop

– com.ibm.ws.cache.CacheConfig.lruToDiskTriggerTime

– com.ibm.ws.cache.CacheConfig.lruToDiskTriggerPercent

gotcha: The disk offload function should be disabled prior to configuring extremeScale. To disable the
disk offload function:

1. In the administrative console, click Servers > Server Types > WebSphere application
servers > server_name > Container Services > Dynamic cache service.

2. Locate the Enable disk offload property and unselect this property if it is selected.

If you forget to disable disk offload prior to configuring extremeScale as the cache provider,
use the following wsadmin commands to disable the disk offload function:

1. Issue the following command to find the config object for the server.
wsadmin>$AdminConfig list DynamicCache
(cells/optimusprimeCell01/nodes/optimusprimeNode01/servers/server1|serve
r.xml#dynamic_cache_name)

2. Issue the following AdminConfig modify command to set diskoffload to false:
wsadmin>$AdminConfig modify
(cells/optimusprimeCell01/nodes/optimusprimeNode01/servers/server1|serve
r.xml#dynamic_cache_name) {{enableDiskOffload false}}

3. Issue the following command to save this configuration change:
wsadmin>$AdminConfig save

v No DRS replication (push or push-pull support). The following custom properties will not work:

– com.ibm.ws.cache.CacheConfig.enableReplicationAcks

– com.ibm.ws.cache.CacheConfig.enableCacheReplication

– com.ibm.ws.cache.CacheConfig.replicationDomain

– com.ibm.ws.cache.CacheConfig.cacheEntryWindow

– com.ibm.ws.cache.CacheConfig.cachePercentageWindow

– com.ibm.ws.cache.CacheConfig.cacheInvalidateEntryWindow

– com.ibm.ws.cache.CacheConfig.cacheInvalidatePercentWindow

– com.ibm.ws.cache.CacheConfig.filterTimeOutInvalidation

– com.ibm.ws.cache.CacheConfig.filterLRUInvalidation

v The alias API feature is not supported for Object cache.

v Event listener is supported. When firing any event, WebSphere eXtreme Scale always sets the
sourceOfInvalidation to REMOTE.

v Disable dependency ID, com.ibm.ws.cache.CacheConfig.disableDependencyId, and templates,
com.ibm.ws.cache.CacheConfig.disableTemplatesSupport, are not supported.

v No PMI support.

v The following CacheStatistic counters are supported:

– CacheHits

– CacheLruRemoves

– CacheMisses

– CacheRemoves

– ExplictInvalidationsFromMemory

– MemoryCacheEntries

– TimeoutInvalidationsFromMemory

Chapter 8. Welcome to administering Dynamic caching 335



v NioMap - skipMemoryAndWriteToDisk will not work because the disk cache is not supported. In
addition, the DistributedNioMapObject.release() is not called to release byteBuffer to the NIO buffer
management.

Complete the following actions to enable the WebSphere eXtreme Scale dynamic cache provider.

Procedure
1. Install the WebSphere eXtreme Scale client, or the WebSphere eXtreme Scale client and server

packages in your application server for the remote server and the other topologies respectively.

2. Designate the WebSphere eXtreme Scale dynamic cache provider as your cache provider.

Each cache instance can be individually configured to use WebSphere eXtreme Scale. The dynamic
cache engine is the default cache provider for a cache instance. Cache instances configured with
WebSphere eXtreme Scale can coexist with cache instances configured with DRS.

Complete one of the following actions to designate the WebSphere eXtreme Scale dynamic cache
provider as your cache provider:

a. Use the administrative console to designate the WebSphere eXtreme Scale dynamic cache
provider as your cache provider.

1) In the administrative console, click Servers > Server Types > WebSphere application
servers > server_name.

2) Under Container Services, click Dynamic cache service server_name, and then, in the
Cache provider field, select WebSphere eXtreme Scale dynamic cache provider .

3) Click OK.

b. Add the cacheProviderName property to the cacheinstances.properties file that is bundled in an
enterprise application, and set the property to
com.ibm.ws.objectgrid.dynacache.CacheProviderImpl.

For example, for cache.instance.26, you would add the following line to the
cacheinstances.properties file:
cache.instance.26.cacheProviderName = com.ibm.ws.objectgrid.dynacache.CacheProviderImpl

c. Add the following Factory APIs to the code for an enterprise application:
Properties p = new Properties();

==>p.put(CacheConfig.CACHE_PROVIDER_NAME, CacheConfig.CACHE_PROVIDER_OBJECT_GRID);
DistributedMap map1 = DistributedMapFactory.getMap("myMap", p);
DistributedMap map2 = DistributedObjectCacheFactory.getMap("myMap2", p);

3. Configure the replication setting for the cache instance.

With the WebSphere eXtreme Scale dynamic cache provider you can have local cache instances,
and replicated cache instances.

If you are only going to use local cache instances, go to the last step, and save your configuration
changes. In a local cache the WebSphere eXtreme Scale container is co-located with the JVM; that
is, the WebSphere eXtreme Scale container and WebSphere Application Server share the same JVM
heap.

If you are going to use replicated caches, complete one of the following actions, depending on how
you have created the cache instance:

a. On the Java virtual machine > Custom properties page in the administrative console, click
New again. Enter com.ibm.ws.cache.CacheConfig.enableCacheReplication in the Name field, and
true in the Value field, and then click OK.

b. Add the enableCacheReplication property to the cacheinstances.properties file that is bundled in
an enterprise application, and set the property to true. .

For example, for cache.instance.26, you would add the following line to the
cacheinstances.properties file:
cache.instance.26.enableCacheReplication = true

c. Add the following Factory APIs to the code for an enterprise application:

336 Administering WebSphere applications



Properties p = new Properties();
p.put(CacheConfig.CACHE_PROVIDER_NAME, CacheConfig.CACHE_PROVIDER_OBJECT_GRID);
==>p.put(CacheConfig.ENABLE_CACHE_REPLICATION, "true");
DistributedMap map1 = DistributedMapFactory.getMap("myMap", p);
DistributedMap map2 = DistributedObjectCacheFactory.getMap("myMap2", p);

4. Configure the WebSphere eXtreme Scale replication topology.

The only required configuration parameter for the WebSphere eXtreme Scale dynamic cache provider
is the cache topology parameter.

a. On the Java virtual machine > Custom properties page in the administrative console, click
New again. Enter com.ibm.websphere.xs.dynacache.topology in the Name field, and one of the
following values in the Value field:

embedded

embedded_partitioned

remote

gotcha: If you specify embedded_partitioned, you must also add the
com.ibm.websphere.xs.dynacache.num_initial_containers custom property to your JVM
settings, and set this property to an integer that is equal to or slightly less than the total
number of server instances that are accessing this distributed cache instance.

b. Add the com.ibm.websphere.xs.dynacache.topology property to the cacheinstances.properties file
that is bundled in an enterprise application, and set the property to true. .

For example, for cache.instance.26, you would add the following line to the
cacheinstances.properties file:
cache.instance.26.enableCacheReplication = embedded

gotcha: If you specify embedded_partitioned, you must also add the
com.ibm.websphere.xs.dynacache.num_initial_containers property to the
cacheinstances.propertiesfile, and set this property to an integer that is equal to or
slightly less than the total number of server instances that are accessing this distributed
cache instance.

For example, if a dynamic cache service is shared between grid members, then the variable
should be set to the number of grid members.

c. Add the following Factory APIs to the code for an enterprise application:
Properties p = new Properties();

p.put(CacheConfig.CACHE_PROVIDER_NAME, CacheConfig.CACHE_PROVIDER_OBJECT_GRID);
p.put(CacheConfig.ENABLE_CACHE_REPLICATION, "true");
==>p.put("com.ibm.websphere.xs.dynacache.topology", "embedded");
==>p.put("com.ibm.websphere.xs.dynacache.num_initial_containers", "3");
DistributedMap map1 = DistributedMapFactory.getMap("myMap", p);
DistributedMap map2 = DistributedObjectCacheFactory.getMap("myMap2", p);

See the topic Configuring the dynamic cache provider for WebSphere eXtreme Scale in the
WebSphere eXtreme Scale Version 7 Information Center for more information about the embedded,
embedded_partitioned, and remote settings.

5. Configure the eXtreme Scale catalog service grid.

When you run a catalog service grid, you must set the catalog.services.cluster custom property for
the catalog service endpoints.

See the topic Starting the catalog service process in a WebSphere Application Server environment in
the WebSphere eXtreme Scale Version 7 Information Center for a description of how to start the
catalog service process in a WebSphere Application Server environment.

a. In the administrative console, click System administration > Cell > Custom properties > New.

b. Enter catalog.services.cluster in the Name field, and the appropriate
server_name:host_name:client_port:peer_port:listener_port value in the Value field.

Chapter 8. Welcome to administering Dynamic caching 337

http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp?topic=/com.ibm.websphere.extremescale.admin.doc/txsdyncache.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r0/index.jsp?topic=/com.ibm.websphere.extremescale.admin.doc/txscatalogstartwas.html


v server_name is the fully qualified name of the WebSphere process, such as the cell name,
node name, or server name, of the server that hosts the catalog service. Example:
cellA\node1\nodeagent

v host_name is the name of the hosting server.

v client_port is the port that is used for peer catalog grid communication.

v peer_port is the port that is used for peer catalog grid communication.

v listener_port is the listener port. This port must match the BOOTSTRAP_ADDRESS value that
is defined in the server configuration.

Following is an example of a valid value:
cellA\node1\nodeagent:host.local.domain:6600:6601:2809,cellA\node2\
nodeagent:host.foreign.domain:6600:6601:2809

c. Click OK.

6. Click Save to save all of your configuration changes.

7. Restart all the application servers that you configured to use WebSphere eXtreme Scale.

8. Configure custom key objects.

When you are using custom objects as keys, the objects must implement the Serializable or
Externalizable interface. If you are using custom objects with the embedded or embedded partitioned
topologies, you must place the objects on the shared library path, in the same way that you do if you
are using the default dynamic cache provider. For more information, see the topic Using the
DistributedMap and DistributedObjectCache interfaces for the dynamic cache.

If you are using the remote topology, you must place the custom key objects on the CLASSPATH for
the stand-alone WebSphere eXtreme Scale containers. See the steps to start a container process in
the WebSphere eXtreme Scale Version 7.0 Administration Guide for more information. This
publication is available on the WebSphere eXtreme Scale library page

9. Configure eXtreme Scale container servers.

The cached data is stored in WebSphere eXtreme Scale containers. These containers can run inside
or outside of a WebSphere Application Server process. The eXtreme Scale provider automatically
creates containers inside a WebSphere Application Server process when you are using embedded or
embedded partitioned topologies for a cache instance. No further configuration is needed for these
topologies.

When you use the remote topology, you must start up stand-alone eXtreme Scale containers before
you start the WebSphere Application Server instances that access the cache instance. The
WebSphere eXtreme Scale Version 7.0 Administration Guide documents the steps that you need to
complete to start stand-alone containers.

gotcha: Make sure that all the containers for a specific dynamic cache point to the same catalog
service endpoints.

The dynacache-remoteobjectgrid. xml and dynacache-remote-definition.xml configuration files for the
stand-alone eXtreme Scale Dynamic Cache provider containers are located in the
install_root/customLibraries/ ObjectGrid/dynacache/etc directory if WebSphere eXtreme Scale is
installed on top of the WebSphere Application Server, or in the install_root/ObjectGrid/dynacache/etc
directory if you are using a stand-alone version of WebSphere eXtreme Scale. Make copies of these
files to edit and use when launching stand-alone containers for the eXtreme Scale dynamic cache
provider. The value specified for the numIntitialContainers parameter in the dynacache-remote-
deployment.xml file should be based on the number of container processes being run.

The following example illustrates a UNIX-based command line entry that launches a stand-alone
container for the WebSphere eXtreme Scale dynamic cache provider:
startOgServer.sh container1 -objectGridFile ../dynacache/etc/dynacache-remoteobjectgrid.
xml -deploymentPolicyFile ../dynacache/etc/dynacache-remotedeployment.
xml -catalogServiceEndpoints MyServer1.company.com:2809

338 Administering WebSphere applications



gotcha: The set of container processes needs to have enough free memory to service all the
dynamic cache instances configured to use the remote topology. Any WebSphere
Application Server process that shares the same or equivalent values for
catalog.services.cluster must use the same set of stand-alone containers. The number of
containers and number of machines they reside on needs to be sized appropriately. See the
topic Capacity planning and high availability in the WebSphere eXtreme Scale Version 7.0
Product Overview for additional details. This publication is available on the WebSphere
eXtreme Scale library page.

10. Verify that the WebSphere eXtreme Scale dynamic cache provider is correctly configured.

If the WebSphere eXtreme Scale dynamic cache provider is correctly configured, the system log
contains a number of messages similar to the following messages:
DYNA1001I: WebSphere Dynamic cache instance named "{0}" initialized successfully using cache provider "{1}".
DYNA1071I: The cache provider \"{0}\" is being used.

If the configuration and initialization of the cache instance with WebSphere eXtreme Scale fails the
dynamic cache runtime reverts to the default dynamic cache cache provider, and you should see
messages similar to the following message in the system log.
DYNA1066E: Unable to initialize the cache provider \"{0}\".
The Dynamic cache will be used to create the cache instance \"{1}\"
instead of the configured cache provider.

Dynamic caching with Asynchronous Request Dispatcher:

Asynchronous Request Dispatcher (ARD) improves servlet response time when slow operations are
logically separated and performed concurrently with other operations that are required to complete the
response.

Servlet caching works with ARD include requests, with certain caveats. The dynamic caching service does
not support the ESI and ExternalCache features when ARD is enabled, due to complex and intractable
buffering issues with third party content.

If the include request has been cached by the dynamic cache service, the include request returns
immediately with the response data written to the top-level response data for the servlet.

In combination with the Remote Request Dispatcher (RRD), include request processing can also be
offloaded to other members in the application server core group, thus reducing resource requirements on
the original application server.

Configuring servlet caching
After a servlet is invoked and completes generating the output to cache, a cache entry is created
containing the output and the side effects of the servlet. These side effects can include calls to other
servlets or JavaServer Pages (JSP) files or metadata about the entry, including timeout and entry priority
information. Configure servlet caching to save the output of servlets and JavaServer Pages (JSP) files to
the dynamic cache.

Before you begin

To enable servlet caching, you must complete the tasks in the Using the dynamic cache service topic.

About this task

Unique entries are distinguished by an ID string that is generated from the HttpServletRequest object each
time the servlet runs. You can then base servlet caching on:
v Request parameters and attributes of the Universal Resource Identifier (URI) that was used to invoke

the servlet
v Session information
v Other options, including cookies

Chapter 8. Welcome to administering Dynamic caching 339



Because JavaServer Pages files are compiled into servlets, the dynamic cache function treats JavaServer
Pages files the same as servlets, except in specifically documented situations.

Procedure
1. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name > Web container settings > Web container in the console navigation tree.

2. Select Enable servlet caching under the Configuration tab.

3. Click Apply or OK.

4. Restart WebSphere Application Server. Refer to the Managing application servers topic for more
information.

What to do next

Define the cache policy for your servlets by Configuring cacheable objects with the cachespec.xml file.

Dynamic caching with Asynchronous Request Dispatcher:

Asynchronous Request Dispatcher (ARD) improves servlet response time when slow operations are
logically separated and performed concurrently with other operations that are required to complete the
response.

Servlet caching works with ARD include requests, with certain caveats. The dynamic caching service does
not support the ESI and ExternalCache features when ARD is enabled, due to complex and intractable
buffering issues with third party content.

If the include request has been cached by the dynamic cache service, the include request returns
immediately with the response data written to the top-level response data for the servlet.

In combination with the Remote Request Dispatcher (RRD), include request processing can also be
offloaded to other members in the application server core group, thus reducing resource requirements on
the original application server.

Configuring portlet fragment caching
After a portlet is invoked and completes generating the output to cache, a cache entry is created,
containing the output and the side effects of the portlet. These side effects can include calls to other
portlets or metadata about the entry, including timeout and entry priority information. Configure portlet
fragment caching with the WebSphere Application Sever administrative console to save the output of
portlets to the dynamic cache.

Before you begin

To enable portlet fragment caching, you must complete the steps in the Using the dynamic cache service
topic.

About this task

Unique entries are distinguished by an ID string that generates from the PortletRequest object each time
the portlet runs. You can then base portlet fragment caching on:
v Request parameters and attributes
v Session information
v Portlet-specific information, portlet session, portlet window ID, portlet mode, and portlet window state

340 Administering WebSphere applications



Procedure
1. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name > Portlet container settings > Portlet container > Application servers >
server_name in the administrative console navigation tree.

2. Select Enable portlet fragment cache under the Configuration tab.

3. Click Apply or OK.

4. Restart WebSphere Application Server.

See the Setting up the application serving environment PDF for more information.

What to do next

Define a cache policy for your portlets. Note that portlets are not cached unless an applicable caching
policy is defined in a cachespec.xml file. Refer to the Configuring cacheable objects with the
cachespec.xml file topic for general task information about defining a cache policy. Refer to the
Configuring caching policies for portlets topic for information about defining portlet-specific aspects in a
cache policy.

Configuring caching policies for portlets:

Fragment caching for portlets requires that you define a cache policy in a cachespec.xml file, either within
the portlet web application archives (WAR) file or globally. If no caching policy is defined and applicable to
a particular portlet, that porlet is not cached.

WebSphere Application Server caching policies provide a lot of flexibility for defining cache IDs and
invalidation rules that match the specific requirements of individual portlets. The caching policies that you
can define are not necessarily compliant with the caching behavior that is defined by the Java Portlet
Specification. The following sections provide some recommendations on how you can exploit the features
of cachespec.xml file, to define a caching policy that conforms to the specification.

Cache expiration. Portlets define cache expiration time in the <expiration-cache> element of the
portlet.xml deployment descriptor. If this element is not present, or has a value of zero, the portlet is not
cached. The cache expiration time for portlets is only defined in the deployment descriptor; any cache
timeout values that are specified in a cachespec.xml file have no effect.

Caching scopes. Portlets are defined in the <caching-scope> element of the portlet.xml deployment
descriptor, whether the portlet content should be shared across all users or whether it contains
user-specific information and must be cached individually for each user. To maintain this setting in your
caching policy definition, include the com.ibm.wsspi.portletcontainer.user_cache_scope attribute in your
cache key, with the following cache key component:
<component id="com.ibm.wsspi.portletcontainer.user_cache_scope" type="attribute"/>

This attribute has the following values:

v The value, public, in a portlet that defines public cache scope.

v The current logon user ID in a portlet that defines private cache scope.

v Null (anonymous) in a portlet that defines private cache scope if no user is logged on.

If you want to cache portlet content for anonymous access, even in a portlet that defines private cache
scope, add <required>false</required> to the cache key component. This implies that all anonymous
browser access will retrieve the same cache content.

Portlet lifecycle methods. The Java Portlet Specification defines the four lifecycle phases: action, event,
render and resource for running in a portlet. Only the render and resource phases produce content; the
action and event phases invoke portlet activity without generating content and must not be cached. The

Chapter 8. Welcome to administering Dynamic caching 341



lifecycle phase for a portlet call is available in the javax.portlet.lifecycle_phase request attribute. Check
for the correct lifecycle by including the following cache key component:
<component id="javax.portlet.lifecycle_phase" type="attribute">
<value>RENDER_PHASE</value>

</component>

This cache key component only caches render requests to the portlet. Cache additional resource requests
by adding the RESOURCE_PHASE. In many cases, the best approach is to define a separate <cache-id>
element for resource requests. The resource ID is available in the
com.ibm.wsspi.portletcontainer.resource_id request attribute for caching key generation in resource
requests.

Request parameters. Portlets can typically display multiple views. Render parameters distinguish which
view displays. Each combination of parameters addresses a different view of the portlet. All views need to
be cached separately; therefore, the full request parameter map should normally be included in the cache
key. The com.ibm.wsspi.portletcontainer.all_parameters attribute provides a unique value for the
content of the full request parameter map that can be used with the following cache key component:
<component id="com.ibm.wsspi.portletcontainer.all_parameters" type="attribute">
<required>false</required>

</component>

If you write a cache policy for a specific portlet, and you know exactly which views of the portlet are
addressed by which request parameters, it is usually more efficient to use specific <parameter> elements
in the cache key to cache only the most important views of the portlet.

Other cache key components. Depending on your usage scenario, you will need to include other
information in your cache key, if the returned content depends on it (for example, the portlet mode and
window state, or the request locale in a multi-language portal). In a multi-device portal that supports
different markup types, the returned content type should also be part of the cache key. The content type
for a portlet is available in the com.ibm.wsspi.portletcontainer.response_contenttype request attribute.

Cache invalidation. The Java Portlet Specification states that action and event requests to a portlet must
invalidate all currently cached content. The portlet caching definitions usually allow for caching multiple
views of a portlet at the same time. To invalidate all of them, use the dependency ID mechanism of
cachespec.xml.

Define a common dependency ID for all views that should be invalidated by an action. The common ID will
usually only include the portlet window ID and the user scope, so that a portlet action does not affect
private cache entries for other users:
<dependency-id>action
<component id="" type="portletWindowId"/>
<component id="com.ibm.wsspi.portletcontainer.user_cache_scope" type="attribute"/>

</dependency-id>

Define an invalidation rule that repeats the dependency ID and adds the current lifecycle method as a
condition. It is essential to have the ignore-value attribute on the condition part. The lifecycle attribute
must not be part of the returned invalidation ID, because that invalidation ID must match exactly with the
dependency ID previously specified.
<invalidation>action
<component id="" type="portletWindowId"/>
<component id="com.ibm.wsspi.portletcontainer.user_cache_scope" type="attribute"/>
<component id="javax.portlet.lifecycle_phase" type="attribute" ignore-value="true">
<value>ACTION_PHASE</value>
<value>EVENT_PHASE</value>
</component>

</invalidation>

342 Administering WebSphere applications



Following the same pattern, specify more complex invalidation rules in caching policies for individual
portlets, (for example, you can only invalidate a subset of the portlet views for specific actions that are
determined by request parameters). The following example code describes a generic caching configuration
that conforms to the behavior that is defined by the Java Portlet Specification:
Sample cachespec.xml file

<?xml version="1.0" ?>
<!DOCTYPE cache SYSTEM "cachespec.dtd">
<cache>
<cache-entry>
<class>portlet</class>
<name>MyPortlet</name>
<property name="consume-subfragments">true</property>
<cache-id>
<component id="" type="portletWindowId"/>
<component id="com.ibm.wsspi.portletcontainer.user_cache_scope" type="attribute"/>

<component id="" type="portletWindowState">
<!-- minimized portlets are not cached -->
<not-value>minimized</not-value>
</component>
<component id="" type="portletMode"/>

<component id="" type="locale"/>
<component id="com.ibm.wsspi.portletcontainer.response_contenttype" type="attribute"/>

<component id="com.ibm.wsspi.portletcontainer.all_parameters" type="attribute">
<required>false</required>
</component>

<component id="javax.portlet.lifecycle_phase" type="attribute">
<value>RENDER_PHASE</value>
</component>
</cache-id>

<dependency-id>action
<component id="" type="portletWindowId"/>
<component id="com.ibm.wsspi.portletcontainer.user_cache_scope" type="attribute"/>
</dependency-id>

<invalidation>action
<component id="" type="portletWindowId"/>
<component id="com.ibm.wsspi.portletcontainer.user_cache_scope" type="attribute"/>
<component id="javax.portlet.lifecycle_phase" type="attribute" ignore-value="true">
<value>ACTION_PHASE</value>
<value>EVENT_PHASE </value>
</component>
</invalidation>

</cache-entry>
</cache>

Configuring portlet fragment caching with the wsadmin tool
You can configure portlet fragment caching with scripting and the wsadmin tool.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Using the administrative clients PDF
for more information.

About this task

Important: If you use the wsadmin tool to enable portlet fragment caching, you must make sure that
servlet caching is also enabled. Similarly if you use the wsadmin tool to disable portlet

Chapter 8. Welcome to administering Dynamic caching 343



fragment caching, you must make sure that servlet caching is also disabled. The settings for
these two caching functions must stay synchronized. If you enable or disable portlet fragment
caching using the administrative console, synchronization is automatically taken care of for
you.

Procedure
1. Locate the server object. The following example selects the first server found:

Using Jacl:
set s1 [$AdminConfig getid /Server:server1/]

Using Jython:
s1 = AdminConfig.getid(’/Server:server1/’)

2. List the web containers and assign them to the wc variable, for example:

Using Jacl:
set wc [$AdminConfig list PortletContainer $s1]

Using Jython:
wc = AdminConfig.list(’PortletContainer’, s1)

3. Set the enablePortletCaching attribute to true and assign it to the serEnable variable, for example:

Using Jacl:
set serEnable "{enablePortletCaching true}"

Using Jython:
serEnable = [[’enablePortletCaching’, ’true’]]

4. Enable caching, for example:

Using Jacl:
$AdminConfig modify $wc $serEnable

Using Jython:
AdminConfig.modify(wc, serEnable)

Configuring caching for Struts and Tiles applications
Use this task to cache Struts and Tiles applications.

Before you begin

Before you configure Struts and Tiles caching, you should have a developed application. Find more
information about developing Struts and Tiles applications on the Apache Struts Web Application
Framework on the Apache website at http://struts.apache.org/.

About this task

Use this task when you want to cache data in Struts and Tiles applications.

Struts is an open source framework for building web applications using the Model-View-Controller (MVC)
architecture. The Struts framework has a controller component and integrates with other technologies to
provide the model and the view. Struts provide a control layer for the web application, which reduces
construction time and maintenance costs.

The Tiles framework builds on the jsp:include feature and is bundled with the Struts web application
framework. The Tiles framework reduces the duplication between JavaServer Pages (JSP) files and makes
website layouts flexible and easy to maintain by assembling presentation pages from component parts.

Struts and Tiles caching is an extension of servlet and JSP caching, so the actions performed for each
type of caching are very similar. Refer to the Configuring servlet caching topic for more information about
servlet caching.

344 Administering WebSphere applications



Procedure
1. Enable servlet and JSP caching. Enabling servlet caching automatically enables Struts and Tiles

caching. Refer to the Configuring servlet caching topic for more information about servlet caching.

2. Develop the cache policy. A cache policy is required to cache a struts or tiles response.

To develop a Struts cache policy:

The Struts framework provides the controller component in the MVC-style application. The
controller is a servlet called org.apache.struts.action.ActionServlet.class. In the web.xml
file of the application, a servlet mapping of *.do is added for this Struts ActionServlet servlet so
that every request for a Web address that ends with .do is processed. The ActionServlet
servlet uses the information in the struts-config.xml file to decide which Struts action class
runs the request for the specified resource.

In the previous version of WebSphere Application Server, only one cache policy per servlet
was supported. However, when you are using Struts, every request that ends in .do maps to
the same ActionServlet servlet. To cache Struts responses, write a cache policy for the
ActionServlet servlet based on its servlet path.

For example, consider two Struts actions: /HelloParam.do and /HelloAttr.do. To cache the
responses based on the id request parameter and the arg request attribute respectively, use
the following cache policy:
<cache-entry>
<class>servlet</class>
<name>org.apache.struts.action.ActionServlet.class</name>
<cache-id>
<component id="" type="servletpath">
<value>/HelloParm.do</value>
</component>
</cache-id>
<cache-id>
<component id="" type="servletpath">
<value>/HelloAttr.do</value>
</component>
<component id="arg" type="attribute">
<required>true</required>
</component>
</cache-id>
</cache-entry>

With the current version of WebSphere Application Server, you can map multiple cache
policies for a single servlet. You can rewrite the previous cache policy as in the following
example:
<cache-entry>
<class>servlet>
<name>/HelloParam.do</name>
<cache-id>
<component id="id" type="parameter">
<required>true</required>
</component>

</cache-entry>
<cache-entry>
<class>servlet</class>
<name>/HelloAttr.do</name>
<cache-id>
<component id="arg" type="attribute">
<required>true</required>
</component>
</cache-id>
</cache-entry>

To develop a Tiles cache policy:
The Tiles framework is built on the jsp:include tag, so everything that applies to JSP caching

Chapter 8. Welcome to administering Dynamic caching 345



also applies to Tiles. You must set the flush attribute to true in any fragments that are included
using the tiles:insert tag for the fragments to be cached correctly. The extra feature in tiles
caching over JSP caching is based on the tiles attribute. For example, you might develop the
following layout.jsp template:
<html>
<%String categoryId = request.getParameter("categoryId")+"test"; %>
<tiles:insert attribute="header">
<tiles:put name="categoryId" value="<%= categoryId %>" />
</tile:insert>
<table>
<tr>
<td width="70%" valign="top"><tiles:insert attribute="body" /> </td>
</tr>
<tr>
<td colspan="2"><tiles:insert attribute="footer" /></td>
</tr>
</table>
</body>
</html>

The nested tiles:put tag specifies the attribute of the inserted tile. In the layout.jsp template,
the categoryId attribute is defined and passed on to the tile that is inserted into the placeholder
for the header. In the following example, the layout.jsp file is inserted into another JSP file:
<html>
<body>
<tiles:insert page="layout.jsp?categoryId=1002" flush="true">
<tiles:put name="header" value="/header.jsp" />
<tiles:put name="body" value="/body.jsp" />
<tiles:put name="footer" value="/footer.jsp" />
</tiles:insert>
</body>
</html>

The categoryId tile attribute is passed on to the header.jsp file. The header.jsp file can use
the <tiles:useAttribute> tag to retrieve the value of categoryId. To cache the header.jsp file
based on the value of the categoryId attribute, you can use the following cache policy:
<cache-entry>
<class>servlet</class>
<name>/header.jsp</name>
<cache-id>
<component id="categoryId" type="tiles_attribute">
<required>true</required>
</component>
</cache-id>
</cache-entry>

3. Ensure your cache policy is working correctly. You can modify the policies within the cachespec.xml file
while your application is running. Refer to the Configuring cacheable objects with the cachespec.xml
file topic for more information about cache policies.

Results

What to do next

Refer to the Task overview: Using the dynamic cache service to improve performance for more information
about the dynamic cache.

Configuring dynamic cache disk offload
Use this task to configure dynamic cache disk offload, which saves cache entries that are deleted from the
memory cache to disk.

346 Administering WebSphere applications



About this task

By default, when the number of cache entries reaches the configured limit for a given application server,
cache entries are removed from the memory cache, allowing newer entries to be stored in the cache. Use
disk offload to copy the cache entries that are being removed from the memory cache to disk for potential
future access.

Procedure
1. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name > Container services > Dynamic cache service .

2. Select Enable disk offload.

3. After you enable the disk offload, you can set the Disk offload location. The disk offload location
specifies where to save the cache entries on the disk. The disk offload location must be unique for any
application servers that are defined on the same node. If you have multiple servers defined on the
same node, make sure the disk offload location is different for each server.

4. Enable Flush to disk if you want cache objects that are in memory to be saved to disk when the server
is stopped. Disk offload must be enabled if you choose this option. If you do not enable flush to disk,
all the cache objects are deleted when the server stops.

5. Click Apply or OK.

6. Restart WebSphere Application Server.

Results

You enabled disk offload. Memory cache entries are moved to disk for potential future access.

When you have two or more application servers with servlet caching enabled and the application servers
specify the same disk offload location for their caches through the dynamic cache service, the following
exceptions might occur:
java.lang.NullPointerException

at com.ibm.ws.cache.CacheOnDisk.readTemplate(CacheOnDisk.java:686)
at com.ibm.ws.cache.Cache.internalInvalidateByTemplate(Cache.java:828)

or:
java.lang.NullPointerException

at com.ibm.ws.cache.CacheOnDisk.readCacheEntry(CacheOnDisk.java:600)
at com.ibm.ws.cache.Cache.getCacheEntry(Cache.java:341)

If one server is run as root and the other servers are run as non-root, this problem could occur. For
example, if server1 runs as root and server2 runs as wasuser or wasgroup, the cache files in the disk
offload location might be created with root permissions. This situation causes the applications running on
the non-root servers to crash when they try to read or write to the cache.

Java virtual machine cache settings:

Use this page to set Java virtual machine (JVM) custom properties to maintain cache entries that are
saved to disk.

You can set the custom properties globally to affect all cache instances, or you can set the custom
property on a single cache instance. In most cases, set the properties on the individual cache instances.
To set the custom properties on the default cache instance, use the global option. If you set the same
property both globally and on a cache instance, the value that is set on the cache instance overrides the
global value.

To configure the custom properties on a single object cache instance or servlet cache instance, perform
the following steps:

Chapter 8. Welcome to administering Dynamic caching 347



1. In the administrative console, click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances > Servlet cache
instances > servlet_cache_instance_name > Custom properties > New.

v To configure an object cache instance, click Resources > Cache instances > Object cache
instances > object_cache_instance_name > New.

2. Type the name of the custom property. When configuring these custom properties on a single cache
instance, you do not use the full property path. For example, type explictBufferLimitOnStop to
configure the com.ibm.ws.cache.CacheConfig.explictBufferLimitOnStop custom property.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

To configure the custom property globally across all configured cache instances, perform the following
steps:

1. In the administrative console, click Servers > Application servers > server_name > Java and
process management > Process management > Process definition > Java virtual machine >
Custom properties > New.

2. Type the name of the custom property (com.ibm.ws.cache.CacheConfig.explictBufferLimitOnStop) in
the Name field.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

Also use these properties to tune the delay offload function for the disk cache.

Important: Setting these custom properties using the wsadmin command is deprecated for WebSphere
Application Server Version 7.0. Use the administrative console to set these properties. The
individual property descriptions include information on how to use the administrative console to
set these properties.

The delay offload function uses extra memory buffers for dependency IDs and templates to delay the disk
offload and minimize the input and output operations. However, if most of your cache IDs are longer than
100 bytes, the delay offload function might use too much memory. Use any combination of the following
properties to tune your configuration:

v To increase or decrease the in-memory limit of cache IDs for dependency ID and template buffers, use
the com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit custom property.

v To disable the disk cache delay offload function, use the
com.ibm.ws.cache.CacheConfig.htodDelayOffload custom property. Disabling this property saves all
cache entries to disk immediately after removing them from the memory cache.

You can define the following Java virtual machine cache settings:

v “com.ibm.ws.cache.CacheConfig.explictBufferLimitOnStop”

v “com.ibm.ws.cache.CacheConfig.htodCleanupFrequency” on page 349

v “com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit” on page 349

v “com.ibm.ws.cache.CacheConfig.lruToDiskTriggerPercent” on page 350

v “com.ibm.ws.cache.CacheConfig.lruToDiskTriggerTime” on page 350

com.ibm.ws.cache.CacheConfig.explictBufferLimitOnStop:

Use this custom property when the flush-to-disk-on-stop feature is enabled. When the server is stopping,
offloads are limited to the value specified for this property, pending removal of entries in the explicit
invalidation buffer.

348 Administering WebSphere applications



If this property is set to 0, there is no limit to the number of offloads that can occur. Only positive integers
are accepted as values for this property. If the number of entries in the explicit invalidation buffer is greater
than the specified limit, all of the disk files for this specified cache instance are deleted after the server
stops.

Important: You cannot use the administrative console to set this property.

com.ibm.ws.cache.CacheConfig.htodCleanupFrequency:

Use this property to change the amount of time between disk cache cleanup.

Important: Setting this custom property manually is deprecated for V6.1. Therefore, you should use the
administrative console to set this property. To set this property in the administrative console,
click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances > Servlet
cache instances > servlet_cache_instance_name.

v To configure an object cache instance, click Resources > Cache instances > Object
cache instances > object_cache_instance_name.

Then:

1. Under Disk Cache setting, select the Enable disk offload field if it is not already selected.

2. Under Performance Settings, select Balanced performance and balanced memory usage
or Custom.

3. In the Disk cache cleanup frequency field, specify an appropriate length of time, in
minutes.

By default, the disk cache cleanup is scheduled to run at midnight to remove expired cache entries and
cache entries that have not been accessed in the past 24 hours. However, if you have thousands of cache
entries that might expire within one or two hours, the files that are in the disk cache can grow large and
become unmanageable. Use the com.ibm.ws.cache.CacheConfig.htodCleanupFrequency custom property
to change the time interval between disk cache cleanup.

Information Value
Units minutes

For example, a value of 60 means 60 minutes between
each disk cache cleanup.

Default 0

The disk cache cleanup occurs at midnight every 24
hours.

com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit:

Use this property to specify the number of different cache IDs that can be saved in memory for the
dependency ID and template buffers. Consider increasing this value if you have a lot of memory in your
server and you want to increase the performance of your disk cache.

Important: Setting this custom property using the wsadmin command is deprecated for V7.0. Therefore,
you should use the administrative console to set this property. To set this property in the
administrative console, click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances > Servlet
cache instances > servlet_cache_instance_name.

v To configure an object cache instance, click Resources > Cache instances > Object
cache instances > object_cache_instance_name.

Chapter 8. Welcome to administering Dynamic caching 349



Then:

1. Under Disk Cache setting, select the Enable disk offload field, if it is not already selected.

2. Under Disk Cache settings, select Limit disk cache size in entries, if it is not already
selected.

3. In the Disk cache size field, specify the number of cache IDs that can be saved in memory
for the dependency ID and template buffers.

Information Value
Units number of cache IDs

For example, a value of 1000 means that each
dependency ID or template ID can have up to 1000
different cache IDs in memory.

Default 1000
Minimum 100

com.ibm.ws.cache.CacheConfig.lruToDiskTriggerPercent:

Use this custom property to set the percentage of the memory cache size to be used as an overflow buffer
when disk offload is enabled.

Cache entries in the overflow buffer are purged and asynchronously offloaded to disk at a frequency of
lruToDiskTriggerTime milliseconds. If the memory overflow buffer is full, cache entries are offloaded to disk
synchronously on the thread for the caller.

Information Value
Units integer, percentage
Lower bound 0
Upper bound 100
Scope Configurable per cache instance.

com.ibm.ws.cache.CacheConfig.lruToDiskTriggerTime:

Use this custom property to set the frequency with which cache entries in memory are asynchronously
offloaded to disk when the disk offload feature is enabled.

Information Value
Units integer, milliseconds
Lower bound 0
Upper bound 5000
Scope Applicable to all cache instances.

Configuring Edge Side Include caching
The web server plug-in contains a built-in ESI processor. The ESI processor can cache whole pages, as
well as fragments, providing a higher cache hit ratio. The cache implemented by the ESI processor is an
in-memory cache, not a disk cache, therefore, the cache entries are not saved when the web server is
restarted.

About this task

Edge Side Include (ESI) is configured through the plugin-cfg.xml file.

When a request is received by the web server plug-in, it is sent to the ESI processor, unless the ESI
processor is disabled. It is enabled by default. If a cache miss occurs, a Surrogate-Capabilities header is

350 Administering WebSphere applications



added to the request and the request is forwarded to the WebSphere Application Server. If servlet caching
is enabled in the application server, and the response is edge cacheable, the application server returns a
Surrogate-Control header in response to the WebSphere Application Server plug-in.

The value of the Surrogate-Control response header contains the list of rules that are used by the ESI
processor to generate the cache ID. The response is then stored in the ESI cache, using the cache ID as
the key. For each ESI include tag in the body of the response, a new request is processed so that each
nested include results in either a cache hit or another request that forwards to the application server.
When all nested includes have been processed, the page is assembled and returned to the client.

The ESI processor is configurable through the WebSphere web server plug-in configuration file
plugin-cfg.xml. The following is an example of the beginning of this file, which illustrates the ESI
configuration options.
<?xml version-"1.0"?>
<Config>

<Property Name="esiEnable" Value="true"/>
<Property Name="esiMaxCacheSize" Value="1024"/>
<Property Name="esiInvalidationMonitor" Value="false"/>

Procedure
v The first option, esiEnable, can be used to disable the ESI processor by setting the value to false. ESI

is enabled by default. If ESI is disabled, then the other ESI options are ignored.

v The second option, esiMaxCacheSize, is the maximum size of the cache in 1K byte units. The default
maximum size of the cache is 1 megabyte.

If the first response has a Content-Length response header, the web server plug-in checks for the
response size. If the size of the response body is larger than the available ESI caching space, the
response passes through without being handled by ESI.

Some parent responses have nested ESI includes. If a parent response is successfully stored in the ESI
cache, and any subsequent nested include has a Content-length header that specifies a size larger than
the available space in the ESI cache, but smaller than the value specified for esiMaxCacheSize
property, the plug-in ESI processor evicts other cache elements until there is enough space for the
nested include in the ESI cache.

v The third option, esiInvalidationMonitor, specifies if the ESI processor should receive invalidations from
the application server. ESI works well when the web servers following a threading model are used, and
only one process is started. When multiple processes are started, each process caches the responses
independently and the cache is not shared. This could lead to a situation where, the system's memory
is fully used up by ESI processor. There are three methods by which entries are removed from the ESI
cache: first, an entry expiration timeout occurs; second, an entry is purged to make room for newer
entries; or third, the application server sends an explicit invalidation for a group of entries. For the third
mechanism to be enabled, the esiInvalidationMonitor property must be set to true and the
DynaCacheEsi application must be installed on the application server. The DynaCacheEsi application is
located in the installableApps directory and is named DynaCacheEsi.ear. If the ESIInvalidationMonitor
property is set to true but the DynaCacheEsi application is not installed, then errors occur in the web
server plug-in and the request fails.

v This ESI processor is monitored through the CacheMonitor application. For the ESI processor cache to
be visible in the CacheMonitor, the DynaCacheEsi application must be installed as described above,
and the ESIInvalidationMonitor property must be set to true in the plugin-cfg.xml file.

v When WebSphere Application Server is used to serve static data, such as images and HTML on the
application server, the URLs are also cached in the ESI processor. This data has a default timeout of
300 seconds. You can change the timeout value by adding the property com.ibm.servlet.file.esi.timeOut
to the Java virtual machine (JVM) command line parameters. The following example shows how to set a
one minute timeout on static data cached in the plug-in:
-Dcom.ibm.servlet.file.esi.timeOut=60

For information about configuring alternate URL, see the Tuning guide PDF.

Chapter 8. Welcome to administering Dynamic caching 351



Configuring alternate URL:

Alternate URL is a method for edge caching JavaServer Pages (JSP) files and servlet responses that you
can not request externally. Dynamic cache provides support to recognize the presence of an Edge Side
Include (ESI) processor and to generate ESI include tags and appropriate cache policies for edge
fragments that can be cached. However, you must be able to externally request an edge fragment from
the application server before it can be cached. In other words, if a user types the URL in their browser
with the appropriate parameters and cookies for the fragment, WebSphere Application Server must be able
to return the content for that fragment.

About this task

One of the standard Java Platform, Enterprise Edition (Java EE) programming architectures is the
model-view-controller (MVC) architecture, where a call to a controller servlet might include one or more
child JSP files to construct the view. When using the MVC programming model, the child JSP files are
edge cached only if you can request these JSP files externally, which is not usually the case. For example,
if a child JSP file uses one or more request attributes that are determined and set by the controller servlet,
you cannot cache that JSP file on the edge. You can use alternate URL support to overcome this limitation
by providing an alternate controller servlet URL used to invoke the JSP file.

The alternate URL for a JSP file or a servlet is set in the cachespec.xml file as a property with the name
alternate_url. You can set the alternate URL either on a per cache-entry basis or on a per cache-id
basis. It is valid only if the EdgeCacheable property is also set for that entry. If the EdgeCacheable property
is not set, the alternate_url property is ignored. The following is a sample cache policy using the
alternate_url property:

<cache-entry>
<class>servlet</class>
<name>/AltUrlTest2.jsp</name>
<property name="EdgeCacheable">true</property>
<property name="alternate_url">/alturlcontroller2</property>

<cache-id>
<timeout>600</timeout>
<priority>2</priority>

</cache-id>
</cache-entry>

What to do next

For more information on the cachespec.xml file, refer to the cachespec.xml file topic.

Configuring external cache groups
The dynamic cache can control caches outside of the application server, such as the Edge server, an IBM
HTTP Server, or an HTTP Server ESI Fragment Processor plug-in.

About this task

When external cache groups are defined, the dynamic cache matches externally cacheable cache entries
with those groups, and pushes cache entries and invalidations out to those groups. This allows
WebSphere Application Server to manage dynamic content beyond the application server. The content can
then be served from the external cache, instead of the application server, improving savings in
performance.

Procedure
1. Open the administrative console.

2. Enable the dynamic cache.

352 Administering WebSphere applications



a. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name > Container services > Dynamic cache service.

b. Select Enable service at server startup to enable the dynamic cache each time the application
server starts.

3. Define the external cache group that WebSphere Application Server should control.

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name > Container services > Dynamic cache service > External cache groups.

b. Click New or choose an external cache group from the list.

4. Configure cache group members.

a. Click External cache groups from the dynamic cache administrative console page. Then click
New or choose an external cache group from the list.

b. Click External cache group members > New or choose an external cache group member from
the list.

c. Type the configuration string in the Address field.

d. Type the adapter bean name in the Adapter Bean Name field.

e. Save the configuration.

f. Click Apply or OK.

External cache group collection:

Use this page to define sets of external caches that are controlled by WebSphere Application Server on
web servers such as IBM Edge Server and IBM HTTP Server.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Container services > Dynamic cache service > External cache groups.

Name:

Specifies the external cache group name.

The external cache group name needs to match the ExternalCache property as defined in the servlet or
JavaServer Pages (JSP) file cachespec.xml file.

When external caching is enabled, the cache matches pages with its Universal Resource Identifiers (URI)
and pushes matching pages to the external cache. The entries can then be served from the external
cache, instead of from the application server.

Type:

Specifies the external cache group type.

External cache group settings:

Use this page to configure sets of external caches that are controlled by WebSphere Application Server on
web servers, such as IBM Edge Server and IBM HTTP Server.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Container services > Dynamic cache service > External cache groups >
external_cache_group.

Name:

Specifies the external cache group name.

Chapter 8. Welcome to administering Dynamic caching 353



The external cache group name must match the ExternalCache property as defined in the servlet or
JavaServer Pages (JSPs) cachespec.xml file.

When external caching is enabled, the cache matches pages with its Universal Resource Identifiers (URIs)
and pushes matching pages to the external cache. The entries can then be served from the external
cache, instead of the application server. This ability creates a significant savings in performance.

External cache group member collection:

Use this page to define specific caches that are members of a cache group.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Container services > Dynamic cache service > External cache groups >
external_cache_group > External cache group members.

Address:

Specifies a configuration string that is used by the external cache adapter bean to connect to the external
cache.

AdapterBeanName:

Specifies the adapter bean name.

Example adapter bean names that are supported in WebSphere Application Server are as follows:

Table 25. Adapter bean names.. Example adapter bean names

Adapter bean names

AFPA

AdapterBeanName: com.ibm.ws.cache.servlet.Afpa

Address: Port on which afpa listens

ESI

AdapterBeanName: com.ibm.websphere.servlet.cache.ESIInvalidatorServlet

IBM Web Traffic Express (WTE) (IBM Edge Server)

AdapterBeanName: com.ibm.websphere.edge.dynacache.WteAdapter

Address: hostname:port (host name and port on which WTE is listening)

External cache group member settings:

Use this page to define a single cache that is controlled by WebSphere Application Server.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Container services > Dynamic cache service > External cache groups >
external_cache_group > External cache group members > external_cache_group_member.

Advanced Fast Path Architecture adapter bean name:

Specifies the adapter bean name.

v Adapter bean name: specifies the adapter bean name. For example, you can use a bean name such
as com.ibm.ws.cache.servlet.Afpa.

v Address: specifies the port on which AFPA listens.

354 Administering WebSphere applications



Edge Side Include (ESI):

Specifies the adapter bean name.

v Adapter bean name: specifies the adapter bean name. For example, you can use a bean name such
as com.ibm.websphere.servlet.cache.ESIInvalidatorServlet.

v Address: local host

IBM Web Traffic Express (IBM WebSphere Edge Server):

Specifies the adapter bean name.

v Adapter bean name: specifies the adapter bean name. For example, you can use a bean name such
as com.ibm.websphere.edge.dynacache.WteAdapter.

v Address: hostname:port (host name and port on which WTE is listening).

Configuring high-speed external caching through the web server:

IBM HTTP Server for Windows 2003 operating systems contains a high-speed cache referred to as the
Fast Response Cache Accelerator, or cache accelerator. The Fast Response Cache Accelerator is
available on Windows 2003 operating systems and AIX platforms. However, support to cache dynamic
content is only available on Windows 2003 operating systems. You can enable cache accelerator to cache
static and dynamic content.

Before you begin

About this task

Enable cache accelerator for caching static content by adding the following directives to the httpd.conf
configuration file, located in the IBM HTTP Server conf directory:
v AfpaEnable
v AfpaCache on
v AfpaLogFile "app_server_root\IBMHttpServer\logs\afpalog" V-ECLF

To enable cache accelerator for caching dynamic content, such as servlets and JavaServer Pages (JSP)
files, configure WebSphere Application Server and IBM HTTP Server for distributed platforms:

Procedure

1. Configure WebSphere Application Server to enable Fast Response Cache Accelerator.

a. Configure an external cache group on the application server:
1) Click Servers > Server Types > WebSphere application servers > server_name >

Container services > Dynamic cache service > External cache groups.
2) Click New on the External cache group administrative console page to define an external

cache group named afpa for each application server that uses the cache accelerator.
3) In the External cache group field, type afpa and apply the changes.

b. Add a member to the group with an adapter bean name of com.ibm.ws.cache.servlet.Afpa.
1) Click Afpa > External cache group members.
2) Click New on the External cache group members administrative console page.
3) In the AdapterBean name field, type com.ibm.ws.cache.servlet.Afpa.
4) In the Address field, enter an unused port number.

c. Add a cache policy in the cachespec.xml file for the servlet or JSP file you want to cache. Add the
following property to the cache policy:
<property name="ExternalCache">afpa</property>

2. Enable cache accelerator on IBM HTTP Server for distributed platforms:

a. Add the following directives to the end of the httpd.conf file:

Chapter 8. Welcome to administering Dynamic caching 355



v AfpaEnable
v AfpaCache on
v AfpaLogFile "app_server_root\IBMHttpServer\logs\afpalog" V-ECLF
v

depfeat: IBM HTTP Server 1.3.x - LoadModule afpaplugin_module app_server_root\bin\
afpaplugin.dll

v IBM HTTP Server 2.0 - LoadModule afpaplugin_20_module app_server_root\bin\
afpaplugin_20.dll

v AfpaPluginHost WAS_Hostname:port, where WAS_Hostname is the host name of the application
server and port is the port you specified in the Address field while configuring the external
cache group member

The LoadModule directive loads the IBM HTTP Server plug-in that connects the Fast Response Cache
Accelerator to the WebSphere Application Server fragment cache. If multiple IBM HTTP Servers are
routing requests to a single application server, add the directives above to the httpd.conf file of each
of these IBM HTTP Servers for distributed platforms.

Disabling template-based invalidations during JSP reloads
By setting the Java virtual machine (JVM) com.ibm.ws.cache.CacheConfig.disableTemplateInvalidation
custom property to true, the template-based invalidations are disabled during JSP reloads.

About this task

To set any of these JVM custom properties, complete the following steps:

Procedure
1. In the administrative console, click Servers > Application servers >server_name > Process

definition > Java virtual machine > Custom properties > New.

2. Enter com.ibm.ws.cache.CacheConfig.disableTemplateInvalidation in the Name field.

3. Enter true in the Value field.

4. Save the property and restart WebSphere Application Server.

Dynamic cache provider for the JPA 2.0 second level cache
Learn to use the WebSphere Application Server dynamic cache service as a Java Persistence API (JPA)
second level (L2) cache provider. JPA 2.0 has standardized the L2 cache interface. WebSphere
Application Server supports the JPA standard. The dynamic cache service plugs in as a level 2 cache
provider to JPA. This topic describes how the L2 cache boosts the performance of your JPA application,
the advantages of using DynaCache as L2 cache provider and how to configure and monitor the dynamic
cache service for your JPA application in the WebSphere Application Server environment.

A dynamic cache JPA second level (L2) cache provider for JPA 2.0 shares entity states across various
persistence contexts, transactions and users. When caching is enabled, entities that are not found in the
persistence context are loaded from the L2 cache. L2 caching avoids database access for currently-loaded
entities. For more details about L2 caching, view the JPA 2.0 specification.

Attention: L2 caching increases the memory consumption of the application, therefore, it is important to
limit the size of the L2 cache. There is also a possibility of stale data for updated objects in a clustered
environment. Configure L2 caching for read-mostly, infrequently modified entities. L2 caches are not
recommended for frequently and concurrently updated entities.

JPA utilizes several configurable L2 caches to maximize performance. The JPA data cache is a cache of
persistent object data that operates at the EntityManagerFactory level. When enabled, the data cache is

356 Administering WebSphere applications



checked before making a trip to the datastore. Data is stored in the cache when objects are committed
and when persistent objects are loaded from the datastore. In addition to the data cache, JPA defines
service provider interfaces for a query cache.

The query cache stores the object IDs that are returned by query executions. When you run a query, JPA
assembles a key that is based on the query properties and the parameters that are used at launch time
and checks for a cached query result. If one is found, the object IDs in the cached result are looked up,
and the resulting persistence-capable objects are returned. Otherwise, the query is launched against the
database and the object IDs that are loaded by the query are placed into the cache. The object ID list is
not cached until the list that is returned at query launch time is fully traversed.

The WebSphere Dynamic cache cache provider provides an excellent alternative to the default concurrent
data and query cache providers on WebSphere Application Server, due to the value-added features that
the dynamic cache service brings, such as its own feature set and the capabilities that are inherited from
WebSphere Application Server. The dynamic cache provides the following advantages:

v Cluster distributed cache synchronization and replication through WebSphere Application Server data
replication service (DRS) and high-availability (HA) services.

v Sophisticated and advanced DataCache and QueryCache monitoring, tuning and administration of the
cache. The L2 cache will inherit the entire ecosystem of the available dynamic cache tooling.

v Native servant region z/OS support.

v Performs equally, if not better, to the default cache provider.

The JPA standard provides aliases as a mechanism to easily configure JPA plug-ins. The dynamic cache
level 2 cache provider for JPA 2.0 is typically configured with the dynacache alias. You can use the
dynacache alias for setting the DataCache and QueryCache properties of JPA. If the QueryCache property
is set to use dynacache, then the DataCache property will also use the dynacache alias. You can
configure the QueryCache and DataCache properties to use different types of cache providers. You can
set the QueryCache property to default and set the DataCache to use dynamic cache, or reverse. It is
ideal to use the WebSphere Application Server dynamic cache service for the DataCache, QueryCache,
and the DataCacheManager. If the DataCache is set to dynacache, then the RemoteCommitProvider does
nothing because DRS and HAM are leveraged to do the cache synchronization. You cannot enable the
QueryCache property separately from the DataCache. The QueryCache property benefits from the
availability of the DataCache property, where the entity data is cached.

Configuring the JPA dynamic cache L2 provider (basic method)

Enable the dynamic cache service as the level 2 cache provider for JPA 2.0 by setting some or all of the
following properties to dynacache: OpenJPA openjpa.QueryCache, openjpa.DataCache, and the
openjpa.DataCacheManager. This default configuration is a suitable default for most environments.
<property name="openjpa.DataCache" value="dynacache(CacheSize=1000)"/>
<property name="openjpa.QueryCache" value="dynacache"/>
<property name="openjpa.DataCacheManager" value="dynacache"/>

Table 26. Property names and aliases.. Fully-qualified property names and aliases for the dynamic cache.
Dynamic cache name Property name Alias

DataCache cache provider com.ibm.ws.cache.openjpa.
DynacacheDataCache

dynacache

QueryCache cache provider com.ibm.ws.cache.openjpa.
DynacacheQueryCache

dynacache

RemoteCommitProvider com.ibm.ws.cache.openjpa.
NoOpRemoteCommitProvider

none

DataCacheManager com.ibm.ws.cache.openjpa.
DynacacheDataCacheManager

dynacache

Chapter 8. Welcome to administering Dynamic caching 357



Configuring the JPA dynamic cache L2 provider (advanced method)

Configure the dynamic cache instance for the JPA 2.0 Level 2 data or query cache with additional or
advanced configuration properties in the persistent unit (advanced method). Enable the dynamic cache
service as the level 2 cache provider for JPA 2.0 by setting some or all of the following properties to
dynacache: OpenJPA openjpa.QueryCache, openjpa.DataCache, and openjpa.DataCacheManager
properties.
<property name="openjpa.DataCache" value="dynacache(CacheName="myJPACache",

CacheSize=1000,
EnableDiskOffload=true,
DiskCacheSizeInGB=4,
DiskOffloadLocation=c:\temp,
EnableCacheReplication=true)"/>

Table 27. Dynamic cache property names and values. Properties of the dynamic cache cache instance that can be
configured in the persistent unit.
Dynamic cache custom properties Default values

CacheName default

CacheSize 2000

EnableDiskOffload false

EnableCacheReplication false

DiskCacheSizeInGB not applicable

DiskOffloadLocation not applicable

ReplicationType 1 , 2 or 4. 1 means NOT_SHARED, 2 is PUSH and 4 is PUSH_PULL

Important: The properties in the table are not mandatory. If not specified, the dynamic cache service
assumes default values that are suitable for the majority of users.

The following example showcases the dynamic cache mbean operations in action to introspect the L2
cache:
wsadmin>set mbean [$AdminControl queryNames type=DynaCache,*]

wsadmin> $AdminControl invoke $mbean getCacheIDsInMemory {default \S}
66
71
10
A5614-67

wsadmin> $AdminControl invoke $mbean getJPACacheStatistics {OpenBooks openbooks.war OpenBooks default}
HIT_COUNT=0
TOTAL_HIT_COUNT=0
READ_COUNT=5
TOTAL_READ_COUNT=5
WRITE_COUNT=4
TOTAL_WRITE_COUNT=4

wsadmin> $AdminControl invoke $mbean getJPACacheStatistics {OpenBooks openbooks.war OpenBooks default openbook.domain.Customer}
HIT_COUNT=0
TOTAL_HIT_COUNT=0
READ_COUNT=0
TOTAL_READ_COUNT=0
WRITE_COUNT=1
TOTAL_WRITE_COUNT=1

You can also use the Extended Cache Monitor to view the contents of the cache ID and key values that
are placed in the cache by the JPA runtime.

Using the dynamic cache L2 cache provider in a clustered environment

Customers can define a cache-instance in the customary way in WebSphere Application Server and then
reference the name in the CacheName property of the JPA DataCache property value. You can define an
object cache instance using the cacheinstances.properties file, DistributedMapFactory, or the
administrative console.

358 Administering WebSphere applications



All properties are optional and if they are not specified, defaults properties are assumed. If the cache
instance does not exist, the dynamic cache service creates the cache instance. Advanced configuration for
a QueryCache Dynacache instance is completed in a similar manner.

The JPA data cache operates in both single-JVM and multi-JVM environments. Multi-JVM caching is
achieved through the use of the Data Replication Service (DRS) in a clustered WebSphere Application
Server, Network Deployment environment.

For entities and queries in the dynamic cache DataCache and QueryCache instances that are replicated
across servers in a WebSphere Application Server, Network Deployment environment using the Data
Replication Service, configure a replication domain and associate the replication domain with the cache
instance. The persistent unit must also have the openjpa.RemoteCommitProvider openJPA property set to
none.

Replicate an OpenJPA L2 dynamic cache instance, as follows:

1. Create a replication domain in the administrative console and associate the replication domain with
the baseCache cache instance on the dynamic cache service panel on all application servers that must
share the distributed cache. The dynamic cache service uses this replication domain to replicate data
across servers in the replication domain.

2. Configure the cache instance by setting the enableCacheReplication property to true when defining the
configuration of the cache instance. If you do not specify the replicationType property, the cache
instance is configured by default in the NOT_SHARED sharing mode, where only invalidations are
propagated. You can configure the cache instance in the NOT_SHARED, PUSH and PUSH_PULL
sharing types. Refer to the cache replication topic to learn more about this topic.

3. Set the com.ibm.ws.cache.CacheConfig.createCacheAtServerStartup JVM custom property to true on
all the application servers in the replication domain. This custom property helps the JPA cache
instances on servers bootstrap earlier and faster.

4. Create a shared library to make the entity classes available in the classpath of the application server
by defining a shared library and associating it with the server classloader. This step is necessary for
the dynamic cache service and DRS to deserialize the replicated entity objects. Refer to the Shared
library collection, Managing shared libraries, and Associating shared libraries with servers topics for
more information about shared libraries.

5. Set the openjpa.RemoteCommitProvider to none.

You might also use other RemoteCommitProvider implementations that are included with JPA 2.0 with
dynamic cache, specifically the following implementations:

v org.apache.openjpa.event.SingleJVMRemoteCommitProvider (configured with the "sjvm" alias)

v org.apache.openjpa.event.TCPRemoteCommitProvider

v org.apache.openjpa.event.JMSRemoteCommitProvider

Read more about remote and offline operation in the JPA documentation.

Attention: Configure dynamic cache with DRS for replication of JPA data and QueryCache objects and
using the NoOp RemoteCommitProvider property in a distributed or clustered environment.

Troubleshooting the JPA L2 cache

Look for the following messages in the log file when using the dynamic cache service as a JPA cache
provider:
# Significant dynamic cache OpenJPA messages in the SystemOut.log file
DYNA1081I: OpenJPA L2 DataCache Dynacache instance \"{0}\" created or retrieved successfully for persistent unit \"{1}\".

# Applicable only if QueryCache is enabled
DYNA1080I: OpenJPA L2 QueryCache Dynacache instance \"{0}\" created or retrieved successfully for persistent unit \"{1}\".

Chapter 8. Welcome to administering Dynamic caching 359



Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

360 Administering WebSphere applications



Chapter 9. Administering EJB applications

This page provides a starting point for finding information about enterprise beans.

Based on the Enterprise JavaBeans (EJB) specification, enterprise beans are Java components that
typically implement the business logic of Java 2 Platform, Enterprise Edition (J2EE) applications as well as
access data.

Deploying EJB 3.x enterprise beans

EJB module settings
Use this page to configure and manage a specific deployed EJB module.

Note: You cannot start or stop an individual EJB module for modification. You must start or stop the
appropriate application entirely.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage Modules > module_name.

Attention: If an application is running, changing an application setting causes the application to restart.
On stand-alone servers, the application restarts after you save the change. On multiple-server products,
the application restarts after you save the change and files synchronize on the node where the application
is installed. To control when synchronization occurs on multiple-server products, deselect Synchronize
changes with nodes on the Console preferences page.

URI
Specifies location of the module relative to the root of the application EAR file. The URI must match the
URI of a ModuleRef URI in the deployment descriptor of the deployed application (EAR).

Alternate deployment descriptor
Specifies an alternate deployment descriptor for the module as defined in the application deployment
descriptor according to the Java Platform, Enterprise Edition (Java EE) specification.

Starting weight
Specifies the order in which modules are started when the server starts. The module with the lowest
starting weight is started first.

If the application deployment descriptor specifies the <initialize-in-order>true</initialize-in-order>
element, the default starting weights reflect the order that is specified in the deployment descriptor.
Otherwise, the defaults are determined based on module type (RAR modules start before EJB modules,
which start before web modules).

Information Value
Data type Integer
Default 5000
Range Greater than 0

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

© Copyright IBM Corp. 2012 361



Default product locations - IBM i

These file paths are default locations. You can install the product and other components in any directory
where you have write access. You can create profiles in any valid directory where you have write access.
Multiple installations of WebSphere Application Server products or components require multiple locations.

app_client_root
The default installation root directory for the Application Client for IBM WebSphere Application
Server is the /QIBM/ProdData/WebSphere/AppClient/V85/client directory.

app_client_user_data_root
The default Application Client for IBM WebSphere Application Server user data root is the
/QIBM/UserData/WebSphere/AppClient/V85/client directory.

app_client_profile_root
The default Application Client for IBM WebSphere Application Server profile root is the
/QIBM/UserData/WebSphere/AppClient/V85/client/profiles/profile_name directory.

app_server_root
The default installation root directory for WebSphere Application Server - Express is the
/QIBM/ProdData/WebSphere/AppServer/V85/Express directory.

java_home

Table 28. Root directories for supported Java Virtual Machines.

This table shows the root directories for all supported Java Virtual Machines (JVMs).
JVM Directory

32–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit

64–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root
The default Web Server Plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver/profiles/profile_name directory.

plugins_root
The default installation root directory for Web Server Plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V85/webserver directory.

plugins_user_data_root
The default Web Server Plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver directory.

product_library
product_lib

This is the product library for the installed product. The product library for each Version 8.5
installation on the system contains the program and service program objects (similar to .exe, .dll,
.so objects) for the installed product. The product library name is QWAS85x (where x is A, B, C, and
so on). The product library for the first WebSphere Application Server Version 8.5 product installed
on the system is QWAS85A. The app_server_root/properties/product.properties file contains the
value for the product library of the installation, was.install.library, and is located under the
app_server_root directory.

profile_root
The default directory for a profile named profile_name for WebSphere Application Server - Express
is the /QIBM/UserData/WebSphere/AppServer/V85/Express/profiles/profile_name directory.

shared_product_library
The shared product library, which contains all of the objects shared by all installations on the
system, is QWAS85. This library contains objects such as the product definition, the subsystem
description, the job description, and the job queue.

362 Administering WebSphere applications



user_data_root
The default user data directory for WebSphere Application Server - Express is the
/QIBM/UserData/WebSphere/AppServer/V85/Express directory.

The profiles and profileRegistry subdirectories are created under this directory when you install
the product.
The user_data_root directory contains the default locations for WLP_USR_DIR and WLP_OUTPUT_DIR
when the Liberty profile is installed. These directories are user_data_root/wlp/usr and
user_data_root/wlp/output/servers, respectively.

web_server_root
The default web server path is /www/web_server_name.

Deploying EJB modules
When you deploy an Enterprise JavaBeans (EJB) module, you install that module on a server that has
been configured to support deployed modules.

Before you begin

Assemble one or more EJB modules, assemble one or more web modules, and assemble them into a
Java EE application.

For an overview about the changes to the EJB deployment model for EJB 3.x, see the topic EJB 3.x
deployment overview.

Procedure
1. Prepare the deployment environment. See the topic Preparing to host applications.

2. Update the configuration for each EJB module as needed for the deployment environment.

3. Required: If a module has dependencies on Java 5-specific extensions, such as generics, annotations,
and so on, then you must run the EJBDeplolycommand-line tool separately and before installing the
module or application containing it. This is because the administrative console and the wsadmin
command-line tool do not allow for specifying the ejbdeploy -complianceLevel 5.0 option.

It is only necessary to run the EJBDeploy tool for EJB 2.1 modules containing entity beans.

4. Address potential interoperability issues.

There can be unexpected results if a WebSphere stack product, or another product, that runs on a
version of Application Server that does not support EJB 3.x attempts to remotely invoke a method on
an EJB 3.x compliant enterprise bean on a separate server that is running a version Application Server
that supports EJB 3.x. If these products attempt to invoke a method through the enterprise bean's EJB
3.x remote business interface, they might encounter exceptions that were introduced in EJB 3.x that
will be pushed back to the environment that is not EJB 3.x compliant.

This scenario could also be an issue for an administrator of an environment that includes a
combination of stack products that contain a mixture of EJB 3.x compliant and non-compliant instances
of Application Server.

The following is a list of the exception classes that have been introduced in EJB 3.0:

v javax.ejb.ConcurrentAccessException

v javax.ejb.EJBAccessException

v javax.ejb.EJBTransactionRequiredException

v javax.ejb.EJBTransactionRolledbackException

v javax.ejb.NoSuchEJBException

a. Ensure that Application Server is updated to 7.0.0.3.

Chapter 9. Welcome to administering EJB applications 363



b. Manually copy the <app_server_root>/runtimes/ejb3exceptions.jar file from Application Server to a
directory on each of the stack products installations, or other product installations, that you will use
as the EJB 3.x client.

c. Ensure that the directory that contains the ejb3exceptions.jar file is in the class path. One possible
location for the JAR file that would satisfy this requirement is the <app_server_root>/lib directory on
a server that is not EJB 3.x compliant.

Note: Just like the EJB thin client jars, if an update becomes available, users must copy the
ejb3exceptions.jar file again after installing the version of the WebSphere Application Server
containing the updated version.

5. Deploy the application. See the topic Deploying and administering enterprise applications.

What to do next

If you specify that the EJBDeploy tool be run during application installation and the installation fails with a
NameNotFoundException message, ensure that the input Java archive (JAR) or enterprise archive (EAR)
file does not contain source files. Either remove the source files or include all dependent classes and
resource files on the class path. If there are source files in the input JAR or EAR file, the EJB deployment
tools runs a rebuild before generating the deployment code.

If the module deploys successfully, test and debug the module. See the topic Diagnosing problems (using
diagnosis tools).

EJB 3.0 and EJB 3.1 deployment overview
Learn about the Enterprise JavaBeans (EJB) 3.0 and 3.1 deployment model, including Just-In-Time (JIT)
deployment.

All Java Enterprise Edition (Java EE ) application server products have some form of EJB deployment
phase in which your application is customized to run in that particular implementation of the application
server. Typically, this is accomplished by a deployment tool that is specific to the application server and
generates code to bridge your EJB interface and implementation code to the application server's
implementation for an EJB container. Some application server products' deployment tools alter the
bytecodes of your application classes, rather than generating code, but the end result is similar.

Application Server bridges your EJB interface with its implementation by generating code that
encapsulates your EJB implementation classes, connecting them to Application Server's EJB container.
This enables the EJB container to host your enterprise beans and provide services to them. If one or more
of your enterprise beans has remote interfaces defined, Application Server generates additional code to
provide the remote function.

For more information about packaging your EJB module, see the topic that covers the EJB 3.x module
packaging overview.

EJBDeploy Tool

Historically, EJB deployment in the Application Server product has been performed by the EJBDeploy tool,
which is included with WebSphere Application Server and packaged with the development tools for the
WebSphere products.

The EJBDeploy tool introspects the external interfaces for your enterprise beans, generates the wrapper
code as .java files, and compiles the code using the javac compiler to produce .class files that are
packaged in your EJB module with your application code. The EJBDeploy tool also runs the rmic tool
against the remote EJB interfaces in the application, producing additional stub and tie class files that
interact with the Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) Object Request
Broker (ORB), providing remote object support.

364 Administering WebSphere applications



For modules previous to EJB 3.0, you ran the EJBDeploy tool when you installed the application on
Application Server or before you installed the application from the command-line tool or a development
tool.

Just-In-Time (JIT) deployment

EJB 3.0 support in Application Server introduced a new feature called JIT deployment.

With JIT deployment, the EJB container dynamically generates the wrapper, stub, and tie classes
in-memory when the application is running. Additionally, the web container and application client containers
dynamically generate the stub class that is required for remote EJB invocations.

Effectively, this means that you do not need to process EJB 3.0 or 3.1 modules, web modules that invoke
EJB 3.0 or 3.1 beans, or client modules that invoke EJB 3.0 or 3.1 beans through the EJBDeploy tool
before you run them in Application Server.

createEJBStubs tool

In most cases the Just-In-Time deployment feature can dynamically generate the RMI-IIOP stub classes
that are required for invocation of remote EJB interfaces. There are some instances in which these stub
classes are not dynamically generated. For EJB 3.0 or 3.1 clients that are not running inside an EJB 3.x
enabled web container, EJB container, or client container, you must generate the stub classes with the
createEJBStubs tool and ensure that the generated stubs are available in the client environment's class
path. Typically, you would accomplish this by copying the generated stubs to the location where the client's
business interface class resides.

The createEJBStubs tool must be used to generate client-side stubs for the following environments:

v "Bare" Java Standard Edition (SE) clients, where a Java SE Java Virtual Machine (JVM) is the client
environment.

v Containers in Application Server environments prior to Version 7 that do not have the Feature Pack for
EJB 3.0 applied.

v Environments that are not WebSphere Application Server environments.

Interoperability

There can be unexpected results if a WebSphere stack product, or another product, that runs on a version
of Application Server that does not support EJB 3.0 or 3.1 attempts to remotely invoke a method on an
EJB 3.x compliant enterprise bean on a separate server that is running a version Application Server that
supports EJB 3.0 or 3.1. If these products attempt to invoke a method through the enterprise bean's EJB
3.x remote business interface, they might encounter exceptions that were introduced in EJB 3.0 that will
be pushed back to the environment that is not EJB 3.x compliant.

This scenario could also be an issue for an administrator of an environment that includes a combination of
stack products that contain a mixture of EJB 3.x compliant and non-compliant instances of Application
Server.

The following is a list of the exception classes introduced in EJB 3.0:

v javax.ejb.ConcurrentAccessException

v javax.ejb.EJBAccessException

v javax.ejb.EJBTransactionRequiredException

v javax.ejb.EJBTransactionRolledbackException

v javax.ejb.NoSuchEJBException

Refer to the EJB module deployment step to address potential interoperability issues.

Chapter 9. Welcome to administering EJB applications 365



EJB 2.x Modules

EJB 2.x modules that have been converted to be EJB 3.0 or EJB 3.1 modules should have all WebSphere
Application Server generated files (including stub and tie classes) removed prior to EJB deployment in the
Application Server product.

EJBDEPLOY relationships – troubleshooting tips
Use this information to troubleshoot information for EJBDEPLOY problems.

The converter that is defined for the primary key is not invoked on its foreign key
value

The mapping for primary key fields to database columns may use a converter to transform the key values.
If a container-managed persistence (CMP) bean uses a converter to map its primary key, and that bean
has a relationship where the bean at the other end holds a foreign key, the mapping for the foreign key will
not use the converter.

The following errors might occur, indicating that the converter defined for the primary key is not invoked on
its foreign key value. During the run of the ejbDeploy command , you receive the following message:
No type mapping defined for Java datatype1 to Database datatype2

During run time, the application does not find the CMP bean at the other end of the relationship.

To work around this limitation, define your own foreign key in the database table, and create a mapping
that uses the same converter as defined for the primary key on the enterprise beans at the other end of its
relationship.

Directory conventions
References in product information to app_server_root, profile_root, and other directories imply specific
default directory locations. This article describes the conventions in use for WebSphere Application Server.

Default product locations - IBM i

These file paths are default locations. You can install the product and other components in any directory
where you have write access. You can create profiles in any valid directory where you have write access.
Multiple installations of WebSphere Application Server products or components require multiple locations.

app_client_root
The default installation root directory for the Application Client for IBM WebSphere Application
Server is the /QIBM/ProdData/WebSphere/AppClient/V85/client directory.

app_client_user_data_root
The default Application Client for IBM WebSphere Application Server user data root is the
/QIBM/UserData/WebSphere/AppClient/V85/client directory.

app_client_profile_root
The default Application Client for IBM WebSphere Application Server profile root is the
/QIBM/UserData/WebSphere/AppClient/V85/client/profiles/profile_name directory.

app_server_root
The default installation root directory for WebSphere Application Server - Express is the
/QIBM/ProdData/WebSphere/AppServer/V85/Express directory.

java_home

366 Administering WebSphere applications



Table 29. Root directories for supported Java Virtual Machines.

This table shows the root directories for all supported Java Virtual Machines (JVMs).
JVM Directory

32–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit

64–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root
The default Web Server Plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver/profiles/profile_name directory.

plugins_root
The default installation root directory for Web Server Plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V85/webserver directory.

plugins_user_data_root
The default Web Server Plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V85/
webserver directory.

product_library
product_lib

This is the product library for the installed product. The product library for each Version 8.5
installation on the system contains the program and service program objects (similar to .exe, .dll,
.so objects) for the installed product. The product library name is QWAS85x (where x is A, B, C, and
so on). The product library for the first WebSphere Application Server Version 8.5 product installed
on the system is QWAS85A. The app_server_root/properties/product.properties file contains the
value for the product library of the installation, was.install.library, and is located under the
app_server_root directory.

profile_root
The default directory for a profile named profile_name for WebSphere Application Server - Express
is the /QIBM/UserData/WebSphere/AppServer/V85/Express/profiles/profile_name directory.

shared_product_library
The shared product library, which contains all of the objects shared by all installations on the
system, is QWAS85. This library contains objects such as the product definition, the subsystem
description, the job description, and the job queue.

user_data_root
The default user data directory for WebSphere Application Server - Express is the
/QIBM/UserData/WebSphere/AppServer/V85/Express directory.

The profiles and profileRegistry subdirectories are created under this directory when you install
the product.
The user_data_root directory contains the default locations for WLP_USR_DIR and WLP_OUTPUT_DIR
when the Liberty profile is installed. These directories are user_data_root/wlp/usr and
user_data_root/wlp/output/servers, respectively.

web_server_root
The default web server path is /www/web_server_name.

Administering entity beans

Enterprise beans back up and recovery best practices
The following items should be considered for backup when using enterprise beans.

Chapter 9. Welcome to administering EJB applications 367



Database data

Enterprise beans often use a database for back-end persistence. Container-managed persistence (CMP)
entity beans always use a database for back-end persistence. This data should be backed up the same as
any of your business data.

The collection for container-managed entity beans persistence is determined by either the schema name
specified during deployment, or the schema specified on the data source associated with the enterprise
bean. Any persistent store used by session and bean-managed beans is defined by the bean
implementation. For database tables, you can choose to save the entire collection or an individual table as
shown with the following commands, respectively:
SAVLIB LIB(EJB) DEV(*SAVF) SAVF(WSALIB/WSASAVF)
SAVOBJ OBJ(MYBEANTBL) LIB(EJB) DEV(*SAVF) OBJTYPE(*FILE) SAVF(WSALIB/WSASAVF)

It might be possible to save database objects while the product is active, if the save operation can obtain a
snapshot of the data store. You may have to shut down if a snapshot cannot be obtained. This occurs if
there are requests that obtain locks or have open transactions against the database being saved.

Enterprise JavaBeans (EJB) source code, class files, and deployed code

When you deploy enterprise beans, a WebSphere Application Server-specific implementation of the
enterprise beans is generated. Save these deployed Java(TM) Archive (JAR) files to avoid redeploying,
and to preserve any binding information that was specified during the application installation. The JAR
files, application code and configuration, such as bindings, are located by default in the
profile_root/installedApps directory. By saving this directory, you save your installed applications, including
HTML, servlets, JavaServer Pages(TM) (JSP(TM)) files, and enterprise beans. Normally, each application
is located in a separate subdirectory, so you can choose to save all applications or a subset.

Note: The commands below have been wrapped for display purposes. Enter each as a single command.

This command saves all installed applications:
SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)
OBJ((’/profile_root/installedApps’))

This command saves the sampleApp application only:
SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)
OBJ((’/profile_root/installedApps/cellName/sampleApp.ear’))

If you have located utility or general purpose classes in other directories, such as /profile_root/lib/app or
/profile_root/lib/ext, be sure to include those locations in your backup plan as well.

Administrative configuration

For more information, see the topic Introduction: Administrative configuration data.

Managing EJB containers
Each application server can have a single Enterprise JavaBeans (EJB) container; one is created
automatically for you when the application server is created. The following steps are to be performed only
as needed to improve performance after the EJB application has been deployed.

Procedure
1. Adjust EJB container settings.

2. Adjust EJB cache settings.

368 Administering WebSphere applications



What to do next

If adjustments do not improve performance, consider adjusting access intent policies for entity beans,
reassembling the module, and redeploying the module in the application.

EJB containers
An Enterprise JavaBeans (EJB) container provides a run-time environment for enterprise beans within the
application server. The container handles all aspects of an enterprise bean's operation within the
application server and acts as an intermediary between the user-written business logic within the bean and
the rest of the application server environment.

One or more EJB modules, each containing one or more enterprise beans, can be installed in a single
container.

The EJB container provides many services to the enterprise bean, including the following:
v Beginning, committing, and rolling back transactions as necessary.
v Maintaining pools of enterprise bean instances ready for incoming requests and moving these instances

between the inactive pools and an active state, ensuring that threading conditions within the bean are
satisfied.

v Most importantly, automatically synchronizing data in an entity bean's instance variables with
corresponding data items stored in persistent storage.

By dynamically maintaining a set of active bean instances and synchronizing bean state with persistent
storage when beans are moved into and out of active state, the container makes it possible for an
application to manage many more bean instances than could otherwise simultaneously be held in the
application server's memory. In this respect, an EJB container provides services similar to virtual memory
within an operating system.

WebSphere Application Server provides significant flexibility in the management of database data with
entity beans. The Entity EJBs Activate at and Load at configuration settings specify how and when to load
and cache data from the corresponding database row data of an enterprise bean. These configuration
settings provide the capability to specify enterprise bean caching Options A, B or C, as specified in the
EJB 1.1 specifications. You can configure these settings with assembly tools. To read more about how to
use the assembly tools see the assembly tool information center.

Option A provides maximum enterprise bean performance by caching database data outside of the
transaction scope. Generally, Option A is only applicable where the EJB container has exclusive access to
the given database. Otherwise, data integrity is compromised. Option B provides more aggressive caching
of Entity EJB object instances, which can result in improved performance over Option C, but also results in
greater memory usage. Option C is the most common real-world configuration for Entity EJBs and is the
default setting.

The Activate at setting specifies the point at which an enterprise bean is activated and placed in the
cache. Removal from the cache and passivation are also governed by this setting. Valid values are Once
and Transaction. The Once setting indicates that the bean is activated when it is first accessed in the
server process, and passivated (and removed from the cache) at the discretion of the container, for
example when the cache becomes full. The Transaction setting indicates that the bean is activated at the
start of a transaction and passivated (and removed from the cache) at the end of the transaction. The
default value is Transaction.

The Load at setting specifies when the bean loads its state from the database. The value of this property
implies whether the container has exclusive or shared access to the database. Valid values are
Activation and Transaction. Activation indicates the bean is loaded when it is activated and implies that
the container has exclusive access to the database. Transaction indicates that the bean is loaded at the
start of a transaction and implies that the container has shared access to the database. The default is

Chapter 9. Welcome to administering EJB applications 369

http://publib.boulder.ibm.com/infocenter/radhelp/v7r0m0/index.jsp?topic=


Transaction. The settings of the Activate at and Load at properties govern which commit options are
used. For Option A (exclusive database access), use Activate at = Once and Load at = Activation. This
option reduces database input/output by avoiding calls to the ejbLoad function, but serializes all
transactions accessing the bean instance. Option A can increase memory usage by maintaining more
objects in the cache, but can provide better response time if bean instances are not generally accessed
concurrently by multiple transactions.

Important: When using WebSphere WebSphere Application Server, Network Deployment and workload
management is enabled, Option A cannot be used.

You must use settings that result in the use of Options B or C. For Option B (shared database access),
use Activate at = Once and Load at = Transaction. Option B can increase memory usage by
maintaining more objects in the cache. However, because each transaction creates its own copy of an
object, there can be multiple copies of an instance in memory at any given time (one per transaction),
requiring the database be accessed at each transaction. If an enterprise bean contains a significant
number of calls to the ejbActivate function, using Option B can be beneficial because the required object is
already in the cache. Otherwise, this option does not provide significant benefit over Option A. For Option
C (shared database access), use Activate at = Transaction and Load at = Transaction. This option
can reduce memory usage by maintaining fewer objects in the cache. However, there can be multiple
copies of an instance in memory at any given time (one per transaction). This option can reduce
transaction contention for enterprise bean instances that are accessed concurrently but not updated.

This product supports the cloning of stateful session bean home objects among multiple application
servers. However, it does not support the cloning of a specific instance of a stateful session bean. Each
instance of a particular stateful session bean can exist in just one application server and can be accessed
only by directing requests to that particular application server. State information for a stateful session bean
cannot be maintained across multiple members of a server cluster. However, enabling stateful session
bean failover and configuring the EJB container to use memory-to-memory replication does enable stateful
session bean failover to be replicated to other servers in the cluster so that failover can occur to the
backup server if the primary server for a stateful session bean stops for some reason. For more
information about stateful session bean failover, see Stateful session bean failover for the EJB container.

By default, an EJB container runs in the quick start mode. The EJB container startup logic delays the
loading and processing of all EJB types except Message Driven Beans, because message driven beans
must exist before messages are posted for them; Startup Beans, which must be processed when the
server starts; and EJB types that you specify to initialize when the server starts. .

All other EJB initialization is delayed until the first use of the EJB type. When using local interfaces, the
first use is when you perform an InitialContext.lookup method for the type. For remote interfaces, it is
when you call the first method on an EJB or its Home.

EJB container settings
Use this page to configure and manage the EJB container of this application server.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > EJB Container Settings > EJB container.

Passivation directory
Specifies the directory into which the container saves the persistent state of passivated stateful session
beans. This directory must already exist. It is not automatically created.

Stateful session beans with an activation policy of TRANSACTION are passivated at the end of the
transaction in which they are enlisted, and stateful session beans with an activation policy of ONCE
(default) are passivated when the number of active bean instances becomes greater than the cache size
specified in the container configuration. When a stateful bean is passivated, the container serializes the
bean instance to a file in the passivation directory and discards the instance from the bean cache. If, at a

370 Administering WebSphere applications



later time, a request arrives for the passivated bean instance, the container retrieves it from the
passivation directory, deserializes it, returns it to the cache, and dispatches the request to it. If any step
fails (for example, if the bean instance is no longer in the passivation directory), the method invocation
fails.

Inactive pool cleanup interval
Specifies the interval at which the container examines the pools of available bean instances to determine if
some instances can be deleted to reduce memory usage. This setting is for all bean pools. Attention:
Stateful session beans are NOT pooled, so this applies to stateless session and entity bean pools.

Information Value
Data type Integer
Default 30000
Units Milliseconds
Range 0 to 2 147 483 647

Default data source JNDI name
Specifies the JNDI name of a data source to use if no data source is specified during application
deployment. This setting is not applicable for EJB 2.x-compliant CMP beans.

Servlets and enterprise beans use data sources to obtain these connections. When configuring a
container, you can specify a default data source for the container. This data source becomes the default
data source used by any entity beans installed in the container that use container-managed persistence
(CMP).

The default data source for a container is secure. When specifying it, you must provide a user ID and
password for accessing the data source.

Specifying a default data source is optional if each CMP entity bean in the container has a data source
specified in its configuration. If a default data source is not specified and a CMP entity bean is installed in
the container without specifying a data source for that bean, applications cannot use that CMP entity bean.

Enable stateful session bean failover using memory-to-memory replication
Specifies that failover is enabled for all stateful session beans installed in this EJB container.

This checkbox is disabled until you define a replication domain. This selection has a hyperlink to help you
configure the replication settings. If no replication domains are configured, the link takes you to a panel
where you can create one. If at least one domain is configured, the link takes you to a panel where you
can select the replication settings to be used by the EJB container.

Information Value
Data type Checkbox
Default Unselected
Range Selected or unselected.

Initial state
Specifies the execution state requested when the server first starts.

Information Value
Data type String
Default Started
Range Valid values are Started and Stopped

Chapter 9. Welcome to administering EJB applications 371



EJB container system properties
In addition to the settings that are accessible from the administrative console, you can set EJB system
properties using command-line scripting.

You can use the properties page to define the following EJB container system properties:

v “com.ibm.websphere.ejbcontainer.allowEarlyInsert”

v “com.ibm.websphere.ejbcontainer.checkEJBApplicationConfiguration”

v “com.ibm.websphere.ejbcontainer.declaredUncheckedAreSystemExceptions” on page 373

v “com.ibm.websphere.ejbcontainer.defaultSessionAccessTimeout” on page 373

v “com.ibm.websphere.ejbcontainer.defaultStatefulSessionTimeout” on page 373

v “ com.ibm.websphere.ejbcontainer.EE5Compatibility ” on page 374

v “com.ibm.websphere.ejbcontainer.limitSetRollbackOnlyBehaviorToInstanceFor” on page 375

v “com.ibm.websphere.ejbcontainer.poolSize” on page 375

com.ibm.websphere.ejbcontainer.allowEarlyInsert

This property is applicable to container managed persistence (CMP) 1.1 beans only. By default, the EJB
container creates the entity bean representation in the database only after the method, ejbPostCreate(...),
is called.

Note: CMP beans are not supported in EJB 3.x modules.

Some applications might rely on method, ejbCreate(...), to have created the entity bean in the database.
For such a requirement, setting the JVM property, com.ibm.websphere.ejbcontainer.allowEarlyInsert, to
true overrides the default behavior.

com.ibm.websphere.ejbcontainer.checkEJBApplicationConfiguration

Specifies a server-wide setting that indicates the container should complete additional application
configuration validation to ensure the application is consistent with the Java Platform, Enterprise Edition
(Java EE) specification.

Note: You can also specify this property as an application custom property.

This property is intended for use during development of an application to assist in identifying improper
configurations, which might result in unexpected behavior. For example, applying the
javax.ejb.Asynchronous annotation to an interface is not supported by the specification and is typically
ignored. When this property is enabled, an error is logged, and an exception occurs when the bean is
processed. This failure is useful during development to understand why the methods are not working
asynchronously.

Additional configuration validation is completed and might result in multiple configuration warnings and
errors being logged when this property is enabled. Typically, this additional validation is for scenarios that
incur extra overhead to run, which is unnecessary for stable applications on a production server. For minor
deviations from the specification, only warnings are logged. For more significant issues, an error is logged,
and the application cannot run until the error is corrected.

Note: When the com.ibm.websphere.ejbcontainer.checkEJBApplicationConfiguration property is enabled,
some of the issues that were reported as warnings are displayed as errors, which prevents the
application from starting.

372 Administering WebSphere applications



Note: The embeddable container and servers configured for development mode perform the additional
validation that is associated with this property; however, all identified issues are reported as
warnings, rather than errors, unless this property is specifically enabled.

com.ibm.websphere.ejbcontainer.declaredUncheckedAreSystemExceptions

This property enables you to indicate whether exceptions that are declared on the throws clause of an EJB
method should are treated as application exceptions or as system runtime exceptions. When this property
is set to true, these exceptions are treated like system runtime exceptions, and causes an EJBException
to be issued on the client side.

If this property is not specified, or if this property is set to false, exceptions that are declared on the
throws clause of an EJB method are treated as application exceptions.

The default value for this property is false.

transition: In Version 7, the default value for this property is true.

com.ibm.websphere.ejbcontainer.defaultSessionAccessTimeout

This property enables you to specify the default session concurrency access timeout value for all session
beans on a server. The value is specified in milliseconds.

Specify a Long data type value to disable or enable session concurrency:

v A 0 value disables session concurrency (no wait).

v A positive long value (1, 2, 3, and so on) enables session concurrency and sets the timeout value to the
specified milliseconds.

If this property is set, the specified session bean concurrency access timeout is used server wide instead
of the default value of -1 (wait forever). This applies to both stateful and singleton session beans. At the
individual session bean level, the timeout can be overridden using the @AccessTimeout annotation on the
bean class or method or using the access-timeout deployment descriptor element.

com.ibm.websphere.ejbcontainer.defaultStatefulSessionTimeout

Specifies a server-wide timeout for stateful session beans, which indicates how long a stateful session
bean is retained by the server.

Note: The property applies only to EJB 3.1 modules and later.

This is a system property that you can add directly to the server.xml file or as a generic JVM argument
using the administrative console.

The property is specified in minutes, the only valid unit. The default value is 10 minutes. A value of zero
specifies that the server uses the default value of 10 minutes. A negative value is not valid. Any zero or
greater value is valid. If a non-valid value is specified, a warning is issued to SystemOut, and the default
value is used.

The stateful session bean timeout duration can be specified on a per-bean basis using annotations or xml.
If a timeout duration is explicitly specified for a particular bean, this takes precedence over any server-wide
timeout setting.

If no bean-specific timeout duration exists for a particular bean, then the server-wide timeout setting is
applied to that bean.

Chapter 9. Welcome to administering EJB applications 373



If no bean-specific timeout duration exists for a particular bean, and no server-wide timeout setting exists,
then the default timeout setting is applied to that bean.

com.ibm.websphere.ejbcontainer.EE5Compatibility

Specifies a server-wide setting that indicates the EJB container provides default behaviors that are
consistent with the Java Enterprise Edition (Java EE) 5.0 specification.

This is a system property that you can add directly to the server.xml file or as a generic JVM argument
using the administrative console.

The Java EE specification includes improvements to the EJB programming model that have resulted in
minor changes to some default behaviors. In general, these changes provide more intuitive or more
reliable behavior. However, if an application has been written to rely on one or more of the Java EE 5.0
behaviors, this system property might be set to revert the EJB container back to the Java EE 5.0 default
behaviors.

Setting the property to true overrides the following behaviors:

v @ApplicationException annotations are not inherited. Starting with the Java EE 6.0 specification, the
default behavior for the @ApplicationException annotation was changed, indicating that the annotation
is inherited by subclass exception classes. When this system property is specified, the
@ApplicationException annotation is not inherited by subclass exception classes. Alternatively, you can
change the @ApplicationException declaration to specify 'inherited=false'.

v Concurrent access to stateful session beans is prohibited, and results in the exception,
javax.ejb.ConcurrentAccessException. Starting with the Java EE 6.0 specification, the default behavior
for stateful session concurrency was changed to allow concurrent access, though each concurrent
request is serialized by the container, blocking access to the bean instance indefinitely until the instance
lock may be obtained. When this system property is specified, all stateful session beans that do not
have an explicit access-timeout value specified assume the default access-timeout value of 0 (the Java
EE 5.0 default). Alternatively, you can modify the stateful session bean to define an access-timeout
value of 0.

v The Java type, Class, and any subclass of Enum are treated as resource environment references
instead of simple environment entries. Starting with the Java EE 6.0 specification, the Java type, Class,
and any subclass of Enum were added to the set of supported simple environment entry types. In prior
versions of Java EE, these types would have been treated as resource environment references and a
binding would have been required in the ibm-ejb-jar-bnd.xml file or ibm-web-bnd.xml file. Now that
these data types are supported as simple environment entries, a platform-specific binding is no longer
required. Instead, you can specify the value directly in the deployment descriptor. When this system
property is specified, applications that use the javax.annotation.Resource annotation for the Java type,
Class, or any subclass of Enum is treated as resource environment references, and the referenced
value will be obtained using the binding file information. Installing the application is not effected by this
property, and therefore, binding information is not entered during installation. Instead, you must
manually enter the binding information in the binding file.

com.ibm.websphere.ejbcontainer.extendSetRollbackOnlyBehaviorToInstanceFor

This property allows the user to specify application names in which they want to have the EJBs in their
EJB 3.x modules demonstrate the pre-EJB 3.0 setRollbackOnly behavior.

The pre-EJB 3.0 setRollbackOnly behavior is described in “Changing applications to WebSphere “version
specific” setRollbackOnly behavior” on page 376.

374 Administering WebSphere applications



com.ibm.websphere.ejbcontainer.limitSetRollbackOnlyBehaviorToInstanceFor

This property allows the user to specify application names in which they want to have the EJBs in their
EJB 3.x modules demonstrate the EJB 3.x setRollbackOnly behavior.

The EJB 3.x setRollbackOnly behavior is described in “Changing applications to WebSphere “version
specific” setRollbackOnly behavior” on page 376.

com.ibm.websphere.ejbcontainer.poolSize

Specifies the size of the pool for the specified bean type. This property applies to stateless,
message-driven, and entity beans. If you do not specify a default value, the container default value, 50
and 500, are used.

Set the pool size for a given entity bean as:
beantype=[H]min,[H]max [:beantype=[H]min,[H]max...]

The beantype element is the Java EE name of the bean, formed by concatenating the application name,
the # character, the module name, the # character, and the name of the bean, that is, the string assigned
to the <ejb-name> field in the deployment descriptor of the bean. The min and max elements are the
minimum and maximum pool sizes for that bean type. Do not specify the square brackets shown in the
previous prototype; they denote optional additional bean types that you can specify after the first bean
type. Each bean type specification is delimited by a colon (:).

Use an asterisk (*) as the value of beantype to indicate that all bean types are to use those values unless
overridden by an exact bean-type specification somewhere else in the string; for example:
*=30,100

To specify a default value, omit either the min or max value but retain the comma (,) between the two
values; for example:

Note: The following example displayed on multiple lines for publication purposes.
SMApp#PerfModule#TunerBean=54,

:SMApp#SMModule#TypeBean=100,200

You can specify the bean types in any order within the string.

You can designate the maximum configured EJB pool size as a hard limit by inserting the character, H,
directly in front of the max value. Without the H character, the maximum value indicates how many EJB
instances can be pooled and does not limit the number of EJB instances that can be created or in use.
Inserting the H character before the max value indicates a hard limit, and the EJB container blocks
creation of more instances when that limit is reached. Further threads must wait until an instance becomes
available or until the transaction times out.

You can designate the minimum configured EJB pool size as a hard limit by inserting the character, H,
directly in front of the min value. Without the H character, the minimum value indicates how many EJB
instances are maintained in the pool when the EJB type is not actively in use, but does not preload the
pool when the application is started. Typically, the minimum pool size is not reached until the minimum
number of EJB instances has been accessed concurrently by the application. Inserting the H character
before the min value indicates a hard limit, and the EJB container preloads the pool with the minimum
number of EJB instances when the application is started.

For example, if you want to indicate that no more than 200 EJB instances are created, and that additional
requests must wait for an instance and might time out while waiting, then enter:
SMApp#SMModule#TypeBean=100,H200

Chapter 9. Welcome to administering EJB applications 375



If you want to indicate that the EJB container preloads the pool with a minimum of 100 EJB instances
when the application is started, then enter:
SMApp#SMModule#TypeBean=H100,200

Note: The hard limit indicator is only available to EJB Version 2.0 or higher stateless session beans.

Changing enterprise bean types to initialize at application start time
using the administrative console
All Enterprise JavaBeans (EJB) types within a server can be forced to initialize at application start time by
setting a system property within the administrative console.

About this task

If the value of this property is set to true, then all beans within the server are initialized at each
application's start time.

However, by default, the product's EJB container delays the initialization (loading of classes and
processing of deployment descriptor metadata) of most EJB types until they are needed during run time.
This delay helps to speed up the application start time.

Procedure
1. Open the administrative console.

2. Select Servers.

3. Select Application Servers.

4. Select the server you want to configure.

5. In the Server Infrastructure area, select Java and Process Management.

6. In the Server Infrastructure area, select Process Definition.

7. In the Additional Properties area, select Java Virtual Machine.

8. In the Additional Properties area, select Custom Properties.

9. Select the New box.

10. In the Name entry field, type com.ibm.websphere.ejbcontainer.initializeEJBsAtStartup.

11. In the Value entry field, type true. Entering true causes all Enterprise JavaBeans to initialize when
your application starts. Entering false causes initialization of all beans to be delayed.

Note: Setting com.ibm.websphere.ejbcontainer.initializeEJBsAtStartup to either true or false takes
precedence over any Start EJB at Application Start settings made on individual EJB types.

12. Select OK.

What to do next

This task can also be done by using an assembly tool.

Changing applications to WebSphere “version specific”
setRollbackOnly behavior
Use this task to allow post-EJB 3.0 applications to exhibit the pre-EJB 3.0 behavior and to allow pre-EJB
3.0 applications to exhibit post-EJB 3.0 behavior. The steps in this task that provide this processing
behavior are based on a very specific processing scenario, which is explained below.

About this task

Processing Scenario: The basis for this task is the following processing scenario.

376 Administering WebSphere applications



An EJB method is invoked which starts a global transaction. Within the execution of this method another
EJB method is invoked that continues to run within the same transaction. During the execution of this
method, the setRollbackOnly() method is invoked. The EJB Container behavior when this scenario is
encountered is dictated by the EJB Specification. However, this behavior was required to change in the
WebSphere Application Server for EJB 3.0 support.

Section 13.6.2.8 of JSR 220: Enterprise JavaBeans™,Version 3.0 EJB Core Contracts and Requirements
document, as well as previous versions of the EJB specification, indicates that

“If the container initiated the transaction immediately before dispatching the business method to the
instance (as opposed to the transaction being inherited from the caller), the container must note that the
instance has invoked the setRollbackOnly method. When the business method invocation completes, the
container must roll back rather than commit the transaction. If the business method has returned normally
or with an application exception, the container must pass the method result or the application exception to
the client after the container performed the rollback.” Also, section 14.3.11 states: “However, the container
should not throw the javax.ejb.EJBException or java.rmi.RemoteException or if the container performs a
transaction rollback because the instance has invoked the setRollbackOnly method on its EJBContext
object. In this case, the container must rollback the transaction and pass the business method result or the
application exception thrown by the business method to the client.”

Historically, the WebSphere Application Server has interpreted the above sections of the specification to
dictate that the setRollbackOnly behavior should only applied if the transaction was marked as
RollbackOnly within the method that began the transaction. However, the Compatibility Test Suite for the
EJB 3.0 specification requires that a transaction marked as RollbackOnly exhibit the above
setRollbackOnly behavior, regardless of whether the transaction was marked as RollbackOnly within the
method that began the transaction, or within another method within the same transaction that was invoked
from the original EJB method.

To illustrate this requirement, consider the following example:

v An application invokes a method, art, on EJB A with Container Managed Transaction support,
TX_REQUIRED.

v The container begins a transaction and invokes the method.

v Method A.art() invokes a method, bob, on EJB B with Container Managed Transaction support,
TX_REQUIRED.

v Within B.bob() the setRollbackOnly method is invoked on the transaction and then completes.

Behavior prior to EJB 3.0: Since the transaction is not initiated with the B.bob() method, a
TranactionRolledbackException is thrown to A.art() and eventually to the client application.

Behavior introduced in EJB 3.0 and beyond: Method B.bob() returns normally to method A.art().
Method A.art() performs a rollback on the transaction and return the results to the client with no
exception thrown to the client application, as indicated by the EJB specification.

Since this processing introduces a change in behavior for applications that are migrated to EJB 3.0 or
beyond from a previous version, the following JVM system properties are available to change this behavior
to suit your requirements:

v com.ibm.websphere.ejbcontainer.limitSetRollbackOnlyBehaviorToInstanceFor : This property allows
the user to specify application names in which they want to have the EJBs in their EJB 3.0 modules
demonstrate the pre-EJB 3.0 setRollbackOnly behavior described above.

v com.ibm.websphere.ejbcontainer.extendSetRollbackOnlyBehaviorBeyondInstanceFor : This property
allows the user to specify application names in which they want to have the EJBs in their pre-EJB 3.0
modules demonstrate the EJB 3.0 setRollbackOnly behavior described above.

The values of these properties are set to the application names (appName1:appName2:appName3) that
need to demonstrate the desired behavior.

Chapter 9. Welcome to administering EJB applications 377

http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://java.sun.com/developer/technicalArticles/JCPtools/


Procedure
1. Open the administrative console.

2. Select Servers.

3. Select Server Types.

4. Select WebSphere application servers.

5. Select the server that you want to configure.

6. Under Server infrastructure, select Java and Process Management > Process Definition.

7. Under Additional properties, select Java virtual machine > Custom properties > New.

8. In the Name entry field, type the JVM system property.

com.ibm.websphere.ejbcontainer.limitSetRollbackOnlyBehaviorToInstanceFor or

com.ibm.websphere.ejbcontainer.extendSetRollbackOnlyBehaviorBeyondInstanceFor

9. In the Value entry field, type (appName1:appName2:appName3....). . Names of the application(s)
that the behavior should apply.

10. Select OK.

11. Save the configuration.

12. Restart the server.

EJB cache settings
Use this page to configure and manage the cache for a specific Enterprise JavaBeans (EJB) container. To
avoid errors from attempting to overload the cache, determine the cache absolute limit. Multiply the
number of enterprise beans active in any given transaction by the total number of concurrent transactions
expected. Then, add the number of active session bean instances. This value is the limit that the cache
will hold. You can use the Tivoli Performance Viewer to view bean performance information.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server > EJB Container Settings > EJB cache settings.

Cleanup interval
Specifies the interval at which the container attempts to remove unused items from the cache in order to
reduce the total number of items to the value of the cache size. This setting applies to the cache only.

The cache manager tries to maintain some unallocated entries that can be allocated quickly as needed. A
background thread attempts to free some entries while maintaining some unallocated entries. If the thread
runs while the application server is idle, when the application server needs to allocate new cache entries, it
does not pay the performance cost of removing entries from the cache. In general, increase this parameter
as the cache size increases.Timeouts are specified according to the transaction type:

v Container-managed transactions: The bean provider configures the timeout attribute in the deployment
desecriptor.

v Bean-managed transaction: An application calls the UserTransaction.setTransactionTimeout method in
the codes.

Information Value
Data type Integer
Units Milliseconds
Range 0 to 2 147 483 647
Default 3000

Cache size
Specifies the number of buckets in the active instance list within the EJB container.

378 Administering WebSphere applications



A bucket can contain more than one active enterprise bean instance, but performance is maximized if
each bucket in the table has a minimum number of instances assigned to it. When the number of active
instances within the container exceeds the number of buckets, that is, the cache size, the container
periodically attempts to reduce the number of active instances in the table by passivating some of the
active instances. For the best balance of performance and memory, set this value to the maximum number
of active instances expected during a typical workload.

Information Value
Data type Integer
Units Buckets in the hash table
Range Greater than 0. The container selects the next largest

prime number equal to or greater than the specified value.
Default 2053

Container interoperability
Container interoperability describes the ability of the product clients and servers at different versions to
successfully negotiate differences in native Enterprise JavaBeans (EJB) finder methods support and Java
EE compliance.

Interoperability of the handle formats in WebSphere Application Server, Version 5
and Version 5.0.1

Applications that attempt to persist handles to enterprise beans and EJBHome needed to subclass
ObjectInputStream in WebSphere Application Server, Version 5. This action was required so that the
subclass ObjectInputStream could utilize the context class loader to resolve the classes for enterprise
beans and EJBHome stubs.

In addition, handles created and persisted in WebSphere Application Server, Version 5 only work with
objects that have an unchanged remote interface. If the remote interface is changed, the handle is no
longer valid because the stub is serialized inside the handle and its serial Version UID changes if the
remote interface changes.

This release introduces a new handle persistence mechanism that avoids the implementation drawbacks
of the previous version. However, if handles are used for this WebSphere Application Server deployment,
you should consider the following issues when applying this update, future WebSphere Application Server
Fix Packs and EJB Container cumulative fixes for WebSphere Application Server, Version 5.

If a WebSphere Application Server, Version 5 persisted handle or home handle is encountered by a
WebSphere Application Server, Version 5.0.1 system, it can be read and utilized. In addition, it will be
converted to WebSphere Application Server, Version 5.0.1 format if it is re-persisted. The WebSphere
Application Server, Version 5.0.1 format cannot be read by a WebSphere Application Server, Version 5
system unless PQ72184 is applied.

Problems arise when handles are persisted and shared across systems that are not at the WebSphere
Application Server, Version 5.0.1 level or later. However, a Version 5 system can receive a handle from
Version 5.0.1 remotely through a call to get a handle on an enterprise bean or a getHomeHandle on an
EJBHome. The remote call will succeed, however, any attempt to persist it on the Version 5 system will have
the same limitations regarding the use of ObjectInputStream and changes in remote interface invalidating
the persisted handle.

When your application stores handles persistently and shares this persistence with multiple clients or
application servers, apply WebSphere Application Server, Version 5.0.1 or PQ72184 to both the client and
server systems at the same time. Failure to do so can result in the inability of these systems to read the
handle data stored by upgraded systems. Also, handles stored by the WebSphere Application Server,
Version 5 can force the applications of the updated system to still subclass ObjectInputStream.

Chapter 9. Welcome to administering EJB applications 379



Applications using the WebSphere Application Server Enterprise, Version 5 scheduler and process
choreographer, are affected by these changes. These users should update their Version 5 systems at the
same time with either Version 5.0.1 or PQ72184.

If the applications store handles in the session context, or locally in a file on the same system, that is not
shared by other applications, on different systems, they might be able to update their systems individually,
rather than all at once. If Client Container and thin client applications do not share persisted handle data,
they can be updated as needed as well. However, handles created and persisted in WebSphere
Application Server, Version 5, Version 4.0.3 and later (with the property flag set), or Version 3.5.7 and later
(with the property flag set) are not usable if either the home or the remote interface changes.

If any WebSphere Application Server, Version 3.5.7 or Version 4.0.3 and later enables the system property
com.ibm.websphere.container.portable to true, any handles to objects on that server have the same
interoperability limitations. In addition, if any WebSphere Application Server, Version 3.5.7 and later or
Version 4.0.3 applications store a handle obtained from a WebSphere Application Server, Version 5 or
Version 5.0.1, the same restrictions apply, regarding the need to subclass ObjectInputStream and the
usability of handles following a change to the remote interface is made.

Replication of the Http Session and Handles

This note applies to you if you place Handles to Homes or Enterprise JavaBeans, or EJB or EJBHome
references in the Http Session in your application and you use Http Session Replication. If you intend to
replicate a mixed environment of Version 5.0.0 and Version 5.0.1 or 5.0.2 machines you should first apply
the latest Version 5.0.0 container cumulative e-fix to the Version 5.0.0 machines before allowing the
Version 5.0.1 or 5.0.2 server into the typology. The reason for this is that Version 5.0.0 servers are not
able to understand the persisted Handle format used on the Version 5.0.1 and 5.0.2 server. This is similar
to the case of Version 5.0.0 and Version 5.0.1 or 5.0.2 systems trying to use a shared database,
mentioned previously. But in this case, it is the Http Session object and not the database providing the
persistence.

Top Down Deployment Mapping

The size of the Handle objects has grown due to the fix put in to allow serialization and deserialization to
occur without the previous requirements of subclassing the ObjectInputStream and so on. Top down
deployment of an object that contains EJB and EJBHome references create a database table ddl that has
a field of 1000 bytes of VARCHAR for BITDATA which will contain the Handle. It might be that your
object's Handle does not fit in the 1000 byte default field, and you might need to adjust this to a higher
value. You might try increments of 250 bytes, that is, 1250, 1500, and so on.

Configuring a timer service
You can configure and manage the EJB timer service for a specific EJB container.

About this task

WebSphere Application Server implements the Enterprise JavaBeans (EJB) Timer Service. Based on your
business needs, you can use persistent timers or non-persistent timers. Persistent timers are helpful if you
are creating a timer for a time-based event that requires assurance of timer existence beyond the life cycle
of the server to persist through server shutdowns and restarts. Previously started persistent timers
automatically start when your server starts, and they require a database instance.

Non-persistent timers do not use a data store and are canceled when the application server is stopped or
fails to remain in an active state. Non-persistent timers exist only on the server where the timer is created.

380 Administering WebSphere applications



Both persistent and non-persistent timers require a work manager. Persistent timers use the work manager
that is used by the scheduler service. Non-persistent timers use the server default work manager by
default, but can be configured to use another work manager using EJB timer scripting. Non-persistent
timers do not use the scheduler service.

You can configure and manage the EJB timer service for persistent and non-persistent timers in the
administrative console. The configuration for persistent and non-persistent timers is not mutually exclusive.
Your application might contain both persistent and non-persistent timers.

Procedure
1. Click Servers > Application servers > server_name > EJB Container settings > EJB timer service

settings.

2. Configure the persistent EJB timer support.

3. If you want to use the internal, or pre-configured, scheduler instance, select Use internal EJB timer
service scheduler instance. If you choose not to change the default settings, this instance for the
scheduler is associated with an Apache Derby database. If you choose to customize the pre-configured
instance, complete the following actions:

a. To change the data source, enter your Data source JNDI name. You can use any supported
database, such as DB2 or Oracle.

b. Enter your chosen Data source alias.

c. Enter your chosen Table prefix if you want to have several server processes use the same
database, but different tables.

d. Enter a Poll interval value in milliseconds.

e. If you want more timers to run concurrently, enter a new value for Number of timer threads.

For more details, see information about timer service settings.

4. If you want to configure your own scheduler instance instead of using the pre-configured internal one,
select Use custom scheduler instance. You might want to use your own instance to:

v Change scheduler service configuration options not available for customization on this panel

v Keep EJB timer tasks in the same database tables as your other tasks

v Have a single scheduler instance handle all the EJB timers in a cluster. This way, an ejbTimer task
created on one cluster member can run on a different cluster member.

To use your own instance, you must:

a. Configure a scheduler instance through the scheduler service graphical user interface. See the
using schedulers documentation for information about how to do this.

b. Select your Scheduler JNDI name from the list.

5. Configure the non-persistent timer support. Support for non-persistent timers is configured in addition
to (not instead of) support for persistent timers.

a. Enter your chosen Maximum number of retries.

b. Enter your chosen Time interval between retries.

c. Select the Share thread pool configured for persistent timers or the Create a separate thread
pool for non-persistent timers option. If you choose the Create a separate thread pool for
non-persistent timers option, enter your chosen Number of timer threads.

6. Optional: Configure data caching for your EJB timers. Caching allows the application server to reuse
timer data without having to query the database each time that data is required. See the topic on
caching data for a timer service for information on configuring this feature.

7. Click Apply.

8. Click OK.

Chapter 9. Welcome to administering EJB applications 381



Caching data for a timer service
If you want to optimize database access and SQL calls for an EJB timer service, you can enable the
application server to cache data for that timer. Caching allows the application server to reuse timer data
without having to query the database each time that data is required.

About this task

By allowing the application server to cache data for an Enterprise JavaBeans (EJB) timer service, you can
minimize the number of SQL statements that would be generated for calls to methods on the timer
interface. When this feature is enabled, data for the timer will be cached in the timer object when you
create that timer object.

The specification for enterprise beans requires that an SQL call to the database be made for each call to
the javax.ejb.Timer interface, so that the application can ensure that the EJB timer is using the most
current data that is available. If these methods are called often, or you have many EJB timers that call any
one of these methods, the application server would be generating many SQL statements in a very short
amount of time. In some cases, you might find that strict adherence to this requirement is detrimental to
performance and causing more overhead than is warranted.

For example, consider a case in which a timer expires only at 12:00 AM every Monday morning. During
the course of the week, any applications that call methods on the timer interface will result in the creation
of an SQL call, but the call will always return the same data. In addition, when an application calls the
ejbTimeout method for a timer, the data that is associated with that timer cannot change; the timer's data
that is stored in the database cannot be updated while an ejbTimeout method is running for that timer.
Therefore, any subsequent method calls that applications make during the timeout period will cause the
generation of an unnecessary SQL call and a wasted trip to the database.

If you enable caching for timer data, however, the application server will only query the database the first
time a configured method is called. For any subsequent calls to one of the configured methods, the
application server will use the cached data for the life of the timer object, and a new SQL call will not need
to be generated.

Note: Be aware of the following conditions:

v When this feature is enabled, your configuration will not be compliant with the EJB specification.

v This feature can lead to the potential for a timer to use stale data. Cached data for a timer
service will become stale after the next expiration period for the timer has passed.

For example, assume you have a timer that is configured to expire every hour. If you create and
save the timer object, the data that the application server caches for that object will only be
current for one hour. The cached data would be the same as the data that is stored in the
database.

If you call any of the timer methods within the first hour, the timer data is current. After that
expiration period, however, the cached data for the timer becomes stale and might not reflect the
data that is actually in the database. In this example, if you queried the EJB container for all
timers after one and one half hours, the application would get back a new timer object that
contains cached data that will be current for thirty minutes; This is because at hour two the timer
will expire again, and any cached data stale will then be stale.

Procedure
1. In the application server's administrative console, select the server that you want to configure. Click

Servers > Application Servers > server.

2. In the Server Infrastructure area, select Java and Process Management > Process Definition.

3. In the Additional Properties area, select Java Virtual Machine.

4. In the Additional Properties area on the Java Virtual Machine panel, select Custom Properties.

382 Administering WebSphere applications



5. Create or modify the com.ibm.websphere.ejbcontainer.allowCachedTimerDataFor custom property.

v If the property does not exist, click New to create the property.

v If the property already exists, select the property and click Modify to change the values.

6. Enter com.ibm.websphere.ejbcontainer.allowCachedTimerDataForname for the name of the custom
property.

7. Determine the best value for your needs and environment. The value for this property allows you as
much control over caching as you need. You can specify a wildcard or use specific timer names, and
you can fine tune control over which methods are cached by assigning integer values based upon
those methods.

These integer values allow you to have precise control over which methods you allow to use cached
data. Integers are assigned on a per bean basis or to all beans if you use an asterisk (*). The integer
values and their corresponding methods are:

1 Specifies the getHandle() method

2 Specifies the getInfo() method

4 Specifies the getNextTimeout() method

8 Specifies the getTimeRemaining() method

16 Specifies the getSchedule() method

32 Specifies the isPersistent() method

64 Specifies the isCalendarTimer() method

Note: You can apply this property to any individual methods listed above by using the assigned
integer value, or you can apply it to a combination of these methods. For example:

v To apply this property to the getHandle method and the getTimeRemaining method, sum the
integer value for the two methods, and use the value 9 (1+8).

v To apply the property to all seven methods, use the value 127 (1+2+4+8+16+32+64), or you
could not specify an integer. The default behavior when this property is set is to apply
caching to all methods.

When you make your decision, use a wildcard to specify all timers, or specify the JNDI names of the
timer beans for which the application server will apply caching.

v You can enter an asterisk (*), which will configure all timers, optionally followed by an integer value -
or summation of integer values - that indicate the applicable method on the timer interface. If you do
not specify an integer value, the application server will apply caching to all methods.

For example, the following value applies caching to methods for all timers:
*

v You can enter the name of the EJB timer bean, optionally followed by an integer value - or
summation of integer values - that indicate the applicable method on the timer interface. To enter
more than one timer bean, separate each application name with a colon (:). If you do not specify an
integer value, the application server will apply caching to all methods.

For example, the following value applies caching to all methods for MyTimerBean1 and
MyTimerBean2:
MyApp1#MyEJBModule1#MyTimerBean1:MyApp2#MyEJBModule2#MyTimerBean2

8. Select OK.

9. Restart the application server.

Chapter 9. Welcome to administering EJB applications 383



Example

The following examples demonstrate different ways to implement the caching feature for timer services.
Assume that you have two applications, and each application has timers. The timers use the following
J2EE names:

v App1#EJBJar1.jar#EJBTimer1

v App2#EJBJar2.jar#EJBTimer2

The examples will show the value to use for the
com.ibm.websphere.ejbcontainer.allowCachedTimerDataForname custom property.

Example 1
This example applies caching to all methods, for all timers, and for all applications.

Use one of the following values:

v Using the defaults:
*

v Specifying an integer:
*=127

Example 2
This example applies caching to the getInfo method on all timers for all applications.

Use the following value:
*=2

Example 3
This example applies caching to the getHandle and getNextTimeout methods on EJBTimer2.

Use the following value:
App2#EJBJar2.jar#EJBTimer2=5

Example 4
This example applies caching to:

v the getInfo method on EJBTimer1

v the getNextTimeout and getTimeRemaining methods on EJBTimer2

Use the following value:
App1#EJBJar1.jar#EJBTimer1=2:App2#EJBJar2.jar#EJBTimer2=12

Configuring the timer service using scripting
Use wsadmin scripting to configure the Enterprise JavaBeans (EJB) timer service.

Before you begin

You must have a working knowledge of Jacl or Jython and wsadmin scripting.

About this task

The behavior for EJB timers is configured using the EJBTimer configuration object in the server.xml file. If
you have EJB timers, you must update the EJBTimer configuration object to obtain the optimal settings for
your environment.

The EJBTimer configuration object exists at the server level. This means that each server in a multi-server
environment has its own EJBTimer configuration object and must be configured individually.

384 Administering WebSphere applications



Procedure
1. Launch the scripting tool using the Jython or scripting language.

2. Determine the attributes on the EJBTimer configuration object that must be updated. You can update
the following attributes on the EJBTimer configuration object:

v datasourceJNDIName

v datasourceAlias

v tablePrefix

v pollInterval

v numAlarmThreads

v schedulerJNDIName

v numNPTimerThreads

v nonPersistentTimerRetryCount

v nonPersistentTimerRetryInterval

v uniqueTimerManagerForNP

For a complete description of each attribute, see information about EJB timer service settings.

Four types of EJB timers exist:

v Persistent timers, supported by a default internal scheduler instance.

v Persistent timers, supported by a custom scheduler instance.

v Non-persistent timers, sharing a thread pool with persistent timers.

v Non-persistent timers, not sharing a thread pool with persistent timers.

The server is always configured to use one of the two types of persistent timers, and one of the two
types of non-persistent timers.

The EJBTimer configuration object contains the configuration data for all four types of EJB timers.
Each of the four types of timer uses a subset of the configuration attributes on the EJBTimer
configuration object. All the attributes on the EJBTimer configuration object are used to configure at
least one of the timer types, and none of the attributes are used to configure all the timer types. Thus,
you must understand which type of timer you are configured to use, and which configuration attributes
apply to that type of timer.

Table 30. Timer types and configuration attributes. Indicates the EJBTimer attributes that are used to configure each
type of timer.

Attribute
Persistent, default
scheduler

Persistent, custom
scheduler

Non-persistent, shared
thread pool

Non-persistent, unique
thread pool

datasourceJNDIName Yes No, specified on custom
scheduler configuration
instead

No No

datasourceAlias Yes No, specified on custom
scheduler configuration
instead

No No

tablePrefix Yes No, specified on custom
scheduler configuration
instead

No No

pollInterval Yes No, specified on custom
scheduler configuration
instead

No No

numAlarmThreads Yes No Yes No

schedulerJNDIName No Yes No No

numNPTimerThreads No No No Yes

nonPersistentTimerRetryCount No No Yes Yes

nonPersistentTimerRetryInterval No No Yes Yes

uniqueTimerManagerForNP No No Yes Yes

Chapter 9. Welcome to administering EJB applications 385



The presence of a value for the schedulerJNDIName attribute determines which type of persistent
timer is used. If the schedulerJNDIName attribute has a value, then a custom scheduler instance is
used. If the schedulerJNDIName does not have a value, then the default internal scheduler instance is
used.

The numAlarmThreads attribute maps to the Number of timer threads option in the Persistent EJB
timer configuration section of the administrative console. The numNPTimerThreads attribute maps to
the Number of timer threads option in the Non-persistent EJB timer configuration section of the
administrative console.

The uniqueTimerManagerForNP attribute maps to the Share thread pool configured for persistent
timers and Create a separate thread pool for non-persistent timers options in the administrative
console.

The uniqueTimerManagerForNP attribute determines if the thread pool is shared between persistent
and non-persistent timers. It also determines if the numAlarmThreads or numNPTimerThreads
configuration attribute is used.

Table 31. The uniqueTimerManagerForNP attribute impacts. The uniqueTimerManagerForNP attribute affects both
thread pool sharing and thread configuration.
uniqueTimerManagerForNP
attribute

Persistent and non-persistent
timers share a thread pool

Thread configuration attribute
that is used

Thread configuration attribute
that is ignored

true No numNPTimerThreads numAlarmThreads

false Yes numAlarmThreads numNPTimerThreads

3. Obtain a reference to the correct EJBTimer configuration object and store it in a variable.

Using Jacl:
set timer [$AdminConfig list EJBTimer]

Using Jython:
timer = AdminConfig.list(’EJBTimer’)

If you have a multi-server environment, then multiple EJBTimer configuration objects are returned.
Programmatically loop over the list and select the EJBTimer configuration object that corresponds to
the server you must update.

In a multi-server environment, as an alternative to programmatically looping over the list of EJBTimer
objects, you can manually select the correct EJBTimer object and copy and paste it into your variable.

For example, if the output of your AdminConfig list command is:

(cells/myCell01/nodes/myCellManager01/servers/dmgr|server.xml#EJBTimer_1)(cells/myCell01/
nodes/myNode02/servers/server1|server.xml#EJBTimer_1246050925244)

Copy and paste the reference for the needed EJBTimer object into your variable.

Using Jacl:

set timer "(cells/myCell01/nodes/myNode02/servers/server1|server.xml#EJBTimer_1246050925244)"

Using Jython:

timer = "(cells/myCell01/nodes/myNode02/servers/server1|server.xml#EJBTimer_1246050925244)"

4. Update attributes on the EJBTimer configuration object.

Update attributes on the EJBTimer configuration object using the AdminConfig modify command. The
first argument to the command is the EJBTimer reference that you obtained in the previous step. The
second argument to the command is a list of name-value pairs.

To set a retry count of 10 attempts, and a retry interval of 15 seconds between each attempt:

Using Jacl:

set update "{nonPersistentTimerRetryCount 10} {nonPersistentTimerRetryInterval 15}"
$AdminConfig modify $timer $update

Using Jython:
AdminConfig.modify(timer, ’[[nonPersistentTimerRetryCount "10"] [nonPersistentTimerRetryInterval "15"]]’)

5. Save the configuration changes.

386 Administering WebSphere applications



Using Jython:
AdminConfig.save()

Using Jacl:
$AdminConfig save

6. In a network deployment environment only, synchronize the node.

Using Jacl:

set sync1 [$AdminControl completeObjectName type=NodeSync,node=<your node>,*]
$AdminControl invoke $sync1 sync

Using Jython:

sync1 = AdminControl.completeObjectName(’type=NodeSync,node=<your node>,*’)
AdminControl.invoke(sync1, ’sync’)

The node synchronization in these examples must be executed while connected to the server.

Results

As a result of your updates, the EJBTimer configuration object now reflects the attribute values you
specified. Restart your server so that the changes are updated on the server.

EJB timer service settings
Use this page to configure and manage the Enterprise JavaBeans (EJB) timer service for a specific EJB
container.

To view this administrative console page, click Servers > Server types > WebSphere application
servers > server name > EJB Container Settings > EJB timer service settings.

Both persistent and non-persistent timers can exist simultaneously, and the persistent and non-persistent
configurations are not mutually exclusive. Your application might use both persistent and non-persistent
timers.

Use persistent timers when the timer must persist through server shutdowns and restarts. Otherwise, use
non-persistent timers when a server shutdown must cancel the timer.

When a persistent timer does not fire because the server is unavailable, then the missed attempt is
recovered when the server restarts. When a non-persistent timer does not fire because the server is
unavailable, the missed attempt is not recovered, because the server shutdown cancels the non-persistent
timer.

Persistent EJB timer configuration

Use internal EJB timer service scheduler instance
The product provides an internal scheduler instance for use by the EJB timer service. The internal
scheduler instance is pre-configured for basic EJB timer functionality, and provides limited configuration
settings for an EJB timer service.

You can specify that you want to use the internal scheduler instance to manage your persistent timer
tasks. They are persisted to a Cloudscape database associated with the server process. Selecting this
choice precludes the Use Custom Scheduler Instance option.

The internal scheduler instance is the default. Alternatively, a custom scheduler instance might be used.

Use custom scheduler instance
You can perform a more advanced configuration for the EJB timer service by defining a custom scheduler
instance.

Chapter 9. Welcome to administering EJB applications 387



A custom Scheduler instance provides more configuration options than the internal EJB timer service
pre-configured scheduler instance. You might want to define a custom scheduler instance when running in
a clustered environment, allowing all cluster members to run with a single scheduler instance. This
definition enables persistent EJB Timers created on one cluster member to run on other cluster members.
Providing a custom scheduler instance also enables persistent EJB Timers to be maintained in the same
database as other scheduled tasks. Selecting this choice precludes the Use Internal EJB Timer Service
Scheduler Instance option.

You might want to define a custom scheduler instance to isolate threads used by the scheduler service
from those threads used by the EJB timer service. EJB timer service threads from a custom scheduler
instance might be shared for use with non-persistent timers, or you might configure a separate thread pool
for non-persistent timers. Even with a thread pool dedicated to EJB timers, timer expirations might fall
behind if there are not enough available threads. You must evaluate the number of timers and their
expiration frequencies to establish the number of threads.

Data source JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name of the data source where persistent EJB
Timers are stored for this EJB container. Any data source available in the name space can be used for
EJB Timers.

Multiple EJB containers can share a single data source while using different tables by specifying a table
prefix.

Information Value
Data type String
Default jdbc/DefaultEJBTimerDataSource

Data source alias
Specifies an authentication alias to a user name and password used to access the data source.

Information Value
Data type String

Table prefix
A string prepended to the EJB timer service table names (TASK, TREG, LMGRand LMPR). These tables
are created during server start if they do not exist. See the scheduler service for information about
manually creating these tables. Multiple independent EJB timer services can share the same database if
each instance specifies a different prefix string. If the removeAutomaticEJBTimers command is used to
remove timers from a specified scheduler, that scheduler must have a unique table prefix. Otherwise, more
timers than expected could be removed.

Information Value
Data type String
Default EJBTIMER_

Poll interval
Specifies the interval at which the EJB timer service daemon polls the database. Each poll operation can
be expensive. If the interval is small and there are multiple scheduled tasks, polling can use a large
portion of system resources. New timers set to expire sooner than this interval might not run until the
interval ends. If this value is too large, a potentially large number of timer events might be loaded into
memory because all the timer events occurring in the next poll interval are loaded each time.

Information Value
Data type Integer

388 Administering WebSphere applications



Information Value
Units seconds
Default 300
Range 3 to 1800

Number of timer threads
The number of threads used to run concurrent EJB Timer tasks. Setting the number of timer threads to
zero disables the EJB timer service.

Information Value
Data type Integer
Default 1
Range 0 to 500

Scheduler JNDI name
Specifies the JNDI name of a custom Scheduler instance to use for managing and persisting EJB Timers.
This field is only used when you select Use Custom Scheduler Instance. Internal EJB timer service
scheduler instance configuration information is not applied to the specified scheduler instance.

Information Value
Data type String

Non-persistent EJB timer configuration

Maximum number of retries
Specifies the maximum number of times that a failing timeout might be retried. If a timeout is successful
upon retry, the server stops attempting to run it. If a retry fails, the server continues to attempt retries until
the timeout succeeds, or the timeout limit is reached. Once the retry limit is reached, the server does not
attempt to execute the timeout, even if the timeout has not succeeded. The default value of -1 indicates
unlimited retries. A value of 0 indicates no retries, and is not specification-compliant. A value of 1 or
greater indicates that specific number of retries are allowed.

Information Value
Data type Integer
Default -1
Range -1 or greater

Time interval between retries
Specifies the interval between retry attempts for a failed timeout. The first retry always occurs immediately,
regardless of the interval configured here. All additional retries wait for the interval specified here. A value
of 0 indicates that all retries are immediate. A value of 1 or higher indicates that retries must wait for that
specific number of seconds.

Information Value
Data type Integer
Default 300 seconds
Range 0 or greater

Share thread pool configured for persistent timers
Specifies that non-persistent timers share a thread pool with persistent timers. If persistent timers are
using the default internal scheduler instance, the shared thread pool is configured using the configuration

Chapter 9. Welcome to administering EJB applications 389



settings specified in the Persistent EJB timer configuration section. If the persistent timers are using a
custom defined scheduler, the thread pool configuration was specified as part of the configuration for that
custom scheduler.

Create a separate thread pool for non-persistent timers
Specifies that non-persistent timers do not share a thread pool with persistent timers. Rather, a unique
thread pool is created for non-persistent timers only.

Number of timer threads
Specifies the number of threads available in the unique thread pool used for non-persistent timers. This
configuration option is only available when non-persistent timers are not sharing a thread pool with
persistent timers. This configuration option is different from the Number of timer threads configuration
option in the Persistent EJB timers configuration section because that option applies only to persistent
timers using the default internal scheduler instance.

Information Value
Data type Integer
Default 1
Range 0 to 500

Managing message-driven beans
You can manage the Java EE Connector Architecture (JCA) Version 1.5-compliant message-driven beans
that you deploy as message endpoints, and you can manage the message listener resources for non-JCA
message-driven beans that you deploy against listener ports.

Before you begin

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your
beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications.

For more information about when to use listener ports rather than activation specifications, see
Message-driven beans, activation specifications, and listener ports.

About this task

You can manage the following resources for message-driven beans:

v JCA 1.5-compliant message-driven beans that you deploy as message endpoints, and the associated
activation specifications.

v The message listener service, listener ports, and listeners for non-JCA message-driven beans that you
deploy against listener ports.

390 Administering WebSphere applications



Procedure
v Manage JCA 1.5-compliant message-driven beans that are used as message endpoints.

JCA 1.5-compliant message-driven beans, deployed by using activation specifications, can be used as
message endpoints. You can start and stop specific endpoints within your applications to ensure that
messages are delivered only to listening message-driven beans that are interacting with healthy
resources.

v Manage message listener resources for message-driven beans.

The message listener service supports message-driven beans that are used with a non-JCA messaging
provider. A listener port defines the association between a connection factory, a destination, and a
deployed message-driven bean. When you deploy a message-driven bean, you associate the bean with
a listener port. When a message arrives on the destination, the listener passes the message to a new
instance of a message-driven bean for processing. You can manage the resources used by the
message listener service, including being able to start and stop specific listener ports manually.

Managing messages with message endpoints
Manage message delivery for message-driven beans (MDB) that are deployed as message endpoints. The
message endpoints are managed beans (MBeans) for inbound resource adapters that are compliant with
Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) Version 1.5.

About this task

The application server provides message endpoint MBeans to assist you in managing the delivery of a
message to your message-driven beans that are acting as listeners on specific endpoints, which are
destinations, and in managing the enterprise information system (EIS) resources that are utilized by these
message-driven beans. Message-driven beans that are deployed as message endpoints are not the same
as message-driven beans that are configured against a listener port. Message-driven beans that are used
as message endpoints must be deployed using an ActivationSpecification that is defined within a resource
adapter configuration for JCA Version 1.5.

With message endpoint MBeans, you can activate and deactivate specific endpoints within your
applications to ensure that messages are delivered only to listening message-driven beans that are
interacting with healthy EIS resources. This capability allows you to optimize the performance of your JMS
applications in situations where an EIS resource is not behaving as expected. Message delivery to an
endpoint typically fails when the message driven bean that is listening invokes an operation against a
resource that is not healthy. For example, a messaging provider, which is an inbound resource adapter
that is JCA Version 1.5 compliant, might fail to deliver messages to an endpoint when its underlying
message-driven bean attempts to commit transactions against a database server that is not responding.

Note: Design your message-driven beans to delegate business processing to other enterprise beans. Do
not access the EIS resources directly in the message-driven bean, but do so indirectly through a
delegate bean.

Message endpoint MBeans alleviate two problems that are inherent to applications that provide message
endpoints that access resources:

v Failed messages require additional processing, such as delivering them to the listening endpoint again
or redirecting them to alternate destinations that process failed messages. In addition, a resource
adapter might redeliver a message to an endpoint an infinite number of times.

v Message redirection requires the implementation of specialized destinations (queues and listeners) to
process failed messages, as well as the logic to detect message failures. Message redirection is
potentially error prone and computationally expensive due to its complexity.

The capability to deactivate (pause) and reactivate (resume) a specific message endpoint alleviates these
problems by enabling the administrator to deactivate the endpoint from processing messages that are
destined to fail. When the message endpoint is deactivated, you can repair the resource that is causing

Chapter 9. Welcome to administering EJB applications 391



the problems and reactivate the endpoint to resume handling message requests. In the course of
troubleshooting, you will not affect the resource adapter or the application that is hosting the endpoint.

If you are connecting to WebSphere MQ, you can also use the WAS_EndpointInitialState custom property
in the activation specification to make the message endpoint start out in a deactivated state. When you set
this property to Inactive, the message-driven bean connects with the destination, but does not start
receiving messages. Use this setting to automatically deactivate a message endpoint when you know that
certain tasks must be completed, services must be started, or checks must be carried out, before message
handling begins. You activate the message endpoint in the same way as you would reactivate a message
endpoint that you paused during its operation.

Procedure
1. Using the administrative console, navigate to the Message Endpoints panel for the application that is

hosting the message endpoint.

a. Select the Applications > Application Types > Websphere enterprise applications >
application_name.

b. Select the Runtime panel.

c. Select Message Endpoints. The panel lists the set of message endpoints that are hosted by the
application.

2. Optional: Temporarily disable a message endpoint from handling messages and troubleshoot the
problem.

a. Deactivate the message endpoint by selecting the appropriate endpoint and clicking Pause.

b. When the message endpoint is inactive, diagnose and repair the underlying cause of the delivery
failures.

c. Reactivate the message endpoint by selecting the appropriate endpoint and clicking Resume.

3. Optional: Activate a message endpoint that started out in a deactivated state. Select the appropriate
endpoint and click Resume.

Results

The behavior you will observe when you deactivate (pause) a message endpoint using the message
endpoint MBean is dependent upon a variety of factors, including the resource adapter that manages the
message endpoint, the configuration of the message endpoint and the application server topology. Some
specific examples of interest are as follows:

v MDB listening on a non-durable topic (dependent on configuration): The behavior that is implied by
the deactivation (pause) of a message endpoint is often dependent upon the function that it is fulfilling.
For example, if you have configured a message-driven bean to listen on a non-durable topic on the
service integration bus, deactivating the message endpoint is analogous to stopping the application and
will cause the subscription to be closed. This means that any messages that are published during the
time that the message endpoint is paused will not be received by the message-driven bean.

v Clustered message-driven bean (dependent on topology): In this scenario a message-driven bean
application has been deployed to a cluster of servers. A given message endpoint MBean controls only
the behavior of the MDB in one server from the cluster, so will cause only one server to stop processing
messages. Depending upon the messaging configuration and the specific resource adapter in use the
messages that would have been consumed by the paused message endpoint may be consumed by the
active message endpoints in the cluster, or they may remain unconsumed until the paused message
endpoint is resumed.

v Clustered message-driven bean, a non-clustered queue: In this scenario, you have a cluster of
servers with the same message-driven bean deployed to them. This is similar to the case, in which you
have different message-driven beans with the same message selection criteria, except that in this case
the message-driven beans are logically the same message-driven bean. Pausing the endpoint will
cause only one of the servers to stop receiving messages, and the other message-driven beans will

392 Administering WebSphere applications



receive all the messages; none of the messages will be orphaned. To stop all of the endpoints, you
must direct each server in the cluster to stop the local message endpoint.

v Clustered message-driven bean, clustered queue: In this scenario, each message-driven bean is
pulling messages from a different partition of the queue. Messaging through WebSphere MQ and the
Service Integration Bus have similar, but different, capabilities. If you are using WebSphere MQ, then
pausing one endpoint will not allow the other instances of the message-driven bean to receive the
messages. In the Service Integration Bus, messages from a paused endpoint will be redirected to the
other message-driven beans.

Managing message listener resources for message-driven beans
Manage the resources used by the message listener service to support message-driven beans, typically
for use with a messaging provider that does not have a Java EE Connector Architecture (JCA) 1.5
resource adapter.

Before you begin

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your
beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications.

If you have existing message-driven beans that use the WebSphere MQ messaging provider (or a
compliant third-party JMS provider) with listener ports, and instead you want to use EJB 3 message-driven
beans with listener ports, these new beans can continue to use the same messaging provider.

For more information about when to use listener ports rather than activation specifications, see
Message-driven beans, activation specifications, and listener ports.

About this task

The message listener service is an extension to the JMS functions of the JMS provider and provides a
listener manager, which controls and monitors one or more JMS listeners. Each listener monitors either a
JMS queue destination (for point-to-point messaging) or a JMS topic destination (for publish/subscribe
messaging). A listener port defines the association between a connection factory, a destination, and a
deployed message-driven bean. When you deploy a message-driven bean, you associate the bean with a
listener port. When a message arrives on the destination, the listener passes the message to a new
instance of a message-driven bean for processing. For more information, see Message-driven beans -
listener port components.

Procedure
1. Configure the message listener service.

2. Administer listener ports.

You can complete any of the following administrative tasks:

v Create or configure a listener port.

Chapter 9. Welcome to administering EJB applications 393



v Start or stop a listener port.

v Delete a listener port.

3. Configure security for message-driven beans that use listener ports.

Results

You have configured the resources needed by the message listener service to support message-driven
beans.

Configuring the message listener service
To support message-driven beans deployed against listener ports, you must configure the properties of the
message listener service for your application server.

Before you begin

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your
beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications.

If you have existing message-driven beans that use the WebSphere MQ messaging provider (or a
compliant third-party JMS provider) with listener ports, and instead you want to use EJB 3 message-driven
beans with listener ports, these new beans can continue to use the same messaging provider.

For more information about when to use listener ports rather than activation specifications, see
Message-driven beans, activation specifications, and listener ports.

About this task

The message listener service is an extension to the JMS functions of the JMS provider and provides a
listener manager, which controls and monitors one or more JMS listeners. Each listener monitors either a
JMS queue destination (for point-to-point messaging) or a JMS topic destination (for publish/subscribe
messaging). For more information, see Message-driven beans - listener port components.

When you deploy an enterprise application to use message-driven beans with listener ports, you can
browse or change the configuration of the message listener service for a given application server.

If your messaging system is running in non-ASF mode, to avoid unwanted transaction
timeouts, you must allow a sufficient amount of time for processing to be completed before the total
transaction lifetime timeout is reached. Therefore, you must make sure that the value that you specify for
the NON.ASF.RECEIVE.TIMEOUT message listener service custom property is smaller than the value that you
specify for the Total transaction lifetime timeout transaction service property, and also that the
difference between the values of the two properties is greater than the amount of time that the
onMessage() method of the message-driven bean (MDB) takes to process the message.

Procedure
1. Display the listener service settings page:

a. In the navigation pane, select Servers > Server Types > WebSphere application servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging > Message Listener Service.

2. Optional: Browse or change the value of properties for the message-driven bean thread pool.

a. Click Thread Pool.

b. Change the following properties, as required:

394 Administering WebSphere applications



Minimum size
The minimum number of threads to allow in the pool.

Maximum size
The maximum number of threads to allow in the pool.

Thread inactivity timeout
The number of milliseconds of inactivity that should elapse before a thread is reclaimed. A
value of 0 indicates not to wait and a negative value (less than 0) means to wait forever.

Note: The administrative console does not allow you to set the inactivity timeout to a
negative number. To do this you must modify the value directly in the config.xml file.

Allow thread allocation beyond maximum thread size
Select this check box to enable the number of threads to increase beyond the maximum
size configured for the thread pool.

c. Click OK.

3. Optional: Specify any message listener service custom properties that you need, as Custom
properties of the message listener service.

a. Click Custom properties

b. For each custom property, specify the name and value you require.

If you have not specified a property before:

1) Click New.

2) Type the name of the property.

3) Type the value of the property.

4) Click OK.

For more information about these custom properties, see “Message listener service custom properties”
on page 407.

4. Save your changes to the master configuration.

5. To activate the changed configuration, stop then restart the application server.

Results

You have configured the properties of the message listener service for a given application server.

Avoiding transaction timeouts in non-ASF mode:

If your messaging system runs in non-Application Server Facilities (non-ASF) mode, you must configure
the Total transaction lifetime timeout transaction service property and the NON.ASF.RECEIVE.TIMEOUT
message listener service custom property correctly, to avoid unwanted transaction timeouts.

Before you begin

To carry out the steps in this task, your messaging system must be running in non-ASF mode. To change
from ASF mode to non-ASF mode, add the NON.ASF.RECEIVE.TIMEOUT custom property to the message
listener service as described in “Configuring the message listener service” on page 394.

About this task

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application

Chapter 9. Welcome to administering EJB applications 395



server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

If your messaging system is running in non-ASF mode, to avoid unwanted transaction timeouts, you must
allow a sufficient amount of time for processing to be completed before the total transaction lifetime
timeout is reached. Therefore, you must make sure that the value that you specify for the
NON.ASF.RECEIVE.TIMEOUT message listener service custom property is smaller than the value that you
specify for the Total transaction lifetime timeout transaction service property, and also that the
difference between the values of the two properties is greater than the amount of time that the
onMessage() method of the message-driven bean (MDB) takes to process the message.

Procedure

1. To configure the Total transaction lifetime timeout transaction service property, complete step 8 in
“Configuring transaction properties for an application server” on page 2593.

2. To configure the NON.ASF.RECEIVE.TIMEOUT message listener service custom property, click Servers >
Server Types > WebSphere application servers > server_name > [Communications] Messaging
> Message Listener Service > Custom Properties.

3. Click NON.ASF.RECEIVE.TIMEOUT. The General Properties page is displayed.

4. Modify the Value field. The value of NON.ASF.RECEIVE.TIMEOUT must be specified in milliseconds. Make
sure that the value you specify, when converted into seconds (by dividing by 1000), is less than the
value that you specified for Total transaction lifetime timeout, and that the difference between the
values of the two properties is greater than the maximum number of seconds that the onMessage()
method of your MDB takes to process a message.

5. Click OK.

6. Stop and restart the application server.

Example

As the following example shows, if Total transaction lifetime timeout and NON.ASF.RECEIVE.TIMEOUT
are not correctly configured, transactions can time out before they are completed. This is because the
thread begins calling the receive() method as soon as the transaction is created. In the following
example, NON.ASF.RECEIVE.TIMEOUT is set to 110000 milliseconds (110 seconds), Total transaction
lifetime timeout is set to 120 seconds and the onMessage () method of the MDB takes 15 seconds to
process a message. The example supposes that a message does not appear at the destination until the
receive() method has almost timed out:

1. The listener port starts and allocates a thread from the thread pool and creates a transaction on the
thread.

2. The thread calls the receive() method to listen for messages.

3. After 110 seconds a message appears at the destination.

4. The thread removes the message from the destination and calls the onMessage() method of the MDB
to begin processing the message.

5. Ten seconds later, the transaction timeout is reached. The application server marks the transaction for
rollback.

6. Five seconds later, the onMessage() method finishes processing the message and tries to commit the
transaction.

7. The total amount of time that has elapsed since the transaction was started is 125 seconds (110
seconds waiting for a message, plus 15 seconds to process the message). As this time is longer than
the transaction timeout, the application server prevents the transaction from being committed, and it is
rolled back.

396 Administering WebSphere applications



Administering listener ports
You can use the WebSphere Application Server administrative console to administer listener ports, which
each define the association between a connection factory, a destination, and a message-driven bean.

Before you begin

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your
beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications.

If you have existing message-driven beans that use the WebSphere MQ messaging provider (or a
compliant third-party JMS provider) with listener ports, and instead you want to use EJB 3 message-driven
beans with listener ports, these new beans can continue to use the same messaging provider.

For more information about when to use listener ports rather than activation specifications, see
Message-driven beans, activation specifications, and listener ports.

About this task

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. If you set the initial state of a listener port to Started, the listener port is started
automatically when a message-driven bean associated with that port is installed.

Listener ports can be manually started and stopped. If a message-driven bean fails to process a message
several times, the listener port is automatically stopped by the application server. When a listener port is
stopped, the listener manager stops the listeners for all message-driven beans associated with the port.
Consequently, the associated message-driven beans can no longer process messages.

Note: You do not usually need to start or stop a listener port manually.

Procedure
v Create a new listener port.

Create a new listener port, to specify a new association between a connection factory, a destination,
and a message-driven bean. This association enables deployed message-driven beans associated with
the port to retrieve messages from the destination.

v Configure a listener port.

Browse or change the configuration properties of a listener port.

v Start a listener port.

v Stop a listener port.

v Delete a listener port.

Creating a new listener port:

You create a new listener port for the message listener service to define the association between a
connection factory, a destination, and a deployed message-driven bean. This association enables the
message-driven bean to retrieve messages from the associated destination.

Before you begin

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your

Chapter 9. Welcome to administering EJB applications 397



beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications.

If you have existing message-driven beans that use the WebSphere MQ messaging provider (or a
compliant third-party JMS provider) with listener ports, and instead you want to use EJB 3 message-driven
beans with listener ports, these new beans can continue to use the same messaging provider.

For more information about when to use listener ports rather than activation specifications, see
Message-driven beans, activation specifications, and listener ports.

About this task

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. This association enables deployed message-driven beans associated with the port
to retrieve messages from the destination. For more information, see Message-driven beans - listener port
components.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Servers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service > [Additional
Properties] Listener Ports > listener_port. The “Message listener port collection” on page 402 panel
is displayed.

3. Click New.

4. Specify the following required properties:

Name The name by which the listener port is known for administrative purposes.

Connection factory JNDI name
The JNDI name for the JMS connection factory to be used by the listener port; for example,
jms/connFactory1.

Destination JNDI name
The JNDI name for the destination to be used by the listener port; for example, jms/destn1.

5. Optional: Change other properties for the listener port, as required.

6. Click OK.

7. Save your changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

Results

If you set the initial state of a listener port to Started, the listener port is started automatically when a
message-driven bean associated with that port is installed.

Configuring a listener port:

Use this task to browse or change the properties of an existing listener port, which is used by
message-driven beans associated with the port to retrieve messages.

Before you begin

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your
beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing

398 Administering WebSphere applications



message-driven bean applications. For more information about when to use listener ports rather than
activation specifications, see Message-driven beans, activation specifications, and listener ports.

About this task

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. This association enables deployed message-driven beans associated with the port
to retrieve messages from the destination. For more information, see Message-driven beans - listener port
components.

When you deploy an enterprise application to use message-driven beans with listener ports, you can
browse or change the configuration of a listener port.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Servers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service > [Additional
Properties] Listener Ports > listener_port

The “Message listener port collection” on page 402 panel is displayed.

3. Select the name of the listener port that you want to work with. This displays the properties of the
listener port in the content pane.

4. Optional: Change properties for the listener port, according to your needs.

5. Click OK.

6. Save your changes to the master configuration.

7. To have a changed configuration take effect, stop then restart the application server.

Starting a listener port:

Use this task to start a listener port on an application server, to enable the listeners for message-driven
beans associated with the port to retrieve messages.

About this task

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. For more information, see Message-driven beans - listener port components.

A listener is active, that is able to receive messages from a destination, if the deployed message-driven
bean, listener port, and message listener service are all started. Although you can start these components
in any order, they must all be in a started state before the listener can retrieve messages.

If you set the initial state of a listener port to Started, the listener port is started automatically when a
message-driven bean associated with that port is installed. You can also start a listener port manually.

When a listener port is started, the listener manager tries to start the listeners for each message-driven
bean associated with the port. If a message-driven bean is stopped, the port is started but the listener is
not started, and remains stopped. If you start a message-driven bean, the related listener is started.

Procedure

1. Start the administrative console.

2. If you want the listener for a deployed message-driven bean to be able to receive messages at the
port, check that the message-driven bean has been started.

Chapter 9. Welcome to administering EJB applications 399



3. In the navigation pane, click Servers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service > [Additional
Properties] Listener Ports > listener_port

The “Message listener port collection” on page 402 panel is displayed.

4. Select the check box for the listener port that you want to start.

5. Click Start.

6. Save your changes to the master configuration.

Stopping a listener port:

Use this task to stop a listener port on an application server, to prevent the listeners for message-driven
beans associated with the port from retrieving messages.

About this task

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. For more information, see Message-driven beans - listener port components.

If a message-driven bean fails to process a message several times, the listener port is automatically
stopped by the application server. You can also stop a listener port manually. When a listener port is
stopped, the listener manager stops the listeners for all message-driven beans associated with the port.
Consequently, the associated message-driven beans can no longer process messages.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Servers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service > [Additional
Properties] Listener Ports > listener_port

The “Message listener port collection” on page 402 panel is displayed.

3. Select the check box for the listener port that you want to stop.

4. Click Stop.

5. Save your changes to the master configuration.

6. To have the changed configuration take effect, stop then restart the application server.

Deleting a listener port:

Use this task to delete a listener port from the message listener service, to prevent message-driven beans
associated with the port from retrieving messages.

About this task

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. For more information, see Message-driven beans - listener port components.

To delete a listener port, use the administrative console to complete the following steps:

Procedure

1. Start the administrative console.

2. In the navigation pane, click Servers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service > [Additional
Properties] Listener Ports > listener_port

The “Message listener port collection” on page 402 panel is displayed.

400 Administering WebSphere applications



3. Select the check box for the listener port that you want to delete.

4. Click Delete.

This action stops the port (needed to allow the port to be deleted) then deletes the port.

5. Save your changes to the master configuration.

6. To have the changed configuration take effect, stop then restart the application server.

Monitoring server session pools for listener ports:

You can minimize the number of resources that server sessions use by enabling server session pool
monitoring and defining the timeout value to be applied to a server session.

About this task

Each listener port uses one or more server sessions, which are held in a server session pool. Each server
session is associated with a JMS session, which is taken from the JMS session pool that is associated
with the JMS connection factory that the listener port is configured to use.

By default, server session pool monitoring is disabled. When a listener port uses a server session the
listener port does not release the server session from the server session pool until the listener port is shut
down. This means that the associated JMS session is not released into the JMS session pool until the
listener port is shut down, even if the listener port is not processing any messages. Consequently the
resources that the JMS session uses, for example TCP/IP connections, can be held for a long time, and
this can cause problems for resource-constrained systems.

To minimize the number of resources that server sessions use, you must monitor the server session pools.
When you enable server session pool monitoring each server session in each server session pool that a
listener port uses is monitored to determine how much time has elapsed since the server session was last
used. If the elapsed time is greater than the timeout value that you have configured, the server session is
removed from the server session pool and its associated JMS session is returned to the JMS session
pool. The returned JMS session can be either reused by another application or closed, depending on your
JMS session pool settings. You can also configure additional pooling mechanisms, depending on your JMS
provider.

Note: Server session pool monitoring cannot be used if the message listener service is operating in
non-Application Server Facilities (non-ASF) mode, that is if the NON.ASF.RECEIVE.TIMEOUT
message listener service custom property is set to a non-zero value.

Procedure

To enable server session pool monitoring, configure the following message listener service custom
properties on each application server as required.

SERVER.SESSION.POOL.REAP.TIME
To enable server session pool monitoring, set this property to the time in seconds between checks
on server session pools (this must be a non-negative value).

SERVER.SESSION.POOL.UNUSED.TIMEOUT
To specify the default server session pool timeout, set this property to the required number of
seconds for the timeout. When this property is set to a non-negative value, it is compared with the
time that has elapsed since a server session was used. If the timeout value is less than the
elapsed time, the server session is removed from the server session pool and its JMS session is
returned to the JMS session pool. For example, if the timeout value is one second and the time
that has elapsed since a particular server session was used is two seconds, that server session is
removed from the server session pool and its JMS session is returned to the JMS session pool.

Chapter 9. Welcome to administering EJB applications 401



SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname
To override the default SERVER.SESSION.POOL.UNUSED.TIMEOUT value for the listener port
with the name lpname, set this property to the appropriate value:

v To override the SERVER.SESSION.POOL.UNUSED.TIMEOUT for the specified listener port,
set this property to a non-negative value defining the required number of seconds for the server
session timeout for this listener port.

v To disable server session pool monitoring for the specified listener port, set this property to a
negative value.

The value that you set for this property applies to all message-driven beans that are using the
specified listener port.

Example

For example, consider an application server that is configured with listener ports lp1, and lp2.

The following rules apply:

No properties set
If none of the properties are set, server session pool monitoring is disabled and JMS sessions
used by server sessions are not returned to the JMS session pool until the listener port (lp1 or
lp2), or its associated message-driven bean, is shut down.

SERVER.SESSION.POOL.REAP.TIME and SERVER.SESSION.POOL.UNUSED.TIMEOUT set
Consider, for example, the following settings:

SERVER.SESSION.POOL.REAP.TIME=60

SERVER.SESSION.POOL.UNUSED.TIMEOUT=120

The server session pool of both listener ports (lp1 and lp2) is checked for inactive server sessions
every 60 seconds. If a server session is detected as being inactive for more than 120 seconds, it
is removed from the server session pool and its JMS session is returned to the JMS session pool.
Taking into account the SERVER.SESSION.POOL.REAP.TIME value, the server session pool
could be removed from the session pool between two and three minutes after the server session
was last used.

SERVER.SESSION.POOL.REAP.TIME and SERVER.SESSION.POOL.UNUSED.TIMEOUT set, and
overrides set for SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname

Consider, for example, the following settings:

SERVER.SESSION.POOL.REAP.TIME=60

SERVER.SESSION.POOL.UNUSED.TIMEOUT=120

SERVER.SESSION.POOL.UNUSED.TIMEOUT.lp2=-1

SERVER.SESSION.POOL.UNUSED.TIMEOUT.lp1=60

The server session pool for listener port lp2 is not checked because it has a negative timeout
value. In the server session pool for listener port lp1, any server sessions that are inactive for
more than 60 seconds are removed from the server session pool.

Message listener port collection
The message listener ports configured in the administrative domain

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. This association enables deployed message-driven beans associated with the port
to retrieve messages from the destination.

This panel displays a list of the message listener ports configured in the administrative domain. You can
use this panel to add new listener ports or to change the properties of existing listener ports.

402 Administering WebSphere applications



To view this administrative console panel, click Servers > Server Types > WebSphere application
servers > server_name > [Messaging] Message Listener Service > Listener Ports

To manage a listener port, select the check box beside the listener port name in the list and click a button:

Button Resulting action
Convert to activation
specification

Opens a wizard that helps you convert the selected listener port to an activation
specification.

New Accesses the panel to configure a new listener port.
Delete Deletes the selected listener port or ports.
Start Starts the selected listener port or ports.
Stop Stops the selected listener port or ports.

Listener port settings
A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. This association enables deployed message-driven beans associated with the port
to retrieve messages from the destination.

Use this panel to view or change the configuration properties of the selected listener port.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service > [Additional
Properties] Listener Ports > listener_port.

Name
The name by which the listener port is known for administrative purposes.

Information Value
Data type String
Default Null

Initial state
The state that you want the listener port to have when the application server is next restarted

Information Value
Data type Enum
Units Not applicable
Default Started
Range Started

When the application server is next started, the
listener port is started automatically.

Stopped
When the application server is next started, the
listener port is not started automatically. If
message-driven beans are to use this listener
port on the application server, the system
administrator must start the port manually or
select the Started value of this property then
restart the application server.

Chapter 9. Welcome to administering EJB applications 403



Description
A description of the listener port, for administrative purposes within IBM WebSphere Application Server.

Information Value
Data type String
Default Null

Connection factory JNDI name
The JNDI name for the JMS connection factory to be used by the listener port; for example,
jms/connFactory1.

Information Value
Data type String
Default Null

Destination JNDI name
The JNDI name for the destination to be used by the listener port; for example, jms/destn1.

You cannot use a temporary destination for late responses.

Information Value
Data type String
Default Null

Maximum sessions
The maximum number of concurrent sessions that a listener can have with the JMS server to process
messages.

Each session corresponds to a separate listener thread and therefore controls the number of concurrently
processed messages. Adjust this parameter when the server does not fully use the available capacity of
the machine.

Information Value
Data type Integer
Units Sessions
Default 1
Range 1 through 2147483647
Recommended v For message concurrency, that is to process multiple

messages simultaneously, set this property to a value
greater than 1. Keep this value as low as possible to
prevent overloading client applications. A good starting
point for a 100% JMS workload with short transaction
times is 2 to 4 sessions per processor. If longer running
transactions exist, you might need more sessions,
which should be determined by experimentation.

The total number of sessions specified in the Maximum
Sessions property of all configured listener ports must
be less than or equal to the number of threads
specified for the Maximum Size property of the
message listener service thread pool.

404 Administering WebSphere applications



Maximum retries
The maximum number of times that the listener tries to deliver a message to a message-driven bean
instance before the listener is stopped, in the range 0 through 2147483647.

Note: A WebSphere MQ queue has a similar property called the BackoutThreshold property. If your
listener port is reading from a WebSphere MQ queue, then the retry limit and the behavior when
the limit is reached is determined by whichever of these two properties is set to the lower limit:

v If you exceed the WebSphere MQ queue BackoutThreshold limit, the message that cannot be
delivered is moved to somewhere else by WebSphere MQ (for example, to the WebSphere MQ
backout requeue queue or the WebSphere MQ dead letter queue) and the listener port services
the next message on the queue. In this case, WebSphere Application Server might not know that
the message has not been delivered successfully.

v If you exceed the listener port maximum retries limit, the listener port stops. You then manually
intervene to investigate the problem, possibly to remove the message from the WebSphere MQ
queue then restart the listener port.

Information Value
Data type Integer
Units Retry attempts
Default 0 (no retries)
Range 0 (no retries) through 2147483647

Maximum messages
The maximum number of messages that the listener can process in one transaction.

If the queue is empty, the listener processes each message when it arrives. Each message is processed
within a separate transaction.

For WebSphere MQ as the JMS provider, if messages start accumulating on the queue then the listener
can start processing messages in batches. For third-party messaging providers, this property value is
passed to the JMS provider but the effect depends on the JMS provider.

Information Value
Data type Integer
Units Number of messages
Default 1
Range 1 through 2147483647

Chapter 9. Welcome to administering EJB applications 405



Information Value
Recommended For WebSphere MQ as the JMS provider, to process

multiple messages in a single transaction, set this value to
more than 1. If messages start accumulating on the
queue, a value greater than 1 enables multiple messages
to be batch-processed into a single transaction, and
eliminates much of the transaction processing costs for
JMS messages.
CAUTION:

v If one message in the batch fails processing with an
exception, the entire batch of messages is put back on
the queue for processing.

v Any resource lock held by any of the interactions for the
individual messages are held for the duration of the
entire batch.

v Depending on the amount of processing that messages
need, and if XA transactions are being used, setting a
value greater than 1 can cause the transaction to time
out. If an XA transaction does time out routinely
because processing multiple messages exceeds the
transaction timeout, reduce this property to 1 (to limit
processing to one message per transaction) or increase
your transaction timeout.

Message listener service
The message listener service is an extension to the JMS functions of the JMS provider. It provides a
listener manager that controls and monitors one or more JMS listeners, which each monitor a JMS
destination on behalf of a deployed message-driven bean.

This panel displays links to the Additional Properties pages for Listener Ports, Thread Pool,
and Custom Properties for the message listener service.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > [Communications] Messaging > Message Listener Service

Listener Ports

You can use the Listener Ports page to create and modify listener ports by specifying the following
properties:

v Name

v Initial State

v Description

v Connection factory JNDI name

v Destination JNDI name

v Maximum sessions

v Maximum retries

v Maximum messages

Thread pool

You can use the Thread pool page to change the following properties for the message-driven bean thread
pool:

406 Administering WebSphere applications



v Minimum size

v Maximum size

v Thread inactivity timeout

Custom Properties

You can use the Custom properties page to define the following properties for use by the message listener
service.

v “DYNAMIC.CONFIGURATION.ENABLED”

v “MAX.RECOVERY.RETRIES” on page 408

v “MQJMS.POOLING.THRESHOLD” on page 408

v “MQJMS.POOLING.TIMEOUT” on page 408

v “NON.ASF.RECEIVE.TIMEOUT” on page 408

v “NON.ASF.BMT.ROLLBACK.ENABLED” on page 409

v “RECOVERY.RETRY.INTERVAL” on page 410

v “SERVER.SESSION.POOL.REAP.TIME” on page 410

v “SERVER.SESSION.POOL.UNUSED.TIMEOUT” on page 410

v “SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname” on page 411

Message listener service custom properties
Use this panel to view or change custom properties of the message listener service.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > [Communications] Messaging > Message Listener Service > Custom
Properties.

You can use the Custom properties page to define the following properties for use by the message listener
service:

v “DYNAMIC.CONFIGURATION.ENABLED”

v “MAX.RECOVERY.RETRIES” on page 408

v “MQJMS.POOLING.THRESHOLD” on page 408

v “MQJMS.POOLING.TIMEOUT” on page 408

v “NON.ASF.RECEIVE.TIMEOUT” on page 408

v “NON.ASF.BMT.ROLLBACK.ENABLED” on page 409

v “RECOVERY.RETRY.INTERVAL” on page 410

v “SERVER.SESSION.POOL.REAP.TIME” on page 410

v “SERVER.SESSION.POOL.UNUSED.TIMEOUT” on page 410

v “SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname” on page 411

DYNAMIC.CONFIGURATION.ENABLED
This property controls whether the application server on which a listener port is created requires to be
restarted. Set this property to true to enable dynamic configuration.

Information Value
Data type Boolean
Default False (not selected)

Chapter 9. Welcome to administering EJB applications 407



MAX.RECOVERY.RETRIES
The maximum number of times that a listener port managed by this service tries to recover from a failure
before giving up and stopping. When stopped the associated listener port is changed to the stop state.
The interval between retry attempts is defined by the RECOVERY.RETRY.INTERVAL property.

A failure can be caused by either of the following conditions:

v An unexpected error has occurred when a listener port tries to get a message from the JMS provider.

v The connection between the application server and the JMS provider has been lost, usually due to a
network error.

Information Value
Data type Integer
Units Retry attempts
Default 5
Range 0 (no retries) through 2147483647

MQJMS.POOLING.THRESHOLD
The maximum number of unused connections in the pool.

An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys
connections on a least-recently-used basis. By default, a connection is destroyed if there are more than
ten unused connections in the pool.

Information Value
Data type Integer
Units Number of connections
Default 10

MQJMS.POOLING.TIMEOUT
The number of milliseconds after which a connection in the pool is destroyed if it has not been used.

An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys
connections on a least-recently-used basis. By default, a connection is destroyed if it has not been used
for five minutes.

Information Value
Data type Integer
Units Milliseconds
Default 5 minutes

NON.ASF.RECEIVE.TIMEOUT
The timeout in milliseconds for synchronous message receives performed by message-driven bean listener
sessions in the non-ASF mode of operation.

Note: The message listener service has two modes of operation, Application Server Facilities (ASF) and
non-Application Server Facilities (non-ASF):

v ASF mode provides concurrency and transactional support for applications. For publish/subscribe
message-drive beans, ASF mode provides better throughput and concurrency, because in the
non-ASF mode the listener is single-threaded.

408 Administering WebSphere applications



v Non-ASF mode is mainly for use with third-party messaging providers that do not support JMS
ASF, which is an optional extension to the JMS specification. Non-ASF mode is also
transactional but, because the path length is shorter than for ASF mode, usually provides
improved performance.

To enable the non-ASF mode of operation for all message-driven bean listeners on the application server,
set this property to a non-zero value.

If your messaging system is running in non-ASF mode, to avoid unwanted transaction timeouts, you must
allow a sufficient amount of time for processing to be completed before the total transaction lifetime
timeout is reached. Therefore, you must make sure that the value that you specify for the
NON.ASF.RECEIVE.TIMEOUT message listener service custom property is smaller than the value that you
specify for the Total transaction lifetime timeout transaction service property, and also that the
difference between the values of the two properties is greater than the amount of time that the
onMessage() method of the message-driven bean (MDB) takes to process the message.

For example, if your message-driven bean onMessage() method typically takes a maximum of 10 seconds,
and the transaction timeout is set to 120 seconds, you might set the NON.ASF.RECEIVE.TIMEOUT property to
no more than 110000 milliseconds (that is, 110 seconds).

Information Value
Data type Integer
Units Milliseconds
Default ASF mode (custom property not created)
Range 0 or greater milliseconds

0 Non-ASF mode is disabled

1 or more
The timeout in milliseconds for non-ASF
message-driven bean listener synchronous
session receives

NON.ASF.BMT.ROLLBACK.ENABLED
When the non-Application Server Facilities (non-ASF) mode of operation is in use (because you have set
the NON.ASF.RECEIVE.TIMEOUT property to a non-zero value), and a message-driven bean that uses
bean-managed transactions generates a runtime exception, the NON.ASF.BMT.ROLLBACK.ENABLED property
determines whether messages are returned to the destination.

Note: The message listener service has two modes of operation, Application Server Facilities (ASF) and
non-Application Server Facilities (non-ASF):

v ASF mode provides concurrency and transactional support for applications. For publish/subscribe
message-drive beans, ASF mode provides better throughput and concurrency, because in the
non-ASF mode the listener is single-threaded.

v Non-ASF mode is mainly for use with third-party messaging providers that do not support JMS
ASF, which is an optional extension to the JMS specification. Non-ASF mode is also
transactional but, because the path length is shorter than for ASF mode, usually provides
improved performance.

When this property is set to false (default), the message is automatically acknowledged before it is
passed to the message-driven bean.

When this property is set to true, the message listener service sends a message acknowledgement to the
client after the message is successfully processed by the message-driven bean, and the message listener
service requests recovery of any message for which the bean generates an exception.

Chapter 9. Welcome to administering EJB applications 409



Information Value
Data type Boolean
Default False

RECOVERY.RETRY.INTERVAL
The time in seconds between retry attempts by a listener port to recover from a failure. The maximum
number of retry attempts is defined by the MAX.RECOVERY.RETRIES property.

A failure can be caused by either of the following conditions:

v An unexpected error has occurred when a listener port tries to get a message from the JMS provider.

v The connection between the application server and the JMS provider has been lost, usually due to a
network error.

Information Value
Data type Integer
Units Seconds
Default 60
Range 1 through 2147483647

SERVER.SESSION.POOL.REAP.TIME
The time in seconds between checks on server session pools. To enable server session pool monitoring,
set this property to a non-negative value.

The SERVER.SESSION.POOL.REAP.TIME custom property is not applicable if your messaging system is
running in non-ASF mode.

Information Value
Data type Integer
Units Seconds
Default -1 (disabled)
Range -2147483648 through 2147483647

SERVER.SESSION.POOL.UNUSED.TIMEOUT
The default server session pool timeout in seconds.

When this property is set to a non-negative value, it is compared to the time that has elapsed since a
server session was used. If the timeout value is less than the elapsed time, the server session is removed
from the server session pool and its JMS session is returned to the JMS session pool. For example, if the
timeout value is one second and the time that has elapsed since a particular server session was used is
two seconds, that server session is removed from the server session pool and its JMS session is returned
to the JMS session pool.

The SERVER.SESSION.POOL.UNUSED.TIMEOUT custom property is not applicable if your messaging system is
running in non-ASF mode.

Information Value
Data type Integer
Units Seconds
Default -1 (disabled)
Range -2147483648 through 2147483647

410 Administering WebSphere applications



SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname
This property overrides the default SERVER.SESSION.POOL.UNUSED.TIMEOUT value for the listener port with
the name defined for lpname. This value applies to all message-driven beans that use the specified
listener port.

If this override is set to a non-negative value, it overrides the SERVER.SESSION.POOL.UNUSED.TIMEOUT
property, even if the SERVER.SESSION.POOL.UNUSED.TIMEOUT property has a negative value.

If this override is set to a negative value, it disables server session pool monitoring for the specified
listener port.

The SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname custom property is not applicable if your messaging
system is running in non-ASF mode.

Information Value
Data type Integer
Units Seconds
Default Not set
Range -2147483648 through 2147483647

Administering applications that use the Java Persistence API

Configure JPA to work in your environment
You have developed your applications to work with Java Persistence API (JPA) and now you must
configure your JPA applications to work in your environment.

About this task

You must specify options for your database as a part of configuring JPA applications. The application
server manages access to data sources. You can configure the data sources, connection pooling, and
Java Transaction API (JTA) service in the administrative console. If you have a specific data source for
your application, configure the data source before you install your JPA application.

Procedure
1. Configure your data sources through the administrative console. See the topic, Configuring a JDBC

provider and data source.

2. Specify the Java Naming and Directory Interface (JNDI) names for the <jta-data-source> and
<non-jta-data-source> elements. For example to use JNDI lookup:
<jta-data-source>jdbc/myJTADataSource</jta-data-source>
<non-jta-data-source>jdbc/myNonJTADataSource</non-jta-data-source>

If you use the component name space method (for example, java:comp/env) for data source retrieval,
ensure that your application defines these resource references so that you can use these JNDI names
to access the data source. This component name space configuration provides more flexibility if you
must alter the configuration for the data source. Otherwise, the standard, direct JNDI is used as the
data source name. For more information about using the JNDI interface, see the topic, Developing
applications that use JNDI. For example, the persistence.xml file would have an entry like the
following:
<jta-data-source>java:comp/env/jdbc/DataSourceJNDI</jta-data-source>

OR
<jta-data-source>jdbc/DataSourceJNDI</jta-data-source>

3. Configure persistence provider support in the application server.

Chapter 9. Welcome to administering EJB applications 411



a. “Configuring the JPA default persistence provider” on page 417.

b. Optional: “Using third-party persistence providers” on page 420.

What to do next

For more information about the commands, classes or other OpenJPA information, refer to the Apache
OpenJPA User Guide.

Configuring a JDBC provider and data source
For access to relational databases, applications use the Java Database Connectivity (JDBC) drivers and
data sources that you configure for the application server.

Before you begin

Each vendor database requires different JDBC driver implementation classes for JDBC connectivity. A
JDBC provider encapsulates those vendor-specific driver files. Through the data source that you associate
with the JDBC provider, an application server obtains and manages the physical connections for
transactions between applications and the database.

Attention: If you are accessing a DB2 database, IBM Optim pureQuery Runtime is an alternative to
JDBC. For more information on pureQuery, see the topic, Task overview: IBM Optim pureQuery Runtime,
in the related links section.

Before starting this task, determine the version of data source that you need according to the API
specification of your applications.

v Data sources (WebSphere Application Server Version 4) are for use with the Enterprise JavaBeans
(EJB) 1.0 specification and the Java Servlet 2.2 specification.

v Data sources of the latest standard version are for use with applications that implement the more
advanced releases of these specifications.

Procedure
1. Verify that all of the necessary JDBC driver files are installed on your application server. Consult the

article, Data source minimum required settings, by vendor for that information. If you opt to configure a
user-defined JDBC provider, check your database documentation for information about the driver files.

2. Create a JDBC provider.

When you create a JDBC provider from the administrative console, see the topic, Configuring a JDBC
provider using the administrative console; or

Using the wsadmin scripting client, see the topic, Configuring a JDBC provider using the scripting; or

Using the Java Management Extensions (JMX) API, see the topic, Creating a JDBC provider and data
source using the JavaManagement Extensions API.

3. Create a data source.

From the administrative console, see the topic, Creating a data source using the administrative
console; or

Using the wsadmin scripting client, see the topic, Configuring new data sources using scripting. For V4
data sources, see the topic, Configuring new WAS40 data sources using scripting; or

Using the JMX API, see the topic, Creating a JDBC provider and data source using the
JavaManagement Extensions API.

Required properties: Different database vendors require different properties for implementations of
their JDBC drivers. Set these properties on the WebSphere Application Server
data source. Because Application Server contains templates for many vendor
JDBC implementations, the administrative console surfaces the required
properties and prompts you for them as you create a data source. However, if

412 Administering WebSphere applications



you script your data access configurations, you must consult the article Data
source minimum required settings, by vendor, for the required properties and
settings options.

4. Optional: Configure custom properties.

Like the required properties, custom properties for specific vendor JDBC drivers must be set on the
application server data source. Consult your database documentation for information about available
custom properties. To configure a custom class to facilitate the handling of database properties that are
not recognized natively by the Application Server, refer to the topic, Developing a custom
DataStoreHelper class.

There are also optional data source properties, such as the DB2 sslConnection custom property, that
you might want to configure. Refer to the Application Programming Guide and Reference for Java for
your version of DB2 for z/OS if you use the DB2 Universal JDBC Driver provider for more information
about these custom properties.

5. Bind resource references to the data source. See the article, Data source lookups for enterprise beans
and web modules.

6. Test the connection (for non-container-managed persistence usage). See the topic, Test connection
service.

Results

If you use the DB2 JDBC Universal Driver, you might experience data source failures that the application
server JVM log does not document. Check the DB2 database log or the WebSphere Application Server
JDBC trace log (if JDBC trace was active). You might find that a bad authentication credential is the cause
of failure. Currently the DB2 JDBC Universal Driver does not identify or surface the errors that are
produced by non-valid authentication credentials in a proper or consistent way.

Even if you receive information about a bad credential, check the database and JDBC trace logs. These
logs provide more reliable, detailed error data on authentication failures.

Note: The JDBC trace log exists only if the JDBC trace service is active during server start up. Activate
the service in the administrative console. For more information, see the topic, Enabling trace at
server startup. Specify WAS.database as the trace group and select com.ibm.ws.db2.logwriter as
the trace string.

Configuring data source JDBC providers to use pureQuery in a Java SE environment:

Use this task to configure the application data source Java Database Connectivity (JDBC) provider to use
pureQuery to access DB2 in a Java Standard Edition (Java SE) environment.

Before you begin

If you need to use multiple DB2 package collections, see the information center topic, Configure
pureQuery to use multiple package collections, before continuing with this task.

About this task

IBM Optim PureQuery Runtime makes use of DB2 packages. These packages include information for one
or more Structured Query Language (SQL) statements and are stored in the DB2 catalog. You must first
run the wsdbgen command on a Java Persistence API (JPA) application to create the packages. The
wsdbgen command creates an XML file containing SQL statement information. This XML file must be
included into the application Java archive (JAR) file. The DB2 bind command uses this file as input to
create the DB2 package.

Important:

v JPA sets the IBM Optim PureQuery Runtime property pdq.executionMode to the value STATIC.

Chapter 9. Welcome to administering EJB applications 413



v The class path must include the installation location for the IBM Optim PureQuery Runtime. See the
information center topic on installing IBM Optim PureQuery Runtime for more information.

v The JPA provider implementation must be JPA for the application server
(com.ibm.websphere.persistence.PersistenceProviderImpl). The OpenJPA persistence provider does
not provide support for pureQuery.

v The wsdbgen command requires the URL of a database. The wsdbgen command forces a synchronize
mapping function that creates or alters the required tables. For DB2 zOS, V8 unique indexes and LOB
tables must be manually created prior to executing the wsdbgen command.

IBM Optim PureQuery Runtime properties are specified in a pdq.properties file in the META-INF directory
of the application JAR file. The pdq.ExecutionMode property is defaulted to STATIC for JPA applications.
You can use the pdqProperties property to use pureQuery in DYNAMIC mode. See the information center
topic, Using pureQuery in dynamic mode, for more information. PDQ properties, if specified, pass on to the
IBM Optim PureQuery Runtime. See the IBM Optim PureQuery Runtime documentation for list of
properties and valid values.

v wsjpa.jdbc.CollectionId: String value specifying the collection ID to use. This parameter overrides any
collection ID that is used during wsdbgen.

Attention: Read more about the DB2 JAR level compliance for IBM Optim PureQuery Runtime at the IBM
Support website: System requirements for IBM Optim PureQuery Runtime for Linux, UNIX, and
Windows.

Procedure

1. Update the application data source JDBC provider configuration to include the IBM Optim PureQuery
Runtime JAR files. Include the pdq.jar and pdqmgmt.jar files on the class path in addition to the JDBC
driver jar files. Either define a new JDBC provider or modify an existing provider to include the JAR
files. The class path must include the installation location for the IBM Optim PureQuery Runtime. See
the information center topics on JDBC provider settings and installing IBM Optim PureQuery Runtime
for more information.

2. Using the DB2 bind command provided by IBM Optim PureQuery Runtime, bind the XML file to the
database. This creates the DB2 packages. Refer to the information center topic on the pureQuery Bind
utility for more information.

What to do next

If you want to reconfigure the data source for JDBC, remove the pdq.jar and pdqmgmt.jar from the class
path.

Configuring the default JTA and non-JTA data source JNDI names
The Java Transaction API (JTA) and non-JTA data sources to be used for an application can be specified
through the <jta-data-source> and <non-jta-data-source> elements of the persistence.xml file within an
Enterprise JavaBeans (EJB) module.

About this task

If these elements are not configured in the persistence.xml file, then the default JTA and non-JTA data
sources configured for the server are used. These values are null by default. However, the default JTA and
non-JTA data source Java Naming and Directory Interface (JNDI) names to be used by applications
running on this server can be defined using the administrative console.

Procedure
1. Open the administrative console.

2. Select Servers > Application server > server > Container Services.

3. Click Default Java Persistence API settings.

414 Administering WebSphere applications



4. Select the Default JTA data source JNDI name or the Default non-JTA data source JNDI name
field.

5. Click Apply to save the configuration.

Associating persistence providers and data sources
Java Persistence API (JPA) applications specify the underlying data source that is used by the persistence
provider to access the database.

About this task

The application server provides three methods for defining the data sources in the persistence.xml file.

Procedure
v Explicitly specify the Java Naming and Directory Interface (JNDI) name in the persistence.xml file, and

the application directly references the data source. Switching to another data source requires an update
to the persistence.xml file.

JPA has two transactional patterns for accessing a data source:

– The Java Transaction API (JTA) resource pattern depends on global transactions. The JTA resource
pattern is typically used within the scope of an Enterprise JavaBeans (EJB) session facade. This
supports the session bean to control transaction and security contexts while JPA handles the
persistence mappings. In this case, the application does not use the EntityTransaction interface but
relies on the EntityManager enlisted with the global transaction when it is accessed.

– The non-JTA resource pattern is used when dealing with a single resource in the absence of global
transactions. The non-JTA resource pattern is typically used within the scope of a web application or
an application client. The application controls the transaction with the data source with the
EntityTransaction interface.

Within the application server, the use of the <non-jta-data-source> element requires a special
configuration for a non-transactional data source. Data sources that are configured for the application
server do not function as a <non-jta-data-source>, because all data sources that are configured by
the application server are automatically enlisted with the current transactional context. To prevent this
automatic enlistment, add an additional data source custom property
nonTransactionalDataSource=true:

1. Select Resources > JDBC > Data sources

2. Select the name of the data source that you want to configure.

3. Select WebSphere Application Server data source properties from the Additional Properties
heading.

4. Select Non-transactional data source.

5. Click OK.

Note: The JPA specification assumes that connections are obtained with an isolation level that does not
hold long-term locks in the database, such as READ_COMMITTED. This might not match the
WebSphere Application Server default isolation level, which is REPEATABLE_READ for most
databases. You can find the level that is used for your database by reading the topic,
Requirements for setting isolation level.

If the default for your database is not READ_COMMITTED, you can change the default by adding an
additional data source custom property webSphereDefaultIsolationLevel.

Table 32. Isolation level values. This table shows valid isolation level values.
Value Isolation Level

1 READ_UNCOMMITTED

2 READ_COMMITTED (JPA default)

4 REPEATABLE_READ (WebSphere Application Server default)

Chapter 9. Welcome to administering EJB applications 415



Table 32. Isolation level values (continued). This table shows valid isolation level values.
Value Isolation Level

8 SERIALIZABLE

If the isolation level is set to a value that holds long-term read locks, configure the JPA provider
to use Pessimistic Locking instead of the default Optimistic Locking. For the JPA provider
included with WebSphere Application Server, you can do this by adding the following properties
to persistence.xml file:
<property name="openjpa.Optimistic" value="false"/>
<property name="openjpa.LockManager" value=pessimistic"/>

The JPA specification mandates that the data sources that are defined in <jta-data-source> and
<non-jta-data-source> elements of a persistence unit register in the JNDI name space. For example,
the persistence.xml file should contain an entry like the following:
<jta-data-source>jdbc/DataSourceJNDI</jta-data-source>

v The JPA for WebSphere Application Server solution extends the JNDI data-source implementation to
allow you to reference data sources in the component name space. In the EJB or web module
deployment descriptor file, this is the <resource-ref> element. You can prefix the data source with
java:comp/env/ so the application indirectly references the data source by using the local JNDI name. In
this association, the application does not require updates, you change <resource-ref> to use another
data source. See the following example:
<jta-data-source>java:comp/env/jdbc/DataSourceJNDI</jta-data-source>

v You can declare openjpa.Connection* properties in the persistence unit as follows:
<property name="openjpa.ConnectionDriverName" value="org.apache.derby.jdbc.EmbeddedDriver" />
<property name="openjpa.ConnectionURL" value="jdbc:derby:target/database/jpa-test-database;create=true"/>

OR

You can use alternative standard JPA properties that are equivalent to the OpenJPA properties, such as:

Table 33. Standard JPA 2.0 property equivalents. Standard JPA 2.0 properties and the OpenJPA equivalents.
Standard JPA 2.0 OpenJPA Equivalent

javax.persistence.jdbc.driver openjpa.ConnectionDriverName

javax.persistence.jdbc.url openjpa.ConnectionURL

What to do next

For information about configuring data sources, see the topic on creating and configuring a data source.

For information about data sources and JPA, see the section on persistence in the Apache OpenJPA User
Guide.

Configuring persistence provider support in the application server
Persistence providers are implementations of the Java Persistence API (JPA) specification and can be
deployed in the Java EE compliant application server that supports JPA persistence.

About this task

The Enterprise JavaBeans (EJB) 3.0 and later specifications require that an application server container
that supports the EJB 3.0 and later programming model must provide a JPA implementation. This is also
referred to as a persistence provider. There are two built-in JPA persistence providers: the JPA persistence
provider for the application server and the OpenJPA persistence provider. If an explicit provider element is
not specified in the persistence unit definitions, the application server will use the default persistence
provider, which is the JPA persistence provider for the application server.

The application server provides both the default persistence provider and the Apache OpenJPA
persistence provider to support the open source implementation of JPA and allow for easy migration of
existing OpenJPA applications to the application server's solution for JPA.

416 Administering WebSphere applications



Procedure
v Configuring a default persistence provider

Use the default persistence provider, or specify a persistence provider for your application. With the
application server's JPA persistence provider, you can take advantage of the stability and application
extensions that are provided with the application server's implementation of JPA. You can decide which
persistence implementation best fits your needs. If an application relies on a specific persistence
provider for certain functions and settings, you should specify the provider in the persistence unit
definition to avoid any incompatibilities.

v Using third-party persistence providers

Use third-party persistence providers in the application server environment.

Configuring the JPA default persistence provider:

Two persistence providers are included in the product: JPA for WebSphere Application Server persistence
provider and Apache OpenJPA persistence provider. The Java Persistence API (JPA) for WebSphere
Application Server persistence provider is the default provider for the product. You can use one of these
two providers, or a third-party persistence provider, as the default provider.

About this task

Attention: If you have a default persistence provider, default Java Transaction API (JTA) data source
Java Naming and Directory Interface (JNDI) name, and default non-JTA data source JNDI name values
that were set in the product before V7.0, through the Java virtual machine (JVM) properties, any change to
these values through the administrative console override values that were set with the JVM properties.

These properties include, com.ibm.websphere.jpa.default.provider,
com.ibm.websphere.jpa.default.jta.datasource, and com.ibm.websphere.jpa.default.nonjta.datasource.
Support for these properties has been deprecated. Any values that were set through these properties are
displayed as default values on this panel. These values that are set through the administrative console
panel overrides any values set through the JVM properties.

While built from the Apache OpenJPA persistence provider, the JPA for WebSphere Application Server
persistence provider contains the following enhancements and differences:

v Static SQL support using the DB2 pureQuery feature

v Access intent support

v Enhanced tracing support

v Version ID generation

v WebSphere product-specific commands and scripts

v Translated message files

v Check in-memory caches for lazily loaded many-to-one or one-to-one relationships. Setting the
wsjpa.BrokerImpl property to true specifies that the JPA implementation will attempt to load lazy fields
from memory at run time if the foreign key data for the lazy fields are available. Use the following
property:
<property name="wsjpa.BrokerImpl" value="checkCacheForLazyFields=true"/>

This property can be useful in many scenarios. For example, assume you have a person entity,
Person(A), that has a one-to-one relationship to another person, Person(B), and Person(B) is stored in
the L2 data cache. If this property is set, when the JPA implementation finds Person(A), the foreign key
that is loaded from Person(A) will be used to populate the relationship from Person(A) to Person(B).

v The following table shows how the default values for the JPA for WebSphere Application Server
persistence provider configuration properties are different from the Apache OpenJPA provider:

Chapter 9. Welcome to administering EJB applications 417



Table 34. Comparison. JPA for WebSphere Application Server persistence provider and Apache OpenJPA provider
comparison

Property Apache OpenJPA default value

JPA for WebSphere Application
Server persistence provider default
value

openjpa.Compatibility StrictIdentityValues=false StrictIdentityValues=true

openjpa.RuntimeUnenhancedClasses unsupported warn

openjpa.DynamicEnhancementAgent true false

open.jdbc.DriverDataSource auto simple

gotcha: The OpenJPA compatibility property does not remove proxy types that OpenJPA generates for
certain data types, especially date types such as GregorianCalendar. This omission can cause
problems with deserialization. If a deserialization problem occurs, an error message, similar to
the following message, is issued:

Error Message is:org.codehaus.jackson.map.JsonMappingException:
Can not construct instance of org.apache.openjpa.util.java$util$GregorianCalendar$proxy,
problem: no suitable creator method found at
[Source: org.apache.http.conn.EofSensorInputStream@d83fbd5; line: 1, column: 4094]

In addition to the above property overrides, the use of the default JPA for WebSphere Application Server
persistence provider also implies the use of the following JPA for WebSphere Application Server classes
which override the corresponding classes in Apache OpenJPA:
com.ibm.ws.persistence.jdbc.kernel.ConstraintUpdateManager;
com.ibm.ws.persistence.jdbc.kernel.WsJpaJDBCBrokerFactory;
com.ibm.ws.persistence.jdbc.sql.DB2Dictionary;
com.ibm.ws.persistence.jdbc.sql.OracleDictionary;
com.ibm.ws.persistence.jdbc.sql.SQLFactoryImpl;
com.ibm.ws.persistence.jdbc.sql.SQLServerDictionary;
com.ibm.ws.persistence.kernel.WsJpaBrokerImpl;
com.ibm.ws.persistence.kernel.WsJpaFinalizingBrokerImpl;

If no JPA provider is configured in the <provider> element of the persistence.xml file within an Enterprise
JavaBeans (EJB) module, the default JPA provider that is currently configured for this server is used. The
product is packaged with the JPA for WebSphere Application Server persistence provider defined as the
default provider. However, it is possible to override this default and specify a different default through the
administrative console.

You can set your default persistence provider in one of two ways.

Procedure

v Select the default JPA provider from a list of providers included with the product.

1. Open the administrative console.

2. Click Servers > Application Servers

3. Select a server.

4. Click Container Services > Default Java Persistence API Settings

5. Select Select a default persistence provider that is included with WebSphere Application
Server.

6. Click the slider and select from the list.

7. Click Apply and save the configuration.

v Specify an alternative default persistence provider through the administrative console.

1. Open the administrative console.

2. Click Servers > Application Servers

418 Administering WebSphere applications



3. Select a server.

4. Click Container Services > Default Java Persistence API Settings

5. Select Specify an alternative default persistence provider.

6. Enter the fully qualified JPA implementation class name of a JPA persistence provider in the box.

7. Click Apply and save the configuration.

Default Java Persistence API settings:

The Java Persistence API (JPA) specification requires a default provider to be defined. If you have
applications that use JPA, it is recommended you use this page to provide default values. To increase the
portability of your applications, you can use this page to configure the default JPA settings for applications
running on this server instead of defining the <provider> element in each persistence unit in your
applications. The JPA settings defined here are used for the persistence unit of an application only when
the application does not define the JPA settings for that persistence unit.

Note: Application JPA settings always override the settings on this page.

To view this administrative console page, click Servers > Server types > WebSphere application
servers > server > Container Services > Default Java Persistence API settings.

Default persistence provider:

Specify the default persistence provider for the application server container. The default persistence
provider can be selected either from a list of providers that are included with the product or a
user-specified alternate persistence provider.

Select a persistence provider from the product list or specify a fully package qualified JPA implementation
class name of an alternate persistence provider.

Default
com.ibm.websphere.persistence.PersistenceProviderImpl

Note: If an alternate persistence provider is specified as the default, make sure the alternate persistence
provider is created in the server. See the information center topic on using a third-party persistence
provider.

Default Java Transaction API (JTA) data source Java Naming and Directory Interface (JNDI) name:

Specify the default JTA data source used by persistence units for the application server container.

Select the JNDI name for the data source from the drop down box. The JTA data sources that are
currently configured and visible to the application server are available in the drop down box selection.

Default
None

Note: If a default JTA data source is not specified, ensure an appropriate JTA data source is specified in
the <jta-data-source> or connection properties field in the <properties> element in the persistence
unit.

Default non-JTA data source JNDI name:

Specify the default non-JTA data source used by persistence units for the application server container.

Chapter 9. Welcome to administering EJB applications 419



Select the JNDI name for the data source from the drop down box. The data sources that are currently
configured, visible to the application server, and are set to "non-transactional" are available in the drop
down box selection.

Default
None

Note: Some JPA entity features will require a non-JTA data source to be specified. An example of this is
automatic entity identity generation. Ensure a non-JTA data source is configured to match your
application needs. For information on configuring a non-JTA data source, see the information center
topic on associating persistence units and data sources.

Using third-party persistence providers:

Java Persistence API (JPA) for WebSphere Application Server supports third-party persistence providers in
their application server environment.

About this task

Java EE applications that use JPA functions can employ third-party persistence providers other than the
providers that are included with the application server. Applications can also specify an Apache OpenJPA
provider that is a different version than what is included with the application server, as long as the same
version of the JPA specification is supported.

There are two basic means to incorporate third-party providers into an application:

v Embedding the persistence provider inside an application

v Using shared libraries

Depending on your requirements, you can embed a persistence provider inside an application, or place the
persistence provider into a shared library.

Procedure

v Embedding a third-party persistence provider within an application Sometimes an application
design must rely on the implementation of a specific persistence provider. The JPA specification permits
embedding of a specific JPA provider within a persistence archive. When building the application, you
can assemble a specific version of a provider implementation in the application enterprise archive (EAR)
file or in a web application (WAR) file. To embed a third-party persistence provider into an application,
you must inspect the application design and all dependent prerequisites. Use the following steps to
embed a persistence provider inside an application:

1. Modify the <provider> element to specify explicitly which persistence provider to use to access the
persistence entity.

2. Build the specific version of the third-party persistence provider into the application. To manage the
persistence correctly, verify that the EntityManagerFactory and the EntityManager are calling the
correct provider. Many providers write startup and version information to standard output, which gets
included in the SystemOut.log of the application server. This information can be helpful to determine
if a third-party provider is being used by your application.

Note: This topic references one or more of the application server log files. As a recommended
alternative, you can configure the server to use the High Performance Extensible Logging
(HPEL) log and trace infrastructure instead of using SystemOut.log , SystemErr.log,
trace.log, and activity.log files on distributed and IBM i systems. You can also use HPEL
in conjunction with your native z/OS logging facilities. If you are using HPEL, you can access
all of your log and trace information using the LogViewer command-line tool from your server
profile bin directory. See the information about using HPEL to troubleshoot applications for
more information on using HPEL.

420 Administering WebSphere applications



3. To use a third-party JPA provider that was not bundled with the application server, configure the
class loader order for your application to load the classes with the application class loader first. This
is also required if the third-party JPA provider is defined in a shared library that is assigned to a
user-defined class loader on the server. If the class loader is not configured properly, the third-party
JPA provider that is included with the application server is not loaded and used by your application.

4. Depending on how you packaged the provider, perform one of the following steps:

– If you packaged the provider in an EAR file, specify the third-party persistence provider binaries
in the Manifest.mf class path in those application modules that needs JPA access.

– If the provider was bundled in a WAR file, include the necessary provider binaries in the
WEB-INF/lib directory of the web application.

5. Install your application normally.

This configuration localizes the availability of the provider and limiting it to the application alone. While
sometimes necessary, embedding persistence providers increases the application memory footprint
accordingly.

v Using shared libraries to implement a third-party persistence provider Persistence providers
accessed by applications in a global environment can be installed as a shared library for the application
server. Depending on your requirements, you can share the library to the server and application. Use
the following steps to implement a third-party persistence provider using shared libraries:

1. Modify the <provider> element to specify explicitly which persistence provider to use to access the
persistence entity.

2. Define the persistence provider in a shared library. See the topic on creating shared libraries for
more information.

3. Associate the shared library with the application class loader, or associate the shared library with the
server class loader if the library is accessed by many applications.

4. Configure the class loader order for your application to load the classes with the application class
loader first. This is required if the third-party JPA provider is included in the application or if it is
defined in a shared library. If the class loader is not configured properly, the JPA provider that is
included with the application server is used by your application instead of the third-party JPA
provider.

When the application starts, the specified persistence provider is resolved. From this point on, all
persistence requests are handled by this provider.

v A shared library persistence provider can override an existing persistence provider that is the same type
and exists in your application class loader hierarchy. If a shared library persistence provider overrides
the persistence provider that is shipped with the product, it is recommended that you use an isolated
class loader for the shared library. See the topic, Creating shared libraries, for more information.

Task overview: IBM Optim pureQuery Runtime
IBM Optim pureQuery Runtime provides Java Persistence API (JPA) with an alternative way to access a
database. PureQuery supports static Structured Query Language (SQL).

About this task

JPA in the Java EE and Java SE environments provides optional support for the pureQuery runtime
environment. PureQuery is a high performance Java data access platform that helps manage applications
that access data. PureQuery provides an alternate set of APIs that can be used instead of Java Database
Connectivity (JDBC) to access the DB2 and Informix database.

To use this feature on the application server, you must install Data Studio pureQuery runtime version 1.2
or later. If you plan to perform the DB2 bind command from the administrative console, or with the wsadmin
tool, you must have pureQuery v1.2 or later. Refer to the IBM Optim pureQuery Runtime information
center topic on installing pureQuery Runtime for more information.

Chapter 9. Welcome to administering EJB applications 421



You can use pureQuery dynamically. The pdqxml file location is specified by the pdqProperties property on
the data source or connection URL. For more information, see the topic, Using pureQuery in dynamic
mode.

PureQuery uses DB2 packages. These packages consist of information for one or more SQL statements
and are stored in the DB2 catalog. To create the packages, the user must first run the wsdbgen command
on a JPA application. The wsdbgen command creates a persistence_unit_name.pdqxml file. This file
contains pre-generated SQL statements for Create, Update, Delete, and Retrieve, NamedQueries, and
NamedNativeQueries of JPA entities. The persistence_unit_name.pdqxml file must be bound against
database. Associated DB2 packages are generated and the SQL statement is started statically at run time.
This persistence_unit_name.pdqxml file must be included into the application Java archive (JAR) file.

The application server offers support for static SQL for Enterprise JavaBeans (EJB) 2.x and later entity
beans with the ejbdeploy SQLj option. With JPA, this feature is offered through pureQuery.

There are several benefits to using pureQuery instead of JDBC and SQLJ. Static SQL offers greater
security and control over access to data because applications are only granted authority to execute known
SQL. Static SQL offers better resource utilization on the DB2 server because it avoids runtime parsing and
optimizing of the SQL statements.

When doing the bind process and when you define your JDBC provider, the following four Java archive
(JAR) files must be in the class path:

v db2jcc_license_cisuz.jar

v db2jcc_license_cu.jar

v pdq.jar

v pdqmgmt.jar

Attention: Read more about the DB2 JAR level compliance for pureQuery at the IBM Support website:
System requirements for IBM Optim pureQuery Runtime for Linux, UNIX, and Windows.

Restriction:

v There is no support for the QueryTimeout property specified either through the FetchPlan
API or through the property plug-in string for wsjpa.ConnectionFactoryProperties. The
QueryTimeout value is ignored if specified.

v There is no support for the QueryTimeout property specified through the FetchPlan API.
The QueryTimeout value is ignored if specified.

v OpenJPA large result processing uses JDBC APIs for scrollable cursors.

Important:

v JPA sets the pureQuery property, pdq.executionMode, to the value STATIC.

v In addition to the JDBC driver JAR file, the JDBC provider configuration must include the
JAR file for the pureQuery runtime environment.

v OpenJPA provides support for application programs to programmatically access and alter
the FetchPlan at run time. Altering the fetch plan might result in an SQL that has not been
generated by the wsdbgen command at application build time. If this occurs, the SQL is
executed dynamically rather than using static SQL from the database package.

v If the user changes the application queries, entity mapping or persistence properties, run
the wsdbgen command and bind again. This process generates and binds the updated
database packages.

v Input parameter values in JPA queries (with both EJB SQL queries and native SQL queries)
cannot be NULL values except in the case of update statements SET expression values. To
search for NULL values in a WHERE clause of SELECT, UPDATE or DELETE, then enter
the is null predicate instead.

422 Administering WebSphere applications



Procedure
v Learn how to “Configuring JDBC providers to use pureQuery to access DB2”.

v Learn how to “Configuring JDBC providers to use pureQuery to access Informix” on page 424.

v Learn how to “Configuring data source JDBC providers to use pureQuery in a Java SE
environment” on page 413.

v Learn how to “Using pureQuery in dynamic versus static mode for DB2 and Informix” on page
424.

Configuring JDBC providers to use pureQuery to access DB2:

Use this task to configure the application data source Java Database Connectivity (JDBC) provider to use
pureQuery to access DB2 in a Java EE environment.

Before you begin

If you must use multiple DB2 package collections, see the information center topic configure pureQuery to
use multiple package collections before continuing with this task.

About this task

PureQuery uses DB2 packages. These packages consist of information for one or more SQL statements
and are stored in the DB2 catalog. You must first run the wsdbgen command on a JPA application to create
the packages. The wsdbgen command creates an XML file containing SQL statement information. This XML
file must be included into the application Java archive (JAR) file. The DB2 bind command uses this file as
input to create the DB2 package .

Important:

v JPA sets the pureQuery property pdq.executionMode to the value STATIC.

v The JDBC provider configuration must include the JAR file for the pureQuery runtime environment. This
JAR file is in addition to the JDBC driver JAR file. See the information center topic on installing
pureQuery run time for more information.

v If this is an XA data source, define a new custom property on the data source where property_name =
downgradeHoldCursorsUnderXa and boolean value = true.

Procedure

1. Update the application data source JDBC provider configuration to include the pureQuery runtime JAR
file. Either define a new JDBC provider or modify an existing provider to include the following JAR files.
See information center topics on JDBC provider settings and installing IBM Optim pureQuery Run time
for more information.

v pdq.jar

v pdqmgmt.jar

2. Using the DB2 bind command, bind the XML file to the database. This creates the DB2 packages.
There are three ways to do this:

v Use the wsadmin command. Refer to the information center topic on application management
command group for the AdminTask object for more information.

v Using the administrative console. Refer to the information center topic on SQLj profiles and
pureQuery bind files settings for more information.

v Using the DB2 bind command provided by IBM Optim pureQuery Run time. Refer to the information
center topic on the pureQuery Bind utility for more information.

Chapter 9. Welcome to administering EJB applications 423



What to do next

If you want to reconfigure the data source for JDBC, remove the pdq.jar and pdqmgmt.jar from the class
path.

Configuring JDBC providers to use pureQuery to access Informix:

Use this task to configure the application data source Java Database Connectivity (JDBC) provider to use
pureQuery to access Informix in a Java EE environment.

About this task

PureQuery provides heterogeneous batching which performs better than homogeneous batching in JDBC.
Applications benefit from heterogeneous batching if updates in a transaction involve many entity types and
those entities do not have DB-generated keys. To use pureQuery the JDBC driver must specify the
db2jcc.jar file (pureQuery does not work with the Informix legacy JDBC driver, ifxjdbc.jar file) and
when using JPA, in the persistence.xml file that is included in the application Java archive (JAR) file must
specify the following:
<property name="pdqProperties" value="dynamic"/>

Important:

v The JDBC provider configuration must include the JAR file for the pureQuery runtime environment. This
JAR file is in addition to the JDBC driver JAR file. See the information center topic on installing IBM
Optim pureQuery Runtime for more information.

v If this is an XA data source, define a new custom property on the data source where property_name =
downgradeHoldCursorsUnderXa and boolean value = true.

Procedure

1. Update the application data source JDBC provider configuration to include the pureQuery runtime JAR
file. Either define a new JDBC provider or modify an existing provider to include the following JAR files.
See information center topics on JDBC provider settings and installing IBM Optim pureQuery Runtime
for more information.

v pdq.jar

v pdqmgmt.jar

v db2jcc.jar

2. Ensure that the persistence.xml file included in the application JAR file defines the following property:
<property name="pdqProperties" value="dynamic"/>

See the topic, Using pureQuery in dynamic mode, for more information.

What to do next

If you want to reconfigure the data source for JDBC, remove the pdq.jar, pdqmgmt.jar, and db2jcc.jar
files from the class path and replace these files with the JDBC driver, ifxjdbc.jar file.

Using pureQuery in dynamic versus static mode for DB2 and Informix:

Using IBM Optim PureQuery Runtime is another way for Java Persistence API (JPA) to access a DB2 and
Informix databases. IBM Optim PureQuery Runtime supports static Structured Query Language (SQL).

Before you begin

Important: BatchLimit is a configurable property. The default value for DB2 is 100 and for Informix the
default value is 0. If you set batchLimit to 0, batching does not occur. For an application to get

424 Administering WebSphere applications



heterogenous batching for the Informix database backend, batchLimit is configured in the
persistence.xml file. An example of how to set batchLimit to 100 is as follows:
<property name="openjpa.jdbc.DBDictionary" value="batchLimit=100"/>

About this task

The Feature Pack for OSGi Applications and Java Persistence API (JPA) 2.0 introduced support for IBM
Optim PureQuery Runtime 2.2.0.2 and later. The new feature added for IBM Optim PureQuery Runtime
2.2.0.3, supports Informix, and DB2 applications to use pureQuery in DYNAMIC mode.

This is achieved by setting up pdqProperties on the data source in the Java Enterprise Edition (Java EE)
environment. Or, setting pdqProperties on the connection URL in the Java Standard Edition (Java SE)
environment.

If pdqProperties is not defined, pureQuery runs in compatible mode, which means that the pdqxml file is
packaged in the application Java archive (JAR) files.

There are several topics that reference pdqProperties in the IBM Integrated Data Management information
center.

Procedure

1. When defining a data source In a Java EE environment, add a custom property pdqProperties and set
a string value to valid IBM Optim PureQuery Runtime properties. In the following table, an example of
executionMode(DYNAMIC) is shown to use pureQuery dynamic mode. Any valid IBM Optim PureQuery
Runtime property can be specified to get dynamic execution. When the pdqProperties contains the
pureQuery Xml(pdqxml-file-location) property, the IBM Optim PureQuery Runtime uses the SQL in
STATIC mode that is found in the pdqxml file. This pureQueryXML property contains the pdqxml file
location.

Attention: It is assumed that the pdqxml file is previously bound against the database.

Table 35. pdqProperties settings for DB2 and Informix examples. pdqProperties settings for DB2 and Informix
examples
pdqProperties= DB2 backend Informix

executionMode(DYNAMIC) dynamic execution dynamic execution

executionMode(STATIC), pureQueryXML(c:/
temp/ItemEJB.pdqxml)

Attention: executionMODE(DYNAMIC) and
executionMode(STATIC) are required for
dynamic and static executions.

For static execution mode, the pdqxml file
specification follows the IBM Optim PureQuery
Runtime documentation.

pureQueryXML(pdqxml-file-location) is one of
many ways to specify the pdqxml-file-
location.The location of the pdqxml file is the
path of the pdqxml file. For example,
c:/temp/ItemEJB.pdqxml.

static execution NA (ignored)

2. In a Java SE environment, pdqProperties can be set on the connectionURL. There are two ways to
specify the pdqProperties on the connectionURL:

a. Use openjpa.connectionProperties For example:
<property name="openjpa.ConnectionProperties"

value="DriverClassName=com.ibm.db2.jcc.DB2Driver,
Url=’jdbc:db2://localhost:50000/demodb:pdqProperties=

pureQueryXml(C:/wsjpa1/fvt/resources/demo.pdqxml);’,
Username=myid, Password=secret" />

Chapter 9. Welcome to administering EJB applications 425



b. Use openjpa.ConnectionURL. For example:
<property name="javax.persistence.jdbc.driver" value="com.ibm.db2.jcc.DB2Driver"/>
<property name="javax.persistence.jdbc.url"

value="jdbc:db2:fvt2:pdqProperties=pureQueryXml(C:/wsjpa1/fvt/resources/demo.pdqxml);"/>
<property name="javax.persistence.jdbc.user" value="myid"/>
<property name="javax.persistence.jdbc.password" value="secret"/>

Attention: The pureQueryXml file location must grant read-write permissions for the IBM Optim
PureQuery Runtime to update the file.

Attention: The data source that is defined to run IBM Optim PureQuery Runtime should not be
shared with applications that run SQL in JDBC.
When pdqProperties is set on the data source of a connection URL, even if the pdqxml file is
packaged within the application JAR file, the pdqxml file is ignored. However, if the pdqProperties is
not set, the pdqxml file that is in the application JAR file is searched by the runtime (this is the
compatible mode). If the pdqxml file is found, then the setting is STATIC execution mode. Otherwise,
all SQLs are run in JDBC.

Configuring pureQuery to use multiple DB2 package collections:

Set up a pureQuery Java Persistence API (JPA) application to use multiple DB2 package collections.

About this task

It is possible for multiple copies of a database schema to exist. This situation might happen in a partitioned
database schema where there is one database for east coast employee data and another database for
west coast employee data. In this case, the two databases have the same schema. There might be two
databases with two database catalogs. Or there might be only one database, in which case, the high-level
qualifier of the table names (the schema name) must be different. Since the schemas are the same, there
can be a single set of JPA entities that are used to access both sets of data. There are several ways to
configure JPA to handle these situations.

Important: When there are multiple persistence units, either with separate databases or a single
database, you must run the wsdbgen command once for each persistence unit.

The following three scenarios exist that require the use of multiple DB2 package collections. If you need
more information, read about configuring an application to use IBM Optim PureQuery Runtime.

1. When there are two persistence units with different data source names, using static SQL, two sets of
DB2 packages exist: one DB2 package in each database. Since two persistence units exist, two
persistence_unit_name.pdqxml files for the JPA runtime environment exist.

2. If the tables are in a single database, then two persistence units can also be used. In this case, the
data source is the same in both persistence units. However, the schema name property,
wsjpa.jdbc.Schema must be different. There are two sets of DB2 packages. Each DB2 package must
have a different package name or a different package collection name. Both the wsdb2gen and the
DB2 bind command have options to specify the package collection and package names.

3. You can create a single persistence unit, which will eliminate the need to maintain two persistence unit
configurations and run the wsdbgen command multiple times. This configuration requires a common
package name. Thus the package collection names must be different. Use the
createEntityManager(Map map) method, where the map contains the values for the wsjpa.jdbc.Schema
and wsjpa.jdbc.CollectionId properties to specify the package collection name and schema name.

Configuring OpenJPA caching to improve performance
The OpenJPA implementation gives you the option of storing frequently used data in the memory to
improve performance. OpenJPA provides concurrent data and concurrent query caches that support
applications to save persistent object data and query results in memory to share among threads and for
use in future queries.

426 Administering WebSphere applications



About this task

The OpenJPA data cache is a cache of persistent object data that operates at the EntityManagerFactory
level. This optional-use cache is designed to increase performance while remaining in full compliance with
the Java Persistence API (JPA) standard. This means that enabling the caching option can increase the
performance of your application, with no changes to your code. The OpenJPA data cache is designed to
provide significant performance increases over cacheless operations and ensures that behavior is identical
in both cache-enabled and cacheless operations.

When enabled, the cache is examined before accessing the data store. The cache stores data when
objects are committed and when persistent objects are loaded from the data store. If operating in a single
Java virtual machine (JVM) environment, the JVM maintains and shares a data cache across all
EntityManager instances obtained from a particular EntityManagerFactory. The OpenJPA data cache
cannot do this in a distributed environment because caches in different JVMs, created from different
EntityManagerFactory objects are not synchronized.

Using the OpenJPA cache in a multi-JVM environment can be done by configuring the OpenJPA second
level (L2) cache provider plug-in. See the topic, Dynamic cache provider for the JPA 2.0 second level
cache, and the section “Using the dynamic cache L2 Cache Provider in a clustered environment”, for more
information. Configuring the DynaCache plug-in allows for the Data and Query cache content to be
replicated and consistent across JVMs. Other alternatives include setting up an event notification
framework or using a third-party distributed cache such as IBM WebSphere eXtreme Scale.

You can enable the OpenJPA data cache for a single or a multiple JVM environment, set its default
element size, including soft references, and specify timeout values.

To set up and configure the OpenJPA data cache, do the following:

1. To enable the cache for a single JVM, set the openjpa.DataCache property to true, and set the
openjpa.RemoteCommitProvider property to sjvm:
<property name="openjpa.DataCache" value="true"/>
<property name="openjpa.RemoteCommitProvider" value="sjvm"/>

To enable the data cache in a distributed environment, the openjpa.RemoteCommitProvider must be
configured specifically for the environment, or a third-party cache management utility can be used.

2. The maximum cache size can be adjusted by setting the CacheSize property:
<property name="openjpa.DataCache" value="true(CacheSize=5000...

By default, the OpenJPA data cache holds 1000 elements. Objects that are pinned into the cache are
not counted when determining if the cache size exceeds its maximum size. If the cache overflows, it
evicts random elements. You can preserve evicted elements longer with the SoftReferenceSize
property. By default, soft references are unlimited. If you must, you can limit the number of soft
references or set to 0 to disable soft references completely:
<property name="openjpa.DataCache" value="true(CacheSize=5000 SoftReferenceSize=0 ...

3. You can specify that a cache is cleared at certain times. The EvictionSchedule property of the
OpenJPA cache implementation accepts a cron style eviction schedule. The cron format specifies the
minute, hour of day, day of month, day of month, and day of the week beginning with 1 for Sunday; the
* symbol (asterisk), indicates match all. To schedule a cache to evict at 45 minutes past 3 PM on
Sunday every month you would add this property:
<property name="openjpa.DataCache" value="true(CacheSize=5000 SoftReferenceSize=0 EvictionSchedule=’15,45 * * 1’")/>

4. You also can specify a cache timeout value for a single class by setting the timeout metadata
extension to the amount of time in milliseconds that the data of the class is valid; for example:

Chapter 9. Welcome to administering EJB applications 427



@Entity
@DataCache(timeout=10000)
public class Employee {

...
}

Refer to the org.apache.openjpa.persistence.DataCache Javadoc for more information.

After configuring your data cache, you can use it after you restart your application.

Refreshing an entity may lead to different behavior with or without a DataCache when a separate process
or part of the same application are updated or even deleted the corresponding record in the database. By
default, entities are refreshed from the database even when DataCache is active. Therefore, with the
default configuration the refresh behaves identically with or without a DataCache. However, a persistence
unit can be configured to refresh entities from DataCache with the property
openjpa.RefreshFromDataCache for improved performance. Under this configuration, any out-of-band
changes that occur in the database record do not appear in the refreshed state of the entity.

Note: Regardless of the openjpa.RefreshFromDataCache setting, the DataCache is always bypassed
for refresh when locks are active, such as for a pessimistic transaction, in a persistence context. An
application may activate openjpa.RefreshFromDataCache but can still bypass the DataCache
while refreshing an entity by explicitly evicting the entity from DataCache before refresh.

OpenJPA provides a concurrent query cache that supports applications to save persistent object data and
query results in memory to share among threads and for use in future queries. The query cache stores the
object IDs returned by query executions. When you run a query, OpenJPA assembles a key based on the
query properties and the parameters used at execution time, and checks for a cached query result. If one
is found, the object IDs in the cached result are looked up, and the resultant persistence-capable objects
are returned. Otherwise, the query is executed against the database, and the object IDs loaded by the
query are put into the cache.

You can configure the query cache settings in a similar way to the data cache. The interface provided to
the query cache is the org.apache.openjpa.persistence.QueryResultCache class. You can access this
class through the OpenJPAEntityManagerFactory.

The default query cache implementation caches 100 query executions in a least-recently-used cache. This
can be changed by setting the cache size in the CacheSize plug-in property. Like the data cache, the
query cache also has a backing soft reference map that can be changed using the SoftReferenceSize
property. To keep queries in the cache at all times, you can pin them to a cache. To change the query
cache properties do the following:

1. Modify the CacheSize property of the openjpa.QueryCache:
<property name="openjpa.QueryCache" value="true("CacheSize=1000, ...

2. Change the SoftReferenceSize property to enable and control the size of this map:
<property name="openjpa.QueryCache" value="true(CacheSize=1000, SoftReferenceSize=100")/>

The SoftReferenceSize table is disabled by default. Setting the size enables it.

3. Pin or unpin queries in the cache through the QueryResultCache with this syntax:
public void pin(Query q);
public void unpin(Query q);

Modifying these properties allows you to make better use of the query cache.

OpenJPA provides classes that may be extended for further functionality.

v As previously mentioned, if you want to implement a distributed cache that uses an unsupported
method for communications, create an implementation of
org.apache.openjpa.event.RemoteCommitProvider.

428 Administering WebSphere applications



v If you are adding new behavior, extend org.apache.openjpa.datacache.DataCacheImpl.

v To use your own storage mechanism, extend org.apache.openjpa.datacache.AbstractDataCache.

v To add query functionality, you can extend the default org.apache.openjpa.datacache.QueryCacheImpl.

v Implement your own storage mechanism for query results by extending
org.apache.openjpa.datacache.AbstractQueryCache

OpenJPA provides a cache that provides caching of SQL strings used by find operations performed on the
entity manager and some queries to manage eagerly fetched relationships. When this cache is enabled,
SQL queries used by these operations are generated one time per entity manager factory and can be
reused. This cache is enabled by default but can also be configured through the
openjpa.jdbc.QuerySQLCache configuration property.

The query SQL cache can be configured or disabled through the openjpa.jdbc.QuerySQLCache property.
By default, this property is set to true. When the property is set to true, the cache is enabled and uses
the org.apache.openjpa.util.CacheMap class for its cache store. The CacheMap is a managed cache,
meaning that it limits the number of cache entries and has a cache eviction scheme to manage memory
usage. If the cache is set to all the org.apache.openjpa.lib.util.ConcurrentHashMap class is used as a
cache store. The ConcurrentHashMap is not a managed cache so entries remain in the cache for the
lifetime of an entity manager factory. This caching mechanism can provide better performance at the
expense of increased memory usage. A custom cache store class can also be specified if it implements
the java.util.Map interface. To disable the cache, specify the value false. See the following examples on
how to configure or disable the SQL query cache:

v To use an unmanaged cache:
<property name="openjpa.jdbc.QuerySQLCache" value="all"/>

v To specify a custom cache class:
<property name="openjpa.jdbc.QuerySQLCache" value="com.mycompany.MyCustomCache"/>

v To use an unmanaged cache:
<property name="openjpa.jdbc.QuerySQLCache" value="false"/>

What to do next

You can read more about Caching in the OpenJPA for all caching extensions in the Apache OpenJPA User
Guide.

Chapter 9. Welcome to administering EJB applications 429



430 Administering WebSphere applications



Chapter 10. Administering Internationalization service

This page provides a starting point for finding information about globalization and the internationalization
service, a WebSphere extension for improving developer productivity.

With the internationalization service, you can automatically recognize the time zone and location
information of the calling client so that your application can act appropriately. The technology enables you
to deliver each user, around the world, the right date and time information, the appropriate currencies and
languages, and the correct date and decimal formats.

This documentation also includes information about internationalizing interface strings using the
localizable-text application programming interface.

Task overview: Globalizing applications
An application that can present information to users according to regional cultural conventions is said to be
globalized: The application can be configured to interact with users from different localities in culturally
appropriate ways. In a globalized application, a user in one region sees error messages, output, and
interface elements in the requested language. Date and time formats, as well as currencies, are presented
appropriately for users in the specified region. A user in another region sees output in the conventional
language or format for that region. Globalization consists of two phases: internationalization (enabling an
application component for multicultural support) and localization (translating and implementing a specific
regional convention). This product supports globalization through the use of its localizable-text API and
internationalization service.

Procedure
v Make sure the server runtime environment is properly configured.

For more information about supported locales and character encodings, see “Working with locales and
character encodings” on page 433.

v Implement message catalogs in your application by using the localizable-text API.

This product supports the maintenance and deployment of centralized message catalogs for the output
of properly formatted, language-specific (localized) interface strings.

For more information about the localizable-text API, see “Task overview: Internationalizing interface
strings (localizable-text API)” on page 435.

v Implement more extensive locale support by using the internationalization service.

With the internationalization service, you can manage the distribution of the internationalization
information, or internationalization context, that is necessary to support globalized Java Platform,
Enterprise Edition (Java EE) application components. Supported application components also include
web service client environments and web service-enabled enterprise beans.

For more information about the internationalization service, see “Task overview: Internationalizing
application components (internationalization service)” on page 446.

Globalization
An application that can present information to users according to regional cultural conventions is said to be
globalized: The application can be configured to interact with users from different localities in culturally
appropriate ways. In a globalized application, a user in one region sees error messages, output, and
interface elements in the requested language. Date and time formats, as well as currencies, are presented
appropriately for users in the specified region. A user in another region sees output in the conventional
language or format for that region. Globalization consists of two phases: internationalization (enabling an
application component for multicultural support) and localization (translating and implementing a specific
regional convention).

© IBM Corporation 2009 431



Historically, the creation of globalized applications has been restricted to large corporations writing
complex systems. However, given the rise in distributed computing and in the use of the World Wide Web,
application developers are pressured to globalize a much wider variety of applications. This trend requires
making globalization techniques much more accessible to application developers.

Internationalization of an application is driven by two variables, the time zone and the locale. The time
zone indicates how to compute the local time as an offset from a standard time like Greenwich Mean
Time. The locale is a collection of information about language, currency, and the conventions for
presenting information like dates. A time zone can cover many locales, and a single locale can span time
zones. With both time zone and locale, the date, time, currency, and language for users in a specific
region can be determined.

By convention, a given locale is specified with a pair of codes (for language and region) that are governed
by different standards. The ISO-639 standard governs the language code; the ISO-3166 standard governs
the regional code. In notation, the two codes are typically joined by an underscore (_) character, for
example, en_US for English in the United States. In Java code, locales are set and retrieved by means of
the java.util.Locale class.

A first step: Localization of interface strings

In an application that is not globalized, the user interface is unalterably written into the application code.
Internationalizing a user interface adds a layer of abstraction into the design of an application. The
additional layer of abstraction enables you to localize the application for each locale that must be
supported by the application.

In a localized application, the locale determines the message catalog from which the application retrieves
message strings. Instead of printing an error message, the application represents the error message with
some language-neutral information; in the simplest case, each error condition corresponds to a key. To
print a usable error message, the application looks up the key in a message catalog. Each message
catalog is a list of keys with associated strings. Different message catalogs provide strings for the different
languages that are supported. The application looks up the key in the appropriate catalog, retrieves the
corresponding error message in the requested language, and prints the string for the user.

Localization of text can be used for far more than translating error messages. For example, by using keys
to represent each element in a graphical user interface (GUI) and by providing the appropriate message
catalogs, the GUI (buttons, menus, and so on) can support multiple languages. Extending support to
additional languages requires that you provide message catalogs for those languages; in many cases, the
application needs no further modification.

The localizable-text package is a set of Java classes and interfaces that can be used to localize the
strings in distributed applications easily. Language-specific string catalogs can be stored centrally so that
they can be maintained efficiently.

Globalization challenges in distributed applications

With the advent of Internet-based business computational models, applications increasingly consist of
clients and servers that operate in different geographical regions. These differences introduce the following
challenges to the task of designing a solid client-server infrastructure:

Clients and servers can run on computers that have different endian architectures or code sets

Clients and servers can reside in computers that have different endian architectures: A client can
reside in a little-endian CPU, while the server code runs in a big-endian one. A client might want to
call a business method on a server running in a code set different from that of the client.

A client-server infrastructure must define precise endian and code-set tracking and conversion
rules. The Java platform has nearly eliminated these problems in a unique way by relying on its

432 Administering WebSphere applications



Java virtual machine (JVM), which encodes all of the string data in UCS-2 format and externalizes
everything in big-endian format. The JVM uses a set of platform-specific programs for interfacing
with the native platform. These programs perform any necessary code set conversions between
UCS-2 and the native code set of a platform.

Clients and servers can run on computers with different locale settings

Client and server processes can use different locale settings. For example, a Spanish client might
call a business method upon an object that resides on an American English server. Some
business methods are locale-sensitive in nature; for example, given a business method that
returns a sorted list of strings, the Spanish client expects that list to be sorted according to the
Spanish collating sequence, not in the English collating sequence of the server. Because data
retrieval and sorting procedures run on the server, the locale of the client must be available to
perform a legitimate sort.

A similar consideration applies in instances where the server has to return strings containing date,
time, currency, exception messages, and so on, that are formatted according to the cultural
expectations of the client.

Clients and servers can reside in different time zones

Client and server processes can run in different time zones. To date, all internationalization
literature and resources concentrate mainly on code set and locale-related issues. They have
generally ignored the time zone issue, even though business methods can be sensitive to time
zone as well as to locale.

For example, suppose that a vendor makes the claim that orders received before 2:00 PM are
processed by 5:00 PM the same day. The times given, of course, are in the time zone of the
server that is processing the order. It is important to know the time zone of the client to give
customers in other time zones the correct times for same-day processing.

Other time zone-sensitive operations include time stamping messages logged to a server, and
accessing file or database resources. The concept of Daylight Savings Time further complicates
the time zone issue.

Java Platform, Enterprise Edition (Java EE) provides support for application components that run on
computers with differing endian architecture and code sets. It does not provide dedicated support for
application components that run on computers with different locales or time zones.

The conventional method for solving locale and time zone mismatches across remote application
components is to pass one or more extra parameters on all business methods needed to convey the
client-side locale or time zone to the server. Although simple, this technique has the following limitations
when used in Enterprise JavaBeans (EJB) applications:
v It is intrusive because it requires that one or more parameters be added to all bean methods in the call

chain to locale-sensitive or time zone-sensitive methods.
v It is inherently error-prone.
v It is impracticable within applications that do not support modification, such as legacy applications.

The internationalization service addresses the challenges posed by locale and time zone mismatch without
incurring the limitations of conventional techniques. The service systematically manages the distribution of
internationalization contexts across the various components of EJB applications, including client
applications, enterprise beans, and servlets. For more information, see “Task overview: Internationalizing
application components (internationalization service)” on page 446.

Working with locales and character encodings
Internationalization support for this product relies on that provided by the Java Platform, Standard Edition
(JSE). Support varies by platform.

Chapter 10. Welcome to administering Internationalization service 433



Procedure
v Verify that the operating system on which the application server is installed supports the locales and

encodings that you plan to use.

Java internationalization support might use underlying services of the operating system. For example, if
user IDs for your server are expected to contain non-English characters, make sure that the operating
system is configured to process those characters.

v Plan for encoding changes as necessary.

Consider differences in encoding support among operating system subcomponents. Although this
product and the Java platform are based on Unicode encoding, it is not always possible to run
applications in a purely Unicode environment.

v Set the console.encoding property as necessary.

Results

If your application produces an UnsupportedEncodingException exception, check your operating system
documentation to determine if the target operating system supports the required encoding and adjust the
runtime environment as needed. Use the converter.properties file as appropriate to map an unsupported
character set to a supported character set. A typical converter.properties file appears below:
Shift_JIS=CP943C
EUC-JP=Cp33722C
EUC-JP=Cp33722C
EUC-KR=Cp970
EUC-TW=Cp964
Big5=Co950
GB2312=Cp1386
ISO-2022–KR=ISO2022KR

The converter.properties file implements a method for specifying a content type header field that browsers
would understand (such as, SHIFT_JIS) and a writer that can output characters correctly (such as,
Cp943c).

Language versions offered by this product
This product is offered in several languages, as enabled by the operating platform on which the product is
installed.

WebSphere Application Server offers translations for the following languages.

v Brazilian Portuguese

v Chinese (Simplified)

v Chinese (Traditional)

v Czech

v English

v French

v German

v Hungarian

v Italian

v Japanese

v Korean

v Polish

v Romanian

v Russian

v Spanish

434 Administering WebSphere applications



Globalization: Resources for learning
Use links in this topic to find relevant supplemental information about globalization. The information resides
on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to this product but is useful
all or in part for understanding the product. When possible, links are provided to technical papers and IBM
Redbooks® publications that supplement the broad coverage of the release documentation with in-depth
examinations of particular product areas.

View links to additional information about:
v “Programming instructions and examples”
v “Programming specifications”

Programming instructions and examples
v Java internationalization tutorial

An online tutorial that explains how to use the Java SDK Internationalization API.
v Globalize your On Demand Business

IBM's portal site for delivering globalized applications.

Programming specifications
v Java 2 Platform Standard Edition 5.0 Development Kit Documentation: Internationalization

The Java internationalization documentation from Sun Microsystems, including a list of supported
locales and encodings. For other versions of the Java platform, click the “Internationalization Home
Page” link on that page.

v Java Specification Request 150, Internationalization Service for J2EE

The specification of the Java internationalization service that was developed through the Java
Community Process.

v W3C, Internationalization Core Working Group

The W3C's Internationalization Core Working Group responsible for investigating the internationalization
of web services, in particular, the dependence of web services on language, culture, region, and
locale-related contexts.

v Making the WWW truly World Wide

The W3C effort to make web technologies work with the many writing systems, languages, and cultural
conventions of the global community:

Task overview: Internationalizing interface strings (localizable-text API)
This topic summarizes the steps involved in implementing message catalogs through the localizable-text
API.

About this task

This product supports the maintenance and deployment of centralized message catalogs for the output of
properly formatted, language-specific (localized) interface strings.

Procedure
1. Identify localizable text in your application.

2. Create the message catalogs that are necessary for the locales to be supported by your application.

3. In your application code, compose the language-specific strings for output.

4. Using an assembly tool, assemble your application code as one or more application components.

5. Prepare the localizable-text package for deployment with your localized application. In this step, you
create a deployment Java archive (JAR) file.

Chapter 10. Welcome to administering Internationalization service 435

http://java.sun.com/docs/books/tutorial/i18n/index.html
http://www.ibm.com/software/globalization/
http://java.sun.com/j2se/1.5.0/docs/guide/intl/
http://www.jcp.org/en/jsr/detail?id=150
http://www.w3.org/International/core/
http://www.w3.org/International/


6. Assemble the application modules and the deployment JAR file into a Java Platform, Enterprise Edition
(Java EE) application.

7. Deploy and manage the application.

Results

Your application is deployed with localized text.

Identifying localizable text
The first step in localizing strings in an application component is identifying the best candidates for
translation.

Procedure
1. Determine which elements of the application need translating. Good candidates for localization include

the following:
v Graphical user interfaces: window titles, menus and menu items, buttons, on-screen instructions
v Prompts in command-line interfaces
v Application output: messages and logs

2. Assign a unique key to each element for use in message catalogs for the application. The key provides
a language-neutral link between the application and language-specific strings in the message catalogs.
Establishing a naming convention for keys before creating the catalogs can make writing code with
these keys much more intuitive for interface programmers.

Example

Suppose you are localizing the GUI for a banking system, and the first window contains a pull-down list to
use for selecting a type of account.

The labels for the list and the account types in the list are good choices for localization. Three elements
require keys: the list and two items in the list.

What to do next

Create message catalogs for the language-specific strings.

Creating message catalogs
Perform this task to begin the localization of strings in an application component.

Before you begin

Identify strings that need to be localized.

About this task

You can create a catalog as either a java.util.ResourceBundle subclass or a Java properties file. The
properties-file approach is more common, because properties files can be prepared by people without
programming experience and swapped without modifying the application code.

436 Administering WebSphere applications



Procedure
1. For each string that is identified for localization, add a line to the message catalog that lists the string

key and value in the current language. In a properties file, each line has the following structure:
key = string associated with the key

2. Save the catalog, giving it a locale-specific name. To enable resolution to a specific properties file, the
Java API specifies naming conventions for the properties files in a resource bundle as
bundleName_localeID.properties. Give the set of message catalogs a collective name, for example,
BankingResources. For information about locale IDs that are recognized by the Java APIs, see
“Resources for learning”.

Example

The following English catalog (BankingResources_en.properties) supports the labels for the list and its two
list items:
accountString = Accounts
savingsString = Savings
checkingString = Checking

Do not create compound strings by concatenation (for example, combining the values of savingsString and
accountString to form Savings Accounts in English. Success depends upon the grammar of the original
language (in this case, English) and is not likely to extend to other languages.

The corresponding German catalog (BankingResources_de.properties) supports the labels as follows:
accountString = Konten
savingsString = Sparkonto
checkingString = Girokonto

What to do next

Write code to compose the language-specific strings.

Composing language-specific strings
Perform this task to complete the localization of strings in an application component.

Before you begin

Create message catalogs for the language-specific strings.

Procedure
1. In application code, create a LocalizableTextFormatter instance, passing in required localization values.

2. Set other localization values as needed for more complex situations.

3. Generate a properly formatted, language-specific string.

What to do next

When the application is finished, deploy your application.

Localization API support
The com.ibm.websphere.i18n.localizabletext package contains classes and interfaces for localizing text.

This package makes extensive use of the internationalization features of the standard Java APIs, including
the following classes:
v java.util.Locale
v java.util.TimeZone

Chapter 10. Welcome to administering Internationalization service 437



v java.util.ResourceBundle
v java.text.MessageFormat

For more information about the standard Java APIs, see “Globalization: Resources for learning” on page
435.

The localizable-text package wraps the Java support and extends it for efficient and simple use in a
distributed environment. The primary class used by application programmers is LocalizableTextFormatter.
Instances of this class are usually created in server programs, but client programs can also create them.
Formatter instances are created for specific resource-bundle names and keys. Client programs that
receive a LocalizableTextFormatter instance call its format method. This method uses the locale of the
client application to retrieve the appropriate resource bundle and compose a locale-specific message
based on the key.

For example, suppose that a distributed application supports both French and English locales; the server
is using an English locale and the client, a French locale. The server creates two resource bundles, one
each for English and French. When the client makes a request that triggers a message, the server creates
a LocalizableTextFormatter instance that contains the name of the resource bundle and the key for the
message and passes the instance back to the client.

When the client receives the LocalizableTextFormatter instance, it calls the format method of the object. By
using the locale and name of the resource bundle, the format method determines the name of the
resource bundle that supports the French locale and retrieves the message that corresponds to the key
from the French resource bundle. Formatting of the message is transparent to the client.

In this simple example, the resource bundles reside centrally with the server. They do not have to exist
with the client. Part of what the localizable-text package provides is the infrastructure to support
centralized catalogs. This implementation uses an enterprise bean (a stateless session bean provided with
the localizable-text package) to access the message catalogs. When the client calls the format method on
the LocalizableTextFormatter instance, the following events occur:

1. The client application sets the time-zone and locale values in the LocalizableTextFormatter instance,
either by passing them explicitly or through default values.

2. A LocalizableTextFormatterEJBFinder call is made to retrieve a reference to the formatter bean.

3. Information from the LocalizableTextFormatter instance, including the time zone and locale of the
client, is sent to the formatting bean.

4. The formatting bean uses the name of the resource bundle, the message key, the time zone, and the
locale to compose a language-specific message.

5. The formatter bean returns the formatted message to the client.

6. The formatted message is inserted into the LocalizableTextFormatter instance and returned by the
format method.

A call to the format method requires at most one remote call, to contact the formatter bean. As an
alternative, the LocalizableTextFormatter instance can cache formatted messages, eliminating the remote
call for subsequent uses. In addition, you can set a fallback string so that the application can return a
readable string even if it cannot access the appropriate message catalog.

The resource bundles can be stored locally. The localizable-text package provides a static variable that
indicates whether the bundles are stored locally (LocalizableConfiguration.LOCAL) or remotely
(LocalizableConfiguration.REMOTE). However, the setting of this variable applies to all applications
running within the same Java virtual machine.

LocalizableTextFormatter class
The LocalizableTextFormatter class, found in the com.ibm.websphere.i18n.localizabletext package, is the
primary programming interface for using the localizable-text package. Instances of this class contain the
information needed to create language-specific strings from keys and resource bundles.

438 Administering WebSphere applications



The LocalizableTextFormatter class extends the java.lang.Object class and implements the following
interfaces:
v java.io.Serializable
v com.ibm.websphere.i18n.localizabletext.LocalizableText
v com.ibm.websphere.i18n.localizabletext.LocalizableTextL
v com.ibm.websphere.i18n.localizabletext.LocalizableTextTZ
v com.ibm.websphere.i18n.localizabletext.LocalizableTextLTZ

Creation and initialization of class instances

The LocalizableTextFormatter class supports the following constructors:
v LocalizableTextFormatter()
v LocalizableTextFormatter(String resourceBundleName, String patternKey, String appName)
v LocalizableTextFormatter(String resourceBundleName, String patternKey, String appName, Object[]

args)

The LocalizableTextFormatter instance must have certain values, such as a resource-bundle name, a key,
and the name of the formatting application. If you do not pass these values in by using the second
constructor listed previously, you can set them separately by making the following calls:
v setResourceBundleName(String resourceBundleName)
v setPatternKey(String patternKey)
v setApplicationName(String appName)

You can use a fourth method, setArguments(Object[] args), to set optional localization values after
construction. See “Processing of application-specific values” on page 440 at the end of this topic. For a
usage example, see “Composing complex strings” on page 442.

API for formatting text

The formatting methods in the LocalizableTextFormatter class generate a string from a set of message
keys and resource bundles, based on some combination of locale and time-zone values. Each method
corresponds to one of the four localizable-text interfaces implemented. The following list indicates the
interface in which each formatting method is defined:
v LocalizableText.format()
v LocalizableTextL.format(java.util.Locale locale)
v LocalizableTextTZ.format(java.util.TimeZone timeZone)
v LocalizableTextLTZ.format(java.util.Locale locale, java.util.TimeZone timeZone)

The format method with no arguments uses the locale and time-zone values set as defaults for the Java
virtual machine. All four methods issue LocalizableException objects as needed.

Location of message catalogs and the appName value

Applications written with the localizable-text package can access message catalogs locally or remotely. In
a distributed environment, the use of remote, centrally located message catalogs is appropriate. All clients
can use the same catalogs, and maintenance of the catalogs is simplified. Local formatting is useful in test
situations and appropriate under some circumstances. To support either local or remote formatting, a
LocalizableTextFormatter instance must indicate the name of the formatting application.

For example, when an application formats a message by using remote catalogs, the message is actually
formatted by an enterprise bean on the server. Although the localizable-text package contains the code to
automate the lookup of the formatter bean and to issue a call to it, the application needs to know the
name of the formatter bean. Several methods in the LocalizableTextFormatter class use a value described
as appName, which refers to the name of the formatting application. It is not necessarily the name of the
application in which the value is set.

Chapter 10. Welcome to administering Internationalization service 439



Caching of messages

LocalizableTextFormatter instances can optionally cache formatted messages so that they do not require
reformatting when needed again. By default, caching is not enabled, but you can use a
LocalizableTextFormatter.setCacheSetting(true) call to enable caching. When caching is enabled and
the format method is called, the method determines whether the message is already formatted. If so, the
cached message is returned. If the message is not found in the cache, the message is formatted and
returned to the caller, and a copy of the message is cached for future use.

If caching is disabled after messages are cached, those messages remain in the cache until the cache is
cleared by a call to the LocalizableTextformatter.clearCache method. You can clear the cache at any time;
the cache is automatically cleared when any of the following methods is called:
v setResourceBundleName(String resourceBundleName)
v setPatternKey(String patternKey)
v setApplicationName(String appName)
v setArguments(Object[] args)

API for providing fallback information

Under some circumstances, it can be impossible to format a message. The localizable-text package
implements a fallback strategy, making it possible to get some information even if a message cannot be
formatted correctly into the requested language. The LocalizableTextFormatter instance can optionally
store fallback values for a message string, the time zone, and the locale. These values can be ignored
unless the LocalizableTextFormatter instance issues an exception. To set fallback values, call the following
methods as appropriate:
v setFallBackString(String message)
v setFallBackLocale(Locale locale)
v setFallBackTimeZone(TimeZone timeZone)

For a usage example, see “Generating localized text” on page 444.

Processing of application-specific values

The localizable-text package provides native support for localization based on time zone and locale, but
you can construct messages on the basis of other values as well. If you need to consider variables other
than locale and time zone in formatting localized text, write your own formatter class.

Your formatter class can extend the LocalizableTextFormatter class or independently implement some or
all of the same localizable-text interfaces. As a minimum, your class must implement the
java.io.Serializable interface and at least one of the localizable-text interfaces and its corresponding format
method. If your class implements more than one localizable-text interface and format method, the order of
evaluation of the interfaces is as follows:
1. LocalizableTextLTZ
2. LocalizableTextL
3. LocalizableTextTZ
4. LocalizableText

As an example, the localizable-text package provides a class that reports the time and date
(LocalizableTextDateTimeArgument). In that class, date and time formatting is localized in accordance with
three values: locale, time zone, and style.

Creating a formatter instance
Perform this task to set localization values for strings in an application component.

440 Administering WebSphere applications



About this task

Server programs typically create LocalizableTextFormatter instances that are sent to clients as the result of
some operation; clients format the objects at the appropriate time. Less typically, client programs create
LocalizableTextFormatter objects locally.

Procedure
1. If needed for your application, write your own formatter class. For more information about

implementation, see “LocalizableTextFormatter class” on page 438.

2. In application code, call the appropriate constructor for the formatter class and set required localization
values. Some localization values, such as resource bundle name, key and formatting application, must
be set, either through a constructor or soon after construction. Other localization values can be set
only as needed. For more information about the API, see the related reference.

Example

The following code creates a LocalizableTextFormatter instance by using the default constructor and then
sets the required localization values:
import com.ibm.websphere.i18n.localizabletext.LocalizableException;
import com.ibm.websphere.i18n.localizabletext.LocalizableTextFormatter;
import java.util.Locale;

public void drawAccountNumberGUI(String accountType) {
...
LocalizableTextFormatter ltf = new LocalizableTextFormatter();
ltf.setPatternKey("accountNumber");
ltf.setResourceBundleName("BankingSample.BankingResources");
ltf.setApplicationName("BankingSample");
...

}

The line of code in boldface exploits default behavior of the Java platform. By default, the Java platform
looks first for a subclass of java.util.ResourceBundle called BankingResources. When none is found, the
Java platform looks for a valid properties file of the same name. In this continuing example, a properties
file is found.

The application that is requesting a localized message can specify the locale and time zone for message
formatting, or the application can use the default values set for the Java virtual machine.

For example, a GUI can enable users to select the language in which to display the interface. A default
value must be set initially so that the GUI can be created properly when the application first starts, but
users can then change the locale for the GUI to suit their needs. The following code shows how to change
the locale used by an application based on the selection of a menu item:
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
...
import java.util.Locale;

public void actionPerformed(ActionEvent event) {
String action = event.getActionCommand();
...
if (action.equals("en_us")) {

applicationLocale = new Locale("en", "US");
...

}
if (action.equals("de_de")) {

applicationLocale = new Locale("de", "DE");
...

}
if (action.equals("fr_fr")) {

Chapter 10. Welcome to administering Internationalization service 441



applicationLocale = new Locale("fr", "FR");
...

}
...

}

For more information, see “Generating localized text”.

What to do next

Set optional localization values.

Setting optional localization values
In addition to setting localization values that are required by the LocalizableTextFormatter interface, you
can set a number of optional values in application code, either through the constructor or by calling any of
several methods for that purpose.

About this task

With optional values, you can do the following actions:
v Compose complex strings from variable substrings
v Customize the formatting of strings, considering variables other than time zone and locale

Procedure
1. In application code, add the optional values into an array of type Object.

Object[] arg = {new String(getAccountNumber())};

2. Pass the array into a LocalizableTextFormatter instance. You can pass the array through the
appropriate constructor or call the setArguments(Object[]) method. For a usage example, see
“Composing complex strings.”

Because the array is passed by value rather than by reference, any updates to the array variable after
this point are not reflected in the LocalizableTextFormatter instance unless it is reset by calling the
setArguments(Object[]) method.

What to do next

Write code to generate the localized text.

Composing complex strings:

Perform this task to insert variable substrings into a localized string.

Before you begin

Identify strings that need to be localized.

About this task

The localized-text package supports the substitution of variable substrings into a localized string that is
retrieved from the message catalog by key.

Procedure

1. In the message catalog, specify the location of the substitution in the string to be retrieved. Variable
components are designated by braces (for example, {0}).

442 Administering WebSphere applications



2. In application code, create a LocalizableTextFormatter instance, passing in an array that contains the
variable value. If the variable substring must be localized, you can create a nested
LocalizableTextFormatter instance and pass the instance in instead of a value.

3. Generate a localized string. When a format method is called on a formatter instance, the formatter
takes each element of the array passed in the previous step and substitutes it for the placeholder with
the matching index in the string that is retrieved from the message catalog. For example, the value at
index 0 in the array replaces the {0} variable in the retrieved string.

Example

The following line from an English message catalog shows a string with a single substitution:
successfulTransaction = The operation on account {0} was successful.

The same key in message catalogs for other languages has a translation of this string with the variable at
the appropriate location for each language.

The following code shows the creation of a single-element argument array and the creation and use of a
LocalizableTextFormatter instance:
public void updateAccount(String transactionType) {

...
Object[] arg = {new String(this.accountNumber)};
...
LocalizableTextFormatter successLTF =

new LocalizableTextFormatter ("BankingResources",
"successfulTransaction",
"BankingSample",
arg);

...
successLTF.format(this.applicationLocale);
...

}

Nesting formatter instances for localized substrings:

The ability to substitute variable substrings into the strings retrieved from message catalogs adds a level of
flexibility to the localizable-text package, but this capability is of limited use unless the variable value can
be localized. You can localize this value by nesting LocalizableTextFormatter instances.

Before you begin

Identify strings that need to be localized.

Procedure

1. In the message catalog, add entries that correspond to potential values for the variable substring.

2. In application code, create a LocalizableTextFormatter instance for the variable substring, setting
required localization values.

3. Create a LocalizableTextFormatter instance for the primary string, passing in an array that contains the
formatter instance for the variable substring.

Example

The following line from an English message catalog shows a string entry with two substitutions and entries
to support the localizable variable at index 0 (the second variable in the string, the account number, does
not need to be localized):
successfulTransaction = The {0} operation on account {1} was successful.
depositOpString = deposit
withdrawOpString = withdrawal

Chapter 10. Welcome to administering Internationalization service 443



The following code shows the creation of the nested formatter instance and its insertion (with the account
number variable) into the primary formatter instance:
public void updateAccount(String transactionType) {

...
// Successful deposit
LocalizableTextFormatter opLTF =

new LocalizableTextFormatter("BankingResources",
"depositOpString",

"BankingSample");
Object[] args = {opLTF, new String(this.accountNumber)};
...
LocalizableTextFormatter successLTF =

new LocalizableTextFormatter ("BankingResources",
"successfulTransaction",
"BankingSample",
args);

...
successLTF.format(this.applicationLocale);
...

}

Generating localized text
Perform this task to specify the runtime formatting of localized text in an application component.

Before you begin

Create a formatter instance and set the localization values as needed.

Procedure
1. If needed, customize the formatting behavior.

2. In application code, call the appropriate format method.

Example

You can provide fallback behavior for use if the appropriate message catalog is not available at formatting
time.

The following code generates a localized string. If the formatting fails, the application retrieves and uses a
fallback string instead of the localized string:
import com.ibm.websphere.i18n.localizabletext.LocalizableException;
import com.ibm.websphere.i18n.localizabletext.LocalizableTextFormatter;
import java.util.Locale;

public void drawAccountNumberGUI(String accountType){
...
LocalizableTextFormatter ltf = new LocalizableTextFormatter();
...
ltf.setFallBackString("Enter account number: ");
try {

msg = new Label(ltf.format(this.applicationLocale), Label.CENTER);
}
catch (LocalizableException le) {

msg = new Label(ltf.getFallBackString(), Label.CENTER);
}
...

}

444 Administering WebSphere applications



What to do next

When the application is finished, deploy your application.

Customizing the behavior of a formatting method:

Perform this task to change the runtime formatting of localized strings in an application component.

About this task

You can customize formatting behavior by passing your own formatter classes into a
LocalizableTextFormatter instance through an array of optional values. This action enables you to consider
variables other than locale and time zone when formatting localized text.

Procedure

1. Write your own formatter class. For more information about implementation, see
"LocalizableTextFormatter class."

2. In application code, create an instance of your formatter class as appropriate and pass it with any
other optional localization values into an instance of LocalizableTextFormatter. When the
LocalizableTextFormatter instance reads the instance that has been passed in, it attempts to call the
format() method on the passed-in instance. The string returned is then processed with any other
elements in the array.

Example

The localizable-text package provides an example of a user-defined class, called
LocalizableTextDateTimeArgument. This class enables date and time information to be selectively
formatted according to the style values defined in the java.text.DateFormat interface as well as the
constants that are defined within the LocalizableTextDateTimeArgument class.

Preparing the localizable-text package for deployment
The LocalizableTextEJBDeploy tool is used to create a deployment Java Archive (JAR) file for the
localizable text service. You must deploy the enterprise bean in each enterprise application that requires
support for localized text.

Before you begin

Write code to compose the language-specific strings.

Procedure
1. Make sure that the LocalizableTextEJBDeploy tool is included in the class path.

transition: In versions 6.0.x and earlier, the LocalizableTextEJBDeploy tool used to reside in the file
app_server_root/lib/ltext.jar. It now resides in the file app_server_root/plugins/
com.ibm.ws.runtime_1.0.0.jar.

2. Set up a working directory for the LocalizableTextEJBDeploy tool to use. You need to pass this location
to the tool through a command-line interface.

3. Run the LocalizableTextEJBDeploy tool. You might be asked if you want to regenerate deployment
code for the LocalizableText bean. Do not redeploy the bean; if you do, an incorrect Java Naming and
Directory Interface (JNDI) name will be generated.

To deploy the bean on multiple hosts and servers, run the tool for each host and server combination.
This action generates a unique JNDI name for each deployment. After the tool is run, a deployment
JAR file is located in the working directory that you specified.

Chapter 10. Welcome to administering Internationalization service 445



What to do next

Using an assembly tool, assemble the deployment JAR file in an enterprise application with other
application components.

As part of preparing for deployment, perform the following:
v Add the resource bundles for your application to the Enterprise Archive (EAR) file as files.
v Add the location of the EAR file to the server class path for the server so that the resource bundles can

be located on the virtual host and server.

The same deployment JAR file can be included in several enterprise applications.

LocalizableTextEJBDeploy command
This topic describes the command-line syntax for the LocalizableTextEJBDeploy tool.

transition: In versions 6.0.x and earlier, the LocalizableTextEJBDeploy tool used to reside in the file
app_server_root/lib/ltext.jar. It now resides in the file app_server_root/plugins/
com.ibm.ws.runtime_1.0.0.jar.

LocalizableTextEJBDeploy
-a applicationName
-h virtualHostName
-i installationDirectory
-s serverName
-w workingDirectory

Parameters

The required parameters, which can be specified in any order, follow:

applicationName
The name of the formatting session bean. This name is used in LocalizableTextFormatter instances to
specify where the actual formatting occurs. If the name cannot be resolved at run time, the format
method issues an exception.

virtualHostName
The name of the virtual host on which the formatting session bean is deployed. This value is
case-sensitive on all operating platforms.

installationDirectory
The location at which the application server product is installed.

serverName
The name of the application server. If this argument is not specified, the default server name for the
product is used.

workingDirectory
A location for the tool to use temporarily.

Task overview: Internationalizing application components
(internationalization service)
This topic summarizes the steps involved in using the internationalization service.

About this task

With the internationalization service, you can manage the distribution of the internationalization information,
or internationalization context, that is necessary to support globalized Java Platform, Enterprise Edition
(Java EE) application components. Supported application components also include web service client
environments and web service-enabled enterprise beans.

446 Administering WebSphere applications



Procedure
1. Use the internationalization context API within application components to obtain or manage

internationalization context.

Servlet and enterprise bean business methods can use internationalization context to perform locale-
and time zone-sensitive localizations. Enterprise JavaBeans (EJB) client applications, and server
components that are configured to manage internationalization context must use the
internationalization context API to set the context elements scoped to their invocations.

You use the internationalization context API within Web service-enabled Java EE client programs and
stateless session beans in the same manner that you would use conventional Java EE application
components, with one exception. Internationalization context propagated over Web service requests
contains a time zone ID, whereas conventional Remote Method Invocation/ Internet Inter-ORB Protocol
(RMI/IIOP) requests propagate complete time zone information, including the raw offset, Daylight
Savings Time information, and so on.

2. Assemble internationalized applications.

The internationalization type specifies the internationalization policy that applies to a servlet or an
enterprise bean and, in particular, indicates whether the application component or its hosting Java EE
container manages internationalization context. Container internationalization attributes can be
specified for container-managed servlet and enterprise bean business methods. These attributes tailor
a policy by indicating which context the container scopes to an invocation. Configuring
internationalization policies declaratively prescribes, by means of the application deployment descriptor,
the distribution and management of context throughout an application.

As you edit the deployment descriptor for assembly, you can also set the internationalization type and
configure any container internationalization attributes for the servlets and enterprise beans in your
application.

You configure internationalization type and container internationalization attributes for Web
service-enabled stateless session beans in the same manner as you do for conventional beans.

3. Manage the internationalization service.

Use the administrative console to enable the service on all application servers.

By default, the service is enabled within Java EE client environments but is disabled on application
servers. You must enable the service on all application servers hosting your servlets and enterprise
beans to use internationalization context.

4. Troubleshoot the internationalization service as needed.

Use the administrative console to enable the trace service to log internationalization service messages
when debugging your applications.

The trace strings for the internationalization service follow; use both:
com.ibm.ws.i18n.context.*=all=enabled:com.ibm.websphere.i18n.context.*=all=enabled

Internationalization service
In a distributed client-server environment, application processes can run on different machines, configured
for different locales, corresponding to different cultural conventions; they can also be located across
geographical boundaries. The internationalization service can help manage your application in a globally
distributed environment.

For an understanding of how differences in locale impact application development, read “Globalization” on
page 431.

Java Platform, Enterprise Edition (Java EE) provides support for application components that run on
computers with differing endian architecture and code sets. It does not provide dedicated support for
application components that run on computers with different locales or time zones.

Chapter 10. Welcome to administering Internationalization service 447



The internationalization service addresses the challenges posed by locale and time zone mismatch without
incurring the limitations of conventional techniques. The service systematically manages the distribution of
internationalization contexts across the various components of EJB applications, including client
applications, enterprise beans, and servlets.

The service works by associating an internationalization context with every service request within an
application. When a client-side component calls a business method, the internationalization service
interposes by obtaining the internationalization context associated with the current client-side process and
by attaching that context to the outgoing request. On the server side, the internationalization service again
interposes by detaching the context from the incoming request and associating it with the server-side
process on which the business method will run, effectively scoping the context to the business method.
For HTTP requests, the caller context is constructed from the HTTP attributes and default values. The
service propagates internationalization context on subsequent business method invocations in the same
manner, which distributes the context of the originating request over the entire chain of business method
invocations.

This basic operation of scoping and propagation is defined precisely by internationalization context
management policies. Internationalization policies specify whether an application component or its hosting
Java EE container are to manage internationalization context. For container-managed components, the
policy indicates which internationalization context the container scopes to invocations on that component.
Server components configured to manage internationalization context, as well as EJB clients, must use the
internationalization context API to manage the internationalization context elements scoped to their
invocations.

Every application component has a default policy, which can be overridden and tailored for servlets and
enterprise beans at assembly time.

At run time, application components can use the internationalization context API to get any element of the
internationalization contexts scoped to an invocation. To programmatically access context elements,
application components first resolve an internationalization context API reference, then call the appropriate
API method to access the various context elements, such as the caller locale or the invocation time zone.
These elements can be used in calls to Java SDK internationalization API methods; for example, to
perform localizations such as formatting messages, configuring dates, or comparing strings.

Assembling internationalized applications
Perform this task to configure application components for deployment with the internationalization service.

About this task

Use an assembly tool to configure internationalization in the deployment descriptors for servlets and
enterprise beans.

Procedure
1. Set the internationalization type.

All servlets and enterprise beans have an internationalization type setting that specifies whether
internationalization context is managed by the application component or by its hosting Java Platform,
Enterprise Edition (Java EE) container during invocations of their respective life cycle and business
methods. The internationalization type can be configured for all server application components except
entity beans, which are container-managed only.

By default, all server components use container-managed internationalization (CMI). The default setting
suffices in most cases; when it does not, modify the internationalization type setting by completing the
steps that are described in one of the following topics:
v “Setting the internationalization type for servlets” on page 449
v “Setting the internationalization type for enterprise beans” on page 450

448 Administering WebSphere applications



2. Set the container internationalization attribute.

You can associate CMI servlets, and business methods of CMI enterprise beans, with a container
internationalization attribute. That attribute specifies which of three internationalization contexts (Caller,
Server, or Specified) the container is to scope to an invocation. When running as specified, the
container internationalization attribute also specifies the custom internationalization context elements.

Named container internationalization attributes can be associated with sets of servlets or with sets of
Enterprise JavaBeans (EJB) business methods. Initially, CMI servlets and business methods implicitly
run as caller and do not associate with a container internationalization attribute. When the implicit
behavior or an associated attribute setting is unsuitable, configure an attribute by completing the steps
that are described in one of the following topics:
v “Configuring container internationalization for servlets”
v “Configuring container internationalization for enterprise beans” on page 451

Setting the internationalization type for servlets
This task sets the internationalization type for a servlet within a Web module.

Before you begin

This topic assumes that you have an assembly tool such as Rational Application Developer.

For information about assembly, refer to the documentation for your assembly tool. The steps in this topic
refer to Rational Application Developer.

This topic assumes that you have started the assembly tool, configured the assembly tool for work on
Java Platform, Enterprise Edition (Java EE) modules, and created or imported a dynamic Web project.

Procedure
1. In the Java EE perspective, open the Web project for which you want to set the internationalization

type.

a. Double-click Dynamic Web Projects.

b. Double-click the name of the Web project to see its contents.

c. Double-click the deployment descriptor object.

The Web Deployment Descriptor panel is displayed.

2. In the Web Deployment Descriptor panel, click the Servlets tab.

3. Scroll down to WebSphere Programming Model Extensions and then Internationalization.

4. From the Servlets and JSPs list of the Servlets panel, select the servlet for which you want to set the
internationalization type.

5. Under Internationalization, select a value from the Internationalization type list. Valid values are
Application or Container.

6. From the menu bar, click File > Save.

Results

The internationalization type setting is assigned to the servlet.

What to do next

If you selected container-managed internationalization, you can then set container-managed
internationalization attributes for methods within the servlet. For more information, see "Configuring
container internationalization for servlets."

Configuring container internationalization for servlets
This task configures container internationalization for a servlet within a Web module.

Chapter 10. Welcome to administering Internationalization service 449



Before you begin

This topic assumes that you have an assembly tool such as Rational Application Developer.

For information about assembly, refer to the documentation for your assembly tool. The steps in this topic
refer to Rational Application Developer.

This topic assumes that you have started the assembly tool, configured the assembly tool for work on
Java Platform, Enterprise Edition (Java EE) modules, and created or imported a dynamic Web project.

You must also have set the internationalization type of one or more servlets in a Web project to Container.

About this task

This procedure relates one or more servlets to a container-managed internationalization attribute.

Procedure
1. In the Java EE perspective, open the Web project for which you want to configure container

internationalization.

a. Double-click Dynamic Web Projects.

b. Double-click the name of the Web project to see its contents.

c. Double-click the deployment descriptor object.

The Web Deployment Descriptor panel is displayed.

2. In the Web Deployment Descriptor panel, click the Servlets tab.

3. Scroll down to WebSphere Programming Model Extensions and then Internationalization.

4. Following Container-managed Internationalization Attribute, set the Run As field by selecting
Caller, Server, or Specified.

5. If the servlet is to be run as Specified, select an internationalization policy from the Specified list or
define a new policy.

a. To define an internationalization policy, click New. The New Specified Initialization wizard is
displayed.

b. In the Description field, give the policy a name.

c. If needed, set a time zone ID and add a time zone description. If you do not find the appropriate
time zone in the ID list, click Customize to define one relative to Greenwich Mean Time (GMT).

d. Create at least one locale for the policy. To create a locale, click Add; select a language and
(optional) geographic region; specify a variant as needed. Add a locale description and click OK to
finish. The new locale is added to the Locales list.

e. If more than one locale is defined for the policy, select a locale from the Locales list and click
Finish. Otherwise, just click Finish

6. From the menu bar, click File > Save.

Results

Selected servlets are now configured to run under the associated internationalization settings.

Setting the internationalization type for enterprise beans
This task sets the internationalization type for an enterprise bean within an Enterprise JavaBeans (EJB)
module.

Before you begin

This topic assumes that you have an assembly tool such as Rational Application Developer.

450 Administering WebSphere applications



For information about assembly, refer to the documentation for your assembly tool. The steps in this topic
refer to Rational Application Developer.

This topic assumes that you have started the assembly tool, configured the assembly tool for work on
Java Platform, Enterprise Edition (Java EE) modules, and created or imported an EJB project.

About this task

Container-managed internationalization (CMI) is the default type; entity beans cannot be set to
application-managed internationalization (AMI). Use CMI also for stateless session beans that are enabled
for Web services.

Procedure
1. In the Java EE perspective, open the EJB project for which you want to set the internationalization

type.

a. Double-click EJB Projects.

b. Double-click the name of the EJB project to see its contents.

c. Double-click the deployment descriptor object.

The EJB Deployment Descriptor panel is displayed.

2. In the EJB Deployment Descriptor panel, click the Internationalization tab. Any enterprise beans that
are already configured for AMI are displayed in the Internationalization type list.

3. To set the internationalization type for any other enterprise beans to AMI, click Add following the
Internationalization type list. The Internationalization Type wizard opens. Only message-driven or
session beans can be selected.

4. Select the beans that you want to set and click Finish to exit the wizard.

5. From the menu bar, click File > Save.

Results

The internationalization type is assigned to the bean.

What to do next

For beans that use container-managed internationalization, you can then set container-managed
internationalization attributes. For more information, see "Configuring container internationalization for
enterprise beans."

Configuring container internationalization for enterprise beans
This task configures container internationalization for enterprise bean business methods.

Before you begin

This topic assumes that you have an assembly tool such as Rational Application Developer.

For information about assembly, refer to the documentation for your assembly tool. The steps in this topic
refer to Rational Application Developer.

This topic assumes that you have started the assembly tool, configured the assembly tool for work on
Java Platform, Enterprise Edition (Java EE) modules, and created or imported an EJB project.

You must also have one or more enterprise beans set to container-managed internationalization (CMI) by
default.

Chapter 10. Welcome to administering Internationalization service 451



About this task

This procedure relates one or more business methods to one or more container-managed
internationalization (CMI) attributes. Use this procedure also for stateless session beans that are enabled
for Web services.

Procedure
1. In the Java EE perspective, open the EJB project for which you want to configure container

internationalization.

a. Double-click EJB Projects.

b. Double-click the name of the EJB project to see its contents.

c. Double-click the deployment descriptor object.

The EJB Deployment Descriptor panel is displayed.

2. In the EJB Deployment Descriptor panel, click the Internationalization tab. Any business methods that
are already configured are displayed in the Internationalization attributes list.

3. To configure a CMI business method, click Add following the Internationalization attributes list. The
Internationalization Attributes wizard opens.

4. Set the Run As field by selecting Caller, Server, or Specified. Add a meaningful description. As a
group, the CMI attribute settings comprise an internationalization policy.
v The description appears as Internationalization description (runAsSetting) in the

Internationalization attributes list when you are finished.
v If you do not provide a description, the policy name appears as Internationalization

(runAsSetting).

If the bean is to be run as Specified, complete the following steps to specify the context elements that
the container scopes to bean method invocations.

a. Set a time zone ID and add a time zone description as needed. If you do not find the appropriate
time zone in the ID list, click Custom to define one relative to Greenwich Mean Time (GMT).

b. Set a locale. Select a language and (optional) geographic region; specify a variant as needed. Add
a locale description as needed and click OK to finish.

5. Click Next.

6. Select the beans for which you want to configure method-level internationalization attributes and click
Next.

7. Select the methods that you want to configure and click Next. A check box is displayed next to each
method name that you select.

v Click Apply to All to place a check box next to the displayed bean name.

v Click Select Beans to select more beans with CMI.

8. Click Finish to exit the wizard.

9. From the menu bar, click File > Save.

Results

The bean methods are now configured to run under the associated internationalization settings.

Using the internationalization context API
Enterprise JavaBeans (EJB) client applications, servlets, and enterprise beans can programmatically
obtain and manage internationalization context using the internationalization context API. For Web service
client applications, you use the API to obtain and manage internationalization context in the same manner
as for EJB clients.

452 Administering WebSphere applications



Before you begin

The java.util and com.ibm.websphere.i18n.context packages contain all of the classes necessary to use
the internationalization service within an EJB application.

Procedure
1. Gain access to the internationalization context API.

Resolve internationalization context API references once over the life cycle of an application
component, within the initialization method of that component (for example, within the init method of
servlets, or within the SetXxxContext method of enterprise beans). For Web service client programs,
resolve a reference to the internationalization context API during initialization. For stateless session
beans enabled for Web services, resolve the reference in the setSessionContext method.

2. Access caller locales and time zones.

Every remote invocation of an application component has an associated caller internationalization
context associated with the thread that is running that invocation. A caller context is propagated by the
internationalization service and middleware to the target of a request, such as an Enterprise
JavaBeans (EJB) business method or servlet service method. This task also applies to Web service
client programs.

3. Access invocation locales and time zones.

Every remote invocation of a servlet service or Enterprise JavaBeans (EJB) business method has an
invocation internationalization context associated with the thread that is running that invocation.
Invocation context is the internationalization context under which servlet and business method
implementations run; it is propagated on subsequent invocations by the internationalization service and
middleware. This task also applies to Web service client programs.

Results

The resulting components are said to use application-managed internationalization (AMI). For more
information about AMI, see “Internationalization context: Management policies” on page 468.

Example

Each supported application component uses the internationalization context API differently. Code examples
are provided that illustrate how to use the API within each component type. Differences in API usage, as
well as other coding tips, are noted in comments that precede the relevant statement blocks.

v Managing internationalization context in an EJB client program

v Managing internationalization context in a servlet

v Managing internationalization context in a session bean

v Representing internationalization context in a SOAP header

Managing internationalization context in an EJB client program: The following code example
illustrates how to use the internationalization context API within a contained EJB client program or Web
service client program.
//------------------------------------------
// Basic Example: J2EE EJB client.
//------------------------------------------
package examples.basic;

//------------------------------------------
// INTERNATIONALIZATION SERVICE: Imports.
//------------------------------------------
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.InvocationInternationalization;

Chapter 10. Welcome to administering Internationalization service 453



import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Locale;
import java.util.SimpleTimeZone;

public class EjbClient {

public static void main(String args[]) {

//--------------------------------------------------
// INTERNATIONALIZATION SERVICE: API references.
//--------------------------------------------------
UserInternationalization userI18n = null;
Internationalization callerI18n = null;
InvocationInternationalization invocationI18n = null;

//--------------------------------------------------
// INTERNATIONALIZATION SERVICE: JNDI name.
//--------------------------------------------------
final String UserI18NUrl =

"java:comp/websphere/UserInternationalization";

//--------------------------------------------------
// INTERNATIONALIZATION SERVICE: Resolve the API.
//--------------------------------------------------
try {
Context initialContext = new InitialContext();
userI18n = (UserInternationalization)initialContext.lookup(

UserI18NUrl);
callerI18n = userI18n.getCallerInternationalization();
invI18n = userI18n.getInvocationInternationalization ();
} catch (NamingException ne) {

log("Error: Cannot resolve UserInternationalization: Exception: " + ne);
} catch (IllegalStateException ise) {

log("Error: UserInternationalization is not available: " + ise);
}
...

//--------------------------------------------------------------------
// INTERNATIONALIZATION SERVICE: Set invocation context.
//
// Under Application-managed Internationalization (AMI), contained EJB
// client programs may set invocation context elements. The following
// statements associate the supplied invocation locale and time zone
// with the current thread. Subsequent remote bean method calls will
// propagate these context elements.
//--------------------------------------------------------------------
try {

invocationI18n.setLocale(new Locale("fr", "FR", ""));
invocationI18n.setTimeZone("ECT");

} catch (IllegalStateException ise) {
log("An anomaly occurred accessing Invocation context: " + ise );

}
...

//--------------------------------------------------------------------
// INTERNATIONALIZATION SERVICE: Get locale and time zone.
//
// Under AMI, contained EJB client programs can get caller and
// invocation context elements associated with the current thread.
// The next four statements return the invocation locale and time zone
// associated above, and the caller locale and time zone associated
// internally by the service. Getting a caller context element within
// a contained client results in the default element of the JVM.
//--------------------------------------------------------------------
Locale invocationLocale = null;

454 Administering WebSphere applications



SimpleTimeZone invocationTimeZone = null;
Locale callerLocale = null;
SimpleTimeZone callerTimeZone = null;
try {

invocationLocale = invocationI18n.getLocale();
invocationTimeZone =

(SimpleTimeZone)invocationI18n.getTimeZone();
callerLocale = callerI18n.getLocale();
callerTimeZone = SimpleTimeZone)callerI18n.getTimeZone();

} catch (IllegalStateException ise) {
log("An anomaly occurred accessing I18n context: " + ise );

}

...
} // main

...
void log(String s) {

System.out.println (((s == null) ? "null" : s));
}

} // EjbClient

Managing internationalization context in a servlet: The following code example illustrates how to use
the internationalization context API within a servlet. Note comments in the init and doPost methods.
...
//--------------------------------------------------------------------
// INTERNATIONALIZATION SERVICE: Imports.
//--------------------------------------------------------------------
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.InvocationInternationalization;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Locale;

public class J2eeServlet extends HttpServlet {

...
//------------------------------------------------------------------
// INTERNATIONALIZATION SERVICE: API references.
//------------------------------------------------------------------
protected UserInternationalization userI18n = null;
protected Internationalization i18n = null;
protected InvocationInternationalization invI18n = null;

//------------------------------------------------------------
// INTERNATIONALIZATION SERVICE: JNDI name.
//------------------------------------------------------------
public static final String UserI18NUrl =

"java:comp/websphere/UserInternationalization";

protected Locale callerLocale = null;
protected Locale invocationLocale = null;

/**
* Initialize this servlet.
* Resolve references to the JNDI initial context and the
* internationalization context API.
*/
public void init() throws ServletException {

//------------------------------------------------------------------
// INTERNATIONALIZATION SERVICE: Resolve API.
//

Chapter 10. Welcome to administering Internationalization service 455



// Under Container-managed Internationalization (CMI), servlets have
// read-only access to invocation context elements. Attempts to set these
// elements result in an IllegalStateException.
//
// Suggestion: cache all internationalization context API references
// once, during initialization, and use them throughout the servlet
// lifecycle.
//------------------------------------------------------------------
try {

Context initialContext = new InitialContext();
userI18n = (UserInternationalization)initialContext.lookup(UserI18nUrl);
callerI18n = userI18n.getCallerInternationalization();
invI18n = userI18n.getInvocationInternationalization();

} catch (NamingException ne) {
throw new ServletException("Cannot resolve UserInternationalization" + ne);

} catch (IllegalStateException ise) {
throw new ServletException ("Error: UserInternationalization is not

available: " + ise);
}
...

} // init

/**
* Process incoming HTTP GET requests.
* @param request Object that encapsulates the request to the servlet
* @param response Object that encapsulates the response from the
* Servlet.
*/
public void doGet(

HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
doPost(request, response);

} // doGet

/**
* Process incoming HTTP POST requests
* @param request Object that encapsulates the request to
* the Servlet.
* @param response Object that encapsulates the response from
* the Servlet.
*/
public void doPost(

HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

...
//--------------------------------------------------------------------
// INTERNATIONALIZATION SERVICE: Get caller context.
//
// The internationalization service extracts the accept-languages
// propagated in the HTTP request and associates them with the
// current thread as a list of locales within the caller context.
// These locales are accessible within HTTP Servlet service methods
// using the caller internationalization object.
//
// If the incoming HTTP request does not contain accept languages,
// the service associates the server’s default locale. The service
// always associates the GMT time zone.
//
//--------------------------------------------------------------------
try {

callerLocale = callerI18n.getLocale(); // caller locale
// the following code enables you to get invocation locale,
// which depends on the Internationalization policies.
invocationLocale = invI18n.getLocale(); // invocation locale

456 Administering WebSphere applications



} catch (IllegalStateException ise) {
log("An anomaly occurred accessing Invocation context: " + ise);

}
// NOTE: Browsers may propagate accept-languages that contain a
// language code, but lack a country code, like "fr" to indicate
// "French as spoken in France." The following code supplies a
// default country code in such cases.
if (callerLocale.getCountry().equals(""))

callerLocale = AccInfoJBean.getCompleteLocale(callerLocale);

// Use iLocale in JDK locale-sensitive operations, etc.
...

} // doPost

...
void log(String s) {

System.out.println (((s == null) ? "null" : s));
}

} // CLASS J2eeServlet

Managing internationalization context in a session bean: This code example illustrates how to perform
a localized operation using the internationalization service within a session bean or Web service-enabled
session bean.
...
//------------------------------------------------------------
// INTERNATIONALIZATION SERVICE: Imports.
//------------------------------------------------------------
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.InvocationInternationalization;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Locale;

/**
* This is a stateless Session Bean Class
*/
public class J2EESessionBean implements SessionBean {

//------------------------------------------------------------
// INTERNATIONALIZATION SERVICE: API references.
//------------------------------------------------------------
protected UserInternationalization userI18n = null;
protected InvocationInternationalization invI18n = null;

//------------------------------------------------------------
// INTERNATIONALIZATION SERVICE: JNDI name.
//------------------------------------------------------------
public static final String UserI18NUrl =

"java:comp/websphere/UserInternationalization";
...

/**
* Obtain the appropriate internationalization interface
* reference in this method.
* @param ctx javax.ejb.SessionContext
*/
public void setSessionContext(javax.ejb.SessionContext ctx) {

//------------------------------------------------------------
// INTERNATIONALIZATION SERVICE: Resolve the API.
//------------------------------------------------------------
try {

Context initialContext = new InitialContext();

Chapter 10. Welcome to administering Internationalization service 457



userI18n = (UserInternationalization)initialContext.lookup(
UserI18NUrl);

invI18n = userI18n.getInvocationInternationalization();
} catch (NamingException ne) {

log("Error: Cannot resolve UserInternationalization: Exception: " + ne);

} catch (IllegalStateException ise) {
log("Error: UserInternationalization is not available: " + ise);

}
} // setSessionContext

/**
* Set up resource bundle using I18n Service
*/
public void setResourceBundle()
{

Locale invLocale = null;

//------------------------------------------------------------
// INTERNATIONALIZATION SERVICE: Get invocation context.
//------------------------------------------------------------
try {

invLocale = invI18n.getLocale();
} catch (IllegalStateException ise) {

log ("An anomaly occurred while accessing Invocation context: " + ise );
}
try {

Resources.setResourceBundle(invLocale);
// Class Resources provides support for retrieving messages from
// the resource bundle(s). See Currency Exchange sample source code.

} catch (Exception e) {
log("Error: Exception occurred while setting resource bundle: " + e);

}
} // setResourceBundle

/**
* Pass message keys to get the localized texts
* @return java.lang.String []
* @param key java.lang.String []
*/
public String[] getMsgs(String[] key) {

setResourceBundle();
return Resources.getMsgs(key);

}

...
void log(String s) {

System.out.println(((s == null) ? ";null" : s));
}

} // CLASS J2EESessionBean

Representing internationalization context in a SOAP header: This code example illustrates how
internationalization context is represented within the SOAP header of a Web service request.
<InternationalizationContext>

<Locales>
<Locale>

<LanguageCode>ja</LanguageCode>
<CountryCode>JP</CountryCode>
<VariantCode>Nihonbushi</VariantCode>

</Locale>
<Locale>

<LanguageCode>fr</LanguageCode>
<CountryCode>FR</CountryCode>

</Locale>
<Locale>

<LanguageCode>en</LanguageCode>

458 Administering WebSphere applications



<CountryCode>US</CountryCode>
</Locale>

</Locales>
<TimeZoneID>JST</TimeZoneID>

</InternationalizationContext>

This representation is valid against the following schema:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="InternationalizationContext"
type="InternationalizationContextType">

</xsd:element>

<xsd:complexType name="InternationalizationContextType">
<xsd:sequence>

<xsd:element name="Locales"
type="LocalesType">

</xsd:element>
<xsd:element name="TimeZoneID"

type="xsd:string">
</xsd:element>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="LocalesType">
<xsd:sequence>

<xsd:element name="Locale"
type="LocaleType"
minOccurs="0"
maxOccurs="unbounded">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="LocaleType">
<xsd:sequence>

<xsd:element name="LanguageCode"
type="xsd:string"
minOccurs="0"
maxOccurs="1">

</xsd:element>
<xsd:element name="CountryCode"

type="xsd:string"
minOccurs="0"
maxOccurs="1">

</xsd:element>
<xsd:element name="VariantCode"

type="xsd:string"
minOccurs="0"
maxOccurs="1">

</xsd:element>
</xsd:sequence>

</xsd:complexType>

</xsd:schema>

Gaining access to the internationalization context API
Perform this task to access the internationalization service by resolving a reference to the
internationalization context API.

About this task

Resolve internationalization context API references once over the life cycle of an application component,
within the initialization method of that component (for example, within the init method of servlets, or within

Chapter 10. Welcome to administering Internationalization service 459



the SetXxxContext method of enterprise beans). For Web service client programs, resolve a reference to
the internationalization context API during initialization. For stateless session beans enabled for Web
services, resolve the reference in the setSessionContext method.

Procedure
1. Resolve a reference to the UserInternationalization interface by performing a lookup on the Java

Naming and Directory Interface (JNDI) name java:comp/websphere/UserInternationalization. For
example:
//--------------------------------------------------------------------
// Internationalization context imports.
//--------------------------------------------------------------------
import com.ibm.websphere.i18n.context.*;
import javax.naming.*;
...

public class MyApplication {
...

//--------------------------------------------------------------------
// Resolve a reference to the UserInternationalization interface.
//--------------------------------------------------------------------
InitialContext initCtx = null;
UserInternationalization userI18n = null;
final String UserI18nUrl = "java:comp/websphere/UserInternationalization";
try {

initCtx = new InitialContext();
userI18n = (UserInternationalization)initCtx.lookup(UserI18nUrl);

}
catch (NamingException ne) {

// UserInternationalization URL is unavailable.
}

If the UserInternationalization object is unavailable because of an anomaly or a restriction, the JNDI
lookup invocation issues a javax.naming.NameNotFoundException exception that contains the
java.lang.IllegalStateException instance.

2. Use the UserInternationalization reference to create references to the CallerInternationalization or
InvocationInternationalization objects, which provide access to elements of the Caller or Invocation
internationalization contexts, respectively. The CallerInternationalization reference can be bound to the
Internationalization interface only; the InvocationInternationalization reference can be bound to either
the Internationalization or the InvocationInternationalization interfaces, depending on whether the
application requires read-only or read-write access to the invocation context. For example:

...
//--------------------------------------------------------------------
// Resolve references to the Internationalization and
// InvocationInternationalization interfaces.
//--------------------------------------------------------------------
Internationalization callerI18n = null;
InvocationInternationalization invocationI18n = null;
try {

callerI18n = userI18n.getCallerInternationalization();
invocationI18n = userI18n.getInvocationInternationalization();

}
catch (IllegalStateException ise) {

// An Internationalization interface(s) is unavailable.
}

Accessing caller locales and time zones
Perform this task to access elements of the caller internationalization context.

460 Administering WebSphere applications



Before you begin

An application component must first resolve a reference to the CallerInternationalization object and then
bind it to the Internationalization interface.

About this task

Every remote invocation of an application component has an associated caller internationalization context
associated with the thread that is running that invocation. A caller context is propagated by the
internationalization service and middleware to the target of a request, such as an Enterprise JavaBeans
(EJB) business method or servlet service method. This task also applies to Web service client programs.

Procedure
1. Obtain the desired caller context elements.

java.util.Locale [] myLocales = null;
try {

myLocales = callerI18n.getLocales();
}
catch (IllegalStateException ise) {

// The Caller context is unavailable;
// is the service started and enabled?

}
...

The Internationalization interface contains the following methods to get caller internationalization
context elements:
v Locale [] getLocales() Returns the list of caller locales that are associated with the current thread.
v Locale getLocale() Returns the first in the list of caller locales that are associated with the current

thread.
v TimeZone getTimeZone() Returns the SimpleTimeZone caller that is associated with the current

thread.

The Internationalization interface supports read-only access to internationalization context within
application components. Methods of the Internationalization interface are available to all EJB
application components and are used in the same manner for each, but the method semantics vary
according to the component type. For instance, when obtaining the caller locale within an EJB client
application, the interface returns the default locale of the host Java virtual machine (JVM); in contrast,
when obtaining caller context within a servlet service method (for example, doPost or doGet methods),
the interface returns the first locale (accept-language) propagated within the corresponding HTML
request. See Internationalization context for a discussion of how the service propagates
internationalization context throughout an application.

2. Use the caller context elements to localize computations under a locale or time zone of the calling
process.
DateFormat df = DateFormat.getDateInstance(myLocale);
String localizedDate = df.getDateInstance().format(aDateInstance);
...

Accessing invocation locales and time zones
Perform this task to access elements of the invocation internationalization context.

Before you begin

An application component must first resolve a reference to the InvocationInternationalization object and
then bind it to the InvocationInternationalization interface of the internationalization context API.

Chapter 10. Welcome to administering Internationalization service 461



About this task

Every remote invocation of a servlet service or Enterprise JavaBeans (EJB) business method has an
invocation internationalization context associated with the thread that is running that invocation. Invocation
context is the internationalization context under which servlet and business method implementations run; it
is propagated on subsequent invocations by the internationalization service and middleware. This task also
applies to Web service client programs.

Procedure
1. Obtain the desired invocation context elements.

java.util.Locale myLocale;
try {

myLocale = invocationI18n.getLocale();
}
catch (IllegalStateException ise) {

// The invocation context is unavailable;
// is the service started and enabled?

}
...

The InvocationInternationalization interface contains the following methods to both get and set
invocation internationalization context elements:
v Locale [] getLocales(). Returns the list of invocation locales that is associated with the current

thread.
v Locale getLocale(). Returns the first in the list of invocation locales that is associated with the

current thread.
v TimeZone getTimeZone(). Returns the SimpleTimeZone invocation that is associated with the

current thread.
v setLocales(Locale []). Sets the list of invocation locales that are associated with the current thread

to the supplied list.
v setLocale(Locale). Sets the list of invocation locales that are associated with the current thread to a

list that contains the supplied locale.
v setTimeZone(TimeZone). Sets the invocation time zone that is associated with the current thread

to the supplied SimpleTimeZone.
v setTimeZone(String). Sets the invocation time zone that is associated with the current thread to a

SimpleTimeZone that has the supplied ID.

The InvocationInternationalization interface supports read and write access to invocation
internationalization context within application components. However, according to internationalization
context management policies, only components configured to manage internationalization context
(application-managed internationalization, or AMI, components) have write access to invocation
internationalization context elements. Calls to set invocation context elements within
container-managed internationalization (CMI) application components result in a
java.lang.IllegalStateException exception. Any differences in how application components can use
InvocationInternationalization methods are explained in Internationalization context.

2. Use the invocation context elements to localize a computation under a locale or time zone of the
calling process.
DateFormat df = DateFormat.getDateInstance(myLocale);

String localizedDate = df.getDateInstance().format(aDateInstance);
...

Example

In the following code example, locale (en,GB) and simple time zone (GMT) transparently propagate on the
call to the myBusinessMethod method. Server-side application components, such as myEjb, can use the
InvocationInternationalization interface to obtain these context elements.

462 Administering WebSphere applications



...
//--------------------------------------------------------------------
// Set the invocation context under which the business method or
// servlet will run and propagate on subsequent remote business
// method invocations.
//--------------------------------------------------------------------
try {

invocationI18n.setLocale(new Locale("en", "GB"));
invocationI18n.setTimeZone(SimpleTimeZone.getTimeZone("GMT"));

}
catch (IllegalStateException ise) {

// Is the component CMI; is the service started and enabled?
}
myEjb.myBusinessMethod();

Within CMI application components, the Internationalization and InvocationInternationalization interfaces
are semantically equivalent. You can use either of these interfaces to obtain the context associated with
the thread on which that component is running. For instance, both interfaces can be used to obtain the list
of locales propagated to the servlet doPost service method.

Internationalization context API: Programming reference
Application components programmatically manage internationalization context through the
UserInternationalization, Internationalization, and InvocationInternationalization interfaces in the
com.ibm.websphere.i18n.context package.

The following code example introduces the internationalization context API:
public interface UserInternationalization {

public Internationalization getCallerInternationalization();
public InvocationInternationalization
getInvocationInternationalization();

}

public interface Internationalization {
public java.util.Locale[] getLocales();
public java.util.Locale getLocale();
public java.util.TimeZone getTimeZone();

}

public interface InvocationInternationalization
extends Internationalization {

public void setLocales(java.util.Locale[] locales);
public void setLocale(java.util.Locale jmLocale);
public void setTimeZone(java.util.TimeZonetimeZone);
public void setTimeZone(String timeZoneId);

}

UserInternationalization interface

The UserInternationalization interface provides factory methods for obtaining references to the
CallerInternationalization and InvocationInternationalization context objects. Use these references to
access elements of the caller and invocation contexts correlated to the current thread.

Methods of the UserInternationalization interface:
Internationalization getCallerInternationalization()

Returns a reference implementing the Internationalization interface that supports access to
elements of the caller internationalization context correlated to the current thread. If the service is
disabled, this method issues an IllegalStateException exception.

InvocationInternationalization getInvocationInternationalization()
Returns a reference implementing the InvocationInternationalization interface. If the service is
disabled, this method issues an IllegalStateException exception.

Chapter 10. Welcome to administering Internationalization service 463



Internationalization interface

The Internationalization interface declares methods that provide read-only access to internationalization
context. Given a caller or invocation internationalization context object created with the
UserInternationalization interface, bind the object to the Internationalization interface to get elements of
that context type. Observe that caller internationalization context can be accessed only through this
interface.

Methods of the Internationalization interface:
Locale[] getLocales()

Returns the chain of locales within the internationalization context (object) that is bound to the
interface, provided the chain is not null; otherwise this method returns a chain of length(1)
containing the default locale of the Java virtual machine (JVM).

Locale getLocale()
Returns the first in the chain of locales within the internationalization context (object) that is bound
to the interface, provided the chain is not null; otherwise this method returns the default locale of
the JVM.

TimeZone getTimeZone()
Returns the caller time zone (that is, the SimpleTimeZone instance) that is associated with the
current thread, provided the time zone is non-null; otherwise this method returns the process time
zone.

InvocationInternationalization interface

The InvocationInternationalization interface declares methods that provide read and write access to
InvocationInternationalization context. Given an invocation internationalization context object created with
the UserInternationalization interface, bind the object to the InvocationInternationalization interface to get
and set elements of the invocation context.

According to the container-managed internationalization (CMI) policy, all set methods, setXxx(), issue an
IllegalStateException exception when called within a CMI servlet or enterprise bean.

Methods of the InvocationInternationalization interface:
void setLocales(java.util.Locale[] locales)

Sets the chain of locales to the supplied chain, locales, within the invocation internationalization
context. The supplied chain can be null or have length(>= 0). When the supplied chain is null or
has length(0), the service sets the chain of invocation locales to an array of length(1) containing
the default locale of the JVM. Null entries can exist within the supplied locale list, for which the
service substitutes the default locale of the JVM on remote invocations.

void setLocale(java.util.Locale locale)
Sets the chain of locales within the invocation internationalization context to an array of length(1)
containing the supplied locale, locale. The supplied locale can be null, in which case the service
instead sets the chain to an array of length(1) containing the default locale of the JVM.

void setTimeZone(java.util.TimeZone timeZone)
Sets the time zone within the invocation internationalization context to the supplied time zone, time
zone. If the supplied time zone is not an exact instance of java.util.SimpleTimeZone or is null, the
service sets the invocation time zone to the default time zone of the JVM instead.

void setTimeZone(String timeZoneId)
Sets the time zone within the invocation internationalization context to the
java.util.SimpleTimeZone having the supplied ID, timeZoneId. If the supplied time zone ID is null or
invalid (that is, the ID is not displayed in the list of IDs returned by the
java.util.TimeZone.getAvailableIds method) the service sets the invocation time zone to the simple
time zone having an ID of GMT, an offset of 00:00, and otherwise invalid fields.

Internationalization context:

464 Administering WebSphere applications



An internationalization context is a distributable collection of internationalization information containing an
ordered list, or chain, of locales and a single time zone, where the locales and time zone are instances of
the java.util.Locale and java.util.TimeZone Java SDK types, respectively. A locale chain is ordered
according to the user's preference.

The internationalization service manages and makes available two varieties of internationalization context:
the caller context, which represents the caller's localization environment, and the invocation context, which
represents the localization environment under which a business method runs. Server application
components use elements of the caller and invocation internationalization contexts to appropriately tailor
locale-sensitive and time zone-sensitive computations.

The internationalization service does not support time zone types other than the java.util.SimpleTimeZone
type that is found in the Java SDK. Unsupported time zone types silently map to the default time zone of
the JVM when supplied to internationalization context API methods. For a complete description of the
java.util.Locale, java.util.TimeZone and java.util.SimpleTimeZone types, refer the Java SDK API
documentation.

Caller context

Caller internationalization context contains the locale chain and time zone received on incoming EJB
business method and servlet service method invocations; it is the internationalization context propagated
from the calling process. Use caller context elements within server application components to localize
computations to the calling component. Caller context is read-only and can be accessed by all application
components by using the Internationalization interface of the internationalization context API.

Caller context is computed in the following manner: On an EJB business method or servlet service method
invocation, the internationalization service extracts the internationalization context from the incoming
request and scopes this context to the method as the caller context. For any missing or null context
element, the service inserts the corresponding default element of the JVM (for example,
java.util.Locale.getDefault() or java.util.TimeZone.getDefault().) The service performs a similar insertion
whenever missing or null Caller context elements are encountered on invocations of stateless session
beans that are enabled for Web services.

Formally, caller context is the invocation context of the calling business method or application component.

Invocation context

Invocation internationalization context contains the locale chain and time zone under which EJB business
methods and servlet service methods run. It is managed by either the hosting container or the application
component, depending on the applicable internationalization policy. On outgoing business method
requests, it is the context that propagates to the target process. Use invocation context elements to
localize computations under the specified settings of the current application component.

Invocation context is computed in the following manner: On an incoming business method or servlet
service method invocation, the internationalization service queries the associated context management
policy. If the policy is container-managed internationalization (CMI), the container scopes the context
designated by the policy to the invocation; otherwise the policy is application-managed internationalization
(AMI), and the container scopes an empty context to the invocation that can be altered by the method
implementation.

Application components can access invocation context elements through both the Internationalization and
InvocationInternationalization interfaces of the internationalization context API. Invocation context elements
can be set (overwritten) under the application-managed internationalization policy only.

On an outgoing business method request, the service obtains the currently scoped invocation context and
attaches it to the request. This outgoing exported context becomes the caller context of the target

Chapter 10. Welcome to administering Internationalization service 465



invocation. When supplying invocation context elements, either for export on outgoing requests or through
the API, the internationalization service always provides the most recent element set using the API; the
service also supplies the corresponding default element of the JVM for any null invocation context
element.

Because the internationalization context that is propagated over Web services (SOAP) requests contains a
time zone ID rather than the entire state of a java.lang.SimpleTimeZone object, time zone information
might be lost when a Web service-enabled client program or session bean becomes involved in remote
business computation.

Internationalization context: Propagation and scope:

The scope of internationalization context is implicit. Every Enterprise JavaBeans (EJB) client application,
servlet service method, and EJB business method call has two internationalization contexts under which it
runs.

For each application component call, the container enters the caller context and the call context, as
indicated by the pertinent internationalization policy, into scope before the container delegates to the actual
implementation. When the implementation returns, the service removes these contexts from scope. The
internationalization service supplies no programmatic mechanism for components to explicitly manage the
scope of internationalization context.

The service scopes internationalization context differently with respect to application component type:
v “EJB client programs (contained)”
v “Servlets” on page 467
v “Enterprise beans” on page 467
v “Web service client programs (contained)” on page 467
v “Stateless session beans that are enabled for Web services” on page 468

Internationalization context observes by-value semantics over remote method requests. Changes to
internationalization context elements that are scoped to a call do not affect the corresponding elements of
the internationalization context that is scoped to the remote calling process. Also, modifications to context
elements obtained using the internationalization context API do not affect the corresponding elements that
are scoped to the invocation.

EJB client programs (contained)

Before it calls the main method of a client program, the Java EE client container introduces into scope
invocation and caller internationalization some contexts that contain null elements. These contexts remain
in scope throughout the life of the program. EJB client programs are the base in a chain of remote
business method invocations and, technically, do not have a logical caller context. Accessing a caller
context element yields the corresponding default element of the client JVM. On outgoing EJB business
method requests, the internationalization service propagates the invocation context to the target process.
Any unset (null) invocation context elements are replaced with the default of the JVM when exported by
the internationalization context API or by outgoing requests.

Tip:

To propagate values other than the JVM defaults to remote business methods, EJB client programs,
as well as AMI servlets or enterprise beans, must set (override) elements of the invocation context.
To learn how to set invocation context elements, see “Accessing invocation locales and time zones”
on page 461.

466 Administering WebSphere applications



Servlets

On every servlet service method (doGet or doPost) invocation, the Java EE Web container introduces
caller and invocation internationalization contexts into scope before delegating to the service method
implementation. The caller context contains the accept-languages propagated in the HTTP servlet request,
typically from a Web browser. The invocation context contains whichever context is indicated by the
container internationalization attribute of the internationalization policy that is associated with the servlet.
Any unset (null) invocation context elements are replaced with the default of the server JVM when
exported by the internationalization context API or by outgoing requests. The caller and invocation contexts
remain effective until immediately after the implementation returns, at which time the container removes
them from scope.

Enterprise beans

On every EJB business method invocation, the Java EE EJB container introduces caller and invocation
internationalization contexts into scope before delegating to the business method implementation. The
caller context contains the internationalization context elements imported from the incoming IIOP request;
if the incoming request lacks a particular internationalization context element, the container scopes a null
element. The invocation context contains whichever context is indicated by the container
internationalization attribute of the internationalization policy that is associated with the business method.

On outgoing EJB business method requests, the service propagates the invocation context to the target
process. Any unset (null) invocation context elements are replaced with the default of the server JVM
when exported by the internationalization context API or by outgoing requests. The caller and invocation
contexts remain effective until immediately after the implementation returns, when the container removes
them from scope.

Consider a simple EJB application with a Java client that calls the remote myBeanMethod bean method.
On the client side, the application can use the Internationalization Service API to set invocation context
elements. When the client calls myBeanMethod(), the service exports the client invocation context to the
outgoing request. On the server side, the service detaches the imported context from the incoming request
and scopes it to the method as its caller context; the service also scopes the invocation context to the
method as indicated by the associated internationalization context management policy. The EJB container
then calls the myBeanMethod method, which can use the internationalization context API to access
elements of either the caller or invocation contexts. When the myBeanMethod method returns, the EJB
container removes these contexts from scope.

Web service client programs (contained)

Before it calls the main method of a Web service client program, the client container introduces into scope
both invocation and caller internationalization contexts that contain null elements. These contexts remain in
scope throughout the duration of the program. Web service client programs are the base in a chain of
remote business method invocations and, technically, do not have a logical caller context. Accessing a
Caller context element yields the corresponding default element of the client virtual machine.

On outgoing Web service requests, the internationalization service transparently creates a SOAP header
block that contains the invocation context that is associated with the current thread; the SOAP
representation of invocation context is propagated through the request to the target process. Any unset
(that is, null) invocation context elements are replaced with the default element of the JVM when exported
by the internationalization context API or by outgoing requests. Also, because the header contains only a
time zone ID, the additional state of the time zone object (java.lang.SimpleTimeZone) of the invocation
context might be lost, because it does not get propagated through the request.

Tip:

Chapter 10. Welcome to administering Internationalization service 467



To propagate values other than the JVM defaults to remote business methods, Web service client
programs, as well as AMI servlets or enterprise beans, must set (override) elements of the invocation
context. For more information, see “Accessing invocation locales and time zones” on page 461.

Stateless session beans that are enabled for Web services

On every method invocation of a Web service-enabled bean, the EJB container introduces caller and
invocation internationalization contexts into scope before delegating control to the business method
implementation. The caller context contains the internationalization context elements that are imported
from the SOAP header block of the incoming request. If the incoming request lacks a particular
internationalization context element, the container introduces a null element into scope. The invocation
context contains whichever context is indicated by the container internationalization attribute of the
internationalization policy that is associated with the business method.

On outgoing EJB business method requests, the service propagates the invocation context to the target
process. Any unset (that is, null) invocation context elements are replaced with the default element of the
server JVM when exported by the internationalization context API or by outgoing requests. The caller and
invocation contexts remain effective until immediately after control returns from the business method
implementation, at which time the container removes them from scope.

On outgoing Web service requests, the internationalization service transparently creates a SOAP header
block that contains the invocation context associated with the current thread. The SOAP representation of
the invocation context is propagated through the request to the target process. Any unset (that is, null)
invocation context elements are replaced with the default element of the JVM when exported by the
internationalization context API or by outgoing requests.

Thread association considerations

The Web and EJB containers scope internationalization contexts to a method by associating the method
with the thread that run the method implementation. Similarly, methods of the internationalization context
API either associate context with, or obtain context associated with, the thread on which these methods
run.

In cases where new threads are spawned within an application component (for instance, a user-generated
thread inside the service method of a servlet, or a system-generated event handling thread in an AWT
client) the internationalization contexts associated with the parent thread does not automatically transfer to
the newly-spawned thread. In such instances, the service exports the default locale and time zone of the
JVM on any remote business method request and on any API calls that run on the new thread.

If the default context is inappropriate, the desired invocation context elements must be explicitly associated
to the new thread by using the setXxx methods of the InvocationInternationalization interface. Currently,
internationalization context management policies enable invocation context to be set within EJB client
programs, as well as within servlets, session beans, and message-driven beans that use
application-managed internationalization.

Internationalization context: Management policies:

Internationalization policies prescribe how Java EE application components or their hosting containers
manage internationalization context on component invocations. Two internationalization context
management policies apply to all component types: Application-managed internationalization (AMI) and
Container-managed internationalization (CMI).

These policies are represented in two parts:
v Internationalization type
v Container internationalization attribute

468 Administering WebSphere applications



The service defines a default, or implicit, internationalization policy for every application component type.
At development time, assemblers can override the default policy for server component types by explicitly
configuring their internationalization type, and optional container internationalization attributes. Policies
configured during assembly are preserved in the deployment descriptor for the application.

All components have an internationalization type that indicates whether it is AMI or CMI; that is, whether a
component is to deploy under the application-managed or the container-managed internationalization
policy. Application assemblers can set the internationalization type for servlets, session beans, and
message-driven beans. Entity beans are implicitly CMI and EJB clients are implicitly AMI; neither can be
configured otherwise.

For CMI servlets and enterprise beans, optional container internationalization attributes can be specified to
indicate which invocation internationalization context the container is to scope to service or business
methods. A CMI service or business method invocation can run under the context of the caller's process,
under the default context of the server JVM, or under a custom context specified in the attribute.
Assemblers can specify one container internationalization attribute per disjoint set of CMI servlets within a
Web module, or one Attribute per disjoint set of business methods of CMI beans within an EJB module. A
container internationalization attribute can be associated with more than one method, but a method cannot
be associated with more than one attribute.

When an application server launches an application, the internationalization service collects policy
information from the deployment descriptor, then uses this information to construct and associate an
internationalization policy to every component invocation. A policy is denoted as:
[<Internationalization Type>,<Container Internationalization Attribute>]

Several cases exist in which the deployment descriptor seems to lack policy information, for example: EJB
client applications have no configurable internationalization policy settings; AMI components do not have
container internationalization attributes; and you are not required to specify container internationalization
attributes for CMI components. When the service cannot obtain the explicit internationalization type and
container attribute settings from a well-formed deployment descriptor, it implicitly inserts the appropriate
setting into the policy.

The service observes the following conventions when applying policies to invocations:
v Servlets (service) and EJB business methods lacking all internationalization policy information in the

deployment descriptor implicitly run under policy [CMI,RunAsCaller].
v CMI servlets and business methods lacking a container internationalization attribute in the deployment

descriptor implicitly run under policy [CMI,RunAsCaller].
v AMI servlets and business methods always lack container internationalization attributes in the

deployment descriptor, but implicitly run under the logical policy [AMI,RunAsServer].
v EJB clients always lack internationalization policy information in the deployment descriptor. By definition,

EJB clients are implicitly AMI types and run under the invocation context of the JVM; they run under the
logical policy [AMI,RunAsServer].

For conditions other than these cited examples, such as a malformed deployment descriptor, refer to
Internationalization service errors.

Internationalization policies for EJB clients and HTTP clients cannot be configured; HTTP clients do,
however, run under the language priority settings of the hosting Web browser. These settings are
configurable under the options dialog of most Web browsers. Refer to your Web browser documentation
for details.

Internationalization type:

Every server application component has an internationalization type setting that indicates whether the
invocation internationalization context is managed by the component or by the hosting Java EE container.

Chapter 10. Welcome to administering Internationalization service 469



Server application components can be deployed to use one of two types of internationalization context
management:
v Application-managed internationalization (AMI)
v Container-managed internationalization (CMI)

A server component can be deployed as AMI or CMI, but not both; CMI is the default. The setting applies
to the entire component on every invocation. Entity beans use CMI only. Enterprise JavaBeans (EJB)
client applications do not have an internationalization type setting; they implicitly use AMI.

Application-managed internationalization

Under the AMI deployment policy, component developers assume complete control over the invocation
internationalization context. AMI components can use the internationalization context API to
programmatically set invocation context elements.

AMI components are expected to manage invocation context. Invocations of AMI components implicitly run
under the default locale and time zone of the hosting JVM. Invocation context elements not set using the
API default to the corresponding elements of the JVM when accessed through the API or when exported
on business methods. To export context elements other than the JVM defaults, AMI servlets, AMI
enterprise beans, and EJB client applications must set (overwrite) invocation elements using the
internationalization context API. Moreover, the container logically suspends the caller context that is
imported on the AMI servlet lifecycle method and AMI EJB business method invocations. To continue
propagating the context of the calling process, AMI servlets and enterprise beans must use the API to
transfer caller context elements to the invocation context.

Specify AMI for server components that have internationalization context management requirements that
are not supported by container-managed internationalization (CMI).

Container-managed internationalization

CMI is the preferred internationalization context management policy for server application components; it is
also the default policy. Under CMI, the internationalization service collaborates with the Web and EJB
containers to set the invocation internationalization context for servlets and enterprise beans. The service
sets invocation context according to the container internationalization attribute of the policy that is
associated with a servlet (service method) or an EJB business method.

A CMI policy has a container internationalization attribute that indicates which internationalization context
the container is to scope to an invocation. For details, see Container internationalization attributes. By
default, invocations of CMI components run under the caller's internationalization context; or rather, they
adhere to the implicit policy [CMI,RunasCaller] whenever the servlet or business is not associated with an
attribute in the deployment descriptor. For complete details, see Internationalization context: Management
policies.

Methods within CMI components can obtain elements of the invocation context using the
internationalization context API, but cannot set them. Any attempt to set invocation context elements within
CMI components results in a java.lang.IllegalStateException exception.

Specify container-managed internationalization for server application components that require standard
internationalization context management. Then specify the container internationalization attributes for CMI
servlets and for business methods of CMI enterprise beans that you do not want to run under the caller's
internationalization context.

Container internationalization attributes:

470 Administering WebSphere applications



The internationalization policy of every CMI servlet and EJB business method has a container
internationalization attribute that specifies which internationalization context the container is to scope to its
invocation.

The container internationalization attribute has three main fields:
v Run as
v Locales
v Time zone ID

As a convenience, you can create named container internationalization attributes and associate them to
the following subsets:
v CMI servlets within a Web module
v Business methods of CMI enterprise beans within an Enterprise JavaBeans (EJB) module
v Business methods of Web service-enabled session beans. In the following descriptions, the term

supported enterprise bean refers to both CMI enterprise beans and Web service-enabled session
beans.

Run-as field

The Run-as field specifies one of three types of invocation context that a container can scope to a
method. For servlet service and EJB business methods, the container constructs the invocation
internationalization context according to the Run as field setting and associates this context to the current
thread before delegating to the method implementation.

By default, invocations of servlet service methods and EJB business methods implicitly run as caller
(RunAsCaller) unless the Run as field of a policy attribute specifies otherwise. EJB client applications and
AMI server components always run as server (RunAsServer).

You can specify the following invocation context types with the Run as field are:
Caller The container calls the method under the internationalization context of the calling process. For

any missing context element, the container supplies the corresponding default context element of
the Java virtual machine (JVM). Select run as caller when you want the invocation to run under
the invocation context of the calling process.

Server
The container calls the method under the default locale and time zone of the JVM. Select run as
server when you want the invocation to run under the invocation context of the JVM.

Specified
The container calls the method under the internationalization context specified in the attribute.
Select run as specified when you want the invocation to run under the custom invocation context
that is specified in the policy; then provide the custom context elements by completing the Locales
and Time zone ID fields.

Remember: Java Message Service (JMS) messages do not contain internationalization context. Although
container-managed message-driven beans can be configured to run as caller, the container
associates the default elements of the server process when calling the onMessage method of
any message-driven bean that is configured as [CMI, RunAsCaller]. You can also configure
the Run as field for Web service business methods.

Locales field

The Locales field specifies an ordered list of locales that the container scopes to an invocation. A locale
represents a specific geographical, cultural, or political region and contains three fields:
v Language code. Ideally, language code is one of the lower-case, two-character codes that are defined

by the ISO 639 standard; however, language code is not restricted to ISO codes and is not a required
field. A valid locale must specify a language code if it does not specify a country code.

Chapter 10. Welcome to administering Internationalization service 471



v Country code. Ideally, country code is one of the upper-case, two-character codes that are defined by
the ISO 3166 standard; however, country code is not restricted to ISO codes and is not a required field.
A valid locale must specify a country code if it does not specify a language code.

v Variant. Variant is a vendor-specific code. Variant is not a required field and serves only to supplement
the language and country code fields according to application- or platform-specific requirements.

A valid locale must specify at least a language code or a country code; the variant is always optional. The
first locale of the list is returned when accessing invocation context using the getLocale method of the
internationalization context API.

Time zone ID field

The Time zone ID field specifies an abbreviated identifier for a time zone that the container scopes to an
invocation. You can also configure the Time zone ID field for Web service business methods.

A time zone represents a temporal offset and computes daylight savings information. A valid ID indicates
any time zone supported by the java.util.TimeZone type. Specifically, a valid ID is any of the IDs that
appear in the list of time zone IDs returned by method java.util.TimeZone.getAvailableIds(), or a custom ID
having the form GMT[+|-]hh[[:]mm]; for example, America/Los_Angeles, GMT-08:00 are valid time zone IDs.

Administering the internationalization service
To use internationalization context in an Enterprise JavaBeans (EJB) application, the internationalization
service must be enabled in the runtime environments for all server-side components (servlets and
enterprise beans, including session beans enabled for Web service usage) as well as all client-side
components (EJB client applications and Web service clients).

About this task

If you do not require the internationalization service, do not enable it. Leaving the service disabled
prevents any possible performance degradation incurred by the implicit distribution of internationalization
resources.

The internationalization service cannot be enabled for HTTP clients, because support for
internationalization in that case is provided by the browser, not by the application server.

Procedure
v Enable or disable the internationalization service for servlets and enterprise beans. By default, the

service is disabled for server-side components within the application server. You enable the service by
using either the administrative console or the wsadmin tool.

v Enable or disable the internationalization service for EJB clients. By default, the service is disabled
within the client container. You enable the service by using the launchClient tool.

Enabling the internationalization service for servlets and enterprise beans
Perform this task to enable the internationalization service in the application server runtime environment.

About this task

Any servlet or enterprise bean can use internationalization context if the internationalization service is
enabled within the hosting application server instance.

Procedure
1. Start the administrative console.

2. Click Servers > Application servers > server_name > Container services > Internationalization
service.

472 Administering WebSphere applications



3. Enable the internationalization service.

a. If not already selected, select the Enable service at server startup check box.

b. Click OK.

Results

When you select the Enable service at server startup setting, the application server automatically
initializes and starts the internationalization service whenever the server starts. If you change this setting,
be sure to restart the application server for the new setting to take effect.

To disable the service, clear the Enable service at server startup check box. In this case, the
internationalization service is initialized but not started when the application server starts.

Example

Alternatively, the internationalization service can be enabled from the command line by using the wsadmin
tool. Start the wsadmin tool and enter the following commands:
set x [$AdminConfig list I18NService]
$AdminConfig modify $x { { enable true } }
$AdminConfig save
exit

What to do next

If you enable or disable the internationalization service, be sure to stop and then restart the application
server for the new setting to take effect.

Enabling the internationalization service for EJB clients
By default, the internationalization service is disabled for use within Enterprise JavaBeans (EJB) and
Web-service enabled client applications. You must enable the service for client applications as well as for
all server instances in the runtime environment.

Procedure

Enable the service.
When calling the launchClient tool, include the argument -CCDI18NService.enable=true or
-CCDI18NService.enable=yes.

Internationalization service settings
Use this page to enable or disable the internationalization service. The internationalization service
manages the implicit propagation and scoping of locale and time zone information, called
internationalization context, within application components. When the service is enabled, application
components can use the internationalization context API to programmatically manage locale and time zone
information. In turn, components can use that locale and time zone information with the Java Platform,
Standard Edition (JSE) Internationalization API to perform localizations. If internationalization support is not
required on the server, disabling the service can improve performance.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name. Then, under Container Settings, click Container Services > Internationalization
Service.

Enable service at server startup:

Specifies whether the server attempts to start the internationalization service.

Chapter 10. Welcome to administering Internationalization service 473



Information Value
Default Cleared
Range Valid values are Selected or Cleared

More information about valid values follows:
Selected

When the application server starts, it attempts to start the internationalization service automatically.
Cleared

The server does not try to start the internationalization service.

To enable the internationalization service for applications on this server, the system administrator must
select this property and then restart the server.

Internationalization service errors
Certain conditions might cause the internationalization service not to start, to issue
java.lang.IllegalStateException exceptions while an application is running, or to exercise default behaviors.

The java.lang.IllegalStateException exception indicates one of the following things:
v An application component attempted an operation that is not supported by the internationalization

programming model.

The IllegalStateException exception is issued whenever a server application component whose
internationalization type is set to container-managed internationalization (CMI) attempts to set invocation
context. This behavior is a violation of the CMI policy, under which servlets and enterprise beans cannot
modify their invocation internationalization context.

v An anomaly occurred that disabled the service.

For instance, if the internationalization service is not properly initialized, the Java Naming and Directory
Interface (JNDI) lookup on the UserInternationalization URL attribute issues a
javax.naming.NameNotFoundException exception that contains an IllegalStateException instance.

The following conditions can occur while your internationalized application is running. These conditions
might cause the internationalization service not to start, to issue IllegalStateException exceptions, or to
exercise default behaviors:
v “The service is disabled ”
v “The service is not started” on page 475
v “Invalid context element” on page 476
v “Missing context element” on page 476
v “Invalid policy” on page 476
v “Missing policy” on page 476

If you encounter unexpected or exceptional behavior, the problem is likely related to one of these
conditions. You need to examine the trace log to investigate these conditions, which requires that you
configure the diagnostic trace service to generate messages about internationalization service function.

The trace strings for the internationalization service follow; use both:
com.ibm.ws.i18n.context.*=all=enabled:com.ibm.websphere.i18n.context.*=all=enabled

The service is disabled

The internationalization service is not initialized when the startup setting is cleared. The service generates
a message that indicates whether it is enabled or disabled. Applications cannot access the
internationalization API when the service is disabled. If an application attempts a JNDI lookup to obtain the
UserInternationalization reference, the lookup fails with a NamingException exception, indicating that the
reference cannot be found. In addition, the service does not scope (propagate) internationalization context
on incoming (outgoing) business method calls.

474 Administering WebSphere applications



The service is not started

The internationalization service is operational whenever it is in the STARTED state. For example, if an
application attempts to access internationalization context and the service is not started, the API issues an
IllegalStateException exception. In addition, the service does not provide runtime support for servlets and
enterprise beans.

As an application server progresses through its life cycle, it initializes, starts, stops, and terminates
(destroys) the internationalization service. If an anomaly occurs during initialization, the service does not
start. After the service is started, its state can change to BLOCKED in the event that a serious error
occurs. The service generates a message for every state change.

If a trace message indicates that the service is not STARTED, examine previous messages to determine
the problem. For instance, the internationalization service does not start if the activity service is
unavailable and a message is displayed to that effect during initialization of the internationalization service.

During startup, the following messages indicate potential configuration or runtime problems:
No ORB support

The service cannot obtain an instance of the object request broker (ORB). This condition is a fatal
error. Examine the SystemErr.log and SystemOut.log files for information.

Note: This topic references one or more of the application server log files. As a recommended
alternative, you can configure the server to use the High Performance Extensible Logging
(HPEL) log and trace infrastructure instead of using SystemOut.log , SystemErr.log,
trace.log, and activity.log files on distributed and IBM i systems. You can also use
HPEL in conjunction with your native z/OS logging facilities. If you are using HPEL, you can
access all of your log and trace information using the LogViewer command-line tool from
your server profile bin directory. See the information about using HPEL to troubleshoot
applications for more information on using HPEL.

No TCM support
The service cannot obtain an instance of its thread context manager (TCM). This condition is a
fatal error. Examine the SystemErr.log and SystemOut.log files for information.

No IIOP (activity service) support
The service cannot register with the activity service. This condition is a fatal error. The
internationalization service cannot propagate or receive context on Internet Inter-ORB Protocol
(IIOP) requests without activity service support. Examine the SystemErr.log and SystemOut.log
files for information.

No AsynchBeans support
The service cannot register into the asynchronous beans environment. This warning indicates that
the asynchronous beans environment cannot support internationalization context.

No EJB container support
The service cannot register with the Enterprise JavaBeans (EJB) container. This warning indicates
that the internationalization service cannot support enterprise beans. Without EJB container
support, internationalization contexts do not scope properly to EJB business methods. Review the
trace log for any EJB container-related error conditions.

No Web container support
The service cannot register with the Web container. This warning indicates that the
internationalization service cannot support servlets and JavaServer Page (JSP) files. Without Web
container support, internationalization contexts do not scope properly to servlet service methods.
Review the trace log for any Web container-related error conditions.

No Metadata support
The service cannot register with the metadata service. This warning indicates that the
internationalization service cannot process the internationalization policies within application
deployment descriptors. Without metadata support, the service associates the default

Chapter 10. Welcome to administering Internationalization service 475



internationalization context management policy, [CMI, RunAsCaller], to every servlet lifecycle
method and enterprise bean business method invocation. Review the trace log for any metadata
service-related error conditions.

No JNDI (Naming service) support
The service cannot bind the UserInternationalization object into the namespace. This condition is a
fatal error. Application components are unable to access internationalization context API
references, and are therefore unable to access internationalization context elements. Review the
trace log for any Naming (JNDI) service-related error conditions.

No API support
The service cannot obtain an instance of an internationalization context API object. This condition
is a fatal error. Application components are unable to access internationalization context API
references, and are therefore unable to access internationalization context elements.

Invalid context element

The service detected an invalid internationalization context element. For example, the internationalization
service does not support TimeZone instances of a type other than java.util.SimpleTimeZone. If the service
encounters an unusable element, it logs a message and substitutes the corresponding default element of
the JVM.

Missing context element

The service detected a missing internationalization context element. Incoming requests (for example, from
application servers that do not support the internationalization service) lack internationalization context.
When the service attempts to access a caller internationalization context element (which does not exist in
this case), the service logs a message and substitutes the corresponding default element of the Java
virtual machine (JVM).

Whenever possible, enable the internationalization service within all clients and hosting application servers
that comprise an internationalized enterprise application. Read more information about Administering the
internationalization service in the Administering applications and their environment PDF book.

Invalid policy

The internationalization service detected a malformed internationalization policy in the application
deployment descriptor. The service replaces the malformed attribute with the appropriate default. For
instance, if the internationalization type for an entity bean is set to Application during the run of a servlet
or EJB business method call, the service logs the inconsistency and enforces the Container setting
instead.

Also, AMI application components do have an implicit container internationalization attribute. By default
they run as server. The service silently enforces the implicit policy, [AMI, RunAsServer], and logs
messages to this effect.

Invalid container internationalization attributes are likely to occur when specifying the Locales and Time
zone ID fields. When encountering invalid locales and time zone IDs within attributes, the service replaces
each value with the corresponding default element of the JVM. Be sure to follow the guidelines provided in
the Developing and deploying applications PDF book.

Missing policy

The service detected a missing internationalization policy. The service replaces the missing policy with the
appropriate default. For instance, if the internationalization type is missing for a servlet or enterprise bean,
the service sets the attribute to Container.

476 Administering WebSphere applications



Container internationalization attributes are not mandatory for CMI application components. In the event
that a CMI servlet or EJB business method lacks a container internationalization attribute, the service
silently enforces the implicit policy [CMI, RunAsCaller].

When an application lacks internationalization policies in its deployment descriptor, or metadata support is
unavailable, the service logs a message and applies the policy [CMI, RunAsCaller] on every servlet
service method and EJB business method invocation.

Read the information in the Developing and deploying applications PDF book:
v Assembling internationalized applications
v Container internationalization attributes
v Internationalization type

Chapter 10. Welcome to administering Internationalization service 477



478 Administering WebSphere applications



Chapter 11. Administering Mail, URLs, and other Java EE
resources

This page provides a starting point for finding information about resources that are used by applications
that are deployed on a Java Enterprise Edition (Java EE)-compliant application server. They include:

v JavaMail support for applications to send Internet mail

v URLs, for describing logical locations

v Resource environment entries, for mapping logical names to physical names

v Java DataBase Connectivity (JDBC) resources and other technology for data access (discussed
elsewhere)

v Java Message Service (JMS) resources and other messaging system support (discussed elsewhere)

Configuring mail providers and sessions
Configure your own mail providers and sessions to customize how mail is handled in the application
server. A mail provider encapsulates a collection of protocol providers, like SMTP, IMAP and POP3, and
others. Mail sessions authenticate users and control access to messaging systems.

About this task

The application server includes a default mail provider that is called the built-in provider. If you use the
default mail provider, you only have to configure the mail session.

To use a customized mail provider, you must create the mail session and provider.

Procedure
v Create the mail session.

1. In the administrative console, click Resources > Mail > Mail sessions.

2. Select the scope for the new mail session.

3. Click New.

4. Type the mail session name in the Name field.

5. Type the JNDI name in the JNDI Name field.

6. Optional: Enable strict Internet address parsing. This option specifies whether the recipient
addresses must be parsed in strict compliance with RFC 822, which is a specifications document
that is issued by the Internet Architecture Board. This setting is not generally used for most mail
applications, and by default this setting is not enabled.

RFC 822 syntax for parsing addresses effectively enforces a strict definition of a valid email
address. If you select this setting, your mail component adheres to RFC 822 syntax and rejects
recipient addresses that do not parse into valid email addresses as defined by the specification. If
you do not select this setting, your mail component does not adhere to RFC 822 syntax and accepts
recipient addresses that do not comply with the specification. You can view the RFC 822
specification at the website for the World Wide Web Consortium.

7. Optional: Enable debug mode. Select this option to print interaction between the mail application
and the mail servers and the properties of this mail session to the SystemOut.log file.

Note: This topic references one or more of the application server log files. As a recommended
alternative, you can configure the server to use the High Performance Extensible Logging
(HPEL) log and trace infrastructure instead of using SystemOut.log , SystemErr.log,
trace.log, and activity.log files on distributed and IBM i systems. You can also use HPEL
in conjunction with your native z/OS logging facilities. If you are using HPEL, you can access

© Copyright IBM Corp. 2012 479



all of your log and trace information using the LogViewer command-line tool from your server
profile bin directory. See the information about using HPEL to troubleshoot applications for
more information on using HPEL.

8. Provide information for the incoming mail service, outgoing service, or both. Enter the following
information in the fields that are provided:

– Server

– Protocol

– User

– Password

– Return email address. This field is available for outgoing mail properties.

9. Click Apply or OK.

v Create the mail provider, and optionally define one or more protocol providers. In the administrative
console, click Resources > Mail > Mail Providers.

1. Select the scope for the new mail provider.

2. Click New.

3. Type the name of the mail provider in the name field.

4. Optional: Isolate the mail provider.

You can isolate a mail provider to allow different versions of the same provider to be loaded in the
same Java Virtual Machine (JVM). For example, you might want to deploy multiple applications on a
single server, but each application requires different versions or implementations of the mail
provider. You can isolate each version or implementation of the provider, and the provider is loaded
in its own class loader and does not interfere with other implementations. There are some general
considerations for isolating any type of resource provider; refer to the topic on considerations for
isolated resource providers for more information.

a. Select Isolate this mail provider.

b. Give the mail provider a unique class path that is appropriate for that version or implementation.

5. Click Apply or OK.

6. Define one or more protocol providers for the mail provider.

a. Click mail_provider.

b. Click Protocol Providers.

c. Click New.

d. Type the protocol name in the Protocol field.

e. Type the class name in the Class name field.

f. Select the type of mail server that this protocol provider supports. Select TRANSPORT or
STORE. TRANSPORT corresponds to outgoing mail services, and STORE corresponds to
incoming mail services.

g. Click Apply or OK.

Ensure that every mail session is defined under a parent mail provider. Select a mail provider first
and then create your mail session.

v Optional: Configure the mail session.

1. Click mail_provider.

2. Click Mail Sessions.

3. Click mail_session.

4. Make changes to appropriate fields.

5. Click Apply or OK.

480 Administering WebSphere applications



What to do next

If your application has a client, you can configure mail providers and sessions using the Application Client
Resource Configuration Tool.

Mail provider collection
Use this page to view available JavaMail service providers, also known as mail providers. The mail
provider encapsulates a collection of protocol providers, which implement the protocols for communication
between your mail application and mail servers.

To view this administrative console page, click Resources > Mail > Mail Providers.

The built-in mail provider made available by WebSphere Application Server encompasses three protocol
providers: Simple Mail Transfer Protocol (SMTP), Internet Message Access Protocol (IMAP) and Post
Office Protocol (POP3). Select the built-in provider if these protocols provide the correct support for your
mail system. If you have installed or plan to install different protocol providers, you must assign them a
mail provider; select the scope at which you want the new mail provider to implement the protocols, then
select New.

Name
Specifies the name of the JavaMail resource provider.

Scope
Specifies the scope in which the mail provider supports installed mail applications.

Description
Specifies the resource provider description.

Mail provider settings
Use this page to edit mail provider properties or configure a new mail provider. The mail provider
encapsulates a collection of protocol providers, which implement the protocols for communication between
your mail application and mail servers.

To view this administrative console page, click Resources > Mail > Mail Providers > mail_provider, or
create a new mail provider by clicking Resources > Mail > Mail Providers > New.

Scope
Specifies the scope in which the mail provider supports installed mail applications.

Name
Specifies the name of the mail provider.

Description
Specifies the resource provider description.

Isolate this mail provider
Specifies that this mail provider will be loaded in its own class loader. This allows the application server to
load different versions or implementations of the same mail provider in the same Java Virtual Machine.
Give each version or implementation of the mail provider a unique class path that is appropriate for that
version or implementation.

Class path
Specifies the class path to a Java archive (JAR) file that contains the implementation classes for this mail
provider. If more than one JAR file provides the complete implementation, add an entry for each JAR file
that the mail provider requires. Enter one class path per line; do not use class path separator information.

Chapter 11. Welcome to administering Mail, URLs, and other Java EE resources 481



Protocol providers collection
Use this page to select or add a protocol provider that supports interaction between your mail application
and mail servers. For example, your application might require the Simple Mail Transfer Protocol (SMTP),
which is a popular transport protocol for sending mail. Selecting that protocol provider allows your mail
application to connect and send mail through the server.

To view this administrative console page, click Resources > Mail > Mail Providers > mail_provider >
Protocol Providers.

Protocol
Specifies the configuration of the protocol provider for a given protocol.

Class name
Specifies the implementation class for the specific protocol provider, which is also known as the mail
service provider.

Type
Specifies the type of protocol provider. Valid options are STORE or TRANSPORT.

Protocol providers settings
Use this page to set properties of a protocol provider, including SMTP, IMAP and POP3, which provides
the implementation class for a specific protocol to support communication between your mail application
and mail servers.

Built-in providers: The application server contains protocol providers for various types of protocols,
including SMTP, IMAP and POP3. If you require custom providers for protocols that
are not provided by the application server, install them in your application serving
environment before configuring the providers. See the JavaMail API design
specification for guidelines. After configuring your protocol providers, return to the mail
provider page to find the link for configuring mail sessions.

To view this administrative console page, click Resources > Mail > Mail Providers > mail_provider >
Protocol Providers > protocol_provider.

Scope
Specifies the scope at which this protocol provider was created. Only applications that are installed within
this scope can use a protocol that is configured according to the settings of this protocol provider.

Protocol
Specifies the configuration of the protocol provider for a given protocol.

Class name
Specifies the implementation class of this protocol provider.

Type
Specifies the type of protocol provider. Valid options are STORE or TRANSPORT.

Mail session collection
Use this page to view mail sessions that are defined under the parent mail provider.

You can access this administrative console page in one of two ways:

v Resources > Mail > Mail Sessions

v Resources > Mail > Mail Providers > mail_provider > Mail Sessions

482 Administering WebSphere applications



Name
Specifies the administrative name of the JavaMail session object.

Scope
Specifies the scope at which the mail session was created. Only JavaMail applications that are installed in
this scope can use this mail session.

Provider
Specifies the mail provider that WebSphere Application Server uses for this mail session.

JNDI Name
Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including any naming
subcontexts.

This name provides the link between the platform binding information for resources defined in the client
application deployment descriptor and the actual resources bound into JNDI by the platform.

Description
Specifies an optional description for your administrative records.

Category
Specifies an optional collection for classifying or grouping sessions.

Mail session configuration settings
Use this page to configure mail sessions.

You can access this administrative console page in one of two ways:

v Resources > Mail > Mail sessions > mail_session

v Resources > Mail > Mail Providers > mail_provider > Mail sessions > mail_session

Scope
Specifies the scope of the mail provider that implements the JavaMail API for this mail session. Only
applications that you installed within this scope can use this mail session.

Provider
Specifies the mail provider that the application server uses for this mail session.

When you create a mail session, if you previously defined one or more mail providers at the relevant
scope, you will see a list from which you can select an existing mail provider for the new mail session.

Create New Provider
Provides the option of configuring a new mail provider for the new mail session.

Create New Provider is displayed only when you click Resources > Mail > Mail sessions > New to
create a new mail session.

Clicking Create New Provider triggers the console to display the mail provider configuration page, where
you create a new provider. After you click OK to save your settings, you see the mail session collection
page. Click New to define a new mail session for use with the new provider; the console now displays a
configuration page that lists the new mail provider as the mail session Provider.

Note: After you create a mail session, you cannot change the provider of that mail session.

Name
Specifies the administrative name of the JavaMail session object.

Chapter 11. Welcome to administering Mail, URLs, and other Java EE resources 483



JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including any naming
subcontexts.

This name provides the link between the platform binding information for resources that are defined in the
client application deployment descriptor and the actual resources bound into JNDI by the platform.

Important: Adhere to the following requirements for JNDI names:

v Do not assign duplicate JNDI names across different resource types (such as mail sessions
versus data sources).

v Do not assign duplicate JNDI names for multiple resources of the same type in the same
scope.

Description
Specifies an optional description for your administrative records.

Category
Specifies an optional collection for classifying or grouping sessions.

Enable debug mode
Toggles debug mode on and off for this mail session.

Enable strict Internet address parsing
Specifies whether the recipient addresses must be parsed in strict compliance with RFC 822, which is a
specifications document issued by the Internet Architecture Board.

This setting is not generally used for most mail applications. RFC 822 syntax for parsing addresses
effectively enforces a strict definition of a valid email address. If you select this setting, your mail
component adheres to RFC 822 syntax and rejects recipient addresses that do not parse into valid email
addresses (as defined by the specification). If you do not select this setting, the mail component does not
adhere to RFC 822 syntax and accepts recipient addresses that do not comply with the specification. By
default, this setting is not selected. You can view the RFC 822 specification at the World Wide Web
Consortium website.

Outgoing Mail Properties

Server:

Specifies the server that is accessed when sending mail.

Protocol:

Specifies the protocol to use when sending mail. Actual protocol values are defined in the protocol
providers that you configured for the current mail provider.

User:

Specifies the user of the mail account when the outgoing mail server requires authentication.

This setting is not generally used for most mail servers. Leave this field blank unless you use a mail server
that requires a user ID and password.

Password:

Specifies the password to use when the outgoing mail server requires authentication.

484 Administering WebSphere applications



This setting is not generally used for most mail servers. Leave this field blank unless you use a mail server
that requires a user ID and password.

Verify Password:

Verify the password.

Return email address:

Specifies the Internet email address that is displayed in messages as the mail originator.

This value represents the Internet email address that, by default, displays in the received message in the
From or the Reply-To address. The recipient's reply will come to this address.

Incoming Mail Properties

Server:

Specifies the server that is accessed when receiving mail.

Protocol:

Specifies the protocol to use when receiving mail. Actual protocol values are defined in the protocol
providers that you configured for the current mail provider.

User:

Specifies the user of the mail account when the incoming mail server requires authentication.

This setting is not generally used for most mail servers. Leave this field blank unless you use a mail server
that requires a user ID and password.

Password:

Specifies the password to use when the incoming mail server requires authentication.

This setting is not generally used for most mail servers. Leave this field blank unless you use a mail server
that requires a user ID and password.

Verify Password:

Verify the password.

Administering URLs

URL provider collection
Use this page to view existing URL providers, which supply the implementation classes that are necessary
for WebSphere Application Server to access a URL through a specific protocol. The default URL provider
provides connectivity through protocols that are supported by the IBM Developer Kit for the Java™

Platform, compatible with the Java 2 Standard Edition Platform 1.3.1. These protocols include HyperText
Transfer Protocol (HTTP) and File Transfer Protocol (FTP), which work for must URLs.

To view this administrative console page, click Resources > URL > URL Providers.

Name
Specifies the administrative name for the URL provider.

Chapter 11. Welcome to administering Mail, URLs, and other Java EE resources 485



Scope
Specifies the scope of this URL provider, which can support multiple URL configurations. All of the URL
configurations that are supported by this provider inherit this scope.

Description
Describes the URL provider for your administrative records.

URL provider settings
Use this page to configure URL providers, which support WebSphere Application Server connections to a
URL over a specific protocol.

To view this administrative console page, click Resources > URL > URL Providers > URL_provider.

Scope
Specifies the scope of this URL provider, which can support multiple URL configurations. All of the URL
configurations that are supported by this provider inherit this scope.

Name
Specifies the administrative name for the URL provider.

Description
Describes the URL provider, for your administrative records.

Class path
Specifies paths or JAR file names which together form the location for the resource provider classes.

Stream handler class name
Specifies fully qualified name of a user-defined Java class that extends the java.net.URLStreamHandler
class for a particular URL protocol, such as FTP.

Protocol
Specifies the protocol supported by this stream handler. For example, NNTP, SMTP, FTP.

URL configurations collection
Use this page to view existing Uniform Resource Locator (URL) configurations, which are sets of
properties that define WebSphere Application Server connections to URLs. URLs are location names that
represent electronically accessible resources, such as a directory file on a machine in a network or a
document stored in a database.

You can access this administrative console page in one of two ways:

v Resources > URL Providers > URL_provider > URLs

v Resources > URL > URLs

Name
Specifies the display name for the resource.

JNDI Name
Specifies the JNDI name.

Scope
Specifies the scope of the URL provider that supports this URL configuration. Only applications that are
installed within this scope can use this URL configuration to access URL resources.

486 Administering WebSphere applications



Provider
Specifies the URL provider that supplies the implementation classes for using a specific protocol to access
this URL.

Description
Specifies the description of the resource.

Category
Specifies the category string, which you can use to classify or group the resource.

URL configuration settings
Use this page to define connections to Uniform Resource Locators (URLs), which are location names that
represent electronically accessible resources. A collection of URL connection properties is often called a
URL configuration in the WebSphere Application Server environment. The targeted resources are remote
to your Application Server installation.

You can access this administrative console page in one of two ways:

v Resources > URL > URLs > URL

v Resources > URL > URL Providers > URL_provider > URLs > URL

Scope
Specifies the scope of the URL provider that supports this URL configuration. Only applications that are
installed within this scope can use this URL configuration to access URL resources.

Provider
Specifies the URL provider that WebSphere Application Server uses for this URL configuration.

To create a new URL configuration: If you previously defined one or more URL providers at the relevant
scope, you see a list from which you can select an existing URL
provider for your new URL configuration.

Create New Provider
Provides the option of configuring a new URL provider for the new URL configuration.

Create New Provider is displayed only when you create a new URL from the Resources > URL > URLs
path. In this flow, you can create a new URL provider if needed. The URL provider can not be changed
during an edit.

Clicking Create New Provider triggers the console to display the URL provider configuration page, where
you create a new provider. After you click OK to save your settings, you see the URL collection page.
Click New to define a new URL configuration for use with the new provider; the console now displays a
configuration page that lists the new provider as the URL configuration Provider.

Name
Specifies the display name for the resource.

JNDI Name
Specifies the JNDI name.

Important: Adhere to the following requirements for JNDI names:

v Do not assign duplicate JNDI names across different resource types (such as mail sessions
versus URL configurations).

v Do not assign duplicate JNDI names for multiple resources of the same type in the same
scope.

Chapter 11. Welcome to administering Mail, URLs, and other Java EE resources 487



Description
Specifies the description of the resource.

Category
Specifies the category string, which you can use to classify or group the resource.

Specification
Specifies the string from which to form a URL.

Administering resource environment entries

Configuring new resource environment entries to map logical
environment resource names to physical names
This topic provides instructions on configuring new resource environment entries, which define
environment resources that are the binding targets for resource-environment-references in an application's
deployment descriptor.

Procedure
1. Configure a resource environment provider, which is a library that provides the implementation for an

environment resource factory. In the administration console, begin by clicking Resources > Resource
Environment > Resource Environment Providers > New. See the topic New Resource Environment
Provider for more information.

2. After saving your resource environment provider, go to the Additional Properties heading and click
Resource environment entries. Click New to define a new resource environment entry. Refer to the
topic Resource environment entry settings for descriptions of the required fields.

3. You also might need to create a referenceable, which specifies the factory class name that converts
information in the name space into a class instance for your resource. To view the appropriate
administrative console page for referenceables, click Resources > Resource Environment >
Resource Environment Providers > your_resource_environment_provider > Referenceables. Click
New to begin the configuration process. See the topic Referenceable settings for descriptions of the
required fields.

Resource environment providers and resource environment entries
A resource environment reference maps a logical name used by the client application to the physical name
of an object.

Not all objects bound into the server JNDI namespace are intended for use by an application client. For
example, the WebSphere Application Server client run time does not support the use of Java 2 Connector
(J2C) objects on the client. The object needs to be remotable, and the client-side implementations must be
made available on the application client run-time classpath.

Resource environment references are different than resource references. Resource environment
references allow your application client to use a logical name to look up a resource bound into the server
JNDI namespace. A resource reference allows your application to use a logical name to look up a local
J2EE resource. The J2EE specification does not specify a particular implementation of a resource.

Resource environment provider collection
Use this page to view resource environment providers, which encapsulate the referenceables that convert
resource environment entry data into resource objects.

To view this administrative console page, click Resources > Resource Environment > Resource
Environment Providers.

Name:

488 Administering WebSphere applications



Specifies a text identifier for the resource environment provider.

Information Value
Data type String

Scope:

Specifies the scope of this resource environment provider, which automatically becomes the scope of the
resource environment entries that you define with this provider.

Description:

Specifies a text string describing the resource environment provider.

Information Value
Data type String

Resource environment provider settings:

Use this page to create settings for a resource environment provider.

To view this administrative console page, click Resources > Resource environment > Resource
environment providers > resource environment provider.

Scope:

Specifies the scope of this resource environment provider, which automatically becomes the scope of the
resource environment entries that you define with this provider.

Name:

Specifies the name of the resource provider.

Information Value
Data type String

Description:

Specifies a text description for the resource provider.

Information Value
Data type String

New Resource environment provider:

Use this page to define the configuration for a library that provides the implementation for a environment
resource factory.

To view this administrative console page, click Resources > Resource Environment > Resource
Environment Providers > New.

Scope:

Chapter 11. Welcome to administering Mail, URLs, and other Java EE resources 489



Specifies the scope of this resource environment provider, which automatically becomes the scope of the
resource environment entries that you define with this provider.

Name:

Specifies a text identifier for the resource environment provider.

Information Value
Data type String

Description:

Specifies a text string describing the resource environment provider.

Information Value
Data type String

Resource environment entries collection
Use this page to view configured resource environment entries. Within an application server name space,
the data contained in a resource environment entry is converted into an object that represents a physical
resource. This resource is frequently called an environment resource.

An environment resource can be of any arbitrary type. See the latest EJB specification for more
information about resource environment references and environment resources.

You can access this administrative console page in one of two ways:

v Resources > Resource Environment > Resource environment entries

v Resources >Resource Environment > Resource Environment Providers >
resource_environment_provider > Resource Environment Entries

Name:

Specifies a text identifier that helps distinguish this resource environment entry from others.

For example, you can use My Resource for the name.

Information Value
Data type String

JNDI Name:

Specifies the string to be used when looking up this environment resource using JNDI.

This is the string to which you bind resource environment reference deployment descriptors.

Information Value
Data type String

Scope:

Specifies the resource environment entry scope, which is inherited from the resource environment
provider.

Provider:

490 Administering WebSphere applications



Specifies the resource environment provider for this entry. The provider encapsulates the classes that,
when implemented, convert resource environment entry data into resource objects.

Description:

Specifies text for information to help further identify and distinguish this resource

Information Value
Data type String

Category:

Specifies a category you can use to group environment resources according to some common feature.

It is strictly an organizational property and has no effect on the function of the environment resource.

Information Value
Data type String

Resource environment entry settings:

Use this page to configure resource environment entries. Within an application server name space, the
data contained in a resource environment entry is converted into an object that represents a physical
resource. Rather than represent a connection factory, which provides connections to a resource, this
object directly represents a resource. This design can make the resource available to application modules
that do not run entirely on the application server. Examples include some application clients and web
modules.

You can access this administrative console page in one of two ways:

v Resources > Resource Environment > Resource environment entries >
resource_environment_entry

v Resources >Resource Environment > Resource Environment Providers >
resource_environment_provider > Resource Environment Entries > resource_environment_entry

Scope:

Specifies the scope of the resource environment provider, which is a library that supplies the
implementation class for a resource environment factory. Within a JNDI name space, WebSphere
Application Server uses the factory to transform your resource environment entry into an object that
directly represents a physical resource.

Provider:

Specifies the resource environment provider.

Provider shows all of the existing resource environment providers that are defined at the relevant scope.
Select one from the list if you want to use an existing resource environment provider as Provider.

Name:

Specifies a display name for the resource.

Information Value
Data type String

Chapter 11. Welcome to administering Mail, URLs, and other Java EE resources 491



JNDI name:

Specifies the JNDI name for the resource, including any naming subcontexts.

This name is used as the linkage between the platform's binding information for resources defined by a
module's deployment descriptor and actual resources bound into JNDI by the platform.

Information Value
Data type String

Important: Adhere to the following requirements for JNDI names:

v Do not assign duplicate JNDI names across different resource types (such as resource
environment entries versus J2C connection factories).

v Do not assign duplicate JNDI names for multiple resources of the same type in the same
scope.

Description:

Specifies a text description for the resource.

Information Value
Data type String

Category:

Specifies a category string that you can use to classify or group the resource.

Information Value
Data type String

Referenceables:

Specifies the referenceable, which encapsulates the class name of the factory that converts resource
environment entry data into a class instance for a physical resource.

Information Value
Data type Drop-down menu

Referenceables collection
Use this page to view configured referenceables, which encapsulate the class name of the factory that
converts information in the name space into a class instance for a physical resource.

To view this administrative console page, click Resources > Resource environment > Resource
Environment Providers > resource_environment_provider > Referenceables.

Factory Class name:

Specifies a javax.naming.spi.ObjectFactory implementation name

Information Value
Data type String

Class name:

492 Administering WebSphere applications



Specifies the package name of the referenceable, for example: javax.naming.Referenceable

Information Value
Data type String

Referenceables settings:

Use this page to set the class name of the factory that converts information in the name space into a class
instance of a physical resource.

To view this administrative console page, click Resources > Resource Environment > Resource
Environment Providers > resource_environment_provider > Referenceables > referenceable.

Factory class name:

Specifies a javax.naming.ObjectFactory implementation class name

Information Value
Data type String

Class name:

Specifies the Java type to which a Referenceable provides access, for binding validation and to create the
reference.

Information Value
Data type String

Resource environment references
Use this page to designate how the resource environment references of application modules map to
remote resources, which are represented in the product as resource environment entries.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Resource environment references.

Each row of the table depicts a resource environment reference within a specific module of your
application. If you bound any references to resource environment entries during application assembly, you
see the JNDI names of those resource environment entries in the applicable rows.

To set the mapping relationships between your resource environment references and resource
environment entries:

1. Select a row. Be aware that if you check multiple rows on this page, the resource mapping target that
you select in step 2 applies to all of those references.

2. Click Browse to select a resource environment entry from the new page that is displayed, the
Available Resources page. The Available Resources page shows all resource environment entries that
are available mapping targets for your application references.

3. Click Apply. The console displays the Resource environment references page again. In the rows that
you previously selected, you now see the JNDI name of the new resource mapping target.

4. Repeat the previous steps as necessary.

5. Click OK. You now return to the general configuration page for your enterprise application.

Table column heading descriptions:

Chapter 11. Welcome to administering Mail, URLs, and other Java EE resources 493



Select:

Select the check boxes of the rows that you want to edit.

Module:

The name of a module in the application.

EJB:

The name of an enterprise bean that is accessed by the module.

URI:

Specifies location of the module relative to the root of the application EAR file.

Reference binding:

The name of a resource environment reference that is declared in the deployment descriptor of the
application module. The reference corresponds to a resource that is bound as a resource environment
entry into the JNDI name space of the application server.

JNDI name:

The Java Naming and Directory Interface (JNDI) name of the resource environment entry that is the
mapping target of the resource environment reference.

Information Value
Data type String

494 Administering WebSphere applications



Chapter 12. Administering Messaging resources

This page provides a starting point for finding information about the use of asynchronous messaging
resources for enterprise applications with WebSphere Application Server.

WebSphere Application Server supports asynchronous messaging based on the Java Message Service
(JMS) and the Java EE Connector Architecture (JCA) specifications, which provide a common way for
Java programs (clients and Java EE applications) to create, send, receive, and read asynchronous
requests, as messages.

JMS support enables applications to exchange messages asynchronously with other JMS clients by using
JMS destinations (queues or topics). Some messaging providers also allow WebSphere Application Server
applications to use JMS support to exchange messages asynchronously with non-JMS applications; for
example, WebSphere Application Server applications often need to exchange messages with WebSphere
MQ applications. Applications can explicitly poll for messages from JMS destinations, or they can use
message-driven beans to automatically retrieve messages from JMS destinations without explicitly polling
for messages.

WebSphere Application Server supports the following messaging providers:

v The WebSphere Application Server default messaging provider (which uses service integration as the
provider).

v The WebSphere MQ messaging provider (which uses your WebSphere MQ system as the provider).

v Third-party messaging providers that implement either a JCA Version 1.5 resource adapter or the ASF
component of the JMS Version 1.0.2 specification.

Managing messaging with the default messaging provider
The default messaging provider is installed and runs as part of WebSphere Application Server, and is
based on service integration technologies. For messaging between application servers, perhaps with some
interaction with a WebSphere MQ system, you can configure your messaging applications to use
messaging resources provided by the default messaging provider.

Before you begin

For messaging between application servers, perhaps with some interaction with a WebSphere MQ system,
you can use the default messaging provider as described in this topic. To integrate WebSphere Application
Server messaging into a predominantly WebSphere MQ network, you can use the WebSphere MQ
messaging provider. You can also use a third-party messaging provider. To choose the provider that is best
suited to your needs, see Choosing a messaging provider.

About this task

The default messaging provider supports JMS 1.1 domain-independent interfaces (sometimes referred to
as “unified” or “common” interfaces). This enables applications to use common interfaces for both
point-to-point and publish/subscribe messaging. This also enables both point-to-point and
publish/subscribe messaging within the same transaction. With JMS 1.1, this approach is recommended
for new applications. The domain-specific interfaces are supported for backwards compatibility for
applications developed to use domain-specific queue interfaces, as described in section 1.5 of the JMS 1.1
specification.

You can use the WebSphere Application Server administrative console to configure JMS resources for
applications, and can manage messages and subscriptions associated with JMS destinations.

© Copyright IBM Corp. 2012 495



For more information about using the default messaging provider of WebSphere Application Server, see
the following topics:

Procedure
v Default messaging

v “Configuring resources for the default messaging provider”

v “Interoperating with a WebSphere MQ network” on page 526

v “Configuring the messaging engine selection process for JMS applications” on page 565

v “Managing messages and subscriptions for default messaging JMS destinations” on page 566

v “Using JMS from stand-alone clients to interoperate with service integration resources” on page 568

v “Using JMS from a third party application server to interoperate with service integration resources” on
page 576

Configuring resources for the default messaging provider
Use the following tasks to configure JMS connection factories, activation specifications, and destinations
for the default messaging provider.

About this task

Use these tasks to configure administrative JMS resources provided by the default messaging provider.

These administrative JMS resources are in addition to any temporary JMS destinations created by
applications.
v List JMS resources.
v Configure a unified connection factory.
v Configure a queue connection factory.
v Configure a topic connection factory.
v Configure a queue.
v Configure a topic.
v Configure an activation specification.

Listing JMS resources for the default messaging provider
Use the WebSphere Application Server administrative console to list JMS resources for the default
messaging provider, for administrative purposes.

About this task

You use the WebSphere Application Server administrative console to list JMS resources, if you want to
view, modify or delete any of the following resources:

v Activation specifications

v Unified connection factories

v Queue connection factories

v Topic connection factories

v Queues

v Topics

When you use the administrative console to locate these resources, two different navigation pathways are
available:

v Provider-centric navigation lets you view all providers, or just those for a specified scope, then
navigate to a specific resource for a specific provider. This is the traditional way of navigating to a
resource when you know which provider supports it. Any navigation that starts with Resources -> JMS
-> JMS providers is provider-centric.

496 Administering WebSphere applications



v Resource-centric navigation lets you view all resources of a specified type, then navigate to a
resource. This is useful if you want to find a resource, but you do not know which provider supports it
(you can list all resources of a given type across all scopes, for all providers, in a single panel). Any
navigation that follows the pattern Resources -> JMS -> resource_type is resource-centric, where
resource_type is one of the resource types previously listed.

You can use either of these navigation pathways to locate JMS resources of any type.

Procedure
v Use provider-centric navigation, for example to navigate to a specified queue connection factory.

1. Start the administrative console.

2. In the navigation pane, click Resources -> JMS -> JMS providers.

The JMS providers collection panel is displayed. This lists all currently configured messaging
providers across all scopes (you can modify the scope if required).

3. Select the required JMS provider.

The settings panel for this provider is displayed. The configuration tab contains a set of links to all
the JMS resources owned by this provider.

4. Click the link for a JMS resource type. For example, click Queue connection factories.

The queue connection factories collection panel is displayed. This panel lists all the queue
connection factories for this provider.

5. Select the required queue connection factory.

v Use resource-centric navigation, for example to navigate to a specified queue connection factory.

1. Start the administrative console.

2. In the navigation pane, click Resources -> JMS -> Queue connection factories.

The queue connection factories collection panel is displayed. This panel lists all the queue
connection factories across all messaging providers.

3. Select the required queue connection factory.

Results

You can now view and work with the resource properties.

Configuring JMS resources for point-to-point messaging
Configure connection factories, queues and service integration bus destinations for point-to-point
messaging.

About this task

For an application to use point-to-point messaging with JMS queues, you configure the following JMS
resources. These JMS resources depend on the corresponding configuration of service integration
resources, including a service integration bus and a queue. For more information about defining these
resources, see the related tasks.

Procedure
v Configure a connection factory.

Use the connection factory type that matches the JMS level and domain pattern in which an application
is developed. For example, use a domain-independent JMS connection factory for a JMS application
developed to use JMS 1.1 domain-independent interfaces, and use a JMS queue connection factory for
a JMS application developed to use domain-specific queue interfaces.

v Configure a queue.

A JMS queue is an administrative object that encapsulates the name of a queue destination on a
service integration bus. Applications find the JMS queue by looking up its name in the JNDI namespace.

Chapter 12. Welcome to administering Messaging resources 497



v Configure a queue destination.

For each JMS queue, define a bus destination of type queue on the appropriate service integration bus.

Configuring JMS resources for publish/subscribe messaging
Use this task to configure a JMS resources for publish/subscribe messaging.

About this task

For an application to use publish/subscribe messaging with JMS topics, you configure the following JMS
resources. These JMS resources depend on the corresponding configuration of service integration
resources, including a service integration bus and topicspace. For more information about defining these
resources, see the related tasks.

Procedure
v A JMS connection factory

You should use the connection factory type that matches the JMS level and domain pattern in which an
application is developed. For example, use a domain-independent JMS connection factory for a JMS
application developed to use JMS 1.1 domain-independent interfaces, and use a JMS topic connection
factory for a JMS application developed to use domain-specific topic interfaces.

If durable subscriptions are to be used by the application, set the durable subscription properties on the
connection factory.

v A JMS topic

A JMS topic is an administrative object that encapsulates the name of a topic and a topic space on a
service integration bus. Applications can obtain the JMS topic by looking its name up in the JNDI
namespace.

v Service integration resources For each JMS topic, define a bus destination as a topic space on a
service integration bus, and assign the JMS topic to a topic name within that topic space.

Configuring a unified connection factory for the default messaging provider
Use this task to configure a unified JMS connection factory for applications that use the JMS 1.1
domain-independent (unified) interfaces.

About this task

The term “unified” refers to the support of both queues and topics by the same connection factory. This is
similar to the JMS 1.1 domain-independent interfaces (referred to as the “common interfaces” in the JMS
specification). A unified JMS connection factory can be used for both point-to-point and publish/subscribe
JMS messaging. With JMS 1.1, this approach is preferred to the domain-specific queue connection factory
and topic connection factory.

This task contains an optional step for you to create a new connection factory if you have not already
created the connection factory that you want to configure.

Procedure
1. Display the default messaging provider. In the navigation pane, click Resources -> JMS -> JMS

providers.

2. Select the default provider for which you want to configure a unified connection factory.

3. Optional: Change the Scope check box to set the level at which the connection factory is to be visible.

4. In the content pane, under the Additional properties heading, click Connection factories. This displays
any existing connection factories in the content pane.

5. If the connection factory is for use by client applications, display the properties of the JMS connection
factory. If you want to display an existing JMS connection factory, click one of the names listed.

498 Administering WebSphere applications



Alternatively, if you want to create a new JMS connection factory, click New, then specify the following
required properties:

Name Type the name by which the connection factory is known for administrative purposes.

JNDI name
Type the JNDI name that is used to bind the connection factory into the namespace.

Bus name
Select the name of the service integration bus to which the connection factory is to create
connections. This service integration bus hosts the destinations that the JMS queues and
topics represent.

6. Review the other properties for the JMS connection factory, to check that the defaults are suitable.

If the connection factory is for use by client applications running outside of an application server,
specify suitable provider endpoints. For more information about configuring provider endpoints, see
“Configuring a connection to a non-default bootstrap server” on page 511.

By default, connections created by using the connection factory in the server containers (for example,
from an enterprise bean) are pooled by using Java Platform, Enterprise Edition (Java EE) Connector
Architecture (JCA) connection pooling. You can modify the connection pool settings for the connection
factory by selecting the Connection pool properties link in the Additional Properties section of the
panel. For more information about changing the connection pool properties, see Changing connection
pool settings with the wsadmin tool.

7. Click OK.

8. Save your changes to the master configuration.

Administrative properties for JMS connections to a bus:

You can configure properties to enable workload management of connections to a service integration bus
for JMS applications. The same properties can also be used to control the client connection topology. For
example, connection options can be specified such that client applications only connect to a set of client
serving messaging engines and never to the set of destination serving messaging engines in a bus.

The properties for connecting JMS applications to a bus are used by the administrator. The JMS
applications do not specify how to connect to the bus, beyond using a JMS connection factory or JMS
activation specification (for message-driven beans).

The general aim of connecting to a bus is to connect to a suitable messaging engine that provides the
message point for a JMS destination that the application is to use. Applications running inside an
application server can locate a suitable messaging engine and connect directly to the selected messaging
engine. Client applications running outside of an application server cannot locate a suitable messaging
engine themselves, these clients must use a bootstrap server to locate a suitable messaging engine on
behalf of the client application.

When an application connects to the bus, the bus chooses a suitable messaging engine based on
administrative properties of the JMS connection factory or activation specification that the application uses.
For maximum connection flexibility, you can leave most properties to default, the only required connection
property is the name of the bus that the application is to connect to.

The bus uses the following general process to choose a suitable messaging engine, based on the value
you select for the Connection proximity property. If you understand this process, you can better configure
the properties that control how the bus chooses messaging engines.

v If a Target group is specified then the process checks the nearest messaging engine that supports the
required Remote transport chain and is a member of the target group in the bus. If the messaging
engine is within the specified Connection proximity it is chosen as a suitable messaging engine for the
application to connect to.

Chapter 12. Welcome to administering Messaging resources 499



v If a Target group is not specified then the process checks the nearest messaging engine that supports
the required Remote transport chain in the bus. A messaging engine in the same server is nearer than
a messaging engine in the same host, which is nearer than a messaging engine in another host. If the
messaging engine is within the specified Connection proximity it is chosen as a suitable messaging
engine for the application to connect to.

v If the selected messaging engine is not within the specified Connection proximity, then the Target
significance is used. If the Target significance is set to Required, then no connection is possible and
the connection request is rejected with no suitable messaging engine being available. If the Target
significance is set to Preferred then the target group is ignored and the nearest messaging engine that
supports the required Remote transport chain is used. If no messaging engine is found then the
connection request is rejected with no suitable messaging engine being available.

The following rules are used to test the connection proximity for a selected messaging engine:

v If the Connection proximity value is Bus, then the selected messaging engine is used.

v If the Connection proximity value is Host, and the selected messaging engine is in the same host as the
application (or bootstrap server), then the selected messaging engine is used. Otherwise, one of the
following options is chosen.

– If the selected messaging engine is not in the same host as the application (or the bootstrap server),
and the Target significance is set to Required, then no connection is possible and the connection
request is rejected with no suitable messaging engine being available.

– If the Target significance is set to Preferred then the nearest messaging engine - in the same host
- that supports the required Remote transport chain is used

– If no suitable messaging engine is found, then the connection request is rejected.

v If the Connection proximity value is Server, and the selected messaging engine is in the same server as
the application (or bootstrap server), then the selected messaging engine is used. Otherwise, one of the
following options is chosen.

– If the selected messaging engine is not in the same server as the application (or is in the bootstrap
server), and the Target significance is set to Required, then no connection is possible and the
connection request is rejected with no suitable messaging engine being available.

– If the Target significance is set to Preferred then the nearest messaging engine - in the same
server - that supports the required Remote transport chain is used

– If no suitable messaging engine is found, then the connection request is rejected.

When a connection is made to a messaging engine in the same server as the application, the connection
is made directly through memory, so the Remote transport chain is ignored.

Configuring a queue connection factory for the default messaging provider
Use this task to configure a JMS queue connection factory for point-to-point messaging with the default
messaging provider. This is intended more for backwards compatibility, as described in section 1.5 of the
JMS 1.1 specification.

About this task

To configure a JMS queue connection factory for the default messaging provider, use the administrative
console to complete the following steps. This task contains an optional step for you to create a new queue
connection factory.

Procedure
1. Display the default messaging provider. In the navigation pane, click Resources -> JMS -> JMS

providers.

2. Select the default provider for which you want to configure a queue connection factory.

3. Optional: Change the Scope check box to set the level at which the connection factory is to be visible,
according to your needs.

500 Administering WebSphere applications



4. In the content pane, under the Additional properties heading, click Queue connection factories. This
displays any existing JMS queue connection factories for the default messaging provider in the content
pane.

5. Display the properties of the JMS connection factory. If you want to display an existing JMS connection
factory, click one of the names listed.

Alternatively, if you want to create a new JMS connection factory, click New, then specify the following
required properties:

Name Type the name by which the connection factory is known for administrative purposes.

JNDI name
Type the JNDI name that is used to bind the connection factory into the namespace.

Bus name
Type the name of the service integration bus that the connection factory is to create
connections to. This service integration bus hosts the destinations that the JMS queues and
topics represent.

6. Review the other “Default messaging provider queue connection factory [Settings]” on page 614, to
check that the defaults are suitable.

If the connection factory is for use by client applications running outside of an application server,
specify suitable provider endpoints. For more information about configuring provider endpoints, see
“Configuring a connection to a non-default bootstrap server” on page 511.

By default connections created by using the connection factory in the server containers (for example,
from an enterprise bean) are pooled by using Java Platform, Enterprise Edition (Java EE) Connector
Architecture (JCA) connection pooling. You can modify the connection pool settings for the connection
factory by selecting the Connection pool properties link in the Additional Properties section of the
panel. For more information about changing the connection pool properties, see Changing connection
pool settings with the wsadmin tool.

7. Click OK.

8. Save your changes to the master configuration.

Configuring a topic connection factory for the default messaging provider
Use this task to configure a JMS topic connection factory for publish/subscribe messaging with the default
messaging provider. This is intended more for backwards compatibility, as described in section 1.5 of the
JMS 1.1 specification.

About this task

You configure JMS connection factories when you deploy JMS applications that use publish/subscribe
messaging.

This task contains an optional step for you to create a new topic connection factory.

Procedure
1. Display the default messaging provider. In the navigation pane, click Resources -> JMS -> JMS

providers.

2. Select the default provider for which you want to configure a topic connection factory.

3. Optional: Change the Scope check box to set the level at which the connection factory is to be visible,
according to your needs.

4. In the content pane, under the Additional properties heading, click Topic connection factories. This
displays any existing JMS topic connection factories for the default messaging provider in the content
pane.

5. Optional: Display the properties of the JMS connection factory. If you want to display an existing JMS
connection factory, click one of the names listed.

Chapter 12. Welcome to administering Messaging resources 501



Alternatively, if you want to create a new JMS connection factory, click New, then specify the following
required properties:

Name Type the name by which the connection factory is known for administrative purposes.

JNDI name
Type the JNDI name that is used to bind the connection factory into the namespace.

Bus name
Type the name of the service integration bus that the connection factory is to create
connections to. This service integration bus hosts the destinations that the JMS queues and
topics represent.

6. Review the other properties for the connection factory, to check that the defaults are suitable.

If the connection factory is for use by client applications running outside of an application server,
specify suitable provider endpoints. For more information about configuring provider endpoints, see
“Configuring a connection to a non-default bootstrap server” on page 511.

By default, connections created by using the connection factory in the server containers (for example,
from an enterprise bean) are pooled by using Java Platform, Enterprise Edition (Java EE) Connector
Architecture (JCA) connection pooling. You can modify the connection pool settings for the connection
factory by selecting the Connection pool properties link in the Additional Properties section of the
panel. For more information about changing the connection pool properties, see Changing connection
pool settings with the wsadmin tool.

7. Click OK.

8. Save your changes to the master configuration.

Configuring a queue for the default messaging provider
Use this task to configure a JMS queue for point-to-point messaging with the default messaging provider.

Before you begin

This task configures a JMS queue to use a queue destination on a service integration bus. The queue
destination is the virtual location on the bus where messages are stored and processed for the JMS
queue. If you have not created the required destination, use the task described in Configuring a
destination for JMS queues.

About this task

To configure a JMS queue for the default messaging provider, use the administrative console to complete
the following steps.

Procedure
1. Display the default messaging provider. In the navigation pane, click Resources -> JMS -> JMS

providers.

2. Select the default provider for which you want to configure a queue.

3. Optional: Change the Scope check box to set the level at which the JMS queue is to be visible,
according to your needs.

4. In the content pane, under the Additional properties heading, click Queues. This displays any existing
JMS queues for the default messaging provider in the content pane.

5. Display the properties of the JMS queue. If you want to display an existing JMS queue, click one of the
names listed.

Alternatively, if you want to create a new JMS queue, click New, then specify the following required
properties:

Name Type the name by which the queue is known for administrative purposes.

502 Administering WebSphere applications



JNDI name
Type the JNDI name that is used to bind the queue into the namespace.

Queue name
Select the name of the queue on a service integration bus that this JMS queue is to use.

6. Specify properties for the JMS queue, according to your needs.

7. Click OK.

8. Save your changes to the master configuration.

Configuring a topic for the default messaging provider
Use this task to configure a JMS topic for publish/subscribe messaging with the default messaging
provider.

Before you begin

This task configures a JMS topic to use a topic space destination on a service integration bus. The topic
space (a hierarchical collection of topics) is the virtual location on the bus where messages are stored and
processed for the JMS topic. If you have not created the required destination, use the task described in
Configuring a destination for publish/subscribe messaging.

About this task

To configure a JMS topic for the default messaging provider, use the administrative console to complete
the following steps. This task contains an optional step for you to create a new JMS topic.

Procedure
1. Display the default messaging provider. In the navigation pane, expand Resources -> JMS -> JMS

providers.

2. Select the default provider for which you want to configure a topic.

3. Optional: Change the Scope check box to set the level at which the topic is to be visible, according to
your needs.

4. In the content pane, under the Additional properties heading, click Topics. This displays any existing
JMS topics for the default messaging provider in the content pane.

5. Display the properties of the JMS topic. If you want to display an existing JMS topic, click one of the
names listed.

Alternatively, if you want to create a new JMS topic, click New, then specify the following required
properties:

Name Type the name by which the topic is known for administrative purposes.

JNDI name
Type the JNDI name that is used to bind the topic into the namespace.

Topic name
Type the name of the topic (as a qualifier in the topic space) that this JMS topic is to use.

Topic space
Type the name of the topic space that this JMS topic is to use.

6. Specify properties for the JMS topic, according to your needs.

7. Click OK.

8. Save your changes to the master configuration.

Configuring an activation specification for the default messaging provider
Configure a JMS activation specification to enable a message-driven bean to communicate with the default
messaging provider.

Chapter 12. Welcome to administering Messaging resources 503



About this task

You create a JMS activation specification if you want to use a message-driven bean to communicate with
the default messaging provider through Java EE Connector Architecture (JCA) 1.5. JCA provides Java
connectivity between application servers such as WebSphere Application Server, and enterprise
information systems. It provides a standardized way of integrating JMS providers with Java EE application
servers, and provides a framework for exchanging data with enterprise systems, where data is transferred
in the form of messages.

One or more message-driven beans can share a single JMS activation specification.

Because a JMS activation specification is a group of messaging configuration properties not a component,
it cannot be manually started and stopped. For this reason, to prevent a message-driven bean from
processing messages you must complete the following tasks:

v Stop the application that contains the message-driven bean.

v Stop the messaging engine.

All the activation specification configuration properties apart from Name, JNDI name, Destination JNDI name,
and Authentication alias are overridden by appropriately named activation-configuration properties in the
deployment descriptor of an associated EJB 2.1 or later message-driven bean. For an EJB 2.0
message-driven bean, the Destination type, Subscription durability, Acknowledge mode and Message
selector properties are overridden by the corresponding elements in the deployment descriptor. For either
type of bean the Destination JNDI name property can be overridden by a value specified in the
message-driven bean bindings.

Procedure
1. Start the administrative console.

2. Display the default messaging provider. In the navigation pane, expand Resources -> JMS -> JMS
providers.

3. Select the default provider for which you want to configure an activation specification.

4. Optional: Change the Scope check box to the scope level at which the activation specification is to
be visible to applications, according to your needs.

5. In the content pane, under the Additional properties heading, click Activation specifications. This
lists any existing JMS activation specifications for the default messaging provider in the content pane.

6. Display the properties of the JMS activation specification. If you want to display an existing activation
specification, click one of the names listed.

Alternatively, if you want to create a new activation specification, click New, then specify the following
required properties:

“Name” on page 589
Type the name by which the activation specification is known for administrative purposes.

“JNDI name” on page 589
Type the JNDI name that is used to bind the activation specification into the JNDI
namespace.

“Destination type” on page 590
Whether the message-driven bean uses a queue or topic destination.

“Destination JNDI name” on page 590
Type the JNDI name that the message-driven bean uses to look up the JMS destination in
the JNDI namespace.

Select the type of destination on the Destination type property.

“Bus name” on page 591
The name of the bus to connect to.

504 Administering WebSphere applications



Specify the name of the service integration bus to which connections are made. This must be
the name of the bus on which the bus destination identified by the “Destination JNDI name”
on page 590 property is defined.

You can either select an existing bus or type the name of another bus. If you type the name
of a bus that does not exist, you must create and configure that bus before the activation
specification can be used.

7. Specify properties for the JMS activation specification, according to your needs.

8. Optional: Specify the JMS activation specification connection properties that influence how the default
messaging provider chooses the messaging engine to which your message-driven bean application
connects. By default, the environment automatically connects applications to an available messaging
engine on the bus. However you can specify extra configuration details to influence the connection
process; for example to identify special bootstrap servers, or to limit connection to a subgroup of
available messaging engines, or to improve availability or performance, or to ensure sequential
processing of messages received. For information about why and how to do this, see How JMS
applications connect to a messaging engine on a bus.

9. Click OK.

10. Save your changes to the master configuration.

Deleting JMS resources for the default messaging provider
Use this task with the WebSphere Application Server administrative console to delete JMS resources.

About this task

To delete JMS resources, use the administrative console to complete the following steps:

Procedure
1. In the navigation pane, click Resources -> JMS -> JMS providers.

2. Select the default provider for which you want to delete resources.

3. In the content pane, under the Additional properties heading, select the link for the type of JMS
resource:

v Connection factory

v Queue connection factory

v Topic connection factory

v Queue

v Topic

v Activation specification

This displays a list of the selected JMS resource type in the content pane.

4. Select the check box next to the JMS resource that you want to delete.

5. Click Delete

6. Save your changes to the master configuration.

Configuring JMS connection factory properties for durable subscriptions
Use this task to configure durable subscription properties of JMS connection factories for use by enterprise
beans with the default messaging provider.

About this task

To enable applications to create durable subscriptions to JMS topics with the default messaging provider,
you can set a number of properties on JMS connection factories.

Chapter 12. Welcome to administering Messaging resources 505



If applications use message-driven beans to create durable subscriptions, you should set the properties on
the JMS activation specification used by the message-driven beans, as described in Configuring JMS
activation specifications for durable subscriptions, instead of as described in this topic.

This topic describes the setting of properties on a unified JMS connection factory. You can also set the
same properties on a JMS topic connection factory instead.

To configure the durable subscription properties to a topic for use by enterprise beans with the default
messaging provider, use the administrative console to complete the following steps:

Procedure
1. Display the default messaging provider. In the navigation pane, click Resources -> JMS -> JMS

providers.

2. Select the default provider for which you want to configure connection factory properties.

3. Optional: Change the Scope check box to set the level at which the connection factory is to be visible,
according to your needs.

4. In the content pane, under the Additional properties heading, click Connection factories. This displays
any existing JMS connection factories for the default messaging provider in the content pane.

5. Click the name of the connection factory you want to configure. This displays the properties for the
connection factory in the content pane.

6. Specify the following properties for the connection factory:

Client identifier
This is the JMS client identifier that applications use to identify durable topic subscriptions
created on all connections that use this connection factory. For more information about client
identifiers, see section 4.3.2 of the JMS 1.1 specification.

Durable subscription home
The name of the messaging engine used to store messages delivered to durable subscriptions
for objects created from this JMS connection factory.

This identifies the messaging engine where durable subscriptions are localized on the service
integration bus. Administrators can manage the runtime state of durable subscriptions through
publication points for that messaging engine.

7. Click OK.

8. Save your changes to the master configuration.

What to do next

When applications have created durable subscriptions, you can use the administrative console to manage
the runtime state of those subscriptions, as described in “Administering durable subscriptions” on page
2086.

The JMS connection factory has some other advanced properties that you can configure to change the
behavior for durable subscriptions. You should not usually need to change these properties from their
default values.

Read ahead
This controls read ahead optimization during message delivery. This defines whether the provider
can stream messages to durable subscribers ahead of their requests (to provide a performance
enhancement).

Share durable subscriptions
This controls whether durable subscriptions can be accessed simultaneously by several
subscribers.

506 Administering WebSphere applications



If you want to control read ahead optimization during message delivery for individual topics, you can set
the Read ahead property on the topics.

Configuring JMS activation specification properties for durable subscriptions
Use this task to configure durable subscription properties of JMS activation specifications for use by
message-driven beans with the default messaging provider.

About this task

To enable a message-driven bean (MDB) application to create durable subscriptions on JMS topics with
the default messaging provider, you set a number of properties on the JMS activation specification used by
the application.

If applications use message-driven beans to create durable subscriptions, you should set the properties on
the JMS activation specification used by the message-driven beans, as described in this topic. Otherwise,
for enterprise beans to create durable subscriptions, you should set the properties on the JMS connection
factory as described in “Configuring JMS connection factory properties for durable subscriptions” on page
505.

Note: The server_name-durableSubscriptions.ser file in the WAS_HOME/temp directory is used by the
messaging service to keep track of durable subscriptions for message-driven beans. If you uninstall
an application that contains a message-driven bean, this file is used to unsubscribe the durable
subscription. If you have to delete the WAS_HOME/temp directory or other files in it, ensure that you
preserve this file.

To configure the durable subscription properties to a topic for use by message-driven beans with the
default messaging provider, use the administrative console to complete the following steps

Procedure
1. Display the default messaging provider. In the navigation pane, click Resources -> JMS -> JMS

providers.

2. Select the default provider for which you want to configure activation specification properties.

3. Optional: Change the Scope check box to set the level at which the connection factory is to be visible,
according to your needs.

4. In the content pane, under the Additional properties heading, click Activation specifications. This
displays any existing JMS activation specifications for the default messaging provider in the content
pane.

5. Click the name of the activation specification you want to configure. This displays the properties for the
activation specification in the content pane.

6. Specify the following properties for the activation specification:

Client identifier
This is the JMS client identifier that applications use to identify durable topic subscriptions
created on all connections tht use this activation specification. For more information about
client identifiers, see section 4.3.2 of the JMS 1.1 specification.

Durable subscription home
The name of the messaging engine used to store messages delivered to durable subscriptions
for objects created from this JMS activation specification. This is a required field when using a
durable topic subscription.

This identifies the messaging engine where durable subscriptions are localized on the service
integration bus. Administrators can manage the runtime state of durable subscriptions through
publication points for that messaging engine.

Subscription durability
To be able to create durable subscriptions, set this property to Durable.

Chapter 12. Welcome to administering Messaging resources 507



Subscription name
The subscription name needed for durable topic subscriptions. Required field when using a
durable topic subscription.

Each JMS durable subscription is identified by a subscription name (specified on this property).
A JMS connection also has an associated client identifier (specified on the Client identifier
property), which is used to associate a connection and its objects with the list of messages (on
the durable subscription) that is maintained by the JMS provider for the client.

This subscription name must be unique within a given client identifier.

7. Specify the properties for the activation specification, according to your needs.

8. Click OK.

9. Save your changes to the master configuration.

What to do next

When applications have created durable subscriptions, you can use the administrative console to manage
the runtime state of those subscriptions, as described in “Administering durable subscriptions” on page
2086.

Configuring shared durable subscriptions for an activation specification:

Use this task to configure the Share durable subscriptions option; an attribute of the JMS activation
specifications that message-driven beans use with the default messaging provider.

About this task

The Share durable subscriptions option controls whether durable subscriptions are shared between
subscribers in a cluster. To set this option, use the administrative console to complete the following steps.

Procedure

1. In the navigation pane, click Resources -> JMS -> JMS providers.

2. Select the default provider for which you want to configure activation specification properties.

3. Optional: Change the Scope check box to set the level at which the connection factory is visible,
according to your needs.

4. In the content pane, under Additional Properties, click Activation specifications.

5. Click the name of the activation specification you want to configure. The properties for the activation
specification are displayed in the content pane.

6. Under General Properties, in the Advanced section, set the Share durable subscriptions property.
Select one of the following options from the list:

In cluster
Clients that are connected to the bus in a cluster member can use the same client identifier
and durable subscription name, and can retrieve messages from the durable subscription.

Always shared
All clients, regardless of where they are connected to the bus, can use the same client
identifier and durable subscription name, and can retrieve messages from the durable
subscription.

Never shared
Clients cannot use the same client identifier and durable subscription name as an existing
session.

See the administrative console help for information about the other fields on this page.

7. Click OK.

8. Save your changes to the master configuration.

508 Administering WebSphere applications



Enabling a provider to stream messages to cloned durable subscriptions
Use this task to enable a provider to stream messages to consumers ahead of their message requests.
This is most often used by publish/subscribe consumers to provide a performance enhancement.

About this task

To indicate that a provider must stream messages to consumers, you can set the Read ahead property to
Enabled. This property can be set on a connection factory to specify the behavior for all connections
created using that connection factory. The property can also be set on JMS topics, to enable different
behavior when sending messages to different JMS topics from the same connection.

You are recommended to leave this property set to Default, which enables the messaging provider to
decide whether it should stream messages to consumers. The messaging provider makes this decision
based on the environment in which the durable subscriber is running. You should only set this property to
enable message streaming if you are sure that a durable subscription is used by only one consumer at a
time.

v In a non-cloned environment, the default setting enables messaging streaming for durable subscribers.

v For cloned durable subscribers (that is, a durable subscriber that is part of an application cloned in a
server cluster), the default setting prevents message streaming and the messages on the subscription
are shared among the clones. If you are moving from a non-cloned environment, to cloned durable
subscribers, you might see a drop in performance. If you are sure that a durable subscription is still
used by only one consumer at a time, you can enable message streaming as described in this topic.

Server clusters can be used as bus members only in WebSphere Application Server environments that
support server clusters.

Messages that are streamed to the consumer but are not consumed before the consumer disconnects are
unlocked when the consumer closes. Only then do those messages become available for consumption by
other consumers.

To force the messaging provider to stream messages to cloned durable subscriptions, use the
administrative console to complete the following steps to change the connection factory:

Procedure
1. Display the JMS connection factory; for example, as described in “Configuring a unified connection

factory for the default messaging provider” on page 498. All clones of a durable subscriber use the
same JMS connection factory.

2. Set the Read ahead property to Enabled.

3. Click OK.

4. Save your changes to the master configuration.

Enabling CMP entity beans and messaging engine data stores to share database
connections
Use this task to enable container-managed persistence (CMP) entity beans to share the database
connections used by the data store of a messaging engine. Performing this task has been estimated to
provide a potential performance improvement of 15% for overall message throughput, but can only be
used for entity beans connected to the application server that contains the messaging engine.

About this task

To enable CMP entity beans to share the database connections used by the data store of a messaging
engine, complete the following steps.

Chapter 12. Welcome to administering Messaging resources 509



Procedure
1. Configure the data store to use a data source that is not XA-capable. For more information about

configuring a data store, see “Configuring a JDBC data source for a messaging engine” on page 2043.

2. Select the Share data source with CMP option. This option is provided on the JMS connection factory
or JMS activation specification used to connect to the service integration bus that hosts the bus
destination that is used to store and process messages for the CMP bean.

For example, to select the option on a unified JMS connection factory, complete the following steps:

a. Display the default messaging provider. In the navigation pane, click Resources -> JMS -> JMS
providers.

b. Select the default provider for which you want to configure a unified connection factory.

c. Optional: Change the Scope check box to set the level at which the connection factory is to be
visible, according to your needs.

d. In the content pane, under Additional Properties, click Connection factories.

e. Optional: To create a new unified JMS connection factory, click New.

Specify the following properties for the connection factory:

Name Type the name by which the connection factory is known for administrative purposes.

JNDI name
Type the JNDI name that is used to bind the connection factory into the namespace.

Bus name
Type the name of the service integration bus that the connection factory is to create
connections to. This service integration bus hosts the destinations that the JMS queues
and topics are assigned to.

f. Optional: To change the properties of an existing connection factory, select its name from one of the
connection factories displayed. The properties for the connection factory are displayed in the
content pane.

g. Select the check box for the Share data source with CMP field.

h. Click OK.

i. Save your changes to the master configuration.

The JMS connection factory can only be used to connect to a “local” messaging engine that is in the
application server on which the CMP beans are deployed.

3. Deploy the CMP beans onto the application server that contains the messaging engine, and specify
the same data source as that used by the messaging engine. You can use the administrative console
to complete the following steps:

a. Optional: To determine the data source used by the messaging engine, click Servers -> Server
Types -> WebSphere application servers -> server_name -> [Server messaging] Messaging
engines -> engine_name -> [Additional Properties] Message store.

The Data source name field displays the name of the data source, which is by default:
jdbc/com.ibm.ws.sib/engine_name

b. Click Applications -> New Application -> New Enterprise Application.

c. On the first Preparing for the application installation page, specify the full path name of the source
application file (.ear file, otherwise known as an EAR file), then click Next.

d. On the second Preparing for the application installation page, complete the following steps:

1) Select the check box for Generate Default Bindings. Data source bindings (for EJB 1.1 JAR
files) are generated based on the JNDI name, data source, user name, and password options.
This results in default data source settings for each EJB JAR file. No bean-level data source
bindings are generated.

2) Under Connection Factory Bindings, select the check box for Default connection factory
bindings:, then type the JNDI name for the data source and optionally select a Resource
authorization value.

510 Administering WebSphere applications



3) Click Next to display the Install New Application pages. The contents of the application that you
are installing determines which pages are available.

4. If your application uses EJB modules that contain CMP beans that are based on the EJB 1.x
specification, for Map default data sources for modules containing 1.x entity beans, specify a
JNDI name for the default data source for the EJB modules. The default data source for the EJB
modules is optional if data sources are specified for individual CMP beans.

5. If your application has CMP beans that are based on the EJB 1.x specification, for Map data sources
for all 1.x CMP, specify a JNDI name for data sources to be used for each of the 1.x CMP beans. The
data source attribute is optional for individual CMP beans if a default data source is specified for the
EJB module that contains CMP beans.

6. Click Finish. If neither a default data source for the EJB module nor a data source for individual CMP
beans are specified, a validation error displays and the installation is cancelled.

7. Complete other pages as needed.

8. On the Summary page, verify the cell, node, and server onto which the application modules will install.

a. Beside Cell/Node/Server, click Click here.

b. Verify the settings on the Map modules to servers page that is displayed. Ensure that the
application server that is specified contains the messaging engine and its data store.

c. Specify the web servers as targets that will serve as routers for requests to this application. This
information is used to generate the plug-in configuration file (plugin-cfg.xml) for each web server.

d. Return to the Summary page.

e. Click Finish.

Results

For more information about installing applications, see Installing enterprise application files with the
console.

Configuring a connection to a non-default bootstrap server
A bootstrap server is an application server running in the same cell, specifically the same core group, as
the service integration bus.

About this task

Connection to a non-default bootstrap server is provided by a JMS connection factory or a JMS activation
specification. The connection allows applications to use a bootstrap server with a non-default endpoint
address. The provider endpoint syntax example described in this topic is also relevant to bootstrap
endpoint configuration in other tasks, for example when configuring a service integration bus link.

To use JMS destinations of the default messaging provider, an application or message-driven bean
connects to a messaging engine on the target service integration bus on which the destinations are
assigned. For example, a JMS queue is assigned to a queue destination on a service integration bus.

Applications that are running in a server that is part of the same cell as the service integration bus can
usually connect to a messaging engine on that bus without requiring provider endpoints to be configured. If
the cell has been divided into two core groups, each defined with its own policies, client applications that
are running in a client container and client applications that are running outside the WebSphere Application
Server environment, cannot automatically locate the required service integration bus so that, unless a core
group bridge has been configured between the core groups in the same cell, you must configure one or
more provider endpoints. Similarly, unless a core group bridge has been established between the two
cells, an application that is running on a server in one cell cannot connect to a bus in another cell without
the configuration of provider endpoints.

In the scenarios where provider endpoints are required, the clients or the servers in another bus must
complete a bootstrap process through a bootstrap server. The bootstrap server does not have to be a

Chapter 12. Welcome to administering Messaging resources 511



member of the service integration bus, and it does not have to contain any messaging engines. For the
application to locate the required bootstrap server, you must configure the provider endpoint property of
the JMS connection factory or JMS activation specification used by the client application. When the
bootstrap server receives the client request, it selects a messaging engine that matches the criteria
specified by the connection factory or activation specification, for example the target transport chain, target
group, or connection proximity. It returns the location information for this messaging engine to the client,
and the client creates a new connection to the target messaging engine, if necessary.

The following figure shows a client application running outside an application server.

To connect to a messaging engine, the application connects first to a bootstrap server. The bootstrap
server selects a messaging engine then tells the client application to connect to that messaging engine.

The following figure shows a message-driven bean running in an application server that is in a different
cell to the bus that the message-driven bean needs to be connected to in order to receive messages.

server1

client container

bus1

1. Bootstrap 2. Connect

hostA hostB

server2

(bootstrap server)

Application
X

ME1

Figure 1. Connection to a messaging engine: Applications running outside an application server

512 Administering WebSphere applications



To connect to a messaging engine, the message-driven bean connects first to a bootstrap server. The
bootstrap server selects a messaging engine then tells the message-driven bean to connect to that
messaging engine.

A bootstrap server listens on an endpoint that is defined by the combination of:

v The host name of the host on which the bootstrap server is running

v A specific port that is either SIB_END_POINT or, if security is enabled,
SIB_ENDPOINT_SECURE_ADDRESS

v A bootstrap transport chain

JMS connection factory properties control how an application connects to a messaging engine, and which
messaging engine is selected. If you deploy the application to an application server on which the service
integration bus (SIB) service is enabled, the system uses the SIB service to locate a messaging engine
that matches the connection factory criteria. The SIB service is aware of all the messaging engines
running on servers in the core group of which the application server to which the application is deployed is
a member.

If a suitable messaging engine is found, the application is connected to it, and does not use any provider
endpoints specified on the connection factory.

Note: This means that you cannot deploy an application to one cell to connect to a bus with the same
name in a different cell. Instead the application connects to the bus in the local cell.

The provider endpoints from the connection factory are used to connect to a remote bootstrap server if
any of the following conditions are true:

v The application is running as a client application outside of an application server.

server1

server3

bus1

1. Bootstrap 2. Connect

hostA

Cell1

Cell2

hostB

server2

(bootstrap server)

MDB

ME1

Figure 2. Connection to a messaging engine: message-driven bean application connecting to a destination in a
different cell

Chapter 12. Welcome to administering Messaging resources 513



v No SIB service is running in the application server to which the application is deployed.

v The SIB service cannot find a suitable messaging engine for the application to connect to.

If you do not specify a value for the provider endpoints in the connection factory, the default value
depends on whether the application has supplied a password.

v If the application does not supply a password, a default endpoint address of
localhost:7276:BootstrapBasicMessaging is used. That is, by default, applications try to use a
bootstrap server on the same host as the client, using port 7276 and the predefined bootstrap transport
chain called BootstrapBasicMessaging.

v If the application does supply a password, the default secure port of 7286 and the transport chain
BootstrapSecureMessaging is used to prevent the transmission of an unencrypted password to the
server.

Note: For the IBM i platform, you must (at least) change the default host name from
localhost to your.server.name.

If you want an application to use a bootstrap server with a different endpoint address, you must specify the
required endpoint address on the Provider endpoints property of the JMS connection factories or JMS
activation specifications that the client application or message-driven bean uses. You can specify one or
more endpoint addresses of bootstrap servers by using a comma-separated list.

The endpoint addresses for bootstrap servers must be specified in every JMS connection factory that is
used by applications outside of an application server. To avoid having to specify a long list of bootstrap
servers, you can provide a few highly-available servers as dedicated bootstrap servers. Then you can
specify a short list of bootstrap servers on each connection factory.

This task is based on an application that uses a unified JMS connection factory. You can use the same
task to configure a JMS queue connection factory or JMS topic connection factory, but during the task you
must select the appropriate type of connection factory instead of a JMS queue connection factory. You can
also use this task to configure a JMS activation specification instead of a JMS connection factory.

When you configure a connection to a non-default bootstrap server, specify the required values and use
colons as separators. The syntax is as follows:

[ [host_name] [ ":" [ port_number] [ ":" chain_name] ] ]

Specifying host_name : chain_name instead of host_name : : chain_name (with two colons) is incorrect.
The default value applies if you do not specify a value, but you must separate the fields with ":"s.

For an application to use a bootstrap server with a non-default endpoint address, complete the following
steps.

Procedure
1. Identify the endpoint address of the application server that you want to use as the bootstrap server.

The endpoint address has the form host_name:port_number:chain_name.

host_name
The name of the host on which the server runs. It can be an IP address. For an IPv6 address,
put square braces ([]) around host_name.The default is localhost.

Note: You must (at least) change the default host name from localhost to
your.server.name.

port_number
Where specified, one of the following addresses of the messaging engine hosting the remote
end of the link:

v If security is not enabled: SIB_ENDPOINT_ADDRESS

514 Administering WebSphere applications



v If security is enabled, for secure connections: SIB_ENDPOINT_SECURE_ADDRESS

This value is mandatory. The default is 7276 if the application has not specified a password, or
7286 if a password has been specified.

To find either of the port_number values by using the administrative console, click Servers ->
Server Types -> WebSphere application servers -> server_name -> [Communications]
Ports.

chain_name
The name of a predefined bootstrap transport chain used to connect to the bootstrap server. If
not specified, the default is BootstrapBasicMessaging if a password has not been provided, or
BootstrapSecureMessaging if a password has been provided.

The following predefined bootstrap transport chains are provided:

BootstrapBasicMessaging
The server transport chain InboundBasicMessaging (JFAP-TCP/IP).

BootstrapSecureMessaging
The server transport chain InboundSecureMessaging (JFAP-SSL-TCP/IP).

BootstrapTunneledMessaging
Before you can use this bootstrap transport chain, you must define a corresponding
server transport chain on the bootstrap server. To do this, click Servers -> Server
Types -> WebSphere application servers -> server_name -> [Server messaging]
Messaging engine inbound transports. This transport chain tunnels JFAP and uses
HTTP wrappers.

BootstrapTunneledSecureMessaging
Before you can use this bootstrap transport chain, you must define a corresponding
server transport chain on the bootstrap server. To do this, click Servers -> Server
Types -> WebSphere application servers -> server_name -> [Server messaging]
Messaging engine inbound transports. This transport chain tunnels JFAP and uses
HTTP wrappers.

If you want to provide more than one bootstrap server, identify all the required endpoint addresses.
Separate each endpoint address with a comma. You should be able to specify the endpoint address for
each bootstrap server; for example, for a server assigned non-secure port 7278, on host boothost1,
and using the default transport chain BootstrapBasicMessaging:

boothost1:7278:BootstrapBasicMessaging

or

boothost1:7278

or, for a server assigned secure port 7289, on host boothost2, and using the predefined transport chain
BootstrapTunneledSecureMessaging:

boothost2:7289:BootstrapTunneledSecureMessaging

2. Optional: Configure the endpoint address of the bootstrap server on the Provider endpoint property of
the connection factory.

If the client application uses a JMS connection factory in the client container, use the Application Client
Resource Configuration tool (ACRCT).

a. Start the tool and open the EAR file for which you want to configure the JMS connection factory.
The EAR file contents are displayed in a tree view.

b. From the tree, select the JAR file in which you want to configure the JMS connection factory.

c. Expand the JAR file to view its contents.

d. Expand Messaging Providers > Default Provider > Connection Factories.

e. Display the general properties of the connection factory.

Chapter 12. Welcome to administering Messaging resources 515



v To use an existing JMS connection factory, click the name of the connection factory.

v To create a new JMS connection factory, click New.

For more information about configuring a JMS connection factory in the JMS provider
configuration for your application client, see “Configuring Java messaging client resources” on
page 54.

f. On the General tab, ensure that the Provider Endpoints property includes the provider endpoint
address for each bootstrap server. Type the value as a comma-separated list of endpoint
addresses, for example:
boothost1:7278,boothost2:7289:BootstrapTunneledSecureMessaging

g. Click OK.

h. Save your changes to the master configuration..

If the client application uses a JMS connection factory on the server, use the WebSphere Application
Server administrative console.

a. Start the WebSphere Application Server administrative console.

b. To display the default messaging provider, click Resources -> JMS -> JMS providers.

c. Change the Scope check box to set the level at which the connection factory is to be visible,
according to your needs.

d. In the content pane click Default messaging provider to display a table of properties for the
default messaging provider, including links to the types of JMS resources that it provides.

e. In the content pane, under Additional properties, click Connection factories to display any
existing connection factories in the content pane.

f. Display the general properties of the connection factory.

v To use an existing JMS connection factory, click the name of the connection factory.

v To create a new JMS connection factory, click New.

For more information about configuring a JMS connection factory, see “Configuring a unified
connection factory for the default messaging provider” on page 498.

g. Ensure that the Provider Endpoints property includes the provider endpoint address for each
bootstrap server. Type the value as a comma-separated list of endpoint addresses; for example:
boothost1:7278,boothost2:7289:BootstrapTunneledSecureMessaging

h. Click OK.

i. Save your changes to the master configuration.

3. Optional: Configure the endpoint address of the bootstrap server on the Provider endpoint property of
the activation specification.

If the client application uses a JMS activation specification on the server, use the WebSphere
Application Server administrative console.

a. Start the WebSphere Application Server administrative console.

b. To display the default messaging provider, click Resources -> JMS -> JMS providers.

c. Select the default provider for which you want to configure an activation specification.

d. Optional: Change the Scope check box to the scope level at which the activation specification is
visible to applications, according to your needs.

e. In the content pane, under the Additional properties heading, click Activation specifications to
list any existing JMS activation specifications for the default messaging provider in the content
pane.

f. Display the properties of the JMS activation specification.

v To use an existing JMS activation specification, click one of the names listed.

v To create a new JMS activation specification, click New.

For more information about configuring a JMS activation specification, see “Configuring an
activation specification for the default messaging provider” on page 503.

516 Administering WebSphere applications



g. Ensure that the Provider Endpoints property includes the provider endpoint address for each
bootstrap server. Type the value as a comma-separated list of endpoint addresses; for example:
boothost1:7278,boothost2:7289:BootstrapTunneledSecureMessaging

h. Click OK.

i. Save your changes to the master configuration.

Protecting an MDB or SCA application from system resource problems
You can configure the system so that if there is a problem with a dependent external system resource, the
enterprise application is stopped before messages are moved unnecessarily to an exception destination.
This configuration also handles occasional problems with messages without blocking the enterprise
application.

Before you begin

This task assumes that you have deployed an enterprise application that contains a message-driven bean
(MDB), or a business-level application that contains a Service Component Architecture (SCA) composite,
that interacts with external system resources.

The destination to which the MDB or SCA composite listens must use an exception destination. This
exception destination can be the system default, or one configured specifically for the destination.

To complete this task, you need the following information:

v The enterprise application that contains the MDB, or the business-level application that contains the
SCA composite.

v The dependent external system resources.

v An acceptable value for the Sequential failed message threshold, that is, the maximum number of
sequential failures of delivery of messages, after which the MDB or SCA composite is stopped. This
property applies to sets of messages.

v An acceptable value for the Delay between failing message retries, that is, the time in milliseconds
before a failing message is available to be delivered to the MDB or SCA composite. Other messages
might be delivered during this period, unless theSequential failed message threshold and the
maximum concurrency is set to 1.

v An acceptable value for the Maximum failed deliveries per message, that is, the maximum number of
failed attempts to process a message, after which the message is forwarded from its intended
destination to the exception destination. This property applies to individual messages.

About this task

When an MDB or SCA composite fails to process a message, the message is rolled back and made
available to the MDB or SCA composite again. Typically, the messaging system is configured in one of the
following ways:

1. Failed messages are retried a finite number of times, and if they continue to fail, they are moved to an
exception destination allowing subsequent messages to be processed.

2. Failed messages are retried indefinitely until the problem is rectified.

Configuration (1) protects the MDB or SCA composite from an occasional problem message that prevents
subsequent messages from being processed. However, if there is a prolonged problem with a resource
that the enterprise application or business-level application depends on, for example a database, all
messages that are sent to the destination might be moved to the exception destination.

Configuration (2) blocks the delivery of messages until the original failing message problem is resolved.
This configuration prevents messages being moved unnecessarily to an exception destination, but it also
blocks subsequent messages as soon as a single problem message fails to be processed.

Chapter 12. Welcome to administering Messaging resources 517



You can configure the activation specification for an MDB or SCA composite so that the MDB or SCA
composite endpoint is stopped automatically when a number of failures with sequential messages are
detected. These failures indicate a problem with a dependent resource. When the problem is resolved, the
MDB or SCA composite endpoint is restarted manually. This configuration tolerates occasional message
failures, allowing individual problem messages to be moved to the exception destination without blocking
the entire MDB or SCA composite.

Use the following steps to protect an enterprise application from dependent external system resource
failures.

Procedure
1. Navigate to the deployed enterprise application that contains the MDB, or the business-level

application that contains the SCA composite.

2. From the MDB or SCA composite, navigate to its JMS activation specification. Click Resources ->
JMS -> Activation specifications -> activation_specification_name.

3. Enter a value for the Sequential failed message threshold and the Delay between failing message
retries.

4. Save the configuration.

5. Navigate to the destination to which the MDB or SCA composite is listening. Click one of the following
paths, as appropriate:

v Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
queue_name

v Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
topic_space_name

6. Enter a value for the Maximum failed deliveries per message.

7. Save your changes to the master configuration.

Results

You have configured the enterprise application, or business-level application, to protect itself from the sort
of external resource problem that can occur at any time. This means that, in the event of a system
resource problem, the MDB or SCA composite is stopped automatically when the Sequential failed
message threshold is reached for any message.

What to do next

When the system resource that failed becomes available, you can restart the system resource and resume
the MDB or SCA composite. The messages that failed during the system resource downtime are retried
instead of being left on an exception destination.

Example 1: Handling a planned outage of an MDB or SCA application external resource:

You can configure the system so that, if there is a problem with a dependent external system resource, the
enterprise or business-level application can continue.

Before you begin

During the time that the system resource is unavailable, there must be no exceptions in the enterprise or
business-level application, or messages on the exception destination that must be resolved later.

518 Administering WebSphere applications



About this task

Add a maintenance level to an external system resource that is used by the deployed message-driven
bean (MDB) of one of the enterprise or business-level applications. The act of applying the maintenance
level requires the system resource (for example, a database) to be unavailable for about five minutes.

The JCA MBean emits JMX notifications to indicate that the MDB or SCA composite is paused, and that
the MDB or SCA composite has resumed. Consider registering a message listener on the JCA MBean to
receive the JMX notifications.

Procedure

1. Navigate to the deployed enterprise application that contains the MDB, or the business-level
application that contains the SCA composite.

2. From the MDB or SCA composite, navigate to its JMS activation specification. Click Resources ->
JMS -> Activation specifications -> activation_specification_name and click Pause on the
administrative panel for the MDB or SCA composite.

3. When you receive a JMX notification and a log entry indicating that the MDB or SCA composite is
paused, stop the database and apply the maintenance level. While the MDB or SCA composite is
paused, no messages are sent to the exception destination and no error messages appear in the
console related to the stopped database.

4. Restart the database and test that it is working as expected.

5. Log on to the administrative console again, navigate to the same enterprise or business-level
application and click Resume on the administrative panel for the MDB or SCA composite. You can also
resume the MDB or SCA composite by using scripting and the JCA MBean. The initial JMX notification
and log entry indicate which MBean to use to resume the MDB or SCA composite. The MDB or SCA
composite begins to be driven with the messages that are on the destination.

Results

You have paused and resumed an application while an external resource that it uses is not available for a
short time.

Example 2: Automatically stopping an MDB or SCA composite when a system resource becomes
unavailable:

To prepare for a system resource becoming unavailable, configure the system to stop the message-driven
bean (MDB) or Service Component Architecture (SCA) composite automatically after a small number of
message failures, and to alert you to the problem.

Before you begin

This task assumes that you have deployed an enterprise application containing a message-driven bean
(MDB), or a business-level application containing a Service Component Architecture (SCA) composite, that
interacts with external system resources.

The destination to which the MDB or SCA composite listens must use an exception destination. This
exception destination can be the system default, or one configured specifically for the destination.

To complete this task you need the following information:

v The enterprise application that contains the MDB, or the business-level application that contains the
SCA composite.

v The dependent external system resource.

Chapter 12. Welcome to administering Messaging resources 519



v A value of 3 for the Sequential failed message threshold. This is the maximum number of sequential
failures of delivery of messages, after which the MDB or SCA composite is stopped. This property
applies to sets of messages.

v A value of 5000 for the Delay between failing message retries, that is, the time in milliseconds before
a failing message is available to be delivered to the MDB or SCA composite. Other messages might be
delivered during this period, unless theSequential failed message threshold and the maximum
concurrency is set to 1.

v A value of 5 for the Maximum failed deliveries per message, that is, the maximum number of failed
attempts to process a message, after which the message is forwarded from its intended destination to
the exception destination. This property applies to individual messages.

About this task

In this scenario, the enterprise or business-level application is a continuously running system that uses a
deployed MDB or SCA composite to access an external system resource.

If the external resource experiences a problem and becomes unavailable, the deployed MDB or SCA
composite cannot access that resource, so the transaction that is associated with the MDB or SCA
composite is rolled back and the message, msg1, is put back on the queue.

The message msg1 is hidden for a retry delay of five seconds, set in Delay between failing message
retries, before it is made available to the MDB or SCA composite.

Meanwhile, the MDB or SCA composite processes the next message on the queue, msg2. The external
resource is still unavailable, so the processing of this message also fails. The message transaction is
rolled back and the message is hidden for five seconds. The next message on the queue, msg3, is
processed, fails, and is also hidden.

When the number of hidden messages reaches the Sequential failed message threshold, the MDB or
SCA composite will not process any further messages until one of the hidden messages becomes
available again.

When the Delay between failing message retries for msg1 expires, msg1 is unhidden and reprocessed.
Because the resource is still unavailable, the message is rehidden. The same thing happens to msg2 and
msg3.

A message is considered a failed message when it is rolled back one less than the Maximum failed
deliveries per message limit (five times in this scenario). So after msg1 is unhidden for the fourth time,
rolled back and rehidden, the sequential failure count is incremented. At this point, msg2 becomes
unhidden, rolled back and rehidden. Similarly, msg3 becomes unhidden, rolled back and rehidden. The
sequential failure count reaches the Sequential failed message threshold and the MDB or SCA
composite stops automatically. A JMX notification is emitted by the JCA MBean and a log entry alerts the
system administrator that the MDB has stopped.

Note: In this scenario, the MDB or SCA composite is stopped automatically when the system resource
has been unavailable for approximately 20 seconds. If the system resource is unavailable for a
shorter time, and the sequential failure count does not reach the Sequential failed message
threshold, messages are processed successfully on one of the retries. In effect, the system
continues normally without manual intervention, and without sending any messages to the
exception destination.

Procedure

1. Navigate to the deployed enterprise application that contains the MDB, or the business-level
application that contains the SCA composite.

520 Administering WebSphere applications



2. From the MDB or SCA composite, navigate to its JMS activation specification. Click Resources ->
JMS -> Activation specifications -> activation_specification_name.

3. Enter a value of 3 for the Sequential failed message threshold.

4. Enter a value of 5000 for the Delay between failing message retries.

5. Save the configuration.

6. Navigate to the destination to which the MDB or SCA composite is listening. Click one of the following
paths, as appropriate:

v Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
queue_name

v Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
topic_space_name

7. Enter a value of 5 for the Maximum failed deliveries per message.

8. Save your changes to the master configuration.

9. When you receive a JMX notification and a log entry indicating that the MDB or SCA composite (or
endpoint) has been paused, investigate the problem with the system resource that the MDB or SCA
composite was using. While the MDB or SCA composite is paused, no messages are sent to the
exception destination and no error messages appear in the console related to the stopped database.

10. When the system resource that failed becomes available, restart it.

11. Log on to the administrative console again, navigate to the same enterprise application and click
Resume on the administrative panel for the MDB or SCA composite. You can also resume the MDB
or SCA composite by using scripting and the JCA MBean. The initial JMX notification and log entry
indicate which MBean to use to resume the MDB or SCA composite. The MDB or SCA composite
begins to be driven with the messages that are on the destination.

Results

You have configured the system to protect itself from external resource failures.

What to do next

When the MDB or SCA composite is resumed, the JCA MBean emits a JMX notification to indicate that the
MDB or SCA composite has resumed. Messages on the queue are consumed, messages that had failed
are retried, and the transaction commits.

Example 3: The system experiences problems with a problem message:

To prepare for a problem message, configure the system to move that message to an exception
destination and allow other messages to be processed successfully.

Before you begin

This task assumes that you have deployed an enterprise application containing a message-driven bean
(MDB), or a business-level application containing a Service Component Architecture (SCA) composite, that
interacts with external system resources.

The destination to which the MDB or SCA composite listens must use an exception destination. This
exception destination can be the system default, or one configured specifically for the destination.

To complete this task, you need the following information:

v The enterprise application that contains the MDB, or the business-level application that contains the
SCA composite.

v The dependent external system resources.

Chapter 12. Welcome to administering Messaging resources 521



v Set a value of 3 for the Sequential failed message threshold. This is the maximum number of
sequential failures of delivery of messages, after which the MDB or SCA composite is stopped. This
property applies to sets of messages.

v Set a value of 5000 for the Delay between failing message retries, that is, the time in milliseconds
before a failing message is available to be delivered to the MDB or SCA composite. Other messages
might be delivered during this period, unless theSequential failed message threshold and the
maximum concurrency is set to 1.

v Set a value of 5 for the Maximum failed deliveries per message, that is, the maximum number of
failed attempts to process a message, after which the message is forwarded from its intended
destination to the exception destination. This property applies to individual messages.

About this task

In this scenario, the enterprise application is a continuously running system that uses a deployed MDB or
SCA composite to access an external system resource.

When a problem message (msg1 in this scenario) is encountered, it is put back on the queue.

Instead of msg1 being made available to the MDB or SCA composite immediately, it is hidden for the
Delay between failing message retries retry delay of five seconds.

The next message on the queue (msg2) is processed by the MDB or SCA composite. This message and
subsequent messages succeeds.

When the Delay between failing message retries for msg1 expires, msg1 is unhidden and reprocessed.
It is put back on the queue again.

The MDB or SCA composite continues to process subsequent messages normally but each time msg1 is
processed, it is put back on the queue.

When the number of times msg1 has been unhidden, rolled back and rehidden reaches the Maximum
failed deliveries per message limit (five times in this scenario), it is moved to the configured exception
destination.

Procedure

1. Navigate to the deployed enterprise application that contains the MDB or SCA composite.

2. From the MDB or SCA composite, navigate to its JMS activation specification. Click Resources ->
JMS -> Activation specifications -> activation_specification_name.

3. Enter a value of 3 for the Sequential failed message threshold.

4. Enter a value of 5000 for the Delay between failing message retries.

5. Save the configuration.

6. Navigate to the destination to which the MDB or SCA composite is listening. Click one of the following
paths, as appropriate:

v Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
queue_name

v Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
topic_space_name

7. Enter a value of 5 for the Maximum failed deliveries per message.

8. Save your changes to the master configuration..

522 Administering WebSphere applications



Results

You have configured the system to protect itself from external resource failures and send problem
messages to the exception destination.

Example 4: Automatically stopping an MDB or SCA composite when no exception destination is
specified:

To prepare for a system resource becoming unavailable or a problem message, configure the system to
stop the message-driven bean (MDB) or Service Component Architecture (SCA) composite automatically.
To maintain message ordering, do not use an exception destination.

Before you begin

This task assumes that you have deployed an enterprise application containing a message-driven bean
(MDB), or a business-level application containing a Service Component Architecture (SCA) composite, that
interacts with external system resources.

The destination to which the MDB or SCA composite listens must not use an exception destination, that is,
the exception destination for the queue or topic space destination must be configured as none.

To complete this task, you need the following information:

v The enterprise application that contains the MDB, or the business-level application that contains the
SCA composite.

v The dependent external system resources.

v A value of 1 for the Sequential failed message threshold. This is the maximum number of sequential
failures of delivery of messages, after which the MDB or SCA composite is stopped. This property
applies to sets of messages.

Note: If this property is set to a value greater than 1, the system automatically resets it to 1 when an
exception destination is configured as none.

v A value of 5000 for the Delay between failing message retries, that is, the time in milliseconds before
a failing message is available to be delivered to the MDB or SCA composite. Other messages might be
delivered during this period, unless theSequential failed message threshold and the maximum
concurrency is set to 1.

v An acceptable value for the Maximum failed deliveries per message, that is, the maximum number of
failed attempts to process a message. This property applies to individual messages.

The JCA MBean emits JMX notifications to indicate that the MDB or SCA composite is paused, and that
the MDB or SCA composite has resumed. Consider registering a message listener on the JCA MBean to
receive the JMX notifications.

About this task

In this scenario, the enterprise application is a continuously running system that uses a deployed MDB or
SCA composite to access an external system resource.

When a problem message (msg1 in this scenario) is encountered, it is put back on the queue.

Instead of msg1 being made available to the MDB or SCA composite immediately, it is hidden for the
Delay between failing message retries retry delay (five seconds in this scenario).

When the number of hidden messages reaches the Sequential failed message threshold, the MDB or
SCA composite will not process any further messages until one of the hidden messages becomes
re-available. In this scenario, this threshold is reached as soon as msg1 is hidden.

Chapter 12. Welcome to administering Messaging resources 523



When the Delay between failing message retries for msg1 expires, msg1 is unhidden and reprocessed.

This process is repeated until msg1 reaches its Maximum failed deliveries per message limit (five times
in this scenario).

After msg1 is unhidden for the fourth time, rolled back and rehidden, the Sequential failed message
threshold is reached and the MDB or SCA composite stops automatically. A JMX notification is emitted by
the JCA MBean and a log entry alerts the system administrator that the MDB has stopped.

Procedure

1. Navigate to the deployed enterprise application that contains the MDB or SCA composite.

2. From the MDB or SCA composite, navigate to its JMS activation specification. Click Resources ->
JMS -> Activation specifications -> activation_specification_name.

3. Enter a value of 1 for the Sequential failed message threshold.

4. Enter a value of 5000 for the Delay between failing message retries.

5. Save the configuration.

6. Navigate to the destination to which the MDB or SCA composite is listening. Click one of the following
paths, as appropriate:

v Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
queue_name

v Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
topic_space_name

7. Under Exception destination, select None.

8. Enter a value of 5 in Maximum failed deliveries per message.

9. Save your changes to the master configuration.

10. When you receive a JMX notification and a log entry indicating that the MDB or SCA composite (or
endpoint) has been paused, investigate the problem with the system resource that the MDB or SCA
composite was using. While the MDB or SCA composite is paused, because no exception destination
is configured, msg1 remains on the queue. No other messages are processed.

11. If you resume the MDB or SCA composite but the problem with the failing message continues, the
maximum failed deliveries limit is reached on the first retry of the message, but because no exception
destination is configured, the message is not moved to another queue. Instead, the whole queue point
is blocked to all consumers for the Delay between failing message retries retry delay interval (five
seconds in this scenario). After this time, consumers begin again. If the failing message is still there,
and fails again, the queue point is blocked for another 5 seconds. This process continues until you
remove the failing message from the queue, either by deleting it manually or solving the problem with
it, and in doing so allowing the consuming application to succeed in processing.

12. Log on to the administrative console again, navigate to the same enterprise application and click
Resume on the administrative panel for the MDB or SCA composite. You can also resume the MDB
or SCA composite by using scripting and the JCA MBean. The initial JMX notification and log entry
indicate which MBean to use to resume the MDB or SCA composite. The MDB or SCA composite
begins to be driven with the messages that are on the destination.

Results

You have configured the system to protect itself from external resource failures while maintaining message
ordering.

524 Administering WebSphere applications



What to do next

When the MDB or SCA composite is resumed, the JCA MBean emits a JMX notification to indicate that the
MDB or SCA composite has resumed. Messages on the queue are consumed, messages that had failed
are retried, and the transaction commits.

Sample JMS 1.1 application client
If you are new to JMS 1.1 application client programming, you can use this example code as a
starting-point for developing your client application.

Example

Here is a typical example of JMS 1.1 application client code:

import java.util.Hashtable;
import javax.jms.JMSException;
import javax.naming.Context;
import javax.naming.*;
import javax.jms.*;

public class JMSppSampleClient
{
public static void main(String[] args)
throws JMSException, Exception

{
String messageID = null;
String outString = null;
String cfName = "jms/blueconfactory";
String qnameIn = "java:comp/env/jms/Q1";
String qnameOut = "jms/bluequename";
boolean verbose = false;

Session session = null;
Connection connection = null;
ConnectionFactory cf = null;
MessageProducer mp = null;
Destination destination = null;

try {

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "iiop://localhost:2809");
Context initialContext = new InitialContext(env);

System.out.println("Getting Connection Factory");

cf= (ConnectionFactory)initialContext.lookup( cfName );

System.out.println("Getting Queue");
destination =(Destination)initialContext.lookup(qnameOut);

System.out.println("Getting Connection for Queue");
connection = cf.createConnection();

System.out.println("staring the connection");
connection.start();

System.out.println("creating session");
session = connection.createSession(false, 1);

Chapter 12. Welcome to administering Messaging resources 525



System.out.println("creating messageProducer");
mp = session.createProducer(destination);

System.out.println("creating TextMessage");
TextMessage outMessage = session.createTextMessage("this is test application");

System.out.println("sending Message");
mp.send(outMessage);

mp.close();
session.close();
connection.close();
}
catch (Exception je) {}

Interoperating with a WebSphere MQ network
The default messaging provider (service integration) can interoperate with a WebSphere MQ network by
using a WebSphere MQ link or a WebSphere MQ server. Alternatively, you can use WebSphere MQ as
your messaging provider. Each type of connectivity is designed for different situations, and provides
different advantages. Choose the most appropriate interoperation method for each of your messaging
applications.

About this task

WebSphere Application Server can interoperate with WebSphere MQ in the following ways:

v By configuring WebSphere MQ as an external JMS provider by using the WebSphere MQ messaging
provider.

v By connecting a service integration bus to a WebSphere MQ network by using the default messaging
provider and a WebSphere MQ link.

v By integrating WebSphere MQ queues into a bus by using the default messaging provider and a
WebSphere MQ server.

A WebSphere MQ link provides a traditional WebSphere MQ -style solution to connecting resources. A
WebSphere MQ server adds the ability to directly access WebSphere MQ queues from within a bus.

526 Administering WebSphere applications



Table 36. The different ways of interoperating with WebSphere MQ. Table 1 has three columns. Each column
contains a figure showing a different way of interoperating with WebSphere MQ. The left column describes
interoperation using the WebSphere MQ messaging provider, with no bus. The middle column describes
interoperation using a WebSphere MQ network as a foreign bus. The right column describes interoperation using a
WebSphere MQ queue manager or queue-sharing group as a bus member.

WebSphere MQ messaging provider (no
bus)

WebSphere MQ network as a foreign
bus (using a WebSphere MQ link)

WebSphere MQ queue manager or
queue-sharing group as a bus member
(using a WebSphere MQ server)

JMS application

WMQ queue WMQ topic

WebSphere MQ
provider

WebSphere MQ

In this figure, a JMS application uses APIs
to send a message to WebSphere MQ, for
a topic or queue, via the WebSphere MQ
messaging provider.

JMS application

service integration

WMQ queue WMQ topic

MQ link (server to server
channel connection)

default messaging
provider

service integration
bus

WebSphere MQ
(a foreign bus)

In this figure a JMS application uses the
default messaging provider to pass a
message to a local service integration bus.
The local bus passes the message to a
foreign bus, which forwards it across a
WebSphere MQ link to a WebSphere MQ
queue manager or queue sharing group
that acts as the gateway to the
WebSphere MQ network. Service
integration views the WebSphere MQ
network as if it were a foreign bus.

JMS application

service integration

WMQ topic
not supported

WMQ queue

(client
connection)

default messaging
provider

service integration
bus

WebSphere MQ
(a bus member)

In this figure, a JMS application uses the
default messaging provider to pass a
message to a service integration bus. The
bus passes the message through a
WebSphere MQ server direct to a
WebSphere MQ queue. Service integration
views the WebSphere MQ server (a
WebSphere MQ queue manager or
queue-sharing group, and its associated
queues) as a member of the local bus.

Chapter 12. Welcome to administering Messaging resources 527



Table 36. The different ways of interoperating with WebSphere MQ (continued). Table 1 has three columns. Each
column contains a figure showing a different way of interoperating with WebSphere MQ. The left column describes
interoperation using the WebSphere MQ messaging provider, with no bus. The middle column describes
interoperation using a WebSphere MQ network as a foreign bus. The right column describes interoperation using a
WebSphere MQ queue manager or queue-sharing group as a bus member.

WebSphere MQ messaging provider (no
bus)

WebSphere MQ network as a foreign
bus (using a WebSphere MQ link)

WebSphere MQ queue manager or
queue-sharing group as a bus member
(using a WebSphere MQ server)

The WebSphere MQ messaging provider
does not use service integration. It
provides JMS messaging access to
WebSphere MQ from WebSphere
Application Server.

A WebSphere MQ link provides a server to
server channel connection between a
service integration bus and a WebSphere
MQ queue manager or queue-sharing
group, which acts as the gateway to the
WebSphere MQ network.When you use a
WebSphere MQ link, the messaging bus is
seen by the WebSphere MQ network as a
virtual queue manager, and the
WebSphere MQ network is seen by
service integration as a foreign bus. A
WebSphere MQ link allows WebSphere
Application Server applications to send
point-to-point messages to WebSphere
MQ queues (defined as destinations in the
service integration bus), and allows
WebSphere MQ applications to send
point-to-point messages to destinations in
the service integration bus (defined as
remote queues in WebSphere MQ). The
link also allows WebSphere Application
Server applications to subscribe to
messages published by WebSphere MQ
applications, and WebSphere MQ
applications to subscribe to messages
published by WebSphere Application
Server applications. The link ensures that
messages are converted between the
formats used by WebSphere Application
Server and those used by WebSphere
MQ.

A WebSphere MQ server represents a
WebSphere MQ queue manager or (for
WebSphere MQ for z/OS) queue-sharing
group. For interoperation with WebSphere
Application Server Version 7.0 or later, the
version of WebSphere MQ must be
WebSphere MQ for z/OS Version 6 or
later, or WebSphere MQ (distributed
platforms) Version 7 or later. A WebSphere
MQ server supports the high availability
and optimum load-balancing
characteristics provided by a WebSphere
MQ for z/OS network. A WebSphere MQ
server defines the connection and quality
of service properties used for the
connection, and also ensures that
messages are converted between the
formats used by WebSphere Application
Server and those used by WebSphere
MQ.

For more information about these approaches, see Interoperation with WebSphere MQ.

To interoperate with a WebSphere MQ network complete one or more of the following steps.

Procedure
v Choose the most appropriate interoperation method for each of your messaging applications. Complete

this step if your existing or planned messaging environment involves both WebSphere MQ and
WebSphere Application Server systems, and it is not clear to you whether you should use the default
messaging provider, the WebSphere MQ messaging provider, or a mixture of the two.

v Configure the WebSphere MQ messaging provider.

v Use WebSphere MQ links to connect a bus to a WebSphere MQ network.

v Use WebSphere MQ server to integrate WebSphere MQ queues into a bus.

Using WebSphere MQ links to connect a bus to a WebSphere MQ network
If you operate within a WebSphere Application Server environment, sending messages across a service
integration bus, you can also exchange point-to-point and publish/subscribe messages with applications in
a WebSphere MQ network. To do this, you configure a foreign bus connection that links to a WebSphere
MQ network through a WebSphere MQ link.

528 Administering WebSphere applications



Before you begin

Decide which method to use to configure these resources. You can configure a WebSphere MQ link by
using the administrative console as described in this task, or you can configure a WebSphere MQ link by
using the wsadmin tool.

About this task

A WebSphere MQ link provides a server to server channel connection between a service integration bus
and a WebSphere MQ queue manager or queue-sharing group, which acts as the gateway to the
WebSphere MQ network. The link operates on a messaging engine in a service integration bus to provide
functions that simplify and automate interoperation with WebSphere MQ.

Using the WebSphere MQ link panels of the WebSphere Application Server administration console, you
can choose:

v The WebSphere MQ queue manager or queue-sharing group in the WebSphere MQ network through
which your messages will flow

v Whether to enable WebSphere Application Server applications to publish and subscribe to a message
broker in the WebSphere MQ network

Procedure
v Learn about interoperating with a WebSphere MQ network.

v Create a new WebSphere MQ link.

v Administer an existing WebSphere MQ link.

v Create applications that can interoperate with WebSphere MQ.

Creating a new WebSphere MQ link:

A WebSphere MQ link provides a server to server channel connection between a service integration bus
and a WebSphere MQ queue manager or queue-sharing group, which acts as the gateway to the
WebSphere MQ network. Use the foreign bus connection wizard to create a foreign bus and link it to the
WebSphere MQ network through a WebSphere MQ link.

Before you begin

Decide which method to use to configure these resources. You can create a new WebSphere MQ link by
using the administrative console as described in this task, or you can create a new WebSphere MQ link by
using the wsadmin tool.

The following resources must be defined in WebSphere Application Server:

v A service integration bus that you want to connect from (known as the local bus) with at least one bus
member.

The following resources must be defined in WebSphere MQ:

v A queue manager or queue-sharing group, which acts as the gateway to the WebSphere MQ network.

v A listener that is configured and running.

v (optionally) A sender channel to receive messages on the local bus, a receiver channel to send
messages from the local bus, or both.

v (For publish-subscribe messaging) A topic and input queue for broker publish-subscribe flow.

Chapter 12. Welcome to administering Messaging resources 529



About this task

You use the foreign bus connection wizard to connect a bus and a WebSphere MQ network. You can
configure the connection for either point-to-point or publish-subscribe messaging.

Specifically, the wizard helps you configure the following resources:

v The bus and messaging engine on which the WebSphere MQ link is defined.

v The foreign bus that represents the WebSphere MQ network.

v The WebSphere MQ link.

v (Optionally) The sender and receiver channels and protocol. Using the wizard you can choose to define
no channels (and add them afterward), or one channel if your WebSphere MQ link is to be one-way, or
both channels.

v (Optionally) Security for messages flowing across the link.

v (Optionally) A publish/subscribe broker profile and associated topic mappings, to allow publication and
subscription with a broker in the WebSphere MQ network.

The wizard does not ask you to set all possible properties of a WebSphere MQ link, and many of the
properties are set to default values. You can fine tune these properties afterward if necessary, by
modifying the WebSphere MQ link.

For a sample configuration showing a systems view of the setup for a WebSphere MQ link, see
“WebSphere MQ link sample configuration” on page 531.

Procedure

1. Use the foreign bus connection wizard to connect a bus and a WebSphere MQ network to use
point-to-point messaging or publish-subscribe messaging.

A WebSphere MQ link is created and configured as part of the action of the wizard.

Note: You can subsequently convert a point-to-point connection to a publish/subscribe connection, by
adding a publish/subscribe broker on the WebSphere MQ link for the connection.

2. Optional: Modify the new WebSphere MQ link.

When you create a new WebSphere MQ link, the following properties are set to default values:

v Description

v Adoptable

v Exception destination

v Initial state

v Nonpersistent message speed

You can fine tune these properties by modifying the link.

3. Optional: Add or modify the WebSphere MQ receiver channel.

If you did not choose to Enable Service integration bus to WebSphere MQ message flow in the
foreign bus connection wizard, you have not yet defined a WebSphere MQ receiver channel. If you did
choose this option in the wizard, you have defined the receiver channel name, host name and
communication port, and the wizard has used default values for the following properties:

v Inbound nonpersistent message reliability

v Inbound persistent message reliability

v Prefer queue points local to this link's messaging engine

v Initial state

You can fine tune these properties by modifying the channel.

4. Optional: Add or modify the WebSphere MQ sender channel

530 Administering WebSphere applications



If you did not choose to Enable WebSphere MQ to Service integration bus message flow in the
foreign bus connection wizard, you have not yet defined a WebSphere MQ sender channel. If you did
choose this option in the wizard, you have defined the sender channel name, host name,
communication port and transport chain, and the wizard has used default values for the following
properties:

v Disconnect interval

v Short retry count

v Short retry interval

v Long retry count

v Long retry interval

v Initial state

You can fine tune these properties by modifying the channel.

WebSphere MQ link sample configuration:

This sample configuration illustrates how you can use a WebSphere MQ link to connect WebSphere
Application Server service integration messaging to WebSphere MQ messaging.

A WebSphere MQ link connects one service integration messaging engine, called the gateway messaging
engine, to one WebSphere MQ queue manager or queue-sharing group, called the gateway queue
manager. All messaging engines in the service integration bus use the gateway messaging engine to route
messages to and from the WebSphere MQ network; all queue managers and queue-sharing groups in the
WebSphere MQ network use the gateway queue manager to route messages to and from the service
integration bus.

Typically, a WebSphere MQ link consists of two TCP/IP connections:

v The WebSphere MQ link sender channel, which carries messages from service integration to
WebSphere MQ.

v The WebSphere MQ link receiver channel, which carries messages from WebSphere MQ to service
integration.

WebSphere MQ calls these TCP/IP connections message channels, a receiver channel which connects to
the WebSphere MQ link sender channel and a sender channel which connects to the WebSphere MQ link
receiver channel. The following figure shows a configuration like the one just described, with a WebSphere
MQ link sender channel called BUS1.TO.QM01 and a WebSphere MQ link receiver channel called
QM01.TO.BUS1.

If you only require messages to flow in one direction, you need only define one TCP/IP connection. For
example, a WebSphere MQ link sender channel in service integration that connects to a receiver channel
in WebSphere MQ is enough to support message flow from service integration to WebSphere MQ.
However, this sample builds a configuration that allows messages to flow in both directions.

ME

ME

ME QM01 QM02

QM01BUS1

Gateway
ME

BUS1.TO.QM01

QM01.TO.BUS1
Gateway

Qmgr

WebSphere MQ "bus"Service integration bus

Chapter 12. Welcome to administering Messaging resources 531



Sample configuration context

The purpose of this sample is to connect a WebSphere Application Server configuration to a WebSphere
MQ configuration so that asynchronous messages can flow in both directions between the two messaging
systems. The sample assumes that you have already set up a WebSphere Application Server
configuration like this:

v An application server called server1 located on a node called London. In a Network Deployment,
server1 might be one of several servers in a cell and might be one of several servers in a cluster, but
this sample is equally applicable to a base deployment containing just one application server.

v The IP host name for the server London is LONDON.

v A service integration bus called BUS1.

v server1 is a member of BUS1; the messaging engine it contains is called London.server1-BUS1.

v A queue-type bus destination called ServiceIntegrationQueue1, which is one of the destinations in
BUS1.

The sample also assumes that you already have a WebSphere MQ configuration like this:

v Queue managers called QM01 and QM02 which are part of a network of interconnected WebSphere
MQ queue managers and queue-sharing groups. If you have only one queue manager then you can
ignore references to QM02 in this sample.

v The IP host name for the server where QM01 runs is PARIS.

v A queue called WMQ11 which is located on QM01 and a queue called WMQ21 which is located on
QM02. There might be many other queues defined in the WebSphere MQ network but this sample is
concerned only with the two WebSphere MQ queues that you are going to access from WebSphere
Application Server.

You select London.server1-BUS1 to be the gateway messaging engine and QM01 to be the gateway
queue manager.

Sample configuration for the connections

This section describes the settings that you or your WebSphere MQ administrator need to configure for the
connections:

v The commands that your WebSphere MQ administrator uses to configure the WebSphere MQ
components that correspond to the WebSphere MQ link:

– The sender channel

– The receiver channel

– The transmission queue

For JMS programs, the WebSphere MQ administrator also defines a JMS destination that identifies the
queue in the service integration bus. Refer to the WebSphere MQ documentation for more details about
these commands.

v The parameters that you need when you use the WebSphere Application Server administrative console
to configure:

– A foreign bus connection, which includes the foreign bus representing the network of WebSphere
MQ queue managers and queue-sharing groups, and the WebSphere MQ link representing the
connection to that network

– JMS destinations that identify queues in the WebSphere MQ network

After you configure and activate these components your applications can exchange messages between
WebSphere Application Server service integration messaging and WebSphere MQ messaging. Optionally
you can configure additional administrative artifacts that allow you more detailed control over the queues
and destinations, see “Sample configuration for the destinations” on page 534.

532 Administering WebSphere applications



WebSphere MQ command to configure the sender channel
DEFINE CHL(QM01.TO.BUS1) +

CHLTYPE(SDR) +
TRPTYPE(TCP) +
CONNAME(’LONDON(5558)’) +
XMITQ(BUS1)

Your WebSphere MQ administrator chooses the name for the sender channel, which in this
sample is QM01.TO.BUS1.

The CONNAME parameter specifies the IP host and port of the gateway messaging engine.

The XMITQ parameter specifies the name of the transmission queue, which is normally the same
as the virtual queue manager name of the service integration bus, which is preferably the same as
the bus name.

WebSphere MQ command to configure the receiver channel
DEFINE CHL(BUS1.TO.QM01) +

CHLTYPE(RCVR) +
TRPTYPE(TCP)

Your WebSphere MQ administrator chooses the name for the receiver channel, which in this
sample is BUS1.TO.QM01.

WebSphere MQ command to configure the transmission queue
DEFINE QL(BUS1) +

USAGE(XMITQ)

Your WebSphere MQ administrator chooses the name for the transmission queue, but it is
convenient to use the name of the service integration bus BUS1. If the service integration bus
name is not a valid WebSphere MQ queue manager name then the WebSphere Application Server
administrator must define a different virtual queue manager name for use here.

WebSphere MQ JMSAdmin command to configure the JMS destination
DEFINE Q(ServiceIntegrationQueue1) +

QMGR(BUS1) +
QUEUE(ServiceIntegrationQueue1)

Your WebSphere MQ JMS applications can use this JMS destination to send messages to the
service integration bus destination ServiceIntegrationQueue1 in BUS1.

WebSphere Application Server parameters for the foreign bus connection
You configure a foreign bus connection as part of the topology of the service integration bus. For
this sample, the service integration bus is BUS1 and the foreign bus connection uses the following
settings:

Setting Value
Bus connection type Direct connection
Foreign bus type WebSphere MQ
Messaging engine to host the connection London.server1-BUS1
Virtual queue manager name BUS1 (use the name of the local bus)
Foreign bus name QM01 (use the name of the WebSphere MQ gateway

queue manager)
MQ link name TO.QM01
Enable Service integration bus to WebSphere MQ
message flow

Checked (default)

WebSphere MQ receiver channel name BUS1.TO.QM01
Host name PARIS
Port 1414
Enable WebSphere MQ to Service integration bus
message flow

Checked (default)

Chapter 12. Welcome to administering Messaging resources 533



Setting Value
WebSphere MQ sender channel name QM01.TO.BUS01

There are other options in the wizard relating to publish/subscribe messaging and security. Leave
these settings to default.

WebSphere Application Server parameters for JMS destinations
You configure JMS destinations to allow service integration JMS applications to access queues in
the WebSphere MQ network. This sample needs JMS destinations for queue WMQ11 on queue
manager QM01, and for queue WMQ21 on queue manager QM02.

Note that these JMS destinations are WebSphere MQ queues but for the purposes of this sample
you are accessing these queues from service integration JMS programs so you need to define
JMS destinations for the default messaging provider (service integration) not for the WebSphere
MQ JMS provider.

For WMQ11, configure the following parameters:

Parameter Value
Name WMQ11
JNDI name jms/WMQ11
Bus name QM01
Queue name WMQ11

Leave all other settings to default.

For WMQ21, configure the following parameters:

Parameter Value
Name WMQ21
JNDI name jms/WMQ21
Bus name QM01
Queue name WMQ21@QM02

Leave all other settings to default.

Sample configuration for the destinations

The sample JMS destinations in Sample configuration for the connections point directly to the
corresponding WebSphere MQ queues and service integration destinations. If you prefer, you can
configure additional components so that:

v The WebSphere MQ JMS destination points to a WebSphere MQ queue (actually a remote or alias
queue) which points to the service integration destination.

v The service integration JMS destinations point to service integration destinations (actually foreign or
alias destinations) which point to the WebSphere MQ queues.

Refer to the WebSphere MQ documentation for information about when and how to define remote and
alias queues.

WebSphere Application Server parameters for foreign destinations
You configure foreign destinations for WebSphere MQ queues to allow control over how service
integration applications access each queue. For example, you can configure foreign destinations
for each of two queues and specify that service integration includes an MQRFH2 header in
messages to one queue but not to the other.

You configure foreign destinations as destination resources of the service integration bus.

For WMQ11, configure the following parameters:

534 Administering WebSphere applications



Parameter Value
Identifier WMQ11
Bus QM01

Leave all other settings to default.

For WMQ21, configure the following parameters:

Parameter Value
Identifier WMQ21@QM02
Bus QM01

If the foreign destination is a WebSphere MQ destination, the identifier must be in the form
qName@qmName where qName is the name of the queue and qName is the name of the queue
manager. For this example, the identifier for WMQ21 on queue manager QM02 is
WMQ21@QM02.

Leave all other settings to default.

After you define these foreign destinations you can, for example, set the _MQRFHAllowed custom
property for either destination or both, as required.

Administering an existing WebSphere MQ link:

The WebSphere MQ link enables the exchange of point-to-point and publish/subscribe messages with a
WebSphere MQ network. After you have created a WebSphere MQ link you can undertake various
administrative actions on the link.

About this task

The WebSphere MQ link connects a WebSphere Application Server and a WebSphere MQ network.
Because these two systems are working together, their functions must be in step so that each is aware of
the status of the other. Administrative actions on the WebSphere MQ link and its functions include the
following:

Procedure

v Modify individual functions of the WebSphere MQ link .

You can modify the link itself, add or modify the sender channel and receiver channel, or define a
broker profile and associated topic mappings.

v Modify security for a WebSphere MQ link.

v View the status of a WebSphere MQ link and its components. You can view the status of a WebSphere
MQ link and its sender and receiver channels, and you can view the status of subscriptions for a
WebSphere MQ link publish/subscribe broker profile.

v Start a WebSphere MQ link.

v Stop a WebSphere MQ link.

When you stop the link, all its functions are stopped too. For example, stopping a WebSphere MQ link
with broker profiles on it might leave a message broker in the WebSphere MQ network with a backlog
of messages. For more information, see “Stopping a WebSphere MQ link” on page 549, “Stopping the
sender channel on a WebSphere MQ link” on page 552 and “Stopping the receiver channel on a
WebSphere MQ link” on page 550.

v Delete a WebSphere MQ link or one of its components. When you remove a foreign bus connection
between a service integration bus and a WebSphere MQ network, you also delete the associated
WebSphere MQ link along with any publish/subscribe broker profiles and topic mappings. You can also
delete a WebSphere MQ link publish/subscribe broker profile or delete a topic mapping from a
WebSphere MQ link.

Chapter 12. Welcome to administering Messaging resources 535



Modifying a WebSphere MQ link:

How and when to modify the properties of a WebSphere MQ link.

Before you begin

Decide which method to use to configure these resources. You can modify a WebSphere MQ link by using
the administrative console as described in this task, or you can modify a WebSphere MQ link by using the
wsadmin tool.

You have to know the name of the bus, and the messaging engine on the bus that contains the
WebSphere MQ link you want to modify.

About this task

A WebSphere MQ link provides a server to server channel connection between a service integration bus
and a WebSphere MQ queue manager or queue-sharing group, which acts as the gateway to the
WebSphere MQ network. At any time after you create a new WebSphere MQ link, you can modify its
properties.

When you use the foreign bus connection wizard to connect a bus and a WebSphere MQ queue manager
or queue-sharing group (known as the “gateway queue manager”) to use point-to-point messaging or
publish-subscribe messaging, one or more WebSphere MQ links are created and configured as part of the
task. However the wizard does not ask you to set all possible properties of a WebSphere MQ link, and
some of the link properties are not set or are set to default values. You can fine tune these properties by
modifying the link.

When you create a new WebSphere MQ link, you can also choose not to create sender or receiver
channels. These channels can be added later by modifying the link.

When you use the foreign bus connection wizard to create a WebSphere MQ link for point-to-point
messaging, you can later modify the link for publish-subscribe messaging by adding a publish/subscribe
broker profile to the link.

Procedure

1. In the navigation pane, click, Service integration -> Buses -> bus_name -> [Topology] Messaging
engines -> engine_name -> [Additional properties] WebSphere MQ links -> link_name.

2. Modify the properties of the link.

For information about all the properties that you can modify, see “WebSphere MQ link [Settings]” on
page 2322.

When you create a new WebSphere MQ link, the following properties are set to default values:

Description
An optional description for the WebSphere MQ link, for administrative purposes.

Adoptable
Whether or not a running instance of a WebSphere MQ link receiver channel (associated with
this MQ link) should be adopted or not. In the event of a communications failure, it is possible
for a running instance of a WebSphere MQ link receiver channel to be left waiting for
messages. When communication is re-established, and the partner WebSphere MQ sender
channel next attempts to establish a session with the WebSphere MQ link receiver channel,
the request will fail as there is already a running instance of the WebSphere MQ link receiver
channel that believes it is in session with the partner WebSphere MQ sender channel. You can
overcome this problem by selecting this option, which causes the already running instance of
the WebSphere MQ link receiver channel to be stopped and a new instance to be started. By
default, this option is not selected.

536 Administering WebSphere applications



Exception destination
The destination for an inbound message when the WebSphere MQ link cannot deliver the
message to its target bus destination, or to the exception destination that is configured for that
target destination, or when the target destination does not exist. By default, undeliverable
messages are sent to the system default exception destination for the messaging engine that
this link is assigned to. However, it can aid problem-solving if you separate these exceptions
out from other system messages by configuring a specific exception destination for this link.

Initial state
Whether the WebSphere MQ link is started or stopped when the hosting messaging engine is
first started. Until started, the WebSphere MQ link is unavailable. By default, the value is
“Started”.

Nonpersistent message speed
The class of service for nonpersistent messages on channels of this WebSphere MQ link. By
default, the value is “Fast”.

3. Configure the additional properties. You can configure any of the following additional properties of this
WebSphere MQ link:

v Publish/subscribe broker profiles

v Receiver channel

v Sender channel

v Sender channel transmitters

4. Configure the related items. You can configure any of the following related items of this WebSphere
MQ link:

v Foreign bus connection

v Link transmitters

5. Save your changes to the master configuration.

6. If you have enabled dynamic configuration updates, the changes take effect immediately (or on
channel restart if you also modified WebSphere MQ link sender or receiver channels), otherwise restart
the application server.

Adding or modifying a publish/subscribe broker on the WebSphere MQ link:

A publish/subscribe broker profile, and associated topic mappings, allows publication and subscription with
a broker in a WebSphere MQ network. You can use the administrative console to define a broker profile
on a WebSphere MQ link, forming a publish/subscribe bridge with a WebSphere MQ network.

Before you begin

You have to know the name of the bus, messaging engine name, and the name of the WebSphere MQ
link on which you intend to create or modify the broker profile. You also have to know the queue manager
name for the message broker in the WebSphere MQ network where the input queues for the required
publication message flows are located.

About this task

When you use the foreign bus connection wizard to connect a bus and a WebSphere MQ queue manager
to use publish/subscribe messaging, you can define a publish/subscribe broker profile and associated topic
mappings. Alternatively, you can use the foreign bus connection wizard to connect a bus and a
WebSphere MQ queue manager to use point-to-point messaging, then later modify the WebSphere MQ
link for publish/subscribe messaging by adding a publish/subscribe broker profile and associated topic
mappings to the link.

After you have created the broker profile you must ensure that the service integration bus has sufficient
authority on the message broker instance to send subscription requests.

Chapter 12. Welcome to administering Messaging resources 537



Procedure

1. In the navigation pane, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links -> link_name -> [Additional
Properties] Publish/subscribe broker profiles

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name
-> [Additional properties] WebSphere MQ links -> link_name -> [Additional Properties]
Publish/subscribe broker profiles

2. In the content pane, either click New to add a new broker profile, or click the name of a existing broker
profile that you want to modify.

3. Add or modify the properties of the broker profile.

For information about the broker profile properties (name, description, broker queue manager name),
see “Publish/subscribe broker profiles [Settings]” on page 2230.

For an existing broker profile you can only modify the description. Note that, for an existing broker
profile created by using the foreign bus connection wizard, the broker profile name was generated
automatically by adding “_broker_profile” to the end of the broker queue manager name.

4. Optional: Under Additional properties, configure the topic mappings for this broker profile. For more
information, see “Adding or modifying topic mappings on the WebSphere MQ link publish/subscribe
broker” on page 539.

5. Click OK.

6. Save your changes to the master configuration.

What to do next

After you have created the broker profile you must ensure that the service integration bus has sufficient
authority on the message broker instance to send subscription requests. You can do this either by
modifying the message broker configuration on the WebSphere MQ network, or by modifying the service
integration bus configuration. See “Defining permissions for a WebSphere MQ link publish/subscribe
broker to work with WebSphere MQ.”

Defining permissions for a WebSphere MQ link publish/subscribe broker to work with WebSphere MQ:

There are several ways to ensure that a service integration bus has authority with a message broker (in a
WebSphere MQ network) to send subscription requests.

Before you begin

Before you start this task, you must have created a broker profile, part of a publish/subscribe bridge on a
WebSphere MQ link.

About this task

When you have created a broker profile you must ensure that the service integration bus has sufficient
authority on the message broker instance to send subscription requests. You can do this either by:

v Modifying the message broker configuration in the WebSphere MQ network if you are a WebSphere MQ
administrator. Or

v Modifying the service integration bus configuration if you are a WebSphere Application Server
administrator.

To ensure authority, complete one of the following steps:

538 Administering WebSphere applications



Procedure

1. Optional: Modify the message broker configuration by granting WebSphere MQ permissions for the
user "SIBServer", which is the user name under which the publish/subscribe bridge control messages
will be published.

2. Optional: Modify the service integration bus by setting the OutboundUserID of the foreign bus that
represents the WebSphere MQ network (which you defined as part of the WebSphere MQ link
configuration). The OutboundUserID should be set to a user ID that already has the relevant
WebSphere MQ permissions on the message broker installation image. By doing this you can be sure
the publish/subscribe bridge control messages will arrive at the message broker in the WebSphere MQ
network with the appropriate user ID set in them.

What to do next

You are now ready to define topic mappings on the publish/subscribe broker profile.

Adding or modifying topic mappings on the WebSphere MQ link publish/subscribe broker:

Define topic mappings on a publish/subscribe broker profile, part of the publish/subscribe bridge on a
WebSphere MQ link. A topic mapping is a mapping between a topic on a service integration bus and a
stream queue and subscription point provided by a WebSphere MQ broker.

Before you begin

You have to know the bus name, messaging engine name, WebSphere MQ link name and the name of
the broker profile on which you intend to define the topic mappings.

About this task

Topic mappings are associated with a WebSphere MQ link publish/subscribe broker profile. Together, the
profile and topic mappings enable publication and subscription with a broker in a WebSphere MQ network.

Note: Publication messages forwarded to a message broker in the WebSphere MQ network are
republished on the same topic as they were originally published to in the service integration bus
topic space, and vice versa.

To define topic mappings, use the administrative console to complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging
engines -> engine_name -> [Additional properties] WebSphere MQ links -> link_name ->
[Additional Properties] Publish/subscribe broker profiles -> profile_name -> [Additional
Properties] Topic mappings

2. In the content pane, either click New to add a new topic mapping, or click the name of a existing
topic mapping that you want to modify. The “Topic Mapping [Settings]” on page 2265 form is
displayed.

3. Type the topic name.

The name of the topic on the service integration bus. The name must be the same as the topic name
on the message broker in a WebSphere MQ network.

The topic name can contain wild cards that are in the service integration bus syntax. For more
information, see Wild cards in topic mapping.

4. Select the name of the topic space that contains the topic. If you don't select a name the default is
used.

5. Select the direction of publication flow. The direction of publication flow can be:

Chapter 12. Welcome to administering Messaging resources 539



Bi-directional
Messages flow in both directions between the bus and WebSphere MQ.

To WebSphere MQ
Messages flow only from the bus to WebSphere MQ. That is, from WebSphere Application
Server to a message broker in the WebSphere MQ network.

From WebSphere MQ
Messages flow only to the bus from WebSphere MQ. That is, from a message broker in the
WebSphere MQ network to WebSphere Application Server.

6. Select the broker stream queue you want to use. If the queue you require is not on the list, click
other, please specify then enter the name of the broker stream queue.

The broker stream queue in this instance is a queue on the WebSphere MQ queue manager to which
the message broker is connected. This queue is being used as the input node for a message flow
containing a publication node. Messages sent to this queue are processed by the message broker,
then published to applications that have subscribed on the topic specified in the message.

Stream names are case sensitive.

After you type a new name, then save your changes, the name becomes available for selection in the
drop-down list.

7. Select the WebSphere MQ message broker subscription point from which the service integration bus
receives messages. If the subscription point you require is not on the list, click other, please specify
then enter the name of the subscription point.

The default subscription point is used if no value is specified.

After you type a new name, then save your changes, the name becomes available for selection in the
drop-down list.

8. Click OK.

9. Save your changes to the master configuration.

10. Optional: If you have enabled dynamic configuration updates, the changes take effect immediately.
Otherwise, restart the application server.

Adding or modifying a WebSphere MQ link receiver channel:

How you can define the properties of the receiver channel on a WebSphere MQ link. This channel
receives messages from the WebSphere MQ queue manager or queue-sharing group (known as the
“gateway queue manager”). The receiver channel communicates with a WebSphere MQ sender channel
on the gateway queue manager, and converts MQ format messages to service integration bus messages.

Before you begin

You have to know the name of the bus, and the messaging engine on the bus that contains the
WebSphere MQ link with the receiver channel you intend to add or modify.

About this task

When you use the foreign bus connection wizard to connect a bus and a gateway queue manager to use
point-to-point messaging or publish-subscribe messaging, the wizard does not ask you to set all possible
properties of a WebSphere MQ link. If you did not choose to Enable Service integration bus to
WebSphere MQ message flow in the foreign bus connection wizard, you have not yet defined a
Websphere MQ receiver channel. If you did choose this option in the wizard, you have defined the
receiver channel name, host name and port number, and the wizard has set the other properties to default
values.

To add or modify a WebSphere MQ link receiver channel, use the administrative console to complete the
following steps:

540 Administering WebSphere applications



Procedure

1. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging
engines -> engine_name -> [Additional properties] WebSphere MQ links -> link_name ->
[Additional Properties] Receiver channel.

2. In the content pane, either click New to add a new receiver channel, or click the name of a existing
receiver channel that you want to modify.

3. Add or modify the properties of the channel.

For information about all the properties that you can modify, see “WebSphere MQ link receiver channel
[Settings]” on page 2302.

If you used the foreign bus connection wizard to create the channel, the wizard has used default
values for the following properties:

Inbound nonpersistent message reliability
The acceptable reliability of message delivery for nonpersistent message flows from
WebSphere MQ through this WebSphere MQ link, from Best effort to Reliable, in order of
increasing reliability. By default, the value is “Reliable”.

Inbound persistent message reliability
The acceptable reliability of message delivery for inbound persistent message flows from
WebSphere MQ through this WebSphere MQ link, from Reliable to Assured, in order of
increasing reliability. By default, the value is “Assured”.

Prefer queue points local to this link's messaging engine
When this check box is selected, the link prefers to send inbound messages to available
queue points of target queue destinations that are located on the same messaging engine as
the link. By default the check box is selected, which corresponds to the behavior in
WebSphere Application Server Version 6 and can make it easier to handle links in a
mixed-version cell. If you clear the check box, preference is not given to local queue points
and inbound messages are workload balanced across all available queue points of target
queue destinations. This option (not to give preference to local queue points) is available only
on links running on WebSphere Application Server Version 7.0 or later.

Initial state
Whether the receiver channel is started or stopped when the associated WebSphere MQ link
is first started. Until started, the channel is unavailable. By default, the value is “Started”.

4. Click OK.

5. Save your changes to the master configuration.

6. Restart the application server.

Adding or modifying a WebSphere MQ link sender channel:

The WebSphere MQ link sender channel sends messages to the WebSphere MQ queue manager or
queue-sharing group (known as the “gateway queue manager”). The sender channel communicates with a
WebSphere MQ receiver channel on the gateway queue manager, and converts service integration bus
messages to MQ format messages. Use this task to add a sender channel if you have not already defined
one, or to fine tune the properties of an existing sender channel.

Before you begin

To be able to complete this task, you must know the name of the bus, and the messaging engine on the
bus that contains the WebSphere MQ link with the sender channel that you intend to add or modify.

About this task

This task allows you to define a WebSphere MQ sender channel if you have not already done so when
using the foreign bus connection wizard to create a foreign bus and link it to the WebSphere MQ network

Chapter 12. Welcome to administering Messaging resources 541



through a WebSphere MQ link. If you did not choose the Enable WebSphere MQ to Service integration
bus message flow option when using the foreign bus connection wizard, you have not yet defined the
sender channel.

If you did choose the Enable WebSphere MQ to Service integration bus message flow option in the
wizard, you will already have defined the sender channel name, host name, communication port and
transport chain. However, the wizard will have set the other properties of the sender channel to default
values, in which case you might need to fine tune these properties using this task.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging
engines -> engine_name -> [Additional properties] WebSphere MQ links -> link_name ->
[Additional Properties] Sender channel.

3. In the content pane, either click New to add a new sender channel, or click the name of a existing
sender channel that you want to modify.

4. Add or modify the properties of the channel.

For information about all the properties that you can modify, see “WebSphere MQ link sender channel
[Settings]” on page 2308.

If you used the foreign bus connection wizard to create the channel, the wizard has used default
values for the following properties:

Disconnect interval
The time in seconds for which the sender channel waits for new messages to arrive on the
transmission queue after sending a batch of messages. The channel disconnects after this
interval, and must be restarted manually or by triggering. By default, the value is 900 seconds.

Short retry count
The maximum number of times that the sender channel tries to restart after a communication
or partner failure. If the connection name list is provided, during each retry the connections are
tried in the order in which they are specified in the connection list until a connection is
successfully established. If the count of remaining retries reaches zero, and the channel has
not restarted, then the long retry mechanism is invoked. By default, the value is 10.

Short retry interval
The number of seconds between attempts by the sender channel to restart after a
communication or partner failure. By default, the value is 60 seconds.

Long retry count
The maximum number of times that the sender channel tries to restart after the short retry
mechanism did not recover from a communication or partner failure. If the connection name list
is provided, during each retry the connections are tried in the order in which they are specified
in the connection list until a connection is successfully established. If the count of remaining
retries reaches zero, and the channel has not restarted, then an error is logged and the
channel is stopped. By default, the value is 999999999.

Long retry interval
The number of seconds between attempts by the sender channel to restart after the short retry
mechanism did not recover from a communication or partner failure. By default, the value is
1200 seconds.

Initial state
Whether the sender channel is started or stopped when the associated WebSphere MQ link is
first started. Until started, the channel is unavailable. By default, the value is “Started”.

5. Click OK.

6. Save your changes to the master configuration.

7. Restart the application server.

542 Administering WebSphere applications



Modifying security for a WebSphere MQ link:

Securing access between a service integration bus and a WebSphere MQ Queue Manager.

About this task

When you create a new WebSphere MQ link, you can use the foreign bus connection wizard to enable
security:

v If the WebSphere MQ queue manager requires a secure connection, you can set the WebSphere MQ
receiver channel to accept only connections that have secure sockets layer (SSL) based encryption.

v If the local bus is secure, you can set the service integration bus inbound user ID to replace the user ID
in messages from the WebSphere MQ queue manager, so that these messages are authorized to
access their destinations.

Inbound user ID
If an inbound user ID is set, then all incoming messages will appear to have originated from that
user ID. If the bus is security enabled then messages will appear authenticated as this user ID
and have access to any resources that the user ID has access to.

If an inbound user ID is not set, then messages will have the same user ID as in the
WebSphere MQ message descriptor (MQMD) header of the WebSphere MQ message. These
users will not be authenticated and therefore only have access to resources that require no
authentication.

Outbound user ID
If an outbound user ID is set, then all outgoing messages will appear to have originated from
that user ID (using the userid field of the MQMD)

If an outbound user ID is not set, then messages will have the same user ID as in the original
service integration bus message.

Use this task to secure the local and foreign bus that are part of a WebSphere MQ links configuration, and
to secure an existing WebSphere MQ link that was not secured when it was first created.

For more general information about service integration bus security, see Securing service integration.

Procedure

1. Enable security on the service integration bus and the foreign bus representing the WebSphere MQ
network. See Securing buses.

2. Secure the link between the buses - see Securing connections to a WebSphere MQ network.

3. Grant access to the local bus for users who will be sending messages to the foreign bus - see
Securing buses.

4. Grant access to the foreign bus for users who will be sending messages to it - see Administering
foreign bus roles.

5. Optional: Give users access to foreign or alias destinations that will forward messages to a foreign bus
- see “Administering destination roles” on page 2075.

Viewing the status of a WebSphere MQ link and its sender and receiver channels:

You might want to view the status of a WebSphere MQ link or its components because you intend to stop
the WebSphere MQ link and you want to see if there are any messages currently held on it, or you are
about to delete the WebSphere MQ link and you have to verify there are no messages on it, or messages
have not arrived at their expected destination and you want to check if they are being held, pending
transmission over the WebSphere MQ link.

Chapter 12. Welcome to administering Messaging resources 543



About this task

To view the status of a WebSphere MQ link, use the administrative console to complete the following
steps.

Note: If you attempt to start a WebSphere MQ sender channel that is already in RUNNING state, the
WebSphere Application Server administrative console might occasionally incorrectly report the
channel status as INACTIVE. If this happens, you can ignore the error because the channel is still
running. To return the channel status to RUNNING, stop and then restart the channel.

Procedure

1. In the navigation pane, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name
-> [Additional properties] WebSphere MQ links

2. Click the WebSphere MQ link you want to view.

3. Click the Runtime tab. The content pane displays the status of the WebSphere MQ link.

4. Click the Configuration tab.

5. Optional: To view the status of the sender channel:

a. Click Sender channel.

b. Click the channel you want to view.

c. Click the Runtime tab. The content pane displays status information for the sender channel. Some
of the more important fields to check are:

v The status of the channel.

v Whether the message on the channel is in an indoubt state. If the message is in doubt, it has
not been acknowledged by WebSphere MQ.

v The number of messages in the current batch.

v The number of batches that have been sent.

v The time and date at which the channel was last started.

v The time and date at which the last message was sent.

d. Click Saved batch status. The content pane displays the saved status of message batches that
have been saved for transmission to WebSphere MQ.

e. If a batch is in an indoubt state, you can either commit or rollback the batch.

6. Optional: To view the status of the receiver channel:

a. Return to the WebSphere MQ link page.

b. Click Receiver channel.

c. Click the Runtime tab. The content pane displays the status of the receiver channel.

d. Click Receiver channel connections. The content pane displays the connections existing on the
receiver channel, and their current status. You can stop connections if required, by selecting the
check box next to the connection and clicking Stop.

e. Return to the receiver channel page.

f. Click Saved batch status. The content pane displays the saved status of message batches that
have been received from WebSphere MQ.

What to do next

You can also view the status of subscriptions for a broker profile on the WebSphere MQ link: “Viewing the
status of subscriptions for a WebSphere MQ link publish/subscribe broker profile” on page 545.

544 Administering WebSphere applications



Viewing the status of subscriptions for a WebSphere MQ link publish/subscribe broker profile:

You can use the administrative console to view the status of subscriptions for a broker profile on a
WebSphere MQ link.

Procedure

1. In the navigation pane, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links -> link_name -> [Additional
Properties] Publish/subscribe broker profiles

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name
-> [Additional properties] WebSphere MQ links -> link_name -> [Additional Properties]
Publish/subscribe broker profiles

2. Click the broker profile containing the subscriptions you want to view.

3. Click the Runtime tab. The content pane displays the current number of subscriptions for the broker
profile.

4. Click Subscriptions. The content pane displays the status of the subscriptions for the broker profile.
Move the mouse pointer over a status icon to view hover help for that icon. You can remove the
runtime subscriptions if required, by clicking Unsubscribe.

States of the WebSphere MQ link and its channels:

For each possible state of a WebSphere MQ link, this table lists the associated states of the link's sender
and receiver channels.

State of WebSphere MQ link
WebSphere MQ link sender
channel

WebSphere MQ link receiver
channel

INACTIVE Same as STOPPED for the
WebSphere MQ link sender. If the
administrator requests that the
channel go into target state
STOPPED it will transition into the
STOPPED state. Similarly, an
administrator starting the channel will
cause it to transition into STANDBY
state.

No network connection exists
between the application server and
the queue manager. If the attempts of
a WebSphere MQ sender channel to
establish a connection should
succeed, it will become possible for
messages to flow from the queue
manager to the messaging engine. In
this case the receiver channel will
transition into RUNNING state.

STARTING A transitional state. The channel
should successfully pass through this
into BINDING state with no
intervention.

A transitional state. The channel
should successfully pass through this
into BINDING state with no
intervention.

BINDING A transitional state. The channel
should successfully pass through this
into RUNNING state with no
intervention. The channel might
transition into STOPPING state if a
problem occurs.

A transitional state. The channel
should successfully pass through this
into RUNNING state with no
intervention. The channel might
transition into STOPPING state if a
problem occurs.

INITIALIZING A transitional state. The channel
should successfully pass through this
into STARTING state with no
intervention.

A transitional state. The channel
should successfully pass through this
into STARTING state with no
intervention.

Chapter 12. Welcome to administering Messaging resources 545



State of WebSphere MQ link
WebSphere MQ link sender
channel

WebSphere MQ link receiver
channel

RETRYING A network connection to the queue
manager has been lost. The channel
attempts to reconnect. If the retry
intervals are exhausted without
successfully establishing the
connection then the channel enters
STOPPED state. If a connection is
successfully reestablished, the
channel enters INITIALIZING state.

Not applicable to receiver channel.

STANDBY When in this state, the sender
channel is not network-connected to
its WebSphere MQ counterpart
receiver channel. It is waiting for a
message to send before attempting to
establish a connection. When a
message arrives for transmission, the
channel will transition into STARTING
state and start the process of
attempting to establish a network
connection. The administrator may
command the channel to transition
into either INACTIVE or STOPPED
state from this state.

Not applicable to receiver channel.

RUNNING In this state a network connection has
been established between application
server and queue manager.
Messages destined for the queue
manager will be transmitted. Either
attempting to stop the channel by
using the administrative console, or
the loss of the network connection will
cause transition into the STOPPING
state.

Network connection established
between application server and queue
manager. Messages destined for the
messaging engine will be received.
Attempting to stop the channel, or the
loss of the network connection will
cause a transition into STOPPING
state.

STOPPING A transitional state. The channel
should transition into either
RETRYING state or STOPPED state
without intervention. If the channel
has been placed in STOPPING state
by the administrative request to
become INACTIVE then it will
transition into the STANDBY state. If
the channel has been placed in this
state by administrator request to stop,
it will transition into the STOPPED
state. If the channel has been placed
in this state by a broken network
connection it will transition into the
RETRYING state, assuming that it
has non-zero retry intervals or is
otherwise STOPPED.

A transitional state. The channel will
transition from this state into
STOPPED without intervention.

546 Administering WebSphere applications



State of WebSphere MQ link
WebSphere MQ link sender
channel

WebSphere MQ link receiver
channel

STOPPED No network connection exists
between the application server and
the queue manager. Messages
destined for the queue manager will
not be transmitted. To transition from
this state requires the administrator to
start the channel, this will place it in
STANDBY state.

No network connection exists
between the application server and
the queue manager. Any attempt by a
sender channel in the WebSphere
MQ network to establish a connection
will be rejected. Messages destined
for the messaging engine will not be
received. Administrator action is
required to move the channel out of
this state. Starting the channel will
move it into INACTIVE state.

For information about the states of the channels in a WebSphere MQ network refer to the
Intercommunication section of the WebSphere MQ information center, available from the WebSphere MQ
library.

You can stop a WebSphere MQ link (and its sender and receiver channels) on a service integration bus, or
you can stop individual sender or receiver channels. The following sections describe in more detail what
happens when you transition between states.

Stopping a WebSphere MQ link

Stopping a WebSphere MQ link results in both the WebSphere MQ link sender and the WebSphere MQ
link receiver channels being stopped:

v If a currently RUNNING WebSphere MQ link is stopped in state STOPPED with mode QUIESCE, the
overall state of the WebSphere MQ link goes to STOPPED state. The WebSphere MQ link sender
channel goes to STOPPED state. The WebSphere MQ link receiver channel goes to STOPPED state.

v If a currently RUNNING WebSphere MQ link is stopped in state INACTIVE with mode QUIESCE, the
overall state of the WebSphere MQ link remains set to RUNNING. The WebSphere MQ link sender
channel goes to STANDBY state. The WebSphere MQ link receiver channel goes to INACTIVE state.
The WebSphere MQ sender channel will stop when convenient, as described later in this section.

v If a currently RUNNING WebSphere MQ link is stopped in state STOPPED with mode FORCE, the
overall state of the WebSphere MQ link goes to STOPPED state. The WebSphere MQ link sender
channel goes to STOPPED state. The WebSphere MQ link receiver channel goes to STOPPED state.

v If a currently RUNNING WebSphere MQ link is stopped in state INACTIVE with mode FORCE, the
overall state of the WebSphere MQ link remains set to RUNNING. The WebSphere MQ link sender
goes to STANDBY state. The WebSphere MQ link receiver channel goes to INACTIVE state.

Stopping a WebSphere MQ link sender channel

Stopping a WebSphere MQ link sender stops only the WebSphere MQ link sender channel. (However,
when the WebSphere MQ link sender channel is stopped, it communicates with the receiver channel in the
WebSphere MQ network to say it is stopping, with the result that the receiver channel on WebSphere MQ
stops and goes into inactive state.)

If a currently RUNNING WebSphere MQ link sender channel is stopped in state STOPPED, it goes to
STOPPED state.

If a currently RUNNING WebSphere MQ link sender channel is stopped in state INACTIVE, it goes to
STANDBY state.

Chapter 12. Welcome to administering Messaging resources 547

http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/


Stopping a WebSphere MQ link receiver channel

Stopping a WebSphere MQ link receiver stops all receiver channel connections for that receiver.

If a currently RUNNING WebSphere MQ link receiver channel is stopped in state STOPPED, it goes to
STOPPED state. The sender channel in the WebSphere MQ network will notice, either when it tries to next
send some data, or when its heartbeat interval is reached and it tries to send a heartbeat flow, or when its
disconnect interval expires and it attempts to close the session, that the WebSphere MQ link receiver in
the service integration bus is in STOPPING state and itself stop and then enter a state of RETRYING. The
WebSphere MQ link receiver will then go to STOPPED state, so preventing a sender channel in the
WebSphere MQ network from establishing a session.

If a sender channel in the WebSphere MQ network is started while a WebSphere MQ link receiver channel
in a service integration bus is in STOPPED state, the request fails with an error indicating that the
WebSphere MQ link receiver channel is not available.

If a currently RUNNING WebSphere MQ link receiver channel is stopped in state INACTIVE, it goes to
STOPPING state. The sender channel in the WebSphere MQ network will notice, either when it tries to
next send some data, or when its heartbeat interval is reached and it tries to send a heartbeat flow, or
when its disconnect interval expires and it attempts to close the session, that the WebSphere MQ link
receiver is in STOPPING state and itself stop and then enter a state of RETRYING. The WebSphere MQ
link receiver will then go to INACTIVE state. The RETRYING sender channel in the WebSphere MQ
network will then establish a session with the WebSphere MQ link receiver channel, at which point both
channels will go to RUNNING state.

WebSphere MQ link receiver channel connection

Stopping a WebSphere MQ link receiver channel connection stops only that connection. Individual
connections can only be stopped in target state INACTIVE.

Modes of a stopped WebSphere MQ link

When an active WebSphere MQ link receiver channel connection is stopped, the connection goes to a
state of STOPPING. The sender channel in the WebSphere MQ network will notice, either when it tries to
next send some data, or when its heartbeat interval is reached and it tries to send a heartbeat flow, or
when its disconnect interval expires and it attempts to close the session, that the WebSphere MQ link
receiver is in STOPPING state and itself stop and then enter a state of RETRYING.

The MODE has an effect on the stopping of channels.

1. QUIESCE, the channel stops when it is convenient for it to do so.

For a WebSphere MQ link sender channel, the link sender goes to STANDBY or STOPPED state
(depending on the stop state specified), this can occur either when it reaches the end of the current
batch, or when it reaches a heartbeat interval.

In the case of a WebSphere MQ link receiver, the link receiver goes to STOPPING state and then to
INACTIVE or STOPPED state (depending on the stop state specified) when the sender in the
WebSphere MQ network next attempts to communicate with it. Though, if a WebSphere MQ link
receiver channel goes INACTIVE and the sender channel in the WebSphere MQ network goes to
RETRYING, then as soon as a session is reestablished, both ends will go to RUNNING state.

2. FORCE, the channel stops immediately.

For a WebSphere MQ link sender channel, the WebSphere MQ link sender goes to STANDBY or
STOPPED state (depending on the stop state specified).

For a WebSphere MQ link receiver, the WebSphere MQ link receiver goes to INACTIVE or STOPPED
state (depending on the stop state specified). When the sender channel in the WebSphere MQ

548 Administering WebSphere applications



network next tries to communicate with the WebSphere MQ link receiver, it will either enter a state of
RETRYING and reestablish a session with the WebSphere MQ link receiver, or go to a STOPPED
state.

WebSphere MQ link sender channels can go to INDOUBT state (as can sender channels in a WebSphere
MQ network). WebSphere MQ link receiver channels do not go to INDOUBT state.

While sending a batch of persistent messages, a WebSphere MQ link sender channel goes to a state of
INDOUBT. When it commits the batch, it sends a commit request to the partner and waits for confirmation.
When the partner sends a confirmation, the batch is finally committed and the sender channel is no longer
in INDOUBT state. If the partner fails to send a confirmation flow, then the sender channel will remain in
INDOUBT state.

INDOUBT batches can be COMMITTED or ROLLED back from the Saved Status panel for WebSphere
MQ link sender channels.

Starting a WebSphere MQ link:

Change the state of a WebSphere MQ link from stopped to started.

Before you begin

You might want to tell the WebSphere MQ administrator that you are about to start this WebSphere MQ
link.

About this task

To start a WebSphere MQ link, use the administrative console to complete the following steps.

Procedure

1. In the navigation pane, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name
-> [Additional properties] WebSphere MQ links

2. In the content pane, select the check box next to the WebSphere MQ link you want to start.

3. Click Start.

Results

If the WebSphere MQ link starts successfully, the status icon changes to indicate that the WebSphere MQ
link is running.

Stopping a WebSphere MQ link:

You can change the state of a WebSphere MQ link from "Started" or "Running" to "Stopped". When you
stop a WebSphere MQ link, all communication with the target WebSphere MQ network is stopped for both
point-to-point and publication and subscription. Messages waiting for transmission are held on the service
integration bus, and the MQ sender channel cannot start. If there is a publish/subscribe bridge on the
WebSphere MQ link, its operations are stopped.

Before you begin

Inform the WebSphere MQ administrator that you are about to stop this WebSphere MQ link.

Chapter 12. Welcome to administering Messaging resources 549



About this task

To stop a WebSphere MQ link, use the administrative console to complete the following steps. You can
also stop either the sender or receiver channel on the WebSphere MQ link, while leaving the link itself
running. See “Stopping the sender channel on a WebSphere MQ link” on page 552, and “Stopping the
receiver channel on a WebSphere MQ link.”

Procedure

1. In the navigation pane, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name
-> [Additional properties] WebSphere MQ links

2. In the content pane, select the check box next to the WebSphere MQ link that you want to stop.

3. In the Stop mode list, select "Quiesce" or "Force".

4. In the Target state list select "Inactive" or "Stopped".

5. Click Stop.

Results

The resultant state of the WebSphere MQ link, its sender and receiver channels, and the WebSphere MQ
sender channel that is connected to the WebSphere MQ link receiver channel, depends on the options you
chose:

v Stopping the WebSphere MQ link to target state INACTIVE causes the sender channel to go into state
STANDBY and the receiver channel to go into state INACTIVE. The overall WebSphere MQ link status
will be RUNNING.

v Stopping the WebSphere MQ link to target state STOP causes the sender channel to go into state
STOPPED and the receiver channel to go into state STOPPED. The overall WebSphere MQ link status
will be STOPPED.

These are the final states that the sender, receiver and WebSphere MQ link transition into. If you specify a
mode of QUIESCE for either of the two final states, the channels and link might not transition into their
final states immediately. Instead they temporarily transition through other states that are required to reach
their final state.

For more details about stopped states of the WebSphere MQ link, see “States of the WebSphere MQ link
and its channels” on page 545.

What to do next

You can restart the WebSphere MQ link by selecting the link again and clicking Start.

If the WebSphere MQ link is started and the sender channel is in the stop state, it goes into the standby
state. The sender channel goes into negotiation with the partner receiver channel if it is started from the
standby state. The sender channel then moves into the running state if the negotiation successful, or into
the retry state if the negotiation fails. If messages are present when the WebSphere MQ link is started, the
sender channel automatically goes into negotiation with its partner receiver channel and then moves to the
running or retry state.

When the WebSphere MQ link is stopped, and not in doubt, you can delete the WebSphere MQ link and
any associated publish/subscribe broker profiles and topic mappings as described in “Removing a foreign
bus connection from a bus” on page 1999.

Stopping the receiver channel on a WebSphere MQ link:

550 Administering WebSphere applications



You can stop the receiver channel on a WebSphere MQ link while leaving the link itself running.

Before you begin

Note: If you stop the receiver channel on a WebSphere MQ link, communication with the target
WebSphere MQ network on that channel will cease for both point-to-point messaging and
publishing and subscribing. Messages will be held at their transmission locations.

You might want to warn the administrator of the WebSphere MQ network that you are about to stop the
channel.

About this task

If you stop a receiver channel, messages sent to the WebSphere MQ link engine are not received.

If a WebSphere MQ sender channel is started while an MQ link receiver channel is stopped, the request
fails with an error indicating that the receiver channel is not available.

For more information about stopped states of the WebSphere MQ link and its channels, see “States of the
WebSphere MQ link and its channels” on page 545.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging
engines -> engine_name -> [Additional properties] WebSphere MQ links -> link_name ->
[Additional Properties] Receiver channel.

3. Select the check box next to the channel you want to stop.

4. In the Stop mode list, select Quiesce or Force.

5. In the Target state list, select Inactive or Stopped.

6. Click Stop.

Results

Stopping a receiver channel stops all the receiver channel connections for that receiver. The resultant
state of the receiver channel, and the sender channel in the WebSphere MQ network with which it is
communicating, depends on the options you choose:

Table 37. Stop modes. The table contains information about the target states and the corresponding stop modes for
stopping the receiver channel on a WebSphere MQ link. There are two target states such as inactive and stopped,
and there are two stop modes such as quiesce and force. The rows in the table represent the two target states, and
the two stop modes are described in the two columns for each of the target state.

Target state Quiesce stop mode Force stop mode

Inactive The receiver channel moves to the
stopping state and the data flow to the
WebSphere MQ sender channel stops.
When the WebSphere MQ sender channel
next tries to communicate with the receiver
channel the WebSphere MQ sender
channel enters a state of retrying. The
receiver channel then becomes inactive.
The retrying WebSphere MQ sender
channel then reestablishes a session with
the receiver channel, and both channels
become running.

The receiver channel immediately
becomes inactive. When the WebSphere
MQ sender channel next tries to
communicate with the receiver channel,
the WebSphere MQ sender channel enters
a state of retrying. The retrying
WebSphere MQ sender channel then
reestablishes a session with the receiver
channel, and both channels become
running.

Chapter 12. Welcome to administering Messaging resources 551



Table 37. Stop modes (continued). The table contains information about the target states and the corresponding
stop modes for stopping the receiver channel on a WebSphere MQ link. There are two target states such as inactive
and stopped, and there are two stop modes such as quiesce and force. The rows in the table represent the two
target states, and the two stop modes are described in the two columns for each of the target state.

Target state Quiesce stop mode Force stop mode

Stopped The receiver channel moves to the
stopping state and the data flow to the
WebSphere MQ sender channel stops.
When the WebSphere MQ sender channel
next tries to communicate with the receiver
channel the WebSphere MQ sender
channel enters a state of retrying. The
receiver channel then becomes stopped,
so preventing the WebSphere MQ sender
channel from reestablishing a session. The
WebSphere MQ sender channel itself then
becomes stopped.

The receiver channel immediately
becomes stopped. When the WebSphere
MQ sender channel next tries to
communicate with the receiver channel,
the WebSphere MQ sender channel enters
a state of retrying, and then becomes
stopped itself.

Stopping the sender channel on a WebSphere MQ link:

You can stop the sender channel on a WebSphere MQ link while leaving the link itself running.

Before you begin

You might want to tell the WebSphere MQ network administrator that you are about to stop a channel.

About this task

When you stop the sender channel on a WebSphere MQ link, communication with the target WebSphere
MQ network on that channel is stopped for both point-to-point messaging and publishing and subscribing.
Messages are held at their transmission locations.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging
engines -> engine_name -> [Additional properties] WebSphere MQ links -> link_name ->
[Additional Properties] Sender channel.

3. Select the check box next to the channel you want to stop.

4. In the Stop mode list, select Quiesce or Force.

5. In the Target state list, select Inactive or Stopped.

6. Click Stop.

Results

Only the sender channel is affected by this procedure. The resultant state of the sender channel depends
on the options you chose:

Table 38. Stop modes. The table contains information about the target states and the corresponding stop modes for
stopping the sender channel on a WebSphere MQ link. There are two target states such as inactive and stopped,
and there are two stop modes such as quiesce and force. The rows in the table represent the two target states, and
the two stop modes are described in the two columns for each of the target state.

Target state Quiesce stop mode Force stop mode

Inactive The sender channel becomes inactive
either when it has finished processing its
current batch, or when it reaches a
heartbeat interval.

The sender channel immediately becomes
inactive.

552 Administering WebSphere applications



Table 38. Stop modes (continued). The table contains information about the target states and the corresponding
stop modes for stopping the sender channel on a WebSphere MQ link. There are two target states such as inactive
and stopped, and there are two stop modes such as quiesce and force. The rows in the table represent the two
target states, and the two stop modes are described in the two columns for each of the target state.

Target state Quiesce stop mode Force stop mode

Stopped The sender channel becomes stopped
either when it has finished processing its
current batch, or when it reaches a
heartbeat interval.

The sender channel immediately becomes
stopped.

For more information about stopped states of the WebSphere MQ link and its channels, see “States of the
WebSphere MQ link and its channels” on page 545.

Deleting a WebSphere MQ link publish/subscribe broker profile:

This describes how you delete a broker profile and all topic mappings on a WebSphere MQ link, which
forms a publish/subscribe bridge between WebSphere Application Server and a WebSphere MQ network.

Before you begin

Before you start you have to know the names of the bus, messaging engine, and WebSphere MQ link that
has the broker profile that you intend to delete. You should also consider informing the WebSphere MQ
administrator that you are about to delete the connection to the message broker in the WebSphere MQ
network.

If you also intend to delete the associated WebSphere MQ link, you need not complete this task. Refer
instead to “Removing a foreign bus connection from a bus” on page 1999.

About this task

Deleting a broker profile is a three-stage operation to ensure both the application server and the
WebSphere MQ network and its message brokers are synchronized after the deletion:

v Remove the subscriptions by unsubscribing the topic mappings on the broker profile.

v When the Runtime view is empty, delete the broker profile.

v If you have enabled dynamic configuration updates, the changes take effect immediately, otherwise
restart the application server.

Note: If you remove the subscriptions but do not delete the broker profile, then the subscriptions are
recreated when the server is restarted (because they are still present in the static configuration
information for the WebSphere MQ link). These subscriptions are unrelated to the original
subscriptions so this can lead to some messages in a publication flow being missing for subscribers
on the target side of the bridge. For example, any messages published on an unsubscribed topic
between the time the unsubscribe took place and the application server was restarted are not
republished to the target side of the WebSphere MQ link.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging
engines -> engine_name -> [Additional properties] WebSphere MQ links -> link_name ->
[Additional Properties] Publish/subscribe broker profiles -> profile_name.

3. Remove the subscriptions:

a. Click the Runtime tab.

b. Click Subscriptions.

Chapter 12. Welcome to administering Messaging resources 553



c. Click Unsubscribe to remove all the subscriptions listed. When an unsubscribe command is sent
to the message broker in the WebSphere MQ network, the relevant topic mapping is put into an
indoubt state until the unsubscribe is confirmed when the topic mapping is deleted. After the
unsubscribe is confirmed the topic mapping is no longer shown in the runtime view. You might have
to refresh the runtime view for all subscriptions to be shown as removed.

4. Delete the broker profile:

a. Return to the Publish/subscribe broker profiles page.

b. Select the check box next to the broker profile you want to delete.

c. Click Delete.

5. Save your changes to the master configuration.

6. Optional: If you have enabled dynamic configuration updates, the changes take effect immediately.
Otherwise, restart the application server.

Deleting a topic mapping on a WebSphere MQ link publish/subscribe broker profile:

This describes how you delete a topic mapping on a broker profile on a WebSphere MQ link, which forms
part of a publish/subscribe bridge between WebSphere Application Server and WebSphere MQ.

Before you begin

Before you start you have to know the bus name, messaging engine name, WebSphere MQ link name
and broker profile name on which you intend to delete the topic mapping.

Note:

v If you intend to delete all topic mappings before deleting the broker profile or the WebSphere MQ
link, you can avoid restarting the application server more than once by following the steps given
in “Deleting a WebSphere MQ link publish/subscribe broker profile” on page 553.

v Deleting a topic mapping is a two-stage operation to ensure both the WebSphere Application
Server (base) and the message brokers in the WebSphere MQ network are synchronized once
the deletions have taken place:

1. Delete the topic mapping (see below).

2. When you have deleted the topic mappings, the changes take effect immediately if you have
enabled dynamic configuration updates, otherwise restart the application server.

About this task

To delete a topic mapping, use the administrative console to complete the following steps.

Procedure

1. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging
engines -> engine_name -> [Additional properties] WebSphere MQ links -> link_name ->
[Additional Properties] Publish/subscribe broker profiles -> profile_name -> [Additional
Properties] Topic mappings

2. Select the check box next to the topic mapping you want to delete.

3. Click Delete.

4. Save your changes to the master configuration.

What to do next

Any topic mappings that you have deleted are automatically cleaned up by the publish/subscribe bridge
when the application server is restarted.

554 Administering WebSphere applications



Using a WebSphere MQ server to integrate WebSphere MQ queues into a bus
A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. For interoperation with WebSphere Application Server Version 7.0 or later, the
version of WebSphere MQ must be WebSphere MQ for z/OS Version 6 or later, or WebSphere MQ
(distributed platforms) Version 7 or later.

Before you begin

WebSphere Application Server can interoperate with WebSphere MQ in any of the following ways:

v Using the WebSphere MQ messaging provider

v Using a WebSphere MQ link

v Using a WebSphere MQ server

Each type of interoperation is designed for different situations, and provides different advantages. For
information about the differences between these approaches, see “Interoperating with a WebSphere MQ
network” on page 526.

Decide which method to use to configure these resources. You can configure WebSphere MQ server
resources by using the administrative console as described in this task, or by using the
“SIBAdminCommands: WebSphere MQ server administrative commands for the AdminTask object” on
page 2452.

About this task

To set up and use a WebSphere MQ server, you configure the server properties, add the server to a
service integration bus as a bus member, and create a WebSphere MQ queue-type destination.
Destinations that are assigned to a WebSphere MQ server bus member can also be mediated.

You add the WebSphere MQ server as a bus member so that messaging engines on the bus can access
queues on the target WebSphere MQ system. If your WebSphere MQ server is connected to a
queue-sharing group, your bus applications can access shared queues on the target installation.

Notes:

v You can configure a WebSphere MQ server to connect to a WebSphere MQ queue manager by
using either a bindings mode or a client mode connection. To use client mode with WebSphere
MQ for z/OS, you need an additional product called the Client Attach Facility.

v You should configure the queues on the WebSphere MQ network as “shareable”. This allows
multiple server instances to get messages from the queues.

Procedure
1. Create a WebSphere MQ server definition and configure the server properties.

2. Add the new WebSphere MQ server as a member of a bus so that messaging engines on the bus can
access queues on the target WebSphere MQ installation.

3. Create a WebSphere MQ queue type destination for the new bus member and assign it to a
WebSphere MQ queue.

4. Optional: Mediate the new destination by using the WebSphere MQ queue as the mediation point.

Creating a WebSphere MQ server definition:

A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. To create a WebSphere MQ server definition, you use the administrative console to
define the server connection and quality of service properties.

Chapter 12. Welcome to administering Messaging resources 555



Before you begin

Decide which method to use to configure these resources. You can create a new WebSphere MQ server
definition by using the administrative console as described in this task, or by using the
“createSIBWMQServer command” on page 2453.

About this task

A WebSphere MQ server definition defines the connection to an underlying WebSphere MQ queue
manager or queue-sharing group and the associated queues.

When you subsequently add the server as a member of a service integration bus, you can optionally
override the server connection settings with the bus connection settings. This means that you can create a
WebSphere MQ server definition that is specific to a bus, yet reusable in a multiple bus topology.

Procedure

1. Start the administrative console.

2. Complete either of the following sub-steps:

a. Navigate to Servers -> New server, choose a server type of “WebSphere MQ server”, then click
Next.

b. Navigate to Servers -> Server Types -> WebSphere MQ servers, then click New.

The “WebSphere MQ server [Settings]” on page 2349 form is displayed.

3. Complete the fields as required.

For more information, refer to the “WebSphere MQ server [Settings]” on page 2349 form and the
following notes:

Name
The name that you use for this WebSphere MQ server definition must be unique.

UUID
This identifier is assigned automatically when you create a new WebSphere MQ server definition.

Use bindings transport mode if available
To connect to a WebSphere MQ queue manager or queue-sharing group in bindings mode,
WebSphere Application Server needs to know where to load native libraries from. This information
is stored in the Native library path property of the WebSphere MQ messaging provider. If you
want to use a direct binding to WebSphere MQ, rather than a TCP/IP network connection, select
this option and configure the Native library path property as described in “Configuring the
WebSphere MQ messaging provider with native libraries information” on page 692.

If you are using Resource Access Control Facility (RACF®) as the security manager on your
WebSphere MQ for z/OS system, and using bindings transport mode, you must specify in
uppercase characters the user names and passwords for authentication aliases. If you are using
RACF and client transport mode, you can specify the user names and passwords in either upper
or lowercase characters.

Test connection
After you have configured the Connection properties, click this button to test the connection to
WebSphere MQ.

Trust user identifiers received in messages
Select this option if you do not want the user IDs in messages to be overwritten with the
administrative name of the WebSphere MQ server.

JAAS - J2C authentication data
This item is not available until after the WebSphere MQ server definition has been created.

4. Click OK to confirm.

556 Administering WebSphere applications



5. Save your changes to the master configuration.

6. Restart the application server.

What to do next

You are now ready to add the new WebSphere MQ server as a member of a bus.

Modifying a WebSphere MQ server definition:

A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. This topic describes how to modify a WebSphere MQ server connection and quality
of service properties.

Before you begin

Decide which method to use to configure these resources. You can modify a WebSphere MQ server by
using the administrative console as described in this task, or by using the “modifySIBWMQServer
command” on page 2455.

About this task

A WebSphere MQ server definition defines the connection to an underlying WebSphere MQ queue
manager or queue-sharing group and the associated queues.

When you modify a WebSphere MQ server definition, you do not change any configuration values
previously inherited from this WebSphere MQ server by existing bus members. For example, suppose you
create a WebSphere MQ server with the port number 1234, then add the server to a bus and specify that
server port number. If you subsequently modify the WebSphere MQ server port number to 2345, the bus
member you previously created is not affected and still has the port number 1234.

Procedure

1. Start the administrative console.

2. Navigate to Servers -> Server Types -> WebSphere MQ servers -> server_name. The “WebSphere
MQ server [Settings]” on page 2349 form is displayed.

3. Make modifications as required.

For more information, refer to the “WebSphere MQ server [Settings]” on page 2349 form and the
following notes:

UUID
This identifier is assigned automatically when you create a new WebSphere MQ server definition.

Use bindings transport mode if available
To connect to a WebSphere MQ queue manager or queue-sharing group in bindings mode,
WebSphere Application Server needs to know where to load native libraries from. This information
is stored in the Native library path property of the WebSphere MQ messaging provider. If you
want to use a direct binding to WebSphere MQ, rather than a TCP/IP network connection, select
this option and configure the Native library path property as described in “Configuring the
WebSphere MQ messaging provider with native libraries information” on page 692.

If you are using Resource Access Control Facility (RACF) as the security manager on your
WebSphere MQ for z/OS system, and using bindings transport mode, you must specify in
uppercase characters the user names and passwords for authentication aliases. If you are using
RACF and client transport mode, you can specify the user names and passwords in either upper
or lowercase characters.

Chapter 12. Welcome to administering Messaging resources 557



Test connection
After you have configured the Connection properties, click this button to test the connection to
WebSphere MQ.

Trust user identifiers received in messages
Select this option if you do not want the user IDs in messages to be overwritten with the
administrative name of the WebSphere MQ server.

4. Click OK to confirm.

5. Save your changes to the master configuration.

6. Restart the application server.

Deleting a WebSphere MQ server definition:

A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. This topic describes how to delete a WebSphere MQ server definition.

Before you begin

Decide which method to use to configure these resources. You can delete a WebSphere MQ server by
using the administrative console as described in this task, or by using the “deleteSIBWMQServer
command” on page 2460.

Ensure that no application is putting messages to the bus members located on the WebSphere MQ server.

Inform the WebSphere MQ administrator that the WebSphere MQ server is about to be deleted and
therefore will no longer interoperate with its WebSphere MQ queue manager or queue-sharing group in the
WebSphere MQ network.

About this task

When you delete a WebSphere MQ server definition, the deletion process also modifies the following
associated resources:

v It deletes all WebSphere MQ server bus members that were created when the server was added to
service integration buses.

v It unmediates all destinations that were assigned to those bus members.

v It removes all queue points that were assigned to those bus members.

Deleting a WebSphere MQ server definition does not affect the associated queue managers,
queue-sharing groups, queues or messages on your WebSphere MQ network.

Procedure

1. Start the administrative console.

2. Navigate to Servers -> Server Types -> WebSphere MQ servers. The “WebSphere MQ servers
[Collection]” on page 2349 form is displayed.

3. Select the check box next to the WebSphere MQ server you want to delete.

4. Click Delete. If the processing completes successfully, the list of WebSphere MQ servers is updated.
Otherwise, an error message is displayed.

5. Save your changes to the master configuration.

6. Restart the application server.

Adding a WebSphere MQ server as a member of a bus:

558 Administering WebSphere applications



A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. A WebSphere MQ server bus member is used as a bus member for assigning queue
points and mediation points to WebSphere MQ queues.

Before you begin

Get details of the client connection from your WebSphere MQ administrator.

Ensure that the WebSphere MQ server has been configured, that the bus has been defined and that the
server is not already a member of the bus.

Decide which method to use to configure these resources. You can add the WebSphere MQ server as a
bus member by using the administrative console as described in this task, or by using the
“addSIBusMember command” on page 2364.

About this task

When you add a WebSphere MQ server to one or more buses, messaging engines on these buses can
access queues on the target WebSphere MQ installation. When you make the server a bus member, you
can override the server connection settings with settings that are specific to the new bus member. This
can be useful in a multiple bus topology.

Procedure

1. Start the administrative console.

2. Navigate to the list of bus members for the bus to which you are adding the WebSphere MQ server.

Click Service integration -> Buses -> bus_name -> [Topology] Bus members.

3. Click Add. The “Add a new bus member” wizard is displayed.

4. Select the WebSphere MQ server to add to the bus:

a. Select WebSphere MQ server.

b. From the drop-down list, select the server to add.

c. Click Next.

5. Specify the virtual queue manager name.

When sending messages to WebSphere MQ, the WebSphere MQ gateway queue manager sees the
bus as a remote queue manager. The virtual queue manager name is the name that is passed to
WebSphere MQ as the name of this remote queue manager. The default value is the name of the
bus. If this value is not a valid name for a WebSphere MQ queue manager, or if another WebSphere
MQ queue manager already exists that has the same name, then replace the default value with
another value that is a valid and unique name for a WebSphere MQ queue manager. To be valid, the
name must meet the following criteria:

v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the Rules for naming WebSphere
MQ objects topic in the WebSphere MQ information center).

6. Optional: To override the server connection settings, select the Override WebSphere MQ server
connection properties check box.

When you select this option, the connection properties for the server are made available so that you
can change them to settings that are specific to this bus member. For more information about these
connection properties, see “WebSphere MQ server bus member [Settings]” on page 2346.

7. Optional: If you have changed the server connection settings, you can click Test connection to test
the connection to the associated WebSphere MQ network.

8. Click Next.

9. Click Finish to confirm.

Chapter 12. Welcome to administering Messaging resources 559



10. Save your changes to the master configuration.

What to do next

You are now ready to create a WebSphere MQ queue-type destination for the new bus member.

Modifying a WebSphere MQ server bus member definition:

A WebSphere MQ server bus member is used for assigning queue points and mediation points to
WebSphere MQ queues. This topic describes how to modify the attributes of a WebSphere MQ server bus
member.

Before you begin

Decide which method to use to configure these resources. You can modify a WebSphere MQ server bus
member by using the administrative console as described in this task, or by using the
“modifySIBWMQServerBusMember command” on page 2461.

About this task

A WebSphere MQ server provides a direct client connection between a service integration bus and queues
on a WebSphere MQ queue manager or (for WebSphere MQ for z/OS) queue-sharing group. This
command modifies the attributes of a WebSphere MQ server bus member.

Procedure

1. Start the administrative console.

2. Navigate to Service integration -> Buses -> bus_name -> [Topology] Bus members ->
member_name. The “WebSphere MQ server bus member [Settings]” on page 2346 form is displayed.

3. Make modifications as required. For more information, refer to the “WebSphere MQ server bus
member [Settings]” on page 2346 form.

4. After you have configured the Connection settings, click Test connection to test the connection
toWebSphere MQ.

5. When you have made all the changes that you require, click OK to confirm.

6. Save your changes to the master configuration.

7. Restart the application server.

Deleting a WebSphere MQ server bus member definition:

A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. You cannot delete a WebSphere MQ server bus definition directly. Instead, when
you delete a specified WebSphere MQ server, you remove any associated WebSphere MQ server bus
members, as well as assigned queue points and mediation points.

Before you begin

Decide which method to use to configure these resources. You can delete a WebSphere MQ server by
using the administrative console as described in “Deleting a WebSphere MQ server definition” on page
558, or by using the “deleteSIBWMQServer command” on page 2460.

About this task

When you delete a WebSphere MQ server definition, the deletion process also modifies the following
associated resources:

560 Administering WebSphere applications



v It deletes all WebSphere MQ server bus members that were created when the server was added to
service integration buses.

v It un-mediates all destinations that were assigned to those bus members.

v It removes all queue points that were assigned to those bus members.

Deleting a WebSphere MQ server definition does not affect the associated queue managers,
queue-sharing groups, queues or messages on your WebSphere MQ network.

Creating a queue-type destination and assigning it to a WebSphere MQ queue:

You can use the administrative console to create a queue-type destination and assign it to a WebSphere
MQ queue. Select the WebSphere MQ server to host the queue, then specify the WebSphere MQ queue
to be hosted.

Before you begin

Get the name of the WebSphere MQ queue from your administrator, and ensure that the following
configuration is established:

v The WebSphere MQ server is added as a member of a bus

v The WebSphere MQ queue for the queue point exists

v The WebSphere MQ administrator has set the queue attributes to “shareable”

Note: A shareable queue can be accessed by more than one service integration application.

Decide which method to use to configure these resources. You can create a bus destination by using the
administrative console as described in this task, or by using the “createSIBDestinations command” on
page 2425.

About this task

After you have added a WebSphere MQ server as a bus member, you can create a queue-type
destination on the bus member that uses a WebSphere MQ queue as a queue point. This configuration
enables service integration applications to send messages to and receive messages from that queue.

Procedure

1. Start the administrative console.

2. Navigate to the list of destinations for the appropriate bus.

Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations.

The “Destinations [Collection]” on page 2138 form is displayed.

3. Click New. The “Create a new destination” panel is displayed.

4. Select Queue as the destination type, then click Next. The “create a new queue” wizard is displayed.

5. Set the queue attributes. Enter the name that you want WebSphere Application Server to use to refer
to the associated WebSphere MQ queue, and (optionally) a description of the queue.

6. Assign the queue to the bus member that is to store and process the messages for the queue.

Select a WebSphere MQ server bus member from the list of available bus members.

7. Set the WebSphere MQ queue point attributes:

a. Specify a value in the WebSphere MQ queue name filter field, then click Go.

The wizard automatically discovers available WebSphere MQ queues. However, some WebSphere
MQ topologies have many thousands of queues defined to a queue manager. Use this filter to limit
the number of queues that are listed.

Chapter 12. Welcome to administering Messaging resources 561



The default filter value is an asterisk (*). If this value (or no value) is set then all queues, or all
queues of a specific type (based on any queue type custom property that is set), are listed. Any
other value that you specify must meet the following criteria:

v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the Rules for naming
WebSphere MQ objects topic in the WebSphere MQ information center).

You can also use the wildcard character (*) with other text. For example, if you enter a value of
PAYROLL*, then all available queues with names that start with PAYROLL are displayed.

b. Specify a WebSphere MQ queue name.

Select a queue name from the filtered list. If the list does not include the queue that you want,
select the last entry in the list labeled other, please specify. A text entry box is displayed next to
the drop-down list. Type the queue name into the text entry box.

If the queue is found on the remote WebSphere MQ system, the properties of the queue as
defined within WebSphere MQ are displayed as read-only fields. This should help you to confirm
that you have found the queue that you want, and that it is configured as you intend. If the queue
is not found, these read-only fields are removed from view.

c. Specify the reliability levels that you require when inbound nonpersistent and inbound persistent
WebSphere MQ messages are converted to service integration format messages.

Applications receive messages direct from the specified WebSphere MQ queue, so in general the
reliability level for a message is of no interest to the receiver because the message has already
been delivered successfully. However, the message is converted to a service integration format
message (and typically to a JMS format service integration message) as it is received, and this
option specifies the reliability level for the service integration format message. For information
about the available reliability levels, see “WebSphere MQ queue points [Settings]” on page 2335.

d. Specify whether you want WebSphere MQ to include an MQRFH2 message header when sending
messages to the queue.

The MQRFH2 header stores service integration messaging information that does not have a
corresponding WebSphere MQ message header field. When a message is sent to the destination,
service integration instructs WebSphere MQ to write the message to the queue. This option
specifies whether service integration instructs WebSphere MQ to write the message with an
MQRFH2 header.

If the consumer of the message is a JMS application running in WebSphere MQ or service
integration, or a WebSphere MQ XMS application, or a WebSphere MQ MQI application that
expects an MQRFH2 header, select this option. If the consumer is a WebSphere MQ MQI
application that does not expect an MQRFH2 header, do not select this option.

8. Click Next.

9. Click Finish to confirm queue creation.

Results

You have created a queue-type destination with a WebSphere MQ queue point.

What to do next

You are now ready to (optionally) mediate the new destination by using the WebSphere MQ queue as the
mediation point.

Mediating a destination by using a WebSphere MQ queue as the mediation point:

Mediate a destination by using the administrative console to specify a WebSphere MQ server bus member
where the mediation point is to be assigned, and a WebSphere MQ queue to use as the mediation point

562 Administering WebSphere applications



where messages are stored. To mediate the destination using a service integration mediation, you must
also specify a second bus member (not a WebSphere MQ server) to use as the mediation execution point
and process the messages.

Before you begin

Decide which method to use to configure these resources. You can mediate a destination by using the
administrative console as described in this task, or by using the “mediateSIBDestination command” on
page 2435.

Before performing this task, ensure that the following resources exist:

v The mediation that you want to apply to the destination.

v The WebSphere MQ server bus member where the mediation point is to be assigned.

v The WebSphere MQ queue to use as the mediation point, with the queue attributes set to shareable.

v For a service integration mediation, a second bus member (not a WebSphere MQ server bus member)
to use as the mediation execution point where the mediation code runs.

Note: The queue manager on the WebSphere MQ network does not have to be available when you
complete this task, but the destination is not usable until the queue manager becomes available.

About this task

You can mediate a destination with a WebSphere MQ mediation point. This ensures that messages
arriving at the designated WebSphere MQ queue are mediated. In this scenario, the mediated messages
are delivered to the queue point, or to another destination that is determined by the default forward routing
path destination, or by the mediation code. The mediation can be hosted by service integration, or hosted
by WebSphere MQ.

Procedure

1. Start the administrative console.

2. Navigate to the list of destinations for the appropriate bus. Click Service integration -> Buses ->
bus_name -> [Destination resources] Destinations.

3. Select the check box beside the destination to mediate, then click Mediate. The Mediation wizard is
displayed.

4. Step 1: Select mediation.

To mediate the destination by using a mediation hosted by service integration:

a. Select The mediation to apply to this destination.

b. From the drop-down list, select the mediation.

c. Click Next.

To mediate the destination by using a WebSphere MQ program (for example, a WebSphere MQ flow):

a. Select Externally mediated.

b. Click Next.

5. Step 2: Assign the mediation to a bus member.

When a mediation is assigned to a WebSphere MQ server bus member, you need a separate bus
member that is not a WebSphere MQ server to act as the mediation execution point and process the
messages.

a. From the drop-down list, select the WebSphere MQ server bus member where the mediation point
is to be assigned.

b. Optional: If you are using a service integration mediation, select the bus member where the
mediation is to run.

Chapter 12. Welcome to administering Messaging resources 563



For a mediation hosted by service integration, select a bus member from the list box that is labeled
Select a bus member where the mediation will run. If you are using an external mediation, by
definition it does not run in a bus member.

c. Click Next.

6. Optional: If the mediation point is a WebSphere MQ queue, set the WebSphere MQ mediation point
attributes.

Note: This step is only displayed if you assigned the mediation point to a WebSphere MQ queue in
the previous step.

a. Specify a value in the WebSphere MQ queue name filter field, then click Go.

The wizard automatically discovers available WebSphere MQ queues. However, some WebSphere
MQ topologies have many thousands of queues defined to a queue manager. Use this filter to limit
the number of queues that are listed.

The default filter value is an asterisk (*). If this value (or no value) is set then all queues, or all
queues of a specific type (based on any queue type custom property that is set), are listed. Any
other value that you specify must meet the following criteria:

v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the Rules for naming
WebSphere MQ objects topic in the WebSphere MQ information center).

You can also use the wildcard character (*) with other text. For example, if you enter a value of
PAYROLL*, then all available queues with names that start with PAYROLL are displayed.

b. Specify a WebSphere MQ queue name.

Select a queue name from the filtered list. If the list does not include the queue that you want,
select the last entry in the list labeled other, please specify. A text entry box is displayed next to
the drop-down list. Type the queue name into the text entry box.

If the queue is found on the remote WebSphere MQ system, the properties of the queue as
defined within WebSphere MQ are displayed as read-only fields. This should help you to confirm
that you have found the queue that you want, and that it is configured as you intend. If the queue
is not found, these read-only fields are removed from view.

c. Specify the reliability levels that you require when inbound nonpersistent and inbound persistent
WebSphere MQ messages are converted to service integration format messages.

Mediations receive messages direct from the specified WebSphere MQ queue, so in general the
reliability level for a message is of no interest to the mediation because the message has already
been delivered successfully. However, the message is converted to a service integration format
message (and typically to a JMS format service integration message) as it is received, and this
option specifies the reliability level for the service integration format message. For information
about the available reliability levels, see “WebSphere MQ queue points [Settings]” on page 2335.

d. Specify whether you want WebSphere MQ to include an MQRFH2 message header when sending
messages to the queue.

The MQRFH2 header stores service integration messaging information that does not have a
corresponding WebSphere MQ message header field. When a message is sent to the destination,
service integration instructs WebSphere MQ to write the message to the queue. This option
specifies whether service integration instructs WebSphere MQ to write the message with an
MQRFH2 header.

If the consumer of the message (in this case, the mediation) is a JMS application running in
WebSphere MQ or service integration, or a WebSphere MQ XMS application, or a WebSphere MQ
MQI application that expects an MQRFH2 header, select this option. If the mediation is a
WebSphere MQ MQI application that does not expect an MQRFH2 header, do not select this
option.

e. Click Next.

7. Check the summary of your selections, then click Finish to confirm mediation of the destination.

564 Administering WebSphere applications



Results

You have mediated a destination by using a WebSphere MQ queue as the mediation point.

Configuring the messaging engine selection process for JMS
applications
Configure the JMS connection factory for your application, in order to tune the process through which
messaging engine connections are selected for your application.

About this task

To use JMS destinations of the default messaging provider, a client application connects to a messaging
engine on the service integration bus to which the destinations are assigned. For example, a JMS queue
is assigned to a queue destination on a service integration bus.

By default, the environment automatically connects applications to an available messaging engine on the
bus. However you can specify extra configuration details to influence the connection process; for example
to identify special bootstrap servers, or to limit connection to a subgroup of available messaging engines,
or to improve availability or performance, or to ensure sequential processing of messages received.

For a JMS application, you apply the extra configuration to the associated JMS connection factory. For a
message-driven bean (MDB) application, you apply the equivalent extra configuration to the associated
activation specification.

For the default configuration, you only have to specify the one required connection property Bus name,
which sets the name of the bus to which the application is to connect. To further restrict the range of
messaging engines to which your applications can connect, you can also configure the other connection
properties:

v Target

v Target type

v Target significance

v Target inbound transport chain

v Connection proximity

For detailed information about these connection properties, and an overview of the process through which
the default messaging provider chooses the messaging engine for your application, see How JMS
applications connect to a messaging engine on a bus.

The steps for this task are based on an application that uses a unified JMS connection factory. You can
use the same task to configure a JMS queue connection factory or JMS topic connection factory, but you
select the appropriate type of connection factory instead of JMS connection factory.

Procedure
v If the client application uses a JMS connection factory in the client container, use the Client Resource

Configuration tool (ACRCT) to configure the Provider endpoint property:

1. Start the tool and open the EAR file for which you want to configure the JMS connection factory.
The EAR file contents are displayed in a tree view.

2. From the tree, select the JAR file in which you want to configure the JMS connection factory.

3. Expand the JAR file to view its contents.

4. Expand Messaging Providers > Default Provider > Connection Factories.

5. Optional: Display the general properties of the connection factory:

– If you want to use an existing JMS connection factory, click the name of the connection factory.

Chapter 12. Welcome to administering Messaging resources 565



– If you want to create a new JMS connection factory, click New.

For more information about configuring a JMS connection factory in the JMS provider
configuration for your application client, see “Configuring Java messaging client resources” on
page 54.

6. On the General tab, configure the connection properties.

7. Click OK.

8. To save your changes, click File > Save.

v If the client application uses a JMS connection factory on the server, use the WebSphere Application
Server administrative console to configure the connection properties:

1. Display the default messaging provider. In the navigation pane, expand Resources -> JMS -> JMS
providers.

2. Optional: Change the Scope check box to set the level at which the connection factory is to be
visible, according to your needs.

3. In the content pane click Default messaging provider. This displays a table of properties for the
default messaging provider, including links to the types of JMS resources that it provides.

4. In the content pane, under Additional Properties, click Connection factories This displays any
existing connection factories in the content pane.

5. Optional: Display the general properties of the connection factory:

– If you want to use an existing JMS connection factory, click the name of the connection factory.

– If you want to create a new JMS connection factory, click New.

For more information about configuring a JMS connection factory, see “Configuring a unified
connection factory for the default messaging provider” on page 498.

6. Configure the connection properties.

7. Click OK.

8. Save your changes to the master configuration.

Managing messages and subscriptions for default messaging JMS
destinations
You can manage the messages and subscriptions that exist for JMS destinations of the default messaging
provider. You can manage the messages on a JMS queue by acting on the queue point for the bus
destination to which JMS queue has been assigned. You can administer the durable subscriptions on a
JMS topic by acting on a publication point for the topic space to which JMS topic has been assigned.

About this task

The Bus name property of the JMS connection factory identifies the service integration bus. For managing
the messages on a JMS queue, note that the Queue name property of the JMS queue identifies the name
of the bus destination. For administering the durable subscriptions on a JMS topic, note that the Topic
space property of the JMS topic identifies the name of the topic space.

Queue points and publication points are examples of message points. For information about how to
manage messages on message points, see the following subtopics.

Procedure
v Manage messages on message points.

v Administer durable subscriptions.

Managing messages on message points
Use these tasks to list and act on runtime messages that exist on message points in a service integration
bus.

566 Administering WebSphere applications



About this task

You can list the message points for bus destinations and messaging engines, and list the messages on a
selected message point. You can use the list of messages as part of a troubleshooting task to find
messages that need to be deleted.

Procedure
v “Listing messages on a message point”

v “Deleting messages on a message point”

Listing messages on a message point:

Use this task to list the messages that exist on a message point for a selected bus destination or
messaging engine.

About this task

To display a list of messages on a message point, use the administrative console to complete the following
steps:

Procedure

1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the service integration bus.

3. Optional: To list the message points for a bus destination, complete the following steps:

a. In the content pane, under Destination resources, click Destinations.

b. Click the destination name.

4. Optional: To list the message points for a messaging engine, complete the following steps:

a. In the content pane, under Topology, click Messaging engines.

b. Click the messaging engine name.

5. Under Additional Properties, click Message points. This displays a list of message points in the
content pane.

6. Click the message point name. This displays the properties of the destination localization in the content
pane.

7. Click the Runtime tab.

8. Under Additional Properties, click Messages.

Results

A list of messages on the selected message point is displayed in the content pane.

What to do next

You can select one or more messages to act on; for example, to display the message content, delete
messages.

Deleting messages on a message point:

Use this task to delete one or more messages that exist on a message point for a selected bus destination
or messaging engine.

Chapter 12. Welcome to administering Messaging resources 567



About this task

You should not usually have to delete messages on a message point. This task is intended as part of a
troubleshooting procedure.

To delete one or messages on a message point, use the administrative console to complete the following
steps:

Procedure

1. List the messages on the message point.

2. In the content pane, select the check box next to each message that you want to delete. Alternatively,

you can select all messages in the list by clicking Select all items .

3. Click Delete.

Results

The selected messages are removed from the list.

Using JMS from stand-alone clients to interoperate with service
integration resources
The Thin Client for JMS with WebSphere Application Server allows third party applications to interoperate
with default messaging provider messaging engines on WebSphere Application Server.

Using JMS to connect to a WebSphere Application Server default messaging
provider messaging engine
The Thin Client for JMS with WebSphere Application Server is an embeddable technology that provides
Java Message Service (JMS) V1.1 connections to a WebSphere Application Server default messaging
provider messaging engine.

Installing and configuring the Thin Client for JMS with WebSphere Application Server:

To use the Thin Client for JMS with WebSphere Application Server copy the
com.ibm.ws.sib.client.thin.jms_8.5.0.jar and any other required files from the application server or
application client %WAS_HOME%/runtimes directory.

About this task

The Thin Client for JMS with WebSphere Application Server can be used for default messaging provider
messaging engines for WebSphere Application Server Version 6.0.2 or later. The connection to the
messaging engine can be either TCP or SSL. HTTP connectivity is not supported.

Installation and configuration of the client in an OSGi environment is different and described in “Installing
and configuring the Thin Client for JMS with WebSphere Application Server in an OSGi environment” on
page 570.

You can install the client in any location and run it in any supported Java 2 Platform Standard Edition 1.5.0
(also known as 5.0) or above Java Runtime Environment (JRE). The client supports the following JREs:

v IBM JRE 1.5.0 and above

v Sun JRE 1.5.0 and above

v HP-UX JRE 1.5.0 and above

v Lotus® Expeditor Version 6.1 or above with J2SE 5.0 or above Device Runtime Environment. jclDesktop
and jclDevice profiles are not supported.

568 Administering WebSphere applications



The client does not require any further configuration after installation, apart from adding the jar file or files
to the classpaths for your client application. You can choose either to create JMS connection factories
programmatically, or use the Java Naming and Directory Interface (JNDI). If required, you can use secure
connections by configuring Secure Sockets Layer (SSL) settings.

Procedure

1. Install the client in the required location. The client is always installed in the /runtimes directory of a
WebSphere Application Server installation, and might optionally be installed by the Application Client
for WebSphere Application Server, which is a separate WebSphere Application Server deliverable. The
client is shipped as three files:

v com.ibm.ws.sib.client.thin.jms_8.5.0.jar - the regular JMS Client.

v com.ibm.ws.sib.client_ExpeditorDRE_8.5.0.jar - the JMS Client packaged for Lotus Expeditor.

v sibc.nls.zip - language-specific resource bundles. You can extract any combination of these files.
The client jar already includes US English, so you only need the additional language files from
sibc.nls.zip if you require languages other than non-US English.

2. Include the appropriate jar file or files in the classpaths for your client application:

a. To compile JMS code, include the client jar file in the CLASSPATH setting for the javac command.

b. To run JMS code, include the client jar file and any required optional language files extracted from
sibx.nls.zip in the CLASSPATH setting for the java command.

3. Configure the required JMS resources as described in “Using JMS resources with the Thin Client for
JMS with WebSphere Application Server” on page 571.

4. If you require secure connections, configure SSL as described in “Securing JMS client and JMS
resource adapter connections” on page 572.

Migration to the Thin Client for JMS with WebSphere Application Server:

There are a number of differences to consider when migrating to the Thin Client for JMS with WebSphere
Application Server from an earlier version of the client.

Table 39. Migration from WebSphere Application Server Version 6.0.2 to WebSphere Application Server Version 7.0
or later. The first column of the table lists the areas where the differences are found between WebSphere
Application Server Version 6.0.2 and WebSphere Application Server Version 7.0 or later. The second column lists the
availability, applicability, file path, JRE level or the property names of the specific area of WebSphere Application
Server Version 6.0.2 (Client for Java Message Service on Java 2 Platform, Standard Edition with WebSphere
Application Server). The third column provides the file path, file names, JRE level or property names of the specific
area of WebSphere Application Server Version 7.0 or later (Thin Client for JMS with WebSphere Application Server).

Area

WebSphere Application Server Version
6.0.2 (Client for Java Message Service
on Java 2 Platform, Standard Edition
with WebSphere Application Server)

WebSphere Application Server Version
7.0 or later (Thin Client for JMS with
WebSphere Application Server)

Installation Available for separate download and
installation

Installed in the WebSphere Application
Server or Application Client /runtimes
directory

JMS jar file name sibc.jms.jar file com.ibm.ws.sib.client.thin.
jms_version_number.jar

Performing JNDI lookups of JMS
resources

Requires optional sibc.jndi.jar file (and
ORB sibc.orb.jar file for non-IBM JREs)

Requires Thin Client for EJB with
WebSphere Application Server jar file
com.ibm.ws.ejb.
thinclient_version_number.jar or
com.ibm.ws.ejb.
thinclient.z_version_number.jar (and
ORB com.ibm.ws.orb_version_number.jar
for non-IBM JREs)

Chapter 12. Welcome to administering Messaging resources 569



Table 39. Migration from WebSphere Application Server Version 6.0.2 to WebSphere Application Server Version 7.0
or later (continued). The first column of the table lists the areas where the differences are found between
WebSphere Application Server Version 6.0.2 and WebSphere Application Server Version 7.0 or later. The second
column lists the availability, applicability, file path, JRE level or the property names of the specific area of WebSphere
Application Server Version 6.0.2 (Client for Java Message Service on Java 2 Platform, Standard Edition with
WebSphere Application Server). The third column provides the file path, file names, JRE level or property names of
the specific area of WebSphere Application Server Version 7.0 or later (Thin Client for JMS with WebSphere
Application Server).

Area

WebSphere Application Server Version
6.0.2 (Client for Java Message Service
on Java 2 Platform, Standard Edition
with WebSphere Application Server)

WebSphere Application Server Version
7.0 or later (Thin Client for JMS with
WebSphere Application Server)

SSL configuration Secure connections are configured by
using JRE global properties:

-Djavax.net.ssl.keyStore
-Djavax.net.ssl.keyStorePassword
-Djavax.net.ssl.trustStore
-Djavax.net.ssl.trustStorePassword

Two approaches to configuring secure
connections.

The first approach uses JRE global
properties:

-Djavax.net.ssl.keyStore
-Djavax.net.ssl.keyStorePassword
-Djavax.net.ssl.trustStore
-Djavax.net.ssl.trustStorePassword

The second approach is to specify security
settings that are specific to Thin Client for
JMS with WebSphere Application Server
connections:

-Dcom.ibm.ssl.keyStoreType
-Dcom.ibm.ssl.keyStore

-Dcom.ibm.ssl.keyManager
-Dcom.ibm.ssl.trustManager
-Dcom.ibm.ssl.keyStorePassword
-Dcom.ibm.ssl.protocol
-Dcom.ibm.ssl.contextProvider
-Dcom.ibm.ws.sib.jsseProvider

Minimum JRE level 1.4.2 1.5

Enable trace (set trace specification) -Dcom.ibm.ws.sib.client.traceSetting -Dcom.ibm.ejs.ras.lite.
traceSpecification

Set trace file name -Dcom.ibm.ws.sib.client.traceFile -Dcom.ibm.ejs.ras.lite.traceFileName

Set max trace file size Not applicable -Dcom.ibm.ejs.ras.lite.maxFileSize

Set max number of trace files Not applicable -Dcom.ibm.ejs.ras.lite.maxFiles

Set trace format Not applicable -Dcom.ibm.ejs.ras.lite.traceFormat

Using alternative trace properties file -DtraceSettingsFile -DtraceSettingsFile

Thin Client for JMS with WebSphere
Application Server supports new options
described in “Trace user interface for
stand-alone clients” on page 574

Enable and specify FFDC file name -DffdcLogFile -Dcom.ibm.ejs.ras.lite.ffdcLogFile

NLS support Installation option for NLS support Non-English versions are available in the
sibc.nls.jar file

Installing and configuring the Thin Client for JMS with WebSphere Application Server in an OSGi
environment:

Use this information to install and configure the Thin Client for JMS with WebSphere Application Server in
an OSGi environment.

570 Administering WebSphere applications



About this task

To use the Thin Client for JMS with WebSphere Application Server in an OSGi environment import the
required plug-ins into your development environment and add them to the list of required plug-ins in your
product configuration.

A list of all packages exported by system.bundle can be obtained from the Execution Environment Profile
being used. For example if the Execution Environment is J2SE-1.5 then the list of all packages exported
by system.bundle can be obtained from the property org.osgi.framework.system.packages in the Execution
Environment Profile file named J2SE-1.5.profile contained in the bundle org.eclipse.osgi_<version>.jar

Procedure

v Application plug-ins which use the Thin Client for JMS with WebSphere Application Server plug-ins must
import the javax.jms packages in an OSGi environment.

v If you are using connection factories that are programmatically created, the application plug-in must
import the com.ibm.websphere.sib.api.jms package.

v Alternatively, if you are using JNDI lookups via the Thin Client for EJB in WebSphere Application server
then the application plug-in must import the com.ibm.websphere.naming package.

v When performing JNDI lookups it is necessary that the following system property be specified:

-Dorg.osgi.framework.system.packages=sun.io,com.ibm.wsspi.channel.framework,
com.ibm.CORBA.channel,com.ibm.CORBA.channel.giop,com.ibm.channel.orb,
com.ibm.CORBA.poa,com.ibm.CORBA.ras,com.ibm.CORBA.iiop,com.ibm.CORBA.transport

Using JMS resources with the Thin Client for JMS with WebSphere Application Server:

Suitable JMS connection factories and references to JMS queues or topics might be obtained
programmatically without using JNDI. Alternatively, full JNDI support might be obtained from the Thin
Client for EJB with WebSphere Application Server.

Procedure

v To obtain suitable connection factories programmatically, without using JNDI, use code similar to that
shown in the following example:

import com.ibm.websphere.sib.api.jms.*;
...
JmsConnectionFactory jmsCF =
JmsFactoryFactory.getInstance().createQueueConnectionFactory();

jmsCF.setBusName("myBus");
jmsCF.setProviderEndpoints("1.2.3.4");

To obtain a suitable reference to a JMS queue or topic programmatically, use code similar to that shown
in the following example:

JmsQueue jmsQ = JmsFactoryFactory.getInstance().createQueue("myQueue");

For further information, see the JmsFactoryFactory class API documentation available with WebSphere
Application Server.

v To obtain full JNDI support from the Thin Client for EJB with WebSphere Application Server:

1. Include the /runtimes/com.ibm.ws.ejb.thinclient_8.5.0.jar file in the compile and runtime
classpaths for your enterprise application as described in “Installing and configuring the Thin Client
for JMS with WebSphere Application Server” on page 568.

2. Use the following code to create a suitable Initial Context, substituting the server IP address and
port as appropriate:
import javax.naming.*;
...
Properties env = new Properties();
env.put(Context.PROVIDER_URL,"iiop:

Chapter 12. Welcome to administering Messaging resources 571



//<server IP address>:<server bootstrap address port>");
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");

InitialContext ctx = new InitialContext(env);

In certain situations, for example when running with a Sun JRE, an additional ORB jar is also
required. For additional information about when this jar is required, see “Running the IBM Thin
Client for Enterprise JavaBeans (EJB)” on page 132.

Obtaining WebSphere MQ JMS resources in the thin client environment:

A stand-alone Java SE JMS thin client application that connects to an external WebSphere MQ queue
manager can get administratively-created WebSphere MQ messaging provider JMS resources from the
WebSphere Application Server Java Naming and Directory Interface (JNDI) namespace.

Procedure

1. To obtain WebSphere MQ messaging provider JMS resources from the WebSphere Application Server
JNDI namespace in the thin client environment, include the following jar files in the runtime classpath
of your application:

v A copy of the /runtimes/com.ibm.ws.ejb.thinclient_8.5.0.jar file.

v A copy of the /runtimes/com.ibm.ws.messagingClient.jar file.

v WebSphere MQ client jar files, which must be obtained from the WebSphere MQ product.

2. Use the following code to create a suitable Initial Context, substituting the server IP address and port
as appropriate:

import javax.naming.*;
...
Properties env = new Properties();
env.put(Context.PROVIDER_URL,"iiop:
//<server IP address>:<server bootstrap address port>");

env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");

InitialContext ctx = new InitialContext(env);

In certain situations, for example when running with a Sun JRE, an additional ORB jar is also required.
For additional information about when this jar is required, see the Thin Client for EJB with WebSphere
Application Server information.

Securing JMS client and JMS resource adapter connections
There are two approaches to configuring Secure Sockets Layer (SSL) for the Thin Client for JMS with
WebSphere Application Server and the Resource Adapter for JMS with WebSphere Application Server.
The global configuration approach affects all stand-alone outbound connections from the process, and the
private approach applies only to client or resource adapter connections from the process.

About this task

The Thin Client for JMS with WebSphere Application Server and the Resource Adapter for JMS with
WebSphere Application Server use the standard Java Secure Socket Extension (JSSE) that all supported
JREs provide for making Secure Sockets Layer (SSL) connections. For information about JSSE, see the
JSSE documentation.

The global configuration approach uses JRE global properties and affects all outbound SSL connections
that your application initiates. For a JRE configured to use SSL connections to connect to WebSphere
Application Server, you typically have to set the following javax.net.ssl system properties:

572 Administering WebSphere applications

http://java.sun.com/products/jsse/reference/docs/index.html


-Djavax.net.ssl.keyStore=key.p12
-Djavax.net.ssl.keyStorePassword={xor}Lz4sLCgwLTs=
-Djavax.net.ssl.trustStore=trust.p12
-Djavax.net.ssl.trustStorePassword={xor}PSo4LSov

You can use the private configuration approach to specify security settings that are specific to the Thin
Client for JMS with WebSphere Application Server or the Resource Adapter for JMS with WebSphere
Application Server connections. You can configure the com.ibm.ws.sib.client.ssl.properties system property
to specify the location of an IBM SSL properties file. If this system property is not configured, an attempt is
made load the properties file from the classpath instead.

The client obtains the value that it uses for any particular SSL property as follows:

v If the property has a value defined in the properties file containing the IBM SSL properties, the client
uses this value.

v If there is no value for the property in the properties file, and there is a suitable property in the
associated JRE system properties, the client uses this value.

v If there is no suitable javax.net.ssl property, the client uses the default value.

The table below summarizes the IBM SSL property keys that can be configured inside the IBM SSL
properties file, and the corresponding javax.net.ssl.* system property keys and default values.

Table 40. IBM SSL property values and corresponding JRE global property and default values. The first column of
the table lists the IBM SSL property keys and the second column lists the corresponding JRE global property keys.
The third column provides the default values of the properties.

IBM SSL property JRE global property Default value

com.ibm.ssl.keyStoreType javax.net.ssl.keyStoreType JKS

com.ibm.ssl.keyStore javax.net.ssl.keyStore None

com.ibm.ssl.keyManager javax.net.ssl.keyStoreProvider IbmX509

com.ibm.ssl.trustManager javax.net.ssl.trustStoreProvider IbmX509

com.ibm.ssl.keyStorePassword javax.net.ssl.keyStorePassword None

com.ibm.ssl.protocol None SSL

com.ibm.ssl.contextProvider None IBMJSSE2

com.ibm.ws.sib.jsseProvider None com.ibm.jsse2.IBMJSSEProvider2

com.ibm.ssl.trustStore javax.net.ssl.trustStore None

com.ibm.ssl.trustStoreType javax.net.ssl.trustStoreType JKS

com.ibm.ssl.trustStorePassword javax.net.ssl.trustStorePassword None

For example, you might create an ssl.properties file that contains the following properties and values:

com.ibm.ssl.keyStore=/thinclient/key.p12
com.ibm.ssl.keyStoreType=PKCS12
com.ibm.ssl.keyStorePassword=WebAS
com.ibm.ssl.trustStore=/thinclient/trust.p12
com.ibm.ssl.trustStoreType=PKCS12
com.ibm.ssl.trustStorePassword=WebAS

You can use the PropFilePasswordEncoder tool in the WebSphere Application Server bin directory to
encode passwords stored in plain text property files. For further information see Encoding passwords in
files.

Notes:

1. SSL connections from SUN JREs that use the Thin Client for JMS with WebSphere Application
Server cannot use the default WebSphere Application Server PKCS12 key and trust stores. If
you are running the client securely from SUN JREs, you must first extract the certificates from

Chapter 12. Welcome to administering Messaging resources 573



the trust store by using an IBM software development kit (SDK). You can then import these
certificates into a keystore that the Sun JRE can recognize correctly, such as a JKS keystore.

2. SSL connections are not supported by the IBM JRE shipped with WebSphere Application
Server - a non-WebSphere Application Server installed JRE must be used.

Procedure
1. Obtain the necessary key and trust store files.

2. Set the javax.net.ssl system properties required for the global configuration approach.

3. For the private configuration approach, use the com.ibm.ws.sib.client.ssl.properties system property to
specify the file from which the SSL properties are to be loaded, as shown in the following example:

-Dcom.ibm.ws.sib.client.ssl.properties=c:/ssl.properties

Adding tracing and logging for stand-alone clients
You can add tracing and logging to help analyze performance and diagnose problems.

About this task

This information applies to the following WebSphere Application Server stand-alone clients:

v Thin Client for JMS with WebSphere Application Server

v Thin Client for EJB with WebSphere Application Server

v Thin Client for JAX-WS with WebSphere Application Server

v Thin Client for JAX-RPC with WebSphere Application Server

Procedure
v To enable trace, use either a long form or short form system property.

Note: Trace settings are determined from the system property values the first time that a WebSphere
Application Server client is called. The trace settings are then fixed. Therefore, any subsequent
changes to the system property settings do not change the trace settings that the WebSphere
Application Server client uses.

v To enable First Failure Data Capture (FFDC), use either a long or short form system property.

Note: FFDC settings are determined from the system property values the first time that a WebSphere
Application Server client performs an FFDC. The FFDC settings are then fixed. Therefore, any
subsequent changes to the system property settings do not change the FFDC settings that the
WebSphere Application Server client uses.

Trace user interface for stand-alone clients:

To enable trace, you can either use a long form or a short form system property.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Long form system properties

The long form system property takes priority over the short form and uses system properties that are
unique to WebSphere Application Server.

574 Administering WebSphere applications



Table 41. Long form system properties. The table contains the list of long form system properties and the
descriptions of the properties.

Property Description

com.ibm.ejs.ras.lite.traceSpecification The trace specification string

com.ibm.ejs.ras.lite.traceFileName The trace destination (<file>, stdout, stderr, java,util.logging)

com.ibm.ejs.ras.lite.maxFileSize The maximum trace file size in MB (if the trace destination is a
file)

com.ibm.ejs.ras.lite.maxFiles The maximum number of trace files kept (if the trace destination
is a file)

com.ibm.ejs.ras.lite.traceFormat The trace output format, which can be either basic or advanced
(the default is basic)

Long form example:

-Dcom.ibm.ejs.ras.lite.traceSpecification=SIB*=all
-Dcom.ibm.ejs.ras.lite.traceFileName=c:/trace.log
-Dcom.ibm.ejs.ras.lite.maxFileSize=20
-Dcom.ibm.ejs.ras.lite.maxFiles=8

Short form system property

The short form uses a system property that is compatible with existing WebSphere Application Server
clients but that, because this property is unqualified, might clash with other third party technologies that
are running in the same Java runtime environment (JRE).

The short form system property is:

traceSettingsFile

This property must specify a loadable properties file that can contain the following properties:

Table 42. Properties in loadable system properties file. The table includes the list of loadable system properties and
the descriptions of the properties.

Property Description

traceFileName The trace destination (file, stdout, stderr, java,util.logging)

maxFilesSize The maximum trace file size in MB (if the trace destination is a
file)

maxFiles The maximum number of trace files kept (if the trace destination
is a file)

<traceSpec> The trace specification

traceFormat The trace output format, which can be either basic or advanced
(the default is basic)

The following example shows how to use the short form system property:

SIBTrm=all:SIBMfp=all
traceFileName=c:/trace.log

Special meanings for trace file name values

Some trace file name values have a special meaning:

v stdout - causes trace records to be written to stdout

v stderr - causes trace records to be written to stderr

v java.util.logging - causes trace records to be written to java.util.logging

Using any other name causes the trace records to be written to a file of that name.

Chapter 12. Welcome to administering Messaging resources 575



First Failure Data Capture user interface for stand-alone clients:

To enable First Failure Data Capture (FFDC) output, you can either use a long or short form system
property.

Long form system property

The long form takes priority over the short form and uses a system property that is unique to WebSphere
Application Server to specify the FFDC dump file name. This property is:

com.ibm.ejs.ras.lite.ffdcLogFile

The following example shows how to use the long form system property to enable FFDC output:

-Dcom.ibm.ejs.ras.lite.ffdcLogFile=c:\ffdc.log

Short form system property

The short form system property is:

ffdcLogFile

The following example shows how to use the short form system property to enable FFDC output:

-DffdcLogFile=c:\ffdc.log

Using JMS from a third party application server to interoperate with
service integration resources
The Resource Adapter for JMS with WebSphere Application Server provides first class connectivity to
service integration resources from the third party application server on which it is deployed.

About this task

The Resource Adapter for JMS with WebSphere Application Server is designed to be deployed into third
party application servers, that is, into non-WebSphere Application Server application servers, that support
Java EE Connector Architecture (JCA) 1. 5 and are Java 2 Platform, Enterprise Edition (J2EE) 1.4
compliant. The stand-alone resource adapter provides these third party application servers with full
connectivity to service integration resources running inside WebSphere Application Server Version 6.0.2
and later.

Supported third party application servers are:

v WebSphere Application Server Community Edition Version 2.0 and later

v Apache Geronimo v2.0 and later

v JBoss Application Server v4.0.5 and later

Restriction:

v The resource adapter does not support the unmanaged JCA environment. In an
unmanaged environment use the Thin Client for JMS with WebSphere Application Server.

v If you want to use XA connections to a WebSphere Application Server Version 6.0.2
application server, contact IBM Support to obtain a required service update.

Deploying the Resource Adapter for JMS with WebSphere Application Server to a
third party application server
To provide connections to service integration resources running inside WebSphere Application Server, the
Resource Adapter for JMS with WebSphere Application Server must be installed into the third party
application server.

576 Administering WebSphere applications



Before you begin

The Resource Adapter for JMS with WebSphere Application Server requires JRE 1.5 or later. The resource
adapter is called sibc.jmsra.rar and is available from the following runtime directories:

v WebSphere Application Server install

v Application Client for WebSphere Application Server install

Before starting the deployment of the resource adapter, you must first obtain the following information from
the WebSphere Application Server administrator:

v Bus name

v Endpoint provider address

v Target transport chain

v Messaging engine name

v Any other required connection and destination properties

v One or more destination names

The general approach to deploying the resource adapter is to write a deployment XML file to configure the
required and optional properties for the JMS connection factory and JMS resources that will be accessed,
and then deploy the resource adapter by using the deployment XML file. The installation process varies,
depending on the particular application server that you are using. Before starting this task, see the
documentation specific to your application server for information about how to install and use a JMS
resource adapter RAR file.

About this task

An enterprise application that looks up a Resource Adapter for JMS with WebSphere Application Server
connection factory in the local Java Naming and Directory Interface (JNDI) repository can access service
integration resources through the resource adapter, provided that the required messaging engine is
available in WebSphere Application Server. All outbound connections must access all queues and topics
by using Queue or Topic resources. These resources are configured using your particular application
server configuration mechanism when the resource adapter is deployed.

The Resource Adapter for JMS with WebSphere Application Server supports full two-phase XA
transactional connections (except under the JBoss Application Server) but can also be run using local
transactions or no transaction connections.

Multiple deployments of the resource adapter are possible.

Procedure
1. To deploy an outbound JMS resource on the Resource Adapter for JMS with WebSphere Application

Server, use your particular application server configuration mechanism to configure the following
service integration bus properties:

v Bus name

v Provider endpoints

2. If you want to use XA resources over a Resource Adapter for JMS with WebSphere Application Server
connection, use your particular application server configuration mechanism to configure the following
additional service integration bus properties:

v Target type must be set to "ME"

v Target significance must be set to "Required"

v Target must be set to the name of the required messaging engine

These properties permit the recovery of indoubt transactions, should this be necessary. For further
information about indoubt transactions, see Resolving indoubt transactions.

Chapter 12. Welcome to administering Messaging resources 577



See “Configuration properties for the Resource Adapter for JMS with WebSphere Application Server”
for a description of these property names and other properties that might also be configured.

Results

Subsequent usage of the resource adapter is in accordance with the Java EE programming specifications.
That is, any enterprise bean or message-driven bean might obtain a Resource Adapter for JMS with
WebSphere Application Server connection factory or use an activation specification to connect to a service
integration messaging engine. Message-driven beans behave in just the same way as they would in any
other Java EE environment.

What to do next

You can turn trace and First Failure Data Capture (FFDC) on for the resource adapter in the same way as
for the Thin Client for JMS with WebSphere Application Server. For further information, see “Adding tracing
and logging for stand-alone clients” on page 574.

You can configure secure connections by configuring connection factories that require a secure bootstrap
and/or connection transport chain in the same way as for the Thin Client for JMS with WebSphere
Application Server. For further information, see “Securing JMS client and JMS resource adapter
connections” on page 572.

Configuration properties for the Resource Adapter for JMS with WebSphere Application Server:

As part of deploying the Resource Adapter for JMS with WebSphere Application Server, you must
configure a set of JMS resources that the deployed resource adapter instance supports.

The following tables list the JMS properties and their values.

Note: Not all properties available to applications running inside the WebSphere Application Server
environment are available in third party environments. Some properties have no meaning outside of
the WebSphere Application Server environment and some have no meaning for remotely connected
clients.

Table 43. Connection factory properties. The first column of the table lists the connection factory property names.
The second column provides the description of the properties. The third column provides the permitted values for the
properties if they are available. The fourth column includes the default values if they are available for the properties.

Property name Description Permitted values Default

BusName The name of the service
integration bus to connect to.

ClientID The JMS client identifier
needed for durable topic
subscriptions on all connections
created using this connection
factory.

UserName

Password

NonPersistentMapping The reliability applied to
nonpersistent JMS messages
sent using this connection
factory.

BestEffortNonPersistent,
ExpressNonPersistent,
ReliableNonPersistent

ExpressNonPersistent

PersistentMapping The reliability applied to
persistent JMS messages sent
using this connection factory.

ReliablePersistent,
AssuredPersistent

ReliablePersistent

578 Administering WebSphere applications



Table 43. Connection factory properties (continued). The first column of the table lists the connection factory
property names. The second column provides the description of the properties. The third column provides the
permitted values for the properties if they are available. The fourth column includes the default values if they are
available for the properties.

Property name Description Permitted values Default

DurableSubscriptionHome The name of the messaging
engine used to store messages
delivered to durable
subscriptions for objects
created from this JMS
connection factory.

ReadAhead Read ahead is an optimization
that preemptively assigns
messages to consumers. This
improves the time taken to
satisfy consumer requests.

AlwaysOn, AlwaysOff, Default Default

Target The name of a target that
identifies a group of messaging
engines. Specify the type of
target by using the Target type
property.

TargetType The type of target named in the
Target property.

BusMember, Custom, ME BusMember

TargetSignificance The significance of the target
group.

Required, Preferred Required

TargetTransportChain The name of the protocol that
resolves to a group of
messaging engines.

ProviderEndpoints The list of comma separated
endpoints used to connect to a
bootstrap server.

ConnectionProximity The proximity of messaging
engines that can accept
connection requests, in relation
to the bootstrap messaging
engine.

Server, Cluster, Host, Bus Bus

TemporaryQueueNamePrefix The prefix of up to twelve
characters used for names of
temporary queues created by
applications that use this
connection factory.

TemporaryTopicNamePrefix The prefix used at the start of
temporary topics created by
applications that use this
connection factory.

ShareDurableSubscriptions Controls whether durable
subscriptions are shared across
connections with members of a
server cluster.

InCluster, AlwaysShared,
NeverShared

InCluster (always resolves to
AlwaysOff as the client is
always outside of a WebSphere
Application Server clustered
server)

Chapter 12. Welcome to administering Messaging resources 579



Table 43. Connection factory properties (continued). The first column of the table lists the connection factory
property names. The second column provides the description of the properties. The third column provides the
permitted values for the properties if they are available. The fourth column includes the default values if they are
available for the properties.

Property name Description Permitted values Default

ProducerDoesNotModify
PayloadAfterSet

When enabled, Object or Bytes
messages sent by a message
producing application that has
connected to the bus by using
this connection factory will not
have their data copied when
set and the system will only
serialize the message data
when absolutely necessary.
Applications sending such
messages must not modify the
data once it has been set into
the message.

true, false false

Table 44. Queue Connection factory properties. The first column of the table lists the queue connection factory
property names. The second column provides the description of the properties. The third column provides the
permitted values for the properties if they are available. The fourth column includes the default values if they are
available for the properties.

Property name Description Permitted values Default

BusName The name of the service
integration bus to connect to.

UserName

Password

NonPersistentMapping The reliability applied to
nonpersistent JMS messages
sent using this connection
factory.

BestEffortNonPersistent,
ExpressNonPersistent,
ReliableNonPersistent

ExpressNonPersistent

PersistentMapping The reliability applied to
persistent JMS messages sent
using this connection factory.

ReliablePersistent,
AssuredPersistent

ReliablePersistent

ReadAhead Read ahead is an optimization
that preemptively assigns
messages to consumers. This
improves the time taken to
satisfy consumer requests.

AlwaysOn, AlwaysOff, Default Default

Target The name of a target that
identifies a group of messaging
engines. Specify the type of
target by using the Target type
property.

TargetType The type of target named in the
Target property.

BusMember, Custom, ME BusMember

TargetSignificance The significance of the target
group.

Required, Preferred Required

TargetTransportChain The name of the protocol that
resolves to a group of
messaging engines.

ProviderEndpoints The list of comma separated
endpoints used to connect to a
bootstrap server.

580 Administering WebSphere applications



Table 44. Queue Connection factory properties (continued). The first column of the table lists the queue connection
factory property names. The second column provides the description of the properties. The third column provides the
permitted values for the properties if they are available. The fourth column includes the default values if they are
available for the properties.

Property name Description Permitted values Default

ConnectionProximity The proximity of messaging
engines that can accept
connection requests, in relation
to the bootstrap messaging
engine.

Server, Cluster, Host, Bus Bus

TemporaryQueueNamePrefix The prefix of up to twelve
characters used for names of
temporary queues created by
applications that use this
connection factory.

ProducerDoesNotModify
PayloadAfterSet

When enabled, Object or Bytes
messages sent by a message
producing application that has
connected to the bus by using
this connection factory will not
have their data copied when
set and the system will only
serialize the message data
when absolutely necessary.
Applications sending such
messages must not modify the
data once it has been set into
the message.

true, false false

Table 45. Topic Connection factory properties. The first column of the table lists the topic connection factory property
names. The second column provides the description of the topic connection factory properties. The third column
provides the permitted values for the properties if they are available. The fourth column includes the default values if
they are available for the properties.

Property name Description Permitted values Default

BusName The name of the service
integration bus to connect to.

ClientID The JMS client identifier
needed for durable topic
subscriptions on all connections
created by using this
connection factory.

UserName

Password

NonPersistentMapping The reliability applied to
nonpersistent JMS messages
sent using this connection
factory.

BestEffortNonPersistent,
ExpressNonPersistent,
ReliableNonPersistent

ExpressNonPersistent

PersistentMapping The reliability applied to
persistent JMS messages sent
using this connection factory.

ReliablePersistent,
AssuredPersistent

ReliablePersistent

DurableSubscriptionHome The name of the messaging
engine used to store messages
delivered to durable
subscriptions for objects
created from this JMS
connection factory.

Chapter 12. Welcome to administering Messaging resources 581



Table 45. Topic Connection factory properties (continued). The first column of the table lists the topic connection
factory property names. The second column provides the description of the topic connection factory properties. The
third column provides the permitted values for the properties if they are available. The fourth column includes the
default values if they are available for the properties.

Property name Description Permitted values Default

ReadAhead Read ahead is an optimization
that preemptively assigns
messages to consumers. This
improves the time taken to
satisfy consumer requests.

AlwaysOn, AlwaysOff, Default Default

Target The name of a target that
identifies a group of messaging
engines. Specify the type of
target by using the Target type
property.

TargetType The type of target named in the
Target property.

BusMember, Custom, ME BusMember

TargetSignificance The significance of the target
group.

Required, Preferred Required

TargetTransportChain The name of the protocol that
resolves to a group of
messaging engines.

ProviderEndpoints The list of comma separated
endpoints used to connect to a
bootstrap server.

ConnectionProximity The proximity of messaging
engines that can accept
connection requests, in relation
to the bootstrap messaging
engine.

Server, Cluster, Host, Bus Bus

TemporaryTopicNamePrefix The prefix used at the start of
temporary topics created by
applications that use this
connection factory.

ShareDurableSubscriptions Controls whether durable
subscriptions are shared across
connections with members of a
server cluster.

InCluster, AlwaysShared,
NeverShared

InCluster (always resolves to
AlwaysOff as the client is
always outside of a WebSphere
Application Server clustered
server)

ProducerDoesNotModify
PayloadAfterSet

When enabled, Object or Bytes
messages sent by a message
producing application that has
connected to the bus by using
this connection factory will not
have their data copied when
set and the system will only
serialize the message data
when absolutely necessary.
Applications sending such
messages must not modify the
data once it has been set into
the message.

true, false false

Table 46. Queue properties. The first column of the table lists the queue property names. The second column
provides the description of the queue properties. The third column provides the permitted values for the properties if
they are available. The fourth column includes the default values if they are available for the properties.

Property name Description Permitted values Default

QueueName The name of the associated
queue on the service
integration bus.

582 Administering WebSphere applications



Table 46. Queue properties (continued). The first column of the table lists the queue property names. The second
column provides the description of the queue properties. The third column provides the permitted values for the
properties if they are available. The fourth column includes the default values if they are available for the properties.

Property name Description Permitted values Default

DeliveryMode The delivery mode for
messages sent to this
destination. This controls the
persistence of messages on
this destination.

Application, Persistent,
NonPersistent

TimeToLive The default length of time in
milliseconds from its dispatch
time that a message sent to
this destination should be kept
by the system.

Priority The relative priority for
messages sent to this
destination, in the range 0 to 9,
with 0 as the lowest priority and
9 as the highest priority.

ReadAhead Read ahead is an optimization
that preemptively assigns
messages to consumers. This
improves the time taken to
satisfy consumer requests.

AlwaysOn, AlwaysOff,
AsConnection, Default

AsConnection

BusName The name of the service
integration bus to connect to.

ScopeToLocalQP Sets whether the service
integration bus queue
destination identified by this
Queue is dynamically scoped
to a single queue point if one
exists on the messaging engine
that the application is
connected to.

On, Off Off

ProducerPreferLocal Sets whether a
MessageProducer for this
Queue should prefer a locally
connected queue point of the
service integration bus queue
destination over any other
queue points.

On, Off On

ProducerBind Set whether messages sent by
a single MessageProducer to
this Queue will go to the same
service integration bus queue
point, or whether no such
restriction will be applied, and
different messages will be sent
to different queue points.

On, Off Off

GatherMessages Set whether messages on all
service integration bus queue
points or only a single queue
point are visible to
MessageConsumers and
QueueBrowsers that use this
Queue.

On, Off Off

Chapter 12. Welcome to administering Messaging resources 583



Table 47. Topic properties. The first column of the table lists the topic property names. The second column provides
the description of the topic properties. The third column provides the permitted values for the properties if they are
available. The fourth column includes the default values if they are available for the properties.

Property name Description Permitted values Default

TopicSpace The name of the topic space
that contains the topic, on the
service integration bus defined
by the BusName property.

Default.Topic.Space

TopicName The name of the topic that this
JMS topic is assigned to, in the
topic space defined by the
TopicSpace property

DeliveryMode The delivery mode for
messages sent to this
destination. This controls the
persistence of messages on
this destination.

Application, Persistent,
NonPersistent

TimeToLive The default length of time in
milliseconds from its dispatch
time that a message sent to
this destination should be kept
by the system.

Priority The relative priority for
messages sent to this
destination, in the range 0 to 9,
with 0 as the lowest priority and
9 as the highest priority.

ReadAhead Read ahead is an optimization
that preemptively assigns
messages to consumers. This
improves the time taken to
satisfy consumer requests.

AlwaysOn, AlwaysOff,
AsConnection, Default

AsConnection

BusName The name of the service
integration bus to connect to.

Table 48. Activation configuration properties. The first column of the table lists the activation configuration property
names. The second column provides the description of the activation configuration properties. The third column
provides the permitted values for the properties if they are available. The fourth column includes the default values if
they are available for the properties.

Property name Description Permitted values Default Required/optional

Destination The name of the
destination on the
service integration bus.

Required

ProviderEndpoints The list of comma
separated endpoints
used to connect to a
bootstrap server.

Required

DestinationType Whether the
message-driven bean
uses a queue or topic
destination.

javax.jms.Queue,
javax.jms.Topic

Required

BusName The name of the
service integration bus
to connect to.

Required

584 Administering WebSphere applications



Table 48. Activation configuration properties (continued). The first column of the table lists the activation
configuration property names. The second column provides the description of the activation configuration properties.
The third column provides the permitted values for the properties if they are available. The fourth column includes the
default values if they are available for the properties.

Property name Description Permitted values Default Required/optional

MessageSelector The JMS message
selector used to
determine which
messages the
message-driven bean
receives. The value is a
string that is used to
select a subset of the
available messages.
The syntax is based on
a subset of the SQL 92
conditional expression
syntax, as described in
the JMS specification.

Optional

AcknowledgeMode How the session
acknowledges any
messages it receives.

Auto-acknowledge,
Dups-ok-acknowledge

Auto-acknowledge Optional

SubscriptionDurability Whether a JMS topic
subscription is durable
or nondurable.

Durable, Nondurable Nondurable Optional

SubscriptionName The subscription name
needed for durable
topic subscriptions.
Required field when
using a durable topic
subscription.

Optional

MaxBatchSize The maximum number
of messages received
from the messaging
engine in a single
batch.

1 through 2147483647 1 Optional

MaxConcurrency The maximum number
of endpoints to which
messages are delivered
concurrently

1 through 2147483647 10 Optional

RetryInterval The delay (in seconds)
between attempts to
connect to a messaging
engine.

1 through 2147483647 30 Optional

UserName Optional

Password Optional

DurableSubscriptionHome The name of the
messaging engine used
to store messages
delivered to durable
subscriptions for objects
created from this JMS
connection factory.

Optional

ShareDurableSubscriptions Controls whether
durable subscriptions
are shared across
connections with
members of a server
cluster.

InCluster,
AlwaysShared,
NeverShared

InCluster (always
resolves to AlwaysOff
as the client is always
outside of a
WebSphere Application
Server clustered server)

Optional

Chapter 12. Welcome to administering Messaging resources 585



Table 48. Activation configuration properties (continued). The first column of the table lists the activation
configuration property names. The second column provides the description of the activation configuration properties.
The third column provides the permitted values for the properties if they are available. The fourth column includes the
default values if they are available for the properties.

Property name Description Permitted values Default Required/optional

ClientID The JMS client identifier
needed for durable
topic subscriptions on
all connections created
by using this connection
factory.

Optional

TargetTransportChain The name of the
protocol that resolves to
a group of messaging
engines.

Optional

ReadAhead Read ahead is an
optimization that
preemptively assigns
messages to
consumers. This
improves the time taken
to satisfy consumer
requests.

AlwaysOn, AlwaysOff,
Default

Default Optional

Target The name of a target
that identifies a group
of messaging engines.
Specify the type of
target by using the
Target type property.

Optional

TargetType The type of target
named in the Target
property.

BusMember, Custom,
ME

BusMember Optional

TargetSignificance This property specifies
the significance of the
target group.

Required, Preferred Required Optional

TopicSpace The name of the topic
space that contains the
topic, on the service
integration bus defined
by the BusName
property.

Default.Topic.Space Optional

ForwarderDoesNotModify
PayloadAfterSet

When enabled,
Object/Bytes messages
forwarded through this
activation specification
that have their payload
modified will not have
the data copied when it
is set into the message
and the system will only
serialize the message
data when absolutely
necessary. Applications
sending such messages
must not modify the
data once it has been
set into the message.

true, false false Optional

586 Administering WebSphere applications



Deploying inbound connections for the Resource Adapter for JMS with WebSphere
Application Server
When deploying inbound connections, you must configure message-driven beans to use the Resource
Adapter for JMS with WebSphere Application Server. A JMS activation configuration associated with one or
more message-driven beans provides the configuration necessary for them to receive messages.

About this task

You can deploy message-driven beans within your application with a JMS activation configuration to
access the Resource Adapter for JMS with WebSphere Application Server connection factories and
destinations. When the message-driven bean is started, it uses the resource adapter to connect to the
service integration bus, provided that the required messaging engine is available in WebSphere Application
Server.

The Resource Adapter for JMS with WebSphere Application Server supports full two-phase XA
transactional connections but it might also be run using local transactions or no transaction connections.

Procedure
1. Configure the following properties for the activation configuration:

v Destination

v ProviderEndpoints

v DestinationType

v BusName

The Destination property value is the name of the destination from which the message-driven bean will
be receiving messages.

See “Configuration properties for the Resource Adapter for JMS with WebSphere Application Server”
on page 578 for a description of these property names and other properties that might also be
configured.

2. Configure the following additional properties if the message-driven bean will use XA resources over the
Resource Adapter for JMS with WebSphere Application Server connection.

v TargetType must be set to "ME"

v TargetSignificance must be set to "Required"

v Target value must be the name of the required ME

See “Configuration properties for the Resource Adapter for JMS with WebSphere Application Server”
on page 578 for a description of these property names and other properties that might also be
configured.

These properties permit the recovery of indoubt transactions, should this be necessary. For further
information about indoubt transactions, see Resolving indoubt transactions.

Default messaging provider [Settings]
A JMS provider enables messaging based on the Java Messaging Service (JMS). It provides Java EE
connection factories to create connections for JMS destinations. This panel is used to manage the default
messaging provider and its JMS resources.

To view this page in the console, click the following path:

Resources -> JMS -> JMS providers -> a_messaging_provider.

The default messaging provider uses service integration technologies to supply the messaging
infrastructure. For example, the JMS queues and topics are assigned to destinations on a service
integration bus.

Chapter 12. Welcome to administering Messaging resources 587



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Scope:

Specifies the highest topological level at which application servers can use this resource object.

Information Value
Required No
Data type String

Name:

The name of the resource provider.

Information Value
Required No
Data type String

Description:

A description of the resource adapter.

Information Value
Required No
Data type Text area

JMS activation specification [Settings]
A JMS activation specification is associated with one or more message-driven beans and provides the
configuration necessary for them to receive messages.

To view this page in the console, click one of the following paths:

v Resources -> JMS -> Activation specifications -> activation_specification_name

v Resources -> JMS -> JMS providers -> a_messaging_provider -> [Additional Properties]
Activation specifications -> activation_specification_name

Use this panel to browse or change the configuration properties of the selected JMS activation
specification for use with the default messaging provider.

You create a JMS activation specification if you want to use a message-driven bean to communicate with
the default messaging provider through Java EE Connector Architecture (JCA) 1.5. JCA provides Java
connectivity between application servers such as WebSphere Application Server, and enterprise
information systems. It provides a standardized way of integrating JMS providers with Java EE application
servers, and provides a framework for exchanging data with enterprise systems, where data is transferred
in the form of messages.

All the activation specification configuration properties apart from Name, JNDI name, Destination JNDI name,
and Authentication alias are overridden by appropriately named activation-configuration properties in the
deployment descriptor of an associated EJB 2.1 or later message-driven bean. For an EJB 2.0

588 Administering WebSphere applications



message-driven bean, the Destination type, Subscription durability, Acknowledge mode and Message
selector properties are overridden by the corresponding elements in the deployment descriptor. For either
type of bean the Destination JNDI name property can be overridden by a value specified in the
message-driven bean bindings.

The activation specification properties influence how the default messaging provider chooses the
messaging engine to which your message-driven bean application connects. By default, the environment
automatically connects applications to an available messaging engine on the bus. However you can
specify extra configuration details to influence the connection process; for example to identify special
bootstrap servers, or to limit connection to a subgroup of available messaging engines, or to improve
availability or performance, or to ensure sequential processing of messages received. For information
about why and how to do this, see the topic How JMS applications connect to a messaging engine on a
bus.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Scope:

Specifies the highest topological level at which application servers can use this resource object.

Information Value
Required No
Data type String

Provider:

Specifies a JMS provider, which enables asynchronous messaging based on the Java Message Service
(JMS). It provides J2EE connection factories to create connections for specific JMS queue or topic
destinations. JMS provider administrative objects are used to manage JMS resources for the associated
JMS provider.

Information Value
Required No
Data type String

Name:

The required display name for the resource.

Information Value
Required Yes
Data type String

JNDI name:

The JNDI name for the resource.

Type the JNDI name that is specified in the bindings for message-driven beans associated with this
activation specification.

Chapter 12. Welcome to administering Messaging resources 589



Information Value
Required Yes
Data type String

Description:

An optional description for the resource.

Information Value
Required No
Data type Text area

Destination type:

Whether the message-driven bean uses a queue or topic destination.

Information Value
Required Yes
Data type drop-down list
Range

Queue The message-driven bean uses a JMS queue.
The JNDI name of the JMS queue is specified on
the Destination JNDI name property.

Topic The message-driven bean uses a JMS topic. The
JNDI name of the JMS topic is specified on the
Destination JNDI name property.

Destination JNDI name:

JNDI Name of destination

Type the JNDI name that the message-driven bean uses to look up the JMS destination in the JNDI
namespace.

Select the type of destination on the “Destination type” property.

For resource adapters that support JMS you must associate javax.jms.Destinations with an activation
specification, such that the resource adapter can service messages from the JMS destination. In this case,
the administrator configures a J2C Administered Object that implements the javax.jms.Destination interface
and binds it into JNDI.

You can configure a J2C Administered Object to use an ActivationSpec class that implements a
setDestination(javax.jms.Destination) method. In this case, you can specify the destination JNDI name
(that is, the JNDI name for the J2C Administered object that implements the javax.jms.Destination).

During application startup, when the activation specification is being initialized as part of endpoint
activation, the server uses the destination JNDI name to look up the destination administered object then
set it on the activation specification instance.

Information Value
Required Yes
Data type String

590 Administering WebSphere applications



Message selector:

The JMS message selector used to determine which messages the message-driven bean receives. The
value is a string that is used to select a subset of the available messages. The syntax is based on a
subset of the SQL 92 conditional expression syntax, as described in the JMS specification. Refer to the
information center for more information.

For example:
JMSType=’car’ AND color=’blue’ AND weight>2500

The selector string can refer to fields in the JMS message header and fields in the message properties.
Message selectors cannot reference message body values.

A null value (an empty string) indicates that there is no message selector for the message consumer.

Information Value
Required No
Data type String

Bus name:

The name of the bus to connect to.

Type the name of the service integration bus to which connections are made. This must be the name of
the bus on which the destination identified by the “Destination JNDI name” on page 590 property is
defined.

Information Value
Required No
Data type Custom

Acknowledge mode:

How the session acknowledges any messages it receives.

The acknowledge mode indicates how a message received by a message-driven bean should be
acknowledged.

Note:

The acknowledgement is sent when the message is deleted.

If you have a non-transactional message-driven bean, the system either deletes the message when
the bean starts, or when the bean completes. If the bean generates an exception, and therefore
does not complete, the system takes one of the following actions:

v If the system is configured to delete the message when the bean completes, then the message
is despatched to a new instance of the bean, so the message has another opportunity to be
processed.

v If the system is configured to delete the message when the bean starts, then the message is
lost.

The message is deleted when the bean starts if the quality of service is set to Best effort
nonpersistent. For all other qualities of service, the message is deleted when the bean completes.

Chapter 12. Welcome to administering Messaging resources 591



Information Value
Required No
Data type drop-down list
Range

Auto-acknowledge
The session automatically acknowledges the
delivery of a message.

Duplicates-ok auto-acknowledge
The session lazily acknowledges the delivery of
messages, which can improve performance, but
can lead to a message-driven bean receiving a
message more than once.

Target:

The name of a target that identifies a group of messaging engines. Specify the type of target using the
Target type property.

Information Value
Required No
Data type String

Target type:

The type of target named in the Target property.

Information Value
Required No
Data type drop-down list
Range

Bus member name
The name of a bus member. This option retrieves
the active messaging engines that are hosted by
the named bus member (an application server or
server cluster).

Custom messaging engine group name
The name of a custom group of messaging
engines (that form a self-declaring cluster). This
option retrieves the active messaging engines
that have registered with the named custom
group.

Messaging engine name
The name of a messaging engine. This option
retrieves the available endpoints that can be
used to reach the named messaging engine.

Target significance:

This property specifies the significance of the target group.

Information Value
Required No

592 Administering WebSphere applications



Information Value
Data type drop-down list
Range

Preferred
It is preferred that a messaging engine is
selected from the target group. A messaging
engine in the target group is selected if one is
available. If a messaging engine is not available
in the target group, a messaging engine outside
the target group is selected if available in the
same service integration bus.

Required
It is required that a messaging engine is selected
from the target group. A messaging engine in the
target group is selected if one is available. If a
messaging engine is not available in the target
group, the connection process fails.

Target inbound transport chain:

The name of the inbound transport chain that the application should target when connecting to a
messaging engine in a separate process to the application. If a messaging engine in another process is
chosen, a connection can be made only if the messaging engine is in a server that runs the specified
inbound transport chain. Refer to the information center for more information.

If the selected messaging engine is in the same server as the application, a direct in-process connection is
made and this transport chain property is ignored.

The transport chains represent network protocol stacks operating within a server. The name you specify
must be one of the transport chains available in the server that hosts the messaging engine, as listed on
the Servers -> Server Types -> WebSphere application servers -> server_name -> [Server
messaging] Messaging engine inbound transports panel. The following transport chains are provided,
but you can define your own transport chains on that panel.

InboundBasicMessaging
This is a connection-oriented protocol that uses a standard TCP/IP connection (JFAP-TCP/IP). It
includes support for two-phase transactional (remote XA) flows, so that a message producer or
consumer, running on a client or server system, can participate in a global transaction managed
on that client or server system. The specific use for the XA flows is to support access from an
application running in one server to a messaging engine on second server, perhaps because the
first server does not have a suitable messaging engine. If the remote XA flows are used, a
transaction coordinator must be available local to the application.

InboundSecureMessaging
This is the InboundBasicMessaging protocol wrapped in SSL.

For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

Information Value
Required No
Data type String

Provider endpoints:

Chapter 12. Welcome to administering Messaging resources 593



A comma-separated list of endpoint triplets, with the syntax hostName:portNumber:chainName, used to
connect to a bootstrap server. For example
Merlin:7276:BootstrapBasicMessaging,Gandalf:5557:BootstrapSecureMessaging.

Provider endpoints are not used unless the specified bus cannot be found in the local cell. Message-driven
bean (MDB) applications first attempt to connect the specified bus in the local cell. If this attempt fails,
provider endpoints are used to allow the applications to consume messages from a remote cell.

If the host name is not specified, localhost is used as a default value.

If the port number is not specified, 7276 is used as the default value.

If the protocol is not specified, a predefined chain such as BootstrapBasicMessaging is used as the default
value.

Information Value
Required No
Data type Text area

Maximum batch size:

The maximum number of messages received from the messaging engine in a single batch.

The maximum number of messages in a single batch delivered serially to a single message-driven bean
instance. Batching of messages can improve performance particularly when used with Acknowledge mode
set to Duplicates-ok auto-acknowledge. If message-ordering must be retained across failed deliveries, set
the batch size to 1.

Information Value
Required No
Data type Integer
Range 1 through 2147483647

Maximum concurrent MDB invocations per endpoint:

The maximum number of endpoints to which messages are delivered concurrently.

Increasing this number can improve performance but can increase the number of threads that are in use
at any one time. If message ordering must be retained across failed deliveries, set the maximum
concurrent endpoints to 1. Message ordering applies only if the destination that the message-driven bean
is consuming from is not a partitioned destination. Partitioned destinations are used in a workload sharing
scenario in a cluster.

Information Value
Required No
Data type Integer
Range 1 through 2147483647

Automatically stop endpoints on repeated message failure:

594 Administering WebSphere applications



These parameters enable an endpoint to stop automatically when the number of sequentially failing
messages reaches a limit that you specify. This helps to distinguish between one or two messages that fail
because of problems with the messages themselves, and a system resource problem that results in many
sequentially failing messages.

Stopping the endpoint reduces the number of messages being moved unnecessarily to an exception
destination when the problem is not caused by messages that are failing to be processed.

When an endpoint is stopped automatically, its Status on the administrative console panel is red. It must
be restarted manually by clicking Resume.

After an endpoint is restarted, any failing messages that caused the endpoint to be stopped are retried. If
they continue to fail they are moved to an exception destination, if configured.

Enable:

Enable automatic stopping of an endpoint based on the parameters below.

Information Value
Required No
Data type Boolean

Sequential failed message threshold:

The endpoint will be stopped when the number of sequentially failing messages reaches the configured
limit. Due to processing dependencies in the MDB the actual number of messages processed may exceed
this value.

This property is not enabled unless the Automatically stop endpoints on repeated message failure property
is enabled.

Information Value
Required No
Data type Integer

Delay between failing message retries:

Any message that fails to be processed by the MDB but has not reached its maximum failed delivery limit
will only be retried after this period of time (in milliseconds) has passed. Other messages may be tried
during this period, unless the sequential failure threshold and the maximum concurrency is set to 1.

Setting a delay between failing message retries reduces the number of messages unnecessarily moved to
the exception destination before the MDB is stopped. To minimize the number of messages that are
moved, make this delay greater than the expected time interval between messages arriving on the
destination.

This property is not enabled unless the Automatically stop endpoints on repeated message failure property
is enabled.

Information Value
Required No
Data type Integer
Range The time in milliseconds. A value of 0 indicates no delay

between retries.

Chapter 12. Welcome to administering Messaging resources 595



Subscription durability:

Whether a JMS topic subscription is durable or nondurable

Usually, only one application at a time can have a consumer for a particular durable subscription. This
property enables you to override this behavior, to enable a durable subscription to have multiple
simultaneous consumers.

Information Value
Required No
Data type drop-down list
Range

Durable
The messaging provider stores messages while
the message-driven bean is not available, and
delivers the messages when the message-driven
bean becomes available again.

Nondurable
The messaging provider does not store and
redeliver messages if a message-driven bean is
not available.

Subscription name:

The subscription name needed for durable topic subscriptions. Required field when using a durable topic
subscription.

Each JMS durable subscription is identified by a subscription name (specified on this property). A JMS
connection also has an associated client identifier (specified on the Client identifier property), which is
used to associate a connection and its objects with the list of messages (on the durable subscription) that
is maintained by the JMS provider for the client.

This subscription name must be unique within a given client identifier.

Information Value
Required No
Data type String

Client identifier:

The JMS client identifier needed for durable topic subscriptions on all connections created using this
activation specification.

The value specified is a unique identifier for a client (message-driven bean). The client identifier is used to
associate a client connection with the list of messages (on a durable subscription) that the messaging
provider keeps for the client. When a client becomes available again, after a being unavailable, the
messaging provider uses the client identifier to redeliver stored messages to the correct client.

Information Value
Required No
Data type String

Durable subscription home:

596 Administering WebSphere applications



The name of the messaging engine used to store messages delivered to durable subscriptions for objects
created from this JMS activation specification. This is a required field when using a durable topic
subscription.

Administrators can manage the runtime state of durable subscriptions through publication points for this
messaging engine.

Information Value
Required No
Data type String

Pass message payload by reference:

When large object messages or bytes messages are sent, the cost in memory and processor use of
serializing, deserializing, and copying the message payload can be significant.If you enable the pass
message payload by reference properties on a connection factory or activation specification, you tell the
default messaging provider to override the JMS 1.1 specification and potentially reduce or bypass this data
copying.

CAUTION:
The parts of the JMS Specification that are bypassed by these properties are defined to ensure
message data integrity. Any of your JMS applications that use these properties must strictly follow
the rules that are described in the topic Why and when to pass the JMS message payload by
reference, or you risk losing data integrity.

Applications that use this activation specification to receive messages must obey the following
rule::

v The application does not modify the data object obtained from a JMS object message. The data object
is treated as read only.

When enabled, Object Messages received through this activation spec will only have their message data
serialized by the system when absolutely necessary. The data obtained from those messages must be
treated as readOnly by applications.

Information Value
Required No
Data type Boolean

Applications resending messages that were originally received using this activation specification
must obey the following rules::

v The application can replace the data object in a JMS object message, provided that the data object has
not yet been set in the message. The application does not modify or replace the data object after it is
set in the message.

v The application can replace the byte array in a JMS bytes message, but only by using a single call to
writeBytes(byte[]), and provided that the byte array has not yet been set in the message. The
application does not modify or replace the byte array after it is set in the message.

When enabled, Object/Bytes Messages forwarded through this activation specification that have their
payload modified will not have the data copied when it is set into the message and the system will only
serialize the message data when absolutely necessary. Applications sending such messages must not
modify the data once it has been set into the message.

Information Value
Required No

Chapter 12. Welcome to administering Messaging resources 597



Information Value
Data type Boolean

Share durable subscriptions:

Controls whether or not durable subscriptions are shared across connections with members of a server
cluster.

Usually, only one session at a time can have a TopicSubscriber for a particular durable subscription. This
property enables you to override this behavior, to enable a durable subscription to have multiple
simultaneous consumers, one on each application server in the server cluster.

This option should be changed from its default only in WebSphere Application Server environments that
support server clusters.

Information Value
Required No
Data type drop-down list
Range

In cluster
Allows sharing of durable subscriptions when
connections are made from within a server
cluster.

Always shared
Durable subscriptions can be shared across
connections.

Never shared
Durable subscriptions are never shared across
connections.

Share data source with CMP:

Allow sharing of connections between JMS and container-managed persistence (CMP) entity beans.

This option is used as part of the task to enable container-managed persistence (CMP) entity beans to
share the database connections used by the data store of a messaging engine. This has been estimated
as a potential performance improvement of 15% for overall message throughput, but can only be used for
entity beans connected to the application server that contains the messaging engine.

For more information about using this option, see the topic Enabling CMP entity beans and messaging
engine data stores to share database connections.

Information Value
Required No
Data type Boolean

Read ahead:

Read ahead is an optimization that preemptively assigns messages to consumers. This improves the time
taken to satisfy consumer requests.

598 Administering WebSphere applications



Messages that are assigned to a consumer are locked on the server and cannot be consumed by any
other consumers for that destination. Messages that are assigned to a consumer, but not consumed before
that consumer is closed, are subsequently unlocked on the server and then available for receipt by other
consumers.

You can override this property for individual JMS destinations by setting the Read ahead property on the
JMS destination.

Information Value
Required No
Data type drop-down list
Range

Default The message provider preemptively assigns
messages to consumers on nondurable
subscriptions and unshared durable
subscriptions. That is, read ahead optimization is
turned on only when there can only be a single
consumer.

Enabled
The messaging provider preemptively assigns
messages to consumers. This improves the time
taken to satisfy consumer requests.

Disabled
The messaging provider does not preemptively
assign messages to consumers.

Always activate MDBs in all servers:

This property is only used when the MDB application is running on a server that is a member of the bus
that the application is targeting. It has no effect when the MDB is running on a server that is not a member
of the target bus.

If the MDB application is running on a server that is a member of the target bus, enabling this option
allows the MDB application to process messages whether or not the server also hosts a running
messaging engine. If this option is not enabled, then MDB applications on servers that do not have a local
ME running do not process messages.

Information Value
Required No
Data type Boolean

Retry interval:

The delay (in seconds) between attempts to connect to a messaging engine, both for the initial connection,
and any subsequent attempts to establish a better connection.

Information Value
Required No
Data type Integer
Range 1 through 2147483647

Chapter 12. Welcome to administering Messaging resources 599



Authentication alias
The name of a J2C authentication alias used for component-managed authentication of connections to the
service integration bus.

A Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) authentication alias specifies
the user ID and password that is used to authenticate the creation of a new connection to the JMS
provider.

The user name and password custom properties fields must be left unspecified if the authentication alias
field used. Authentication alias properties set as part of application deployment take precedence over
properties set on an activation specification administrative object.

Only the authentication alias is ever written to file in an unencrypted form, even for purposes of transaction
recovery logging. The security service is used to protect the real user name and password.

During application startup, when the activation specification is being initialized as part of endpoint
activation, the server uses the authentication alias to retrieve the real user name and password from
security then set it on the activation specification instance.

Information Value
Required No
Data type drop-down list

Related Items
JAAS - J2C authentication data

Specifies a list of user identities and passwords for Java 2 connector security to use.

Buses
A service integration bus supports applications using message-based and service-oriented
architectures. A bus is a group of interconnected servers and clusters that have been added as
members of the bus. Applications connect to a bus at one of the messaging engines associated
with its bus members.

Default messaging provider unified connection factory [Settings]
A JMS connection factory is used to create connections to the associated JMS provider of JMS
destinations, for both point-to-point and publish/subscribe messaging. Use connection factory
administrative objects to manage JMS connection factories for the default messaging provider.

To view this page in the console, click one of the following paths:

v Resources -> JMS -> Connection factories -> factory_name

v Resources -> JMS -> JMS providers -> a_messaging_provider -> [Additional Properties]
Connection factories -> factory_name

Set, browse or change the configuration properties of a JMS connection factory for use with the default
messaging JMS provider. These configuration properties control how connections are created to
associated JMS queues and topics.

By default, connections created by using this JMS connection factory in the server containers (for
example, from an enterprise bean) are pooled by using Java Platform, Enterprise Edition (Java EE)
Connector Architecture (JCA) connection pooling. You can modify the connection pool settings for this
connection factory by selecting Connection pool properties in the Additional properties section of the
administrative console panel.

600 Administering WebSphere applications



The connection factory properties influence how the default messaging provider chooses the messaging
engine to which your JMS application connects. By default, the environment automatically connects
applications to an available messaging engine on the bus. However you can specify extra configuration
details to influence the connection process; for example to identify special bootstrap servers, or to limit
connection to a subgroup of available messaging engines, or to improve availability or performance, or to
ensure sequential processing of messages received. For information about how to do this, see the topic
Configuring the messaging engine selection process for JMS applications.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Scope:

Specifies the highest topological level at which application servers can use this resource object.

Information Value
Required No
Data type String

Provider:

Specifies a JMS provider, which enables asynchronous messaging based on the Java Message Service
(JMS). It provides J2EE connection factories to create connections for specific JMS queue or topic
destinations. JMS provider administrative objects are used to manage JMS resources for the associated
JMS provider.

Information Value
Required No
Data type String

Name:

The required display name for the resource.

Information Value
Required Yes
Data type String

JNDI name:

The JNDI name for the resource.

Information Value
Required Yes
Data type String

Description:

An optional description for the resource.

Chapter 12. Welcome to administering Messaging resources 601



Information Value
Required No
Data type Text area

Category:

An optional category string to use when classifying or grouping the resource.

Information Value
Required No
Data type String

Bus name:

The name of the service integration bus to connect to.

Enter the name of the local bus in situations where an application makes connection to foreign buses.

Information Value
Required Yes
Data type Custom

Target:

The name of a target that identifies a group of messaging engines. Specify the type of target using the
Target type property.

Before the connection proximity search is performed to select a suitable messaging engine, the set of
messaging engines that are members of the specified target group are selected. The connection proximity
search is then restricted to these messaging engines. If a target group is not specified (the default), then
all messaging engines in the bus are considered during the connection proximity search.

For example, if the Target type property is set to Bus member name, the Target property specifies the
name of the bus member from which suitable messaging engines can be chosen.

Information Value
Required No
Data type String

Target type:

The type of target named in the Target property.

Information Value
Required No
Data type drop-down list

602 Administering WebSphere applications



Information Value
Range

Bus member name
The name of a bus member. This option retrieves
the active messaging engines that are hosted by
the named bus member (an application server or
server cluster).

To specify a non-clustered bus member the
Target property must be set to
<Node01>.<server1>, for example
Node01.server1. For a cluster bus member the
Target property must be set to the cluster name.

Custom messaging engine group name
The name of a custom group of messaging
engines (that form a self-declaring cluster). This
option retrieves the active messaging engines
that have registered with the named custom
group.

Messaging engine name
The name of a messaging engine. This option
retrieves the available endpoints that can be
used to reach the named messaging engine.

Target significance:

This property specifies the significance of the target group.

This property defines whether the connection proximity search is restricted to only the messaging engines
in the target group.

Information Value
Required No
Data type drop-down list

Chapter 12. Welcome to administering Messaging resources 603



Information Value
Range

Preferred
It is preferred that a messaging engine is
selected from the target group. A messaging
engine in the target group is selected if one is
available. If a messaging engine is not available
in the target group, a messaging engine outside
the target group is selected if available in the
same service integration bus.

Note: A connection to a non-preferred target
might be returned even if a preferred one is
available. This can happen when connection
pooling is enabled for a ConnectionFactory,
which it is by default when you use a JMS
ConnectionFactory in a server environment:

v When a preferred messaging engine is not
available, a connection to a non-preferred one
can be created and stored in the connection
pool.

v The next time the application requests a
connection it receives this pooled connection
even if the preferred messaging engine has
subsequently become available.

You can modify the connection pool settings to
regularly discard all unused connections in the
pool. After the connection pool is emptied,
connections are made to the preferred
messaging engine if one is available. For
example, set the ReapTime, AgedTimeout and
UnusedTimeout to 300 seconds, and the
PurgePolicy to EntirePool. This refreshes the
connection pool every 5 minutes, after which time
the application selects a preferred messaging
engine if one is available.

Required
It is required that a messaging engine is selected
from the target group. A messaging engine in the
target group is selected if one is available. If a
messaging engine is not available in the target
group, the connection process fails.

Target inbound transport chain:

The name of the inbound transport chain that the application should target when connecting to a
messaging engine in a separate process to the application. If a messaging engine in another process is
chosen, a connection can be made only if the messaging engine is in a server that runs the specified
inbound transport chain. Refer to the information center for more information.

These transport chains specify the communication protocols that can be used to communicate with the
application server to which the client application is connected.

If the selected messaging engine is in the same server as the application, a direct in-process connection is
made and this transport chain property is ignored.

604 Administering WebSphere applications



The transport chains represent network protocol stacks operating within a server. The name you specify
must be one of the transport chains available in the server that hosts the messaging engine, as listed on
the Servers -> Server Types -> WebSphere application servers -> server_name -> [Server
messaging] Messaging engine inbound transports panel. The following transport chains are provided,
but you can define your own transport chains on that panel.

InboundBasicMessaging
This is a connection-oriented protocol that uses a standard TCP/IP connection (JFAP-TCP/IP). It
includes support for two-phase transactional (remote XA) flows, so that a message producer or
consumer, running on a client or server system, can participate in a global transaction managed
on that client or server system. The specific use for the XA flows is to support access from an
application running in one server to a messaging engine on second server, perhaps because the
first server does not have a suitable messaging engine. If the remote XA flows are used, a
transaction coordinator must be available local to the application.

InboundSecureMessaging
This is the InboundBasicMessaging protocol wrapped in SSL.

For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

Information Value
Required No
Data type String

Provider endpoints:

A comma-separated list of endpoint triplets, with the syntax hostName:portNumber:chainName, used to
connect to a bootstrap server. For example
Merlin:7276:BootstrapBasicMessaging,Gandalf:5557:BootstrapSecureMessaging. If hostName is not
specified, the default is localhost. If portNumber is not specified, the default is 7276. If chainName is not
specified, the default is BootstrapBasicMessaging. Refer to the information center for more information.

You only have to modify this property if you have client applications running outside of an application
server, or applications on a server in another cell, that want to use this connection factory to connect to
the target service integration bus specified on the connection factory.

To use JMS destinations of the default messaging provider, an application connects to a messaging engine
on the target service integration bus to which the destinations are assigned. For example, a JMS queue is
assigned to a queue destination on a service integration bus.

Client applications running outside of an application server - for example, running in a client container or
outside the WebSphere Application Server environment - cannot locate directly a suitable messaging
engine to connect to in the target bus. Similarly, an application running on a server in one cell to connect
to a target bus in another cell cannot locate directly a suitable messaging engine to connect to in the
target bus.

In these scenarios, the clients (or servers in another bus) must complete a bootstrap process through a
bootstrap server that is a member of the target bus. A bootstrap server is an application server running the
SIB Service, but does not have to be running any messaging engines. The bootstrap server selects a
messaging engine that is running in an application server that supports the required target transport chain.
For the bootstrap process to be possible, you must configure one or more provider end points in the
connection factory used by the client.

Chapter 12. Welcome to administering Messaging resources 605



A bootstrap server uses a specific port and bootstrap transport chain. The port is the
SIB_ENDPOINT_ADDRESS (or SIB_ENDPOINT_SECURE_ADDRESS if security is enabled), of the messaging engine
that hosts the remote end of the link. Together with host name, these form the endpoint address of the
bootstrap server.

The properties of a JMS connection factory used by an application control the selection of a suitable
messaging engine and how the application connects to the selected messaging engine.

v If no security credentials are provided, then by default

– If no host is specified then localhost is used

– If no port is specified then port 7276 is used

– If no bootstrap channel chain is specified then bootstrap transport chain called
BootstrapBasicMessaging is used

v If security credentials are provided, then by default

– If no host is specified then localhost is used

– If no port is specified then port 7286 is used

– If no bootstrap channel chain is specified then bootstrap transport chain called
BootstrapBasicMessaging is used

Note: For the IBM i platform, you must (at least) change the default host name from
localhost to your.server.name.

If you want an application to use a bootstrap server with a different endpoint address, you must specify the
required endpoint address on the Provider endpoints property of the JMS connection factories that the
client application uses. You can specify one or more endpoint addresses of bootstrap servers.

The endpoint addresses for bootstrap servers must be specified in every JMS connection factory that is
used by applications outside of an application server. To avoid having to specify a long list of bootstrap
servers, you can provide a few highly-available servers as dedicated bootstrap servers. Then you only
have to specify a short list of bootstrap servers on each connection factory.

Note: When configuring a connection to a non-default bootstrap server, specify the required values for the
endpoint address and use colons as separators.

For example: for a server assigned non-secure port 7278, on host boothost1, that uses the default
transport chain BootstrapBasicMessaging:
boothost1:7278:BootstrapBasicMessaging
or
boothost1:7278

and for a server assigned secure port 7289, on host boothost2, that uses the predefined transport chain
BootstrapTunneledSecureMessaging:
boothost2:7289:BootstrapTunneledSecureMessaging

The syntax for an endpoint address is as follows:
[ [host_name] [ “:” [port_number] [ “:” chain_name] ] ]

where:

host_name
is the name of the host on which the server runs. It can be an IP address. For an IPv6 address,
put square braces ([]) around host_name as shown in the example below:
[2002:914:fc12:179:9:20:141:42]:7276:BootstrapBasicMessaging

. If a value is not specified, the default is localhost.

606 Administering WebSphere applications



Note: For the IBM i platform, you must (at least) change the default host name from
localhost to your.server.name.

port_number
where specified, is one of the following addresses of the messaging engine that hosts the remote
end of the link:

v SIB_ENDPOINT_ADDRESS if security is not enabled

v For secure connections, SIB_ENDPOINT_SECURE_ADDRESS if security is enabled.

If port_number is not specified, the default is 7276.

To find either of these values by using the administrative console, click Servers -> Server Types
-> WebSphere application servers -> server_name -> [Communications] Ports.

chain_name
is the name of a predefined bootstrap transport chain used to connect to the bootstrap server. If
not specified, the default is BootstrapBasicMessaging.

The following predefined bootstrap transport chains are provided:

BootstrapBasicMessaging
This corresponds to the server transport chain InboundBasicMessaging (JFAP-TCP/IP)

BootstrapSecureMessaging
This corresponds to the server transport chain InboundSecureMessaging
(JFAP-SSL-TCP/IP)

BootstrapTunneledMessaging
Before you can use this bootstrap transport chain, you must define a corresponding server
transport chain on the bootstrap server. (See Servers -> Server Types -> WebSphere
application servers -> server_name -> [Server messaging] Messaging engine
inbound transports.) This transport chain tunnels JFAP and uses HTTP wrappers.

BootstrapTunneledSecureMessaging
Before you can use this bootstrap transport chain, you must define a corresponding server
transport chain on the bootstrap server. (SeeServers -> Server Types -> WebSphere
application servers -> server_name -> [Server messaging] Messaging engine
inbound transports.) This transport chain tunnels JFAP and uses HTTP wrappers.

Specifying host_name : chain_name instead of host_name : : chain_name (with two colons) is incorrect. It
is valid to enter nothing, or to enter any of the following: “a”, “a:”, “:7276”, “::chain”, and so on. The
default value applies if you do not specify a value, but you must separate the fields with “:”.

If you want to provide more than one bootstrap server, identify all the required endpoint addresses.
Separate each endpoint address by a comma character. For example, to use the servers from the earlier
example:
boothost1:7278:BootstrapBasicMessaging,

boothost2:7289:BootstrapTunneledSecureMessaging,
[2002:914:fc12:179:9:20:141:42]:7276:BootstrapBasicMessaging

Information Value
Required No
Data type Text area

Connection proximity:

The proximity of messaging engines that can accept connection requests, in relation to the bootstrap
messaging engine.

Chapter 12. Welcome to administering Messaging resources 607



When a client issues a client connect request, the processing attaches to the required bus according to
the following logic:

v If a target group is specified, connect to the first messaging engine that satisfies the following conditions
for the target type:

– Server Look for a messaging engine in the same server.

– Cluster Look for a messaging engine in the same server, then on other servers in the same cluster.

– Host Look for a messaging engine in the same server, then on other servers in the same cluster,
then on other servers in the same host.

– Bus Look for a messaging engine in the same server, then on other servers in the same cluster, then
on other servers in same host, then any other messaging engine on the same bus.

v If a target group is not specified, or a target group is specified but no suitable messaging engine is
found and target significance is Preferred, connect to the first messaging engine that satisfies the
following conditions for the target type:

– Server Look for a messaging engine in the same server.

– Cluster Connection fails.

– Host Look for a messaging engine in the same server, then on other servers in the same host.

– Bus Look for a messaging engine in the target group in same server, then on other servers in same
host, then any other messaging engine on the same bus.

For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

Information Value
Required No
Data type drop-down list
Range

Bus Connections can be made to messaging engines
in the same bus.

Cluster
Connections can be made to messaging engines
in the same server cluster.

Host Connections can be made to messaging engines
in the same host.

Server Connections can be made to messaging engines
in the same application server.

Client identifier:

The JMS client identifier needed for durable topic subscriptions on all connections created using this
connection factory. This identifier is required if the application is doing durable pub/sub

Information Value
Required No
Data type String

Durable subscription home:

The name of the messaging engine used to store messages delivered to durable subscriptions for objects
created from this JMS connection factory.

608 Administering WebSphere applications



Information Value
Required No
Data type Custom

Nonpersistent message reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

You can change the delivery reliability option for the destination of a message that is sent by a JMS
application as Nonpersistent. The default is Express nonpersistent but you have a range of other
options, including those with persistent characteristics, with Assured persistent being the most reliable.
For more information see the topic Message reliability levels - JMS delivery mode and service integration
quality of service.

Information Value
Required No
Data type drop-down list
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

As bus destination
Use the delivery option configured for the bus
destination.

Persistent message reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

You can change the delivery reliability option for the destination of a message that is sent by a JMS
application as Persistent. The default is Reliable persistent but you have a range of other options
including those with nonpersistent characteristics, with Best effort nonpersistent being the least reliable.
For more information see the topic Message reliability levels - JMS delivery mode and service integration
quality of service.

Important: If you change the delivery reliability options of a message sent by a JMS application from one
of the Persistent message reliability options (Assured persistent and Reliable persistent)

Chapter 12. Welcome to administering Messaging resources 609



to one of the Nonpersistent message reliability options (Best effort nonpersistent,
Express nonpersistent, and Reliable nonpersistent), you risk losing messages in certain
circumstances. For example, at server restart, or when there is heavy workload.

Information Value
Required No
Data type drop-down list
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

As bus destination
Use the delivery option configured for the bus
destination.

Read ahead:

Read ahead is an optimization that preemptively assigns messages to consumers. This improves the time
taken to satisfy consumer requests.

Messages that are assigned to a consumer are locked on the server and cannot be consumed by any
other consumers for that destination. Messages that are assigned to a consumer, but not consumed before
that consumer is closed, are subsequently unlocked on the server and then available for receipt by other
consumers.

You can override this property for individual JMS destinations by setting the Read ahead property on the
JMS destination.

Information Value
Required No
Data type drop-down list

610 Administering WebSphere applications



Information Value
Range

Default The message provider preemptively assigns
messages to consumers on nondurable
subscriptions and unshared durable
subscriptions. That is, read ahead optimization is
turned on only when there can only be a single
consumer.

Enabled
The messaging provider preemptively assigns
messages to consumers. This improves the time
taken to satisfy consumer requests.

Disabled
The messaging provider does not preemptively
assign messages to consumers.

Temporary queue name prefix:

The prefix of up to twelve characters used for names of temporary queues created by applications that use
this connection factory.

Information Value
Required No
Data type String

Temporary topic name prefix:

The prefix of up to twelve characters used for names of temporary topics created by applications that use
this connection factory.

Information Value
Required No
Data type String

Share durable subscriptions:

Controls whether or not durable subscriptions are shared across connections with members of a server
cluster.

Usually, only one session at a time can have a TopicSubscriber for a particular durable subscription. This
property enables you to override this behavior, to enable a durable subscription to have multiple
simultaneous consumers.

Information Value
Required No
Data type drop-down list

Chapter 12. Welcome to administering Messaging resources 611



Information Value
Range

In cluster
Allows sharing of durable subscriptions when
connections are made from within a server
cluster.

Always shared
Durable subscriptions can be shared across
connections.

Never shared
Durable subscriptions are never shared across
connections.

Pass message payload by reference: When large object messages or bytes messages are sent, the
cost in memory and processor use of serializing, deserializing, and copying the message payload can be
significant. If you enable the pass message payload by reference properties on a connection factory or
activation specification, you tell the default messaging provider to override the JMS 1.1 specification and
potentially reduce or bypass this data copying.

CAUTION:
The parts of the JMS Specification that are bypassed by these properties are defined to ensure
message data integrity. Any of your JMS applications that use these properties must strictly follow
the rules that are described in the topic Why and when to pass the JMS message payload by
reference, or you risk losing data integrity.

Applications that use this connection factory to send messages must obey the following rules::

v The application does not modify the data object contained in a JMS object message.

v The application populates a JMS bytes message by using a single call to writeBytes(byte[]) and does
not modify the byte array after it is set in the message.

When enabled, Object/Bytes Messages sent by a message producing application that has connected to
the bus using this connection factory will not have their data copied when set and the system will only
serialize the message data when absolutely necessary. Applications sending such messages must not
modify the data once it has been set into the message.

Information Value
Required No
Data type Boolean

Applications that use this connection factory to receive messages must obey the following rule::

v The application does not modify the data object obtained from a JMS object message. The data object
is treated as read only.

When enabled, Object Messages received by a message consuming application that has connected to this
connection factory will only have their message data serialized by the system when absolutely necessary.
The data obtained from these messages must be treated as readOnly by applications.

Information Value
Required No
Data type Boolean

Log missing transaction contexts:

612 Administering WebSphere applications



Whether or not the container logs that there is a missing transaction context when a connection is
obtained.

The Java EE programming model indicates that connections should always have a transaction context.
However, some applications do not correctly have a transaction context associated with them.

Select this property to log connections being created without a transaction context.

Information Value
Required No
Data type Boolean

Manage cached handles:

Whether cached handles (handles held in instance variables in a bean) should be tracked by the
container.

Select this option to track handle management, which can be useful for debugging purposes. However,
tracking handles can significantly reduce performance if used at run time.

Information Value
Required No
Data type Boolean

Share data source with CMP:

Allow sharing of connections between JMS and container-managed persistence (CMP) entity beans.

This option is used as part of the task to enable container-managed persistence (CMP) entity beans to
share the database connections used by the data store of a messaging engine. This has been estimated
as a potential performance improvement of 15% for overall message throughput, but can only be used for
entity beans connected to the application server that contains the messaging engine.

For more information about using this option, see the topic Enabling CMP entity beans and messaging
engine data stores to share database connections.

Information Value
Required No
Data type Boolean

Authentication alias for XA recovery:

Specifies the alias that the connection factory uses to authenticate with the EIS for transaction recovery.

Select the alias to be used during transaction recovery processing.

This property provides a list of the JCA authentication data entry aliases that have been defined to
WebSphere Application Server. You can select a data entry alias to be used to authenticate during XA
recovery processing.

If you have enabled security for the associated service integration bus, select the alias that specifies the
user ID and password used for XA recovery that is valid in the user registry for WebSphere Application
Server. This property must be set if bus security is enabled and XA transactions are to be used.

Chapter 12. Welcome to administering Messaging resources 613



Information Value
Required No
Data type drop-down list

Mapping-configuration alias:

Specifies the mapping configuration alias for the Java Authentication and Authorization Service (JAAS)
mapping configuration that is used by this connection factory.

This field will be used only in the absence of a loginConfiguration on the component resource reference.
The specification of a login configuration and associated properties on the component resource reference
determines the container-managed authentication strategy when the res-auth value is Container.If the
DefaultPrincipalMapping login configuration is specified, the associated property will be a JAAS - J2C
authentication data entry alias. See related item JAAS - J2C authentication data entry to define a new
alias.

Information Value
Required No
Data type drop-down list

Container-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connections to the JMS provider for
container-managed authentication. This setting is only used when the res-auth value is container, and the
authentication alias was not set when the application was deployed.

Information Value
Required No
Data type drop-down list

Additional Properties
Connection pool properties

An optional set of connection pool settings.

Related Items
JAAS - J2C authentication data

Specifies a list of user identities and passwords for Java 2 connector security to use.

Buses
A service integration bus supports applications using message-based and service-oriented
architectures. A bus is a group of interconnected servers and clusters that have been added as
members of the bus. Applications connect to a bus at one of the messaging engines associated
with its bus members.

Default messaging provider queue connection factory [Settings]
A JMS queue connection factory is used to create connections to the associated JMS provider of JMS
queues, for point-to-point messaging. Use queue connection factory administrative objects to manage JMS
queue connection factories for the default messaging provider.

To view this page in the console, click one of the following paths:

v Resources -> JMS -> Queue connection factories -> factory_name

614 Administering WebSphere applications



v Resources -> JMS -> JMS providers -> a_messaging_provider -> [Additional Properties] Queue
connection factories -> factory_name

Use this panel to browse or change the configuration properties of the selected JMS queue connection
factory for use with the default messaging JMS provider. These configuration properties control how
connections are created to associated JMS queues.

By default, connections created by using this JMS connection factory in the server containers (for
example, from an enterprise bean) are pooled by using Java Platform, Enterprise Edition (Java EE)
Connector Architecture (JCA) connection pooling. You can modify the connection pool settings for this
connection factory by selecting Connection pool properties link in the Additional properties section of the
administrative console panel.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Scope:

Specifies the highest topological level at which application servers can use this resource object.

Information Value
Required No
Data type String

Provider:

Specifies a JMS provider, which enables asynchronous messaging based on the Java Message Service
(JMS). It provides J2EE connection factories to create connections for specific JMS queue or topic
destinations. JMS provider administrative objects are used to manage JMS resources for the associated
JMS provider.

Information Value
Required No
Data type String

Name:

The required display name for the resource.

Information Value
Required Yes
Data type String

JNDI name:

The JNDI name for the resource.

As a convention, use a JNDI name of the form jms/Name, where Name is the logical name of the
resource. For more information about the use of JNDI and its syntax, see the topic JNDI support in
WebSphere Application Server.

Chapter 12. Welcome to administering Messaging resources 615



Information Value
Required Yes
Data type String

Description:

An optional description for the resource.

Information Value
Required No
Data type Text area

Category:

An optional category string to use when classifying or grouping the resource.

Information Value
Required No
Data type String

Bus name:

The name of the service integration bus to connect to.

This is the name of the service integration bus that this connection factory is used to create connections
to.

Enter the name of the local bus in situations where an application makes connection to foreign buses.

Information Value
Required Yes
Data type Custom

Target:

The name of a target that identifies a group of messaging engines. Specify the type of target using the
Target type property.

Information Value
Required No
Data type String

Target type:

The type of target named in the Target property.

This indicates the name of a target that is to be used to determine one or messaging engines to handle
work. The type of target is indicated by the Target type property

Connections are load balanced across the available messaging engines that satisfy the selection criteria.

If want applications to be able to connect to any messaging engine in the bus, do not set this property.

616 Administering WebSphere applications



For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

Information Value
Required No
Data type drop-down list
Range

Bus member name
The name of a bus member. This option retrieves
the active messaging engines that are hosted by
the named bus member (an application server or
server cluster).

To specify a non-clustered bus member the
Target property must be set to
<Node01>.<server1>, for example
Node01.server1. For a cluster bus member the
Target property must be set to the cluster name.

Custom messaging engine group name
The name of a custom group of messaging
engines (that form a self-declaring cluster). This
option retrieves the active messaging engines
that have registered with the named custom
group.

Messaging engine name
The name of a messaging engine. This option
retrieves the available endpoints that can be
used to reach the named messaging engine.

Target significance:

This property specifies the significance of the target group.

For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

Information Value
Required No
Data type drop-down list
Range

Preferred
It is preferred that a messaging engine is
selected from the target group. A messaging
engine in the target group is selected if one is
available. If a messaging engine is not available
in the target group, a messaging engine outside
the target group is selected if available in the
same service integration bus.

Required
It is required that a messaging engine is selected
from the target group. A messaging engine in the
target group is selected if one is available. If a
messaging engine is not available in the target
group, the connection process fails.

Chapter 12. Welcome to administering Messaging resources 617



Target inbound transport chain:

The name of the inbound transport chain that the application should target when connecting to a
messaging engine in a separate process to the application. If a messaging engine in another process is
chosen, a connection can be made only if the messaging engine is in a server that runs the specified
inbound transport chain. Refer to the information center for more information.

If the selected messaging engine is in the same server as the application, a direct in-process connection is
made and this transport chain property is ignored.

The transport chains represent network protocol stacks operating within a server. The name you specify
must be one of the transport chains available in the server that hosts the messaging engine, as listed on
the Servers -> Server Types -> WebSphere application servers -> server_name -> [Server
messaging] Messaging engine inbound transports panel. The following transport chains are provided,
but you can define your own transport chains on that panel.

InboundBasicMessaging
This is a connection-oriented protocol that uses a standard TCP/IP connection (JFAP-TCP/IP). It
includes support for two-phase transactional (remote XA) flows, so that a message producer or
consumer, running on a client or server system, can participate in a global transaction managed
on that client or server system. The specific use for the XA flows is to support access from an
application running in one server to a messaging engine on second server, perhaps because the
first server does not have a suitable messaging engine. If the remote XA flows are used, a
transaction coordinator must be available local to the application.

InboundSecureMessaging
This is the InboundBasicMessaging protocol wrapped in SSL.

For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

Information Value
Required No
Data type String

Provider endpoints:

A comma-separated list of endpoint triplets, with the syntax hostName:portNumber:chainName, used to
connect to a bootstrap server. For example
Merlin:7276:BootstrapBasicMessaging,Gandalf:5557:BootstrapSecureMessaging. If hostName is not
specified, the default is localhost. If portNumber is not specified, the default is 7276. If chainName is not
specified, the default is BootstrapBasicMessaging. Refer to the information center for more information.

You only have to modify this property if you have client applications running outside of an application
server, or applications on a server in another cell, that want to use this connection factory to connect to
the target service integration bus specified on the connection factory.

To use JMS destinations of the default messaging provider, an application connects to a messaging engine
on the target service integration bus to which the destinations are assigned. For example, a JMS queue is
assigned to a queue destination on a service integration bus.

Client applications running outside of an application server - for example, running in a client container or
outside the WebSphere Application Server environment - cannot locate directly a suitable messaging
engine to connect to in the target bus. Similarly, an application running on a server in one cell to connect
to a target bus in another cell cannot locate directly a suitable messaging engine to connect to in the
target bus.

618 Administering WebSphere applications



In these scenarios, the clients (or servers in another bus) must complete a bootstrap process through a
bootstrap server that is a member of the target bus. A bootstrap server is an application server running the
SIB Service, but does not have to be running any messaging engines. The bootstrap server selects a
messaging engine that is running in an application server that supports the required target transport chain.
For the bootstrap process to be possible, you must configure one or more provider end points in the
connection factory used by the client.

A bootstrap server uses a specific port and bootstrap transport chain. The port is the
SIB_ENDPOINT_ADDRESS (or SIB_ENDPOINT_SECURE_ADDRESS if security is enabled), of the messaging engine
that hosts the remote end of the link. Together with host name, these form the endpoint address of the
bootstrap server.

The properties of a JMS connection factory used by an application control the selection of a suitable
messaging engine and how the application connects to the selected messaging engine.

v If no security credentials are provided, then by default

– If no host is specified then localhost is used

– If no port is specified then port 7276 is used

– If no bootstrap channel chain is specified then bootstrap transport chain called
BootstrapBasicMessaging is used

v If security credentials are provided, then by default

– If no host is specified then localhost is used

– If no port is specified then port 7286 is used

– If no bootstrap channel chain is specified then bootstrap transport chain called
BootstrapBasicMessaging is used

Note: For the IBM i platform, you must (at least) change the default host name from
localhost to your.server.name.

If you want an application to use a bootstrap server with a different endpoint address, you must specify the
required endpoint address on the Provider endpoints property of the JMS connection factories that the
client application uses. You can specify one or more endpoint addresses of bootstrap servers.

The endpoint addresses for bootstrap servers must be specified in every JMS connection factory that is
used by applications outside of an application server. To avoid having to specify a long list of bootstrap
servers, you can provide a few highly-available servers as dedicated bootstrap servers. Then you only
have to specify a short list of bootstrap servers on each connection factory.

Note: When configuring a connection to a non-default bootstrap server, specify the required values for the
endpoint address and use colons as separators.

For example: for a server assigned non-secure port 7278, on host boothost1, that uses the default
transport chain BootstrapBasicMessaging:
boothost1:7278:BootstrapBasicMessaging
or
boothost1:7278

and for a server assigned secure port 7289, on host boothost2, that uses the predefined transport chain
BootstrapTunneledSecureMessaging:
boothost2:7289:BootstrapTunneledSecureMessaging

The syntax for an endpoint address is as follows:
[ [host_name] [ “:” [port_number] [ “:” chain_name] ] ]

where:

Chapter 12. Welcome to administering Messaging resources 619



host_name
is the name of the host on which the server runs. It can be an IP address. For an IPv6 address,
put square braces ([]) around host_name as shown in the example below:
[2002:914:fc12:179:9:20:141:42]:7276:BootstrapBasicMessaging

. If a value is not specified, the default is localhost.

Note: For the IBM i platform, you must (at least) change the default host name from
localhost to your.server.name.

port_number
where specified, is one of the following addresses of the messaging engine that hosts the remote
end of the link:

v SIB_ENDPOINT_ADDRESS if security is not enabled

v For secure connections, SIB_ENDPOINT_SECURE_ADDRESS if security is enabled.

If port_number is not specified, the default is 7276.

To find either of these values by using the administrative console, click Servers -> Server Types
-> WebSphere application servers -> server_name -> [Communications] Ports.

chain_name
is the name of a predefined bootstrap transport chain used to connect to the bootstrap server. If
not specified, the default is BootstrapBasicMessaging.

The following predefined bootstrap transport chains are provided:

BootstrapBasicMessaging
This corresponds to the server transport chain InboundBasicMessaging (JFAP-TCP/IP)

BootstrapSecureMessaging
This corresponds to the server transport chain InboundSecureMessaging
(JFAP-SSL-TCP/IP)

BootstrapTunneledMessaging
Before you can use this bootstrap transport chain, you must define a corresponding server
transport chain on the bootstrap server. (See Servers -> Server Types -> WebSphere
application servers -> server_name -> [Server messaging] Messaging engine
inbound transports.) This transport chain tunnels JFAP and uses HTTP wrappers.

BootstrapTunneledSecureMessaging
Before you can use this bootstrap transport chain, you must define a corresponding server
transport chain on the bootstrap server. (SeeServers -> Server Types -> WebSphere
application servers -> server_name -> [Server messaging] Messaging engine
inbound transports.) This transport chain tunnels JFAP and uses HTTP wrappers.

Specifying host_name : chain_name instead of host_name : : chain_name (with two colons) is incorrect. It
is valid to enter nothing, or to enter any of the following: “a”, “a:”, “:7276”, “::chain”, and so on. The
default value applies if you do not specify a value, but you must separate the fields with “:”.

If you want to provide more than one bootstrap server, identify all the required endpoint addresses.
Separate each endpoint address by a comma character. For example, to use the servers from the earlier
example:
boothost1:7278:BootstrapBasicMessaging,

boothost2:7289:BootstrapTunneledSecureMessaging,
[2002:914:fc12:179:9:20:141:42]:7276:BootstrapBasicMessaging

Information Value
Required No
Data type Text area

620 Administering WebSphere applications



Connection proximity:

The proximity of messaging engines that can accept connection requests, in relation to the bootstrap
messaging engine.

When a client issues a client connect request, the processing attaches to the required bus according to
the following logic:

v If a target group is specified, connect to the first messaging engine that satisfies the following conditions
for the target type:

– Server Look for a messaging engine in the same server.

– Cluster Look for a messaging engine in the same server, then on other servers in the same cluster.

– Host Look for a messaging engine in the same server, then on other servers in the same cluster,
then on other servers in the same host.

– Bus Look for a messaging engine in the same server, then on other servers in the same cluster, then
on other servers in same host, then any other messaging engine on the same bus.

v If a target group is not specified, or a target group is specified but no suitable messaging engine is
found and target significance is Preferred, connect to the first messaging engine that satisfies the
following conditions for the target type:

– Server Look for a messaging engine in the same server.

– Cluster Connection fails.

– Host Look for a messaging engine in the same server, then on other servers in the same host.

– Bus Look for a messaging engine in the target group in same server, then on other servers in same
host, then any other messaging engine on the same bus.

For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

Information Value
Required No
Data type drop-down list
Range

Bus Connections can be made to messaging engines
in the same bus.

Cluster
Connections can be made to messaging engines
in the same server cluster.

Host Connections can be made to messaging engines
in the same host.

Server Connections can be made to messaging engines
in the same application server.

Nonpersistent message reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

You can change the delivery reliability option for the destination of a message that is sent by a JMS
application as Nonpersistent. The default is Express nonpersistent but you have a range of other

Chapter 12. Welcome to administering Messaging resources 621



options, including those with persistent characteristics, with Assured persistent being the most reliable.
For more information see the topic Message reliability levels - JMS delivery mode and service integration
quality of service.

Information Value
Required No
Data type drop-down list
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

As bus destination
Use the delivery option configured for the bus
destination.

Persistent message reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

You can change the delivery reliability option for the destination of a message that is sent by a JMS
application as Persistent. The default is Reliable persistent but you have a range of other options
including those with nonpersistent characteristics, with Best effort nonpersistent being the least reliable.
For more information see the topic Message reliability levels - JMS delivery mode and service integration
quality of service.

Important: If you change the delivery reliability options of a message sent by a JMS application from one
of the Persistent message reliability options (Assured persistent and Reliable persistent)
to one of the Nonpersistent message reliability options (Best effort nonpersistent,
Express nonpersistent, and Reliable nonpersistent), you risk losing messages in certain
circumstances. For example, at server restart, or when there is heavy workload.

Information Value
Required No
Data type drop-down list

622 Administering WebSphere applications



Information Value
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

As bus destination
Use the delivery option configured for the bus
destination.

Read ahead:

Read ahead is an optimization that preemptively assigns messages to consumers. This improves the time
taken to satisfy consumer requests.

Messages that are assigned to a consumer are locked on the server and cannot be consumed by any
other consumers for that destination. Messages that are assigned to a consumer, but not consumed before
that consumer is closed, are subsequently unlocked on the server and then available for receipt by other
consumers.

You can override this property for individual JMS destinations by setting the Read ahead property on the
JMS destination.

Information Value
Required No
Data type drop-down list

Chapter 12. Welcome to administering Messaging resources 623



Information Value
Range

Default The message provider preemptively assigns
messages to consumers on nondurable
subscriptions and unshared durable
subscriptions. That is, read ahead optimization is
turned on only when there can only be a single
consumer.

Enabled
The messaging provider preemptively assigns
messages to consumers. This improves the time
taken to satisfy consumer requests.

Disabled
The messaging provider does not preemptively
assign messages to consumers.

Temporary queue name prefix:

The prefix used at the start of temporary queues created by applications using this connection factory.

Information Value
Required No
Data type String

Pass message payload by reference: When large object messages or bytes messages are sent, the
cost in memory and processor use of serializing, deserializing, and copying the message payload can be
significant. If you enable the pass message payload by reference properties on a connection factory or
activation specification, you tell the default messaging provider to override the JMS 1.1 specification and
potentially reduce or bypass this data copying.

CAUTION:
The parts of the JMS Specification that are bypassed by these properties are defined to ensure
message data integrity. Any of your JMS applications that use these properties must strictly follow
the rules that are described in the topic Why and when to pass the JMS message payload by
reference, or you risk losing data integrity.

Applications that use this connection factory to send messages must obey the following rules::

v The application does not modify the data object contained in a JMS object message.

v The application populates a JMS bytes message by using a single call to writeBytes(byte[]) and does
not modify the byte array after it is set in the message.

When enabled, Object/Bytes Messages sent by a message producing application that has connected to
the bus using this connection factory will not have their data copied when set and the system will only
serialize the message data when absolutely necessary. Applications sending such messages must not
modify the data once it has been set into the message.

Information Value
Required No
Data type Boolean

Applications that use this connection factory to receive messages must obey the following rule::

624 Administering WebSphere applications



v The application does not modify the data object obtained from a JMS object message. The data object
is treated as read only.

When enabled, Object Messages received by a message consuming application that has connected to this
connection factory will only have their message data serialized by the system when absolutely necessary.
The data obtained from these messages must be treated as readOnly by applications.

Information Value
Required No
Data type Boolean

Log missing transaction contexts:

Whether or not the container logs that there is a missing transaction context when a connection is
obtained.

The Java EE programming model indicates that connections should always have a transaction context.
However, some applications do not correctly have a transaction context associated with them.

Select this property to log connections being created without a transaction context.

Information Value
Required No
Data type Boolean

Manage cached handles:

Whether cached handles (handles held in instance variables in a bean) should be tracked by the
container.

Select this option to track handle management, which can be useful for debugging purposes. However,
tracking handles can significantly reduce performance if used at run time.

Information Value
Required No
Data type Boolean

Share data source with CMP:

Allow sharing of connections between JMS and container-managed persistence (CMP) entity EJB beans.

This option is used as part of the task to enable container-managed persistence (CMP) entity beans to
share the database connections used by the data store of a messaging engine. This has been estimated
as a potential performance improvement of 15% for overall message throughput, but can only be used for
entity beans connected to the application server that contains the messaging engine.

For more information about using this option, see the topic Enabling CMP entity beans and messaging
engine data stores to share database connections.

Information Value
Required No
Data type Boolean

XA recovery authentication alias:

Chapter 12. Welcome to administering Messaging resources 625



The authentication alias used during XA recovery processing.

Select the alias to be used during transaction recovery processing.

This property provides a list of the JCA authentication data entry aliases that have been defined to
WebSphere Application Server. You can select a data entry alias to be used to authenticate during XA
recovery processing.

If you have enabled security for the associated service integration bus, select the alias that specifies the
user ID and password used for XA recovery that is valid in the user registry for WebSphere Application
Server. This property must be set if bus security is enabled and XA transactions are to be used.

Information Value
Required No
Data type drop-down list

Mapping-configuration alias:

Specifies the mapping configuration alias for the Java Authentication and Authorization Service (JAAS)
mapping configuration that is used by this connection factory.

This field will be used only in the absence of a loginConfiguration on the component resource reference.
The specification of a login configuration and associated properties on the component resource reference
determines the container-managed authentication strategy when the res-auth value is Container.If the
DefaultPrincipalMapping login configuration is specified, the associated property will be a JAAS - J2C
authentication data entry alias. See related item JAAS - J2C authentication data entry to define a new
alias.

Information Value
Required No
Data type drop-down list

Container-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connections to the JMS provider for
container-managed authentication. This setting is only used when the res-auth value is container, and the
authentication alias was not set when the application was deployed.

Information Value
Required No
Data type drop-down list

Additional Properties
Connection pool properties

An optional set of connection pool settings.

Related Items
JAAS - J2C authentication data

Specifies a list of user identities and passwords for Java 2 connector security to use.

Buses
A service integration bus supports applications using message-based and service-oriented

626 Administering WebSphere applications



architectures. A bus is a group of interconnected servers and clusters that have been added as
members of the bus. Applications connect to a bus at one of the messaging engines associated
with its bus members.

Default messaging provider queue [Settings]
A JMS queue is used as a destination for point-to-point messaging. Use JMS queue destination
administrative objects to manage JMS queues for the default messaging provider.

To view this page in the console, click one of the following paths:

v Resources -> JMS -> Queues -> queue_name

v Resources -> JMS -> JMS providers -> a_messaging_provider -> [Additional Properties] Queues
-> queue_name

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Scope:

Specifies the highest topological level at which application servers can use this resource object.

Information Value
Required No
Data type String

Provider:

Specifies a JMS provider, which enables asynchronous messaging based on the Java Message Service
(JMS). It provides J2EE connection factories to create connections for specific JMS queue or topic
destinations. JMS provider administrative objects are used to manage JMS resources for the associated
JMS provider.

Information Value
Required No
Data type String

Name:

The required display name for the resource.

Information Value
Required Yes
Data type String

JNDI name:

The JNDI name for the resource.

Chapter 12. Welcome to administering Messaging resources 627



As a convention, use a JNDI name of the form jms/Name, where Name is the logical name of the
resource. For more information about the use of JNDI and its syntax, see the topic JNDI support in
WebSphere Application Server.

Information Value
Required Yes
Data type String

Description:

An optional description for the resource.

Information Value
Required No
Data type Text area

Bus name:

Enter the name of the bus on which the associated queue exists, or leave blank to use the bus to which
the application connects.

Information Value
Required No
Data type Custom

Queue name:

The name of the associated queue on the service integration bus.

Type the name of a queue that has been created on the service integration bus.

Information Value
Required Yes
Data type Custom

Delivery mode:

The delivery mode for messages sent to this destination. This controls the persistence of messages on
this destination.

Information Value
Required No
Data type drop-down list

628 Administering WebSphere applications



Information Value
Range

Application
The persistence of messages on this topic is
defined by the producing application.

Nonpersistent
All messages sent to this topic are treated as
nonpersistent.

Persistent
All messages sent to this topic are treated as
persistent.

Time to live:

The default length of time in milliseconds from its dispatch time that a message sent to this destination
should be kept by the system.

Information Value
Required No
Data type Integer
Range 0 through 574476389546486783

A value of 0 (zero) means that messages are kept
indefinitely. The default for this property is null, which
allows the application to determine the time to keep
messages.

Priority:

The relative priority for messages sent to this destination, in the range 0 to 9, with 0 as the lowest priority
and 9 as the highest priority.

If a value is not specified for this property, the message priority set by the producing application is used.

Information Value
Required No
Data type Integer
Range 0 through 9

The message priority range is from 0 (lowest) through 9
(highest).

Read ahead:

Read ahead is an optimization that preemptively assigns messages to consumers. This improves the time
taken to satisfy consumer requests.

Messages that are assigned to a consumer are locked on the server and cannot be consumed by any
other consumers for that destination. Messages that are assigned to a consumer, but not consumed before
that consumer is closed, are subsequently unlocked on the server and then available for receipt by other
consumers.

This property overrides the value set by the Read ahead property on the JMS connection factory.

Chapter 12. Welcome to administering Messaging resources 629



Information Value
Required No
Data type drop-down list
Range

Enabled
The messaging provider preemptively assigns
messages to consumers. This improves the time
taken to satisfy consumer requests for this
destination.

Disabled
The messaging provider does not preemptively
assign messages to consumers for this
destination.

Inherit from connection factory
Read ahead optimization is defined on the
connection.

Restrict messages to the local queue point if a queue point is configured on the connected
messaging engine:

Indicates whether the underlying service integration bus queue destination is scoped to a local queue point
when addressed by using this JMS queue. A local queue point is a queue point of the service integration
bus queue that is configured on the messaging engine to which the JMS application is connected.

This option applies when using this JMS queue to send and receive messages, and when setting a reply
queue in a request message. When a reply queue is set in a request message, the local queue point is on
the messaging engine to which the application setting the reply queue is connected, not the messaging
engine to which the application that uses the reply queue sends the reply message. If the connected
messaging engine does not have a queue point for the destination this option is ignored. The default value
is FALSE.

This option is supported only when used by a JMS application that is running with a WebSphere
Application Server Version 7.0 or later server or client, and that is connected to a messaging engine
running on WebSphere Application Server Version 7.0 or later server. Use on previous versions of
WebSphere Application Server will result in an exception to the application.

Information Value
Required Yes
Data type Boolean
Default FALSE

Local queue point preference:

Prefer to send messages to a local queue point
If a queue point for this queue exists on the messaging engine that the application is connected to,
prefer to send all messages to it to improve performance. If this local queue point is not accepting
new messages, the messages are sent to other queue points, if possible.

Information Value
Required No
Data type Radio button

Do not prefer a local queue point over other queue points
All available queue points are treated equally, with no preference given to a local queue point.

630 Administering WebSphere applications



Messages are workload balanced across all queue points. This option is supported only when
used by a JMS application that is running with a WebSphere Application ServerVersion 7.0 or later
server or client, and that is connected to a messaging engine running on WebSphere Application
ServerVersion 7.0 or later server. Use on previous versions of WebSphere Application Server will
result in an exception to the application.

Information Value
Required No
Data type Radio button

Message affinity across queue points:

Send all messages to the same queue point
A message producer created to use this queue sends all messages to the same queue point. This
option does not influence the initial choice of queue point. This option applies to a message
producer only if the queue is identified at the time the message producer is created, not at the
time of sending messages. This option is supported only when used by a JMS application that is
running with a WebSphere Application ServerVersion 7.0 or later server or client, and that is
connected to a messaging engine running on WebSphere Application ServerVersion 7.0 or later
server. Use on previous versions of WebSphere Application Server will result in an exception to
the application.

Information Value
Required No
Data type Radio button

Messages may be sent to different queue points
A message producer can send messages to different queue points, based on the availability of the
queue points and workload balancing of the system.

Information Value
Required No
Data type Radio button

Message visibility:

Only messages on a single queue point are visible
A consumer or browser has access to messages on only one queue point, not the entire queue.
The single queue point is chosen by the messaging system. A queue point that is defined on the
same messaging engine that the application is connected to is preferred to other queue points.

Information Value
Required No
Data type Radio button

Messages on all queue points are visible
A consumer or browser has access to messages on all queue points of the queue. If you enable
this option, all queue points are actively checked for messages. This means that no messages are
left on an unattended queue point. However, there is a performance cost in scanning all queue
points for messages, and you can no longer control the order in which messages are taken off the
queue. This option is supported only when used by a JMS application that is running with a
WebSphere Application ServerVersion 7.0 or later server or client, and that is connected to a
messaging engine running on WebSphere Application ServerVersion 7.0 or later server. Use on
previous versions of WebSphere Application Server will result in an exception to the application.

Chapter 12. Welcome to administering Messaging resources 631



Information Value
Required No
Data type Radio button

Related Items
Buses

A service integration bus supports applications using message-based and service-oriented
architectures. A bus is a group of interconnected servers and clusters that have been added as
members of the bus. Applications connect to a bus at one of the messaging engines associated
with its bus members.

Default messaging provider topic connection factory [Settings]
A JMS topic connection factory is used to create connections to the associated JMS provider of JMS
topics, for publish/subscribe messaging. Use topic connection factory administrative objects to manage
JMS topic connection factories for the default messaging provider.

To view this page in the console, click one of the following paths:

v Resources -> JMS -> Topic connection factories -> factory_name

v Resources -> JMS -> JMS providers -> a_messaging_provider -> [Additional Properties] Topic
connection factories -> factory_name

Use this panel to browse or change the configuration properties of the selected JMS topic connection
factory for use with the default messaging JMS provider. These configuration properties control how
connections are created to associated JMS topics.

By default, connections created by using this JMS connection factory in the server containers (for
example, from an enterprise bean) are pooled by using Java Platform, Enterprise Edition (Java EE)
Connector Architecture (JCA) connection pooling. You can modify the connection pool settings for this
connection factory by selecting Connection pool properties in the Additional properties section of the
administrative console panel.

The configuration of a container-managed authentication alias and mapping module on a connection
factory are deprecated. You now set these properties in the bindings for the resource reference of the
application. If you do not want to modify the bindings for an existing application, locate this connection
factory in the J2C panels where you can still find these properties.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Scope:

Specifies the highest topological level at which application servers can use this resource object.

Information Value
Required No
Data type String

Provider:

632 Administering WebSphere applications



Specifies a JMS provider, which enables asynchronous messaging based on the Java Message Service
(JMS). It provides J2EE connection factories to create connections for specific JMS queue or topic
destinations. JMS provider administrative objects are used to manage JMS resources for the associated
JMS provider.

Information Value
Required No
Data type String

Name:

The required display name for the resource.

Information Value
Required Yes
Data type String

JNDI name:

The JNDI name for the resource.

As a convention, use a JNDI name of the form jms/Name, where Name is the logical name of the
resource. For more information about the use of JNDI and its syntax, see the topic JNDI support in
WebSphere Application Server.

Information Value
Required Yes
Data type String

Description:

An optional description for the resource.

Information Value
Required No
Data type Text area

Category:

An optional category string to use when classifying or grouping the resource.

Information Value
Required No
Data type String

Bus name:

The name of the bus to connect to.

This is the name of the service integration bus that this connection factory is used to create connections
to.

Enter the name of the local bus in situations where an application makes connection to foreign buses.

Chapter 12. Welcome to administering Messaging resources 633



Information Value
Required Yes
Data type Custom

Target:

The name of a target that identifies a group of messaging engines. Specify the type of target using the
Target type property.

This indicates the name of a target that is to be used to determine one or messaging engines to handle
work. The type of target is indicated by the Target type property

Connections are load balanced across the available messaging engines that satisfy the selection criteria.

If want applications to be able to connect to any messaging engine in the bus, do not set this property.

For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

Information Value
Required No
Data type String

Target type:

The type of target named in the Target property.

Information Value
Required No
Data type drop-down list
Range

Bus member name
The name of a bus member. This option retrieves
the active messaging engines that are hosted by
the named bus member (an application server or
server cluster).

To specify a non-clustered bus member the
Target property must be set to
<Node01>.<server1>, for example
Node01.server1. For a cluster bus member the
Target property must be set to the cluster name.

Custom messaging engine group name
The name of a custom group of messaging
engines (that form a self-declaring cluster). This
option retrieves the active messaging engines
that have registered with the named custom
group.

Messaging engine name
The name of a messaging engine. This option
retrieves the available endpoints that can be
used to reach the named messaging engine.

Target significance:

634 Administering WebSphere applications



This property specifies the significance of the target group.

For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

Information Value
Required No
Data type drop-down list
Range

Preferred
It is preferred that a messaging engine is
selected from the target group. A messaging
engine in the target group is selected if one is
available. If a messaging engine is not available
in the target group, a messaging engine outside
the target group is selected if available in the
same service integration bus.

Required
It is required that a messaging engine is selected
from the target group. A messaging engine in the
target group is selected if one is available. If a
messaging engine is not available in the target
group, the connection process fails.

Target inbound transport chain:

The name of the inbound transport chain that the application should target when connecting to a
messaging engine in a separate process to the application. If a messaging engine in another process is
chosen, a connection can be made only if the messaging engine is in a server that runs the specified
inbound transport chain. Refer to the information center for more information.

If the selected messaging engine is in the same server as the application, a direct in-process connection is
made and this transport chain property is ignored.

The transport chains represent network protocol stacks operating within a server. The name you specify
must be one of the transport chains available in the server that hosts the messaging engine, as listed on
the Servers -> Server Types -> WebSphere application servers -> server_name -> [Server
messaging] Messaging engine inbound transports panel. The following transport chains are provided,
but you can define your own transport chains on that panel.

InboundBasicMessaging
This is a connection-oriented protocol that uses a standard TCP/IP connection (JFAP-TCP/IP). It
includes support for two-phase transactional (remote XA) flows, so that a message producer or
consumer, running on a client or server system, can participate in a global transaction managed
on that client or server system. The specific use for the XA flows is to support access from an
application running in one server to a messaging engine on second server, perhaps because the
first server does not have a suitable messaging engine. If the remote XA flows are used, a
transaction coordinator must be available local to the application.

InboundSecureMessaging
This is the InboundBasicMessaging protocol wrapped in SSL.

For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

Chapter 12. Welcome to administering Messaging resources 635



Information Value
Required No
Data type String

Provider endpoints:

A comma-separated list of endpoint triplets, with the syntax hostName:portNumber:chainName, used to
connect to a bootstrap server. For example
Merlin:7276:BootstrapBasicMessaging,Gandalf:5557:BootstrapSecureMessaging. If hostName is not
specified, the default is localhost. If portNumber is not specified, the default is 7276. If chainName is not
specified, the default is BootstrapBasicMessaging. Refer to the information center for more information.

You only have to modify this property if you have client applications running outside of an application
server, or applications on a server in another cell, that want to use this connection factory to connect to
the target service integration bus specified on the connection factory.

To use JMS destinations of the default messaging provider, an application connects to a messaging engine
on the target service integration bus to which the destinations are assigned. For example, a JMS queue is
assigned to a queue destination on a service integration bus.

Client applications running outside of an application server - for example, running in a client container or
outside the WebSphere Application Server environment - cannot locate directly a suitable messaging
engine to connect to in the target bus. Similarly, an application running on a server in one cell to connect
to a target bus in another cell cannot locate directly a suitable messaging engine to connect to in the
target bus.

In these scenarios, the clients (or servers in another bus) must complete a bootstrap process through a
bootstrap server that is a member of the target bus. A bootstrap server is an application server running the
SIB Service, but does not have to be running any messaging engines. The bootstrap server selects a
messaging engine that is running in an application server that supports the required target transport chain.
For the bootstrap process to be possible, you must configure one or more provider end points in the
connection factory used by the client.

A bootstrap server uses a specific port and bootstrap transport chain. The port is the
SIB_ENDPOINT_ADDRESS (or SIB_ENDPOINT_SECURE_ADDRESS if security is enabled), of the messaging engine
that hosts the remote end of the link. Together with host name, these form the endpoint address of the
bootstrap server.

The properties of a JMS connection factory used by an application control the selection of a suitable
messaging engine and how the application connects to the selected messaging engine.

v If no security credentials are provided, then by default

– If no host is specified then localhost is used

– If no port is specified then port 7276 is used

– If no bootstrap channel chain is specified then bootstrap transport chain called
BootstrapBasicMessaging is used

v If security credentials are provided, then by default

– If no host is specified then localhost is used

– If no port is specified then port 7286 is used

– If no bootstrap channel chain is specified then bootstrap transport chain called
BootstrapBasicMessaging is used

Note: For the IBM i platform, you must (at least) change the default host name from
localhost to your.server.name.

636 Administering WebSphere applications



If you want an application to use a bootstrap server with a different endpoint address, you must specify the
required endpoint address on the Provider endpoints property of the JMS connection factories that the
client application uses. You can specify one or more endpoint addresses of bootstrap servers.

The endpoint addresses for bootstrap servers must be specified in every JMS connection factory that is
used by applications outside of an application server. To avoid having to specify a long list of bootstrap
servers, you can provide a few highly-available servers as dedicated bootstrap servers. Then you only
have to specify a short list of bootstrap servers on each connection factory.

Note: When configuring a connection to a non-default bootstrap server, specify the required values for the
endpoint address and use colons as separators.

For example: for a server assigned non-secure port 7278, on host boothost1, that uses the default
transport chain BootstrapBasicMessaging:
boothost1:7278:BootstrapBasicMessaging
or
boothost1:7278

and for a server assigned secure port 7289, on host boothost2, that uses the predefined transport chain
BootstrapTunneledSecureMessaging:
boothost2:7289:BootstrapTunneledSecureMessaging

The syntax for an endpoint address is as follows:
[ [host_name] [ “:” [port_number] [ “:” chain_name] ] ]

where:

host_name
is the name of the host on which the server runs. It can be an IP address. For an IPv6 address,
put square braces ([]) around host_name as shown in the example below:
[2002:914:fc12:179:9:20:141:42]:7276:BootstrapBasicMessaging

. If a value is not specified, the default is localhost.

Note: For the IBM i platform, you must (at least) change the default host name from
localhost to your.server.name.

port_number
where specified, is one of the following addresses of the messaging engine that hosts the remote
end of the link:

v SIB_ENDPOINT_ADDRESS if security is not enabled

v For secure connections, SIB_ENDPOINT_SECURE_ADDRESS if security is enabled.

If port_number is not specified, the default is 7276.

To find either of these values by using the administrative console, click Servers -> Server Types
-> WebSphere application servers -> server_name -> [Communications] Ports.

chain_name
is the name of a predefined bootstrap transport chain used to connect to the bootstrap server. If
not specified, the default is BootstrapBasicMessaging.

The following predefined bootstrap transport chains are provided:

BootstrapBasicMessaging
This corresponds to the server transport chain InboundBasicMessaging (JFAP-TCP/IP)

Chapter 12. Welcome to administering Messaging resources 637



BootstrapSecureMessaging
This corresponds to the server transport chain InboundSecureMessaging
(JFAP-SSL-TCP/IP)

BootstrapTunneledMessaging
Before you can use this bootstrap transport chain, you must define a corresponding server
transport chain on the bootstrap server. (See Servers -> Server Types -> WebSphere
application servers -> server_name -> [Server messaging] Messaging engine
inbound transports.) This transport chain tunnels JFAP and uses HTTP wrappers.

BootstrapTunneledSecureMessaging
Before you can use this bootstrap transport chain, you must define a corresponding server
transport chain on the bootstrap server. (SeeServers -> Server Types -> WebSphere
application servers -> server_name -> [Server messaging] Messaging engine
inbound transports.) This transport chain tunnels JFAP and uses HTTP wrappers.

Specifying host_name : chain_name instead of host_name : : chain_name (with two colons) is incorrect. It
is valid to enter nothing, or to enter any of the following: “a”, “a:”, “:7276”, “::chain”, and so on. The
default value applies if you do not specify a value, but you must separate the fields with “:”.

If you want to provide more than one bootstrap server, identify all the required endpoint addresses.
Separate each endpoint address by a comma character. For example, to use the servers from the earlier
example:
boothost1:7278:BootstrapBasicMessaging,

boothost2:7289:BootstrapTunneledSecureMessaging,
[2002:914:fc12:179:9:20:141:42]:7276:BootstrapBasicMessaging

Information Value
Required No
Data type Text area

Connection proximity:

The proximity of messaging engines that can accept connection requests, in relation to the bootstrap
messaging engine.

When a client issues a client connect request, the processing attaches to the required bus according to
the following logic:

v If a target group is specified, connect to the first messaging engine that satisfies the following conditions
for the target type:

– Server Look for a messaging engine in the same server.

– Cluster Look for a messaging engine in the same server, then on other servers in the same cluster.

– Host Look for a messaging engine in the same server, then on other servers in the same cluster,
then on other servers in the same host.

– Bus Look for a messaging engine in the same server, then on other servers in the same cluster, then
on other servers in same host, then any other messaging engine on the same bus.

v If a target group is not specified, or a target group is specified but no suitable messaging engine is
found and target significance is Preferred, connect to the first messaging engine that satisfies the
following conditions for the target type:

– Server Look for a messaging engine in the same server.

– Cluster Connection fails.

– Host Look for a messaging engine in the same server, then on other servers in the same host.

– Bus Look for a messaging engine in the target group in same server, then on other servers in same
host, then any other messaging engine on the same bus.

638 Administering WebSphere applications



For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

Information Value
Required No
Data type drop-down list
Range

Bus Connections can be made to messaging engines
in the same bus.

Cluster
Connections can be made to messaging engines
in the same server cluster.

Host Connections can be made to messaging engines
in the same host.

Server Connections can be made to messaging engines
in the same application server.

Client identifier:

The JMS client identifier needed for durable topic subscriptions on all connections created using this
connection factory.

Information Value
Required No
Data type String

Durable subscription home:

The name of the messaging engine used to store messages delivered to durable subscriptions for objects
created from this JMS connection factory.

To enable applications to use durable subscriptions, you must set this property.

Information Value
Required No
Data type Custom

Nonpersistent message reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

You can change the delivery reliability option for the destination of a message that is sent by a JMS
application as Nonpersistent. The default is Express nonpersistent but you have a range of other
options, including those with persistent characteristics, with Assured persistent being the most reliable.
For more information see the topic Message reliability levels - JMS delivery mode and service integration
quality of service.

Information Value
Required No
Data type drop-down list

Chapter 12. Welcome to administering Messaging resources 639



Information Value
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

As bus destination
Use the delivery option configured for the bus
destination.

Persistent message reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

You can change the delivery reliability option for the destination of a message that is sent by a JMS
application as Persistent. The default is Reliable persistent but you have a range of other options
including those with nonpersistent characteristics, with Best effort nonpersistent being the least reliable.
For more information see the topic Message reliability levels - JMS delivery mode and service integration
quality of service.

Important: If you change the delivery reliability options of a message sent by a JMS application from one
of the Persistent message reliability options (Assured persistent and Reliable persistent)
to one of the Nonpersistent message reliability options (Best effort nonpersistent,
Express nonpersistent, and Reliable nonpersistent), you risk losing messages in certain
circumstances. For example, at server restart, or when there is heavy workload.

Information Value
Required No
Data type drop-down list

640 Administering WebSphere applications



Information Value
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

As bus destination
Use the delivery option configured for the bus
destination.

Read ahead:

Read ahead is an optimization that preemptively assigns messages to consumers. This improves the time
taken to satisfy consumer requests.

Messages that are assigned to a consumer are locked on the server and cannot be consumed by any
other consumers for that destination. Messages that are assigned to a consumer, but not consumed before
that consumer is closed, are subsequently unlocked on the server and then available for receipt by other
consumers.

You can override this property for individual JMS destinations by setting the Read ahead property on the
JMS destination.

Information Value
Required No
Data type drop-down list

Chapter 12. Welcome to administering Messaging resources 641



Information Value
Range

Default The message provider preemptively assigns
messages to consumers on nondurable
subscriptions and unshared durable
subscriptions. That is, read ahead optimization is
turned on only when there can only be a single
consumer.

Enabled
The messaging provider preemptively assigns
messages to consumers. This improves the time
taken to satisfy consumer requests.

Disabled
The messaging provider does not preemptively
assign messages to consumers.

Temporary topic name prefix:

The prefix used at the start of temporary topics created by applications using this connection factory.

Information Value
Required No
Data type String

Share durable subscriptions:

Controls whether or not durable subscriptions are shared across connections with members of a server
cluster.

Usually, only one session at a time can have a TopicSubscriber for a particular durable subscription. This
property enables you to override this behavior, to enable a durable subscription to have multiple
simultaneous consumers.

Information Value
Required No
Data type drop-down list
Range

In cluster
Allows sharing of durable subscriptions when
connections are made from within a server
cluster.

Always shared
Durable subscriptions can be shared across
connections.

Never shared
Durable subscriptions are never shared across
connections.

Pass message payload by reference: When large object messages or bytes messages are sent, the
cost in memory and processor use of serializing, deserializing, and copying the message payload can be

642 Administering WebSphere applications



significant. If you enable the pass message payload by reference properties on a connection factory or
activation specification, you tell the default messaging provider to override the JMS 1.1 specification and
potentially reduce or bypass this data copying.

CAUTION:
The parts of the JMS Specification that are bypassed by these properties are defined to ensure
message data integrity. Any of your JMS applications that use these properties must strictly follow
the rules that are described in the topic Why and when to pass the JMS message payload by
reference, or you risk losing data integrity.

Applications that use this connection factory to send messages must obey the following rules::

v The application does not modify the data object contained in a JMS object message.

v The application populates a JMS bytes message by using a single call to writeBytes(byte[]) and does
not modify the byte array after it is set in the message.

When enabled, Object/Bytes Messages sent by a message producing application that has connected to
the bus using this connection factory will not have their data copied when set and the system will only
serialize the message data when absolutely necessary. Applications sending such messages must not
modify the data once it has been set into the message.

Information Value
Required No
Data type Boolean

Applications that use this connection factory to receive messages must obey the following rule::

v The application does not modify the data object obtained from a JMS object message. The data object
is treated as read only.

When enabled, Object Messages received by a message consuming application that has connected to this
connection factory will only have their message data serialized by the system when absolutely necessary.
The data obtained from these messages must be treated as readOnly by applications.

Information Value
Required No
Data type Boolean

Log missing transaction contexts:

Whether or not the container logs that there is a missing transaction context when a connection is
obtained.

The Java EE programming model indicates that connections should always have a transaction context.
However, some applications do not correctly have a transaction context associated with them.

Select this property to log connections being created without a transaction context.

Information Value
Required No
Data type Boolean

Manage cached handles:

Whether cached handles (handles held in instance variables in a bean) should be tracked by the
container.

Chapter 12. Welcome to administering Messaging resources 643



Select this option to track handle management, which can be useful for debugging purposes. However,
tracking handles can significantly reduce performance if used at run time.

Information Value
Required No
Data type Boolean

Share data source with CMP:

Allow sharing of connections between JMS and container-managed persistence (CMP) entity EJB beans.

This option is used as part of the task to enable container-managed persistence (CMP) entity beans to
share the database connections used by the data store of a messaging engine. This has been estimated
as a potential performance improvement of 15% for overall message throughput, but can only be used for
entity beans connected to the application server that contains the messaging engine.

For more information about using this option, see the topic Enabling CMP entity beans and messaging
engine data stores to share database connections.

Information Value
Required No
Data type Boolean

XA recovery authentication alias:

The authentication alias used during XA recovery processing.

Select the alias to be used during transaction recovery processing.

This property provides a list of the J2C authentication data entry aliases that have been defined to
WebSphere Application Server. You can select a data entry alias to be used to authenticate during XA
recovery processing.

If you have enabled security for the associated service integration bus, select the alias that specifies the
user ID and password used for XA recovery that is valid in the user registry for WebSphere Application
Server. This property must be set if bus security is enabled and XA transactions are to be used.

Information Value
Required No
Data type drop-down list

Mapping-configuration alias:

Specifies the mapping configuration alias for the Java Authentication and Authorization Service (JAAS)
mapping configuration that is used by this connection factory.

This field will be used only in the absence of a loginConfiguration on the component resource reference.
The specification of a login configuration and associated properties on the component resource reference
determines the container-managed authentication strategy when the res-auth value is Container.If the
DefaultPrincipalMapping login configuration is specified, the associated property will be a JAAS - J2C
authentication data entry alias. See related item JAAS - J2C authentication data entry to define a new
alias.

644 Administering WebSphere applications



Information Value
Required No
Data type drop-down list

Container-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connections to the JMS provider for
container-managed authentication. This setting is only used when the res-auth value is container, and the
authentication alias was not set when the application was deployed.

Information Value
Required No
Data type drop-down list

Additional Properties
Connection pool properties

An optional set of connection pool settings.

Related Items
JAAS - J2C authentication data

Specifies a list of user identities and passwords for Java 2 connector security to use.

Buses
A service integration bus supports applications using message-based and service-oriented
architectures. A bus is a group of interconnected servers and clusters that have been added as
members of the bus. Applications connect to a bus at one of the messaging engines associated
with its bus members.

Default messaging provider topic [Settings]
A JMS topic is used as a destination for publish/subscribe messaging. Use topic destination administrative
objects to manage JMS topics for the default messaging provider.

To view this page in the console, click one of the following paths:

v Resources -> JMS -> Topics -> topic_name

v Resources -> JMS -> JMS providers -> a_messaging_provider -> [Additional Properties] Topics >
topic_name

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Scope:

Specifies the highest topological level at which application servers can use this resource object.

Information Value
Required No
Data type String

Chapter 12. Welcome to administering Messaging resources 645



Provider:

Specifies a JMS provider, which enables asynchronous messaging based on the Java Message Service
(JMS). It provides J2EE connection factories to create connections for specific JMS queue or topic
destinations. JMS provider administrative objects are used to manage JMS resources for the associated
JMS provider.

Information Value
Required No
Data type String

Name:

The required display name for the resource.

Information Value
Required Yes
Data type String

JNDI name:

The JNDI name for the resource.

As a convention, use a JNDI name of the form jms/Name, where Name is the logical name of the
resource. For more information about the use of JNDI and its syntax, see the topic JNDI support in
WebSphere Application Server.

Information Value
Required Yes
Data type String

Description:

An optional description for the resource.

Information Value
Required No
Data type Text area

Topic name:

The name of the topic that this JMS topic is assigned to, in the topic space defined by the Topic space
property.

To specify a multi-level topic name, separate each level by a forward slash character (/); for example:
schools/eton/subjects/maths

Information Value
Required No
Data type String

Bus name:

646 Administering WebSphere applications



Name of bus hosting topic.

Information Value
Required No
Data type Custom

Topic space:

The name of the topic space that contains the topic, on the service integration bus defined by the Bus
name property

Type the name of a topic space that has been created on the service integration bus.

Information Value
Required Yes
Data type Custom

JMS delivery mode:

The delivery mode for messages sent to this destination. This controls the persistence of messages on
this destination.

Information Value
Required No
Data type drop-down list
Range

Application
The persistence of messages on this topic is
defined by the producing application.

Nonpersistent
All messages sent to this topic are treated as
nonpersistent.

Persistent
All messages sent to this topic are treated as
persistent.

Time to live:

The default length of time in milliseconds from its dispatch time that a message sent to this destination
should be kept by the system.

Messages are deleted after the specified time. If a value is not specified for this property, the time limit set
by the producing application is used.

Information Value
Required No
Data type Long
Range 0 through 574476389546486783

A value of 0 (zero) means that messages are kept
indefinitely. The default for this property is null, which
allows the application to determine the time to keep
messages.

Chapter 12. Welcome to administering Messaging resources 647



Message priority:

The relative priority for messages sent to this destination, in the range 0 to 9, with 0 as the lowest priority
and 9 as the highest priority.

If a value is not specified for this property, the message priority set by the producing application is used.

Information Value
Required No
Data type Integer
Range 0 through 9

The message priority range is from 0 (lowest) through 9
(highest).

Read ahead:

Read ahead is an optimization that preemptively assigns messages to consumers. This improves the time
taken to satisfy consumer requests.

Messages that are assigned to a consumer are locked on the server and cannot be consumed by any
other consumers for that destination. Messages that are assigned to a consumer, but not consumed before
that consumer is closed, are subsequently unlocked on the server and then available for receipt by other
consumers.

This property overrides the value set by the Read ahead property on the JMS connection factory.

Information Value
Required No
Data type drop-down list
Range

Enabled
The messaging provider preemptively assigns
messages to consumers. This improves the time
taken to satisfy consumer requests for this
destination.

Disabled
The messaging provider does not preemptively
assign messages to consumers for this
destination.

Inherit from connection factory
Read ahead optimization is defined on the
connection.

Related Items
Buses

A service integration bus supports applications using message-based and service-oriented
architectures. A bus is a group of interconnected servers and clusters that have been added as
members of the bus. Applications connect to a bus at one of the messaging engines associated
with its bus members.

648 Administering WebSphere applications



SIBJMSAdminCommands command group for the AdminTask object
You can use these administrative commands to manage JMS resources for the default messaging
provider.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

createSIBJMSActivationSpec command
Use the createSIBJMSActivationSpec command to create a new JMS activation specification for the
default messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The createSIBJMSActivationSpec command creates a new JMS activation specification at a specific
scope.

Target object

The scope of the default messaging provider at which the JMS activation specification is to be created.

Required parameters

-name
The administrative name assigned to this activation specification.

Chapter 12. Welcome to administering Messaging resources 649



-jndiName
The JNDI name that is specified in the bindings for message-driven beans associated with this
activation specification.

-destinationJndiName
The JNDI name of the destination JMS queue or topic used by the message-driven bean.

Optional parameters

-description
An optional description for the activation specification.

-destinationType
An option to determine whether the message_driven bean uses a JMS queue or a JMS topic. Select
one of the following values:

Queue
The message-driven bean uses a JMS queue. The JNDI name of the JMS queue is specified
on the Destination JNDI name property.

Topic The message-driven bean uses a JMS topic. The JNDI name of the JMS topic is specified on
the Destination JNDI name property.

-messageSelector
The JMS message selector used to determine which messages the message-driven bean receives.
The value is a string that is used to select a subset of the available messages. The syntax is based on
a subset of the SQL 92 conditional expression syntax, as described in the JMS specification. Refer to
the information center for more information.

The selector string can refer to fields in the JMS message header and fields in the message
properties. Message selectors cannot reference message body values.

A null value (an empty string) indicates that there is no message selector for the message consumer.

-busName
The name of the service integration bus to which connections are made. This must be the name of the
bus on which the destination identified by the -destinationJndiName property is defined.

-acknowledgeMode
The acknowledge mode indicates how a message received by a message-driven bean should be
acknowledged. Select one of the following values:

Auto-acknowledge
The session automatically acknowledges the delivery of a message.

Duplicates-ok auto-acknowledge
The session lazily acknowledges the delivery of messages, which can improve performance,
but can lead to a message-driven bean receiving a message more than once.

-target
The name of a target that identifies a group of messaging engines. Specify the type of target by using
the Target type property.

-targetType
The type of target named in the -target property. Select one of the following values:

Bus member name
The name of a bus member. This option retrieves the active messaging engines that are
hosted by the named bus member (an application server or server cluster).

Custom messaging engine group name
The name of a custom group of messaging engines (that form a self-declaring cluster). This
option retrieves the active messaging engines that have registered with the named custom
group.

650 Administering WebSphere applications



Messaging engine name
The name of a messaging engine. This option retrieves the available endpoints that can be
used to reach the named messaging engine.

-targetSignificance
This property specifies the significance of the target group. Select one of the following values:

Preferred
It is preferred that a messaging engine is selected from the target group. A messaging engine
in the target group is selected if one is available. If a messaging engine is not available in the
target group, a messaging engine outside the target group is selected if available in the same
service integration bus.

Required
It is required that a messaging engine is selected from the target group. A messaging engine
in the target group is selected if one is available. If a messaging engine is not available in the
target group, the connection process fails.

-targetTransportChain
The name of the inbound transport chain that the application should target when connecting to a
messaging engine in a separate process to the application. If a messaging engine in another process
is chosen, a connection can be made only if the messaging engine is in a server that runs the
specified inbound transport chain. Refer to the information center for more information.

If the selected messaging engine is in the same server as the application, a direct in-process
connection is made and this transport chain property is ignored.

The transport chains represent network protocol stacks operating within a server. The name you
specify must be one of the transport chains available in the server that hosts the messaging engine,
as listed on the Servers -> Server Types -> WebSphere application servers -> server_name ->
[Server messaging] Messaging engine inbound transports panel. The following transport chains
are provided, but you can define your own transport chains on that panel.

InboundBasicMessaging
This is a connection-oriented protocol that uses a standard TCP/IP connection (JFAP-TCP/IP).
It includes support for two-phase transactional (remote XA) flows, so that a message producer
or consumer, running on a client or server system, can participate in a global transaction
managed on that client or server system. The specific use for the XA flows is to support
access from an application running in one server to a messaging engine on second server,
perhaps because the first server does not have a suitable messaging engine. If the remote XA
flows are used, a transaction coordinator must be available local to the application.

InboundSecureMessaging
This is the InboundBasicMessaging protocol wrapped in SSL.

For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

-providerEndPoints
A comma-separated list of endpoint triplets, with the syntax host_name:port_number:chain_name, that is
used to connect to a bootstrap server. For example
Merlin:7276:BootstrapBasicMessaging,Gandalf:5557:BootstrapSecureMessaging.

Provider endpoints are used if the specified bus cannot be found in the local cell. Message-driven
bean applications first attempt to connect the specified bus in the local cell. If this attempt fails,
provider endpoints are used to allow the applications to consume messages from a remote cell.

If the host name is not specified, localhost is used as a default value.

If the port number is not specified, 7276 is used as the default value.

Chapter 12. Welcome to administering Messaging resources 651



If the protocol is not specified, a predefined chain such as BootstrapBasicMessaging is used as the
default value.

-authenticationAlias
The name of a J2C authentication alias used for component-managed authentication of connections to
the service integration bus.

A Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) authentication alias
specifies the user ID and password that is used to authenticate the creation of a new connection to
the JMS provider.

-maxBatchSize
The maximum number of messages in a single batch delivered serially to a single message-driven
bean instance. Batching of messages can improve performance particularly when used with
Acknowledge mode set to Duplicates-ok auto-acknowledge. If message ordering must be retained
across failed deliveries, set the batch size to 1.

-maxConcurrency
The maximum number of endpoints to which messages are delivered concurrently.

Increasing this number can improve performance but can increase the number of threads that are in
use at any one time. If message ordering must be retained across failed deliveries, set the maximum
concurrent endpoints to 1. Message ordering applies only if the destination that the message-driven
bean is consuming from is not a partitioned destination. Partitioned destinations are used in a
workload sharing scenario in a cluster.

-subscriptionDurability
This option specifies whether a JMS topic subscription is durable or nondurable.

Usually, only one application at a time can have a consumer for a particular durable subscription. This
property enables you to override this behavior, to enable a durable subscription to have multiple
simultaneous consumers. Select one of the following values:

Durable
The messaging provider stores messages while the message-driven bean is not available, and
delivers the messages when the message-driven bean becomes available again.

Nondurable
The messaging provider does not store and redeliver messages if a message-driven bean is
not available.

-subscriptionName
The subscription name needed for durable topic subscriptions. Required field when using a durable
topic subscription.

Each JMS durable subscription is identified by a subscription name (specified on this property). A JMS
connection also has an associated client identifier (specified on the Client identifier property), which is
used to associate a connection and its objects with the list of messages (on the durable subscription)
that is maintained by the JMS provider for the client.

This subscription name must be unique within a given client identifier.

-clientId
The JMS client identifier needed for durable topic subscriptions on all connections created using this
activation specification.

The value specified is a unique identifier for a client (message-driven bean). The client identifier is
used to associate a client connection with the list of messages (on a durable subscription) that the
messaging provider keeps for the client. When a client becomes available, after it has been
unavailable, the messaging provider uses the client identifier to re-deliver stored messages to the
correct client.

652 Administering WebSphere applications



-durableSubscriptionHome
The name of the messaging engine used to store messages delivered to durable subscriptions for
objects created from this JMS activation specification. This is a required field when using a durable
topic subscription.

Administrators can manage the runtime state of durable subscriptions through publication points for
this messaging engine.

-shareDurableSubscriptions
Controls whether or not durable subscriptions are shared across connections with members of a
server cluster.

Usually, only one session at a time can have a TopicSubscriber for a particular durable subscription.
This property enables you to override this behavior, to enable a durable subscription to have multiple
simultaneous consumers, one on each application server in the server cluster.

This option should be changed from its default only in WebSphere Application Server environments
that support server clusters.

Select one of the following values:

In cluster
Allows sharing of durable subscriptions when connections are made from within a server
cluster.

Always shared
Durable subscriptions can be shared across connections.

Never shared
Durable subscriptions are never shared across connections.

-shareDataSourceWithCmp
Allow sharing of connections between JMS and container-managed persistence (CMP) entity beans.

True | False

This option is used as part of the task to enable container-managed persistence (CMP) entity beans to
share the database connections used by the data store of a messaging engine. This has been
estimated as a potential performance improvement of 15% for overall message throughput, but can
only be used for entity beans connected to the application server that contains the messaging engine.

For more information about using this option, see “Enabling CMP entity beans and messaging engine
data stores to share database connections” on page 509.

-readAhead
Read ahead is an optimization that preemptively assigns messages to consumers. This improves the
time taken to satisfy consumer requests.

Messages that are assigned to a consumer are locked on the server and cannot be consumed by any
other consumers for that destination. Messages that are assigned to a consumer, but not consumed
before that consumer is closed, are subsequently unlocked on the server and then available for receipt
by other consumers.

You can override this property for individual JMS destinations by setting the Read ahead property on
the JMS destination.

Select one of the following values:

Enabled
The messaging provider preemptively assigns messages to consumers. This improves the
time taken to satisfy consumer requests.

Disabled
The messaging provider does not preemptively assign messages to consumers.

Chapter 12. Welcome to administering Messaging resources 653



Default
The message provider preemptively assigns messages to consumers on nondurable
subscriptions and unshared durable subscriptions. That is, read ahead optimization is turned
on only when there can only be a single consumer.

The “pass message payload by reference” properties:

-forwarderDoesNotModifyPayloadAfterSet
true | false (default false)

Applications resending messages that were originally received using this activation specification must
obey the following rules:

v The application can replace the data object in a JMS object message, provided that the data object
has not yet been set in the message. The application does not modify or replace the data object
after it is set in the message.

v The application can replace the byte array in a JMS bytes message, but only by using a single call
to writeBytes(byte[]), and provided that the byte array has not yet been set in the message. The
application does not modify or replace the byte array after it is set in the message.

-consumerDoesNotModifyPayloadAfterGet
true | false (default false)

Applications that use this activation specification to receive messages must obey the following rule:
The application does not modify the data object obtained from a JMS object message. The data object
is treated as read only.

When large object messages or bytes messages are sent, the cost in memory and processor use of
serializing, deserializing, and copying the message payload can be significant. If you enable the pass
message payload by reference properties on a connection factory or activation specification, you tell the
default messaging provider to override the JMS 1.1 specification and potentially reduce or bypass this data
copying.

CAUTION: The parts of the JMS Specification that are bypassed by these properties are defined to
ensure message data integrity. Any of your JMS applications that use these properties must
strictly follow the rules that are described in the topic Why and when to pass the JMS
message payload by reference, or you risk losing data integrity.

-alwaysActivateAllMDBs
True | False

This property is only used when the MDB application is running on a server that is a member of the
bus that the application is targeting. It has no effect when the MDB is running on a server that is not a
member of the target bus.

If the MDB application is running on a server that is a member of the target bus, enabling this option
allows the MDB application to process messages whether or not the server also hosts a running
messaging engine. If this option is not enabled, then MDB applications on servers that do not have a
local ME running do not process messages.

-retryInterval
The delay (in seconds) between attempts to connect to a messaging engine, both for the initial
connection, and any subsequent attempts to establish a better connection.

-userName
The user identity for Java 2 connector security to use.

-password
The password for Java 2 connector security to use.

-WAS_EndpointInitialState
ACTIVE |INACTIVE

654 Administering WebSphere applications



This property determines whether the endpoint is activated when the endpoint is registered. If the
property is set to active, message consumption begins from the JMS destination as soon as the
activation specification is used for a message-driven bean to connect with the destination.

Example

Note: In the following examples, code blocks beginning with wsadmin> show code that is entered by the
user. Lines that do not begin with wsadmin> show code that has been returned by the console.

v The following example shows the creation of an activation specification using Jython:
wsadmin>AdminConfig.getid(“/Node:9994GKCNode01” )

“9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)”

wsadmin>AdminTask.createSIBJMSActivationSpec(“9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml”), [“-name”, “myjmsas”, “-jndiName”, “jms/myjmsas”,
“-destinationJndiName”, “jms/mqueue”, “-busName”, “abus”])

“myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)”

wsadmin>AdminTask.listSIBJMSActivationSpecs(“9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml)”)

“myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)”

v The following example shows the creation of an activation specification using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createSIBJMSActivationSpec
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
{-name myjmsas -jndiName jms/myjmsas -destinationJndiName jms/mqueue -busName
abus}

myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)

wsadmin>$AdminTask listSIBJMSActivationSpecs 9994GKCNode01 (cells/9994GKCNode01Cell/nodes/
9994GKCNode01|node.xml#Node_1)

myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)

deleteSIBJMSActivationSpec command
Use the deleteSIBJMSActivationSpec command to delete a JMS activation specification for the default
messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Chapter 12. Welcome to administering Messaging resources 655



Purpose

This command deletes the specified JMS activation specification.

Target object

A JMS activation specification.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminTask.listSIBJMSActivationSpecs("9994GKCNode01(cells/
9994GKCNode01Cell/nodes/9994GKCNode01|node.xml)")
’myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)
anojmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098729538669)
test(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098729811201)’

wsadmin>AdminTask.deleteSIBJMSActivationSpec("anojmsas(cells/
9994GKCNode01Cell/nodes/
9994GKCNode01|resources.xml#J2CActivationSpec_1098729538669)")
’myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098729538669)’

wsadmin>AdminTask.listSIBJMSActivationSpecs("9994GKCNode01(cells/
9994GKCNode01Cell/nodes/9994GKCNode01|node.xml)")
’myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)
test(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098729811201)’

v Using Jacl:
wsadmin>$AdminTask listSIBJMSActivationSpecs
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)
anojmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098729538669)
test(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098729811201)

wsadmin>$AdminTask deleteSIBJMSActivationSpec
anojmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098729538669)
myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098729538669)

wsadmin>$AdminTask listSIBJMSActivationSpecs
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)
test(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098729811201)

656 Administering WebSphere applications



listSIBJMSActivationSpecs command
Use the listSIBJMSActivationSpecs command to list all JMS activation specifications for the default
messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists all JMS activation specifications for the default messaging provider at a specific scope.

Target object

Scope of the default messaging provider at which the JMS activation specifications were created.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01" )
’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

wsadmin>AdminTask.listSIBJMSActivationSpecs("9994GKCNode01(cells/
9994GKCNode01Cell/nodes/9994GKCNode01|node.xml)")
’myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)’

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listSIBJMSActivationSpecs
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)

Chapter 12. Welcome to administering Messaging resources 657



modifySIBJMSActivationSpec command
Use the modifySIBJMSActivationSpec command to change properties of a JMS activation specification for
the default messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command changes the properties of a JMS activation specification.

Target object

The scope of the default messaging provider at which the JMS activation specification is to be modified.

Required parameters

None.

Optional parameters

-name
The administrative name assigned to this activation specification.

-jndiName
The JNDI name that is specified in the bindings for message-driven beans associated with this
activation specification.

-description
An optional description for the activation specification.

-destinationType
Use this parameter to determine whether the message-driven bean uses a JMS queue or a JMS topic.
Select one of the following values:

Queue
The message-driven bean uses a JMS queue. The JNDI name of the JMS queue is specified
on the Destination JNDI name property.

Topic The message-driven bean uses a JMS topic. The JNDI name of the JMS topic is specified on
the Destination JNDI name property.

-destinationJndiName
The JNDI name of the destination JMS queue or topic used by the message-driven bean.

658 Administering WebSphere applications



-messageSelector
string

-busName
Enter the name of the service integration bus to which connections are made. This must be the name
of the bus on which the destination identified by the -destinationJndiName property is defined.

-acknowledgeMode
The acknowledge mode indicates how a message received by a message-driven bean should be
acknowledged. Select one of the following values:

Auto-acknowledge
The session automatically acknowledges the delivery of a message.

Duplicates-ok auto-acknowledge
The session lazily acknowledges the delivery of messages, which can improve performance,
but can lead to a message-driven bean receiving a message more than once.

-target
The name of a target that identifies a group of messaging engines. Specify the type of target using the
Target type property.

-targetType
The type of target named in the -target property. Select one of the following values:

Bus member name
The name of a bus member. This option retrieves the active messaging engines that are
hosted by the named bus member (an application server or server cluster).

Custom messaging engine group name
The name of a custom group of messaging engines (that form a self-declaring cluster). This
option retrieves the active messaging engines that have registered with the named custom
group.

Messaging engine name
The name of a messaging engine. This option retrieves the available endpoints that can be
used to reach the named messaging engine.

-targetSignificance
This property specifies the significance of the target group. Select one of the following values:

Preferred
It is preferred that a messaging engine is selected from the target group. A messaging engine
in the target group is selected if one is available. If a messaging engine is not available in the
target group, a messaging engine outside the target group is selected if available in the same
service integration bus.

Required
It is required that a messaging engine is selected from the target group. A messaging engine
in the target group is selected if one is available. If a messaging engine is not available in the
target group, the connection process fails.

-targetTransportChain
The name of the inbound transport chain that the application should target when connecting to a
messaging engine in a separate process to the application. If a messaging engine in another process
is chosen, a connection can be made only if the messaging engine is in a server that runs the
specified inbound transport chain. Refer to the information center for more information.

If the selected messaging engine is in the same server as the application, a direct in-process
connection is made and this transport chain property is ignored.

The transport chains represent network protocol stacks operating within a server. The name you
specify must be one of the transport chains available in the server that hosts the messaging engine,

Chapter 12. Welcome to administering Messaging resources 659



as listed on the Servers -> Server Types -> WebSphere application servers -> server_name ->
[Server messaging] Messaging engine inbound transports panel. The following transport chains
are provided, but you can define your own transport chains on that panel.

InboundBasicMessaging
This is a connection-oriented protocol that uses a standard TCP/IP connection (JFAP-TCP/IP).
It includes support for two-phase transactional (remote XA) flows, so that a message producer
or consumer, running on a client or server system, can participate in a global transaction
managed on that client or server system. The specific use for the XA flows is to support
access from an application running in one server to a messaging engine on second server,
perhaps because the first server does not have a suitable messaging engine. If the remote XA
flows are used, a transaction coordinator must be available local to the application.

InboundSecureMessaging
This is the InboundBasicMessaging protocol wrapped in SSL.

For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

-providerEndPoints
A comma-separated list of endpoint triplets, with the syntax host_name:port_number:chain_name, used
to connect to a bootstrap server. For example
Merlin:7276:BootstrapBasicMessaging,Gandalf:5557:BootstrapSecureMessaging.

Provider endpoints are not used unless the specified bus cannot be found in the local cell. MDB
applications first attempt to connect the specified bus in the local cell. If this attempt fails, provider
endpoints are used to allow the applications to consume messages from a remote cell.

If the host name is not specified, localhost is used as a default value.

If the port number is not specified, 7276 is used as the default value.

If the protocol is not specified, a predefined chain such as BootstrapBasicMessaging is used as the
default value.

-authenticationAlias
The name of a J2C authentication alias used for component-managed authentication of connections to
the service integration bus.

A Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) authentication alias
specifies the user ID and password that is used to authenticate the creation of a new connection to
the JMS provider.

-maxBatchSize
The maximum number of messages in a single batch delivered serially to a single message-driven
bean instance. Batching of messages can improve performance particularly when used with
Acknowledge mode set to Duplicates-ok auto-acknowledge. If message-ordering must be retained
across failed deliveries, set the batch size to 1

-maxConcurrency
The maximum number of endpoints to which messages are delivered concurrently.

Increasing this number can improve performance but can increase the number of threads that are in
use at any one time. If message ordering must be retained across failed deliveries, set the maximum
concurrent endpoints to 1. Message ordering applies only if the destination that the message-driven
bean is consuming from is not a partitioned destination. Partitioned destinations are used in a
workload sharing scenario in a cluster.

-subscriptionDurability
Whether a JMS topic subscription is durable or nondurable

660 Administering WebSphere applications



Usually, only one application at a time can have a consumer for a particular durable subscription. This
property enables you to override this behavior, to enable a durable subscription to have multiple
simultaneous consumers. Select one of the following values:

Durable
The messaging provider stores messages while the message-driven bean is not available, and
delivers the messages when the message-driven bean becomes available again.

Nondurable
The messaging provider does not store and redeliver messages if a message-driven bean is
not available.

-subscriptionName
The subscription name needed for durable topic subscriptions. Required field when using a durable
topic subscription.

Each JMS durable subscription is identified by a subscription name (specified on this property). A JMS
connection also has an associated client identifier (specified on the Client identifier property), which is
used to associate a connection and its objects with the list of messages (on the durable subscription)
that is maintained by the JMS provider for the client.

This subscription name must be unique within a given client identifier.

-clientId
The JMS client identifier needed for durable topic subscriptions on all connections created using this
activation specification.

The value specified is a unique identifier for a client (message-driven bean). The client identifier is
used to associate a client connection with the list of messages (on a durable subscription) that the
messaging provider keeps for the client. When a client becomes available again, after a being
unavailable, the messaging provider uses the client identifier to redeliver stored messages to the
correct client.

-durableSubscriptionHome
The name of the messaging engine used to store messages delivered to durable subscriptions for
objects created from this JMS activation specification. This is a required field when using a durable
topic subscription.

Administrators can manage the runtime state of durable subscriptions through publication points for
this messaging engine.

-shareDurableSubscriptions
Controls whether or not durable subscriptions are shared across connections with members of a
server cluster.

Usually, only one session at a time can have a TopicSubscriber for a particular durable subscription.
This property enables you to override this behavior, to enable a durable subscription to have multiple
simultaneous consumers, one on each application server in the server cluster.

This option should be changed from its default only in WebSphere Application Server environments
that support server clusters.

Select one of the following values:

In cluster
Allows sharing of durable subscriptions when connections are made from within a server
cluster.

Always shared
Durable subscriptions can be shared across connections.

Never shared
Durable subscriptions are never shared across connections.

Chapter 12. Welcome to administering Messaging resources 661



-shareDataSourceWithCmp
Allow sharing of connections between JMS and container-managed persistence (CMP) entity beans.

True | False

This option is used as part of the task to enable container-managed persistence (CMP) entity beans to
share the database connections used by the data store of a messaging engine. This has been
estimated as a potential performance improvement of 15% for overall message throughput, but can
only be used for entity beans connected to the application server that contains the messaging engine.

For more information about using this option, see Enabling CMP entity beans and messaging engine
data stores to share database connections..

-readAhead
Read ahead is an optimization that preemptively assigns messages to consumers. This improves the
time taken to satisfy consumer requests.

Messages that are assigned to a consumer are locked on the server and cannot be consumed by any
other consumers for that destination. Messages that are assigned to a consumer, but not consumed
before that consumer is closed, are subsequently unlocked on the server and then available for receipt
by other consumers.

You can override this property for individual JMS destinations by setting the Read ahead property on
the JMS destination.

Select one of the following values:

Enabled
The messaging provider preemptively assigns messages to consumers. This improves the
time taken to satisfy consumer requests.

Disabled
The messaging provider does not preemptively assign messages to consumers.

Default
The message provider preemptively assigns messages to consumers on nondurable
subscriptions and unshared durable subscriptions. That is, read ahead optimization is turned
on only when there can only be a single consumer.

The “pass message payload by reference” properties:

-forwarderDoesNotModifyPayloadAfterSet
true | false (default false)

Applications resending messages that were originally received using this activation specification must
obey the following rules:

v The application can replace the data object in a JMS object message, provided that the data object
has not yet been set in the message. The application does not modify or replace the data object
after it is set in the message.

v The application can replace the byte array in a JMS bytes message, but only by using a single call
to writeBytes(byte[]), and provided that the byte array has not yet been set in the message. The
application does not modify or replace the byte array after it is set in the message.

-consumerDoesNotModifyPayloadAfterGet
true | false (default false)

Applications that use this activation specification to receive messages must obey the following rule:
The application does not modify the data object obtained from a JMS object message. The data object
is treated as read only.

When large object messages or bytes messages are sent, the cost in memory and processor use of
serializing, deserializing, and copying the message payload can be significant. If you enable the pass

662 Administering WebSphere applications



message payload by reference properties on a connection factory or activation specification, you tell the
default messaging provider to override the JMS 1.1 specification and potentially reduce or bypass this data
copying.

CAUTION: The parts of the JMS Specification that are bypassed by these properties are defined to
ensure message data integrity. Any of your JMS applications that use these properties must
strictly follow the rules that are described in the topic Why and when to pass the JMS
message payload by reference, or you risk losing data integrity.

-alwaysActivateAllMDBs
True | False

This property is only used when the MDB application is running on a server that is a member of the
bus that the application is targeting. It has no effect when the MDB is running on a server that is not a
member of the target bus.

If the MDB application is running on a server that is a member of the target bus, enabling this option
allows the MDB application to process messages whether or not the server also hosts a running
messaging engine. If this option is not enabled, then MDB applications on servers that do not have a
local ME running do not process messages.

-retryInterval
The delay (in seconds) between attempts to connect to a messaging engine, both for the initial
connection, and any subsequent attempts to establish a better connection.

-userName
The user identity for Java 2 connector security to use.

-password
The password for Java 2 connector security to use.

-WAS_EndpointInitialState
This property determines whether the endpoint is activated when the endpoint is registered. If the
property is set to active, message consumption begins from the JMS destination as soon as the
activation specification is used for a message-driven bean to connect with the destination.

The value of this parameter must be ACTIVE or INACTIVE.

Example
v The following example shows an activation specification being modified using Jython:
wsadmin>AdminTask.modifySIBJMSActivationSpec(“myjmsas(cells/
9994GKCNode01Cell/nodes/
9994GKCNode01|resources.xml#J2CActivationSpec_1098726667851)”,
[“-jndiName”, “jms/jmsas4q1”,
“-description”, “JMS activation specification for myqueue1”,
“-destinationJndiName”, “jms/myqueue1”])
“myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivation Spec_1098726667851)”

v The following example shows an activation specification being modified using Jacl:
wsadmin>$AdminTask modifySIBJMSActivationSpec
myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)
{-jndiName jms/jmsas4q1 -description “JMS activation specification
for myqueue1” -destinationJndiName jms/myqueue1}
myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivation Spec_1098726667851)

v The following example modifies an activation specification by activating the WAS_EndpointInitialState
optional parameter, using Jython:

wsadmin>attrs = “[[name “WAS_EndpointInitialState”] [required “false”] [type “java.lang.String”] [value “ACTIVE”]]”
wsadmin>AdminConfig.getid(“/Node:myNode01”)
“myNode01(cells/myCell01/nodes/myNode01|node.xml#Node_1)”
wsadmin>AdminTask.listSIBJMSActivationSpecs(“myNode01(cells/myCell01/nodes/myNode01|node.xml#Node_1)”)
“newas(cells/myCell01/nodes/myNode01|resources.xml#J2CActivationSpec_1298546034140)”
wsadmin>AdminConfig.create(“J2EEResourceProperty”,
“testas(cells/myCell01/nodes/myNode01|resources.xml#J2CActivationSpec_1298546034140)”, attrs)
“WAS_EndpointInitialState(cells/myCell01/nodes/myNode01|resources.xml#J2EEResourceProperty_1298546239332)”

Chapter 12. Welcome to administering Messaging resources 663



showSIBJMSActivationSpec command
Use the showSIBJMSActivationSpec command to show properties of a JMS activation specification for the
default messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command returns a set of property-value pairs for the specified JMS activation specification.

Target object

A JMS activation specification.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01" )
’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

wsadmin>AdminTask.listSIBJMSActivationSpecs("9994GKCNode01(cells/
9994GKCNode01Cell/nodes/9994GKCNode01|node.xml)")
’myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)’

wsadmin>AdminTask.showSIBJMSActivationSpec("myjmsas(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|resources.xml#J2CActivationSpec_1098726667851)")
myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)
’{busName=abus, subscriptionDurability=Nondurable, description=,
destinationType=, password=, targetTransportChain=,
acknowledgeMode=Auto-acknowledge, readAhead=Default, clientId=,
authenticationAlias=, name=myjmsas, maxConcurrency=10, maxBatchSize=1,
durableSubscriptionHome=, userName=, messageSelector=,
shareDurableSubscriptions=InCluster, jndiName=jms/myjmsas,
shareDataSourceWithCMP=false, destination=, destinationJndiName=jms/mqueue,
subscriptionName=}’

v Using Jacl:

664 Administering WebSphere applications



wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listSIBJMSActivationSpecs
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)

wsadmin>$AdminTask showSIBJMSActivationSpec
myjmsas(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098726667851)
{busName=abus, subscriptionDurability=Nondurable, description=,
destinationType=, password=, targetTransportChain=,
acknowledgeMode=Auto-acknowledge, readAhead=Default, clientId=,
authenticationAlias=, name=myjmsas, maxConcurrency=10, maxBatchSize=1,
durableSubscriptionHome=, userName=, messageSelector=,
shareDurableSubscriptions=InCluster, jndiName=jms/myjmsas,
shareDataSourceWithCMP=false, destination=, destinationJndiName=jms/mqueue,
subscriptionName=}

createSIBJMSConnectionFactory command
Use the createSIBJMSConnectionFactory command to create a new JMS connection factory for the default
messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command creates a new JMS connection factory at a specific scope.

Target object

Scope of the default messaging provider at which the JMS connection factory is to be created.

Required parameters

-name
The administrative name assigned to this connection factory.

-jndiName
The JNDI name that is specified in the bindings for message-driven beans associated with this
connection factory.

Chapter 12. Welcome to administering Messaging resources 665



-busName
Enter the name of the service integration bus to which connections are made. This must be the name
of the bus on which the destination identified by the -destinationJndiName property is defined.

Optional parameters

-type
queue | topic

The type parameter is used to specify the type of connection factory to create. To create a queue
connection factory, set this parameter to queue. To create a topic connection factory, set this parameter
to topic. Leave this parameter unset to create a generic connection factory.

-category
An optional category string to use when classifying or grouping the resource.

-description
text

-logMissingTransactionContext
True | False

-manageCachedHandles
True | False

-clientID
id

-userName
name

-password
password

-target
The name of a target that identifies a group of messaging engines. Specify the type of target using the
Target type property.

Before the connection proximity search is performed to select a suitable messaging engine, the set of
messaging engines that are members of the specified target group are selected. The connection
proximity search is then restricted to these messaging engines. If a target group is not specified (the
default), then all messaging engines in the bus are considered during the connection proximity search.
For example, if the Target type property is set to Bus member name, the Target property specifies the
name of the bus member from which suitable messaging engines can be chosen.

-targetType
The type of target named in the Target property.

Select one of the following values:

Bus member name
The name of a bus member. This option retrieves the active messaging engines that are
hosted by the named bus member (an application server or server cluster).

To specify a non-clustered bus member the -target property must be set to
node_name.server_name, for example Node01.server1. For a cluster bus member the -target
property must be set to the cluster name.

Custom messaging engine group name
The name of a custom group of messaging engines (that form a self-declaring cluster). This
option retrieves the active messaging engines that have registered with the named custom
group.

666 Administering WebSphere applications



Messaging engine name
The name of a messaging engine. This option retrieves the available endpoints that can be
used to reach the named messaging engine.

-targetSignificance
This property specifies the significance of the target group.

This property defines whether the connection proximity search is restricted to only the messaging
engines in the target group.

Select one of the following values:

Preferred
It is preferred that a messaging engine is selected from the target group. A messaging engine
in the target group is selected if one is available. If a messaging engine is not available in the
target group, a messaging engine outside the target group is selected if available in the same
service integration bus.

Note: A connection to a non-preferred target might be returned even if a preferred one is
available. This can happen when connection pooling is enabled for a
ConnectionFactory, which it is by default when you use a JMS ConnectionFactory in a
server environment:

v When a preferred messaging engine is not available, a connection to a non-preferred
one can be created and stored in the connection pool.

v The next time the application requests a connection it receives this pooled
connection even if the preferred messaging engine has subsequently become
available.

You can modify the connection pool settings to regularly discard all unused connections
in the pool. After the connection pool is emptied, connections are made to the preferred
messaging engine if one is available. For example, set the ReapTime, AgedTimeout and
UnusedTimeout to 300 seconds, and the PurgePolicy to EntirePool. This refreshes the
connection pool every 5 minutes, after which time the application selects a preferred
messaging engine if one is available.

Required
It is required that a messaging engine is selected from the target group. A messaging engine
in the target group is selected if one is available. If a messaging engine is not available in the
target group, the connection process fails.

-targetTransportChain
The name of the inbound transport chain that the application should target when connecting to a
messaging engine in a separate process to the application. If a messaging engine in another process
is chosen, a connection can be made only if the messaging engine is in a server that runs the
specified inbound transport chain. Refer to the information center for more information.

These transport chains specify the communication protocols that can be used to communicate with the
application server to which the client application is connected.

If the selected messaging engine is in the same server as the application, a direct in-process
connection is made and this transport chain property is ignored.

The transport chains represent network protocol stacks operating within a server. The name you
specify must be one of the transport chains available in the server that hosts the messaging engine,
as listed on the Servers -> Server Types -> WebSphere application servers -> server_name ->
[Server messaging] Messaging engine inbound transports panel. The following transport chains
are provided, but you can define your own transport chains on that panel.

InboundBasicMessaging
This is a connection-oriented protocol that uses a standard TCP/IP connection (JFAP-TCP/IP).
It includes support for two-phase transactional (remote XA) flows, so that a message producer

Chapter 12. Welcome to administering Messaging resources 667



or consumer, running on a client or server system, can participate in a global transaction
managed on that client or server system. The specific use for the XA flows is to support
access from an application running in one server to a messaging engine on second server,
perhaps because the first server does not have a suitable messaging engine. If the remote XA
flows are used, a transaction coordinator must be available local to the application.

InboundSecureMessaging
This is the InboundBasicMessaging protocol wrapped in SSL.

For more information about using this property with other connection factory properties for workload
management of connections, see the topic Administrative properties for JMS connections to a bus.

-providerEndPoints
A comma-separated list of endpoint triplets, with the syntax hostName:portNumber:chainName, used
to connect to a bootstrap server. For example
Merlin:7276:BootstrapBasicMessaging,Gandalf:5557:BootstrapSecureMessaging. If hostName is not
specified, the default is localhost. If portNumber is not specified, the default is 7276. If chainName is
not specified, the default is BootstrapBasicMessaging. Refer to the information center for more
information.

-connectionProximity
Bus | Host | Cluster | Server

-durableSubscriptionHome
me_name

-nonPersistentMapping
BestEffortNonPersistent | ExpressNonPersistent | ReliableNonPersistent | ReliablePersistent |
AssuredPersistent | AsSIBDestination | None

-persistentMapping
BestEffortNonPersistent | ExpressNonPersistent | ReliableNonPersistent | ReliablePersistent |
AssuredPersistent | AsSIBDestination | None

-readAhead
Default | AlwaysOn | AlwaysOff

-tempQueueNamePrefix
prefix

-tempTopicNamePrefix
prefix

-shareDurableSubscriptions
AsCluster | AlwaysShared | NeverShared

The “pass message payload by reference” properties:

-producerDoesNotModifyPayloadAfterSet
true | false (default false)

Applications that use this connection factory to send messages must obey the following rules:

v The application does not modify the data object contained in a JMS object message.

v The application populates a JMS bytes message by using a single call to writeBytes(byte[]) and
does not modify the byte array after it is set in the message.

-consumerDoesNotModifyPayloadAfterGet
true | false (default false)

Applications that use this connection factory to receive messages must obey the following rule: The
application does not modify the data object obtained from a JMS object message. The data object is
treated as read only.

668 Administering WebSphere applications



When large object messages or bytes messages are sent, the cost in memory and processor use of
serializing, deserializing, and copying the message payload can be significant. If you enable the pass
message payload by reference properties on a connection factory or activation specification, you tell the
default messaging provider to override the JMS 1.1 specification and potentially reduce or bypass this data
copying.

CAUTION: The parts of the JMS Specification that are bypassed by these properties are defined to
ensure message data integrity. Any of your JMS applications that use these properties must
strictly follow the rules that are described in the topic Why and when to pass the JMS
message payload by reference, or you risk losing data integrity.

-authDataAlias
alias_name

-shareDataSourceWithCMP
True | False

-xaRecoveryAuthAlias
alias_name

Example

Note: In the following examples, code blocks beginning with wsadmin> show code that is entered by the
user. Lines that do not begin with wsadmin> show code that has been returned by the console.

v Using Jython:
wsadmin>AdminConfig.getid(“/Node:9994GKCNode01” )

“9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)”

wsadmin>AdminTask.createSIBJMSConnectionFactory(“9994GKCNode01(cells/
9994GKCNode01Cell/nodes/9994GKCNode01|node.xml)”, [“-name”, “jmscf1”,
“-jndiName”, “jms/jmscf1”, “-busName”, “abus”])

“jmscf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CConnectionFactory_1098733325084)”

wsadmin>AdminTask.createSIBJMSConnectionFactory(“9994GKCNode01(cells/
9994GKCNode01Cell/nodes/9994GKCNode01|node.xml)”, [“-name”, “jmsqcf2”,
“-jndiName”, “jms/jmsqcf1”, “-busName”, “abus”, “-type”, “queue”])

“jmsqcf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CConnectionFactory_1098733675578)”

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createSIBJMSConnectionFactory
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
{-name jmscf1 -jndiName jms/jmscf1 -busName abus}

jmscf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CConnectionFactory_1098733325084)

wsadmin>$AdminTask createSIBJMSConnectionFactory
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
{-name jmsqcf2 -jndiName jms/jmsqcf1 -busName abus -type queue}

jmsqcf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CConnectionFactory_1098733675578)

deleteSIBJMSConnectionFactory command
Use the deleteSIBJMSConnectionFactory command to delete a JMS connection factory for the default
messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

Chapter 12. Welcome to administering Messaging resources 669



The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command deletes the specified JMS connection factory.

Target object

A JMS connection factory.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01" )
’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

wsadmin>AdminTask.deleteSIBJMSConnectionFactory("jmsqcf2(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|resources.xml#J2CConnectionFactory_1098736176544)")
’jmsqcf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CConnectionFactory_1098736176544)’

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask deleteSIBJMSConnectionFactory
jmsqcf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CConnectionFactory_1098736176544)
jmsqcf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CConnectionFactory_1098736176544)

listSIBJMSConnectionFactories command
Use the listSIBJMSConnectionFactories command to list all JMS connection factories for the default
messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

670 Administering WebSphere applications



The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists all JMS connection factories for the default messaging provider at a specific scope

Target object

Scope of the default messaging provider at which the JMS connection factories were created.

Required parameters

None.

Optional parameters

-type
The -type parameter is used to filter the list of connection factories.

Select one of the following values:

all List all JMS connection factories (generic, queue, and topic) at the specified scope.

queue List all JMS queue connection factories at the specified scope.

topic List all JMS topic connection factories at the specified scope.

If the -type parameter is not supplied, then only generic JMS connection factories at the scope are listed.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01" )
’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

AdminTask.listSIBJMSConnectionFactories("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")
’qcf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CConnectionFactory_1098730054140)’

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listSIBJMSConnectionFactories
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
qcf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CConnectionFactory_1098730054140)

Chapter 12. Welcome to administering Messaging resources 671



modifySIBJMSConnectionFactory command
Use the modifySIBJMSConnectionFactory command to modify the properties of a JMS connection factory
for the default messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command changes the properties of a JMS connection factory.

Target object

A JMS connection factory.

Required parameters

None.

Optional parameters

-name
factory_name

-jndiName
jndi_name

-category
category

-description
text

-logMissingTransactionContext
True | False

-manageCachedHandles
True | False

-busName
name

-clientID
id

672 Administering WebSphere applications



-userName
name

-password
password

-target
target_name

-targetType
BusMember | Custom | ME

-targetSignificance
Preferred | Required

-targetTransportChain
transport_chain

-providerEndPoints
tuple_list

-connectionProximity
Bus | Host | Cluster | Server

-durableSubscriptionHome
me_name

-nonPersistentMapping
BestEffortNonPersistent | ExpressNonPersistent | ReliableNonPersistent | ReliablePersistent |
AssuredPersistent | AsSIBDestination | None

-persistentMapping
BestEffortNonPersistent | ExpressNonPersistent | ReliableNonPersistent | ReliablePersistent |
AssuredPersistent | AsSIBDestination | None

-readAhead
Default | AlwaysOn | AlwaysOff

-tempQueueNamePrefix
prefix

-tempTopicNamePrefix
prefix

-shareDurableSubscriptions
AsCluster | AlwaysShared | NeverShared

The “pass message payload by reference” properties:

-producerDoesNotModifyPayloadAfterSet
true | false (default false)

Applications that use this connection factory to send messages must obey the following rules:

v The application does not modify the data object contained in a JMS object message.

v The application populates a JMS bytes message by using a single call to writeBytes(byte[]) and
does not modify the byte array after it is set in the message.

-consumerDoesNotModifyPayloadAfterGet
true | false (default false)

Applications that use this connection factory to receive messages must obey the following rule: The
application does not modify the data object obtained from a JMS object message. The data object is
treated as read only.

Chapter 12. Welcome to administering Messaging resources 673



When large object messages or bytes messages are sent, the cost in memory and processor use of
serializing, deserializing, and copying the message payload can be significant. If you enable the pass
message payload by reference properties on a connection factory or activation specification, you tell the
default messaging provider to override the JMS 1.1 specification and potentially reduce or bypass this data
copying.

CAUTION: The parts of the JMS Specification that are bypassed by these properties are defined to
ensure message data integrity. Any of your JMS applications that use these properties must
strictly follow the rules that are described in the topic Why and when to pass the JMS
message payload by reference, or you risk losing data integrity.

-authDataAlias
alias_name

-shareDataSourceWithCMP
True | False

-xaRecoveryAuthAlias
alias_name

Example
v Using Jython:

wsadmin>AdminConfig.getid(“/Node:9994GKCNode01” )
“9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)”

wsadmin>AdminTask.modifySIBJMSConnectionFactory(“jmsqcf2(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|resources.xml#J2CConnectionFactory_1098736176544)”,
[“-manageCachedHandles”, “True”])
“jmsqcf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CConnectionFactory_1098733675578)”

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask modifySIBJMSConnectionFactory
jmsqcf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CConnectionFactory_1098736176544)
{-manageCachedHandles True}
jmsqcf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CConnectionFactory_1098733675578)

showSIBJMSConnectionFactory command
Use the showSIBJMSConnectionFactory command to show the properties of a JMS connection factory for
the default messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

674 Administering WebSphere applications



Purpose

This command returns a set of property-value pairs for the specified JMS connection factory.

Target object

A JMS connection factory.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01" )
’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

wsadmin>AdminTask.showSIBJMSConnectionFactory("jmsqcf2(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|resources.xml#J2CConnectionFactory_1098733675578)")
’{target=, targetTransportChain=, readAhead=Default, password=,
targetType=BusMember, tempQueueNamePrefix=, connectionProximity=Bus,
nonPersistentMapping=ExpressNonPersistent, name=jmsqcf2,
targetSignificance=Preferred, shareDurableSubscriptions=InCluster,
providerEndPoints=, shareDataSourceWithCMP=false, userName=,
logMissingTransactionContext=false, busName=abus,
persistentMapping=ReliablePersistent, clientID=,
jndiName=jms/jmsqcf1, manageCachedHandles=false}’

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask showSIBJMSConnectionFactory
jmsqcf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CConnectionFactory_1098733675578)
{target=, targetTransportChain=, readAhead=Default, password=,
targetType=BusMember, tempQueueNamePrefix=, connectionProximity=Bus,
nonPersistentMapping=ExpressNonPersistent, name=jmsqcf2,
targetSignificance=Preferred, shareDurableSubscriptions=InCluster,
providerEndPoints=, shareDataSourceWithCMP=false, userName=,
logMissingTransactionContext=false, busName=abus,
persistentMapping=ReliablePersistent, clientID=,
jndiName=jms/jmsqcf1, manageCachedHandles=false}

createSIBJMSQueue command
Use the createSIBJMSQueue command to create a new JMS queue for the default messaging provider at a
specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

Chapter 12. Welcome to administering Messaging resources 675



v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The createSIBJMSQueue command creates a JMS queue for the default messaging provider at a specific
scope.

Target object

The scope of the default messaging provider at which the JMS queue is to be created.

Required parameters

-name
The identifier by which this JMS queue is known for administrative purposes.

-jndiName
The JNDI name that is used to bind the queue into the application server namespace.

-queueName
The name of the service integration bus destination to which the JMS queue maps.

Optional parameters

-description
An optional description for the bus, for administrative purposes.

-deliveryMode Application | NonPersistent | Persistent
The delivery mode to be used by MessageProducers for messages sent to this queue.

-timeToLive
The default length of time from its dispatch time that a message sent to this queue should be retained
by the system, where 0 indicates that time to live value does not expire. The value from the producer
is used if the Time to Live parameter is not supplied.

-priority
The priority for messages sent to this queue. The value from the producer is used if not completed. In
the range 0 to 9 where 0 is the lowest priority and 9 is the highest priority

-readAhead AsConnection | AlwaysOn | AlwaysOff
Used to control read-ahead optimization during message delivery. The default is AsConnection.

-busName
The name of the service integration bus that the service integration bus destination, identified by
queueName, is configured on. If not set, the bus that the application is connected to is used.

-scopeToLocalQP TRUE | FALSE
Indicates whether the underlying service integration bus queue destination is scoped to a local queue
point when addressed using this JMS queue. A local queue point is a queue point that is configured on
the messaging engine to which the JMS application is connected. The option applies when using this
JMS queue to send and receive messages and when setting a reply queue in a request message.
When a reply queue is set in a request message, the local queue point is on the messaging engine to

676 Administering WebSphere applications



which the application setting the reply queue is connected, not the messaging engine to which the
application that uses the reply queue sends the reply message. If the connected messaging engine
does not have a queue point for the destination this option is ignored. The default value is FALSE.

Changing the default setting of this option is supported only when used by a JMS application that is
running with a WebSphere Application Server Version 7.0 or later server or client, and that is
connected to a messaging engine running on a WebSphere Application Server Version 7.0 or later
server. Use on previous versions of WebSphere Application Server will result in an exception to the
application.

-producerBind TRUE | FALSE
Indicates how JMS producers bind to queue points of the clustered queue. The default value is FALSE.

Changing the default setting of this option is supported only when used by a JMS application that is
running with a WebSphere Application Server Version 7.0 or later server or client, and that is
connected to a messaging engine running on a WebSphere Application Server Version 7.0 or later
server. Use on previous versions of WebSphere Application Server will result in an exception to the
application.

TRUE The messaging system selects a queue point when the session is opened. All messages
produced by the session are sent to the chosen queue point. The messaging system uses the
producerPreferLocal setting when selecting the queue point.

FALSE The messaging system selects a queue point each time a message is sent, potentially
workload balancing the messages across all available queue points. The messaging system
uses the producerPreferLocal setting when selecting the queue point.

-producerPreferLocal TRUE | FALSE
Indicates whether a queue point local to the producer is preferred to other available queue points
when the messaging system selects a queue point to produce messages to. A local queue point is a
queue point that is configured on the messaging engine to which the JMS application is connected.
The default value is TRUE.

Changing the default setting of this option is supported only when used by a JMS application that is
running with a WebSphere Application Server Version 7.0 or later server or client, and that is
connected to a messaging engine running on a WebSphere Application Server Version 7.0 or later
server. Use on previous versions of WebSphere Application Server will result in an exception to the
application.

-consumerGatherMessages TRUE | FALSE
A JMS consumer or browser is attached to a single queue point of the service integration bus
destination by the messaging system. This parameter indicates whether a JMS consumer or browser
take messages from any available queue points of the service integration bus destination (TRUE), or the
single queue point to which it is attached (FALSE). The default value is FALSE. Gathering messages
from multiple queue points results in an increased performance cost and message order cannot be
maintained.

Changing the default setting of this option is supported only when used by a JMS application that is
running with a WebSphere Application Server Version 7.0 or later server or client, and that is
connected to a messaging engine running on a WebSphere Application Server Version 7.0 or later
server. Use on previous versions of WebSphere Application Server will result in an exception to the
application.

Examples

Note: In the following examples, code blocks beginning with wsadmin> show code that is entered by the
user. Lines that do not begin with wsadmin> show code that has been returned by the console.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01" )

’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

Chapter 12. Welcome to administering Messaging resources 677



wsadmin>AdminTask.createSIBJMSQueue("WASINSTALL2Node01(cells/WASINSTALL2Cell01/
nodes/WASINSTALL2Node01|node.xml#Node_1)", ["-name", "jmsq2", "-jndiName",
"jms/jnmsq2", "-queueName", "busq4jmsq2"])

’jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml
#J2CAdminObject_1098737234986)’

wsadmin>AdminTask.listSIBJMSQueues("WASINSTALL2Node01(cells/WASINSTALL2Cell01
/nodes/WASINSTALL2Node01|node.xml#Node_1)")

’queue1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098711838691)
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098737234986)’

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createSIBJMSQueue
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
{-name jmsq2 -jndiName jms/jnmsq2 -queueName busq4jmsq2}

jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098737234986)

wsadmin>$AdminTask listSIBJMSQueues
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

queue1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098711838691)
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098737234986)

The following example shows how to create a default messaging provider JMS queue that selects a queue
point when a session is opened and never changes:

v Using Jython:

wsadmin>AdminTask.createSIBJMSQueue("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)", ["-name", "MyJMSQueue", "-jndiName",
"MyJMSQueue", "-busName bus1", "-queueName", "MyExistingQueue", "-deliveryMode",
"Application", "-readAhead", "AsConnection", "-producerBind", "TRUE"])

v Using Jacl:

wsadmin>$AdminTask createSIBJMSQueue 9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1 {-name MyJMSQueue -jndiName MyJMSQueue
-busName bus1 -queueName MyExistingQueue -deliveryMode Application
-readAhead AsConnection -producerBind TRUE }

The following example shows how to create a default messaging provider JMS queue that selects a queue
point every time a message is sent. There is no preference over which queue point is selected and the
consumers take messages from any queue point:

v Using Jython:

wsadmin>AdminTask.createSIBJMSQueue("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)", ["-name", "MyJMSQueue", "-jndiName",
"MyJMSQueue", "-busName bus1", "-queueName", "MyExistingQueue", "-deliveryMode",
"Application", "-readAhead", "AsConnection", "-producerBind", "FALSE",
"-producerPreferLocal", "FALSE", "-gatherMessages", "TRUE"])

v Using Jacl:

wsadmin>$AdminTask createSIBJMSQueue 9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1 {-name MyJMSQueue -jndiName MyJMSQueue
-busName bus1 -queueName MyExistingQueue -deliveryMode Application
-readAhead AsConnection -producerBind FALSE -producerPreferLocal FALSE
-gatherMessages TRUE}

678 Administering WebSphere applications



The following example shows how to create a default messaging provider JMS queue that scopes all
operations on it down to the queue point local to the user of the JMS queue:

v Using Jython:

wsadmin>AdminTask.createSIBJMSQueue("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)", ["-name", "MyJMSQueue", "-jndiName",
"MyJMSQueue", "-busName bus1", "-queueName", "MyExistingQueue", "-deliveryMode",
"Application", "-readAhead", "AsConnection", "-scopeToLocalQP", "TRUE"])

v Using Jacl:

wsadmin>$AdminTask createSIBJMSQueue 9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1 {-name MyJMSQueue -jndiName MyJMSQueue
-busName bus1 -queueName MyExistingQueue -deliveryMode Application
-readAhead AsConnection -scopeToLocalQP TRUE}

deleteSIBJMSQueue command
Use the deleteSIBJMSQueue command to delete a JMS queue for the default messaging provider at a
specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command deletes the specified JMS queue.

Target object

A JMS queue.

The JMS queue is deleted at the specified scope.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

Chapter 12. Welcome to administering Messaging resources 679



wsadmin>AdminConfig.getid("/Node:9994GKCNode01" )
’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

wsadmin>AdminTask.deleteSIBJMSQueue("jmsq2(cells/9994GKCNode01Cell/nodes/
9994GKCNode01|resources.xml#J2CAdminObject_1098737234986)")
’jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098737234986)’

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask deleteSIBJMSQueue
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098737234986)
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098737234986)

listSIBJMSQueues command
Use the listSIBJMSQueues command to list all JMS queues for the default messaging provider at a
specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command returns a list of all JMS queues for the default messaging provider at a specific scope.

Target object

Scope of the default messaging provider at which the JMS queues were created.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01" )
’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

680 Administering WebSphere applications



wsadmin>AdminTask.listSIBJMSQueues("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")
’queue1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098711838691)’

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listSIBJMSQueues
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
queue1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098711838691)

modifySIBJMSQueue command
Use the modifySIBJMSQueue command to change the properties of a JMS queue for the default messaging
provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The modifySIBJMSQueue command changes the properties of a JMS queue for the default messaging
provider at a specific scope.

Target object

A JMS queue.

Required parameters

None.

Optional parameters

-name
The identifier by which this JMS queue is known for administrative purposes.

-jndiName
The JNDI name that is used to bind the queue into the application server namespace.

-queueName
The name of the service integration bus destination to which the JMS queue maps.

Chapter 12. Welcome to administering Messaging resources 681



-description
An optional description for the bus, for administrative purposes.

-deliveryMode Application | NonPersistent | Persistent
The delivery mode to be used by MessageProducers for messages sent to this queue.

-timeToLive
The default length of time from its dispatch time that a message sent to this queue should be retained
by the system, where 0 indicates that time to live value does not expire. Value from the producer is
used if this parameter is not supplied.

-priority
The priority for messages sent to this queue. The value from the producer is used if not completed. In
the range 0 to 9 where 0 is the lowest priority and 9 is the highest priority

-readAhead AsConnection | AlwaysOn | AlwaysOff
Used to control read-ahead optimization during message delivery. The default is AsConnection.

-busName
The name of the service integration bus that the bus destination, identified by queueName, is configured
on. If not set, the bus that the application is connected to is used.

-scopeToLocalQP TRUE | FALSE
Indicates whether the underlying service integration bus queue destination is scoped to a local queue
point when addressed using this JMS queue. A local queue point is a queue point that is configured on
the messaging engine to which the JMS application is connected. The option applies when using this
JMS queue to send and receive messages and when setting a reply queue in a request message.
When a reply queue is set in a request message, the local queue point is on the messaging engine to
which the application setting the reply queue is connected, not the messaging engine to which the
application using the reply queue sends the reply message. If the connected messaging engine does
not have a queue point for the destination this option is ignored. The default value is FALSE.

Changing the default setting of this option is supported only when used by a JMS application that is
running with a WebSphere Application Server Version 7.0 or later server or client, and that is
connected to a messaging engine running on a WebSphere Application Server Version 7.0 or later
server. Use on previous versions of WebSphere Application Server results in an exception to the
application.

-producerBind TRUE | FALSE
Indicates how JMS producers bind to queue points of the clustered queue. The default value is FALSE.

Changing the default setting of this option is supported only when used by a JMS application that is
running with a WebSphere Application Server Version 7.0 or later server or client, and that is
connected to a messaging engine running on a WebSphere Application Server Version 7.0 or later
server. Use on previous versions of WebSphere Application Server results in an exception to the
application.

TRUE The messaging system selects a queue point when the session is opened. All messages
produced by the session are sent to the chosen queue point. The messaging system uses the
producerPreferLocal setting when selecting the queue point.

FALSE The messaging system selects a queue point each time a message is sent, potentially
workload balancing the messages across all available queue points. The messaging system
uses the producerPreferLocal setting when selecting the queue point.

-producerPreferLocal TRUE | FALSE
Indicates whether a queue point local to the producer is preferred to other available queue points
when the messaging system selects a queue point to produce messages to. A local queue point is a
queue point that is configured on the messaging engine to which the JMS application is connected.
The default value is TRUE.

682 Administering WebSphere applications



Changing the default setting of this option is supported only when used by a JMS application that is
running with a WebSphere Application Server Version 7.0 or later server or client, and that is
connected to a messaging engine running on a WebSphere Application Server Version 7.0 or later
server. Use on previous versions of WebSphere Application Server results in an exception to the
application.

-consumerGatherMessages TRUE | FALSE
A JMS consumer or browser is attached to a single queue point of the service integration bus
destination by the messaging system. This parameter indicates whether a JMS consumer or browser
take messages from any available queue points of the service integration bus destination (TRUE), or the
single queue point to which it is attached (FALSE). The default value is FALSE. Gathering messages
from multiple queue points results in an increased performance cost and message order cannot be
maintained.

Changing the default setting of this option is supported only when used by a JMS application that is
running with a WebSphere Application Server Version 7.0 or later server or client, and that is
connected to a messaging engine running on a WebSphere Application Server Version 7.0 or later
server. Use on previous versions of WebSphere Application Server results in an exception to the
application.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01" )
’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

wsadmin>AdminTask.modifySIBJMSQueue("jmsq2(cells/9994GKCNode01Cell/nodes/
9994GKCNode01|resources.xml#J2CAdminObject_1098737234986)",
["-queueName", "q2forjms"])
’jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098737234986)’

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask modifySIBJMSQueue
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098737234986)
{-queueName q2forjms}
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098737234986)

showSIBJMSQueue command
Use the showSIBJMSQueue command to show properties of a JMS queue for the default messaging
provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Chapter 12. Welcome to administering Messaging resources 683



Purpose

This command returns a set of property-value pairs for the specified JMS queue.

Target object

A JMS queue.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01" )
’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

wsadmin>AdminTask.showSIBJMSQueue("jmsq2(cells/9994GKCNode01Cell/nodes/
9994GKCNode01|resources.xml#J2CAdminObject_1098737234986)")
’{jndiName=jms/jnmsq2, deliveryMode=Application, busName=, name=jmsq2,
readAhead=AsConnection, timeToLive=, priority=, queueName=busq4jmsq2}’

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask showSIBJMSQueue
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098737234986)
{jndiName=jms/jnmsq2, deliveryMode=Application, busName=, name=jmsq2,
readAhead=AsConnection, timeToLive=, priority=, queueName=busq4jmsq2}

createSIBJMSTopic command
Use the createSIBJMSTopic command to create a new JMS topic for the default messaging provider at a
specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

684 Administering WebSphere applications



Purpose

This command creates a JMS topic for the default messaging provider at a specific scope.

Target object

Scope of the default messaging provider at which the JMS topic is to be created.

Required parameters
-name jmstopic_name
-jndiName jndi_name

Optional parameters
-description text
-topicName topic_name
-topicSpace topicspace_name
-deliveryMode Application | NonPersistent | Persistent
-timeToLive time
-priority priority
-readAhead AsConnection | AlwaysOn | AlwaysOff
-busName name

Example

Note: In the following examples, code blocks beginning with wsadmin> show code that is entered by the
user. Lines that do not begin with wsadmin> show code that has been returned by the console.

v Using Jython:
wsadmin>AdminConfig.getid("/Node:9994GKCNode01" )

’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

wsadmin>AdminTask.createSIBJMSTopic("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)", ["-name", "jmstopic2", "-jndiName",
"jms/jnmstopic2", "-topicSpace", "sportshall"])

’jmstopic2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738992263)’

wsadmin>AdminTask.listSIBJMSTopics("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")

’topic1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738449292)
jmstopic2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738992263)’

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createSIBJMSTopic
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
{-name jmstopic2 -jndiName jms/jnmstopic2 -topicSpace sportshall}
jmstopic2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738992263)

wsadmin>$AdminTask listSIBJMSTopics
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

topic1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738449292)
jmstopic2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738992263)

Chapter 12. Welcome to administering Messaging resources 685



deleteSIBJMSTopic command
Use the deleteSIBJMSTopics command to delete a JMS topic for the default messaging provider at a
specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command deletes the specified JMS topic.

Target object

A JMS topic.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

wsadmin>AdminTask.deleteSIBJMSTopic("jmstopic2(cells/9994GKCNode01Cell/nodes/
9994GKCNode01|resources.xml#J2CAdminObject_1098738992263)")
’jmstopic2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738992263)’

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask deleteSIBJMSTopic
jmstopic2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738992263)
jmstopic2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738992263)

686 Administering WebSphere applications



listSIBJMSTopics command
Use the listSIBJMSTopics command to list all JMS topics for the default messaging provider at a specific
scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command returns a list of all JMS topics for the default messaging provider at a specific scope.

Target object

Scope of the default messaging provider at which the JMS topics were created.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

wsadmin>AdminTask.listSIBJMSTopics("9994GKCNode01(cells/9994GKCNode01Cell/nodes/
9994GKCNode01|node.xml#Node_1)")
’topic1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738449292)’

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listSIBJMSTopics
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
topic1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738449292)

Chapter 12. Welcome to administering Messaging resources 687



modifySIBJMSTopic command
Use the modifySIBJMSTopic command to change the properties of a JMS topic for the default messaging
provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command changes the properties of a JMS topic for the default messaging provider at a specific
scope.

Target object

A JMS topic.

Required parameters

None.

Optional parameters
-name jmstopic_name
-jndiName jndi_name
-description text
-topicName topic_name
-topicSpace topicspace_name
-deliveryMode Application | NonPersistent | Persistent
-timeToLive time
-priority priority
-readAhead AsConnection | AlwaysOn | AlwaysOff
-busName name

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

wsadmin>AdminTask.modifySIBJMSTopic("jmstopic2(cells/9994GKCNode01Cell/nodes/
9994GKCNode01|resources.xml#J2CAdminObject_1098738992263)", ["-jndiName",
"jms/jnmstopic2", "-topicName", "archery", "-readAhead", "AlwaysOn"])
’jmstopic2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738992263)’

688 Administering WebSphere applications



wsadmin>AdminTask.showSIBJMSTopic("jmstopic2(cells/9994GKCNode01Cell/nodes/
9994GKCNode01|resources.xml#J2CAdminObject_1098738992263)")
’{topicSpace=sportshall, deliveryMode=Application, jndiName=jms/jnmstopic2,
busName=, readAhead=AlwaysOn, name=jmstopic2, timeToLive=, priority=,
topicName=archery}’

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask modifySIBJMSTopic
jmstopic2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738992263)
{-jndiName jms/jnmstopic2 -topicName archery -readAhead AlwaysOn}
jmstopic2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738992263)

wsadmin>$AdminTask showSIBJMSTopic
jmstopic2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738992263)
{topicSpace=sportshall, deliveryMode=Application, jndiName=jms/jnmstopic2,
busName=, readAhead=AlwaysOn, name=jmstopic2, timeToLive=, priority=,
topicName=archery}

showSIBJMSTopic command
Use the showSIBJMSTopic command to show properties of a JMS topic for the default messaging provider
at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus JMS commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBJMSAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command returns a set of property-value pairs for the specified JMS topic.

Target object

A JMS topic.

Required parameters

None.

Optional parameters

None.

Chapter 12. Welcome to administering Messaging resources 689



Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01" )
’9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)’

wsadmin>AdminTask.showSIBJMSTopic("jmstopic2(cells/9994GKCNode01Cell/nodes/
9994GKCNode01|resources.xml#J2CAdminObject_1098738992263)")
’{topicSpace=sportshall, deliveryMode=Application, jndiName=jms/jnmstopic2,
busName=, readAhead=AsConnection, name=jmstopic2, timeToLive=, priority=,
topicName=jmstopic2}’

v Using Jacl:
wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask showSIBJMSTopic
jmstopic2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CAdminObject_1098738992263)
{topicSpace=sportshall, deliveryMode=Application, jndiName=jms/jnmstopic2,
busName=, readAhead=AsConnection, name=jmstopic2, timeToLive=, priority=,
topicName=jmstopic2}

Managing messaging with the WebSphere MQ messaging provider
Through the WebSphere MQ messaging provider in WebSphere Application Server, Java Message Service
(JMS) messaging applications can use your WebSphere MQ system as an external provider of JMS
messaging resources. To enable this approach, you configure the WebSphere MQ messaging provider in
WebSphere Application Server to define JMS resources for connecting to any queue manager on the
WebSphere MQ network.

Before you begin

If your business uses WebSphere MQ, and you want to integrate WebSphere Application Server
messaging applications into a predominantly WebSphere MQ network, the WebSphere MQ messaging
provider is a logical choice. However, there can be benefits in using another provider. If you are not sure
which provider combination is best suited to your requirements, see Choosing messaging providers for a
mixed environment.

The preferred solution for publish and subscribe messaging with WebSphere MQ as an external JMS
messaging provider is to use a message broker such as WebSphere MQ Event Broker.

About this task

The WebSphere MQ messaging provider supports JMS 1.1 domain-independent interfaces (sometimes
referred to as “unified” or “common” interfaces), and also supports the Java EE Connector Architecture
(JCA) 1.5 activation specification mechanism for message-driven beans (MDBs) across all platforms
supported by WebSphere Application Server.

You can use WebSphere Application Server to configure WebSphere MQ resources for applications (for
example queue connection factories) and to manage messages and subscriptions associated with JMS
destinations. You administer security through WebSphere MQ.

You can use WebSphere Application Server to coordinate global transactions including WebSphere MQ
without configuring the extended transactional client.

For publish and subscribe messaging with WebSphere MQ as an external JMS messaging provider you
have several options:

690 Administering WebSphere applications



v With WebSphere MQ Version 7 on any platform you can use the built-in publish and subscribe
capability of WebSphere MQ. Note that you cannot use WebSphere MQ Message Broker Version 7 for
this because it no longer provides a publish and subscribe capability.

Procedure
v Learn about the WebSphere MQ messaging provider.

v Configure JMS resources for the WebSphere MQ messaging provider.

You can do this through the WebSphere Application Server administrative console, or through the
WebSphere Application Server set of WebSphere MQ administrative commands.

v List JMS resources for the WebSphere MQ messaging provider.

Installing WebSphere MQ to interoperate with WebSphere Application
Server
When you install a new WebSphere MQ network, you can tune the installation for working with
WebSphere Application Server. If you have an established WebSphere MQ network, you can choose
whether to modify some of the settings for better interoperation.

About this task

This topic provides installation instructions for setting up a new WebSphere MQ installation to interoperate
with WebSphere Application Server. If you have an established WebSphere MQ network, treat this task as
a source of tips to tune your existing WebSphere MQ installation.

Procedure
1. Install a supported version of WebSphere MQ, as described in the installation instructions provided

with WebSphere MQ.

To identify the supported version of WebSphere MQ, see the following article: Detailed system
requirements page.

You should not install Rational Application Developer and WebSphere Application Server on the same
machine when using WebSphere MQ.

For other installation prerequisites, see the Quick Beginnings section for your platform, in the
WebSphere MQ information center.

2. Follow the WebSphere MQ instructions for verifying your installation setup.

3. Configure WebSphere Application Server and WebSphere MQ to interoperate effectively.

For information about the prerequisites and requirements for effective interoperation, see the following
technote: Information about using the WebSphere MQ messaging provider for WebSphere Application
Server Version 8.0.

4. Configure the WebSphere MQ messaging provider with native libraries information.

To connect to a WebSphere MQ queue manager or queue-sharing group in bindings mode, the
WebSphere MQ messaging provider needs to know where to load native libraries from. For more
information, see “Configuring the WebSphere MQ messaging provider with native libraries information”
on page 692.

Note: For migration purposes only, you can also specify native path information, when in an
application server environment, by setting the MQ_INSTALL_ROOT WebSphere Application
Server environment variable. For more information see, Installing WebSphere MQ to
interoperate with WebSphere Application Server.

5. Optional: At Cell scope or Node scope, set the WebSphere Application Server
MQ_CLEAR_MQ_FROM_OSGI_CACHE_ON_SHUTDOWN environment variable to True. This allows
application server startup to automatically take account of changes that are made to the
MQ_INSTALL_ROOT environment variable and WebSphere MQ JMS client libraries while the
application server is stopped.

Chapter 12. Welcome to administering Messaging resources 691

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www-01.ibm.com/support/docview.wss?uid=swg21498708
http://www-01.ibm.com/support/docview.wss?uid=swg21498708
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tmj_instm.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tmj_instm.html


If you do not set this variable, you must restart the application server a second time after any changes
of this type, to enable the application to perform messaging by using the WebSphere MQ messaging
provider.

Attention: If you set the MQ_CLEAR_MQ_FROM_OSGI_CACHE_ON_SHUTDOWN environment
variable, the startup time might increase because, on startup, each application server needs to initialize
an additional state associated with WebSphere MQ installation.

For any change in the WebSphere MQ product (such as a PTF upgrade), you must restart WebSphere
Application Server and all nodes.

What to do next

You are now ready to configure a messaging provider. If your business uses WebSphere MQ, and you
want to integrate WebSphere Application Server messaging applications into a predominantly WebSphere
MQ network, the WebSphere MQ messaging provider is the natural choice. However, there can be
benefits in using another provider. If you are not sure which provider combination is best suited to your
needs, see Choosing messaging providers for a mixed environment.

To create WebSphere MQ messaging provider resources, see “Configuring JMS resources for the
WebSphere MQ messaging provider” on page 697.

Configuring the WebSphere MQ messaging provider with native libraries
information
To connect to a WebSphere MQ queue manager or queue-sharing group in bindings mode, the
WebSphere MQ messaging provider needs to know where to load native libraries from. This information is
known as native path information. The way native path information is set depends on whether the
connection is established in an application client or in an application server environment.

About this task

If you are running in a client environment, use launchClient to start a client application. In the system
property MQ_INSTALL_ROOT enter the name of a directory that contains the WebSphere MQ native libraries,
in a subdirectory of java/lib or java/lib64 depending on whether you are using 32 bit or 64 bit native
libraries. For example, on Linux specify ./launchClient.sh myappclient.ear -CCDMQ_INSTALL_ROOT=/opt/
mqm/.

If you are running in an application server environment, you can configure the WebSphere MQ messaging
provider with native path information by using the command line, as described in “WMQAdminCommands
command group for the AdminTask object” on page 850, or you can use the administrative console to
complete the following steps:

Procedure
1. In the navigation pane, expand Resources > JMS > JMS providers.

2. Select the WebSphere MQ messaging provider that is at the correct Scope for the connection factory
or activation specification that will create the bindings mode connection.

Note:

v Native path information at Cluster scope is used in preference to native path information at
Node and Cell scopes.

v Native path information at Node scope is used in preference to native path information at
Cell scope.

3. Under General Properties, in the Native library path property, enter the full name of the directory that
contains the WebSphere MQ native libraries. For example, on Linux enter /opt/mqm/java/lib. Enter
only one directory name.

692 Administering WebSphere applications

|
|

|
|



4. Click OK.

5. Save any changes to the master configuration.

6. If you are running in an application server environment, you must restart all affected servers twice
when you have changed the native path information. If you do not restart all of the affected servers
twice, a WMSG1623E message is produced, indicating that the WebSphere MQ messaging provider is
not available.

If you are running in a client environment, you must rerun the client program twice. Otherwise, a
WMSG2013E message is produced.

Whichever environment you are running in, until you perform these restarts any attempt to use a
WebSphere MQ messaging provider resource (for example, a connection factory) from one of the
affected servers causes a javax.naming.NamingException and a WMSG2003E message.

What to do next

Note: For migration purposes only, you can also specify native path information, when in an application
server environment, by setting the MQ_INSTALL_ROOT WebSphere Application Server
environment variable. For more information, see the following topic in the WebSphere Application
Server Version 6.1 information center: Installing WebSphere MQ to interoperate with WebSphere
Application Server (Version 6.1).

Maintaining the WebSphere MQ resource adapter
The WebSphere MQ resource adapter is used by all applications that perform JMS messaging with the
WebSphere MQ messaging provider. The WebSphere MQ resource adapter is usually updated
automatically when you apply WebSphere Application Server fix packs, but if you have previously manually
updated the resource adapter you must manually update your configuration to ensure that maintenance is
applied correctly.

About this task

Applying a WebSphere Application Server fix pack does not automatically update the version of the
WebSphere MQ resource adapter used by servers on nodes where the WebSphere MQ resource adapter
has previously been manually updated.

Procedure
v To migrate the configuration of all servers in the cell to use the latest version of the WebSphere MQ

resource adapter contained in the WebSphere Application Server installation, see “Ensuring that servers
use the latest available WebSphere MQ resource adapter maintenance level.”

v If you want a specific version of the WebSphere MQ resource adapter to be installed, and the version
you require is not available in a WebSphere Application Server fix pack, or an interim fix, see “Installing
a specific maintenance level of the WebSphere MQ resource adapter” on page 695.

Ensuring that servers use the latest available WebSphere MQ resource adapter maintenance level:

To ensure that the WebSphere MQ resource adapter is automatically updated to the latest available
maintenance level when you apply WebSphere Application Server fix packs, you can configure all servers
in your environment to use the latest version of the resource adapter contained in the WebSphere
Application Server fix pack that you have applied to the installation of each node.

Before you begin

Updates to the WebSphere MQ resource adapter that is installed with WebSphere Application Server are
included in WebSphere Application Server Fix Packs. You must only update the WebSphere MQ resource
adapter using the "Update resource adapter facility if you require a specific version of the resource
adapter, instead of the most recent version. To install a specific version of the resource adapter, see
“Installing a specific maintenance level of the WebSphere MQ resource adapter” on page 695.

Chapter 12. Welcome to administering Messaging resources 693

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tmj_instm.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/tmj_instm.html


You can use the following Jython and Jacl commands to determine the level of the WebSphere MQ
resource adapter currently being used by WebSphere Application Server:

v Jython:

Note: You must press Return twice after entering this command in order to run it.

wmqInfoMBeansUnsplit = AdminControl.queryNames("WebSphere:type=WMQInfo,*")
wmqInfoMBeansSplit = AdminUtilities.convertToList(wmqInfoMBeansUnsplit)
for wmqInfoMBean in wmqInfoMBeansSplit: print wmqInfoMBean; print AdminControl.invoke(wmqInfoMBean, ’getInfo’, ’’)

v Jacl:

set wmqInfoMBeans [$AdminControl queryNames WebSphere:type=WMQInfo,*]
foreach wmqInfoMBean $wmqInfoMBeans {
puts $wmqInfoMBean;
puts [$AdminControl invoke $wmqInfoMBean getInfo [] []]
}

About this task

Use this task if any of the following circumstances apply to your configuration, and you want to configure
all servers in your environment to use the latest version of the WebSphere MQ resource adapter:

v The JVM logs of any application server in your environment contain the following entry:

WMSG1625E: It was not possible to detect
the WebSphere MQ messaging provider code at the specified path <null>

v One or more nodes has previously been manually updated to use a specific maintenance level of the
WebSphere MQ resource adapter that is now superseded by the latest version of the resource adapter
contained in the current WebSphere Application Server maintenance level.

When you have performed the following steps for all cells and single server installations in your
environment, your servers will automatically receive maintenance to the WebSphere MQ resource adapter
when a new WebSphere Application Server fix pack is applied.

Procedure

1. Start the application server.

2. Copy the following Jython script into a file called convertWMQRA.py, then save it into the
profile_root/bin directory.

ras = AdminUtilities.convertToList(AdminConfig.list(’J2CResourceAdapter’))

for ra in ras :
desc = AdminConfig.showAttribute(ra, "description")
if (desc == "WAS 7.0 Built In WebSphere MQ Resource Adapter") or

(desc == "WAS 7.0.0.1 Built In WebSphere MQ Resource Adapter") or
(desc == "WAS Built In WebSphere MQ Resource Adapter"):
print "Updating archivePath and classpath of " + ra
AdminConfig.modify(ra, [[’archivePath’, "${WAS_INSTALL_ROOT}/installedConnectors/wmq.jmsra.rar"]])
AdminConfig.unsetAttributes(ra, [’classpath’])
AdminConfig.modify(ra, [[’classpath’, "${WAS_INSTALL_ROOT}/installedConnectors/wmq.jmsra.rar"]])
AdminConfig.save()

#end if
#end for

3. Use the wsadmin tool to run the Jython script that you have just created.

Open a command prompt and navigate to the profile_root/bin directory, then enter the following
command:

wsadmin -lang jython -f convertWMQRA.py

4. Stop all servers in the profile.

5. Run the osgiCfgInit command from the profile_root/bin directory.

694 Administering WebSphere applications



Note: The osgiCfgInit command resets the class cache used by the OSGi runtime environment.

6. Restart all servers in the profile.

What to do next

If you continue to experience problems after performing the steps described in this topic, and you have
previously used the Update resource adapter... button on the JMS Provider Settings panel in the
administrative console to update the WebSphere MQ resource adapter on any nodes in your environment,
it is possible that you are experiencing the issue described in APAR PM10308.

Installing a specific maintenance level of the WebSphere MQ resource adapter:

If you require a specific version of the WebSphere MQ resource adapter to be installed and the version
you require is unavailable in a WebSphere Application Server fix pack, or an interim fix, you can install the
resource adapter using the administrative console.

Before you begin

For more information about the minimum version of the WebSphere MQ resource adapter required for this
version of WebSphere Application Server, see Which version of WebSphere MQ is shipped with
WebSphere Application Server?.

About this task

Use this task only if you have a requirement to use a specific maintenance level of the WebSphere MQ
resource adapter that is unavailable in a WebSphere Application Server fix pack, or an interim fix.

You do not need to use this task if you want to restore the configuration of all servers in your cell to use
the latest version of the WebSphere MQ resource adapter contained in the WebSphere Application Server
installation. In this case, see “Ensuring that servers use the latest available WebSphere MQ resource
adapter maintenance level” on page 693 for further information.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Resources > JMS->JMS providers The JMS providers collection panel
opens.

3. Change the scope to the node that you want to update.

4. Select the WebSphere MQ messaging provider entry in the list. The settings panel for this provider
opens.

5. Click Update resource adapter....

Note: Update resource adapter... is only available for the WebSphere MQ messaging provider at
node scope.

6. Specify the installation path for the resource adapter archive (RAR) file, then click Next:

v If your RAR file is located on the same workstation as your browser, select Local file system, and
browse to find the file.

v If your RAR file is located on the server workstation where the application server is installed, select
Remote file system, and specify the fully qualified path to the file.

7. Review the configuration information that is provided for the RAR file then, when you have finished
your review, click Next. The following information is displayed for the RAR file:

v Name

v Current RAR version

v New RAR version

Chapter 12. Welcome to administering Messaging resources 695

http://www-01.ibm.com/support/docview.wss?uid=swg21248089
http://www-01.ibm.com/support/docview.wss?uid=swg21248089


v Scope

v Any existing copies of the resource adapter. The resource adapters shown with an asterisk (*) are
copies of the resource adapter and must also be updated at the same time.

8. Optional: Edit any properties that were added by the new version of the resource adapter. You can
also edit these properties after you have completed the update.

a. From the displayed list, select the resource for which you want to edit the new properties. Only
resources with new properties are included in the list.

b. Edit the resource properties. Use the table that is provided to set the values for new properties of
the selected resource.

v Select Set for all to apply the property value to all resources of the same type.

v Click Reset to Default to reset all the properties to the default values that are defined in the
RAR file. This resetting of property values only affects the selected resource.

c. Click Next.

9. Review the summary panel and then, when you are satisfied with the configuration settings, click
Finish. When you click Finish, all the configuration changes are saved automatically. To revert to an
older version of the resource adapter you must perform the update process again, and specify the
older version of the RAR file that you want to revert to.

10. Restart the servers that contain the updated RAR file.

Listing JMS resources for the WebSphere MQ messaging provider
Use the WebSphere Application Server administrative console to list JMS resources for the WebSphere
MQ provider, for administrative purposes.

About this task

You use the WebSphere Application Server administrative console to list JMS resources, if you want to
view, modify or delete any of the following resources:

v Activation specifications

v Unified connection factories

v Queue connection factories

v Topic connection factories

v Queues

v Topics

When you use the administrative console to locate these resources, two different navigation pathways are
available:

v Provider-centric navigation lets you view all providers, or just those for a specified scope, then
navigate to a specific resource for a specific provider. This is the traditional way of navigating to a
resource when you know which provider supports it. Any navigation that starts with Resources >
JMS->JMS providers is provider-centric.

v Resource-centric navigation lets you view all resources of a specified type, then navigate to a
resource. This is useful if you want to find a resource, but you do not know which provider supports it
(you can list all resources of a given type across all scopes, for all providers, in a single panel). Any
navigation that follows the pattern Resources > JMS > resource_type is resource-centric, where
resource_type is one of the resource types previously listed.

You can use either of these navigation pathways to locate JMS resources of any type.

Procedure
v Use provider-centric navigation, for example to navigate to a specified queue connection factory.

1. Start the administrative console.

696 Administering WebSphere applications



2. In the navigation pane, click Resources > JMS->JMS providers.

The JMS providers collection panel is displayed. This lists all currently configured messaging
providers across all scopes (you can modify the scope if required).

3. Select the required JMS provider.

The settings panel for this provider is displayed. The configuration tab contains a set of links to all
the JMS resources owned by this provider.

4. Click the link for a JMS resource type. For example, click Queue connection factories.

The queue connection factories collection panel is displayed. This panel lists all the queue
connection factories for this provider.

5. Select the required queue connection factory.

v Use resource-centric navigation, for example to navigate to a specified queue connection factory.

1. Start the administrative console..

2. In the navigation pane, click Resources > JMS->Queue connection factories.

The queue connection factories collection panel is displayed. This panel lists all the queue
connection factories across all messaging providers.

3. Select the required queue connection factory.

Results

You can now view and work with the resource properties.

Configuring JMS resources for the WebSphere MQ messaging
provider
Use the WebSphere Application Server administrative console to configure activation specifications,
connection factories and destinations for the WebSphere MQ JMS provider.

Before you begin

This task assumes that you are working in a mixed WebSphere Application Server and WebSphere MQ
environment, and that you have decided to use the WebSphere MQ messaging provider to handle JMS
messaging between the two systems. If your business uses WebSphere MQ, and you want to integrate
WebSphere Application Server messaging applications into a predominately WebSphere MQ network, the
WebSphere MQ messaging provider is the natural choice. However, there can be benefits in using another
provider. If you are not sure which provider combination is best suited to your needs, see Choosing
messaging providers for a mixed environment.

You can configure JMS resources for the WebSphere MQ messaging provider through the administrative
console as described in this task, or you can configure JMS resources for the WebSphere MQ messaging
provider through the WebSphere MQ administrative commands.

About this task

Using the administrative console, you can set the scope of the WebSphere MQ messaging provider to
restrict the range of resources that are displayed:

v If you set the scope to contain only WebSphere Application Server Version 6 or Version 7.0 or later
nodes, you can configure JMS 1.1 resources and properties. This includes unified JMS connection
factories for use by both point-to-point and publish/subscribe JMS 1.1 applications. With JMS 1.1, this
approach is preferred to the domain-specific queue connection factory and topic connection factory.

v If you set the scope to contain only WebSphere Application Server Version 7.0 or later nodes, you can
also configure JMS activation specifications.

Chapter 12. Welcome to administering Messaging resources 697



v If you set the scope to a WebSphere Application Server Version 5 node, you can only configure
domain-specific JMS resources, and the subset of properties that apply to WebSphere Application
Server Version 5.

Note:

There are two ways of specifying the information needed by WebSphere MQ messaging provider
messaging resources so that they can connect to a WebSphere MQ queue manager. It can either
be specified manually, or by providing the WebSphere MQ messaging provider resource with a
uniform resource locator (URL) that points to a client channel definition table (CCDT).

A CCDT is a binary file that contains information about how to create a client connection channel to
one or more queue managers. The file contains information such as the hostname, port, and name
of the target queue manager, as well as more advanced configuration information like the SSL
attributes that should be used.

Creating WebSphere MQ messaging provider resources using CCDTs provides the following
benefits:

v Flexibility, because client connection channel information is contained in a single place. If any of
the information changes, such as the host name of the machine on which the WebSphere MQ
queue manager resides, only the CCDT needs to be updated. When it is updated, all
WebSphere MQ messaging provider resources that make use of the CCDT pick up the change.

v Reliability, because less information is needed for a CCDT there is a reduced chance of
configuration errors. When using a CCDT to enter connection information, all that is required are
the CCDT URL and an optional queue manager name. If you configure a WebSphere MQ
messaging provider resource manually, much more information is required -- especially if you are
configuring SSL.

For further information about generating a CCDT, see the WebSphere MQ information center.

Maintenance note: The WebSphere MQ messaging provider uses code provided by the WebSphere MQ
resource adapter, which is automatically installed as part of the product.

Procedure
v “Creating an activation specification for the WebSphere MQ messaging provider”

v “Configuring an activation specification for the WebSphere MQ messaging provider” on page 701

v “Migrating a listener port to an activation specification for use with the WebSphere MQ messaging
provider” on page 702

v “Creating a connection factory for the WebSphere MQ messaging provider” on page 703

v “Configuring a unified connection factory for the WebSphere MQ messaging provider” on page 705

v “Configuring a queue connection factory for the WebSphere MQ messaging provider” on page 706

v “Configuring a topic connection factory for the WebSphere MQ messaging provider” on page 707

v “Configuring a queue for the WebSphere MQ messaging provider” on page 708

v “Configuring a topic for the WebSphere MQ messaging provider” on page 708

v “Configuring custom properties for WebSphere MQ messaging provider JMS resources” on page 709

Creating an activation specification for the WebSphere MQ messaging provider
Use this task to create an activation specification for use with the WebSphere MQ messaging provider.

About this task

To create an activation specification for use with the WebSphere MQ messaging provider, use the
administrative console to complete the following steps. You can choose either to enter all the required

698 Administering WebSphere applications



connection information using the Create WebSphere MQ JMS resource wizard or to use a client channel
definition table (CCDT) to establish a connection to the WebSphere MQ messaging provider.

For information about modifying an existing activation specification, see the related tasks.

Procedure
1. In the navigation pane, click Resources > JMS > Activation specifications.

2. Select the Scope setting corresponding to the scope of the activation specification that you want to
create.

3. Click New in the content pane.

4. Select WebSphere MQ messaging provider, then click OK to start the Create WebSphere MQ JMS
resource wizard.

5. On the “Configure basic attributes” page, enter the following information, then click Next.

Name The name by which this activation specification is known for administrative purposes within
WebSphere Application Server.

JNDI name
The name that is used to bind this activation specification into the JNDI namespace.

Description
Optional. A description of this activation specification for administrative purposes within
WebSphere Application Server.

6. On the “Specify MDB destination data” page, enter the following information, then click Next.

Destination JNDI name
The JNDI name for the JMS destination from which messages are delivered to a
message-driven bean (MDB) that is configured to use this activation specification.

Message selector
Optional. A message selector expression specifying which messages are to be delivered.

Destination type
The type of destination (queue or topic) from which to consume messages.

7. On the “Select connection method” page, choose how you want to specify the connection details for
to the WebSphere MQ messaging provider by selecting one of the following options, then click Next.

Enter all the required information into this wizard
Choosing this option takes you to the “Supply queue manager details” page (see step 8),
where you can start entering the connection details using the Create WebSphere MQ JMS
resource wizard.

Use a client channel definition table
Choosing this option takes you to the “Specify client channel definition table” page (see step
9), where you can enter details of the client channel definition table that you want to use.

8. If you have chosen to enter all the required information using the wizard, complete the following
steps:

a. On the “Supply queue manager details” page, enter the name of the queue manager or
queue-sharing group that you want to connect to then click Next.

b. On the “Enter connection details” page, specify the details for the connection, then click Next to
continue to the “Test connection” page. You can choose either to enter host and port information
separately, or enter host and port information in the form of a connection name list. You must only
choose the option to use a connection name list if you are creating a connection to a
multi-instance queue manager. You must not use this option for connections to non-multi-instance
queue managers as that can result in transaction integrity issues.

Transport
Optional. The WebSphere MQ transport type for the connection. The option that you

Chapter 12. Welcome to administering Messaging resources 699



select is used to determine the exact mechanisms used to connect to WebSphere MQ. If
you are configuring a transport type of bindings, then client or bindings, see “Configuring
the WebSphere MQ messaging provider with native libraries information” on page 692 for
more information.

Enter host and port information in the form of separate hostname and port values
This radio button is selected by default and enables the Hostname and Port fields and
disables the Connection name list field. Leave this radio button selected if you want to
enter host and port information in the form of separate hostname and port values.

Hostname
The host name, IPv4, or IPv6 address of the WebSphere MQ queue manager to connect
to. Complete this field if you have selected Enter host and port information in the form
of separate hostname and port values.

Port Optional. The port number on which WebSphere MQ is listening. If you do not specify a
value for the port number, the default value of 1414 is used. Complete this field if you
have selected Enter host and port information in the form of separate hostname and
port values.

Enter host and port information in the form of a connection name list
This radio button is cleared by default and, if selected, disables the Hostname and Port
fields and enables the Connection name list field.
v Click this radio button to select it if you want to enter host and port information in the

form of a connection name list.
v Leave this radio button cleared if you want to enter host and port information in the

form of separate host name and port values.

Connection name list
The connection name list specifying the host name and port details to use when you want
the connection factory to connect to a multi-instance queue manager. Complete this field
if you have selected Enter host and port information in the form of a connection
name list. Enter the host name and port details in the following form:

host[(port)][,host(port)]

host must be a valid TCP/IP host name or IPv4 or IPv6 address.

port must be an integer value in the range 1 - 65536 (inclusive). The port information is
optional, and if not specified, defaults to 1414.

For example: localhost(1234),remotehost1(1234),remotehost2

Server connection channel
Optional. The WebSphere MQ server connection channel name used when connecting to
WebSphere MQ queue manager or queue-sharing group.

9. If you are using a channel client definition table to establish a connection to the WebSphere MQ
messaging provider, complete the following fields on the “Specify client channel definition table” page,
then click Next to continue to the “Test connection” page.

Client channel definition table URL
The URL to the client channel definition table that you want to use when connecting to
WebSphere MQ.

Queue manager
Optional. The name of the queue manager to be used to select one or more entries from the
CCDT.

10. Optional: On the “Test connection” page, if you want to test establishing the connection, click Test
connection. This test can take several seconds to perform.

11. On the “Summary” page, complete the creation of the new activation specification by clicking Finish.

12. Stop then restart the application server.

700 Administering WebSphere applications



Configuring an activation specification for the WebSphere MQ messaging provider
Configure a JMS activation specification to enable a message-driven bean (MDB) to communicate with the
WebSphere MQ messaging provider.

About this task

To view or change the configuration of an activation specification for use with WebSphere MQ, use the
administrative console to complete the following steps.

Procedure
1. In the navigation pane, click Resources > JMS->Activation specifications. A list of existing

activation specifications, with a summary of their properties, is displayed in an “Activation specification
collection” on page 720 form.

2. Select the Scope setting corresponding to the scope of the activation specifications that you want to
view or change.

3. Select the name of the activation specification that you want to view or change. Configuration details
for the activation specification are displayed in an “WebSphere MQ messaging provider activation
specification settings” on page 726 form.

4. Under General Properties make modifications as necessary.

For information about each of the available fields, see “WebSphere MQ messaging provider activation
specification settings” on page 726.

Note: There are four WebSphere MQ connection properties that are used to configure the
WebSphere MQ resource adapter used by the WebSphere MQ messaging provider. These
properties affect the connection pool that is used by activation specifications:

v maxConnections

v connectionConcurrency (Setting this property only affects WebSphere Application Server 7
nodes. The property has no effect for WebSphere Application Server Version 8 or later
nodes.)

v reconnectionRetryCount

v reconnectionRetryInterval

For more information about these four properties, and how to configure them, see “Resource
adapter properties” on page 718.

5. Click Apply to save the configuration.

6. Optional: Click Advanced properties to display or change the list of advanced properties of your
activation specification.

7. Optional: Click Broker properties to display or change the list of broker properties of your activation
specification.

8. Optional: Click Custom properties to display or change the list of custom properties of your
activation specification. For example, you would use this option to set the custom property
WAS_EndpointInitialState for an activation specification. WAS_EndpointInitialState determines
whether or not message consumption begins from the JMS destination as soon as the activation
specification is used for a message-driven bean to connect with the destination.

9. Optional: Click Client transport properties to display or change the list of client transport properties
of your activation specification. This link is only present on the explicitly-defined variation of this
panel, where you enter all information required to connect to WebSphere MQ. This link does not
appear for the CCDT-based variation.

10. Click OK.

11. Save your changes to the master configuration.

12. To have the changed configuration take effect, stop then restart the application server.

Chapter 12. Welcome to administering Messaging resources 701



Migrating a listener port to an activation specification for use with the WebSphere
MQ messaging provider
For WebSphere Application Server Version 7 and later, listener ports are stabilized. You must therefore
plan to migrate your WebSphere MQ message-driven bean deployment configurations from using listener
ports to using activation specifications.

Before you begin

EJB 2.0 message-driven beans cannot be configured against JCA 1.5-compliant resources. If your bean is
an EJB 2.0 application, upgrade it to EJB 3 or EJB 2.1 before you complete this task.

Note: You can continue to configure EJB 3, EJB 2.1, and EJB 2.0 message-driven beans against a
listener port. You might want to do this for compatability with existing message-driven bean
applications. However, listener ports are stabilized, and you should plan to migrate all your
message-driven beans to use JCA 1.5-compliant or 1.6-compliant resources. For more information
about when to use listener ports rather than activation specifications, see Message-driven beans,
activation specifications, and listener ports.

About this task

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

Note that the Maximum retries listener port setting is not migrated to the new activation specification as
there is no exact equivalent.

When you are migrating a listener port associated with a message-driven bean (MDB) that has the
subscriptionDurability activation configuration property set to Durable, and that MDB already has an active
durable subscription, the durable subscription is not migrated. This is because listener ports and
WebSphere MQ activation specifications use incompatible forms of subscription name. As a result there
can be two active durable subscriptions subscribed to the relevant topic for the same MDB. As part of the
migration process, you must delete the old durable subscription that was associated with the listener port
and manually clean up any messages associated with it. For information on how do to this see the
WebSphere MQ and WebSphere Message Broker information centres.

Procedure
1. Start the administrative console.

2. In the navigation pane, expandServers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service > [Additional
Properties] Listener Ports > listener_port

The “Message listener port collection” on page 402 panel is displayed.

3. Select the listener port that you want to work with by selecting the check box to the left of the listener
port name.

4. Click Convert to activation specification to start the “Convert listener port to activation specification”
wizard.

5. On the “Step1: Supply activation specification name” page, enter the following information then click
Next to continue:

v The name of the new activation specification to be created.

702 Administering WebSphere applications



v The JNDI name of the new activation specification.

v The scope of the new activation specification (Server, Node, Cluster, Cell). Note that Cluster only
appears when the server is in a cluster.

6. On the “Step2: Summary”page, click Finish to complete the creation of the new activation
specification.

7. Stop then restart the application server.

8. To complete the configuration of the activation specification, see “Configuring an activation specification
for the WebSphere MQ messaging provider” on page 701.

Creating a connection factory for the WebSphere MQ messaging provider
Use this task to create a connection factory, a queue connection factory, or a topic connection factory for
use with the WebSphere MQ messaging provider.

About this task

With JMS 1.1, domain-independent connection factories are preferred to domain-specific queue connection
factories and topic connection factories.

To create a connection factory, a queue connection factory, or a topic connection factory for use with the
WebSphere MQ messaging provider, use the administrative console to complete the following steps. You
can choose either to enter all the required connection information using the Create WebSphere MQ JMS
resource wizard or to use a client channel definition table (CCDT) to establish a connection to the
WebSphere MQ messaging provider.

For information about modifying an existing connection factory, see the related tasks.

Procedure
1. In the navigation pane, select the type of connection factory you want to create:

v To create a connection factory, click Resources > JMS->Connection factories.
v To create a queue connection factory, click Resources > JMS->Queue connection factories.
v To create a topic connection factory, click Resources > JMS->Topic connection factories.

2. Select the Scope setting corresponding to the scope of the connection factory that you want to
create.

3. Click New in the content pane to start the Create WebSphere MQ JMS resource wizard.

4. Select WebSphere MQ messaging provider, then click OK.

5. On the “Configure basic attributes” page, specify the following properties, then click Next.

Name The name by which this connection factory is known for administrative purposes within
WebSphere Application Server.

JNDI name
The name that is used to bind this connection factory into the Java Naming and Directory
Interface (JNDI) namespace.

Description
Optional. A description of this connection factory for administrative purposes within
WebSphere Application Server.

6. On the “Select connection method” page, choose how you want to specify the connection details for
to the WebSphere MQ messaging provider by selecting one of the following options, then click Next.

Enter all the required information into this wizard
Choosing this option takes you to the “Supply queue manager details” page (see step 7),
where you can start entering the connection details using the Create WebSphere MQ JMS
resource wizard.

Chapter 12. Welcome to administering Messaging resources 703



Use a client channel definition table
Choosing this option takes you to the “Specify client channel definition table” page (see step
8), where you can enter details of the client channel definition table that you want to use.

7. If you have chosen to enter all the required information using the wizard, complete the following
steps:

a. On the “Supply queue manager details” page, enter the name of the queue manager or
queue-sharing group that you want to connect to then click Next.

b. On the “Enter connection details” page, specify the details for the connection, then click Next to
continue to the “Test connection” page. You can choose either to enter host and port information
separately, or enter host and port information in the form of a connection name list. You must only
choose the option to use a connection name list if you are creating a connection to a
multi-instance queue manager. You must not use this option for connections to non-multi-instance
queue managers as that can result in transaction integrity issues.

Transport
Optional. The WebSphere MQ transport type for the connection. The option that you
select is used to determine the exact mechanisms used to connect to WebSphere MQ. If
you are configuring a transport type of bindings, then client or bindings, see “Configuring
the WebSphere MQ messaging provider with native libraries information” on page 692 for
more information.

Enter host and port information in the form of separate hostname and port values
This radio button is selected by default and enables the Hostname and Port fields and
disables the Connection name list field. Leave this radio button selected if you want to
enter host and port information in the form of separate host name and port values.

Hostname
The host name, IPv4, or IPv6 address of the WebSphere MQ queue manager to connect
to. Complete this field if you have selected Enter host and port information in the form
of separate hostname and port values.

Port Optional. The port number on which WebSphere MQ is listening. Complete this field if you
have selected Enter host and port information in the form of separate hostname and
port values.

Enter host and port information in the form of a connection name list
This radio button is cleared by default and, if selected, disables the Hostname and Port
fields and enables the Connection name list field.
v Click this radio button to select it if you want to enter host and port information in the

form of a connection list.
v Leave this radio button cleared if you want to enter host and port information in the

form of separate hostname and port values.

Connection name list
The connection name list specifying the host name and port details to use when you want
the connection factory to connect to a multi-instance queue manager. Complete this field
if you have selected Enter host and port information in the form of a connection
name list. Enter the host name and port details in the following form:

host[(port)][,host(port)]

host must be a valid TCP/IP host name or IPv4 or IPv6 address.

port must be an integer value in the range 1 - 65536 (inclusive). The port information is
optional, and if not specified, defaults to 1414.

For example: localhost(1234),remotehost1(1234),remotehost2

Server connection channel
Optional. The WebSphere MQ server connection channel name used when connecting to
WebSphere MQ queue manager or queue-sharing group.

704 Administering WebSphere applications



8. If you are using a channel client definition table to establish a connection to the WebSphere MQ
messaging provider, complete the following fields on the “Specify client channel definition table” page,
then click Next to continue to the “Test connection” page.

Client channel definition table URL
The URL to the client channel definition table that you want to use when connecting to
WebSphere MQ.

Queue manager
Optional. The name of the queue manager to be used to select one or more entries from the
CCDT.

9. Optional: On the “Test connection” page, if you want to test establishing the connection, click Test
connection. This test can take several seconds to perform.

10. On the “Summary” page, complete the creation of the new connection factory by clicking Finish.

11. Stop then restart the application server.

Configuring a unified connection factory for the WebSphere MQ messaging
provider
Use this task to view or change the configuration of an existing domain-independent connection factory for
the WebSphere MQ messaging provider on a WebSphere Application Server node.

About this task

This task applies to unified connection factories. With JMS 1.1, domain-independent (unified) connection
factories are preferred to domain-specific queue connection factories and topic connection factories. If you
want to view or change a queue connection factory or topic connection factory, see the related tasks.

To view or change the configuration of an existing connection factory for use with the WebSphere MQ
messaging provider, use the administrative console to complete the following steps.

Procedure
1. In the navigation pane, click Resources > JMS->Connection factories. A list of existing unified

connection factories, with a summary of their properties, is displayed.

2. Select the Scope corresponding to the scope at which the connection factory is visible to
applications.

3. Click the name of the connection factory that you want to view or change. Configuration details for
the unified connection factory are displayed.

4. Under General Properties make any required changes.

For information about each of the available fields, see “WebSphere MQ messaging provider
connection factory settings” on page 746.

5. Click Apply to save the configuration.

6. Optional: Click Advanced properties to display or change the list of advanced properties of your
connection factory.

7. Optional: Click Broker properties to display or change the list of broker properties of your connection
factory.

8. Optional: Click Custom properties to display or change the list of custom properties of your
connection factory.

9. Optional: Click Client transport properties to display or change the list of client transport properties
of your connection factory. This link is only appears if, when you created the connection factory, you
chose to enter all the information required to connect to WebSphere MQ. This link does not appear if
you have chosen to use a client channel definition table (CCDT) to establish a connection to
WebSphere MQ.

10. Optional: Click Connection pools to display or change the connection pools detail of your connection
factory.

Chapter 12. Welcome to administering Messaging resources 705



11. Optional: Click Session pools to display or change the session pools detail of your connection
factory.

There is a mechanism (session.sharing.scope custom property) to make JMS sessions unshareable.
This means that whenever an application calls Session.close(), the JMS session is automatically
released from any transaction that is associated with and returned to the session pool. This means
that sessions can be cleaned up and removed from the session pool even if the servlet or
asynchronous bean that created it is still running.

12. Click OK.

13. Save your changes to the master configuration.

14. To make the changed configuration take effect, stop then restart the application server.

Configuring a queue connection factory for the WebSphere MQ messaging
provider
Use this task to view or change the configuration of an existing JMS queue connection factory for
point-to-point messaging with the WebSphere MQ messaging provider.

About this task

This task applies to queue connection factories. With JMS 1.1, domain-independent (unified) connection
factories are preferred to domain-specific queue connection factories and topic connection factories. To
configure a unified connection factory, see “Configuring a unified connection factory for the WebSphere
MQ messaging provider” on page 705.

To view or change the configuration of an existing queue connection factory for use with the WebSphere
MQ messaging provider, use the administrative console to complete the following steps.

Procedure
1. In the navigation pane, click Resources > JMS->Queue connection factories. A list of existing

queue connection factories, with a summary of their properties, is displayed.

2. Select the Scope setting corresponding to the scope at which the queue connection factory is visible
to applications.

3. Click the name of the queue connection factory that you want to view or change. Configuration details
for the queue connection factory are displayed.

4. Under General Properties make any required changes.

For information about each of the available fields, see “WebSphere MQ messaging provider queue
connection factory settings” on page 775.

5. Click Apply to save the configuration.

6. Optional: Click Advanced properties to display or change the list of advanced properties of your
queue connection factory.

7. Optional: Click Custom properties to display or change the list of custom properties of your queue
connection factory.

8. Optional: Click Client transport properties to display or change the list of client transport properties
of your queue connection factory. This link is only appears if, when you created the connection
factory, you chose to enter all the information required to connect to WebSphere MQ. This link does
not appear if you have chosen to use a client channel definition table (CCDT) to establish a
connection to WebSphere MQ.

9. Optional: Click Connection pools to display or change the connection pools detail of your queue
connection factory.

10. Optional: Click Session pools to display or change the session pools detail of your queue connection
factory.

There is a mechanism (session.sharing.scope custom property) to make JMS sessions unshareable.
This means that whenever an application calls Session.close(), the JMS session is automatically

706 Administering WebSphere applications



released from any transaction that is associated with and returned to the session pool. This means
that sessions can be cleaned up and removed from the session pool even if the servlet or
asynchronous bean that created it is still running.

11. Click OK.

12. Save your changes to the master configuration.

13. To have the changed configuration take effect, stop then restart the application server.

Configuring a topic connection factory for the WebSphere MQ messaging provider
Use this task to view or change the configuration of a JMS topic connection factory for publish/subscribe
messaging with the WebSphere MQ messaging provider.

About this task

This task applies to topic connection factories. With JMS 1.1, domain-independent (unified) connection
factories are preferred to domain-specific queue connection factories and topic connection factories. To
view or configure a unified connection factory, see “Configuring a unified connection factory for the
WebSphere MQ messaging provider” on page 705.

To view or change the configuration of an existing topic connection factory for use with the WebSphere
MQ messaging provider, use the administrative console to complete the following steps.

Procedure
1. In the navigation pane, click Resources > JMS->Topic connection factories. A list of existing topic

connection factories, with a summary of their properties, is displayed.

2. Select the Scope corresponding to the scope at which the topic connection factory is visible to
applications.

3. Click the name of the topic connection factory that you want to view or change. Configuration details
for the topic connection factory are displayed.

4. Under General properties make any required changes.

For information about each of the available fields, see “WebSphere MQ messaging provider topic
connection factory settings” on page 799.

5. Click Apply to save the configuration.

6. Optional: Click Advanced properties to display or change the list of advanced properties of your
topic connection factory.

7. Optional: Click Broker properties to display or change the list of broker properties of your topic
connection factory.

8. Optional: Click Custom properties to display or change the list of custom properties of your topic
connection factory.

9. Optional: Click Client transport properties to display or change the list of client transport properties
of your topic connection factory. This link is only appears if, when you created the connection factory,
you chose to enter all the information required to connect to WebSphere MQ. This link does not
appear if you have chosen to use a client channel definition table (CCDT) to establish a connection to
WebSphere MQ

10. Optional: Click Connection pools to display or change the connection pools detail of your topic
connection factory.

11. Optional: Click Session pools to display or change the session pools detail of your topic connection
factory.

There is a mechanism (session.sharing.scope custom property) to make JMS sessions unshareable.
This means that whenever an application calls Session.close(), the JMS session is automatically
released from any transaction that is associated with and returned to the session pool. This means
that sessions can be cleaned up and removed from the session pool even if the servlet or
asynchronous bean that created it is still running.

Chapter 12. Welcome to administering Messaging resources 707



12. Click OK.

13. Save your changes to the master configuration.

14. To have the changed configuration take effect, stop then restart the application server.

Configuring a queue for the WebSphere MQ messaging provider
Use this task to view or change the configuration of a JMS queue destination for point-to-point messaging
with the WebSphere MQ messaging provider. This task contains an optional step for you to create a new
JMS queue destination.

About this task

To view or change the configuration of a queue destination for use with the WebSphere MQ messaging
provider, use the administrative console to complete the following steps:

Procedure
1. In the navigation pane, click Resources > JMS->Queues to view existing queue destinations, with a

summary of their properties.

2. Select the Scope corresponding to the scope of the queue destinations that you want to view or
change.

3. To view or change the properties of an existing queue destination, click its name in the list. Otherwise,
to create a new queue, complete the following steps:

a. Click New in the content pane. Select WebSphere MQ messaging provider then click OK.

b. Specify the following required properties.

Name The name by which this queue destination is known for administrative purposes within
WebSphere Application Server.

JNDI name
The JNDI name that is used to bind the queue destination into the namespace.

Queue name
The name of the WebSphere MQ queue to which messages are sent.

c. Click Apply. This defines the queue destination to WebSphere Application Server, and enables you
to browse or change additional properties.

4. Optional: Change WebSphere MQ queue settings, according to your needs.

5. Click OK.

6. Save any changes to the master configuration.

7. To have the changed configuration take effect, stop then restart the application server.

Configuring a topic for the WebSphere MQ messaging provider
Use this task to view or change the configuration of a JMS topic destination for publish/subscribe
messaging with the WebSphere MQ messaging provider. This task contains an optional step for you to
create a new JMS topic destination.

About this task

To view or change the configuration of a topic destination for use with the WebSphere MQ messaging
provider, or to create anew topic destination, use the administrative console to complete the following
steps.

Procedure
1. In the navigation pane, click Resources > JMS->Topics to view existing topic destinations, with a

summary of their properties.

708 Administering WebSphere applications



2. Select the Scope corresponding to the scope of the topic destinations that you want to view or
change.

3. To view or change the properties of an existing topic destination, click its name in the list. Otherwise, to
create a new topic destination, complete the following steps:

a. Click New in the content pane. Select WebSphere MQ messaging provider then click OK.

b. Specify the following required properties.

Name The name by which this topic destination is known for administrative purposes within
WebSphere Application Server.

JNDI name
The Java Naming and Directory Interface (JNDI) name that is used to bind the topic
destination into the namespace.

Topic name
The name of the WebSphere MQtopic to which messages are sent.

c. Click Apply. This defines the topic destination to WebSphere Application Server, and enables you
to browse or change additional properties.

4. Optional: Change WebSphere MQ topics settings according to your needs.

5. Click OK.

6. Save any changes to the master configuration.

7. To have the changed configuration take effect, stop then restart the application server.

Configuring custom properties for WebSphere MQ messaging provider JMS
resources
In addition to the standard properties that you can define for WebSphere MQ messaging provider JMS
resources, you can configure further WebSphere MQ properties as custom properties. You can configure
custom properties for activation specifications, connection factories, and JMS destinations for the
WebSphere MQ messaging provider.

About this task

WebSphere Application Server supports the use of custom properties to define WebSphere MQ properties.
This is useful because it enables WebSphere Application Server to work with later versions of WebSphere
MQ that might have properties that are not exposed in WebSphere Application Server.

You can use this task to set custom properties for JMS destinations, connection factories, and activation
specifications for the WebSphere MQ messaging provider. For example, you would use this task to set the
custom property WAS_EndpointInitialState for an activation specification. WAS_EndpointInitialState
determines whether or not message consumption begins from the JMS destination as soon as the
activation specification is used for a message-driven bean to connect with the destination.

To specify custom properties for WebSphere MQ messaging provider JMS resources, use the
administrative console to complete the following steps:

Procedure
1. In the navigation pane, click Resources > JMS.

2. Select the type of JMS resource for which you want create custom properties (JMS destinations,
connection factories, or activation specifications).

3. Optional: Change the Scope setting to the level at which the resource definition is visible to
applications.

4. In the contents pane, select the specific WebSphere MQ messaging provider JMS resource name for
which you want to specify the custom property. This displays information about the resource.

5. To create a custom property, select [Additional Properties] Custom properties.

Chapter 12. Welcome to administering Messaging resources 709



6. Click New in the content pane.

7. Specify the following attributes for the new custom property:

Name
The name of the custom property. A property name is required.

Value The value for the custom property.

Type The type of the custom property. Select the custom property type from the list.

8. Click Apply. This defines the custom property to WebSphere Application Server, and enables you to
browse or change additional properties.

9. Save any changes to the master configuration.

10. To have the changed configuration take effect, stop then restart the application server.

Example

To set the custom property WAS_EndpointInitialState for an activation specification, specify the following
attributes:

v For Name, specify WAS_EndpointInitialState.

v For Value, specify one of the following options:

ACTIVE Specify a value of ACTIVE if message consumption is to begin as soon as the message-driven
bean connects with the JMS destination.

INACTIVE
Specify a value of INACTIVE if message consumption is not to begin until you use the wsadmin
tool or the administrative console to activate message consumption for the message-driven
bean.

v For Type, select String.

Configuring properties for the WebSphere MQ resource adapter
You can configure the WebSphere MQ resource adapter properties that affect the connection pool, which
is used by WebSphere MQ messaging provider activation specifications.

About this task

There are four properties that are used to configure the WebSphere MQ resource adapter used by the
WebSphere MQ messaging provider:

v maxConnections

v connectionConcurrency (Setting this property only affects WebSphere Application Server 7 nodes. The
property has no effect for WebSphere Application Server Version 8 or later nodes.)

v reconnectionRetryCount

v reconnectionRetryInterval

These four properties affect the connection pool, which is used by the WebSphere MQ messaging provider
activation specifications. They do not affect the WebSphere MQ messaging provider queues, topics, or
connection factories.

For further information about these properties, see Configuration of the ResourceAdapter object in the
WebSphere MQ information center.

To configure the WebSphere MQ resource adapter properties, use the administrative console to complete
the following steps:

710 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/jm40190_.htm


Procedure
1. In the navigation pane, click Resources > JMS->JMS providers to display a list of JMS providers in

the content pane.

2. Optional: If you want to manage JMS resources that are defined at a different scope setting, change
the Scope setting to the required level.

Note: These properties only have an effect on the WebSphere MQ messaging provider objects that
are defined at the same scope as the messaging provider and resource adapter on which they
are set. So, for example, if you set the max connections property to a particular setting at the
server scope, only the server scoped WebSphere MQ messaging provider activation
specifications are affected by this setting.

3. In the Providers column of the displayed list of JMS providers, click the name of the WebSphere MQ
messaging provider that you want to work with.

4. In the content pane under Additional properties, click Resource adapter properties to view the
configuration page for the properties.

5. Specify the required values for the properties:

Max connections
The maximum number of connections to a WebSphere MQ queue manager.

Connection concurrency
The maximum number of message-driven beans that can be supplied by each connection.
Setting this property only affects WebSphere Application Server 7 nodes. The property has no
effect for WebSphere Application Server Version 8 or later nodes.

Reconnection retry count
The maximum number of attempts made by a WebSphere MQ messaging provider activation
specification to reconnect to a WebSphere MQ queue manager if a connection fails.

Reconnection retry interval
The time, in milliseconds, that a WebSphere MQ messaging provider activation specification
waits before making another attempt to reconnect to a WebSphere MQ queue manager.

6. Click Apply. This defines the property to WebSphere Application Server, and enables you to browse or
change additional properties.

7. Save any changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

Configuring custom properties for the WebSphere MQ resource adapter
In addition to the standard properties that you can specify for the WebSphere MQ resource adapter, you
can configure custom properties for WebSphere MQ resource adapter.

About this task

WebSphere Application Server supports the definition of custom properties for the WebSphere MQ
resource adapter. This is useful because it enables WebSphere Application Server to work with later
versions of WebSphere MQ that might have properties that are not exposed in WebSphere Application
Server.

To specify custom properties for the WebSphere MQ resource adapter, use the administrative console to
complete the following steps.

Procedure
1. In the navigation pane, click Resources > JMS->JMS providers to display a list of JMS providers in

the content pane.

2. Optional: If you want to manage JMS resources that are defined at a different scope setting, change
the Scope setting to the required level.

Chapter 12. Welcome to administering Messaging resources 711



3. In the Providers column of the displayed list of JMS providers, click the name of the WebSphere MQ
messaging provider that you want to work with.

4. In the content pane under Additional properties, click Resource adapter properties to view the
configuration page for the properties.

5. In the content pane under Additional properties, click Custom properties to view the configuration
page for the properties.

6. Click the name of the property that you want to configure then make any required changes.

7. Click Apply. This defines the custom property to WebSphere Application Server, and enables you to
browse or change additional properties.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Disabling WebSphere MQ functionality in WebSphere Application
Server
If you do not need to use WebSphere MQ functionality in an application server you can disable it by using
either the administrative console or an administrative command. You can also disable WebSphere MQ
functionality in a client process by specifying a custom property.

About this task

When a WebSphere Application Server process or an application client process starts, and while this
process is running, an amount of processing is performed to allow it to support WebSphere MQ-related
functionality such as the WebSphere MQ messaging provider. By default this processing is performed
regardless of whether any WebSphere MQ-related functionality is ever used. If you do not need to take
advantage of any WebSphere MQ functionality, it is possible to disable all WebSphere MQ functionality in
an application server or client process to give increased performance.

Disabling WebSphere MQ functionality in a WebSphere Application Server process has the following
effects:

v No WebSphere MQ messaging provider functionality is available on that particular server:

– Any defined WebSphere MQ messaging provider resources are not bound into JNDI, and so are
unavailable to look up from inside the affected application server process, from other application
server processes or application clients.

– It is still possible to define WebSphere MQ messaging provider resources. However the test
connection button on either the create connection factory or create activation specification wizard,
depending on the scope at which WebSphere MQ has been disabled, does not work.

– Any message driven beans that use message listener ports configured with WebSphere MQ
messaging provider resources do not start.

– Any message driven beans that use WebSphere MQ messaging provider activation specifications do
not start.

– It is not possible to recover any indoubt XA transactions involving WebSphere MQ messaging
provider resources.

– Any attempt to look up a WebSphere MQ messaging provider resource from a remote server that
does not have WebSphere MQ functionality disabled fails.

– It is not possible to use the WebSphere MQ queue connection properties function.

v No WebSphere MQ link functionality is available on that particular server:

– It is not possible to stop or start any WebSphere MQ links.

– It is not possible to stop or start any WebSphere MQ receiver channels.

– It is not possible to stop, start, or reset any WebSphere MQ sender channels.

712 Administering WebSphere applications



– It is not possible to send messages to a WebSphere MQ queue manager. Any messages that are
sent to a foreign bus based on a WebSphere MQ link remain on the transmission item stream for
that WebSphere MQ link.

– It is not possible to receive messages from a WebSphere MQ queue manager.

– The inbound channel chains used by the WebSphere MQ link do not start.

– It is not possible to resolve indoubt sender channels.

– Attempts to use the Test connection functionality of the foreign bus connection that uses the
WebSphere MQ link fail.

– It is not possible to fully delete a WebSphere MQ link, as any stored state about indoubt messages
cannot be processed.

v No WebSphere MQ server functionality is available on that particular server:

– It is not possible to send messages to WebSphere MQ.

– It is not possible to receive messages from WebSphere MQ.

– The Test connection button does not work.

v No WebSphere MQ client link functionality works:

– It is not possible to stop or start any WebSphere MQ client links.

– It is not possible to send messages using a WebSphere MQ client link.

– It is not possible to receive messages using a WebSphere MQ client link.

– The inbound channel chains used by the WebSphere MQ link do not start.

v WebSphere MQ resource adapters do not start.

v WebSphere MQ Base Java functionality is unavailable.

v Any attempt to use any classes provided by WebSphere MQ fails.

Disabling WebSphere MQ functionality in a WebSphere Application Server client process has the following
effects:

v Any attempt to look up a WebSphere MQ messaging provider resource from a remote server that does
not have WebSphere MQ functionality disabled fails.

v WebSphere MQ Base Java functionality is not available.

v Any attempt to make use of any classes provided by WebSphere MQ fails.

Procedure
v To disable WebSphere MQ functionality in a WebSphere Application Server process, complete one of

the following steps:

– Using the administrative console, select the Disable WebSphere MQ check box on the required
WebSphere MQ messaging provider panel.

– Use the manageWMQ administrative command with the disableWMQ flag.

In a single server environment, you can only disable WebSphere MQ at the server scope. When you
have saved your changes and restarted the application server, all WebSphere MQ functionality is
disabled on that server.

In a network deployment environment, you can disable WebSphere MQ at all scopes in order to give
fine grained configuration flexibility:

– At the cell scope, all WebSphere MQ functionality is disabled on all application servers in the cell.

– At the node scope, all WebSphere MQ functionality is disabled on all application servers that are part
of that node.

– At the cluster scope, all WebSphere MQ functionality is disabled on all application servers in that
cluster.

– At the server scope, all WebSphere MQ functionality is disabled in that particular application server.

Chapter 12. Welcome to administering Messaging resources 713



The value of the Disable WebSphere MQ check box at a higher scope takes precedence over the
value at a lower scope. For example, if you do not select the check box at the server scope but do
select it for a higher (for example, cell) scoped WebSphere MQ messaging provider, the value at the
cell scope takes precedence and WebSphere MQ functionality is therefore disabled in all application
servers in the cell, regardless of whether the check box is selected at the server scope. The changes
take effect when you have saved them and restarted all affected processes in the cell.

v To disable WebSphere MQ functionality in a WebSphere Application Server client process, specify the
custom property com.ibm.ejs.jms.disableWMQSupport=true.

Example

Consider the following example: A network deployment configuration with two nodes: node1 and node2.
Node1 has two servers on it, server1 and server2. Node2 has a single server on it, server3. Server3 and
server1 are part of a cluster, cluster1. The WebSphere MQ messaging provider panel at cluster1 scope
has the WebSphere MQ disabled check box selected and the changes saved. When cluster1 has been
restarted, all WebSphere MQ functionality is disabled on server3 and server1.

It is worth noting that it is possible to have WebSphere MQ functionality disabled on all processes in a
network deployment configuration without all scopes having WebSphere MQ functionality disabled. Using
the scenario in the previous example, if all nodes in the topology (deployment manager node, node1 and
node2) have WebSphere MQ functionality disabled, then all the processes in the topology also have
WebSphere MQ functionality disabled.

What to do next

When the server starts, it is possible to detect whether WebSphere MQ functionality has been disabled on
that server because messages with the following ids are output:

v WMSG2016I is output when the server starts if WebSphere MQ has been disabled.

v CWSIC3650I is output once for any configured WebSphere MQ links that are running on the server.

v CWSIC3713I is output once for any configured WebSphere MQ client links that are running on the server.

JMS provider settings
Use this panel to view the configuration properties of a selected JMS provider.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources > JMS->JMS providers. This displays a list of JMS providers
in the content pane. For each JMS provider in the list, the entry indicates the scope level at which JMS
resource definitions are visible to applications. You can create the same type of JMS provider at
different Scope settings, to offer JMS resources at different levels of visibility to applications.

2. (optional) If you want to manage JMS resources that are defined at a different scope setting, change
the Scope setting to the required level.

3. In the Providers column of the list displayed, click the name of a JMS provider.

If you want to browse or change JMS resources of the JMS provider, click the link for the type of resource
under Additional Properties. For more information about the administrative console panels for the types of
JMS resources, see the related topics.

For the default messaging provider (which is based on service integration technologies) and the
WebSphere MQ messaging provider, the scope, name, and description properties are displayed for
information only. You cannot change these properties.

For a third-party non-JCA provider that you have defined yourself, the properties of that provider are
displayed.

714 Administering WebSphere applications



Scope
The level (cell, node, or server level) at which this resource definition is available.

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at
multiple scopes, with resources defined at more specific scopes overriding duplicates that are defined at
more general scopes. For more information about the scope setting, see Scope settings.

Name
The name by which the JMS provider is known for administrative purposes.

Information Value
Data type String
Default v Default messaging provider.

For JMS resources to be provided by a service
integration bus, as part of WebSphere Application
Server.

v My JMSprovider

For JMS resources to be provided by a third-party JMS
provider that you specify, rather than by the default
messaging provider or the WebSphere MQ messaging
provider that are available as part of WebSphere
Application Server. You assign the name, for example
“My JMSprovider”, when you define the third-party JMS
provider to WebSphere Application Server. You must
also have installed and configured the third-party JMS
provider before applications can use its JMS resources.

v WebSphere MQ messaging provider

For JMS resources to be provided by WebSphere MQ.
You must have installed and configured WebSphere
MQ before applications can use its JMS resources.

Description
A description of the JMS provider, for administrative purposes within WebSphere Application Server.

Information Value
Data type String

Classpath
A list of paths or JAR file names that together form the location for the JMS provider classes. Each class
path entry is on a separate line (separated by using the Enter key) and must not contain path separator
characters (such as ';' or ': '). Class paths can contain variable (symbolic) names to be substituted by
using a variable map. Check your driver installation notes for specific JAR file names that are required.

Note: This property is only available for third-party messaging providers.

Information Value
Data type String

Native library path
An optional path to any native libraries (*.dll, *.so). Each native path entry is on a separate line (separated
by using the Enter key) and must not contain path separator characters (such as ';' or ': '). Native paths
can contain variable (symbolic) names to be substituted by using a variable map.

Chapter 12. Welcome to administering Messaging resources 715



Note: This property is only available for the WebSphere MQ messaging provider and third-party
messaging providers.

Information Value
Data type String

Update resource adapter
This button can be used to update the WebSphere MQ resource adapter that provides the function made
available by the WebSphere MQ messaging provider. This button must only be used as directed by a
member of IBM service, otherwise it may result in the use of an unsupported level of the WebSphere MQ
resource adapter.

Normally the WebSphere MQ resource adapter is automatically updated by applying WebSphere
Application Server fix packs. It is important to note that use of the Update resource adapter button
prevents these automatic updates from happening for future fix packs for any node on which the button is
used. If, in the future, you require the WebSphere MQ resource adapter used by the node to receive
updates when a fix pack is applied then you must re-establish the recommended resource adapter
configuration. For more information see “Maintaining the WebSphere MQ resource adapter” on page 693.

Note: This property is only available for the WebSphere MQ messaging provider.

Information Value
Data type Button

External initial context factory
The Java classname of the initial context factory for the JMS provider.

For example, for an LDAP service provider the value has the form: com.sun.jndi.ldap.LdapCtxFactory.

Note: This property is only available for third-party messaging providers.

Information Value
Data type String
Default Null

External provider URL
The JMS provider URL for external JNDI lookups.

For example, an LDAP URL for a messaging provider has the form: ldap://hostname.company.com/
contextName.

Note: This property is only available for third-party messaging providers.

Information Value
Data type String
Default Null

Disable WebSphere MQ
This check box is only valid for the WebSphere MQ messaging provider. When selected, this check box
disables all WebSphere MQ functionality on affected application servers. Note that you must restart the
affected application server processes for this change to take effect.

716 Administering WebSphere applications



In a single server environment this check box is only available on the WebSphere MQ messaging provider
panel where the scope is set to server, and has the effect of disabling all WebSphere MQ functionality in
that application server.

In a network deployment environment this check box is available on all WebSphere MQ messaging
provider panels. The effect of selecting the check box depends on the scope at which you select it:

v At the cell scope, all WebSphere MQ functionality is disabled on all application servers in the cell.

v At the node scope, all WebSphere MQ functionality is disabled on all application servers that are part of
that node.

v At the cluster scope, all WebSphere MQ functionality is disabled on all application servers in that
cluster.

v At the server scope, all WebSphere MQ functionality is disabled in that particular application server.

The value of the check box at a higher scope takes precedence over the value at a lower scope. For
example, if you do not select the check box for a WebSphere MQ messaging provider at the server scope,
but do select it for a WebSphere MQ messaging provider at a higher scope (such as the cell scope), the
value of the check box at the cell scope takes precedence and WebSphere MQ functionality is therefore
disabled in all application servers in the cell, regardless of whether the check box is selected at the server
scope.

An informational message indicating that WebSphere MQ has been disabled is added to all WebSphere
MQ messaging provider panels that are at affected scopes, but this message does not appear on those
panels where the check box is selected. In a single server environment this informational message is only
displayed after a server restart is performed. In a network deployment environment the informational
message is displayed immediately.

For more information see “Disabling WebSphere MQ functionality in WebSphere Application Server” on
page 712.

Information Value
Data type Check box
Default Not selected

Additional properties
Connection factories

A connection factory is used to create connections to the associated JMS provider. These
connection factories can be used for accessing JMS Queue and JMS Topic destinations.

Queue connection factories
A queue connection factory is used to create connections to the associated JMS provider of the
JMS queue destinations, for point-to-point messaging.

Topic connection factories
A topic connection factory is used to create connections to the associated JMS provider of JMS
topic destinations, for publish and subscribe messaging.

Queues
A JMS queue is used as a destination for point-to-point messaging.

Topics
A JMS topic is used as a destination for publish/subscribe messaging.

Activation specifications
A JMS activation specification is associated with one or more message-driven beans and provides
configuration necessary for them to receive messages.

Chapter 12. Welcome to administering Messaging resources 717



Resource adapter properties
These properties are used to configure the WebSphere MQ resource adapter, which is used by
the WebSphere MQ messaging provider. In particular most of these settings affect the behavior of
WebSphere MQ messaging provider activation specifications.

Resource adapter properties
Use this page to configure the WebSphere MQ resource adapter that underlies the WebSphere MQ
messaging provider.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources > JMS->JMS providers to display a list of JMS providers in
the content pane.

2. (optional) If you want to manage JMS resources that are defined at a different scope setting, change
the Scope setting to the required level.

3. In the Providers column of the displayed list of JMS providers, click the name of the WebSphere MQ
messaging provider that you want to work with.

4. In the content pane under Additional properties, click Resource adapter properties to view the
configuration page for the properties.

The resource adapter properties are used to configure the WebSphere MQ resource adapter, which is
used by the WebSphere MQ messaging provider. These properties affect the connection pool, which is
used by the WebSphere MQ messaging provider activation specifications. They do not affect the
WebSphere MQ messaging provider queues, topics, or connection factories.

These properties only have an effect on the WebSphere MQ messaging provider objects that are defined
at the same scope as the messaging provider and resource adapter on which they are set. So, for
example, if you set the max connections property to a particular setting at the server scope, only the
server scoped WebSphere MQ messaging provider activation specifications are affected by this setting.

For further information about these properties, see Configuration of the ResourceAdapter object in the
WebSphere MQ information center.

If you want to configure a WebSphere MQ resource adapter custom property that is not exposed in
WebSphere Application Server, click Custom properties under Additional properties.

Connection pool properties

Max connections
The maximum number of connections to a WebSphere MQ queue manager.

Information Value
Data type String
Default 10

Connection concurrency
The maximum number of message-driven beans that can be supplied by each connection.

Information Value
Data type String
Default 5

718 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/jm40190_.htm


Reconnection retry count
The maximum number of attempts made by a WebSphere MQ messaging provider activation specification
to reconnect to a WebSphere MQ queue manager if a connection fails.

Information Value
Data type String
Default 5

Reconnection retry interval
The time, in milliseconds, that a WebSphere MQ messaging provider activation specification waits before
making another attempt to reconnect to a WebSphere MQ queue manager.

Information Value
Data type String
Default 300000

Additional properties
Custom properties

The full set of custom properties that are used to configure the WebSphere MQ resource adapter.
Use this page to configure custom properties that are not exposed in WebSphere Application
Server.

JMS providers collection
Use this panel to list JMS providers, or to select a JMS provider to view or change its configuration
properties.

To view this administrative console page, click Resources > JMS->JMS providers

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS providers that are available to WebSphere applications. For each JMS provider in
the list, the entry indicates the scope level at which JMS resource definitions are visible to applications.
You can create the same type of JMS provider at different Scope settings, to offer JMS resources at
different levels of visibility to applications.

If you want to manage existing JMS resource definitions, or create a new JMS resource definition, you can
select the name of one of the JMS providers in the list.

If you want to define a new third-party JMS provider (that is, a provider other than the default messaging
provider or the WebSphere MQ messaging provider), select the Scope setting at which JMS resource
definitions are to be visible for that provider, then click New.

Name The name by which this JMS provider is known for administrative purposes.

Description
A description of this JMS provider for administrative purposes.

Chapter 12. Welcome to administering Messaging resources 719



Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Information Value
New Create a new JMS resource of this type.
Delete Delete the selected items.

Activation specification collection
A JMS activation specification is associated with one or more message-driven beans and provides the
configuration necessary for them to receive messages. The default messaging provider and the
WebSphere MQ messaging provider both support use of activation specifications.

In the administrative console, to view this page click Resources > JMS->Activation specifications.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

This page lists the JMS activation specifications that are available to WebSphere applications at the scope
indicated by the Scope field.

Name The display name of each activation specification instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each activation specification instance.

Provider
The messaging provider that supports each activation specification instance. This is either the
default messaging provider (service integration) or the WebSphere MQ messaging provider.

Description
An optional description of each activation specification instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

Delete Delete the selected items.

720 Administering WebSphere applications



Connection factory collection
A JMS connection factory is used to create connections to the associated messaging provider of JMS
destinations, for both point-to-point and publish/subscribe messaging. Use connection factory
administrative objects to manage JMS connection factories for the default messaging provider, the
WebSphere MQ messaging provider or a third-party messaging provider.

In the administrative console, to view this page click Resources > JMS->Connection factories.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS connection factories that are available to WebSphere Application Server
applications at the scope indicated by the Scope field.

A JMS connection factory is used to create connections to JMS destinations. When an application needs a
JMS connection, an instance can be created by the factory of the messaging provider named in the
Provider column of the list.

This type of connection factory is for applications that use the JMS 1.1 domain-independent interfaces
(referred to as the “common interfaces” in the JMS specification).

This type of JMS connection factory can also be used by the domain-specific (queue and topic) interfaces,
as used in JMS 1.0.2, so applications can still use those interfaces without the need for you to create a
domain-specific connection factory, such as a queue connection factory.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

Name The display name of each connection factory instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each connection factory instance.

Provider
The messaging provider that supports each connection factory instance. This is the default
messaging provider (service integration), the WebSphere MQ messaging provider or a third-party
messaging provider.

Description
An optional description of each connection factory instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Chapter 12. Welcome to administering Messaging resources 721



Buttons

Button Description

New Create a new JMS resource of this type.

Delete Delete the selected items.

Queue connection factory collection
A queue connection factory is used to create connections to the associated JMS provider of the JMS
queue destinations, for point-to-point messaging.

In the administrative console, to view this page click Resources > JMS->Queue connection factories.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS queue connection factories that are available to WebSphere Application Server
applications at the scope indicated by the Scope field.

A JMS queue connection factory is used to create connections to JMS destinations. When an application
needs a JMS queue connection, an instance can be created by the factory for the JMS provider that is
named in the Provider column of the list.

This type of connection factory is for applications that use the JMS 1.0.2 queue-specific interfaces.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

Name The display name of each queue connection factory instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each queue connection factory instance.

Provider
The messaging provider that supports each queue connection factory instance.

Description
An optional description of each queue connection factory instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

722 Administering WebSphere applications



Button Description

Delete Delete the selected items.

Topic connection factory collection
A JMS topic connection factory is used to create connections to the associated messaging provider of JMS
topic destinations, for publish and subscribe messaging.

In the administrative console, to view this page click Resources > JMS->Topic connection factories.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS topic connection factories that are available to WebSphere Application Server
applications at the scope indicated by the Scope field.

A JMS connection factory is used to create connections to JMS destinations. When an application needs a
JMS connection, an instance can be created by the factory for the JMS provider that is named in the
Provider column of the list.

This type of connection factory is for applications that use the JMS 1.0.2 topic-specific interfaces.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

General properties

Name The display name of each topic connection factory instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each topic connection factory instance.

Provider
The messaging provider that supports each topic connection factory instance.

Description
An optional description of each topic connection factory instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

Chapter 12. Welcome to administering Messaging resources 723



Button Description

Delete Delete the selected items.

Queue collection
A JMS queue destination is used for point-to-point messaging. Use this panel to create or delete queue
destinations, or to select a queue destination to view or change its configuration properties.

In the administrative console, to view this page click Resources > JMS->Queues.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS queue destinations that are available to WebSphere Application Server
applications at the scope indicated by the Scope field.

Use a queue destination to manage JMS queues for the JMS provider that is named in the Provider
column of the list. Connections to the queue are created by a unified connection factory or queue
connection factory for that JMS provider.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

General properties

Name The display name of each queue destination instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each queue destination instance.

Provider
The messaging provider that supports each queue destination instance.

Description
An optional description of each queue destination instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

Delete Delete the selected items.

724 Administering WebSphere applications



Topic collection
A JMS topic destination is used for publish and subscribe messaging. Use this panel to create or delete
topic destinations, or to select a topic destination to view or change its configuration properties.

In the administrative console, to view this page click Resources > JMS->Topics.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS topic destinations that are available to WebSphere Application Server applications
at the scope indicated by the Scope field.

Use a topic destination to manage JMS topics for the JMS provider that is named in the Provider column
of the list. Connections to the topic are created by a unified connection factory or topic connection factory
for that JMS provider.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

General properties

Name The display name of each topic destination instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each topic destination instance.

Provider
The messaging provider that supports each topic destination instance.

Description
An optional description of each topic destination instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

Delete Delete the selected items.

JMS resource provider selection panel
Select the messaging provider with which to create this JMS activation specification, connection factory or
destination.

Chapter 12. Welcome to administering Messaging resources 725



You select the scope setting on an earlier page. The choice of JMS provider depends on the scope that
you selected. You might see a choice such as the following list:

v Default messaging provider.

Select this option if you want the JMS resource to be provided by the service integration bus, as part of
WebSphere Application Server.

v WebSphere MQ messaging provider

Select this option if you want the JMS resource to be provided by WebSphere MQ. You must have
installed and configured a WebSphere MQ network in order to use this provider.

v “My JMS provider”

Select this option if you want the JMS resource to be provided by a third-party JMS provider. This
option is only available if you have installed and configured a third-party provider. The name that is
displayed (for example“My JMS provider”) is the name you gave to the provider when you installed and
configured it.

WebSphere MQ messaging provider activation specification settings
Use this panel to view or change the configuration properties of the selected activation specification for
use with the WebSphere MQ messaging provider. These configuration properties control how connections
are created to associated queues and topics.

To view WebSphere MQ activation specification settings, use the administrative console to complete the
following steps:
1. In the navigation pane, click Resources > JMS->Activation specifications to display existing

activation specifications.
2. If appropriate, in the content pane, change the Scope setting to the level at which the activation

specifications are defined. This restricts the set of activation specifications displayed.
3. Select the name of the activation specification that you want to work with.

Under General Properties there are five groups of properties:

v “Administration” on page 727

v “Connection” on page 728

v “Destination” on page 734

v “Advanced” on page 735

v “Security settings” on page 736

Make any required changes to the Administration, Connection, Destination, Advanced, and Security
settings groups of properties, and then click Apply to save the configuration before, in the content pane
under Additional Properties, you click any of the following links:

v Advanced properties to display or change the advanced properties of your WebSphere MQ activation
specification.

v Broker properties to display or change the broker properties of your WebSphere MQ activation
specification.

v Custom properties to display or change the custom properties of your WebSphere MQ activation
specification. For example, you would use this option to set the custom property
WAS_EndpointInitialState for an activation specification. WAS_EndpointInitialState determines whether
or not message consumption begins from the JMS destination as soon as the activation specification is
used for a message-driven bean to connect with the destination.

v Client transport properties to display or change the client transport properties of your WebSphere MQ
activation specification. If the selected activation specification was not created using a Client Channel
Definition Table (CCDT), follow this link to enter all the information required to connect to WebSphere
MQ. If the selected activation specification was created using a CCDT, you do not need to supply the
client transport properties, and so the link is absent.

726 Administering WebSphere applications



Under Related Items, you can click JAAS - J2C authentication data to configure authentication
information for use with the activation specification.

You can also specify the -localAddress property by using the createWMQActivationSpec WebSphere MQ
administrative command.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information, see the Using Java and System
Administration sections of the WebSphere MQ information center.

If WebSphere MQ functionality has been disabled at a scope that affects this WebSphere MQ messaging
provider resource, then an informational message indicating that WebSphere MQ has been disabled
appears. In a single server environment this informational message is only displayed when the server is
restarted after WebSphere MQ functionality has been disabled. For more information see “Disabling
WebSphere MQ functionality in WebSphere Application Server” on page 712.

A WebSphere MQ activation specification has the following properties.

Administration

Scope
The level to which this resource definition is visible to applications.

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at
multiple scopes, with resources defined at more specific scopes overriding duplicates that are defined at
more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse
or change this resource (or other resources) at a different scope, change the scope on the WebSphere
MQ activation specification collection panel, then click Apply, before clicking the link for the type of
resource.

Information Value
Data type String

Provider
The JMS provider assigned when the activation specification is created.

For all activation specifications created using this panel, the provider is the WebSphere MQ messaging
provider.

The provider is displayed for information only.

Information Value
Data type String

Name
The name by which this activation specification is known for administrative purposes within WebSphere
Application Server.

Chapter 12. Welcome to administering Messaging resources 727



Information Value
Data type String
Range The name must be unique within the set of activation

specifications defined to the cell.

JNDI name
The JNDI name that is used to bind the activation specification into the JNDI namespace.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

Information Value
Data type String

Description
A description of this activation specification for administrative purposes within WebSphere Application
Server.

Information Value
Data type String
Default Null

Connection
The information required to configure a connection depends on whether the selected activation
specification was created using a Client Channel Definition Table (CCDT).

If the selected activation specification was created using a CCDT, only the following properties are
displayed:

v Client channel definition table URL

v Queue manager

v SSL configuration

If the selected activation specification was not created using a CCDT, the following properties are
displayed:

v Queue manager

v Transport

v If Enter host and port information in the form of separate host and port values is selected, the
connection name list property cannot be used and the following properties can be used:

– Host name

– Port

v If Enter host and port information in the form of a connection name list is selected, the connection
name list property can be used and the following properties cannot be used:

– Host name

– Port

v Server connection channel

v If you clear the check box for the Use SSL to secure communication with Websphere MQ property,
the following properties cannot be used:

– Centrally managed

– Specific configuration

728 Administering WebSphere applications



– SSL configuration

For more information about setting the SSL properties for WebSphere MQ, see SSL properties in the
WebSphere MQ Using Java section of the WebSphere MQ information center.

Note: There are four WebSphere MQ connection properties that are used to configure the WebSphere
MQ resource adapter used by the WebSphere MQ messaging provider. These properties affect the
connection pool that is used by activation specifications:

v maxConnections

v connectionConcurrency (Setting this property only affects WebSphere Application Server 7
nodes. The property has no effect for WebSphere Application Server Version 8 or later nodes.)

v reconnectionRetryCount

v reconnectionRetryInterval

For more information about these four properties, and how to configure them, see “Resource
adapter properties” on page 718.

Client channel definition table URL
A URL that specifies the location of a WebSphere MQ CCDT.

Information Value
Data type String

Queue manager
If the specified activation specification is based on a CCDT, this property is used to select an entry in the
CCDT. Otherwise, this property specifies the name of the queue manager or queue-sharing group to
connect to. A connection is established to the specified WebSphere MQ resource to receive messages.

Information Value
Data type String

Chapter 12. Welcome to administering Messaging resources 729



Information Value
Range If this activation specification is not based on a CCDT, the

value must be a valid queue manager name.

If this activation specification is based on a CCDT, the
value must be one of the following:

v A valid queue manager name

v An asterisk (*) followed by the name of a queue
manager group1

v An asterisk (*)

v Blank1

1When you specify the value of the Queue manager
property in this form in combination with a CCDT,
individual connections established by using the activation
specification might connect to different queue managers.
Selection from multiple queue managers occurs when the
CCDT contains multiple client connection channel
definitions with a matching queue manager name
(QMNAME) parameter, and these connection channel
definitions define the network connection details of
different queue managers.

If the specified connection factory is based on a CCDT,
and the CCDT can select from more than one queue
manager, you might not be able to recover global
transactions. Therefore, for connection factories that
specify a CCDT, you have two alternatives:

v Avoid any ambiguity about the target queue manager
when specifying the Queue manager property, which
means that the specified value of this property must not
include an asterisk (*).

v Avoid using the resources with applications that enlist in
global transactions.

Transport
The WebSphere MQ transport type for the connection. The transport type is used to determine the exact
mechanisms used to connect to WebSphere MQ.

Information Value
Data type Drop-down list
Default Bindings, then client

730 Administering WebSphere applications



Information Value
Range Client Use a TCP/IP-based network connection to

communicate with the WebSphere MQ queue
manager.

Bindings, then client
Attempt a bindings mode connection to the
queue manager. If this is not possible, revert to
the client transport.

Bindings
Establish a cross-memory connection to a queue
manager running on the same node. The
following Client Transport Mode properties are
disabled:
v Host name
v Port
v Connection name list
v Server connection channel

For more information about configuring a transport type of
Bindings, then client or Bindings, refer to “Configuring the
WebSphere MQ messaging provider with native libraries
information” on page 692.

Enter host and port information in the form of separate host and port
values
If this radio button is selected, this means that the connection to the WebSphere MQ queue manager is
made using the information supplied by the host name and port properties.

Selecting this option enables the host name and port properties, and disables the connection name list
property. To enter connection name list information, click Enter host and port information in the form of
a connection name list.

This radio button is only available if the scope property specifies a cell, or if the scope property specifies a
node or server and that node or server is running WebSphere Application Server Version 8.0 or later.

Information Value
Data type Radio button

Hostname
The host name, IPv4, or IPv6 address of the WebSphere MQ queue manager to connect to.

Information Value
Data type String

Port
The port number on which WebSphere MQ is listening.

Information Value
Data type Integer
Default 1414
Range The value must be in the range 1 to 65536 (inclusive).

Chapter 12. Welcome to administering Messaging resources 731



Enter host and port information in the form of a connection name list
If this radio button is selected, this means that the connection to the WebSphere MQ queue manager is
made using the information supplied by the connection name list property.

Connection name lists can be used to connect to a single queue manager or to a multi-instance queue
manager. For more information on using a multi-instance queue manager, see the WebSphere MQ
information centre. Selecting this option enables the connection name list property and disables the host
name and port properties. To enter separate host and port information, click Enter host and port
information in the form of separate host and port values.

This radio button is only available if the scope property specifies a cell, or if the scope property specifies a
node or server and that node or server is running WebSphere Application Server Version 8.0 or later.

Information Value
Data type Radio button

Connection name list
The connection name list specifying the host name and port details to use when you want the activation
specification to connect to a multi-instance queue manager.

This property must only be used to allow connection to a multi-instance queue manager. It must not be
used to allow connections to non-multi-instance queue managers as that can result in transaction integrity
issues.

Information Value
Data type String
Default Unset
Range This field must be set to a string in the following form:

host[(port)][,host(port)]

The port information is optional, and if not specified,
defaults to 1414.

host must be a valid TCP/IP host name or IPv4 or IPv6
address.

port must be an integer value in the range 1 to 65536
(inclusive).

For example:
localhost(1234),remotehost1(1234),remotehost2

When the connection name list property is specified, the host name or port properties are automatically set
to the host name and port number of the first entry in the connection name list. So if you specified
localhost(1234),remotehost1(1234),remotehost2, the host name would be set to localhost and port
would be set to 1234.

This property is only available if the scope property specifies a cell, or if the scope property specifies a
node or server and that node or server is running WebSphere Application Server Version 8.0 or later.

When used in a mixed cell environment, the information in the connection name list property, for cell scope
activation specifications, is available to WebSphere Application Server Version 7.0 nodes. The exact
behaviour depends on the fix pack level of the node:

v For nodes running at a fix pack level of WebSphere Application Server Version 7.0 Fix Pack 7 or later,
the connection name list property can be used to connect to multi-instance queue managers.

732 Administering WebSphere applications



v For nodes running at a fix pack level earlier than Version 7.0, the connection name list property is not
recognized, and a warning message similar to the following example is output:

[29/09/10 12:15:27:468 BST] 00000018 J2CUtilityCla W
J2CA0008W: Class com.ibm.mq.connector.inbound.ActivationSpecImpl used by resource
cells/L3A3316Node01Cell/resources.xml#J2CResourceAdapter_1284547647859 did not contain
method setConnectionNameList. Processing continued.

In this case the information in the host name and port properties are used to connect to a queue
manager.

Server connection channel
The WebSphere MQ server connection channel name used when connecting to WebSphere MQ.

Information Value
Data type String
Default SYSTEM.DEF.SVRCONN
Range The value must be a server connection channel defined to

the WebSphere MQ queue manager that is being
connected to.

Use SSL to secure communications with WebSphere MQ
This option determines whether the SSL (Secure Sockets Layer) protocol is used to secure network
communications with the WebSphere MQ queue manager or queue-sharing group.

When using a WebSphere MQ messaging provider activation specification in the application server
environment, the application server manages SSL configuration. To change SSL configuration parameters,
use the administrative console to navigate to the Security > SSL certificate and key management panel.

You can only use one cipher suite in the SSL configuration for a WebSphere MQ messaging provider
activation specification . If you specify more than one cipher suite, only the first one is used.

Information Value
Data type Check box. If this check box is cleared, the following SSL

properties are disabled:

v Centrally managed

v Specific configuration

v SSL configuration

Centrally managed
When the SSL protocol is used to communicate with WebSphere MQ, select this radio button to specify
that the SSL configuration is taken from the centrally managed WebSphere Application Server SSL
configuration.

When you select this radio button, the host name and port attributes from the WebSphere MQ messaging
provider activation specification are used to select an appropriate SSL configuration. If host and port
information has been supplied to the activation specification by a connection name list this means that the
host name and port information of the first element in the list are used to select an appropriate SSL
configuration. To provide the SSL configuration which will be matched to the activation specification, see
the Dynamic outbound endpoint SSL configuration settings topic listed under related reference.

Information Value
Data type Radio button

Chapter 12. Welcome to administering Messaging resources 733



Specific configuration
Select this radio button when you want to specify a particular SSL configuration for use when SSL is to be
used to secure network communications with the WebSphere MQ queue manager or queue-sharing group.

Information Value
Data type Radio button

SSL configuration
The SSL configuration to use when SSL is to be used to secure network communications with the
WebSphere MQ queue manager or queue-sharing group.

This property is disabled if the Centrally managed radio button is selected and the WebSphere MQ
messaging provider resource has been explicitly defined.

This property is always enabled if the WebSphere MQ messaging provider resource is based on a CCDT.

If this WebSphere MQ messaging provider resource is based on a CCDT, this parameter is only used if
the relevant entries in the CCDT have been configured to use SSL.

Additionally, if an SSL configuration of none is selected, the default centrally managed WebSphere
Application Server SSL configuration for the WebSphere MQ messaging provider is used.

Information Value
Data type Drop-down list

Destination

Note: The property WAS_EndpointInitialState is a custom property. This property determines whether or
not message consumption begins from the JMS destination as soon as the activation specification
is used for a message-driven bean to connect with the destination. To set custom properties, when
you have completed your changes in this content pane and clicked Apply to save the configuration,
then click the link Custom properties in the content pane under Additional Properties.

Destination JNDI name
The JNDI name for the JMS destination from which messages are consumed for delivery to a
message-driven bean (MDB) that is configured to use this activation specification.

Information Value
Data type String

Message selector
A message selector expression specifying which messages are to be delivered.

Information Value
Data type String

Destination type
The type of destination (queue or topic) from which to consume messages.

Information Value
Data type Drop-down list

734 Administering WebSphere applications



Information Value
Range Queue The Destination JNDI name refers to a JMS

destination that is a queue.
Topic The Destination JNDI name refers to a JMS

destination that is a topic.

Durable subscription
An option to specify whether a durable or nondurable subscription is used to deliver messages to an MDB
subscribing to the topic.

Information Value
Data type Check box
Default Cleared (nondurable)
Range Cleared

Nondurable.
Selected

Durable.

Subscription name
The name of a durable subscription. This is available only when the Durable subscription check box is
selected.

Information Value
Data type String

Advanced

Client ID
The client identifier to specify when connecting to the WebSphere MQ messaging provider.

Information Value
Data type String

Allow cloned durable subscriptions
An option that determines whether multiple instances of a durable subscription can be accessed
concurrently by different servers.

Information Value
Data type Check box
Default Cleared
Range Selected

Multiple instances of a durable subscription can
be accessed concurrently by different servers.

Cleared
Multiple instances of a durable subscription
cannot be accessed concurrently by different
servers.

Chapter 12. Welcome to administering Messaging resources 735



Provider version
The WebSphere MQ messaging provider version. This is used to determine whether to connect to a
particular version of a queue manager. It is also used to determine the type of functions required by the
client.

Information Value
Data type String
Range The value entered must either be the empty string or be in

one of the following formats:

n.n.n.n

n.n.n

n.n

n

where n is a numeric value greater than or equal to zero.

For example 6.0.0.0.

Security settings

Authentication alias
The user name and password to use when connecting to WebSphere MQ.

Information Value
Data type Drop-down list
Default (none)
Range All authentication aliases defined to the cell and the value

"(none)", which specifies that no credentials are passed to
WebSphere MQ.

WebSphere MQ messaging provider activation specification advanced
properties
Use this panel to view or change the advanced properties of the selected activation specification for use
with the WebSphere MQ messaging provider. These advanced properties control the behavior of
connections made to WebSphere MQ messaging provider destinations.

To view WebSphere MQ activation specification advanced properties, use the administrative console to
complete the following steps:
1. In the navigation pane, click Resources > JMS->Activation specifications to display existing

activation specifications.
2. If appropriate, in the content pane, change the Scope setting to the level at which the activation

specifications are defined. This restricts the set of activation specifications displayed.
3. Select the name of the activation specification that you want to work with.
4. In the content pane, under Additional properties, click Advanced properties to view a list of the

advanced properties of the WebSphere MQ activation specification.

Under General Properties there are four groups of properties:

v Message compression

v Connection consumer

v Message format

v Additional

736 Administering WebSphere applications



Make any required changes to these groups and then click Apply to return to the activation specification.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for
JMS resources, see the Using Java section of the WebSphere MQ information center.

A WebSphere MQ activation specification has the following advanced properties.

Compress message headers
An option that enables the compression of message headers.

Information Value
Data type Check box
Default Cleared
Range Cleared

Do not compress message headers.
Selected

Compress message headers.

Compression algorithm for message payloads
The compression algorithm that is used to compress message payloads.

Information Value
Data type Drop-down list
Default NONE
Range RLE Message data compression is performed using

run-length encoding.
ZLIBFAST

Message data compression is performed using
ZLIB encoding with speed prioritized.

ZLIBHIGH
Message data compression is performed using
ZLIB encoding with compression prioritized.

NONE No message data compression is performed.

Retain messages, even if no matching consumer is available
An option that determines whether messages for which there is no matching consumer are retained on the
input queue or dealt with according with their disposition options.

Information Value
Data type Check box
Default Selected
Range Cleared

Do not retain messages.
Selected

Retain messages.

Rescan interval
When using a WebSphere MQ Version 6 queue manager (or WebSphere MQ for z/OS Version 5.3 ), this
setting configures the mechanism that is used to dispatch messages to JMS asynchronous consumers.

Chapter 12. Welcome to administering Messaging resources 737



This setting is used when the set of WebSphere MQ queues that is being asynchronously consumed from
exceeds the number of threads that are available internally to synchronously get messages from the
WebSphere MQ queue. The setting determines how long a thread retrieves messages from a WebSphere
MQ queue before switching to consume messages from another WebSphere MQ queue in the set.

Information Value
Data type Integer
Units Milliseconds
Default 5000
Range A value greater than zero.

Maximum server sessions
The maximum number of server sessions in the server session pool that is used by the connection
consumer.

Information Value
Data type Integer
Default 10
Range A value greater than zero.

Server session pool timeout
The period of time, in milliseconds, that an unused server session is held open in the server session pool
before being closed due to inactivity.

Information Value
Data type Integer
Units Milliseconds
Default 300,000
Range A value greater than zero.

Start timeout
The period of time, in milliseconds, within which delivery of a message to a message-driven bean (MDB)
must start after the work to deliver the message has been scheduled. If this period of time elapses, the
message is rolled back onto the queue.

Information Value
Data type Integer
Units Milliseconds
Default 10,000
Range A value greater than zero.

Coded character set identifier
The character set to use when you are encoding strings in the message.

The coded character set identifier (CCSID) is only applicable for activation specification advanced
properties if your messaging system is using WebSphere MQ Version 6.0. If you are using WebSphere
MQ Version 7.0 you must define the CCSID that you want to use for your messages at your queue
destination. For more information on how to do this, see “WebSphere MQ Provider queue destination
settings for application clients” on page 93.

If your application constructs messages for a WebSphere MQ application that requires a different
character or numeric encoding, you can override the character encoding value by setting the

738 Administering WebSphere applications



JMS_IBM_Character_Set property to the required coded character set ID (CCSID), or the JMS_IBM_Encoding
property to the required numeric format, or both. For information about the values you can use for
JMS_IBM_Character_Set and JMS_IBM_Encoding, see the WebSphere MQ information center.

Information Value
Data type Integer
Default 819
Range A value greater than zero. The value must be one of the

CCSIDs supported by WebSphere MQ.

For more information about supported CCSIDs, and about converting between message data from one
coded character set to another, see the System Administration and the Application Programming
Reference sections of the WebSphere MQ information center.

Fail JMS method calls if the WebSphere MQ queue manager is
quiescing
An option that enables selected JMS operations to fail when the queue manager is put into a quiescing
state. Selecting this option enables the queue manager to quiesce successfully and shut down.

Information Value
Data type Check box
Default Selected
Range Cleared

Do not fail JMS operations if the queue manager
is quiescing.

Selected
Fail JMS operations if the queue manager is
quiescing.

Stop endpoint if message delivery fails
An option that determines whether message delivery is suspended to a failing endpoint.

Information Value
Data type Check box
Default Selected
Range Cleared

Message delivery is not suspended to a failing
endpoint.

Selected
Message delivery is suspended to a failing
endpoint when the value for the Number of
sequential delivery failures before suspending
endpoint is exceeded.

Number of sequential delivery failures before suspending endpoint
The number of sequential message delivery failures to an endpoint that are allowed before message
delivery to that endpoint is suspended. This property is enabled only when Suspend message delivery to
failing endpoints is selected.

Information Value
Data type Integer
Default 0
Range A value greater than or equal to zero.

Chapter 12. Welcome to administering Messaging resources 739



WebSphere MQ messaging provider activation specification broker
properties
Use this panel to view or change the broker settings of the selected activation specification for use with
the WebSphere MQ messaging provider. These broker settings determine how the WebSphere MQ
messaging provider interacts with a broker for the purposes of publishing messages and subscribing to
topics. Updates to the settings take effect when the server is restarted.

To view WebSphere MQ activation specification broker properties, use the administrative console to
complete the following steps:
1. In the navigation pane, click Resources > JMS->Activation specifications to display existing

activation specifications.
2. If appropriate, in the content pane, change the Scope setting to the level at which the activation

specifications are defined. This restricts the set of activation specifications displayed.
3. Select the name of the activation specification that you want to work with.
4. In the content pane under Additional properties, click Broker properties to view a list of the broker

properties of the WebSphere MQ activation specification.

Under General Properties there are four groups of properties:

v Queues

v Capabilities

v Tuning

v Additional

Make any required changes to these groups and then click Apply to return to the activation specification.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for
JMS resources, see the WebSphere MQ Using Java section of the WebSphere MQ library.

A WebSphere MQ activation specification has the following broker properties.

Broker control queue
The queue to which broker control messages are sent.

Information Value
Data type String
Default SYSTEM.BROKER.CONTROL.QUEUE

Broker subscriber queue
The queue from which subscription messages are received.

Information Value
Data type String
Default SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

740 Administering WebSphere applications

http://www.ibm.com/software/integration/wmq/library/


Broker connection consumer subscription queue
The queue to receive subscription messages for connection consumers from.

Information Value
Data type String
Default SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

Broker connection consumer durable subscription queue
The queue to receive subscription messages for durable connection consumers from.

Information Value
Data type String
Default SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE

Version
The version of the broker that is used. This determines some of the capabilities that the broker is assumed
to have. For example, whether to use an RFH version 1 or version 2 header in publications.

Information Value
Data type Radio button
Default Version 1 broker
Range

Version 1 broker
Message selection cannot be specified.

Version 2 broker
Message selection can be specified. If you select
this option, you must also complete Specify
where message selection occurs.

Specify where message selection occurs
The process in which message selection is performed. This property is enabled only if Version 2 broker
was selected.

Information Value
Data type Drop-down list
Default CLIENT
Range

CLIENT
Message selection is performed in the application
server process.

BROKER
Message selection is performed in the broker
process.

Subscription store
The process for tracking subscriptions.

Information Value
Data type Drop-down list
Default MIGRATE

Chapter 12. Welcome to administering Messaging resources 741



Information Value
Range

MIGRATE
Any information that is held on queues is
migrated to the broker mechanism for persisting
subscription information. If subscription
information is already persisted using the broker
mechanism then specifying a value of Migrate is
equivalent to specifying a value of Broker.

BROKER
Internal broker mechanisms are used to track
subscription information.

QUEUE
A designated WebSphere MQ queue is used to
record information about current subscriptions.

Durable subscription state refresh interval
How often a long running transaction is recreated and used to clean up durable subscriptions, for some
versions of the queue manager.

Information Value
Data type Integer
Default 60000
Range Any positive integer

Subscription cleanup level
How aggressively messages are cleaned up if the subscriber that is expected to consume the messages
terminates unexpectedly.

Information Value
Data type Drop-down list
Default SAFE
Range

SAFE A conservative algorithm is used to clean up
subscriptions.

ASPROP
The cleanup algorithm is determined by a system
property.

NONE No cleanup of subscriptions is performed.

STRONG
An aggressive algorithm is used to clean up
subscriptions.

Subscription cleanup interval
How often to check for orphaned subscriptions and clean up messages.

Information Value
Data type Integer
Default 3600000
Range Any positive integer

742 Administering WebSphere applications



Subscription wildcard format
The wildcard format used for subscribing to more than one topic in a topic hierarchy.

Information Value
Data type Drop-down list
Default character wildcards
Range

character wildcards
You can use an asterisk (*) or question mark (?)
to represent characters, or strings of characters,
in a topic name.

* is interpreted as matching many characters.

? is interpreted as matching a single character.

topic level wildcards
You can use a plus sign (+) or number sign (#) to
represent topics in a multilevel topic hierarchy.

+ is interpreted as matching a single topic name.

# is interpreted as matching many topics in the
hierarchy. / is used to delimit topics.

Optimize for sparse subscription patterns
An option to specify whether this activation specification is anticipated to receive a high proportion of
messages that match its selection criteria. This information can be used to optimize message delivery.

Information Value
Data type Check box
Default Cleared
Range Cleared

Subscriptions frequently receive matching
messages.

Selected
Subscriptions do not frequently receive matching
messages.

Broker queue manager
The name of the queue manager that is running the broker, if it is not the same as the queue manager to
which the activation specification connects.

Information Value
Data type String
Default The queue manager name that was specified in the

activation specification.

WebSphere MQ messaging provider activation specification client
transport properties
Use this panel to view or change the client transport properties of an activation specification for use with
the WebSphere MQ messaging provider. These properties affect how a client connection is established
with a WebSphere MQ queue manager or queue-sharing group. Updates to the properties take effect
when the server is restarted.

Chapter 12. Welcome to administering Messaging resources 743



To view WebSphere MQ activation specification client transport properties, use the administrative console
to complete the following steps:
1. In the navigation pane, click Resources > JMS->Activation specifications to display existing

activation specifications.
2. If appropriate, in the content pane, change the Scope setting to the level at which the activation

specifications are defined. This restricts the set of activation specifications displayed.
3. Select the name of the activation specification that you want to work with.
4. In the content pane, under Additional properties, click Client transport properties to display a list of

the client transport properties of the WebSphere MQ activation specification.

Under General Properties there are two groups of properties:

v Additional SSL settings (for more information about setting the SSL properties for WebSphere MQ, see
SSL properties in the Using Java section of the WebSphere MQ information center)

v Channel exits

Make any required changes to these groups and then click Apply to return to the activation specification.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for
JMS resources, see the Using Java section of the WebSphere MQ information center.

A WebSphere MQ activation specification has the following client transport properties:

Certificate revocation list
A list of LDAP URLs pointing to LDAP repositories of SSL certificates that might have been revoked.

Information Value
Data type String
Default No certificate revocation list
Range The value must be a space-separated list of LDAP URLs.

Reset count
The total number of bytes to transfer over an SSL connection before renegotiating the symmetric
encryption keys used to secure the connection.

Information Value
Data type Integer
Default 0 (do not renegotiate)
Range The value must be in the range 0 through 999,999,999

(inclusive).

Peer name
A name (possibly including wildcards) that must match the distinguished name of the peer SSL certificate
for a connection to be established.

Information Value
Data type String
Default Do not check the distinguished name of the peer

certificate.

744 Administering WebSphere applications



Information Value
Range Validated using the rules for a WebSphere MQ SSLPEER

channel parameter.

Receive exit or exits
A comma-separated list of Java class names corresponding to receive exits to be loaded.

Information Value
Data type String

Receive exit initialization data
Initialization data to be passed to the receive exit.

Information Value
Data type String

Send exit or exits
A comma-separated list of Java class names corresponding to send exits to be loaded.

Information Value
Data type String

Send exit initialization data
Initialization data to be passed to the send exit.

Information Value
Data type String

Security exit
A Java class name corresponding to the security exit to be loaded.

Information Value
Data type String

Security exit initialization data
Initialization data to be passed to the security exit.

Information Value
Data type String

JMS resource provider selection panel
Select the messaging provider with which to create this JMS activation specification, connection factory or
destination.

You select the scope setting on an earlier page. The choice of JMS provider depends on the scope that
you selected. You might see a choice such as the following list:

v Default messaging provider.

Chapter 12. Welcome to administering Messaging resources 745



Select this option if you want the JMS resource to be provided by the service integration bus, as part of
WebSphere Application Server.

v WebSphere MQ messaging provider

Select this option if you want the JMS resource to be provided by WebSphere MQ. You must have
installed and configured a WebSphere MQ network in order to use this provider.

v “My JMS provider”

Select this option if you want the JMS resource to be provided by a third-party JMS provider. This
option is only available if you have installed and configured a third-party provider. The name that is
displayed (for example“My JMS provider”) is the name you gave to the provider when you installed and
configured it.

WebSphere MQ messaging provider connection factory settings
Use this panel to view or change the configuration properties of the selected connection factory for use
with the WebSphere MQ messaging provider. These configuration properties control how connections are
created to associated JMS queues and topics.

The WebSphere MQ messaging provider supports JMS 1.1 domain-independent interfaces, such as the
unified JMS connection factory. A domain-independent application can use the same interface for both
point-to-point and publish/subscribe messaging, and can support both point-to-point and publish/subscribe
messaging within the same transaction. With JMS 1.1, you are recommended to use domain-independent
unified JMS connection factories for new applications. A domain-specific interface extends the
domain-independent equivalent, so an application that uses domain-specific queue and topic connection
factories can choose to use either interface.

To view WebSphere MQ connection factory settings, use the administrative console to complete the
following steps:
1. In the navigation pane, click Resources > JMS->Connection factories to display existing connection

factories.
2. If appropriate, in the content pane, change the Scope setting to the level at which the connection

factories are defined. This restricts the set of connection factories displayed.
3. Select the name of the connection factory that you want to work with.

Under General Properties there are four groups of properties:

v “Administration” on page 747

v “Connection” on page 748

v “Advanced” on page 754

v “Security settings” on page 755

Make any required changes to the Administration, Connection, Advanced, and Security settings groups of
properties, and then click Apply to save the configuration before, in the content pane under Additional
Properties, you click any of the following links:

v Advanced properties to display or change the advanced properties of your WebSphere MQ connection
factory.

v Broker properties to display or change the broker properties of your WebSphere MQ connection
factory.

v Custom properties to display or change the custom properties of your WebSphere MQ connection
factory.

v Client transport properties to display or change the client transport properties of your WebSphere MQ
connection factory. If the selected connection factory was not created using a Client Channel Definition
Table (CCDT), follow this link to enter all the information required to connect to WebSphere MQ. If the
selected connection factory was created using a CCDT, you do not need to supply the client transport
properties, and so the link is absent.

746 Administering WebSphere applications



v Connection pools to display or change the connection pools detail of your WebSphere MQ connection
factory.

v Session pools to display or change the session pools detail of your WebSphere MQ connection
factory.

Under Related Items, you can click JAAS - J2C authentication data to configure authentication
information for use with the connection factory.

You can specify the following additional properties by using WebSphere MQ administrative commands:

v -localAddress

v -clonedSubs

v -componentAuthAlias

For more information about these properties, refer to the “createWMQConnectionFactory command” on
page 868.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ JMS
resources, see the Using Java and WebSphere MQ System Administration sections of the
WebSphere MQ information center.

If WebSphere MQ functionality has been disabled at a scope that affects this WebSphere MQ messaging
provider resource, then an informational message indicating that WebSphere MQ has been disabled
appears. In a single server environment this informational message is only displayed when the server is
restarted after WebSphere MQ functionality has been disabled. For more information see “Disabling
WebSphere MQ functionality in WebSphere Application Server” on page 712.

A WebSphere MQ unified connection factory has the following properties.

Administration

Scope
The level at which this connection factory definition is visible to applications.

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at
multiple scopes, with resources defined at more specific scopes overriding duplicates that are defined at
more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse
or change other resources at a different scope, change the scope on the connection factory collection
panel, then click Apply, before clicking the link for the type of resource.

Information Value
Data type String

Provider
The JMS provider assigned when the queue connection factory is created.

For all connection factories that use this panel, the provider is the WebSphere MQ messaging provider.

The provider is displayed for information only.

Chapter 12. Welcome to administering Messaging resources 747



Information Value
Data type String

Name
The name by which this connection factory is known for administrative purposes within WebSphere
Application Server.

Information Value
Data type String
Range The name must be unique within the set of connection

factories defined to the cell.

JNDI name
The JNDI name that is used to bind the connection factory into the JNDI namespace.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

Information Value
Data type String

Description
A description of this connection factory for administrative purposes within WebSphere Application Server.

Information Value
Data type String
Default Null

Connection
The information required to configure a connection depends on whether the selected queue connection
factory was created using a Client Channel Definition Table (CCDT).

If the selected connection factory was created using a CCDT, only the following properties are displayed:

v Client channel definition table URL

v Queue manager

v SSL configuration

If the selected connection factory was not created using a CCDT, the following properties are displayed:

v Queue manager

v Transport

v If Enter host and port information in the form of separate host and port values is selected, the
connection name list property cannot be used and the following properties can be used:

– Host name

– Port

v If Enter host and port information in the form of a connection name list is selected, the connection
name list property can be used and the following properties cannot be used:

– Host name

– Port

748 Administering WebSphere applications



v Server connection channel

v If you clear the check box for the Use SSL to secure communication with Websphere MQ property,
the following properties cannot be used:

– Centrally managed

– Specific configuration

– SSL configuration

For more information about setting the SSL properties for WebSphere MQ, see SSL properties in the
Using Java section of the WebSphere MQ information center.

Client channel definition table URL
A URL that specifies the location of a WebSphere MQ CCDT.

Information Value
Data type String

Queue manager
If the specified connection factory is based on a CCDT, this property is used to select an entry in the
CCDT. Otherwise, this property specifies the name of the queue manager or queue-sharing group to
connect to. A connection is established to the specified WebSphere MQ resource to send or receive
messages.

Information Value
Data type String

Chapter 12. Welcome to administering Messaging resources 749



Information Value
Range If this connection factory is not based on a CCDT, the

value must be a valid queue manager name.

If this connection factory is based on a CCDT, the value
must be one of the following:

v A valid queue manager name

v An asterisk (*) followed by the name of a queue
manager group1

v An asterisk (*)

v Blank1

1When you specify the value of the Queue manager
property in this form in combination with a CCDT,
individual connections established by using the connection
factory might connect to different queue managers.
Selection from multiple queue managers occurs when the
CCDT contains multiple client connection channel
definitions with a matching queue manager name
(QMNAME) parameter, and these connection channel
definitions define the network connection details of
different queue managers.

If the specified connection factory is based on a CCDT,
and the CCDT can select from more than one queue
manager, you might not be able to recover global
transactions. Therefore, for connection factories that
specify a CCDT, you have two alternatives:

v Avoid any ambiguity about the target queue manager
when specifying the Queue manager property, which
means that the specified value of this property must not
include an asterisk (*).

v Avoid using the resources with applications that enlist in
global transactions.

Transport
The WebSphere MQ transport type for the connection. The transport type is used to determine the exact
mechanisms used to connect to WebSphere MQ.

Information Value
Data type Drop-down list
Default Bindings, then client

750 Administering WebSphere applications



Information Value
Range Client Use a TCP/IP-based network connection to

communicate with the WebSphere MQ queue
manager.

Bindings, then client
Attempt a bindings mode connection to the
queue manager. If this is not possible, revert to
the client transport.

Bindings
Establish a cross-memory connection to a queue
manager running on the same node. The
following Client Transport Mode properties are
disabled:
v Host name
v Port
v Connection name list
v Server connection channel

For more information about configuring a transport type of
Bindings, then client or Bindings, refer to “Configuring the
WebSphere MQ messaging provider with native libraries
information” on page 692.

Enter host and port information in the form of separate host and port
values
If this radio button is selected, this means that the connection to the WebSphere MQ queue manager is
made using the information supplied by the host name and port properties.

Selecting this option enables the host name and port properties, and disables the connection name list
property. To enter connection name list information, click Enter host and port information in the form of
a connection name list.

This radio button is only available if the scope property specifies a cell, or if the scope property specifies a
node or server and that node or server is running WebSphere Application Server Version 8.0 or later.

Information Value
Data type Radio button

Hostname
The host name, IPv4, or IPv6 address of the WebSphere MQ queue manager to connect to.

Information Value
Data type String

Port
The port number on which WebSphere MQ is listening.

Information Value
Data type Integer
Default 1414
Range The value must be in the range 1 to 65536 (inclusive).

Chapter 12. Welcome to administering Messaging resources 751



Enter host and port information in the form of a connection name list
If this radio button is selected, this means that the connection to the WebSphere MQ queue manager is
made using the information supplied by the connection name list property.

Connection name lists can be used to connect to a single queue manager or to a multi-instance queue
manager. For more information on using a multi-instance queue manager, see the WebSphere MQ
information centre. Selecting this option enables the connection name list property and disables the host
name and port properties. To enter separate host and port information, click Enter host and port
information in the form of separate host and port values.

This radio button is only available if the scope property specifies a cell, or if the scope property specifies a
node or server and that node or server is running WebSphere Application Server Version 8.0 or later.

Information Value
Data type Radio button

Connection name list
The connection name list specifying the host name and port details to use when you want the connection
factory to connect to a multi-instance queue manager.

This property must only be used to allow connection to a multi-instance queue manager. It must not be
used to allow connections to non-multi-instance queue managers as that can result in transaction integrity
issues.

Information Value
Data type String
Default Unset
Range This field must be set to a string in the following form:

host[(port)][,host(port)]

The port information is optional, and if not specified,
defaults to 1414.

host must be a valid TCP/IP host name or IPv4 or IPv6
address.

port must be an integer value in the range 1 to 65536
(inclusive).

For example:
localhost(1234),remotehost1(1234),remotehost2

When the connection name list property is specified, the host name or port properties are automatically set
to the host name and port number of the first entry in the connection name list. So if you specified
localhost(1234),remotehost1(1234),remotehost2, the host name would be set to localhost and port
would be set to 1234.

This property is only available if the scope property specifies a cell, or if the scope property specifies a
node or server and that node or server is running WebSphere Application Server Version 8.0 or later.

When used in a mixed cell environment, the information in the connection name list property is not
available to versions of WebSphere Application Server earlier than Version 8.0. In this case, the
information in the host name and port name fields, based on the first element in the connection name list,
is used instead.

752 Administering WebSphere applications



Server connection channel
The WebSphere MQ server connection channel name used when connecting to WebSphere MQ.

Information Value
Data type String
Default SYSTEM.DEF.SVRCONN
Range The value must be a server connection channel defined to

the WebSphere MQ queue manager that is being
connected to.

Use SSL to secure communications with WebSphere MQ
This option determines whether the SSL (Secure Sockets Layer) protocol is used to secure network
communications with the WebSphere MQ queue manager or queue-sharing group.

When using a WebSphere MQ messaging provider connection factory in the application server
environment, the application server manages SSL configuration. To change SSL configuration parameters,
use the administrative console to navigate to the Security > SSL certificate and key management panel.

When using a WebSphere MQ messaging provider connection factory in the client environment, the client
takes SSL configuration information from the ssl.client.props file. Use of this file is detailed in the related
reference information for this topic.

You can only use one cipher suite in the SSL configuration for a WebSphere MQ messaging provider
connection factory. If you specify more than one cipher suite, only the first one is used.

Information Value
Data type Check box. If this check box is cleared, the following SSL

properties are disabled:

v Centrally managed

v Specific configuration

v SSL configuration

Centrally managed
When the SSL protocol is used to communicate with WebSphere MQ, select this radio button to specify
that the SSL configuration is taken from the centrally managed WebSphere Application Server SSL
configuration.

When you select this radio button, the host name and port attributes from the WebSphere MQ messaging
provider connection factory are used to select an appropriate SSL configuration. If host and port
information has been supplied by a connection name list this means that the host name and port
information of the first element in the list are used to select an appropriate SSL configuration. To provide
the SSL configuration which will be matched to the connection factory, see the Dynamic outbound endpoint
SSL configuration settings topic listed under related reference.

Information Value
Data type Radio button

Specific configuration
Select this radio button when you want to specify a particular SSL configuration for use when SSL is to be
used to secure network communications with the WebSphere MQ queue manager or queue-sharing group.

Chapter 12. Welcome to administering Messaging resources 753



Information Value
Data type Radio button

SSL configuration
The SSL configuration to use when SSL is to be used to secure network communications with the
WebSphere MQ queue manager or queue-sharing group.

This property is disabled if the Centrally managed radio button is selected and the WebSphere MQ
messaging provider resource has been explicitly defined.

This property is always enabled if the WebSphere MQ messaging provider resource is based on a CCDT.

If this WebSphere MQ messaging provider resource is based on a CCDT, this parameter is only used if
the relevant entries in the CCDT have been configured to use SSL.

Additionally, if an SSL configuration of none is selected, the default centrally managed WebSphere
Application Server SSL configuration for the WebSphere MQ messaging provider is used.

Information Value
Data type Drop-down list

Advanced

Client ID
The client identifier to specify when connecting to the WebSphere MQ messaging provider.

The client identity is not a user ID in the conventional sense, and is not related to security. It is used by
durable subscriptions in publish-subscribe messaging. A durable subscription continues to collect up
messages while the subscriber is "away" (for example, not running or failed) and delivers those messages
when the subscriber reconnects. The client identity is the token that says which subscriber you are when
you reconnect so that you get the messages that have been saved up for you in your absence.

Information Value
Data type String

Allow cloned durable subscriptions
An option that determines whether multiple instances of a durable subscription can be accessed
concurrently by different servers.

Information Value
Data type Check box
Default Cleared
Range Selected

Multiple instances of a durable subscription can
be accessed concurrently by different servers.

Cleared
Multiple instances of a durable subscription
cannot be accessed concurrently by different
servers.

754 Administering WebSphere applications



Provider version
The WebSphere MQ messaging provider version. This value is used to determine whether to connect to a
particular version of a queue manager. It is also used to determine the type of functions required by the
client.

Information Value
Data type String
Range The value entered must either be the empty string or be in

one of the following formats:

n.n.n.n

n.n.n

n.n

n

where n is a numeric value greater than or equal to zero.

For example 6.0.0.0.

Support distributed two-phase commit protocol
An option that specifies whether the connection factory supports XA coordination of messaging
transactions. Enable this option if multiple resources, including this connection factory, are to be used in
the same transaction.

If you clear this property, you disable support for distributed two-phase commit protocol. The JMS session
can still be enlisted in a transaction, but it uses the resource manager local transaction calls
session.commit and session.rollback, instead of XA calls. This can lead to an improvement in
performance. However, only a single resource can be enlisted in a transaction in WebSphere Application
Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

Information Value
Data type Check box
Default Selected
Range Selected

The connection factory supports the use of
distributed two-phase commit protocols for the
coordination of transacted work.

Cleared
The connection factory does not support the use
of distributed two-phase commit protocols for the
coordination of transacted work.

Keep this option selected if transactions involve other resources, including other queues or topics. Clear
this option only when you are certain that the queue manager that is the target for this queue connection
is the only resource in the transaction.

Security settings

Authentication alias for XA recovery
The user name and password to use when connecting to WebSphere MQ during XA recovery.

Information Value
Data type Drop-down list

Chapter 12. Welcome to administering Messaging resources 755



Information Value
Default (none)
Range All authentication aliases defined to the cell and the value

"(none)", which specifies that no credentials are passed to
WebSphere MQ during XA recovery.

Mapping-configuration alias
This field is used only in the absence of a login configuration on the component resource reference.

When the resource authority value is "container", the preferred way to define the authentication strategy is
by specifying a login configuration and associated properties on the component resource reference.

If the DefaultPrincipalMapping login configuration is specified, the associated property is a JAAS - J2C
authentication data entry alias. To configure authentication information for use with the connection factory,
under Related Items, click JAAS - J2C authentication data .

Information Value
Data type Drop-down list
Default (none)
Range The following options are available:

ClientContainer

WSLogin

WSKRB5Login

DefaultPrincipalMapping

TrustedConnectionMapping

KerberosMapping

Container-managed authentication alias
The authentication alias which specifies the user name and password to use when connecting to the
WebSphere MQ messaging provider.

Information Value
Data type Drop-down list
Default (none)
Range All authentication aliases defined to the cell and the value

"(none)", which specifies that no credentials are passed to
WebSphere MQ.

WebSphere MQ messaging provider connection factory advanced
properties
Use this panel to view or change the advanced properties of the selected connection factory for use with
the WebSphere MQ messaging provider. These advanced properties control the behavior of connections
made to WebSphere MQ messaging provider destinations.

To view WebSphere MQ connection factory advanced properties, use the administrative console to
complete the following steps:
1. In the navigation pane, click Resources > JMS->Connection factories to display existing connection

factories.
2. If appropriate, in the content pane, change the Scope setting to the level at which the connection

factories are defined. Setting the scope in this way restricts the set of queue connection factories
displayed.

756 Administering WebSphere applications



3. Select the name of the connection factory that you want to work with.
4. In the content pane, under Additional properties, click Advanced properties to view a list of the

advanced properties of the WebSphere MQ connection factory.

Under General Properties there are six groups of advanced properties:

v Client reconnect

v Message compression

v Temporary destinations

v Connection consumer

v Message format

v Additional

Make any required changes to these groups and then click Apply to return to the connection factory.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, except for channels, which have a maximum of

20 characters.
v The property values that you specify must match the values that you specified when configuring

JMS resources for WebSphere MQ. For more information about configuring JMS resources for
WebSphere MQ, see the Using Java section of the WebSphere MQ information center.

A WebSphere MQ connection factory has the following advanced properties:

Client reconnect options
This property specifies whether a client mode connection reconnects automatically, or not, in the event of
a communications or queue manager failure. This parameter is ignored unless the connection factory is
being used in a thin or managed client environment.

Information Value
Data type Drop-down list
Default DISABLED
Range DISABLED

Client reconnection does not automatically occur.
ASDEF The value from the DefRecon attribute from the

channels stanza of the client configuration file is
used. If there is no DefRecon value specified in
the client configuration file, ASDEF has the same
effect as DISABLED.

QMGR Reconnection occurs only to the queue manager
to which the connection was originally connected.

RECONNECT
Reconnection occurs to any queue manager that
is consistent with the value of the queue
manager attribute. This queue manager might be
a different queue manager from the one to which
the connection was originally connected.

For more information about automatic client reconnection, see the WebSphere MQ information center.

Client reconnect timeout
The maximum number of seconds that a client mode connection spends attempting to automatically
reconnect to a queue manager after a communications or queue manager failure. This parameter is
ignored unless the connection factory is being used in a thin or managed client environment. Whether this
parameter is used or not depends on the value of the client reconnect options parameter.

Chapter 12. Welcome to administering Messaging resources 757



Information Value
Data type Integer
Units Seconds
Default 1800 (30 minutes)
Range A value greater than zero and up to 2147483647

For more information about automatic client reconnection, see the WebSphere MQ information center.

Compress message headers
An option that enables the compression of message headers.

Information Value
Data type Check box
Default Cleared
Range Cleared

Do not compress message headers.
Selected

Compress message headers.

Compression algorithm for message payloads
The compression algorithm that is used to compress message payloads.

Information Value
Data type Drop-down list
Default NONE
Range RLE Message data compression is performed using

run-length encoding.
ZLIBFAST

Message data compression is performed using
ZLIB encoding with speed prioritized.

ZLIBHIGH
Message data compression is performed using
ZLIB encoding with compression prioritized.

NONE No message data compression is performed.

WebSphere MQ model queue name
The model queue that is used as a basis for temporary queue creation.

Information Value
Data type String
Default SYSTEM.DEFAULT.MODEL.QUEUE

Temporary queue prefix
The prefix that is appended to the beginning of the names generated for temporary queues.

Information Value
Data type String

758 Administering WebSphere applications



Temporary topic prefix
The prefix that is appended to the beginning of the names generated for temporary topics.

Information Value
Data type String

Retain messages, even if no matching consumer is available
An option that determines whether messages for which there is no matching consumer are retained on the
input queue or dealt with according with their disposition options.

Information Value
Data type Check box
Default Selected
Range Cleared

Do not retain messages.
Selected

Retain messages.

Polling interval
This setting is applicable in the client container only. When using aWebSphere MQ Version 6 queue
manager (or WebSphere MQ Version 5.3 for z/OS), this setting configures the mechanism used to
dispatch messages to JMS asynchronous consumers.

This setting is used when the set of WebSphere MQ queues that is being asynchronously consumed from
exceeds the number of threads that are available internally to synchronously get messages from the
WebSphere MQ queue. The setting determines how long a thread waits for a message to arrive at a
WebSphere MQ queue before polling another WebSphere MQ queue in the set.

Information Value
Data type Integer
Units Milliseconds
Default 5000
Range A value greater than zero.

Rescan interval
When using a WebSphere MQ Version 6 queue manager (or WebSphere MQ Version 5.3 for z/OS), this
setting configures the mechanism used to dispatch messages to JMS asynchronous consumers.

This setting is used when the set of WebSphere MQ queues that is being asynchronously consumed from
exceeds the number of threads that are available internally to synchronously get messages from the
WebSphere MQ queue. The setting determines how long a thread retrieves messages from a WebSphere
MQ queue before switching to use messages from another WebSphere MQ queue in the set.

Information Value
Data type Integer
Units Milliseconds
Default 5000
Range A value greater than zero.

Chapter 12. Welcome to administering Messaging resources 759



Maximum batch size
The maximum number of messages that can be removed from a queue before at least one must be
delivered to an asynchronous consumer.

Information Value
Data type Integer
Default 10
Range A value greater than zero.

Coded character set identifier
The character set to use when you are encoding strings in the message.

The Coded character set identifier (CCSID) is only applicable for connection factory advanced properties if
your messaging system is using WebSphere MQ Version 6.0. If you are using WebSphere MQ Version 7.0
you must define the CCSID you want to use for your messages at your queue destination. For more
information on how to do this, see “WebSphere MQ Provider queue destination settings for application
clients” on page 93.

If your application constructs messages for a WebSphere MQ application that requires a different
character or numeric encoding, you can override the character encoding value by setting the
JMS_IBM_Character_Set property to the required coded character set ID (CCSID), or the JMS_IBM_Encoding
property to the required numeric format, or both. For information about the values you can use for
JMS_IBM_Character_Set and JMS_IBM_Encoding, see the documentation in the WebSphere MQ library.

Information Value
Data type Integer
Default 819
Range A value greater than zero. The coded character set

identifier (CCSID) must be one of the CCSIDs supported
by WebSphere MQ.

For more information about supported CCSIDs, and about converting between message data from one
coded character set to another, see the System Administration and Application Programming Reference
sections of the WebSphere MQ information center.

Append an RFH version 2 header to reply messages
When sending a reply message to the reply-to queue obtained from a message, select this option to
append an RFH version 2 header to the reply message regardless of whether the original message had a
RFH version 2 header.

Information Value
Data type Check box
Default Cleared
Range

Selected
Append an RFH version 2 header to reply
messages regardless of whether the original
message had an RFH version 2 header.

Cleared
Append an RFH version 2 header to reply
messages only if the original message had an
RFH version 2 header.

760 Administering WebSphere applications

http://www.ibm.com/software/integration/wmq/library/


Fail JMS method calls if the WebSphere MQ queue manager is
quiescing
An option that enables selected JMS operations to fail when the queue manager is put into a quiescing
state. Selecting this option enables the queue manager to quiesce successfully and shut down.

Information Value
Data type Check box
Default Selected
Range Cleared

Do not fail JMS operations if the queue manager
is quiescing.

Selected
Fail JMS operations if the queue manager is
quiescing.

WebSphere MQ messaging provider connection factory broker
properties
Use this panel to view or change the broker settings of the selected connection factory, or topic connection
factory, for use with the WebSphere MQ messaging provider. These broker settings determine how the
WebSphere MQ messaging provider interacts with a broker for the purposes of publishing messages and
subscribing to topics. Updates to the settings take effect when the server is restarted.

To view WebSphere MQ connection factory, or topic connection factory, broker properties use the
administrative console to complete the following steps:
1. In the navigation pane, click Resources > JMS->Connection factories to display existing connection

factories, or click Resources > JMS->Topic connection factories to display existing topic connection
factories.

2. If appropriate, in the content pane, change the Scope setting to the level at which the connection
factories are defined. This restricts the set of connection factories displayed.

3. Select the name of the connection factory, or topic connection factory, that you want to work with.
4. In the content pane, under Additional Properties, click Broker properties to display the broker

properties of the WebSphere MQ connection factory, or topic connection factory.

Under General Properties there are four groups of properties:

v Queues

v Capabilities

v Tuning

v Additional

Make any required changes to these groups and then click Apply to return to the connection factory, or
topic connection factory.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for
JMS resources, see the Using Java section of the WebSphere MQ information center.

A WebSphere MQ connection factory, or topic connection factory, has the following broker properties:

Chapter 12. Welcome to administering Messaging resources 761



Broker control queue
The queue to which broker control messages are sent.

Information Value
Data type String
Default SYSTEM.BROKER.CONTROL.QUEUE

Broker publication queue
The queue to which publication messages are sent.

Information Value
Data type String
Default SYSTEM.BROKER.DEFAULT.STREAM

Broker subscriber queue
The queue to which subscription messages are sent.

Information Value
Data type String
Default SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

Broker connection consumer subscription queue
The queue to which subscription messages that are destined for a connection consumer are sent.

Information Value
Data type String
Default SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

Version
The version of the broker that is used. This determines some of the capabilities that the broker is assumed
to have. For example, whether to use an RFH version 1 or version 2 header in publications.

Information Value
Data type Radio button
Default Version 1 broker
Range

Version 1 broker
Message selection cannot be specified.

Version 2 broker
Message selection can be specified. If you select
this option, you must also complete Specify
where message selection occurs.

Specify where message selection occurs
The process in which message selection is performed. This property is enabled only if Version 2 broker
was selected.

Information Value
Data type Drop-down list
Default CLIENT

762 Administering WebSphere applications



Information Value
Range

CLIENT
Message selection is performed in the application
server process.

BROKER
Message selection is performed in the broker
process.

Subscription store
The process for tracking subscriptions.

Information Value
Data type Drop-down list
Default MIGRATE
Range

MIGRATE
Any information that is held on queues is
migrated to the broker mechanism for persisting
subscription information. If subscription
information is already persisted using the broker
mechanism then specifying a value of Migrate is
equivalent to specifying a value of Broker.

BROKER
Internal broker mechanisms are used to track
subscription information.

QUEUE
A designated WebSphere MQ queue is used to
record information about current subscriptions.

Durable subscription state refresh interval
How often a long running transaction is recreated and used to clean up durable subscriptions, for some
versions of the queue manager.

Information Value
Data type Integer
Default 60000
Range Any positive integer

Subscription cleanup level
How aggressively messages are cleaned up if the subscriber that is expected to consume the messages
terminates unexpectedly.

Information Value
Data type Drop-down list
Default SAFE

Chapter 12. Welcome to administering Messaging resources 763



Information Value
Range

SAFE A conservative algorithm is used to clean up
subscriptions.

ASPROP
The cleanup algorithm is determined by a system
property.

NONE No cleanup of subscriptions is performed.

STRONG
An aggressive algorithm is used to clean up
subscriptions.

Subscription cleanup interval
How often to check for orphaned subscriptions and clean up messages.

Information Value
Data type Integer
Default 3600000
Range Any positive integer

Subscription wildcard format
The wildcard format used for subscribing to more than one topic in a topic hierarchy.

Information Value
Data type Drop-down list
Default character wildcards
Range

character wildcards
You can use an asterisk (*) or question mark (?)
to represent characters, or strings of characters,
in a topic name.

* is interpreted as matching many characters.

? is interpreted as matching a single character.

topic level wildcards
You can use a plus sign (+) or number sign (#) to
represent topics in a multilevel topic hierarchy.

+ is interpreted as matching a single topic name.

# is interpreted as matching many topics in the
hierarchy. / is used to delimit topics.

Publish acknowledgement window
The number of messages to publish before publishing a message that requires broker acknowledgement

Information Value
Data type Integer
Default 25
Range Any positive integer

764 Administering WebSphere applications



Optimize for sparse subscription patterns
An option to specify whether this connection factory is anticipated to receive a high proportion of
messages that match its selection criteria. This information can be used to optimize message delivery.

Information Value
Data type Check box
Default Cleared
Range Cleared

Subscriptions frequently receive matching
messages.

Selected
Subscriptions do not frequently receive matching
messages.

Broker queue manager
The name of the queue manager that is running the broker, if it is not the same as the queue manager to
which the connection factory connects.

Information Value
Data type String
Default The queue manager name that was specified in the

connection factory.

WebSphere MQ messaging provider connection factory client
transport settings
Use this panel to view or change the client transport settings of a connection factory, queue connection
factory, or topic connection factory for use with the WebSphere MQ messaging provider. Client transport
properties affect how a client connection is established with a WebSphere MQ queue manager or
queue-sharing group. Updates to the settings take effect when the server is restarted.

To view WebSphere MQ connection factory, queue connection factory, or topic connection factory client
transport settings, use the administrative console to complete the following steps:
1. In the navigation pane, click Resources > JMS.
2. Click Connection factories, Queue connection factories, or Topic connection factories to display

existing connection factories, queue connection factories or topic connection factories.
3. Select the name of the connection factory, queue connection factory, or topic connection factory that

you want to work with.
4. In the content pane under Additional Properties, click Client transport properties to view a list of the

client transport settings of the WebSphere MQ connection factory, queue connection factory, or topic
connection factory.

Under General Properties there are two groups of properties:

v Additional SSL settings (for more information about setting the SSL properties for WebSphere MQ, see
SSL properties in the Using Java section of the WebSphere MQ information center)

v Channel exits

Make any required changes to these groups and then click Apply to return to the connection factory,
queue connection factory or topic connection factory.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.

Chapter 12. Welcome to administering Messaging resources 765



v The property values that you specify must match the values that you specified when configuring
WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for
JMS resources, see the Using Java section of the WebSphere MQ information center.

A WebSphere MQ connection factory, queue connection factory, or topic connection factory has the
following client transport settings properties:

Certificate revocation list
A list of LDAP URLs pointing to LDAP repositories of SSL certificates that might have been revoked.

Information Value
Data type String
Default No certificate revocation list
Range The value must be a space-separated list of LDAP URLs.

Peer name
A name (possibly including wildcards) that must match the distinguished name of the peer SSL certificate
for a connection to be established.

Information Value
Data type String
Default Do not check the distinguished name of the peer

certificate.
Range Validated according to the rules for a WebSphere MQ

SSLPEER channel parameter.

Reset count
The total number of bytes to transfer over an SSL connection before renegotiating the symmetric
encryption keys used to secure the connection.

Information Value
Data type Integer
Default 0 (do not renegotiate)
Range The value must be in the range 0 through 999,999,999

(inclusive).

Receive exits
A comma-separated list of Java class names corresponding to receive exits to be loaded.

Information Value
Data type String

Receive exit initialization data
Initialization data to be passed to the receive exit.

Information Value
Data type String

766 Administering WebSphere applications



Send exits
A comma-separated list of Java class names corresponding to send exits to be loaded.

Information Value
Data type String

Send exit initialization data
Initialization data to be passed to the send exit.

Information Value
Data type String

Security exit
A Java class name corresponding to the security exit to be loaded.

Information Value
Data type String

Security exit initialization data
Initialization data to be passed to the security exit.

Information Value
Data type String

Connection pool settings
Use this page to configure connection pool settings.

This administrative console page is common to JDBC data sources and JMS connection factories (unified,
queue, or topic connection factories). To view this page, the path depends on the type of resource, but
generally you select an instance of the resource type then click Connection Pool. For example:

v Click Resources > JDBC > Data Sources > data_source > [Additional Properties] Connection pool
properties

v Click Resources > JMS->Queue connection factories->queue_connection_factory->[Additional
Properties] Connection pool

Note: Connection pooling is not supported in an application client. The application client calls the
database directly and does not go through a data source. If you want to use the getConnection()
request from the application client, configure the JDBC provider in the application client deployment
descriptors, using Rational Application Developer or an assembly tool. The connection is
established between application client and the database. Application clients do not have a
connection pool, but you can configure JDBC provider settings in the client deployment descriptors.

Connection timeout
Specifies the interval, in seconds, after which a connection request times out and a
ConnectionWaitTimeoutException is thrown.

This value indicates the number of seconds that a connection request waits when there are no
connections available in the free pool and no new connections can be created. This usually occurs
because the maximum value of connections in the particular connection pool has been reached.

Chapter 12. Welcome to administering Messaging resources 767



For example, if Connection timeout is set to 300, and the maximum number of connections are all in use,
the pool manager waits for 300 seconds for a physical connection to become available. If a physical
connection is not available within this time, the pool manager initiates a ConnectionWaitTimeout exception.
In most cases, you should not retry the getConnection() method; if a longer wait time is required you
should increase the Connection timeout setting value. If a ConnectionWaitTimeout exception is caught by
the application, review the expected connection pool usage of the application and tune the connection pool
and database accordingly.

If the Connection timeout is set to 0, the pool manager waits as long as necessary until a connection
becomes available. This happens when the application completes a transaction and returns a connection
to the pool, or when the number of connections falls below the value of Maximum Connections, and a new
physical connection is created.

If Maximum Connections is set to 0, an infinite number of physical connections are enabled, and the
Connection timeout value is ignored.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Maximum connections
Specifies the maximum number of physical connections that you can create in this pool.

These are the physical connections to the backend resource. When this number is reached, no new
physical connections are created. The requester waits until a physical connection that is currently in use
returns to the pool, or until a ConnectionWaitTimeoutException error displays. For example, if the Max
Connections value is set to 5, and there are 5 physical connections in use, the pool manager waits for the
amount of time specified in Connection timeout for a physical connection to become free.

Knowing the number of connection pools that can potentially request connections from the backend, such
as a DB2 database or a CICS server, helps you determine a value for the Maximum Connections property.

For multiple stand-alone application servers that use the same data source configuration, or
J2C connection factory configuration, a separate physical connection pool exists for each server. If you
clone these same application servers, WebSphere Application Server (base) implements a separate
connection pool for each clone.

All of these connection pools correspond to the same data source or connection factory
configuration. Therefore all of these connection pools can potentially request connections from the same
backend resource, at the same time. The single Maximum Connections value that you set on this console
panel applies to every one of these connection pools. Consequently, setting a high Maximum Connections
value can result in a load of connection requests that overwhelms your backend resource.

Information Value
Data type Integer
Default 10
Range 0 to maximum integer

If Max Connections is set to 0, the Connection timeout
value is ignored.

Tip: For better performance, set the value for the connection pool lower than the value for the maximum
thread pool connections of the web container. To configure this setting click Servers > Server types

768 Administering WebSphere applications



> WebSphere application servers > server > Thread Pools, and modify the web container
property. Lower settings, such as 10-30 connections, perform better than higher settings, such as
100.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool. If the
number of concurrent waiters is greater than 0, but the processor load is not close to 100%, consider
increasing the connection pool size. If the Percent Used value is consistently low under normal
workload, consider decreasing the number of connections in the pool.

Minimum connections
Specifies the minimum number of physical connections to maintain.

If the size of the connection pool is at or below the minimum connection pool size, the Unused timeout
thread does not discard physical connections. However, the pool does not create connections solely to
ensure that the minimum connection pool size is maintained. Also, if you set a value for Aged timeout,
connections with an expired age are discarded, regardless of the minimum pool size setting.

For example, if the Minimum Connections value is set to 3, and one physical connection is created, the
Unused timeout thread does not discard that connection. By the same token, the thread does not
automatically create two additional physical connections to reach the Minimum Connections setting.

Information Value
Data type Integer
Default 1
Range 0 to max int

Reap time
Specifies the interval, in seconds, between runs of the pool maintenance thread.

For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap
Time interval affects the accuracy of the Unused timeout and Aged timeout settings. The smaller the
interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less
than the values of Unused timeout and Aged timeout. When the pool maintenance thread runs, it discards
any connections remaining unused for longer than the time value specified in Unused timeout, until it
reaches the number of connections specified in Minimum Connections. The pool maintenance thread also
discards any connections that remain active longer than the time value specified in Aged timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread
runs more often and degrades performance.

To disable the pool maintenance thread, set Reap Time to 0, or set both Unused timeout and Aged timeout
to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, and Unused
timeout and Aged timeout are ignored. However, if Unused Timeout and Aged Timeout are set to 0, the
pool maintenance thread runs. Physical connections which timeout due to non-zero timeout values are
discarded as well as those connections that reside in a used pool (or shared pool) because they have
been held longer than the time interval set for Aged Timeout.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Chapter 12. Welcome to administering Messaging resources 769



Unused timeout
Specifies the interval in seconds after which an unused or idle connection is discarded.

Set the Unused timeout value higher than the Reap timeout value for optimal performance. Unused
physical connections are only discarded if the current number of connections exceeds the Minimum
Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance
thread is enabled (Reap Time is not 0), any physical connection that remains unused for 2 minutes is
discarded.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on
page 183 for more information.

Information Value
Data type Integer
Units Seconds
Default 1800
Range 0 to max int

Aged timeout
Specifies the interval in seconds before a physical connection is discarded.

Setting Aged timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the
Aged timeout value higher than the Reap timeout value for optimal performance.

For example, if the Aged timeout value is set to 1200, and the Reap Time value is not 0, any physical
connection that remains in existence for 1200 seconds (20 minutes) is discarded from the pool. The only
exception is if the connection is involved in a transaction when the aged timeout is reached, the
application server will not discard the connection until after the transaction is completed and the
connection is closed.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on
page 183 for more information.

Information Value
Data type Integer
Units Seconds
Default 0
Range 0 to max int

Purge policy
Specifies how to purge connections when a stale connection or fatal connection error is detected.

Valid values are EntirePool and FailingConnectionOnly.

Information Value
Data type String

770 Administering WebSphere applications



Information Value
Defaults v EntirePool for J2C connection factories and

JMS-related connection factories

v EntirePool for WebSphere Version 4.0 data sources

v EntirePool for current version data sources that you
create through the administrative console

v EntirePool for current version data sources that you
script through wsadmin AdminConfig commands,
starting JDBC templates that are built into WebSphere
Application Server. For information about the command
createUsingTemplate, see the topic, Commands for the
AdminConfig object.

v FailingConnectionOnly for data sources that you script
in wsadmin tool without starting JDBC templates

:
Range

EntirePool
All connections in the pool are marked stale. Any
connection not in use is immediately closed. A
connection in use is closed and issues a stale
connection Exception during the next operation
on that connection. Subsequent getConnection()
requests from the application result in new
connections to the database opening. When
using this purge policy, there is a slight possibility
that some connections in the pool are closed
unnecessarily when they are not stale. However,
this closure is a rare occurrence. In most cases,
a purge policy of EntirePool is the best choice.

FailingConnectionOnly
Only the connection that caused the stale
connection exception is closed. Although this
setting eliminates the possibility that valid
connections are closed unnecessarily, it makes
recovery from an application perspective more
complicated. Because only the currently failing
connection is closed, there is a possibility that the
next getConnection() request from the application
can return a connection from the pool that is also
stale. The result is more stale connection
exceptions.

The connection pretest function attempts to
insulate an application from pooled connections
that are not valid. When a backend resource,
such as a database, goes down, pooled
connections that are not valid might exist in the
free pool. This is especially true when the purge
policy is failingConnectionOnly; in this case, the
failing connection is removed from the pool.
Depending on the failure, the remaining
connections in the pool might not be valid.

Session pool settings
Use this page to configure session pool settings.

Chapter 12. Welcome to administering Messaging resources 771



This administrative console page is common to JMS unified connection factories, queue connection
factories and topic connection factories. To view this page, you select an instance of the resource type
then click Session pools. For example, click Resources > JMS->Queue connection
factories->queue_connection_factory->[Additional Properties] Session pools.

Connection Timeout
Specifies the interval, in seconds, after which a connection request times out and a
ConnectionWaitTimeoutException is thrown.

The wait is necessary when the maximum value of connections (Max Connections) to a particular
connection pool is reached . For example, if Connection Timeout is set to 300 and the maximum number
of connections is reached, the Pool Manager waits for 300 seconds for an available physical connection. If
a physical connection is not available within this time, the Pool Manager throws a
ConnectionWaitTimeoutException. It usually does not make sense to retry the getConnection() method,
because if a longer wait time is required, you should set the Connection Timeout setting to a higher
value. Therefore, if this exception is caught by the application, the administrator should review the
expected usage of the application and tune the connection pool and the database accordingly.

If Connection Timeout is set to 0, the Pool Manager waits as long as necessary until a connection is
allocated (which happens when the number of connections falls below the value of Max Connections).

If Max Connections is set to 0, which enables an infinite number of physical connections, then the
Connection Timeout value is ignored.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Max Connections
Specifies the maximum number of physical connections that you can create in this pool.

These are the physical connections to the backend resource. Once this number is reached, no new
physical connections are created and the requester waits until a physical connection that is currently in
use returns to the pool, or a ConnectionWaitTimeoutException is thrown.

For example, if the Max Connections value is set to 5, and there are five physical connections in use, the
pool manager waits for the amount of time specified in Connection Timeout for a physical connection to
become free.

If Max Connections is set to 0, the Connection Timeout value is ignored.

For better performance, set the value for the connection pool lower than the value for the Max
Connections option in the web container. Lower settings, such as 10-30 connections, perform better than
higher settings, such as 100.

If clones are used, one data pool exists for each clone. Knowing the number of data pools is important
when configuring the database maximum connections.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool.
If the number of concurrent waiters is greater than 0, but the CPU load is not close to 100%, consider
increasing the connection pool size. If the Percent Used value is consistently low under normal workload,
consider decreasing the number of connections in the pool.

772 Administering WebSphere applications



Information Value
Data type Integer
Default 10
Range 0 to max int

Min Connections
Specifies the minimum number of physical connections to maintain.

Until this number is reached, the pool maintenance thread does not discard physical connections.
However, no attempt is made to bring the number of connections up to this number. If you set a value for
Aged Timeout, the minimum is not maintained. All connections with an expired age are discarded.

For example if the Min Connections value is set to 3, and one physical connection is created, the Unused
Timeout thread does not discard that connection. By the same token, the thread does not automatically
create two additional physical connections to reach the Min Connections setting.

Information Value
Data type Integer
Default 1
Range 0 to max int

Reap Time
Specifies the interval, in seconds, between runs of the pool maintenance thread.

For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap
Time interval affects the accuracy of the Unused Timeout and Aged Timeout settings. The smaller the
interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less
than the values of Unused Timeout and Aged Timeout. When the pool maintenance thread runs, it
discards any connections remaining unused for longer than the time value specified in Unused Timeout,
until it reaches the number of connections specified in Min Connections. The pool maintenance thread
also discards any connections that remain active longer than the time value specified in Aged Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread
runs more often and degrades performance.

To disable the pool maintenance thread set Reap Time to 0, or set both Unused Timeout and Aged
Timeout to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, in
which case Unused Timeout and Aged Timeout are ignored. However, if Unused Timeout and Aged
Timeout are set to 0, the pool maintenance thread runs, but only physical connections that timeout due to
non-zero timeout values are discarded.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Unused Timeout
Specifies the interval in seconds after which an unused or idle connection is discarded.

Set the Unused Timeout value higher than the Reap Timeout value for optimal performance. Unused
physical connections are only discarded if the current number of connections not in use exceeds the Min

Chapter 12. Welcome to administering Messaging resources 773



Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance
thread is enabled (Reap Time is not 0), any physical connection that remains unused for two minutes is
discarded. Note that accuracy of this timeout, as well as performance, is affected by the Reap Time value.
For more information, see Reap Time.

Information Value
Data type Integer
Units Seconds
Default 1800
Range 0 to max int

Aged Timeout
Specifies the interval in seconds before a physical connection is discarded.

Setting Aged Timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the
Aged Timeout value higher than the Reap Timeout value for optimal performance. For example, if the
Aged Timeout value is set to 1200, and the Reap Time value is not 0, any physical connection that
remains in existence for 1200 seconds (20 minutes) is discarded from the pool. Note that accuracy of this
timeout, as well as performance, are affected by the Reap Time value. For more information, see Reap
Time.

Information Value
Data type Integer
Units Seconds
Default 0
Range 0 to max int

Purge Policy
Specifies how to purge connections when a stale connection or fatal connection error is detected.

Valid values are EntirePool and FailingConnectionOnly. Java EE Connector Architecture (JCA) data
sources can have either option. WebSphere Version 4.0 data sources always have a purge policy of
EntirePool.

Information Value
Data type String
Default FailingConnectionOnly

774 Administering WebSphere applications



Information Value
Range

EntirePool
All connections in the pool are marked stale. Any
connection not in use is immediately closed. A
connection in use is closed and throws a
StaleConnectionException during the next
operation on that connection. Subsequent
getConnection requests from the application
result in new connections to the database
opening. When using this purge policy, there is a
slight possibility that some connections in the
pool are closed unnecessarily when they are not
stale. However, this is a rare occurrence. In most
cases, a purge policy of EntirePool is the best
choice.

FailingConnectionOnly
Only the connection that caused the
StaleConnectionException is closed. Although
this setting eliminates the possibility that valid
connections are closed unnecessarily, it makes
recovery from an application perspective more
complicated. Because only the currently failing
connection is closed, there is a good possibility
that the next getConnection request from the
application can return a connection from the pool
that is also stale, resulting in more stale
connection exceptions.

WebSphere MQ messaging provider queue connection factory settings
Use this panel to view or change the configuration properties of the selected queue connection factory for
use with the WebSphere MQ messaging provider. These configuration properties control how connections
are created to associated JMS queue destinations.

A WebSphere MQ queue connection factory is used to create JMS connections to queues provided by
WebSphere MQ for point-to-point messaging.

To view WebSphere MQ queue connection factory settings, use the administrative console to complete the
following steps:
1. In the navigation pane, click Resources > JMS->Queue connection factories to display existing

queue connection factories.
2. If appropriate, in the content pane, change the Scope setting to the level at which the queue

connection factories are defined. This restricts the set of queue connection factories displayed.
3. Select the name of the queue connection factory that you want to work with.

Under General Properties there are four groups of properties:

v “Administration” on page 776

v “Connection” on page 777

v “Advanced” on page 783

v “Security settings” on page 784

Make any required changes to the Administration, Connection, Advanced, and Security settings groups of
properties, and then click Apply to save the configuration before, in the content pane under Additional
Properties, you select any of the following links:

Chapter 12. Welcome to administering Messaging resources 775



v Advanced properties to display the advanced properties of your WebSphere MQ queue connection
factory.

v Custom properties to display the custom properties of your WebSphere MQ queue connection factory.

v Client transport properties to display or change the client transport properties of your WebSphere MQ
queue connection factory. If the selected queue connection factory was not created using a Client
Channel Definition Table (CCDT), follow this link to enter all the information required to connect to
WebSphere MQ. If the selected queue connection factory was created using a CCDT, you do not need
to supply the client transport properties, and so the link is absent.

v Connection pools to display the connection pool detail of your WebSphere MQ queue connection
factory.

v Session pools to display the session pools detail of your WebSphere MQ queue connection factory.

Under Related Items, you can click JAAS - J2C authentication data to configure authentication
information for use with the queue connection factory.

You can specify the following additional properties by using WebSphere MQ administrative commands:

v -localAddress

v -componentAuthAlias

For more information about these properties, refer to the “createWMQConnectionFactory command” on
page 868.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ JMS
resources, see the Using Java and System Administration sections of the WebSphere MQ
information center.

A WebSphere MQ queue connection factory has the following properties.

Administration

Scope
The level at which this resource definition is visible to applications.

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at
multiple scopes, with resources defined at more specific scopes overriding duplicates that are defined at
more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse
or change this resource (or other resources) at a different scope, change the scope on the WebSphere
MQ queue connection factory collection panel, then click Apply, before clicking the link for the type of
resource.

Information Value
Data type String

Provider
The JMS provider assigned when the queue connection factory is created.

776 Administering WebSphere applications



For all queue connection factories created using this panel, the provider is the WebSphere MQ messaging
provider.

The provider is displayed for information only.

Information Value
Data type String

Name
The name by which this queue connection factory is known for administrative purposes within WebSphere
Application Server.

Information Value
Data type String
Range The name must be unique within the set of queue

connection factories defined to the cell.

JNDI name
The JNDI name that is used to bind the queue connection factory into the namespace.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

Information Value
Data type String

Description
A description of this queue connection factory for administrative purposes within WebSphere Application
Server.

Information Value
Data type String
Default Null

Connection
The information required to configure a connection depends on whether the selected queue connection
factory was created using a Client Channel Definition Table (CCDT).

If the selected queue connection factory was created using a CCDT, only the following properties are
displayed:

v Client channel definition table URL

v Queue manager

v SSL configuration

If the selected queue connection factory was not created using a CCDT, the following properties are
displayed:

v Queue manager

v Transport

v If Enter host and port information in the form of separate host and port values is selected, the
connection name list property cannot be used and the following properties can be used:

Chapter 12. Welcome to administering Messaging resources 777



– Host name

– Port

v If Enter host and port information in the form of a connection name list is selected, the connection
name list property can be used and the following properties cannot be used:

– Host name

– Port

v Host name

v Port

v Server connection channel

v If you clear the check box for the Use SSL to secure communication with Websphere MQ property,
the following properties cannot be used:

– Centrally managed

– Specific configuration

– SSL configuration

For more information about setting the SSL properties for WebSphere MQ, see SSL properties in the
Using Java section of the WebSphere MQ information center.

Client channel definition table URL
A URL that specifies the location of a WebSphere MQ CCDT.

Information Value
Data type String

Queue manager
If the specified queue connection factory is based on a CCDT, this property is used to select an entry in
the CCDT. Otherwise, this property specifies the name of the queue manager or queue-sharing group to
connect to. A connection is established to the specified WebSphere MQ resource to send or receive
messages.

Information Value
Data type String

778 Administering WebSphere applications



Information Value
Range If this queue connection factory is not based on a CCDT,

the value must be a valid queue manager name.

If this queue connection factory is based on a CCDT, the
value must be one of the following:

v A valid queue manager name

v An asterisk (*) followed by the name of a queue
manager group1

v An asterisk (*)

v Blank1

1When you specify the value of the Queue manager
property in this form in combination with a CCDT,
individual connections established by using the queue
connection factory might connect to different queue
managers. Selection from multiple queue managers
occurs when the CCDT contains multiple client connection
channel definitions with a matching queue manager name
(QMNAME) parameter, and these connection channel
definitions define the network connection details of
different queue managers.

If the specified connection factory is based on a CCDT,
and the CCDT can select from more than one queue
manager, you might not be able to recover global
transactions. Therefore, for connection factories that
specify a CCDT, you have two alternatives:

v Avoid any ambiguity about the target queue manager
when specifying the Queue manager property, which
means that the specified value of this property must not
include an asterisk (*).

v Avoid using the resources with applications that enlist in
global transactions.

Transport
The WebSphere MQ transport type for the connection. The transport type is used to determine the exact
mechanisms used to connect to WebSphere MQ.

Information Value
Data type Drop-down list
Default Bindings, then client

Chapter 12. Welcome to administering Messaging resources 779



Information Value
Range Client Use a TCP/IP-based network connection to

communicate with the WebSphere MQ queue
manager.

Bindings, then client
Attempt a bindings mode connection to the
queue manager. If this is not possible, revert to
the client transport.

Bindings
Establish a cross-memory connection to a queue
manager running on the same node. The
following Client Transport Mode properties are
disabled:
v Hostname
v Port
v Connection name list
v Server connection channel

For more information about configuring a transport type of
Bindings, then client or Bindings, refer to “Configuring the
WebSphere MQ messaging provider with native libraries
information” on page 692.

Enter host and port information in the form of separate host and port
values
If this radio is button selected, this means that the connection to the WebSphere MQ queue manager is
made using the information supplied by the host name and port properties.

Selecting this option enables the host name and port properties, and disables the connection name list
property. To enter connection name list information, click Enter host and port information in the form of
a connection name list.

This radio button is only available if the scope property specifies a cell, or if the scope property specifies a
node or server and that node or server is running WebSphere Application Server Version 8.0 or later.

Information Value
Data type Radio button

Hostname
The host name, IPv4, or IPv6 address of the WebSphere MQ queue manager to connect to.

Information Value
Data type String

Port
The port number on which WebSphere MQ is listening.

Information Value
Data type Integer
Default 1414
Range The value must be in the range 1 to 65536 (inclusive).

780 Administering WebSphere applications



Enter host and port information in the form of a connection name list
If this radio button is selected, this means that the connection to the WebSphere MQ queue manager is
made using the information supplied by the connection name list property.

Connection name lists can be used to connect to a single queue manager or to a multi-instance queue
manager. For more information on using a multi-instance queue manager, see the WebSphere MQ
information centre. Selecting this option enables the connection name list property and disables the host
name and port properties. To enter separate host and port information, click Enter host and port
information in the form of separate host and port values.

This radio button is only available if the scope property specifies a cell, or if the scope property specifies a
node or server and that node or server is running WebSphere Application Server Version 8.0 or later.

Information Value
Data type Radio button

Connection name list
The connection name list specifying the host name and port details to use when you want the connection
factory to connect to a multi-instance queue manager.

This property must only be used to allow connection to a multi-instance queue manager. It must not be
used to allow connections to non-multi-instance queue managers as that can result in transaction integrity
issues.

Information Value
Data type String
Default Unset
Range This field must be set to a string in the following form:

host[(port)][,host(port)]

The port information is optional, and if not specified,
defaults to 1414.

host must be a valid TCP/IP host name or IPv4 or IPv6
address.

port must be an integer value in the range 1 to 65536
(inclusive).

For example:
localhost(1234),remotehost1(1234),remotehost2

When the connection name list property is specified, the host name or port properties are automatically set
to the host name and port number of the first entry in the connection name list. So if you specified
localhost(1234),remotehost1(1234),remotehost2, the host name would be set to localhost and port
would be set to 1234.

This property is only available if the scope property specifies a cell, or if the scope property specifies a
node or server and that node or server is running WebSphere Application Server Version 8.0 or later.

When used in a mixed cell environment, the information in the connection name list property is not
available to versions of WebSphere Application Server earlier than Version 8.0. In this case, the
information in the host name and port name fields, based on the first element in the connection name list,
is used instead.

Chapter 12. Welcome to administering Messaging resources 781



Server connection channel
The WebSphere MQ server connection channel name used when connecting to WebSphere MQ.

Information Value
Data type String
Default SYSTEM.DEF.SVRCONN
Range The value must be a server connection channel defined to

the WebSphere MQ queue manager that is being
connected to.

Use SSL to secure communications with WebSphere MQ
This option determines whether the SSL (Secure Sockets Layer) protocol is used to secure network
communications with the WebSphere MQ queue manager or queue-sharing group.

When using a WebSphere MQ messaging provider queue connection factory in the application server
environment, the application server manages SSL configuration. To change SSL configuration parameters,
use the administrative console to navigate to the Security > SSL certificate and key management panel.

When using a WebSphere MQ messaging provider queue connection factory in the client environment, the
client takes SSL configuration information from the ssl.client.props file. Use of this file is detailed in the
related reference information for this topic.

You can only use one cipher suite in the SSL configuration for a WebSphere MQ messaging provider
queue connection factory. If you specify more than one cipher suite, only the first one is used.

Information Value
Data type Check box. If this check box is cleared, the following SSL

properties are disabled:

v Centrally managed

v Specific configuration

v SSL configuration

Centrally managed
When the SSL protocol is used to communicate with WebSphere MQ, select this radio button to specify
that the SSL configuration is taken from the centrally managed WebSphere Application Server SSL
configuration.

When you select this radio button, the host name and port attributes from the WebSphere MQ messaging
provider connection factory are used to select an appropriate SSL configuration. If host and port
information has been supplied by a connection name list this means that the host name and port
information of the first element in the list are used to select an appropriate SSL configuration. To provide
the SSL configuration which will be matched to the connection factory, see the Dynamic outbound endpoint
SSL configuration settings topic listed under related reference.

Information Value
Data type Radio button

Specific configuration
Select this radio button when you want to specify a particular SSL configuration for use when SSL is to be
used to secure network communications with the WebSphere MQ queue manager or queue-sharing group.

782 Administering WebSphere applications



Information Value
Data type Radio button

SSL configuration
The SSL configuration to use when SSL is to be used to secure network communications with the
WebSphere queue manager or queue-sharing group.

This property is disabled if the Centrally managed radio button is selected and the WebSphere MQ
messaging provider resource has been explicitly defined.

This property is always enabled if the WebSphere MQ messaging provider resource is based on a CCDT.

If this WebSphere MQ messaging provider resource is based on a CCDT, this parameter is only used if
the relevant entries in the CCDT have been configured to use SSL.

Additionally, if an SSL configuration of none is selected, the default centrally managed WebSphere
Application Server SSL configuration for the WebSphere MQ messaging provider is used.

Information Value
Data type Drop-down list

Advanced

Client ID
The client identifier to specify when connecting to the WebSphere MQ messaging provider.

Information Value
Data type String

Provider version
The WebSphere MQ messaging provider version. This is used to determine whether to connect to a
particular version of a queue manager. It is also used to determine the type of functions required by the
client.

Information Value
Data type String
Range The value entered must either be the empty string or be in

one of the following formats:

n.n.n.n

n.n.n

n.n

n

where n is a numeric value greater than or equal to zero.

For example 6.0.0.0.

Support distributed two-phase commit protocol
An option that specifies whether the queue connection factory supports XA coordination of messaging
transactions. Enable this option if multiple resources, including this queue connection factory, are to be
used in the same transaction.

Chapter 12. Welcome to administering Messaging resources 783



If you clear this property, you disable support for distributed two-phase commit protocol. The JMS session
can still be enlisted in a transaction, but it uses the resource manager local transaction calls
session.commit and session.rollback, instead of XA calls. This can lead to an improvement in
performance. However, only a single resource can be enlisted in a transaction in WebSphere Application
Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

Information Value
Data type Check box
Default Selected
Range Selected

The queue connection factory supports the use
of distributed two-phase commit protocols for the
coordination of transacted work.

Cleared
The queue connection factory does not support
the use of distributed two-phase commit protocols
for the coordination of transacted work.

Keep this option selected if transactions involve other resources, including other queues or topics. Clear
this option only when you are certain that the queue manager that is the target for this queue connection
factory is the only resource in the transaction.

Security settings

Authentication alias for XA recovery
The user name and password to use when connecting to WebSphere MQ during XA recovery.

Information Value
Data type Drop-down list
Default (none)
Range All authentication aliases defined to the cell and the value

"(none)", which specifies that no credentials are passed to
WebSphere MQ during XA recovery.

Mapping-configuration alias
This field is used only in the absence of a login configuration on the component resource reference.

When the resource authority value is "container", the preferred way to define the authentication strategy is
by specifying a login configuration and associated properties on the component resource reference.

If the DefaultPrincipalMapping login configuration is specified, the associated property will be a JAAS -
J2C authentication data entry alias. To configure authentication information for use with the queue
connection factory, under Related Items, click JAAS - J2C authentication data .

Information Value
Data type Drop-down list
Default (none)

784 Administering WebSphere applications



Information Value
Range The following options are available:

ClientContainer

WSLogin

WSKRB5Login

DefaultPrincipalMapping

TrustedConnectionMapping

KerberosMapping

Container-managed authentication alias
The authentication alias which specifies the user name and password to use when connecting to the
WebSphere MQ messaging provider.

Information Value
Data type Drop-down list
Default (none)
Range All authentication aliases defined to the cell and the value

"(none)", which specifies that no credentials are passed to
WebSphere MQ.

WebSphere MQ messaging provider queue connection factory
advanced properties
Use this panel to view or change the advanced properties of the selected queue connection factory for use
with the WebSphere MQ messaging provider. These advanced properties control the behavior of
connections made to WebSphere MQ messaging provider destinations.

To view WebSphere MQ queue connection factory advanced properties, use the administrative console to
complete the following steps:
1. In the navigation pane, click Resources > JMS->Queue connection factories to display existing

queue connection factories.
2. If appropriate, in the content pane, change the Scope setting to the level at which the queue

connection factories are defined. Setting the scope in this way restricts the set of queue connection
factories displayed.

3. Select the name of the queue connection factory that you want to work with.
4. In the content pane, under Additional properties, click Advanced properties to view a list of the

advanced properties of the WebSphere MQ queue connection factory.

Under General Properties there are six groups of advanced properties:

v Client reconnect

v Message compression

v Temporary destinations

v Connection consumer

v Message format

v Additional

Make any required changes to these groups and then click Apply to return to the queue connection
factory.

Note: When specifying WebSphere MQ properties, the following restrictions apply:

Chapter 12. Welcome to administering Messaging resources 785



v Names can have a maximum of 48 characters, except for channels, which have a maximum of
20 characters.

v The property values that you specify must match the values that you specified when configuring
JMS resources for WebSphere MQ. For more information about configuring JMS resources for
WebSphere MQ , see the Using Java section of the WebSphere MQ information center.

A WebSphere MQ queue connection factory has the following advanced properties:

Client reconnect options
This property specifies whether a client mode connection reconnects automatically, or not, in the event of
a communications or queue manager failure. This parameter is ignored unless the connection factory is
being used in a thin or managed client environment.

Information Value
Data type Drop-down list
Default DISABLED
Range DISABLED

Client reconnection does not automatically occur.
ASDEF The value from the DefRecon attribute from the

channels stanza of the client configuration file is
used. If there is no DefRecon value specified in
the client configuration file, ASDEF has the same
effect as DISABLED.

QMGR Reconnection occurs only to the queue manager
to which the connection was originally connected.

RECONNECT
Reconnection occurs to any queue manager that
is consistent with the value of the queue
manager attribute. This queue manager might be
a different queue manager from the one to which
the connection was originally connected.

For more information about automatic client reconnection, see the WebSphere MQ information center.

Client reconnect timeout
The maximum number of seconds that a client mode connection spends attempting to automatically
reconnect to a queue manager after a communications or queue manager failure. This parameter is
ignored unless the connection factory is being used in a thin or managed client environment. Whether this
parameter is used or not depends on the value of the client reconnect options parameter.

Information Value
Data type Integer
Units Seconds
Default 1800 (30 minutes)
Range A value greater than zero and up to 2147483647

For more information about automatic client reconnection, see the WebSphere MQ information center.

Compress message headers
An option that enables the compression of message headers.

Information Value
Data type Check box
Default Cleared

786 Administering WebSphere applications



Information Value
Range Cleared

Do not compress message headers.
Selected

Compress message headers.

Compression algorithm for message payloads
The compression algorithm that is used to compress message payloads.

Information Value
Data type Drop-down list
Default NONE
Range RLE Message data compression is performed using

run-length encoding.
ZLIBFAST

Message data compression is performed using
ZLIB encoding with speed prioritized.

ZLIBHIGH
Message data compression is performed using
ZLIB encoding with compression prioritized.

NONE No message data compression is performed.

WebSphere MQ model queue name
The model queue that is used as a basis for temporary queue definitions.

Information Value
Data type String
Default SYSTEM.DEFAULT.MODEL.QUEUE

Temporary queue prefix
The prefix that is attached to the beginning of the names generated for temporary queues.

Information Value
Data type String

Retain messages, even if no matching consumer is available
An option that determines whether messages for which there is no matching consumer are retained on the
input queue or dealt with according with their disposition options.

Information Value
Data type Check box
Default Selected
Range Cleared

Do not retain messages.
Selected

Retain messages.

Polling interval
This setting is applicable in the client container only. When using a WebSphere MQ Version 6 queue
manager (or WebSphere MQ Version 5.3 for z/OS), this setting configures the mechanism used to
dispatch messages to JMS asynchronous consumers.

Chapter 12. Welcome to administering Messaging resources 787



This setting is used when the set of WebSphere MQ queues that is being asynchronously consumed from
exceeds the number of threads that are available internally to synchronously get messages from the
WebSphere MQ queue. The setting determines how long a thread waits for a message to arrive at a
WebSphere MQ queue before polling another WebSphere MQ queue in the set.

Information Value
Data type Integer
Units Milliseconds
Default 5000
Range A value greater than zero.

Rescan interval
When using a WebSphere MQ Version 6 queue manager (or WebSphere MQ Version 5.3 for z/OS), this
setting configures the mechanism used to dispatch messages to JMS asynchronous consumers.

This setting is used when the set of WebSphere MQ queues that is being asynchronously consumed from
exceeds the number of threads that are available internally to synchronously get messages from the
WebSphere MQ queue. The setting determines how long a thread retrieves messages from a WebSphere
MQ queue before switching to use messages from another WebSphere MQ queue in the set.

Information Value
Data type Integer
Units Milliseconds
Default 5000
Range A value greater than zero.

Maximum batch size
The maximum number of messages that can be removed from a queue before at least one must be
delivered to an asynchronous consumer.

Information Value
Data type Integer
Default 10
Range A value greater than zero.

Coded character set identifier
The character set to use when you are encoding strings in the message.

Information Value
Data type Integer
Default 819
Range A value greater than zero. The coded character set

identifier (CCSID) must be one of the CCSIDs supported
by WebSphere MQ.

For more information about supported CCSIDs, and about converting between message data from one
coded character set to another, see the System Administration and the Application Programming
Reference sections of the WebSphere MQ information center.

788 Administering WebSphere applications



Append an RFH version 2 header to reply messages
When sending a reply message to the reply-to queue obtained from a message, select this option to
append an RFH version 2 header to the reply message regardless of whether the original message had a
RFH version 2 header.

Information Value
Data type Check box
Default Cleared
Range

Selected
Append an RFH version 2 header to reply
messages regardless of whether the original
message had an RFH version 2 header.

Cleared
Append an RFH version 2 header to reply
messages only if the original message had an
RFH version 2 header.

Fail JMS method calls if the WebSphere MQ queue manager is
quiescing
An option that enables selected JMS operations to fail when the queue manager is put into a quiescing
state. Selecting this option enables the queue manager to quiesce successfully and shut down.

Information Value
Data type Check box
Default Selected
Range Cleared

Do not fail JMS operations if the queue manager
is quiescing.

Selected
Fail JMS operations if the queue manager is
quiescing.

WebSphere MQ messaging provider connection factory client
transport settings
Use this panel to view or change the client transport settings of a connection factory, queue connection
factory, or topic connection factory for use with the WebSphere MQ messaging provider. Client transport
properties affect how a client connection is established with a WebSphere MQ queue manager or
queue-sharing group. Updates to the settings take effect when the server is restarted.

To view WebSphere MQ connection factory, queue connection factory, or topic connection factory client
transport settings, use the administrative console to complete the following steps:
1. In the navigation pane, click Resources > JMS.
2. Click Connection factories, Queue connection factories, or Topic connection factories to display

existing connection factories, queue connection factories or topic connection factories.
3. Select the name of the connection factory, queue connection factory, or topic connection factory that

you want to work with.
4. In the content pane under Additional Properties, click Client transport properties to view a list of the

client transport settings of the WebSphere MQ connection factory, queue connection factory, or topic
connection factory.

Under General Properties there are two groups of properties:

Chapter 12. Welcome to administering Messaging resources 789



v Additional SSL settings (for more information about setting the SSL properties for WebSphere MQ, see
SSL properties in the Using Java section of the WebSphere MQ information center)

v Channel exits

Make any required changes to these groups and then click Apply to return to the connection factory,
queue connection factory or topic connection factory.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for
JMS resources, see the Using Java section of the WebSphere MQ information center.

A WebSphere MQ connection factory, queue connection factory, or topic connection factory has the
following client transport settings properties:

Certificate revocation list
A list of LDAP URLs pointing to LDAP repositories of SSL certificates that might have been revoked.

Information Value
Data type String
Default No certificate revocation list
Range The value must be a space-separated list of LDAP URLs.

Peer name
A name (possibly including wildcards) that must match the distinguished name of the peer SSL certificate
for a connection to be established.

Information Value
Data type String
Default Do not check the distinguished name of the peer

certificate.
Range Validated according to the rules for a WebSphere MQ

SSLPEER channel parameter.

Reset count
The total number of bytes to transfer over an SSL connection before renegotiating the symmetric
encryption keys used to secure the connection.

Information Value
Data type Integer
Default 0 (do not renegotiate)
Range The value must be in the range 0 through 999,999,999

(inclusive).

Receive exits
A comma-separated list of Java class names corresponding to receive exits to be loaded.

Information Value
Data type String

790 Administering WebSphere applications



Receive exit initialization data
Initialization data to be passed to the receive exit.

Information Value
Data type String

Send exits
A comma-separated list of Java class names corresponding to send exits to be loaded.

Information Value
Data type String

Send exit initialization data
Initialization data to be passed to the send exit.

Information Value
Data type String

Security exit
A Java class name corresponding to the security exit to be loaded.

Information Value
Data type String

Security exit initialization data
Initialization data to be passed to the security exit.

Information Value
Data type String

Connection pool settings
Use this page to configure connection pool settings.

This administrative console page is common to JDBC data sources and JMS connection factories (unified,
queue, or topic connection factories). To view this page, the path depends on the type of resource, but
generally you select an instance of the resource type then click Connection Pool. For example:

v Click Resources > JDBC > Data Sources > data_source > [Additional Properties] Connection pool
properties

v Click Resources > JMS->Queue connection factories->queue_connection_factory->[Additional
Properties] Connection pool

Note: Connection pooling is not supported in an application client. The application client calls the
database directly and does not go through a data source. If you want to use the getConnection()
request from the application client, configure the JDBC provider in the application client deployment
descriptors, using Rational Application Developer or an assembly tool. The connection is
established between application client and the database. Application clients do not have a
connection pool, but you can configure JDBC provider settings in the client deployment descriptors.

Chapter 12. Welcome to administering Messaging resources 791



Connection timeout
Specifies the interval, in seconds, after which a connection request times out and a
ConnectionWaitTimeoutException is thrown.

This value indicates the number of seconds that a connection request waits when there are no
connections available in the free pool and no new connections can be created. This usually occurs
because the maximum value of connections in the particular connection pool has been reached.

For example, if Connection timeout is set to 300, and the maximum number of connections are all in use,
the pool manager waits for 300 seconds for a physical connection to become available. If a physical
connection is not available within this time, the pool manager initiates a ConnectionWaitTimeout exception.
In most cases, you should not retry the getConnection() method; if a longer wait time is required you
should increase the Connection timeout setting value. If a ConnectionWaitTimeout exception is caught by
the application, review the expected connection pool usage of the application and tune the connection pool
and database accordingly.

If the Connection timeout is set to 0, the pool manager waits as long as necessary until a connection
becomes available. This happens when the application completes a transaction and returns a connection
to the pool, or when the number of connections falls below the value of Maximum Connections, and a new
physical connection is created.

If Maximum Connections is set to 0, an infinite number of physical connections are enabled, and the
Connection timeout value is ignored.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Maximum connections
Specifies the maximum number of physical connections that you can create in this pool.

These are the physical connections to the backend resource. When this number is reached, no new
physical connections are created. The requester waits until a physical connection that is currently in use
returns to the pool, or until a ConnectionWaitTimeoutException error displays. For example, if the Max
Connections value is set to 5, and there are 5 physical connections in use, the pool manager waits for the
amount of time specified in Connection timeout for a physical connection to become free.

Knowing the number of connection pools that can potentially request connections from the backend, such
as a DB2 database or a CICS server, helps you determine a value for the Maximum Connections property.

For multiple stand-alone application servers that use the same data source configuration, or
J2C connection factory configuration, a separate physical connection pool exists for each server. If you
clone these same application servers, WebSphere Application Server (base) implements a separate
connection pool for each clone.

All of these connection pools correspond to the same data source or connection factory
configuration. Therefore all of these connection pools can potentially request connections from the same
backend resource, at the same time. The single Maximum Connections value that you set on this console
panel applies to every one of these connection pools. Consequently, setting a high Maximum Connections
value can result in a load of connection requests that overwhelms your backend resource.

792 Administering WebSphere applications



Information Value
Data type Integer
Default 10
Range 0 to maximum integer

If Max Connections is set to 0, the Connection timeout
value is ignored.

Tip: For better performance, set the value for the connection pool lower than the value for the maximum
thread pool connections of the web container. To configure this setting click Servers > Server types
> WebSphere application servers > server > Thread Pools, and modify the web container
property. Lower settings, such as 10-30 connections, perform better than higher settings, such as
100.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool. If the
number of concurrent waiters is greater than 0, but the processor load is not close to 100%, consider
increasing the connection pool size. If the Percent Used value is consistently low under normal
workload, consider decreasing the number of connections in the pool.

Minimum connections
Specifies the minimum number of physical connections to maintain.

If the size of the connection pool is at or below the minimum connection pool size, the Unused timeout
thread does not discard physical connections. However, the pool does not create connections solely to
ensure that the minimum connection pool size is maintained. Also, if you set a value for Aged timeout,
connections with an expired age are discarded, regardless of the minimum pool size setting.

For example, if the Minimum Connections value is set to 3, and one physical connection is created, the
Unused timeout thread does not discard that connection. By the same token, the thread does not
automatically create two additional physical connections to reach the Minimum Connections setting.

Information Value
Data type Integer
Default 1
Range 0 to max int

Reap time
Specifies the interval, in seconds, between runs of the pool maintenance thread.

For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap
Time interval affects the accuracy of the Unused timeout and Aged timeout settings. The smaller the
interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less
than the values of Unused timeout and Aged timeout. When the pool maintenance thread runs, it discards
any connections remaining unused for longer than the time value specified in Unused timeout, until it
reaches the number of connections specified in Minimum Connections. The pool maintenance thread also
discards any connections that remain active longer than the time value specified in Aged timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread
runs more often and degrades performance.

To disable the pool maintenance thread, set Reap Time to 0, or set both Unused timeout and Aged timeout
to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, and Unused
timeout and Aged timeout are ignored. However, if Unused Timeout and Aged Timeout are set to 0, the
pool maintenance thread runs. Physical connections which timeout due to non-zero timeout values are

Chapter 12. Welcome to administering Messaging resources 793



discarded as well as those connections that reside in a used pool (or shared pool) because they have
been held longer than the time interval set for Aged Timeout.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Unused timeout
Specifies the interval in seconds after which an unused or idle connection is discarded.

Set the Unused timeout value higher than the Reap timeout value for optimal performance. Unused
physical connections are only discarded if the current number of connections exceeds the Minimum
Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance
thread is enabled (Reap Time is not 0), any physical connection that remains unused for 2 minutes is
discarded.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on
page 183 for more information.

Information Value
Data type Integer
Units Seconds
Default 1800
Range 0 to max int

Aged timeout
Specifies the interval in seconds before a physical connection is discarded.

Setting Aged timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the
Aged timeout value higher than the Reap timeout value for optimal performance.

For example, if the Aged timeout value is set to 1200, and the Reap Time value is not 0, any physical
connection that remains in existence for 1200 seconds (20 minutes) is discarded from the pool. The only
exception is if the connection is involved in a transaction when the aged timeout is reached, the
application server will not discard the connection until after the transaction is completed and the
connection is closed.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on
page 183 for more information.

Information Value
Data type Integer
Units Seconds
Default 0
Range 0 to max int

Purge policy
Specifies how to purge connections when a stale connection or fatal connection error is detected.

Valid values are EntirePool and FailingConnectionOnly.

794 Administering WebSphere applications



Information Value
Data type String
Defaults v EntirePool for J2C connection factories and

JMS-related connection factories

v EntirePool for WebSphere Version 4.0 data sources

v EntirePool for current version data sources that you
create through the administrative console

v EntirePool for current version data sources that you
script through wsadmin AdminConfig commands,
starting JDBC templates that are built into WebSphere
Application Server. For information about the command
createUsingTemplate, see the topic, Commands for the
AdminConfig object.

v FailingConnectionOnly for data sources that you script
in wsadmin tool without starting JDBC templates

:
Range

EntirePool
All connections in the pool are marked stale. Any
connection not in use is immediately closed. A
connection in use is closed and issues a stale
connection Exception during the next operation
on that connection. Subsequent getConnection()
requests from the application result in new
connections to the database opening. When
using this purge policy, there is a slight possibility
that some connections in the pool are closed
unnecessarily when they are not stale. However,
this closure is a rare occurrence. In most cases,
a purge policy of EntirePool is the best choice.

FailingConnectionOnly
Only the connection that caused the stale
connection exception is closed. Although this
setting eliminates the possibility that valid
connections are closed unnecessarily, it makes
recovery from an application perspective more
complicated. Because only the currently failing
connection is closed, there is a possibility that the
next getConnection() request from the application
can return a connection from the pool that is also
stale. The result is more stale connection
exceptions.

The connection pretest function attempts to
insulate an application from pooled connections
that are not valid. When a backend resource,
such as a database, goes down, pooled
connections that are not valid might exist in the
free pool. This is especially true when the purge
policy is failingConnectionOnly; in this case, the
failing connection is removed from the pool.
Depending on the failure, the remaining
connections in the pool might not be valid.

Session pool settings
Use this page to configure session pool settings.

Chapter 12. Welcome to administering Messaging resources 795



This administrative console page is common to JMS unified connection factories, queue connection
factories and topic connection factories. To view this page, you select an instance of the resource type
then click Session pools. For example, click Resources > JMS->Queue connection
factories->queue_connection_factory->[Additional Properties] Session pools.

Connection Timeout
Specifies the interval, in seconds, after which a connection request times out and a
ConnectionWaitTimeoutException is thrown.

The wait is necessary when the maximum value of connections (Max Connections) to a particular
connection pool is reached . For example, if Connection Timeout is set to 300 and the maximum number
of connections is reached, the Pool Manager waits for 300 seconds for an available physical connection. If
a physical connection is not available within this time, the Pool Manager throws a
ConnectionWaitTimeoutException. It usually does not make sense to retry the getConnection() method,
because if a longer wait time is required, you should set the Connection Timeout setting to a higher
value. Therefore, if this exception is caught by the application, the administrator should review the
expected usage of the application and tune the connection pool and the database accordingly.

If Connection Timeout is set to 0, the Pool Manager waits as long as necessary until a connection is
allocated (which happens when the number of connections falls below the value of Max Connections).

If Max Connections is set to 0, which enables an infinite number of physical connections, then the
Connection Timeout value is ignored.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Max Connections
Specifies the maximum number of physical connections that you can create in this pool.

These are the physical connections to the backend resource. Once this number is reached, no new
physical connections are created and the requester waits until a physical connection that is currently in
use returns to the pool, or a ConnectionWaitTimeoutException is thrown.

For example, if the Max Connections value is set to 5, and there are five physical connections in use, the
pool manager waits for the amount of time specified in Connection Timeout for a physical connection to
become free.

If Max Connections is set to 0, the Connection Timeout value is ignored.

For better performance, set the value for the connection pool lower than the value for the Max
Connections option in the web container. Lower settings, such as 10-30 connections, perform better than
higher settings, such as 100.

If clones are used, one data pool exists for each clone. Knowing the number of data pools is important
when configuring the database maximum connections.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool.
If the number of concurrent waiters is greater than 0, but the CPU load is not close to 100%, consider
increasing the connection pool size. If the Percent Used value is consistently low under normal workload,
consider decreasing the number of connections in the pool.

796 Administering WebSphere applications



Information Value
Data type Integer
Default 10
Range 0 to max int

Min Connections
Specifies the minimum number of physical connections to maintain.

Until this number is reached, the pool maintenance thread does not discard physical connections.
However, no attempt is made to bring the number of connections up to this number. If you set a value for
Aged Timeout, the minimum is not maintained. All connections with an expired age are discarded.

For example if the Min Connections value is set to 3, and one physical connection is created, the Unused
Timeout thread does not discard that connection. By the same token, the thread does not automatically
create two additional physical connections to reach the Min Connections setting.

Information Value
Data type Integer
Default 1
Range 0 to max int

Reap Time
Specifies the interval, in seconds, between runs of the pool maintenance thread.

For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap
Time interval affects the accuracy of the Unused Timeout and Aged Timeout settings. The smaller the
interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less
than the values of Unused Timeout and Aged Timeout. When the pool maintenance thread runs, it
discards any connections remaining unused for longer than the time value specified in Unused Timeout,
until it reaches the number of connections specified in Min Connections. The pool maintenance thread
also discards any connections that remain active longer than the time value specified in Aged Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread
runs more often and degrades performance.

To disable the pool maintenance thread set Reap Time to 0, or set both Unused Timeout and Aged
Timeout to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, in
which case Unused Timeout and Aged Timeout are ignored. However, if Unused Timeout and Aged
Timeout are set to 0, the pool maintenance thread runs, but only physical connections that timeout due to
non-zero timeout values are discarded.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Unused Timeout
Specifies the interval in seconds after which an unused or idle connection is discarded.

Set the Unused Timeout value higher than the Reap Timeout value for optimal performance. Unused
physical connections are only discarded if the current number of connections not in use exceeds the Min

Chapter 12. Welcome to administering Messaging resources 797



Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance
thread is enabled (Reap Time is not 0), any physical connection that remains unused for two minutes is
discarded. Note that accuracy of this timeout, as well as performance, is affected by the Reap Time value.
For more information, see Reap Time.

Information Value
Data type Integer
Units Seconds
Default 1800
Range 0 to max int

Aged Timeout
Specifies the interval in seconds before a physical connection is discarded.

Setting Aged Timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the
Aged Timeout value higher than the Reap Timeout value for optimal performance. For example, if the
Aged Timeout value is set to 1200, and the Reap Time value is not 0, any physical connection that
remains in existence for 1200 seconds (20 minutes) is discarded from the pool. Note that accuracy of this
timeout, as well as performance, are affected by the Reap Time value. For more information, see Reap
Time.

Information Value
Data type Integer
Units Seconds
Default 0
Range 0 to max int

Purge Policy
Specifies how to purge connections when a stale connection or fatal connection error is detected.

Valid values are EntirePool and FailingConnectionOnly. Java EE Connector Architecture (JCA) data
sources can have either option. WebSphere Version 4.0 data sources always have a purge policy of
EntirePool.

Information Value
Data type String
Default FailingConnectionOnly

798 Administering WebSphere applications



Information Value
Range

EntirePool
All connections in the pool are marked stale. Any
connection not in use is immediately closed. A
connection in use is closed and throws a
StaleConnectionException during the next
operation on that connection. Subsequent
getConnection requests from the application
result in new connections to the database
opening. When using this purge policy, there is a
slight possibility that some connections in the
pool are closed unnecessarily when they are not
stale. However, this is a rare occurrence. In most
cases, a purge policy of EntirePool is the best
choice.

FailingConnectionOnly
Only the connection that caused the
StaleConnectionException is closed. Although
this setting eliminates the possibility that valid
connections are closed unnecessarily, it makes
recovery from an application perspective more
complicated. Because only the currently failing
connection is closed, there is a good possibility
that the next getConnection request from the
application can return a connection from the pool
that is also stale, resulting in more stale
connection exceptions.

WebSphere MQ messaging provider topic connection factory settings
Use this panel to view or change the configuration properties of the selected topic connection factory for
use with the WebSphere MQ messaging provider. These configuration properties control how connections
are created to the associated JMS topic destination.

A WebSphere MQ topic connection factory is used to create JMS connections to topic destinations
provided by WebSphere MQ for publish/subscribe messaging.

To view WebSphere MQ topic connection factory settings, use the administrative console to complete the
following steps:
1. In the navigation pane, click Resources > JMS->Topic connection factories to display existing topic

connection factories.
2. If appropriate, in the content pane, change the Scope setting to the level at which the topic connection

factories are defined. This restricts the set of topic connection factories displayed.
3. Select the name of the topic connection factory that you want to work with.

Under General Properties there are four groups of properties:

v “Administration” on page 800

v “Connection” on page 801

v “Advanced” on page 807

v “Security settings” on page 808

Make any required changes to the Administration, Connection, Advanced and Security settings groups of
properties, and then click Apply to save the configuration before, in the content pane under Additional
Properties, you click any of the following links:

Chapter 12. Welcome to administering Messaging resources 799



v Advanced properties to display the advanced properties of your WebSphere MQ topic connection
factory.

v Broker properties to display the broker properties of your WebSphere MQ topic connection factory.

v Custom properties to display the custom properties of your WebSphere MQ topic connection factory.

v Client transport properties to display or change the client transport properties of your WebSphere MQ
topic connection factory. If the selected topic connection factory was not created using a Client Channel
Definition Table (CCDT), follow this link to enter all the information required to connect to WebSphere
MQ. If the selected topic connection factory was created using a CCDT, you do not need to supply the
client transport properties, and so the link is absent.

v Connection pools to display the connection pools detail of your WebSphere MQ topic connection
factory

v Session pools to display the session pools detail of your WebSphere MQ topic connection factory.

Under Related Items, you can click JAAS - J2C authentication data to configure authentication
information for use with the topic connection factory.

You can specify the following additional properties by using WebSphere MQ administrative commands:

v -localAddress

v -clonedSubs

v -componentAuthAlias

For more information about these properties, refer to the “createWMQConnectionFactory command” on
page 868.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when you

configured the JMS resources in WebSphere MQ. For more information about configuring JMS
resources in WebSphere MQ, see the Using Java section of the WebSphere MQ information
center.

A WebSphere MQ topic connection factory has the following properties.

Administration

Scope
The level to which this resource definition is visible to applications.

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at
multiple scopes, with resources defined at more specific scopes overriding duplicates that are defined at
more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse
or change this resource at a different scope, change the scope on the WebSphere MQ topic connection
factory collection panel, then click Apply, before clicking the link for the type of resource.

Information Value
Data type String

Provider
The JMS provider assigned when the topic connection factory is created.

800 Administering WebSphere applications



For all topic connection factories created using this panel, the provider is the WebSphere MQ messaging
provider.

The provider is displayed for information only.

Information Value
Data type String

Name
The name by which this topic connection factory is known for administrative purposes within WebSphere
Application Server.

Information Value
Data type String
Range The name must be unique within the set of JMS topic

connection factories defined to the cell.

JNDI name
The JNDI name that is used to bind the topic connection factory into the JNDI namespace.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

Information Value
Data type String

Description
A description of this topic connection factory for administrative purposes within WebSphere Application
Server.

Information Value
Data type String
Default Null

Connection
The information required to configure a connection depends on whether the selected topic connection
factory was created using a Client Channel Definition Table (CCDT).

If the selected topic connection factory was created using a CCDT, only the following properties are
displayed:

v Client channel definition table URL

v Queue manager

v SSL configuration

If the selected topic connection factory was not created using a CCDT, the following properties are
displayed:

v Queue manager

v Transport

v If Enter host and port information in the form of separate host and port values is selected, the
connection name list property cannot be used and the following properties can be used:

Chapter 12. Welcome to administering Messaging resources 801



– Host name

– Port

v If Enter host and port information in the form of a connection name list is selected, the connection
name list property can be used and the following properties cannot be used:

– Host name

– Port

v Server connection channel

v If you clear the check box for the Use SSL to secure communication with Websphere MQ property,
the following properties cannot be used:

– Centrally managed

– Specific configuration

– SSL configuration

For more information about setting the SSL properties for WebSphere MQ, see SSL properties in the
Using Java section of the WebSphere MQ information center.

Client channel definition table URL
A URL that specifies the location of a WebSphere MQ CCDT.

Information Value
Data type String

Queue manager
If the specified topic connection factory is based on a CCDT, this property is used to select an entry in the
CCDT. Otherwise, it is the name of the queue manager or queue-sharing group to connect to. A
connection is established to this WebSphere MQ resource to send or receive messages.

Information Value
Data type String

802 Administering WebSphere applications



Information Value
Range If this topic connection factory is not based on a CCDT,

the value must be a valid queue manager name.

If this topic connection factory is based on a CCDT, the
value must be one of the following:

v A valid queue manager name

v An asterisk (*) followed by the name of a queue
manager group1

v An asterisk (*)

v Blank1

1When you specify the value of the Queue manager
property in this form in combination with a CCDT,
individual connections established by using the topic
connection factory might connect to different queue
managers. Selection from multiple queue managers
occurs when the CCDT contains multiple client connection
channel definitions with a matching queue manager name
(QMNAME) parameter, and these connection channel
definitions define the network connection details of
different queue managers.

If the specified connection factory is based on a CCDT,
and the CCDT can select from more than one queue
manager, you might not be able to recover global
transactions. Therefore, for connection factories that
specify a CCDT, you have two alternatives:

v Avoid any ambiguity about the target queue manager
when specifying the Queue manager property, which
means that the specified value of this property must not
include an asterisk (*).

v Avoid using the resources with applications that enlist in
global transactions.

Transport
The WebSphere MQ transport type for the connection. The transport type is used to determine the exact
mechanisms used to connect to WebSphere MQ.

Information Value
Data type Drop-down list
Default Bindings, then client

Chapter 12. Welcome to administering Messaging resources 803



Information Value
Range Client Use a TCP/IP-based network connection to

communicate with the WebSphere MQ queue
manager

Bindings, then client
Attempt a bindings mode connection to the
queue manager. If this is not possible, revert to
the client transport.

Bindings
Establish a cross-memory connection to a queue
manager running on the same node. The
following Client Transport Mode properties are
disabled:
v Hostname
v Port
v Connection name list
v Server connection channel

For more information about configuring a transport type of
Bindings, then client or Bindings, refer to “Configuring the
WebSphere MQ messaging provider with native libraries
information” on page 692.

Enter host and port information in the form of separate host and port
values
If this radio button is selected, this means that the connection to the WebSphere MQ queue manager is
made using the information supplied by the host name and port properties.

Selecting this option enables the host name and port properties, and disables the connection name list
property. To enter connection name list information, click Enter host and port information in the form of
a connection name list.

This radio button is only available if the scope property specifies a cell, or if the scope property specifies a
node or server and that node or server is running WebSphere Application Server Version 8.0 or later.

Information Value
Data type Radio button

Hostname
The host name, IPv4, or IPv6 address of the WebSphere MQ queue manager to connect to.

Information Value
Data type String

Port
The port number on which WebSphere MQ is listening.

Information Value
Data type Integer
Default 1414
Range The value must be in the range 1 to 65536 (inclusive).

804 Administering WebSphere applications



Enter host and port information in the form of a connection name list
If this radio button is selected, this means that the connection to the WebSphere MQ queue manager is
made using the information supplied by the connection name list property.

Connection name lists can be used to connect to a single queue manager or to a multi-instance queue
manager. For more information on using a multi-instance queue manager, see the WebSphere MQ
information centre. Selecting this option enables the connection name list property and disables the host
name and port properties. To enter separate host and port information, click Enter host and port
information in the form of separate host and port values.

This radio button is only available if the scope property specifies a cell, or if the scope property specifies a
node or server and that node or server is running WebSphere Application Server Version 8.0 or later.

Information Value
Data type Radio button

Connection name list
The connection name list specifying the host name and port details to use when you want the connection
factory to connect to a multi-instance queue manager.

This property must only be used to allow connection to a multi-instance queue manager. It must not be
used to allow connections to non-multi-instance queue managers as that can result in transaction integrity
issues.

Information Value
Data type String
Default Unset
Range This field must be set to a string in the following form:

host[(port)][,host(port)]

The port information is optional, and if not specified,
defaults to 1414.

host must be a valid TCP/IP host name or IPv4 or IPv6
address.

port must be an integer value in the range 1 to 65536
(inclusive).

For example:
localhost(1234),remotehost1(1234),remotehost2

When the connection name list property is specified, the host name or port properties are automatically set
to the host name and port number of the first entry in the connection name list. So if you specified
localhost(1234),remotehost1(1234),remotehost2, the host name would be set to localhost and port
would be set to 1234.

This property is only available if the scope property specifies a cell, or if the scope property specifies a
node or server and that node or server is running WebSphere Application Server or later.

When used in a mixed cell environment, the information in the connection name list property is not
available to versions of WebSphere Application Server earlier than Version 8.0. In this case, the
information in the host name and port name fields, based on the first element in the connection name list,
is used instead.

Chapter 12. Welcome to administering Messaging resources 805



Server connection channel
The WebSphere MQ server connection channel name used when connecting to WebSphere MQ.

Information Value
Data type String
Default SYSTEM.DEF.SVRCONN
Range The value must be a server connection channel defined to

the WebSphere MQ queue manager that is being
connected to.

Use SSL to secure communications with WebSphere MQ
This option determines whether the SSL (Secure Sockets Layer) protocol is used to secure network
communications with the WebSphere MQ queue manager or queue-sharing group.

When using a WebSphere MQ messaging provider topic connection factory in the application server
environment, the application server manages SSL configuration. To change SSL configuration parameters,
use the administrative console to navigate to the Security > SSL certificate and key management panel.

When using a WebSphere MQ messaging provider topic connection factory in the client environment, the
client takes SSL configuration information from the ssl.client.props file. Use of this file is detailed in the
related reference information for this topic.

You can only use one cipher suite in the SSL configuration for a WebSphere MQ messaging provider topic
connection factory. If you specify more than one cipher suite, only the first one is used.

Information Value
Data type Check box. If this check box is cleared, the following SSL

properties are disabled:

v Centrally managed

v Specific configuration

v SSL configuration

Centrally managed
When the SSL protocol is used to communicate with WebSphere MQ, select this radio button to specify
that the SSL configuration is taken from the centrally managed WebSphere Application Server SSL
configuration.

When you select this radio button, the host name and port attributes from the WebSphere MQ messaging
provider connection factory are used to select an appropriate SSL configuration. If host and port
information has been supplied by a connection name list this means that the host name and port
information of the first element in the list are used to select an appropriate SSL configuration. To provide
the SSL configuration which will be matched to the connection factory, see the Dynamic outbound endpoint
SSL configuration settings topic listed under related reference.

Information Value
Data type Radio button

Specific configuration
Select this radio button when you want to specify a particular SSL configuration for use when SSL is to be
used to secure network communications with the WebSphere MQ queue manager or queue-sharing group.

806 Administering WebSphere applications



Information Value
Data type Radio button

SSL configuration
The SSL configuration to use when SSL is to be used to secure network communications with the
WebSphere MQ queue manager or queue sharing group.

This property is disabled if the Centrally managed radio button is selected and the WebSphere MQ
messaging provider resource has been explicitly defined.

This property is always enabled if the WebSphere MQ messaging provider resource is based on a CCDT.

If this WebSphere MQ messaging provider resource is based on a CCDT, this parameter is only used if
the relevant entries in the CCDT have been configured to use SSL.

Additionally, if an SSL configuration of none is selected, the default centrally managed WebSphere
Application Server SSL configuration for the WebSphere MQ messaging provider is used.

Information Value
Data type Drop-down list

Advanced

Client ID
The client identifier to specify when connecting to WebSphere MQ messaging provider.

Information Value
Data type String

Allow cloned durable subscriptions
An option that determines whether multiple instances of a durable subscription can be accessed
concurrently by different servers.

Information Value
Data type Check box
Default Cleared
Range Selected

Multiple instances of a durable subscription can
be accessed concurrently by different servers.

Cleared
Multiple instances of a durable subscription
cannot be accessed concurrently by different
servers.

Provider version
The WebSphere MQ messaging provider version. This is used to determine whether to connect to a
particular version of a queue manager. It is also used to determine the type of functions required by the
client.

Information Value
Data type String

Chapter 12. Welcome to administering Messaging resources 807



Information Value
Range The value entered must either be the empty string or be in

one of the following formats:

n.n.n.n

n.n.n

n.n

n

where n is a numeric value greater than or equal to zero.

For example 6.0.0.0.

Support distributed two-phase commit protocol
An option that specifies whether the topic connection factory supports XA coordination of messaging
transactions. Enable this option if multiple resources, including this topic connection factory, are to be used
in the same transaction.

If you clear this property, you disable support for distributed two-phase commit protocol. The JMS session
can still be enlisted in a transaction, but it uses the resource manager local transaction calls
session.commit and session.rollback, instead of XA calls. This can lead to an improvement in
performance. However, only a single resource can be enlisted in a transaction in WebSphere Application
Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

Information Value
Data type Check box
Default Selected
Range Selected

The connection factory supports the use of
distributed two-phase commit protocols for the
coordination of transacted work.

Cleared
The connection factory does not support the use
of distributed two-phase commit protocols for the
coordination of transacted work.

Do not enable XA when the queue manager specified by the topic connection factory is the only resource
in the transaction. Enable XA if transactions involve other resources, including other queues or topics.

Security settings

Authentication alias for XA recovery
The user name and password to use when connecting to WebSphere MQ during XA recovery.

Information Value
Data type Drop-down list
Default (none)
Range All authentication aliases defined to the cell and the value

"(none)", which specifies that no credentials are passed to
WebSphere MQ during XA recovery.

808 Administering WebSphere applications



Mapping-configuration alias
This field is used only in the absence of a login configuration on the component resource reference.

When the resource authority value is "container", the preferred way to define the authentication strategy is
by specifying a login configuration and associated properties on the component resource reference.

If the DefaultPrincipalMapping login configuration is specified, the associated property will be a JAAS -
J2C authentication data entry alias. To configure authentication information for use with the topic
connection factory, under Related Items, click JAAS - J2C authentication data .

Information Value
Data type Drop-down list
Default (none)
Range The following options are available:

ClientContainer

WSLogin

WSKRB5Login

DefaultPrincipalMapping

TrustedConnectionMapping

KerberosMapping

Container-managed authentication alias
The authentication alias which specifies the user name and password to use when connecting to the
WebSphere MQ messaging provider.

Information Value
Data type Drop-down list
Default (none)
Range All authentication aliases defined to the cell and the value

"(none)", which specifies that no credentials are passed to
WebSphere MQ.

WebSphere MQ messaging provider topic connection factory
advanced properties
Use this panel to view or change the advanced properties of the selected topic connection factory for use
with the WebSphere MQ messaging provider. These advanced properties control the behavior of
connections made to WebSphere MQ messaging provider destinations.

To view WebSphere MQ topic connection factory advanced properties, use the administrative console to
complete the following steps:
1. In the navigation pane, click Resources > JMS->Topic connection factories to display existing topic

connection factories.
2. If appropriate, in the content pane, change the Scope setting to the level at which the topic connection

factories are defined. Setting the scope in this way restricts the set of queue connection factories
displayed.

3. Select the name of the topic connection factory that you want to work with.
4. In the content pane, under Additional properties, click Advanced properties to view a list of the

advanced properties of the WebSphere MQ topic connection factory.

Under General Properties there are six groups of advanced properties:

v Client reconnect

Chapter 12. Welcome to administering Messaging resources 809



v Message compression

v Temporary destinations

v Connection consumer

v Message format

v Additional

Make any required changes to these groups and then click Apply to return to the topic connection factory.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, except for channels, which have a maximum of

20 characters.
v The property values that you specify must match the values that you specified when configuring

JMS resources for WebSphere MQ. For more information about configuring JMS resources for
WebSphere MQ, see the Using Java section of the WebSphere MQ information center.

A WebSphere MQ topic connection factory has the following advanced properties.

Client reconnect options
This property specifies whether a client mode connection reconnects automatically, or not, in the event of
a communications or queue manager failure. This parameter is ignored unless the connection factory is
being used in a thin or managed client environment.

Information Value
Data type Drop-down list
Default DISABLED
Range DISABLED

Client reconnection does not automatically occur.
ASDEF The value from the DefRecon attribute from the

channels stanza of the client configuration file is
used. If there is no DefRecon value specified in
the client configuration file, ASDEF has the same
effect as DISABLED.

QMGR Reconnection occurs only to the queue manager
to which the connection was originally connected.

RECONNECT
Reconnection occurs to any queue manager that
is consistent with the value of the queue
manager attribute. This queue manager might be
a different queue manager from the one to which
the connection was originally connected.

For more information about automatic client reconnection, see the WebSphere MQ information center.

Client reconnect timeout
The maximum number of seconds that a client mode connection spends attempting to automatically
reconnect to a queue manager after a communications or queue manager failure. This parameter is
ignored unless the connection factory is being used in a thin or managed client environment. Whether this
parameter is used or not depends on the value of the client reconnect options parameter.

Information Value
Data type Integer
Units Seconds
Default 1800 (30 minutes)
Range A value greater than zero and up to 2147483647

810 Administering WebSphere applications



For more information about automatic client reconnection, see the WebSphere MQ information center.

Compress message headers
An option that enables the compression of message headers.

Information Value
Data type Check box
Default Cleared
Range Cleared

Do not compress message headers.
Selected

Compress message headers.

Compression algorithm for message payloads
The compression algorithm to use to compress message payloads.

Information Value
Data type Drop-down list
Default NONE
Range RLE Message data compression is performed using

run-length encoding.
ZLIBFAST

Message data compression is performed using
ZLIB encoding with speed prioritized.

ZLIBHIGH
Message data compression is performed using
ZLIB encoding with compression prioritized.

NONE No message data compression is performed.

Temporary topic prefix
The prefix to append to the beginning of the names generated for temporary topics.

Information Value
Data type String

Polling interval
This setting is applicable in the client container only. When using a WebSphere MQ Version 6 queue
manager (or WebSphere MQ Version 5.3 for z/OS), this setting configures the mechanism used to
dispatch messages to JMS asynchronous consumers.

This setting is used when the set of WebSphere MQ queues that is being asynchronously consumed from
exceeds the number of threads that are available internally to synchronously get messages from the
WebSphere MQ queue. The setting determines how long a thread waits for a message to arrive at a
WebSphere MQ queue before polling another WebSphere MQ queue in the set.

Information Value
Data type Integer
Units Milliseconds
Default 5000
Range A value greater than zero.

Chapter 12. Welcome to administering Messaging resources 811



Maximum batch size
The maximum number of messages that can be removed from a queue before at least one must be
delivered to an asynchronous consumer.

Information Value
Data type Integer
Default 10
Range A value greater than zero.

Coded character set identifier
The character set to use when you are encoding strings in the message.

Information Value
Data type Integer
Default 819
Range A value greater than zero. The coded character set

identifier (CCSID) must be one of the CCSIDs supported
by WebSphere MQ.

For more information about supported CCSIDs, and about converting between message data from one
coded character set to another, see the System Administration and the Application Programming
Reference sections of the WebSphere MQ information center.

Fail JMS method calls if the WebSphere MQ messaging provider
queue manager is quiescing
An option that enables selected JMS operations to fail when the queue manager is put into a quiescing
state. Selecting this option enables the queue manager to quiesce successfully and shut down.

Information Value
Data type Check box
Default Selected
Range Cleared

Do not fail JMS operations if the queue manager
is quiescing.

Selected
Fail JMS operations if the queue manager is
quiescing.

WebSphere MQ messaging provider connection factory broker
properties
Use this panel to view or change the broker settings of the selected connection factory, or topic connection
factory, for use with the WebSphere MQ messaging provider. These broker settings determine how the
WebSphere MQ messaging provider interacts with a broker for the purposes of publishing messages and
subscribing to topics. Updates to the settings take effect when the server is restarted.

To view WebSphere MQ connection factory, or topic connection factory, broker properties use the
administrative console to complete the following steps:
1. In the navigation pane, click Resources > JMS->Connection factories to display existing connection

factories, or click Resources > JMS->Topic connection factories to display existing topic connection
factories.

812 Administering WebSphere applications



2. If appropriate, in the content pane, change the Scope setting to the level at which the connection
factories are defined. This restricts the set of connection factories displayed.

3. Select the name of the connection factory, or topic connection factory, that you want to work with.
4. In the content pane, under Additional Properties, click Broker properties to display the broker

properties of the WebSphere MQ connection factory, or topic connection factory.

Under General Properties there are four groups of properties:

v Queues

v Capabilities

v Tuning

v Additional

Make any required changes to these groups and then click Apply to return to the connection factory, or
topic connection factory.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for
JMS resources, see the Using Java section of the WebSphere MQ information center.

A WebSphere MQ connection factory, or topic connection factory, has the following broker properties:

Broker control queue
The queue to which broker control messages are sent.

Information Value
Data type String
Default SYSTEM.BROKER.CONTROL.QUEUE

Broker publication queue
The queue to which publication messages are sent.

Information Value
Data type String
Default SYSTEM.BROKER.DEFAULT.STREAM

Broker subscriber queue
The queue to which subscription messages are sent.

Information Value
Data type String
Default SYSTEM.JMS.ND.SUBSCRIBER.QUEUE

Broker connection consumer subscription queue
The queue to which subscription messages that are destined for a connection consumer are sent.

Information Value
Data type String
Default SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE

Chapter 12. Welcome to administering Messaging resources 813



Version
The version of the broker that is used. This determines some of the capabilities that the broker is assumed
to have. For example, whether to use an RFH version 1 or version 2 header in publications.

Information Value
Data type Radio button
Default Version 1 broker
Range

Version 1 broker
Message selection cannot be specified.

Version 2 broker
Message selection can be specified. If you select
this option, you must also complete Specify
where message selection occurs.

Specify where message selection occurs
The process in which message selection is performed. This property is enabled only if Version 2 broker
was selected.

Information Value
Data type Drop-down list
Default CLIENT
Range

CLIENT
Message selection is performed in the application
server process.

BROKER
Message selection is performed in the broker
process.

Subscription store
The process for tracking subscriptions.

Information Value
Data type Drop-down list
Default MIGRATE
Range

MIGRATE
Any information that is held on queues is
migrated to the broker mechanism for persisting
subscription information. If subscription
information is already persisted using the broker
mechanism then specifying a value of Migrate is
equivalent to specifying a value of Broker.

BROKER
Internal broker mechanisms are used to track
subscription information.

QUEUE
A designated WebSphere MQ queue is used to
record information about current subscriptions.

Durable subscription state refresh interval
How often a long running transaction is recreated and used to clean up durable subscriptions, for some
versions of the queue manager.

814 Administering WebSphere applications



Information Value
Data type Integer
Default 60000
Range Any positive integer

Subscription cleanup level
How aggressively messages are cleaned up if the subscriber that is expected to consume the messages
terminates unexpectedly.

Information Value
Data type Drop-down list
Default SAFE
Range

SAFE A conservative algorithm is used to clean up
subscriptions.

ASPROP
The cleanup algorithm is determined by a system
property.

NONE No cleanup of subscriptions is performed.

STRONG
An aggressive algorithm is used to clean up
subscriptions.

Subscription cleanup interval
How often to check for orphaned subscriptions and clean up messages.

Information Value
Data type Integer
Default 3600000
Range Any positive integer

Subscription wildcard format
The wildcard format used for subscribing to more than one topic in a topic hierarchy.

Information Value
Data type Drop-down list
Default character wildcards
Range

character wildcards
You can use an asterisk (*) or question mark (?)
to represent characters, or strings of characters,
in a topic name.

* is interpreted as matching many characters.

? is interpreted as matching a single character.

topic level wildcards
You can use a plus sign (+) or number sign (#) to
represent topics in a multilevel topic hierarchy.

+ is interpreted as matching a single topic name.

# is interpreted as matching many topics in the
hierarchy. / is used to delimit topics.

Chapter 12. Welcome to administering Messaging resources 815



Publish acknowledgement window
The number of messages to publish before publishing a message that requires broker acknowledgement

Information Value
Data type Integer
Default 25
Range Any positive integer

Optimize for sparse subscription patterns
An option to specify whether this connection factory is anticipated to receive a high proportion of
messages that match its selection criteria. This information can be used to optimize message delivery.

Information Value
Data type Check box
Default Cleared
Range Cleared

Subscriptions frequently receive matching
messages.

Selected
Subscriptions do not frequently receive matching
messages.

Broker queue manager
The name of the queue manager that is running the broker, if it is not the same as the queue manager to
which the connection factory connects.

Information Value
Data type String
Default The queue manager name that was specified in the

connection factory.

WebSphere MQ messaging provider connection factory client
transport settings
Use this panel to view or change the client transport settings of a connection factory, queue connection
factory, or topic connection factory for use with the WebSphere MQ messaging provider. Client transport
properties affect how a client connection is established with a WebSphere MQ queue manager or
queue-sharing group. Updates to the settings take effect when the server is restarted.

To view WebSphere MQ connection factory, queue connection factory, or topic connection factory client
transport settings, use the administrative console to complete the following steps:
1. In the navigation pane, click Resources > JMS.
2. Click Connection factories, Queue connection factories, or Topic connection factories to display

existing connection factories, queue connection factories or topic connection factories.
3. Select the name of the connection factory, queue connection factory, or topic connection factory that

you want to work with.
4. In the content pane under Additional Properties, click Client transport properties to view a list of the

client transport settings of the WebSphere MQ connection factory, queue connection factory, or topic
connection factory.

Under General Properties there are two groups of properties:

816 Administering WebSphere applications



v Additional SSL settings (for more information about setting the SSL properties for WebSphere MQ, see
SSL properties in the Using Java section of the WebSphere MQ information center)

v Channel exits

Make any required changes to these groups and then click Apply to return to the connection factory,
queue connection factory or topic connection factory.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for
JMS resources, see the Using Java section of the WebSphere MQ information center.

A WebSphere MQ connection factory, queue connection factory, or topic connection factory has the
following client transport settings properties:

Certificate revocation list
A list of LDAP URLs pointing to LDAP repositories of SSL certificates that might have been revoked.

Information Value
Data type String
Default No certificate revocation list
Range The value must be a space-separated list of LDAP URLs.

Peer name
A name (possibly including wildcards) that must match the distinguished name of the peer SSL certificate
for a connection to be established.

Information Value
Data type String
Default Do not check the distinguished name of the peer

certificate.
Range Validated according to the rules for a WebSphere MQ

SSLPEER channel parameter.

Reset count
The total number of bytes to transfer over an SSL connection before renegotiating the symmetric
encryption keys used to secure the connection.

Information Value
Data type Integer
Default 0 (do not renegotiate)
Range The value must be in the range 0 through 999,999,999

(inclusive).

Receive exits
A comma-separated list of Java class names corresponding to receive exits to be loaded.

Information Value
Data type String

Chapter 12. Welcome to administering Messaging resources 817



Receive exit initialization data
Initialization data to be passed to the receive exit.

Information Value
Data type String

Send exits
A comma-separated list of Java class names corresponding to send exits to be loaded.

Information Value
Data type String

Send exit initialization data
Initialization data to be passed to the send exit.

Information Value
Data type String

Security exit
A Java class name corresponding to the security exit to be loaded.

Information Value
Data type String

Security exit initialization data
Initialization data to be passed to the security exit.

Information Value
Data type String

Connection pool settings
Use this page to configure connection pool settings.

This administrative console page is common to JDBC data sources and JMS connection factories (unified,
queue, or topic connection factories). To view this page, the path depends on the type of resource, but
generally you select an instance of the resource type then click Connection Pool. For example:

v Click Resources > JDBC > Data Sources > data_source > [Additional Properties] Connection pool
properties

v Click Resources > JMS->Queue connection factories->queue_connection_factory->[Additional
Properties] Connection pool

Note: Connection pooling is not supported in an application client. The application client calls the
database directly and does not go through a data source. If you want to use the getConnection()
request from the application client, configure the JDBC provider in the application client deployment
descriptors, using Rational Application Developer or an assembly tool. The connection is
established between application client and the database. Application clients do not have a
connection pool, but you can configure JDBC provider settings in the client deployment descriptors.

818 Administering WebSphere applications



Connection timeout
Specifies the interval, in seconds, after which a connection request times out and a
ConnectionWaitTimeoutException is thrown.

This value indicates the number of seconds that a connection request waits when there are no
connections available in the free pool and no new connections can be created. This usually occurs
because the maximum value of connections in the particular connection pool has been reached.

For example, if Connection timeout is set to 300, and the maximum number of connections are all in use,
the pool manager waits for 300 seconds for a physical connection to become available. If a physical
connection is not available within this time, the pool manager initiates a ConnectionWaitTimeout exception.
In most cases, you should not retry the getConnection() method; if a longer wait time is required you
should increase the Connection timeout setting value. If a ConnectionWaitTimeout exception is caught by
the application, review the expected connection pool usage of the application and tune the connection pool
and database accordingly.

If the Connection timeout is set to 0, the pool manager waits as long as necessary until a connection
becomes available. This happens when the application completes a transaction and returns a connection
to the pool, or when the number of connections falls below the value of Maximum Connections, and a new
physical connection is created.

If Maximum Connections is set to 0, an infinite number of physical connections are enabled, and the
Connection timeout value is ignored.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Maximum connections
Specifies the maximum number of physical connections that you can create in this pool.

These are the physical connections to the backend resource. When this number is reached, no new
physical connections are created. The requester waits until a physical connection that is currently in use
returns to the pool, or until a ConnectionWaitTimeoutException error displays. For example, if the Max
Connections value is set to 5, and there are 5 physical connections in use, the pool manager waits for the
amount of time specified in Connection timeout for a physical connection to become free.

Knowing the number of connection pools that can potentially request connections from the backend, such
as a DB2 database or a CICS server, helps you determine a value for the Maximum Connections property.

For multiple stand-alone application servers that use the same data source configuration, or
J2C connection factory configuration, a separate physical connection pool exists for each server. If you
clone these same application servers, WebSphere Application Server (base) implements a separate
connection pool for each clone.

All of these connection pools correspond to the same data source or connection factory
configuration. Therefore all of these connection pools can potentially request connections from the same
backend resource, at the same time. The single Maximum Connections value that you set on this console
panel applies to every one of these connection pools. Consequently, setting a high Maximum Connections
value can result in a load of connection requests that overwhelms your backend resource.

Chapter 12. Welcome to administering Messaging resources 819



Information Value
Data type Integer
Default 10
Range 0 to maximum integer

If Max Connections is set to 0, the Connection timeout
value is ignored.

Tip: For better performance, set the value for the connection pool lower than the value for the maximum
thread pool connections of the web container. To configure this setting click Servers > Server types
> WebSphere application servers > server > Thread Pools, and modify the web container
property. Lower settings, such as 10-30 connections, perform better than higher settings, such as
100.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool. If the
number of concurrent waiters is greater than 0, but the processor load is not close to 100%, consider
increasing the connection pool size. If the Percent Used value is consistently low under normal
workload, consider decreasing the number of connections in the pool.

Minimum connections
Specifies the minimum number of physical connections to maintain.

If the size of the connection pool is at or below the minimum connection pool size, the Unused timeout
thread does not discard physical connections. However, the pool does not create connections solely to
ensure that the minimum connection pool size is maintained. Also, if you set a value for Aged timeout,
connections with an expired age are discarded, regardless of the minimum pool size setting.

For example, if the Minimum Connections value is set to 3, and one physical connection is created, the
Unused timeout thread does not discard that connection. By the same token, the thread does not
automatically create two additional physical connections to reach the Minimum Connections setting.

Information Value
Data type Integer
Default 1
Range 0 to max int

Reap time
Specifies the interval, in seconds, between runs of the pool maintenance thread.

For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap
Time interval affects the accuracy of the Unused timeout and Aged timeout settings. The smaller the
interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less
than the values of Unused timeout and Aged timeout. When the pool maintenance thread runs, it discards
any connections remaining unused for longer than the time value specified in Unused timeout, until it
reaches the number of connections specified in Minimum Connections. The pool maintenance thread also
discards any connections that remain active longer than the time value specified in Aged timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread
runs more often and degrades performance.

To disable the pool maintenance thread, set Reap Time to 0, or set both Unused timeout and Aged timeout
to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, and Unused
timeout and Aged timeout are ignored. However, if Unused Timeout and Aged Timeout are set to 0, the
pool maintenance thread runs. Physical connections which timeout due to non-zero timeout values are

820 Administering WebSphere applications



discarded as well as those connections that reside in a used pool (or shared pool) because they have
been held longer than the time interval set for Aged Timeout.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Unused timeout
Specifies the interval in seconds after which an unused or idle connection is discarded.

Set the Unused timeout value higher than the Reap timeout value for optimal performance. Unused
physical connections are only discarded if the current number of connections exceeds the Minimum
Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance
thread is enabled (Reap Time is not 0), any physical connection that remains unused for 2 minutes is
discarded.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on
page 183 for more information.

Information Value
Data type Integer
Units Seconds
Default 1800
Range 0 to max int

Aged timeout
Specifies the interval in seconds before a physical connection is discarded.

Setting Aged timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the
Aged timeout value higher than the Reap timeout value for optimal performance.

For example, if the Aged timeout value is set to 1200, and the Reap Time value is not 0, any physical
connection that remains in existence for 1200 seconds (20 minutes) is discarded from the pool. The only
exception is if the connection is involved in a transaction when the aged timeout is reached, the
application server will not discard the connection until after the transaction is completed and the
connection is closed.

The accuracy and performance of this timeout are affected by the Reap Time value. See “Reap time” on
page 183 for more information.

Information Value
Data type Integer
Units Seconds
Default 0
Range 0 to max int

Purge policy
Specifies how to purge connections when a stale connection or fatal connection error is detected.

Valid values are EntirePool and FailingConnectionOnly.

Chapter 12. Welcome to administering Messaging resources 821



Information Value
Data type String
Defaults v EntirePool for J2C connection factories and

JMS-related connection factories

v EntirePool for WebSphere Version 4.0 data sources

v EntirePool for current version data sources that you
create through the administrative console

v EntirePool for current version data sources that you
script through wsadmin AdminConfig commands,
starting JDBC templates that are built into WebSphere
Application Server. For information about the command
createUsingTemplate, see the topic, Commands for the
AdminConfig object.

v FailingConnectionOnly for data sources that you script
in wsadmin tool without starting JDBC templates

:
Range

EntirePool
All connections in the pool are marked stale. Any
connection not in use is immediately closed. A
connection in use is closed and issues a stale
connection Exception during the next operation
on that connection. Subsequent getConnection()
requests from the application result in new
connections to the database opening. When
using this purge policy, there is a slight possibility
that some connections in the pool are closed
unnecessarily when they are not stale. However,
this closure is a rare occurrence. In most cases,
a purge policy of EntirePool is the best choice.

FailingConnectionOnly
Only the connection that caused the stale
connection exception is closed. Although this
setting eliminates the possibility that valid
connections are closed unnecessarily, it makes
recovery from an application perspective more
complicated. Because only the currently failing
connection is closed, there is a possibility that the
next getConnection() request from the application
can return a connection from the pool that is also
stale. The result is more stale connection
exceptions.

The connection pretest function attempts to
insulate an application from pooled connections
that are not valid. When a backend resource,
such as a database, goes down, pooled
connections that are not valid might exist in the
free pool. This is especially true when the purge
policy is failingConnectionOnly; in this case, the
failing connection is removed from the pool.
Depending on the failure, the remaining
connections in the pool might not be valid.

Session pool settings
Use this page to configure session pool settings.

822 Administering WebSphere applications



This administrative console page is common to JMS unified connection factories, queue connection
factories and topic connection factories. To view this page, you select an instance of the resource type
then click Session pools. For example, click Resources > JMS->Queue connection
factories->queue_connection_factory->[Additional Properties] Session pools.

Connection Timeout
Specifies the interval, in seconds, after which a connection request times out and a
ConnectionWaitTimeoutException is thrown.

The wait is necessary when the maximum value of connections (Max Connections) to a particular
connection pool is reached . For example, if Connection Timeout is set to 300 and the maximum number
of connections is reached, the Pool Manager waits for 300 seconds for an available physical connection. If
a physical connection is not available within this time, the Pool Manager throws a
ConnectionWaitTimeoutException. It usually does not make sense to retry the getConnection() method,
because if a longer wait time is required, you should set the Connection Timeout setting to a higher
value. Therefore, if this exception is caught by the application, the administrator should review the
expected usage of the application and tune the connection pool and the database accordingly.

If Connection Timeout is set to 0, the Pool Manager waits as long as necessary until a connection is
allocated (which happens when the number of connections falls below the value of Max Connections).

If Max Connections is set to 0, which enables an infinite number of physical connections, then the
Connection Timeout value is ignored.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Max Connections
Specifies the maximum number of physical connections that you can create in this pool.

These are the physical connections to the backend resource. Once this number is reached, no new
physical connections are created and the requester waits until a physical connection that is currently in
use returns to the pool, or a ConnectionWaitTimeoutException is thrown.

For example, if the Max Connections value is set to 5, and there are five physical connections in use, the
pool manager waits for the amount of time specified in Connection Timeout for a physical connection to
become free.

If Max Connections is set to 0, the Connection Timeout value is ignored.

For better performance, set the value for the connection pool lower than the value for the Max
Connections option in the web container. Lower settings, such as 10-30 connections, perform better than
higher settings, such as 100.

If clones are used, one data pool exists for each clone. Knowing the number of data pools is important
when configuring the database maximum connections.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool.
If the number of concurrent waiters is greater than 0, but the CPU load is not close to 100%, consider
increasing the connection pool size. If the Percent Used value is consistently low under normal workload,
consider decreasing the number of connections in the pool.

Chapter 12. Welcome to administering Messaging resources 823



Information Value
Data type Integer
Default 10
Range 0 to max int

Min Connections
Specifies the minimum number of physical connections to maintain.

Until this number is reached, the pool maintenance thread does not discard physical connections.
However, no attempt is made to bring the number of connections up to this number. If you set a value for
Aged Timeout, the minimum is not maintained. All connections with an expired age are discarded.

For example if the Min Connections value is set to 3, and one physical connection is created, the Unused
Timeout thread does not discard that connection. By the same token, the thread does not automatically
create two additional physical connections to reach the Min Connections setting.

Information Value
Data type Integer
Default 1
Range 0 to max int

Reap Time
Specifies the interval, in seconds, between runs of the pool maintenance thread.

For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap
Time interval affects the accuracy of the Unused Timeout and Aged Timeout settings. The smaller the
interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less
than the values of Unused Timeout and Aged Timeout. When the pool maintenance thread runs, it
discards any connections remaining unused for longer than the time value specified in Unused Timeout,
until it reaches the number of connections specified in Min Connections. The pool maintenance thread
also discards any connections that remain active longer than the time value specified in Aged Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread
runs more often and degrades performance.

To disable the pool maintenance thread set Reap Time to 0, or set both Unused Timeout and Aged
Timeout to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, in
which case Unused Timeout and Aged Timeout are ignored. However, if Unused Timeout and Aged
Timeout are set to 0, the pool maintenance thread runs, but only physical connections that timeout due to
non-zero timeout values are discarded.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Unused Timeout
Specifies the interval in seconds after which an unused or idle connection is discarded.

Set the Unused Timeout value higher than the Reap Timeout value for optimal performance. Unused
physical connections are only discarded if the current number of connections not in use exceeds the Min

824 Administering WebSphere applications



Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance
thread is enabled (Reap Time is not 0), any physical connection that remains unused for two minutes is
discarded. Note that accuracy of this timeout, as well as performance, is affected by the Reap Time value.
For more information, see Reap Time.

Information Value
Data type Integer
Units Seconds
Default 1800
Range 0 to max int

Aged Timeout
Specifies the interval in seconds before a physical connection is discarded.

Setting Aged Timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the
Aged Timeout value higher than the Reap Timeout value for optimal performance. For example, if the
Aged Timeout value is set to 1200, and the Reap Time value is not 0, any physical connection that
remains in existence for 1200 seconds (20 minutes) is discarded from the pool. Note that accuracy of this
timeout, as well as performance, are affected by the Reap Time value. For more information, see Reap
Time.

Information Value
Data type Integer
Units Seconds
Default 0
Range 0 to max int

Purge Policy
Specifies how to purge connections when a stale connection or fatal connection error is detected.

Valid values are EntirePool and FailingConnectionOnly. Java EE Connector Architecture (JCA) data
sources can have either option. WebSphere Version 4.0 data sources always have a purge policy of
EntirePool.

Information Value
Data type String
Default FailingConnectionOnly

Chapter 12. Welcome to administering Messaging resources 825



Information Value
Range

EntirePool
All connections in the pool are marked stale. Any
connection not in use is immediately closed. A
connection in use is closed and throws a
StaleConnectionException during the next
operation on that connection. Subsequent
getConnection requests from the application
result in new connections to the database
opening. When using this purge policy, there is a
slight possibility that some connections in the
pool are closed unnecessarily when they are not
stale. However, this is a rare occurrence. In most
cases, a purge policy of EntirePool is the best
choice.

FailingConnectionOnly
Only the connection that caused the
StaleConnectionException is closed. Although
this setting eliminates the possibility that valid
connections are closed unnecessarily, it makes
recovery from an application perspective more
complicated. Because only the currently failing
connection is closed, there is a good possibility
that the next getConnection request from the
application can return a connection from the pool
that is also stale, resulting in more stale
connection exceptions.

WebSphere MQ messaging provider queue settings
Use this panel to view or change the configuration properties of the selected queue destination for
point-to-point messaging with WebSphere MQ as a messaging provider.

A WebSphere MQ queue destination is used to configure the properties of a queue for the WebSphere
MQ messaging provider. Connections to the queue are created using an associated WebSphere MQ
queue connection factory or connection factory.

To view WebSphere MQ queue settings, use the administrative console to complete the following steps:
1. In the navigation pane, click Resources > JMS->Queues to display existing queue destinations.
2. Select the name of the queue destination that you want to work with.
3. Optional: To create a new queue destination, click New.
4. Optional: To view or change the queue destination settings, select ts name in the list displayed.

Under General Properties there are two groups of properties:

v Administration

v WebSphere MQ Queue

Make any required changes to the Administration and WebSphere MQ Queue groups of properties and
then click Apply to save the configuration before, in the content pane under Additional Properties, you
click one of the following links:

v Advanced properties to display or change the advanced properties of your WebSphere MQ queue
destination

v WebSphere MQ queue connection properties to display or change the connection properties of your
WebSphere MQ queue destination

826 Administering WebSphere applications



v Custom properties to display or change the custom properties of your WebSphere MQ queue
destination

Under Related items, you can click JAAS - J2C authentication data to configure authentication
information for use with the queue destination.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ JMS
resources, see the Using Java and System Administration sections of the WebSphere MQ
information center.

If WebSphere MQ functionality has been disabled at a scope that affects this WebSphere MQ messaging
provider resource, then an informational message indicating that WebSphere MQ has been disabled
appears. In a single server environment this informational message is only displayed when the server is
restarted after WebSphere MQ functionality has been disabled. For more information see “Disabling
WebSphere MQ functionality in WebSphere Application Server” on page 712.

A queue destination for use with the WebSphere MQ messaging provider has the following properties.

Scope
The scope assigned to the queue when it is created. The scope specifies the level to which this queue
definition is visible to applications.

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at
multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at
more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse
or change this resource at a different scope, change the scope on WebSphere MQ queue destination
collection panel, then click Apply, before clicking the link for the type of resource.

Information Value
Data type String

Provider
The JMS provider assigned when the queue is created.

For all queues created using this panel, the provider is the WebSphere MQ messaging provider.

The provider is displayed for information only.

Information Value
Data type String

Name
The name by which the queue is known for administrative purposes within WebSphere Application Server.

Information Value
Data type String

Chapter 12. Welcome to administering Messaging resources 827



JNDI name
The name that is used to bind the queue into the JNDI namespace.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

Information Value
Data type String

Description
A description of the queue for administrative purposes within WebSphere Application Server.

Information Value
Data type String
Default Null

Queue name
The WebSphere MQ name for the queue that holds the messages for the JMS destination.

Information Value
Data type String

Queue manager or queue-sharing group name
The name of the WebSphere MQ queue manager or queue-sharing group that hosts the queue.

Information Value
Data type String

WebSphere MQ queue connection properties
Use this panel to specify how to connect to the queue manager that hosts the queue.

The system uses these connection properties to retrieve, display and update the queue configuration
details that are shown on the WebSphere MQ queue settings panel.

To set of change the queue connection properties, use the administrative console to complete the following
steps:
1. In the navigation pane, click Resources > JMS->Queues to display existing queue destinations.
2. Click the name of the queue destination that you want to work with.
3. To view or change the queue destination settings, click its name in the list displayed.

Under General Properties there are two groups of properties:

v Administration

v WebSphere MQ Queue

Make any required changes to the Administration and WebSphere MQ Queue groups of properties and
then click Apply before, in the content pane under Additional Properties, you click the WebSphere MQ
queue connection properties link to display or change the connection properties of your WebSphere MQ
queue destination.

828 Administering WebSphere applications



Make any required changes to the General properties and then click Apply before, in the content pane
under Additional Properties, you click WebSphere MQ configuration to return to the WebSphere MQ
queue settings panel.

A queue destination for use with the WebSphere MQ messaging provider has the following WebSphere
MQ queue connection properties.

Note:
v The property values that you specify must match the values that you specified when you

configured the JMS resources in WebSphere MQ. For more information about configuring JMS
resources in WebSphere MQ, see the Using Java section of the WebSphere MQ information
center.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of
channels which have a maximum of 20 characters.

Note: You cannot use this panel when WebSphere MQ functionality has been disabled. For more
information see “Disabling WebSphere MQ functionality in WebSphere Application Server” on page
712.

Queue Manager Host
The name of host for the queue manager on which the queue destination is created.

Information Value
Data type String

Queue Manager Port
The number of the port used by the queue manager on which this queue is defined.

Information Value
Data type Integer
Range A valid TCP/IP port number. This port must be configured

on the WebSphere MQ queue manager.
Default 1414

Server Connection Channel Name
The name of the channel used for connection to the WebSphere MQ queue manager.

Information Value
Data type String
Range 1 through 20 ASCII characters

User ID
The user ID used, with the Password property, for authentication when connecting to the queue manager
to define the queue destination.

If you specify a value for the User ID property, you must also specify a value for the Password property.

Information Value
Data type String

Chapter 12. Welcome to administering Messaging resources 829



Password
The password, used with the User ID property, for authentication when connecting to the queue manager
to define the queue destination.

If you specify a value for the User ID property, you must also specify a value for the Password property.

Information Value
Data type String

WebSphere MQ messaging provider queue and topic advanced
properties settings
Use this panel to view or change the advanced properties for the selected queue or topic destination for
use with the WebSphere MQ messaging provider. These advanced properties control the behavior of
connections made to WebSphere MQ messaging provider destinations.

To view WebSphere MQ queue or topic advanced properties settings, use the administrative console to
complete the following steps:
1. In the navigation pane, click Resources > JMS.
2. Click Queues or Topics to display existing queue or topic destinations.
3. If appropriate, in the content pane, change the Scope setting to the level at which the queue or topic

destinations are defined. This restricts the set of queue or topic destinations displayed.
4. Click the name of the queue or topic destination that you want to work with.
5. In the content pane, under Additional properties, click Advanced properties to display a list of the

advanced properties of the WebSphere MQ queue or topic destination.

Under General Properties there are five groups of properties:

v Delivery

v Message format

v Optimizations

v Message descriptor

v Additional

Make any required changes to these groups and then click Apply to return to the queue or topic.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when configuring

JMS resources for WebSphere MQ. For more information about configuring JMS resources for
WebSphere MQ, see Using Java section of the WebSphere MQ information center.

A queue or topic for use with the WebSphere MQ messaging provider has the following advanced
properties.

Persistence
The level of persistence used to store messages sent to this destination.

Information Value
Data type Drop-down list
Default As set by application

830 Administering WebSphere applications



Information Value
Range As set by application

Messages on the destination have their
persistence defined by the application that put
them onto the queue.

As per WebSphere MQ queue definition
Messages on the destination have their
persistence defined by the WebSphere MQ
queue definition properties.

WebSphere MQ Persistent
Messages on the destination are persistent.

WebSphere MQ Non-persistent
Messages on the destination are not persistent.

WebSphere MQ High
Permit persistent messages to be sent as
non-persistent messages when you use an
underlying WebSphere MQ queue with a
NPMCLASS of 'HIGH'.

Priority
The priority assigned to messages sent to this destination.

Information Value
Data type Drop-down list
Default As set by application
Range As set by application

The priority of messages on this destination is
defined by the application that put them onto the
destination.

As per WebSphere MQ queue definition
Messages on the destination have their
persistence defined by the WebSphere MQ
destination definition properties.

Specified
The priority of messages on this destination is
defined by the Specified priority property. If you
select this option, you must define a priority on
the Specified priority property.

Specified priority
If the Priority property was set to Specified, select the priority assigned to messages sent to this queue
type destination.

Information Value
Data type Drop-down list
Units Message priority level
Default As set by application
Range 0 (lowest priority) through 9 (highest priority)

Expiry
An option that specifies the expiry timeout for this destination.

Information Value
Data type Drop-down list

Chapter 12. Welcome to administering Messaging resources 831



Information Value
Default As set by application
Range As set by application

The expiry timeout for messages on this
destination is defined by the application that put
them onto the destination.

Specified
The expiry timeout for messages on this
destination is defined by the Specified expiry
property. If you select this option, you must
define a timeout on the Specified expiry
property.

Unlimited
Messages on this destination have no expiry
timeout, so these messages never expire.

Specified expiry
If the Expiry property is set to Specified, enter the number of milliseconds after which messages expire
and are removed from this destination.

Information Value
Data type Integer
Units Milliseconds
Default 0
Range Greater than or equal to 0

v 0 indicates that messages never timeout
v Other values are an integer number of milliseconds

Coded character set identifier
The character set to use when encoding strings in the message.

Information Value
Data type Integer
Default 1208
Range 1 through 65535. The coded character set identifier

(CCSID) must be one of the CCSIDs supported by
WebSphere MQ. Blank. Leaving this field empty indicates
that the default value must be used.

For more information about supported CCSIDs, and about converting between message data from one
coded character set to another, see the System Administration Guide and Application Programming
Reference sections of the WebSphere MQ information center.

Use native encoding
An option that specifies whether the destination should use native encoding to provide appropriate
encoding values for the Java platform.

Information Value
Data type Check box
Default Selected

832 Administering WebSphere applications



Information Value
Range Selected

Native encoding is used.
Cleared

Native encoding is not used, so specify the
properties for Integer encoding, Decimal
encoding, and Floating point encoding.

Integer encoding
If the Use native encoding check box is cleared, select the type of integer encoding to be used.

Information Value
Data type Drop-down list
Default Normal
Range Normal

Normal integer encoding is used.
Reversed

Reversed integer encoding is used.

Decimal encoding
If the Use native encoding check box is cleared, select the type of decimal encoding to be used.

Information Value
Data type Drop-down list
Units Not applicable
Default Normal
Range Normal

Normal decimal encoding is used.
Reversed

Reversed decimal encoding is used.

Floating point encoding
If the Use native encoding check box is cleared, select the type of floating point encoding to be used.

Information Value
Data type Drop-down list
Default IEEENORMAL
Range IEEENORMAL

IEEE normal floating point encoding is used.
IEEEREVERSED

IEEE reversed floating point encoding is used.
z/OS z/OS floating point encoding is used.

Append RFH version 2 headers to messages sent to this destination
The action to take when replying to a message that is sent to this destination.

Information Value
Data type Check box
Default Selected

Chapter 12. Welcome to administering Messaging resources 833



Information Value
Range Cleared

Do not append RFH version 2 headers to
messages sent to this destination.

Selected
Append RFH version 2 headers to messages
sent to this destination.

Message body
Specifies whether an application processes the RFH version 2 header of a WebSphere MQ message as
part of the JMS message body.

Information Value
Data type Drop-down list
Default UNSPECIFIED
Range UNSPECIFIED

When sending messages, the WebSphere MQ
messaging provider does or does not generate
and include an RFH version 2 header, depending
on the value of the Append RFH version 2
headers to messages sent to this destination
property. When receiving messages, the
WebSphere MQ messaging provider acts as if
the value is set to JMS.

JMS When sending messages, the WebSphere MQ
messaging provider automatically generates an
RFH version 2 header and includes it in the
WebSphere MQ message. When receiving
messages, the WebSphere MQ messaging
provider sets the JMS message properties
according to values in the RFH version 2 header
(if these value are present); it does not present
the RFH version 2 header as part of the JMS
message body.

MQ When sending messages, the WebSphere MQ
messaging provider does not generate an RFH
version 2 header. When receiving messages, the
WebSphere MQ messaging provider presents the
RFH version 2 header as part of the JMS
message body.

ReplyTo destination style
Specifies the format of the JMSReplyTo field.

Information Value
Data type Drop-down list
Default DEFAULT

834 Administering WebSphere applications



Information Value
Range DEFAULT

The default value is equivalent to the information
in the RFH version 2 header.

MQMD Use the value supplied in the MQMD. This
populates the reply to queue manager field with
the value from the MQMD, equivalent to the
default behaviour of WebSphere MQ Version
6.0.2.4 and 6.0.2.5.

RFH2 Use the value supplied in the RFH version 2
header. If the sending application set a
JMSReplyTo value, then that value is used.

Asynchronously send messages to the queue manager
An option that enables the queue manager to acknowledge receipt of messages sent to it. Asynchronously
sending messages to the queue manager is faster, but messages can be lost if the messaging
infrastructure fails.

Information Value
Data type Drop-down list
Default The default value depends on whether you are working

with a queue or topic destination.
As per queue definition

The default value if you are working with a queue
destination.

As per topic definition
The default value if you are working with a topic
destination.

Range As per queue definition
Messages are acknowledged according to the
WebSphere MQ queue definition properties.

As per topic definition
Messages are acknowledged according to the
WebSphere MQ topic definition properties.

Yes The queue manager acknowledges receipt of
messages sent to it.

No The queue manager does not acknowledge
receipt of messages sent to it.

Read ahead and cache non-persistent messages for consumers
An option that determines whether messages for non-persistent consumers are sent to the client
speculatively. Selecting this option results in faster message delivery but messages can be lost in the
event of a failure in the messaging infrastructure.

Information Value
Data type Drop-down list
Default The default value depends on whether you are working

with a queue or topic destination.
As per queue definition

This is the default value if you are working with a
queue destination.

As per topic definition
This is the default value if you are working with a
topic destination.

Chapter 12. Welcome to administering Messaging resources 835



Information Value
Range As per queue definition

Messages are sent to the client according to the
WebSphere MQ queue definition properties.

As per topic definition
Messages are sent to the client according to the
WebSphere MQ topic definition properties.

Yes Messages are sent to the client speculatively.
No Messages are not sent to the client speculatively.

ReplyTo destination style
Specifies the format of the JMSReplyTo field.

Information Value
Data type Drop-down list
Default DEFAULT
Range DEFAULT

The default value is equivalent to the information
in the RFH version 2 header.

MQMD Use the value supplied in the MQMD. This
populates the reply to queue manager field with
the value from the MQMD, equivalent to the
default behaviour of WebSphere MQ Version
6.0.2.4 and 6.0.2.5.

RFH2 Use the value supplied in the RFH version 2
header. If the sending application set a
JMSReplyTo value, then that value is used.

For more information about automatic client reconnection, see the WebSphere MQ information center.

Read ahead consumer close method
If Read ahead and cache non-persistent messages for consumers is set to Yes or As per queue
definition this property is enabled. This property determines what happens to messages in the internal
read ahead buffer when the message consumer is closed.

Information Value
Data type Drop-down list
Default Close method waits for all cached messages to be

delivered
Range Wait for all cached messages to be delivered

All messages in the internal read ahead buffer
are delivered to the application's message
listener before returning.

Wait for the current message to be delivered
Only the current message listener invocation
completes before returning, potentially leaving
messages in the internal read ahead buffer,
which are then discarded.

MQMD read enabled
Specifies whether an application can read the values of MQMD fields from JMS messages that have been
sent or received using the WebSphere MQ messaging provider.

836 Administering WebSphere applications



Information Value
Data type Check box
Default Cleared
Range Cleared

Applications cannot read the values of the
MQMD fields.

Selected
Applications can read the values of the MQMD
fields.

MQMD write enabled
Specifies whether an application can write the values of MQMD fields to JMS messages that will be sent
or received using the WebSphere MQ messaging provider.

Information Value
Data type Check box
Default Cleared
Range Cleared

Applications cannot write the values of the
MQMD fields.

Selected
Applications can write the values of the MQMD
fields.

MQMD message context
Defines the message context options specified when sending messages to a destination.

Information Value
Data type Drop-down list
Default DEFAULT
Range DEFAULT

The MQOPEN API call and the MQPMO
structure specify no explicit message context
options.

SET_IDENTITY_CONTEXT
The MQOPEN API call specifies the message
context option
MQOO_SET_IDENTITY_CONTEXT, and the
MQPMO structure specifies
MQPMO_SET_IDENTITY_CONTEXT.

SET_ALL_CONTEXT
The MQOPEN API call specifies the message
context option MQOO_SET_ALL_CONTEXT, and
the MQPMO structure specifies
MQPMO_SET_ALL_CONTEXT.

WebSphere MQ messaging provider topic settings
Use this panel to view or change the configuration properties of the selected JMS topic destination for
publish/subscribe messaging with WebSphere MQ as a messaging provider.

A WebSphere MQ topic destination is used to configure the properties of a topic for the WebSphere MQ
messaging provider. Connections to the topic are created using an associated WebSphere MQ topic
connection factory or connection factory.

Chapter 12. Welcome to administering Messaging resources 837



To view WebSphere MQ topic settings, use the administrative console to complete the following steps:
1. In the navigation pane, click Resources > JMS->Topics to display existing topic destinations.
2. Select the name of the topic destination that you want to work with.
3. Optional: To create a new topic destination, click New.
4. Optional: To view or change the topic destination settings, select its name in the list displayed.

Under General Properties there are two groups of properties:

v Administration

v WebSphere MQ topic

Make any required changes to the Administration and WebSphere MQ topic groups of properties, and then
click Apply to save the configuration before, in the content pane under Additional Properties, you click
either of the following links:

v Advanced properties to display or change the advanced properties of your WebSphere MQ topic.

v Custom properties to display or change the custom properties of your WebSphere MQ topic.

Under Related items, you can click JAAS - J2C authentication data to configure authentication
information for use with the topic.

You can specify the following additional properties by using WebSphere MQ administrative commands:

v wildcardFormat

v brokerVersion

For more information about these properties, refer to the “createWMQTopic command” on page 884.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ JMS
resources, see the Using Java and MQ System Administration sections of the WebSphere MQ
information center.

If WebSphere MQ functionality has been disabled at a scope that affects this WebSphere MQ messaging
provider resource, then an informational message indicating that WebSphere MQ has been disabled
appears. In a single server environment this informational message is only displayed when the server is
restarted after WebSphere MQ functionality has been disabled. For more information see “Disabling
WebSphere MQ functionality in WebSphere Application Server” on page 712.

Scope
The scope assigned to the topic when it is created. The scope specifies the level to which this topic
definition is visible to applications.

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at
multiple scopes, with resources defined at more specific scopes overriding duplicates that are defined at
more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse
or change this resource at a different scope, change the scope on the WebSphere MQ topic destination
collection panel, then click Apply, before clicking the link for the type of resource.

Information Value
Data type String

838 Administering WebSphere applications



Provider
The JMS provider assigned when the topic is created.

For all topics created using this panel, the provider is the WebSphere MQ messaging provider.

The provider is displayed for information only.

Information Value
Data type String

Name
The name by which the topic is known for administrative purposes within WebSphere Application Server.

Information Value
Data type String

JNDI name
The name that is used to bind the topic into the JNDI namespace.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

Information Value
Data type String

Description
A description of the topic for administrative purposes within WebSphere Application Server.

Information Value
Data type String

Topic name
The WebSphere MQ name for the topic.

Information Value
Data type String

Broker durable subscriber queue
The queue to use for durable subscribers.

If this property is blank then the default WebSphere MQ value SYSTEM.JMS.D.SUBSCRIBER.QUEUE is used.

Information Value
Data type String

Broker durable subscription connection consumer queue
The queue to use for durable subscribers that use a connection consumer.

If this property is blank then the default WebSphere MQ value SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE is used.

Chapter 12. Welcome to administering Messaging resources 839



Information Value
Data type String

Broker publication queue
The queue to use for publishing messages.

Information Value
Data type Drop-down list
Default As connection
Range As connection

The connection factory values are used.
Override connection

Enter the name of a queue in the associated text
box.

Broker publication queue manager
The queue manager that hosts the topic.

Information Value
Data type String

WebSphere MQ messaging provider queue and topic advanced
properties settings
Use this panel to view or change the advanced properties for the selected queue or topic destination for
use with the WebSphere MQ messaging provider. These advanced properties control the behavior of
connections made to WebSphere MQ messaging provider destinations.

To view WebSphere MQ queue or topic advanced properties settings, use the administrative console to
complete the following steps:
1. In the navigation pane, click Resources > JMS.
2. Click Queues or Topics to display existing queue or topic destinations.
3. If appropriate, in the content pane, change the Scope setting to the level at which the queue or topic

destinations are defined. This restricts the set of queue or topic destinations displayed.
4. Click the name of the queue or topic destination that you want to work with.
5. In the content pane, under Additional properties, click Advanced properties to display a list of the

advanced properties of the WebSphere MQ queue or topic destination.

Under General Properties there are five groups of properties:

v Delivery

v Message format

v Optimizations

v Message descriptor

v Additional

Make any required changes to these groups and then click Apply to return to the queue or topic.

Note: When specifying WebSphere MQ properties, the following restrictions apply:
v Names can have a maximum of 48 characters, with the exception of channels, which have a

maximum of 20 characters.

840 Administering WebSphere applications



v The property values that you specify must match the values that you specified when configuring
JMS resources for WebSphere MQ. For more information about configuring JMS resources for
WebSphere MQ, see Using Java section of the WebSphere MQ information center.

A queue or topic for use with the WebSphere MQ messaging provider has the following advanced
properties.

Persistence
The level of persistence used to store messages sent to this destination.

Information Value
Data type Drop-down list
Default As set by application
Range As set by application

Messages on the destination have their
persistence defined by the application that put
them onto the queue.

As per WebSphere MQ queue definition
Messages on the destination have their
persistence defined by the WebSphere MQ
queue definition properties.

WebSphere MQ Persistent
Messages on the destination are persistent.

WebSphere MQ Non-persistent
Messages on the destination are not persistent.

WebSphere MQ High
Permit persistent messages to be sent as
non-persistent messages when you use an
underlying WebSphere MQ queue with a
NPMCLASS of 'HIGH'.

Priority
The priority assigned to messages sent to this destination.

Information Value
Data type Drop-down list
Default As set by application
Range As set by application

The priority of messages on this destination is
defined by the application that put them onto the
destination.

As per WebSphere MQ queue definition
Messages on the destination have their
persistence defined by the WebSphere MQ
destination definition properties.

Specified
The priority of messages on this destination is
defined by the Specified priority property. If you
select this option, you must define a priority on
the Specified priority property.

Specified priority
If the Priority property was set to Specified, select the priority assigned to messages sent to this queue
type destination.

Information Value
Data type Drop-down list

Chapter 12. Welcome to administering Messaging resources 841



Information Value
Units Message priority level
Default As set by application
Range 0 (lowest priority) through 9 (highest priority)

Expiry
An option that specifies the expiry timeout for this destination.

Information Value
Data type Drop-down list
Default As set by application
Range As set by application

The expiry timeout for messages on this
destination is defined by the application that put
them onto the destination.

Specified
The expiry timeout for messages on this
destination is defined by the Specified expiry
property. If you select this option, you must
define a timeout on the Specified expiry
property.

Unlimited
Messages on this destination have no expiry
timeout, so these messages never expire.

Specified expiry
If the Expiry property is set to Specified, enter the number of milliseconds after which messages expire
and are removed from this destination.

Information Value
Data type Integer
Units Milliseconds
Default 0
Range Greater than or equal to 0

v 0 indicates that messages never timeout
v Other values are an integer number of milliseconds

Coded character set identifier
The character set to use when encoding strings in the message.

Information Value
Data type Integer
Default 1208
Range 1 through 65535. The coded character set identifier

(CCSID) must be one of the CCSIDs supported by
WebSphere MQ. Blank. Leaving this field empty indicates
that the default value must be used.

For more information about supported CCSIDs, and about converting between message data from one
coded character set to another, see the System Administration Guide and Application Programming
Reference sections of the WebSphere MQ information center.

Use native encoding
An option that specifies whether the destination should use native encoding to provide appropriate
encoding values for the Java platform.

842 Administering WebSphere applications



Information Value
Data type Check box
Default Selected
Range Selected

Native encoding is used.
Cleared

Native encoding is not used, so specify the
properties for Integer encoding, Decimal
encoding, and Floating point encoding.

Integer encoding
If the Use native encoding check box is cleared, select the type of integer encoding to be used.

Information Value
Data type Drop-down list
Default Normal
Range Normal

Normal integer encoding is used.
Reversed

Reversed integer encoding is used.

Decimal encoding
If the Use native encoding check box is cleared, select the type of decimal encoding to be used.

Information Value
Data type Drop-down list
Units Not applicable
Default Normal
Range Normal

Normal decimal encoding is used.
Reversed

Reversed decimal encoding is used.

Floating point encoding
If the Use native encoding check box is cleared, select the type of floating point encoding to be used.

Information Value
Data type Drop-down list
Default IEEENORMAL
Range IEEENORMAL

IEEE normal floating point encoding is used.
IEEEREVERSED

IEEE reversed floating point encoding is used.
z/OS z/OS floating point encoding is used.

Append RFH version 2 headers to messages sent to this destination
The action to take when replying to a message that is sent to this destination.

Information Value
Data type Check box
Default Selected

Chapter 12. Welcome to administering Messaging resources 843



Information Value
Range Cleared

Do not append RFH version 2 headers to
messages sent to this destination.

Selected
Append RFH version 2 headers to messages
sent to this destination.

Message body
Specifies whether an application processes the RFH version 2 header of a WebSphere MQ message as
part of the JMS message body.

Information Value
Data type Drop-down list
Default UNSPECIFIED
Range UNSPECIFIED

When sending messages, the WebSphere MQ
messaging provider does or does not generate
and include an RFH version 2 header, depending
on the value of the Append RFH version 2
headers to messages sent to this destination
property. When receiving messages, the
WebSphere MQ messaging provider acts as if
the value is set to JMS.

JMS When sending messages, the WebSphere MQ
messaging provider automatically generates an
RFH version 2 header and includes it in the
WebSphere MQ message. When receiving
messages, the WebSphere MQ messaging
provider sets the JMS message properties
according to values in the RFH version 2 header
(if these value are present); it does not present
the RFH version 2 header as part of the JMS
message body.

MQ When sending messages, the WebSphere MQ
messaging provider does not generate an RFH
version 2 header. When receiving messages, the
WebSphere MQ messaging provider presents the
RFH version 2 header as part of the JMS
message body.

ReplyTo destination style
Specifies the format of the JMSReplyTo field.

Information Value
Data type Drop-down list
Default DEFAULT
Range DEFAULT

The default value is equivalent to the information
in the RFH version 2 header.

MQMD Use the value supplied in the MQMD. This
populates the reply to queue manager field with
the value from the MQMD, equivalent to the
default behaviour of WebSphere MQ Version
6.0.2.4 and 6.0.2.5.

RFH2 Use the value supplied in the RFH version 2
header. If the sending application set a
JMSReplyTo value, then that value is used.

844 Administering WebSphere applications



Asynchronously send messages to the queue manager
An option that enables the queue manager to acknowledge receipt of messages sent to it. Asynchronously
sending messages to the queue manager is faster, but messages can be lost if the messaging
infrastructure fails.

Information Value
Data type Drop-down list
Default The default value depends on whether you are working

with a queue or topic destination.
As per queue definition

The default value if you are working with a queue
destination.

As per topic definition
The default value if you are working with a topic
destination.

Range As per queue definition
Messages are acknowledged according to the
WebSphere MQ queue definition properties.

As per topic definition
Messages are acknowledged according to the
WebSphere MQ topic definition properties.

Yes The queue manager acknowledges receipt of
messages sent to it.

No The queue manager does not acknowledge
receipt of messages sent to it.

Read ahead and cache non-persistent messages for consumers
An option that determines whether messages for non-persistent consumers are sent to the client
speculatively. Selecting this option results in faster message delivery but messages can be lost in the
event of a failure in the messaging infrastructure.

Information Value
Data type Drop-down list
Default The default value depends on whether you are working

with a queue or topic destination.
As per queue definition

This is the default value if you are working with a
queue destination.

As per topic definition
This is the default value if you are working with a
topic destination.

Range As per queue definition
Messages are sent to the client according to the
WebSphere MQ queue definition properties.

As per topic definition
Messages are sent to the client according to the
WebSphere MQ topic definition properties.

Yes Messages are sent to the client speculatively.
No Messages are not sent to the client speculatively.

ReplyTo destination style
Specifies the format of the JMSReplyTo field.

Information Value
Data type Drop-down list
Default DEFAULT

Chapter 12. Welcome to administering Messaging resources 845



Information Value
Range DEFAULT

The default value is equivalent to the information
in the RFH version 2 header.

MQMD Use the value supplied in the MQMD. This
populates the reply to queue manager field with
the value from the MQMD, equivalent to the
default behaviour of WebSphere MQ Version
6.0.2.4 and 6.0.2.5.

RFH2 Use the value supplied in the RFH version 2
header. If the sending application set a
JMSReplyTo value, then that value is used.

For more information about automatic client reconnection, see the WebSphere MQ information center.

Read ahead consumer close method
If Read ahead and cache non-persistent messages for consumers is set to Yes or As per queue
definition this property is enabled. This property determines what happens to messages in the internal
read ahead buffer when the message consumer is closed.

Information Value
Data type Drop-down list
Default Close method waits for all cached messages to be

delivered
Range Wait for all cached messages to be delivered

All messages in the internal read ahead buffer
are delivered to the application's message
listener before returning.

Wait for the current message to be delivered
Only the current message listener invocation
completes before returning, potentially leaving
messages in the internal read ahead buffer,
which are then discarded.

MQMD read enabled
Specifies whether an application can read the values of MQMD fields from JMS messages that have been
sent or received using the WebSphere MQ messaging provider.

Information Value
Data type Check box
Default Cleared
Range Cleared

Applications cannot read the values of the
MQMD fields.

Selected
Applications can read the values of the MQMD
fields.

MQMD write enabled
Specifies whether an application can write the values of MQMD fields to JMS messages that will be sent
or received using the WebSphere MQ messaging provider.

Information Value
Data type Check box
Default Cleared

846 Administering WebSphere applications



Information Value
Range Cleared

Applications cannot write the values of the
MQMD fields.

Selected
Applications can write the values of the MQMD
fields.

MQMD message context
Defines the message context options specified when sending messages to a destination.

Information Value
Data type Drop-down list
Default DEFAULT
Range DEFAULT

The MQOPEN API call and the MQPMO
structure specify no explicit message context
options.

SET_IDENTITY_CONTEXT
The MQOPEN API call specifies the message
context option
MQOO_SET_IDENTITY_CONTEXT, and the
MQPMO structure specifies
MQPMO_SET_IDENTITY_CONTEXT.

SET_ALL_CONTEXT
The MQOPEN API call specifies the message
context option MQOO_SET_ALL_CONTEXT, and
the MQPMO structure specifies
MQPMO_SET_ALL_CONTEXT.

WebSphere MQ resource custom properties settings
Use this page to specify custom properties that your enterprise information system (EIS) requires for the
resource providers and resource factories that you configure. For example, most database vendors require
additional custom properties for data sources that access the database.

To view this administrative console page, complete the following steps:
1. In the navigation pane, click Resources > JMS->JMS providers.
2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider.
3. In the content pane, click the WebSphere MQ messaging provider that you want to support the JMS

destination.
4. In the content pane, under Additional Properties, click the type of resource that you want to change, for

example Queues.
5. Click the name of the resource that you want to work with.
6. In the content pane, under General Properties, complete the groups of fields, for example

Administration and WebSphere MQ Queue.
7. In the content pane, under Additional Properties, click Custom properties to display a list of the

custom properties of a WebSphere MQ resource.

A resource for use with the WebSphere MQ messaging provider has the following custom properties.

Note:
v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for
JMS resources, see the Using Java section of the WebSphere MQ information center.

Chapter 12. Welcome to administering Messaging resources 847



v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of
channels, which have a maximum of 20 characters.

Name
The name by which the resource is known for administrative purposes within WebSphere Application
Server.

Information Value
Data type String

Value
The value of the resource.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined
by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the
platform.

Information Value
Data type String

Description
A description of the resource, for administrative purposes within WebSphere Application Server.

Information Value
Data type String
Default Null

Required
Whether the resource is required, for administrative purposes within WebSphere Application Server.

Information Value
Data type String
Default Null

Resource adapter properties
Use this page to configure the WebSphere MQ resource adapter that underlies the WebSphere MQ
messaging provider.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources > JMS->JMS providers to display a list of JMS providers in
the content pane.

2. (optional) If you want to manage JMS resources that are defined at a different scope setting, change
the Scope setting to the required level.

3. In the Providers column of the displayed list of JMS providers, click the name of the WebSphere MQ
messaging provider that you want to work with.

4. In the content pane under Additional properties, click Resource adapter properties to view the
configuration page for the properties.

848 Administering WebSphere applications



The resource adapter properties are used to configure the WebSphere MQ resource adapter, which is
used by the WebSphere MQ messaging provider. These properties affect the connection pool, which is
used by the WebSphere MQ messaging provider activation specifications. They do not affect the
WebSphere MQ messaging provider queues, topics, or connection factories.

These properties only have an effect on the WebSphere MQ messaging provider objects that are defined
at the same scope as the messaging provider and resource adapter on which they are set. So, for
example, if you set the max connections property to a particular setting at the server scope, only the
server scoped WebSphere MQ messaging provider activation specifications are affected by this setting.

For further information about these properties, see Configuration of the ResourceAdapter object in the
WebSphere MQ information center.

If you want to configure a WebSphere MQ resource adapter custom property that is not exposed in
WebSphere Application Server, click Custom properties under Additional properties.

Connection pool properties

Max connections
The maximum number of connections to a WebSphere MQ queue manager.

Information Value
Data type String
Default 10

Connection concurrency
The maximum number of message-driven beans that can be supplied by each connection.

Information Value
Data type String
Default 5

Reconnection retry count
The maximum number of attempts made by a WebSphere MQ messaging provider activation specification
to reconnect to a WebSphere MQ queue manager if a connection fails.

Information Value
Data type String
Default 5

Reconnection retry interval
The time, in milliseconds, that a WebSphere MQ messaging provider activation specification waits before
making another attempt to reconnect to a WebSphere MQ queue manager.

Information Value
Data type String
Default 300000

Chapter 12. Welcome to administering Messaging resources 849

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/jm40190_.htm


Additional properties
Custom properties

The full set of custom properties that are used to configure the WebSphere MQ resource adapter.
Use this page to configure custom properties that are not exposed in WebSphere Application
Server.

WMQAdminCommands command group for the AdminTask object
You can use the WebSphere MQ administrative commands to manage JMS resources for the WebSphere
MQ messaging provider.

You can configure JMS resources for the WebSphere MQ messaging provider through the WebSphere MQ
administrative commands, or you can configure JMS resources for the WebSphere MQ messaging
provider through the administrative console.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

These commands are valid only when they are used with WebSphere Application Server Version 7 and
later application servers. Do not use them with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using these commands, save your changes to the master configuration. For example, use the
following command:

AdminConfig.save()

The following commands are available for the WMQAdminCommands group of the AdminTask object:

v createWMQActivationSpec command

v deleteWMQActivationSpec command

v listWMQActivationSpec command

v modifyWMQActivationSpec command

v showWMQActivationSpec command

v createWMQConnectionFactory command

v deleteWMQConnectionFactory command

v listWMQConnectionFactory command

v modifyWMQConnectionFactory command

v showWMQConnectionFactory command

v createWMQTopic command

850 Administering WebSphere applications



v deleteWMQTopic command

v listWMQTopic command

v modifyWMQTopic command

v showWMQTopic command

v manageWMQ command

v migrateWMQMLP command

v createWMQQueue command

v deleteWMQQueue command

v listWMQQueue command

v modifyWMQQueue command

v showWMQQueue command

createWMQActivationSpec command
Use the createWMQActivationSpec command to create an activation specification for the WebSphere MQ
messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the createWMQActivationSpec command to create a WebSphere MQ messaging provider activation
specification at a specific scope.

You cannot create a WebSphere MQ messaging provider activation specification under either of the
following conditions:

v A WebSphere MQ messaging provider activation specification already exists with the same name, at the
same scope.

v The JNDI name clashes with another entry in WebSphere Application Server JNDI.

You create a CCDT based activation specification by specifying any of the following parameters:

v -ccdtUrl

v -ccdtQmgrName

Chapter 12. Welcome to administering Messaging resources 851



If you do not specify any of the following parameters, you create a generic activation specification :

v -ccdtUrl

v -ccdtQmgrName

Target object

The scope of the WebSphere MQ messaging provider at which the WebSphere MQ messaging provider
activation specification is to be created.

Required parameters

-name
The administrative name assigned to this WebSphere MQ messaging provider activation specification.

-jndiName
The name and location used to bind this object into WebSphere Application Server JNDI.

-destinationJndiName
The JNDI name of a WebSphere MQ messaging provider queue or topic type destination. When an
MDB is deployed with this activation specification, messages for the MDB are consumed from this
destination.

-destinationType
The type of the destination specified by using the -destinationJndiName parameter.

Enter one of the following values:

v javax.jms.Queue

v javax.jms.Topic

There is no default value.

Optional parameters

-description
An administrative description assigned to the activation specification.

-ccdtUrl
A URL to a client channel definition table to use, for this activation specification, when contacting
WebSphere MQ.

Use this parameter to create ccdtURL activation specifications

Do not specify this parameter in conjunction with the following parameters: -qmgrName, -qmgrType,
-qmgrHostname, -qmgrPortNumber, -qmgrSvrconnChannel, or -localAddress.

-ccdtQmgrName
A queue manager name, used to select one or more entries from a client channel definition table.

You must specify this parameter if the -transportType has been specified as client or
bindingsThenClient.

Do not specify this parameter in conjunction with the following parameters: -qmgrName, -qmgrType,
-qmgrHostname, -qmgrPortNumber, -qmgrSvrconnChannel, or -localAddress.

-qmgrName
The name of the queue manager to use, for this activation specification, when connecting with
WebSphere MQ.

Use this parameter to create generic activation specifications.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or -ccdtQmgrName.

852 Administering WebSphere applications



-wmqTransportType
This parameter determines the way in which a connection is established to WebSphere MQ for this
activation specification.

Use this parameter to create generic activation specifications.

Enter one of the following case-sensitive values:

v BINDINGS

v BINDINGS_THEN_CLIENT

v CLIENT

BINDINGS_THEN_CLIENT is the default value.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or -ccdtQmgrName.

For more information about configuring a transport type of bindings then client or bindings, refer to
“Configuring the WebSphere MQ messaging provider with native libraries information” on page 692.

-qmgrHostname
The host name to use, for this activation specification, when attempting a client mode connection to
WebSphere MQ. It must be a valid TCP/IP host name or IPv4 or IPv6 address.

The default value is the local host.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or -ccdtQmgrName.

For information on setting the -qmgrHostname parameter in conjunction with the -connectionNameList
parameter, see the description of the -connectionNameList parameter.

-qmgrPortNumber
The port number to use, for this activation specification, when attempting a client mode connection to
WebSphere MQ.

Enter an integer value in the range 1 - 65536 (inclusive).

The default value is 1414.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or
-ccdtQmgrName.

For information on setting the -qmgrPortNumber parameter in conjunction with the -connectionNameList
parameter, see the description of the -connectionNameList parameter.

-connectionNameList
The connection name list specifying the host name and port details to use when you want the
activation specification to connect to a multi-instance queue manager.

Note: You must only use the -connectionNameList parameter to allow a connection to a
multi-instance queue manager. Using the -connectionNameList parameter to connect to a
non-multi-instance queue manager can jeopardize transaction integrity.

The -connectionNameList parameter must be entered as a comma separated list of host names and
ports in the following format:

host(port),host(port)

For host enter a valid TCP/IP host name, IPv4 or IPv6 address.

For port enter an integer value between 1 and 65536 (inclusive). Specifying a value for port is
optional. When you do not specify a value, port defaults to 1414.

For example: localhost(1234),remotehost(1234),remotehost2

Chapter 12. Welcome to administering Messaging resources 853



When you specify the -connectionNameList parameter, the -qmgrHostname and -qmgrPortNumber
parameters are automatically set to the host name and port number of the first entry in the connection
name list. This overrides any values that you previously specified in the -qmgrHostname and
-qmgrPortNumber parameters.

In the preceding example this would mean that -qmgrHostname would be localhost and
-qmgrPortNumber would be 1234.

The -connectionNameList parameter is only valid for use in WebSphere Application Server Version 8.0
or later.

Attempting to specify the -connectionNameList parameter on a WebSphere MQ messaging provider
activation specification which is defined at a server or node scope that is running on a version of
WebSphere Application Server earlier than Version 8.0 results in an error message when you run the
following commands:

v createWMQActivationSpec

v modifyWMQActivationSpec

If you specify the -connectionNameList parameter on a cell or cluster-scoped WebSphere MQ
activation specification, you can use it for nodes that are running WebSphere Application Server
Version 7.0. The exact behaviour is determined by the fix pack level of the node:

v For nodes running at WebSphere Application Server Version 7.0 Fix Pack 7 or later, the activation
specification uses the -connectionNameList parameter to connect to a multi-instance queue
manager.

v For nodes running at a fix pack level earlier than WebSphere Application Server Version 7.0 Fix
Pack 7, a warning message similar to the one in the following example is output:
[29/09/10 12:15:27:468 BST] 00000018 J2CUtilityCla W
J2CA0008W: Class com.ibm.mq.connector.inbound.ActivationSpecImpl used by resource
cells/L3A3316Node01Cell/resources.xml#J2CResourceAdapter_1284547647859 did not contain
method setConnectionNameList. Processing continued.

You can ignore this message.

You must not specify the -connectionNameList parameter in conjunction with the -ccdtUrl or
-ccdtQmgrName parameters.

Note: If you use the-connectionNameList parameter with a centrally managed SSL configuration the
host name and port number information used to select the appropriate SSL configuration is
based on the first entry in the -connectionNameList, regardless of which entry in the list is
actually used to connect to the queue manager. This is because each instance of a
multi-instance queue manager should be using the same SSL configuration, for a given server
connection channel, regardless of which instance is actually running.

For more information on using multi-instance queue managers, see the WebSphere MQ information
center.

-authAlias
The authentication alias used to obtain the credentials specified when this activation specification
needs to establish a connection to WebSphere MQ.

-clientId
The client identifier used for connections started by using this activation specification.

-providerVersion
This parameter determines the minimum version, and capabilities of the queue manager.

Enter values in one of the following formats:

v n

v n.n

v n.n.n

854 Administering WebSphere applications



v n.n.n.n

where n is an integer greater than or equal to zero.

For example 6.0.0.0

-sslCrl
This parameter specifies a list of LDAP servers that are used to provide certificate revocation
information if this activation specification establishes an SSL based connection to WebSphere MQ.

-sslResetCount
This parameter is used when the activation specification establishes an SSL connection to the queue
manager. This parameter determines how many bytes to transfer before resetting the symmetric
encryption key that is used for the SSL session.

Enter a value in the range 0 through 999,999,999.

The default value is 0.

-sslPeerName
This parameter is used when the activation specification establishes an SSL connection to the queue
manager. The value is compared with the distinguished name present in the peer's certificate.

-rcvExit
A comma-separated list of receive exit class names.

-rcvExitInitData
Initialization data to pass to the receive exit.

Do not specify this parameter unless you specify the -rcvExit parameter.

-sendExit
A comma-separated list of send exit class names.

-sendExitInitData
Initialization data to pass to the send exit.

Do not specify this parameter unless you specify the -sendExit parameter.

-secExit
A security exit class name.

-secExitInitData
Initialization data to pass to the security exit.

Do not specify this parameter unless you specify the -secExit parameter.

-compressHeaders
This parameter determines if message headers are compressed.

Enter one of the following values:

v NONE

v SYSTEM

The default value is NONE.

-compressPayload
This parameter determines if message payloads are compressed.

Enter one of the following values:

v NONE

v RLE

v ZLIBFAST

v ZLIBHIGH

Chapter 12. Welcome to administering Messaging resources 855



The default value is NONE.

-msgRetention
This parameter determines if the connection consumer keeps unwanted messages on the input queue.

Enter one of the following values:

v YES

v NO

where YES specifies that the connection consumer keeps unwanted messages on the input queue, and
NO specifies that the messages are disposed of according to their disposition options.

The default value is YES.

-rescanInterval
When a message consumer in the point-to-point domain uses a message selector to select which
messages it is to receive, the JMS client searches the WebSphere MQ queue for suitable messages in
the sequence determined by the MsgDeliverySequence attribute of the queue. When the client finds a
suitable message and delivers it to the consumer, the client resumes the search for the next suitable
message from its current position in the queue. The client continues to search the queue in this way
until it reaches the end of the queue, or until the interval of time in milliseconds, as determined by the
value of this -rescanInterval parameter has expired. In each case, the client returns to the beginning
of the queue to continue its search, and a new time interval commences.

This parameter must be a positive integer value.

The default value is 5000.

-ccsid
The coded character set identifier (CCSID) to be used on connections.

The value of this parameter must be a positive integer and must be one of the CCSIDs supported by
WebSphere MQ. See the “WebSphere MQ messaging provider activation specification advanced
properties” on page 736 for more details.

The default value is 819.

-failIfQuiescing
This parameter determines the behavior of certain calls to the queue manager when the queue
manager is put into quiescing state.

The value of this parameter must be true or false.

true specifies that calls to certain methods fail if the queue manager is in a quiescing state. If an
application detects that the queue manager is quiescing, the application can complete its immediate
task and close the connection, allowing the queue manager to stop.

false specifies that no methods fail if the queue manager is in a quiescing state. If you specify this
value, an application cannot detect that the queue manager is quiescing. The application might
continue to perform operations against the queue manager, and therefore prevent the queue manager
from stopping.

The default value is true.

-brokerCtrlQueue
The name of the broker control queue to use if this activation specification is to subscribe to a topic.

The default value is SYSTEM.BROKER.CONTROL.QUEUE.

-brokerSubQueue
The name of the queue to use for obtaining subscription messages if this activation specification is to
subscribe to a topic.

The default value is SYSTEM.JMS.ND.SUBSCRIBER.QUEUE.

856 Administering WebSphere applications



-brokerCCSubQueue
The name of the queue from which non-durable subscription messages are retrieved for a
ConnectionConsumer.

The default value is SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE.

-brokerVersion
The value of this parameter determines the level of functionality required for publish/subscribe
operations.

Valid values are 1 and 2.

The default value is 1.

-msgSelection
This parameter determines where message selection occurs.

Valid values are CLIENT and BROKER.

The default value is CLIENT.

-subStore
This parameter determines where WebSphere MQ messaging provider stores persistent data relating
to active subscriptions.

Valid values are MIGRATE, QUEUE and BROKER.

The default value is MIGRATE.

-stateRefreshInt
The interval, in milliseconds, between refreshes of the long running transaction that detects when a
subscriber loses its connection to the queue manager. This parameter is relevant only if -subStore
parameter has the value QUEUE.

The value of this parameter must be a positive integer.

The default value is 60,000.

-cleanupLevel
The cleanup level for BROKER or MIGRATE subscription stores.

Valid values are SAFE, NONE, ASPROP, and STRONG.

The default value is SAFE.

-cleanupInterval
The interval between background executions of the publish/subscribe cleanup utility.

The value of this parameter must be a positive integer.

The default value is 3,600,000.

-wildcardFormat
This parameter determines which sets of characters are interpreted as topic wildcards.

Valid values are Topic or Char.

The default value is Char.

-sparseSubs
This parameter controls the message retrieval policy of a TopicSubscriber object.

The value of this parameter must be true or false

The default value is false.

-brokerQmgr
The name of the queue manager on which the broker is running.

Chapter 12. Welcome to administering Messaging resources 857



-clonedSubs
This parameter determines whether two or more instances of the same durable topic subscriber can
run simultaneously.

The value of this parameter must be ENABLED or DISABLED

The default value is DISABLED.

-qmgrSvrconnChannel
The SVRCONN channel to use when connecting to WebSphere MQ.

Use this parameter to create explicitly defined activation specifications.

The default value is SYSTEM.DEF.SVRCONN.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or
-ccdtQmgrName.

-brokerCCDurSubQueue
The name of the queue from which a connection consumer receives durable subscription messages.

The default value is SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE.

-maxPoolSize
The maximum number of server sessions in the server session pool used by the connection
consumer.

The value of this parameter must be a positive integer.

The default value is 10.

-messageSelector
A message selector expression specifying which messages are to be delivered.

The value of this parameter must be either the empty string or a valid SQL 92 statement.

-poolTimeout
The period of time, in milliseconds, that an unused server session is held open in the server session
pool before being closed due to inactivity.

The value of this parameter must be a positive integer.

The default value is 300,000.

-startTimeout
The period of time, in milliseconds, within which delivery of a message to an MDB must start after the
work to deliver the message has been scheduled. If this period of time elapses, the message is rolled
back onto the queue.

The value of this parameter must be a positive integer.

The default value is 10,000.

-subscriptionDurability
This parameter determines whether a durable or nondurable subscription is used to deliver messages
to an MDB that is subscribing to the topic.

The value of this parameter must be Durable or Nondurable

The default value is Nondurable.

-subscriptionName
The name of the durable subscription.

-customProperties
This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider

858 Administering WebSphere applications



activation specification implementation. Typically, custom properties are used to set attributes of the
activation specification which are not directly supported through the WebSphere administration
interfaces.

Each custom property is specified using name and value table step parameters. Since these are table
steps, the order of the two parameters is fixed, so you must always specify the name first and the
value second:
v In Jython: [name value]
v In Jacl: {name value}

For example, -WAS_EndpointInitialState is a custom property that can be used with the
-customProperties parameter. The value of -WAS_EndpointInitialState must be ACTIVE or INACTIVE.
-WAS_EndpointInitialState determines whether the endpoint is activated when the endpoint is
registered. If the parameter is set to active, message consumption begins from the JMS destination as
soon as the activation specification is used for a message-driven bean to connect with the destination.

This parameter should be ignored for subsequent activation or deactivation via the
J2CMessageEndpoint MBean.

-localAddress
This parameter specifies either or both of the following:

v the local network interface

v the local port, or range of local ports

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or
-ccdtQmgrName.

-sslType
This parameter determines the configuration, if any, to use when applying SSL encryption to the
network connection to the queue manager.

The value of this parameter must be CENTRAL, SPECIFIC or NONE

The -sslConfiguration parameter is not valid unless this parameter is set to SPECIFIC.

The default value is NONE.

-sslConfiguration
The name of the SSL configuration to use when using SSL to secure network connections to the
queue manager.

Do not specify this parameter unless the parameter -sslType is assigned the value SPECIFIC.

The value of this parameter must correspond to an SSL configuration.

There is no default value.

-stopEndpointIfDeliveryFails
This parameter indicates whether the endpoint should be stopped if message delivery fails the number
of times specified by the failureDeliveryCount property.

The value of this parameter must be true or false.

The default value is true.

-failureDeliveryCount
This parameter specifies the number of sequential delivery failures that are allowed before the
endpoint is suspended. This value is only used if stopEndpointIfDeliveryFails is true.

The value of this parameter must be a non-negative integer.

The default value is 0, which means that the endpoint is stopped the first time it fails.

Chapter 12. Welcome to administering Messaging resources 859



Minimal activation specification definition

Note: In the following examples, code blocks beginning with wsadmin> show code that is entered by the
user. Lines that do not begin with wsadmin> show code that has been returned by the console.

The following example creates an activation specification, specifying the minimum number of parameters.
Due to the default values assumed for the unspecified parameters, MDBs deployed by using this activation
specification are co-located with a generic queue manager installed on the same node.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.createWMQActivationSpec("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)", ["-name spec1 -jndiName jms/as/spec1
-destinationJndiName jms/queues/q1 -destinationType javax.jms.Queue"])

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQActivationSpec
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
{-name spec1 -jndiName jms/as/spec1 -destinationJndiName jms/queues/q1
-destinationType javax.jms.Queue}

spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)

v The following example creates an activation specification with the WAS_EndpointInitialState optional
parameter activated, using Jython:

wsadmin>attrs = ’[[name "WAS_EndpointInitialState"] [required "false"] [type "java.lang.String"] [value "ACTIVE"]]’

wsadmin>AdminConfig.getid("/Node:myNode01")

myNode01(cells/myCell01/nodes/myNode01|node.xml#Node_1)’

wsadmin>theActSpec = AdminTask.createWMQActivationSpec("myNode01(cells/myCell01/nodes/myNode01|node.xml#Node_1)",
’-name testas -jndiName testas -destinationJndiName testq -destinationType javax.jms.Queue
-customProperties [[WAS_EndpointInitialState Active]]’)

Explicit activation specification definition

The following example creates an activation specification for which the user must specify and maintain all
the parameters used for establishing a connection to WebSphere MQ.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.createWMQActivationSpec("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)", ["-name spec2 -jndiName ’jms/as/spec2’
-destinationJndiName ’jms/topics/t2’ -destinationType javax.jms.Topic
-description ’Must remember to keep each of these activation specifications in
sync with the WebSphere MQ queue manager to which they refer’ -qmgrName QM1
-qmgrHostname 192.168.0.22 -qmgrPort 1415 -qmgrSvrconnChannel QM1.SVRCONN"])

spec2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234987)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

860 Administering WebSphere applications



wsadmin>$AdminTask createWMQActivationSpec
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
{-name spec2 -jndiName "jms/as/spec2" -destinationJndiName "jms/topics/t2"
-destinationType javax.jms.Topic -description "Must remember to keep each
of these activation specifications in sync with the WebSphere MQ queue manager
to which they refer" -qmgrName QM1 -qmgrHostname 192.168.0.22 -qmgrPort 1415
-qmgrSvrconnChannel QM1.SVRCONN}

spec2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234987)

Activation specification definition specifying a CCDT

The following example creates an activation specification that uses a CCDT to locate the queue manager
to connect to.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01/")

Node01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)")

wsadmin>AdminTask.createWMQActivationSpec("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)", ["-name spec3 -jndiName ’jms/as/spec3’
-destinationJndiName ’jms/queue/q3’ -destinationType javax.jms.Queue
-ccdtUrl ’http://myccdt:9080/ccdt/amqclchl.tab’ -ccdtQmgrName QM3"])

spec3(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234988)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQActivationSpec
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
{-name spec3 -jndiName "jms/as/spec3" -destinationJndiName "jms/queue/q3"
-destinationType javax.jms.Queue -ccdtUrl "http://myccdt:9080/ccdt/
amqclchl.tab" -ccdtQmgrName QM3}

spec3(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234988)

Creating an activation specification with the -WAS_EndpointInitialState custom
property set to Active
v The following example creates an activation specification with the WAS_EndpointInitialState custom

property activated, using Jython:

wsadmin>attrs = ’[[name "WAS_EndpointInitialState"] [required "false"] [type "java.lang.String"] [value "Active"]]’

wsadmin>AdminConfig.getid("/Node:myNode01")

myNode01(cells/myCell01/nodes/myNode01|node.xml#Node_1)’

wsadmin>theActSpec = AdminTask.createWMQActivationSpec("myNode01(cells/myCell01/nodes/myNode01|node.xml#Node_1)",
’-name testas -jndiName testas -destinationJndiName testq -destinationType javax.jms.Queue
-customProperties [[WAS_EndpointInitialState Active]]’)

deleteWMQActivationSpec command
Use this command to delete a WebSphere MQ messaging provider activation specification at a specific
scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

Chapter 12. Welcome to administering Messaging resources 861



For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the deleteWMQActivationSpec command to delete a WebSphere MQ messaging provider activation
specification defined at the scope at which the command is issued.

Target object

A WebSphere MQ messaging provider activation specification at the specific scope.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQActivationSpecs("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")
unwantedSpec(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)

wsadmin>AdminTask.deleteWMQActivationSpec("unwantedSpec(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|resources.xml#J2CActivationSpec_1098737234986)")

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQActivationSpecs
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
unwantedSpec(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)

wsadmin>$AdminTask deleteWMQActivationSpec
unwantedSpec(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)

862 Administering WebSphere applications



listWMQActivationSpecs command
Use the listWMQActivationSpecs command to list WebSphere MQ messaging provider activation
specifications.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

Use the listWMQActivationSpecs command to list all of the WebSphere MQ messaging provider activation
specifications defined at the scope at which the command is issued.

Target object

WebSphere MQ messaging provider activation specifications at the specific scope.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQActivationSpecs("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")
spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQActivationSpecs
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)

Chapter 12. Welcome to administering Messaging resources 863



modifyWMQActivationSpec command
Use the modifyWMQActivationSpec command to change certain parameters of a WebSphere MQ
messaging provider activation specification.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the modifyWMQActivationSpec command to modify a WebSphere MQ messaging provider activation
specification defined at the scope at which the command is issued.

Note: You cannot change the type of an activation specification. For example, you cannot create an
activation specification where you enter all the configuration information manually and then modify it
to use a CCDT.

For a CCDT-based activation specification, you cannot modify of the following parameters:

v qmgrName

v qmgrHostname

v qmgrPortNumber

v qmgrSrvconnChannel

v transportChain

v wmqTransportType

For a generic activation specification, you cannot modify any of the following parameters:

v ccdtUrl

v ccdtQmgrName

Target object

A WebSphere MQ messaging provider activation specification at the specific scope.

864 Administering WebSphere applications



Required parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging
provider activation specification.

Optional parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging
provider activation specification.

Note: If either the -qmgrHostname or -qmgrPortNumber parameters are specified without the
-connectionNameList parameter being specified, then it is assumed that a connection name list
should no longer be used to connect to WebSphere MQ and that the specified host name and port
number information should be used instead. As a result of this the -connectionNameList parameter
is set to blank.

Note the behavior of this command on the -customProperties parameter.

-customProperties
This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider
activation specification implementation. Typically, custom properties are used to set attributes of the
activation specification which are not directly supported through the WebSphere administration
interfaces.

Each custom property is specified using name and value table step parameters. Since these are table
steps, the order of the two parameters is fixed, so you must always specify the name first and the
value second:
v In Jython: [name value]
v In Jacl: {name value}

For example, -WAS_EndpointInitialState is a custom property that can be used with the
-customProperties parameter. The value of -WAS_EndpointInitialState must be ACTIVE or INACTIVE.
-WAS_EndpointInitialState determines whether the endpoint is activated when the endpoint is
registered. If the parameter is set to active, message consumption begins from the JMS destination as
soon as the activation specification is used for a message-driven bean to connect with the destination.

This parameter should be ignored for subsequent activation or deactivation via the
J2CMessageEndpoint MBean.

New name/value pairs are added to the existing set of custom properties using the following rules:

v If the existing set of properties does not contain a property with the same name as that supplied as
part of a modify command, the supplied property is added to the set of custom properties, unless
the custom property has no value specified, when it is disregarded.

v If the existing set of properties contains a property with the same name as that supplied as part of a
modify command, and the modify command also specifies a value for the property, the existing
value is replaced by the supplied value.

v If the existing set of properties contains a property with the same name as that supplied as part of a
modify command, but the modify command does not specify a value for the property, the property
with the same name is deleted from the existing set of custom properties.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQActivationSpecs("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")
spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

Chapter 12. Welcome to administering Messaging resources 865



J2CActivationSpec_1098737234986)

wsadmin>AdminTask.modifyWMQActivationSpec("spec1(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|resources.xml#J2CActivationSpec_1098737234986)",
["-destinationJndiName jms/topics/t5 -destinationType javax.jms.Topic"])
spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQActivationSpecs
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)

wsadmin>$AdminTask modifyWMQActivationSpec
spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)
{-destinationJndiName jms/topics/t5 -destinationType javax.jms.Topic}
spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)

v The following example modifies an activation specification by activating the WAS_EndpointInitialState
custom property, using Jython:

wsadmin>AdminConfig.getid("/Node:myNode01")
’myNode01(cells/myCell01/nodes/myNode01|node.xml#Node_1)’
wsadmin>wsadmin>AdminTask.listWMQActivationSpecs("myNode01(cells/myCell01/nodes/myNode01|node.xml#Node_1)")
’newas(cells/myCell01/nodes/myNode01|resources.xml#J2CActivationSpec_1298546034140)’
wsadmin>AdminTask.modifyWMQActivationSpec("newas(cells/myCell01/nodes/myNode01|resources.xml
#J2CActivationSpec_1298546034140)", ’-customProperties [[WAS_EndpointInitialState ACTIVE]]’)

showWMQActivationSpec command
Use the showWMQActivationSpec command to display information about a specific WebSphere MQ
messaging provider activation specification.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

Use the showWMQActivationSpec command to display all the parameters, and their values, associated with
a particular WebSphere MQ messaging provider activation specification.

866 Administering WebSphere applications



Target object

A WebSphere MQ messaging provider activation specification at the specific scope.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQActivationSpecs("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")
spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)

wsadmin>AdminTask.showWMQActivationSpec("spec1(cells/9994GKCNode01Cell/nodes/
9994GKCNode01|resources.xml#J2CActivationSpec_1098737234986)")
{cleanupLevel=SAFE, useConnectionPooling=true, port=1414, maxPoolDepth=10,
channel=channel1, transportType=CLIENT, subscriptionStore=MIGRATE,
messageSelection=CLIENT, cleanupInterval=3600000,
brokerCCSubQueue=SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE, name=spec1, CCSID=819,
useJNDI=true, hostName=localhost, rescanInterval=5000, headerCompression=NONE,
brokerCCDurSubQueue=SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE, queueManager=QMGR1,
messageCompression=NONE, startTimeout=10000, destinationJndiName=jms/q1,
poolTimeout=300000, sslType=NONE,
destinationType=javax.jms.Queue, brokerSubQueue=SYSTEM.JMS.ND.SUBSCRIBER.QUEUE,
sslResetCount=0, brokerControlQueue=SYSTEM.BROKER.CONTROL.QUEUE,
stateRefreshInt=60000, cloneSupport=DISABLED, jndiName=jms/as1,
sparseSubscriptions=false, authenticationAlias=null, failIfQuiesce=true,
description=, brokerVersion=1}

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQActivationSpecs
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)

wsadmin>$AdminTask showWMQActivationSpec
spec1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
J2CActivationSpec_1098737234986)
{cleanupLevel=SAFE, useConnectionPooling=true, port=1414, maxPoolDepth=10,
channel=channel1, transportType=CLIENT, subscriptionStore=MIGRATE,
messageSelection=CLIENT, cleanupInterval=3600000,
brokerCCSubQueue=SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE, name=spec1, CCSID=819,
useJNDI=true, hostName=localhost, rescanInterval=5000, headerCompression=NONE,
brokerCCDurSubQueue=SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE, queueManager=QMGR1,
messageCompression=NONE, startTimeout=10000, destinationJndiName=jms/q1,
poolTimeout=300000, sslType=NONE,
destinationType=javax.jms.Queue, brokerSubQueue=SYSTEM.JMS.ND.SUBSCRIBER.QUEUE,

Chapter 12. Welcome to administering Messaging resources 867



sslResetCount=0, brokerControlQueue=SYSTEM.BROKER.CONTROL.QUEUE,
stateRefreshInt=60000, cloneSupport=DISABLED, jndiName=jms/as1,
sparseSubscriptions=false, authenticationAlias=null, failIfQuiesce=true,
description=, brokerVersion=1}

createWMQConnectionFactory command
Use the createWMQConnectionFactory command to create a connection factory for the WebSphere MQ
messaging provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the createWMQConnectionFactory command to create a WebSphere MQ messaging provider
connection factory at a specific scope.

You cannot create a WebSphere MQ messaging provider connection factory under either of the following
conditions:

v A WebSphere MQ messaging provider connection factory already exists with the same name, at the
same scope.

v The JNDI name clashes with another entry in WebSphere Application Server JNDI.

Target object

The scope of the WebSphere MQ messaging provider at which the WebSphere MQ messaging provider
connection factory is to be created.

Required parameters

-name
The administrative name assigned to this WebSphere MQ messaging provider connection factory.

-jndiName
The name and location used to bind this object into WebSphere Application Server JNDI.

868 Administering WebSphere applications



-type
Use this parameter to determine whether a unified connection factory, a queue connection factory or a
topic connection factory is to be created.

Enter one of the following values:

v CF

v QCF

v TCF

CF is the default value.

If you specify QCF, you cannot specify any of the following parameters:

v -brokerCtrlQueue

v -brokerSubQueue

v -brokerCCSubQueue

v -brokerVersion

v -brokerPubQueue

v -tempTopicPrefix

v -pubAckWindow

v -subStore

v -stateRefreshInt

v -cleanupLevel

v -sparesSubs

v -wildcardFormat

v -brokerQmgr

v -clonedSubs

v -msgSelection

If you specify TCF, you cannot specify any of the following parameters:

v -msgRetention

v -rescanInterval

v -tempQueuePrefix

v -modelQueue

v -replyWithRFH2

Optional parameters

-description
An administrative description assigned to the connection factory.

-ccdtUrl
A URL to a client channel definition table to use, for this connection factory, when contacting
WebSphere MQ.

Use this parameter to create a ccdtURL connection factory

Do not specify this parameter in conjunction with the following parameters: -qmgrName, -qmgrHostname,
-qmgrPortNumber, -qmgrSvrconnChannel, –wmqTransportType or -localAddress.

-ccdtQmgrName
A queue manager name, used to select one or more entries from a client channel definition table.

Do not specify this parameter in conjunction with the following parameters: -qmgrName, -qmgrHostname,
-qmgrPortNumber, -qmgrSvrconnChannel, –wmqTransportType, or -localAddress.

Chapter 12. Welcome to administering Messaging resources 869



-qmgrName
The name of the queue manager to use, for this connection factory, when connecting with WebSphere
MQ.

Use this parameter to create a generic connection factory.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or -ccdtQmgrName.

-wmqTransportType
This parameter determines the way in which a connection is established to WebSphere MQ for this
connection factory.

Use this parameter to create a generic connection factory.

Enter one of the following values:

v BINDINGS

v BINDINGS_THEN_CLIENT

v CLIENT

The default value is BINDINGS_THEN_CLIENT.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or -ccdtQmgrName.

For more information about configuring a transport type of BINDINGS_THEN_CLIENT or BINDINGS, refer to
“Configuring the WebSphere MQ messaging provider with native libraries information” on page 692.

-qmgrHostname
The host name to use, for this connection factory, when attempting a client mode connection to
WebSphere MQ. It must be a valid TCP/IP host name or IPv4 or IPv6 address.

The default value is the local host.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or -ccdtQmgrName.

For information on setting the -qmgrHostname parameter in conjunction with the -connectionNameList
parameter, see the description of the -connectionNameList parameter.

-qmgrPortNumber
The port number to use, for this connection factory, when attempting a client mode connection to
WebSphere MQ.

Enter an integer value in the range 1 - 65536 (inclusive).

The default value is 1414.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or
-ccdtQmgrName.

For information on setting the -qmgrPortNumber parameter in conjunction with the -connectionNameList
parameter, see the description of the -connectionNameList parameter.

-connectionNameList
The connection name list specifying the host name and port details to use when you want the
connection factory to connect to a multi-instance queue manager.

Note: You must only use the -connectionNameList parameter to allow a connection to a
multi-instance queue manager. Using the -connectionNameList parameter to connect to a
non-multi-instance queue manager can jeopardize transaction integrity.

The -connectionNameList parameter must be entered as a comma separated list of host names and
ports in the following format:

host(port),host(port)

For host enter a valid TCP/IP host name, IPv4 or IPv6 address.

870 Administering WebSphere applications



For port enter an integer value between 1 and 65536 (inclusive). Specifying a value for port is
optional. When you do not specify a value, port defaults to 1414.

For example: localhost(1234),remotehost1(1234),remotehost2

When you specify the -connectionNameList parameter, the -qmgrHostname and -qmgrPortNumber
parameters are automatically set to the host name and port number of the first entry in the connection
name list. This overrides any values that you previously specified in the -qmgrHostname and
-qmgrPortNumber parameters.

In the preceding example this would mean that -qmgrHostname would be localhost and
-qmgrPortNumber would be 1234.

The -connectionNameList parameter is only valid for use in WebSphere Application Server Version 8.0
or later. Attempting to specify the -connectionNameList parameter on a WebSphere MQ messaging
provider connection factory which is defined at a server or node scope that is running on a version of
WebSphere Application Server earlier than Version 8.0 results in an error message when you run the
following commands:

v createWMQConnectionFactory

v modifyWMQConnectionFactory

If a WebSphere MQ messaging provider connection factory that is based on a connection name list is
used by an application client or server that is running a version of WebSphere Application Server
earlier than Version 8.0, the -connectionNameList information is not used. Instead, the values
specified in the -qmgrHostname and –qmgrPortNumber are used, and are set to the relevant values from
the first entry in the connectionNameList parameter.

You must not specify the connectionNameList parameter in conjunction with the -ccdtUrl or
-ccdtQmgrName parameters.

Note: If you use the-connectionNameList parameter with a centrally managed SSL configuration, the
host name and port number information used to select the appropriate SSL configuration is
based on the first entry in the connection name list, regardless of which entry in the list is
actually used to connect to the queue manager. This is because each instance of a
multi-instance queue manager should be using the same SSL configuration, for a given server
connection channel, regardless of which instance is actually running.

For more information on using multi-instance queue managers see the WebSphere MQ information
center.

-containerAuthAlias
The container-managed authentication alias, defined to the cell, from which security credentials are
used to establish a connection to WebSphere MQ.

-componentAuthAlias
The component-managed authentication alias, defined to the cell, from which security credentials are
used to establish a connection to WebSphere MQ.

-clientId
The client identifier used for connections started by using this connection factory.

-providerVersion
This parameter determines the minimum version, and capabilities of the queue manager.

Enter values in one of the following formats:

v n

v n.n

v n.n.n

v n.n.n.n

where n is an integer greater than or equal to zero.

Chapter 12. Welcome to administering Messaging resources 871



For example 6.0.0.0

-sslCrl
This parameter specifies a list of LDAP servers that are used to provide certificate revocation
information if this connection factory establishes an SSL based connection to WebSphere MQ.

-sslResetCount
This parameter is used when the connection factory establishes an SSL connection to the queue
manager. This parameter determines how many bytes to transfer before resetting the symmetric
encryption key that is used for the SSL session.

Enter a value in the range 0 through 999,999,999.

The default value is 0.

-sslPeerName
This parameter is used when the connection factory establishes an SSL connection to the queue
manager. The value is compared with the distinguished name present in the peer's certificate.

-rcvExit
A comma-separated list of receive exit class names.

-rcvExitInitData
Initialization data to pass to the receive exit.

Do not specify this parameter unless you specify the -rcvExit parameter.

-sendExit
A comma-separated list of send exit class names.

-sendExitInitData
Initialization data to pass to the send exit.

Do not specify this parameter unless you specify the -sendExit parameter.

-secExit
A security exit class name.

-secExitInitData
Initialization data to pass to the security exit.

Do not specify this parameter unless you specify the -secExit parameter.

-compressHeaders
This parameter determines if message headers are compressed.

Enter one of the following values:

v NONE

v SYSTEM

The default value is NONE.

-compressPayload
This parameter determines if message payloads are compressed.

Enter one of the following values:

v NONE

v RLE

v ZLIBFAST

v ZLIBHIGH

The default value is NONE.

-msgRetention
This parameter determines if the connection consumer keeps unwanted messages on the input queue.

872 Administering WebSphere applications



Enter one of the following values:

v YES

v NO

where YES specifies that the connection consumer keeps unwanted messages on the input queue, and
NO specifies that the messages are disposed of according to their disposition options.

The default value is YES.

-pollingInterval
This property is applicable in the client container only.

If each message listener within a session has no suitable message on its queue, this parameter is the
maximum interval, in milliseconds, that elapses before each message listener tries again to get a
message from its queue. If it frequently happens that no suitable message is available for any of the
message listeners in a session, consider increasing the value of this parameter.
The default value is 5000.

-rescanInterval
When a message consumer in the point-to-point domain uses a message selector to select which
messages it is to receive, the JMS client searches the WebSphere MQ queue for suitable messages in
the sequence determined by the MsgDeliverySequence attribute of the queue. When the client finds a
suitable message and delivers it to the consumer, the client resumes the search for the next suitable
message from its current position in the queue. The client continues to search the queue in this way
until it reaches the end of the queue, or until the interval of time in milliseconds, as determined by the
value of this -rescanInterval parameter has expired. In each case, the client returns to the beginning
of the queue to continue its search, and a new time interval commences

This parameter must be a positive integer value.

The default value is 5000.

-ccsid
The coded character set identifier (CCSID) to be used on connections.

The value of this parameter must be a positive integer. See the “WebSphere MQ messaging provider
connection factory advanced properties” on page 756 for more details.

The default value is 819.

-failIfQuiescing
This parameter determines the behavior of certain calls to the queue manager when the queue
manager is put into quiescing state.

The value of this parameter must be true or false.

true specifies that calls to certain methods fail if the queue manager is in a quiescing state. If an
application detects that the queue manager is quiescing, the application can complete its immediate
task and close the connection, allowing the queue manager to stop.

false specifies that no methods fail if the queue manager is in a quiescing state. If you specify this
value, an application cannot detect that the queue manager is quiescing. The application might
continue to perform operations against the queue manager, and therefore prevent the queue manager
from stopping.

The default value is true.

-brokerCtrlQueue
The name of the broker control queue to use if this connection factory is to subscribe to a topic.

The default value is SYSTEM.BROKER.CONTROL.QUEUE.

Chapter 12. Welcome to administering Messaging resources 873



-brokerSubQueue
The name of the queue to use for obtaining subscription messages if this connection factory is to
subscribe to a topic.

The default value is SYSTEM.JMS.ND.SUBSCRIBER.QUEUE.

-brokerCCSubQueue
The name of the queue from which non-durable subscription messages are retrieved for a
ConnectionConsumer.

The default value is SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE.

-brokerVersion
The value of this parameter determines the level of functionality required for publish/subscribe
operations.

Valid values are 1 and 2.

The default value is 1.

-msgSelection
This parameter determines where message selection occurs.

Valid values are CLIENT and BROKER.

The default value is CLIENT.

-subStore
This parameter determines where WebSphere MQ messaging provider stores persistent data relating
to active subscriptions.

Valid values are MIGRATE, QUEUE and BROKER.

The default value is MIGRATE.

-stateRefreshInt
The interval, in milliseconds, between refreshes of the long running transaction that detects when a
subscriber loses its connection to the queue manager. This parameter is relevant only if -subStore
parameter has the value QUEUE.

The value of this parameter must be a positive integer.

The default value is 60,000.

-cleanupLevel
The cleanup level for BROKER or MIGRATE subscription stores

Valid values are SAFE, NONE, ASPROP, and STRONG.

The default value is SAFE.

-cleanupInterval
The interval between background executions of the publish/subscribe cleanup utility.

The value of this parameter must be a positive integer.

The default value is 3,600,000.

-wildcardFormat
This parameter determines which sets of characters are interpreted as topic wildcards.

Valid values are Topic or Char.

The default value is Topic.

-sparseSubs
This parameter controls the message retrieval policy of a TopicSubscriber object.

The value of this parameter must be true or false

874 Administering WebSphere applications



The default value is false.

-brokerQmgr
The name of the queue manager that is running the broker, if it is not the same as the queue manager
to which the connection factory connects.

There is no default value.

-clonedSubs
This parameter determines whether two or more instances of the same durable topic subscriber can
run simultaneously

The value of this parameter must be ENABLED or DISABLED

The default value is DISABLED.

-customProperties
This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider
connection factory implementation. Typically, custom properties are used to set attributes of the
connection factory that are not directly supported through the WebSphere administration interfaces.

Each custom property is specified using name and value table step parameters. Since these are table
steps, the order of the two parameters is fixed, so you must always specify the name first and the
value second:
v In Jython: [name value]
v In Jacl: {name value}

-qmgrSvrconnChannel
The SVRCONN channel to use when connecting to WebSphere MQ.

Use this parameter to create an explicitly defined connection factory.

The default value is SYSTEM.DEF.SVRCONN.

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or
-ccdtQmgrName.

-support2PCProtocol
This parameter determines if the connection factory acts as a resource that is capable of participation
in distributed two-phase commit processing.

The value of this parameter must be True or False.

The default value True specifies that the connection factory acts as a resource that is capable of
participation in distributed two-phase commit processing.

-modelQueue
The name of the WebSphere MQ model queue whose definition is used as a basis when creating JMS
temporary destinations.

The default value is SYSTEM.DEFAULT.MODEL.QUEUE.

-tempQueuePrefix
The prefix to apply to WebSphere MQ temporary queues that are used to represent JMS temporary
queue type destinations.

There is no default value.

-tempTopicPrefix
The prefix to apply to the names generated for temporary topics. This parameter is only valid for
connection factories or topic connection factories.

There is no default value.

Chapter 12. Welcome to administering Messaging resources 875



-replyWithRFH2
This parameter determines whether, when sending a reply message to the reply-to queue obtained
from a message that does not include an RFH version 2 header, a RFH version 2 header is included
in the reply message.

The value of this parameter must be ALWAYS or AS_REPLY_DEST

The default value is AS_REPLY_DEST.

-brokerPubQueue
The name of the queue to which to send publication messages when using queue based brokering.

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

-pubAckInterval
The number of publications to send to a queue based broker before sending a publication that solicits
an acknowledgement.

The value of this parameter must be a positive integer greater than zero.

The default value is 25.

-sslType
This parameter determines the configuration, if any, to use when applying SSL encryption to the
network connection to the queue manager.

The value of this parameter must be CENTRAL, SPECIFIC or NONE

The default value is NONE.

The sslConfiguration parameter is not valid unless this parameter is set to the value SPECIFIC.

-sslConfiguration
The name of the SSL configuration to use when using SSL to secure network connections to the
queue manager.

The value of this parameter must correspond to an SSL configuration.

Do not specify this parameter unless the parameter -sslType is assigned the value SPECIFIC.

-localAddress
This parameter specifies either or both of the following:

v the local network interface

v the local port, or range of local ports

Do not specify this parameter in conjunction with the following parameters: -ccdtUrl or
-ccdtQmgrName.

-mappingAlias
The JAAS mapping alias used when determining which security credentials to use when establishing a
connection to WebSphere MQ.

The default value is DefaultPrincipleMapping.

-xaRecoveryAuthAlias
The authentication alias from which credentials are taken and used to connect to WebSphere MQ for
XA recovery.

There is no default value.

Minimal connection factory definition

Note: In the following examples, code blocks beginning with wsadmin> show code that is entered by the
user. Lines that do not begin with wsadmin> show code that has been returned by the console.

876 Administering WebSphere applications



The following example creates an connection factory, specifying the minimum number of parameters. Due
to the default values assumed for the unspecified parameters, applications using this connection factory
expect to be co-located with a queue manager installed on the same node.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.createWMQConnectionFactory("9994GKCNode01(cells/
9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)", ["-name cf1
-jndiName ’jms/cf/cf2’ -type CF"])

cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1205322636000)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQConnectionFactory
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
{-name cf1 -jndiName "jms/cf/cf1" -type CF}

cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1205322636000)

Explicitly defined connection factory

The following example creates an connection factory for which the user must specify and maintain all the
parameters used for establishing a connection to WebSphere MQ.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.createWMQConnectionFactory("9994GKCNode01(cells/
9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)", ["-name cf2
-jndiName ’jms/cf/cf2’ -type CF -description ’Must remember to keep each
of these connection factories in sync with the WebSphere MQ queue manager
to which they refer’ -qmgrName QM1 -qmgrHostname 192.168.0.22 -qmgrPortNumber 1415
-qmgrSvrconnChannel QM1.SVRCONN"])

cf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_120532263601)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQConnectionFactory
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
{-name cf2 -jndiName "jms/cf/cf2" -type CF -description "Must remember to
keep each of these connection factories in sync with the WebSphere MQ queue
manager to which they refer" -qmgrName QM1 -qmgrHostname 192.168.0.22
-qmgrPortNumber 1415 -qmgrSvrconnChannel QM1.SVRCONN}

cf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_120532263601)

Connection factory definition specifying a CCDT

The following example creates an connection factory that uses a CCDT to locate the queue manager to
connect to.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

Chapter 12. Welcome to administering Messaging resources 877



wsadmin>AdminTask.createWMQConnectionFactory("9994GKCNode01(cells/
9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)", ["-name cf3 -jndiName
’jms/cf/cf3’ -type CF -ccdtUrl ’http://myccdt:9080/ccdt/amqclchl.tab’
-ccdtQmgrName QM3"])

cf3(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_120532263606)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQConnectionFactory
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
{-name cf3 -jndiName "jms/cf/cf3" -type CF -ccdtUrl
"http://myccdt:9080/ccdt/amqclchl.tab" -ccdtQmgrName QM3}

cf3(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_120532263606)

deleteWMQConnectionFactory command
Use the deleteWMQConnectionFactory command to delete a WebSphere MQ messaging provider
connection factory at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the deleteWMQConnectionFactory command to delete a WebSphere MQ messaging provider
connection factory defined at the scope at which the command is issued.

Target object

A WebSphere MQ messaging provider connection factory at the specific scope.

Required parameters

None.

878 Administering WebSphere applications



Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQConnectionFactories("9994GKCNode01(cells/
9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)")
unwantedCF(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1098737234986)

wsadmin>AdminTask.deleteWMQConnectionFactory("unwantedCF(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|resources.xml#MQConnectionFactory_1098737234986)")

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQConnectionFactories
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
unwantedCF(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1098737234986)

wsadmin>$AdminTask deleteWMQConnectionFactory
unwantedCF(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1098737234986)

listWMQConnectionFactories command
Use the listWMQConnectionFactories command to list WebSphere MQ messaging provider connection
factories.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

Use the listWMQConnectionFactories command to list all of the WebSphere MQ messaging provider
connection factories defined at the scope at which the command is issued.

Chapter 12. Welcome to administering Messaging resources 879



Target object

WebSphere MQ messaging provider connection factories at the specific scope.

Required parameters

None.

Optional parameters

-type
Use this parameter to determine which type of connection factory is listed. If it is omitted all connection
factories are shown at the appropriate scope.

Valid values are:

v CF to list only common connection factories

v QCF to list only queue connection factories

v TCF to list only topic connection factories

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQConnectionFactories("9994GKCNode01(cells/
9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)")
cf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1098737234986)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQConnectionFactories
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
cf2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1098737234986)

modifyWMQConnectionFactory command
Use the modifyWMQConnectionFactory command to change certain parameters of a WebSphere MQ
messaging provider connection factory.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

880 Administering WebSphere applications



print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the modifyWMQConnectionFactory command to modify a WebSphere MQ messaging provider
connection factory defined at the scope at which the command is issued.

Note: When modifying a WebSphere MQ messaging provider connection factory, there is an interaction
between the mappingAlias and containerAuthAlias parameters. This interaction occurs if the
containerAuthAlias parameter is specified but the mappingAlias is not specified. In this situation,
the mappingAlias parameter is automatically set to the value DefaultPrincipleMapping.

Target object

A WebSphere MQ messaging provider connection factory at the specific scope.

Required parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging
provider connection factory.

Optional parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging
provider connection factory.

Note: If either the -qmgrHostname or -qmgrPortNumber parameters are specified without the
-connectionNameList parameter being specified, then it is assumed that a connection name list
should no longer be used to connect to WebSphere MQ and that the specified host name and port
number information should be used instead. As a result of this the -connectionNameList parameter
is set to blank.

Note the behavior of this command on the -customProperties parameter.

-customProperties
This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider
connection factory implementation. Typically, custom properties are used to set attributes of the
connection factory that are not directly supported through the WebSphere administration interfaces.

Each custom property is specified using name and value table step parameters. Since these are table
steps, the order of the two parameters is fixed, so you must always specify the name first and the
value second:
v In Jython: [name value]
v In Jacl: {name value}

New name/value pairs are added to the existing set of custom properties using the following rules:

v If the existing set of properties does not contain a property with the same name as that supplied as
part of a modify command, the supplied property is added to the set of custom properties, unless
the custom property has no value specified, when it is disregarded.

v If the existing set of properties contains a property with the same name as that supplied as part of a
modify command, and the modify command also specifies a value for the property, the existing
value is replaced by the supplied value.

Chapter 12. Welcome to administering Messaging resources 881



v If the existing set of properties contains a property with the same name as that supplied as part of a
modify command but the modify command does not specify a value for the property, the property
with the same name is deleted from the existing set of custom properties.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQConnectionFactories("9994GKCNode01(cells/
9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)")
cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1098737234986)

wsadmin>AdminTask.modifyWMQConnectionFactory("cf1(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|resources.xml#MQConnectionFactory_1098737234986)", ["-description
’My new description’"])
cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1098737234986)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQConnectionFactories
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1098737234986)

wsadmin>$AdminTask modifyWMQConnectionFactory
cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1098737234986) {-description "My new description"}
cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1098737234986)

showWMQConnectionFactory command
Use the showWMQConnectionFactory command to display information about a specific WebSphere MQ
messaging provider connection factory.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

882 Administering WebSphere applications



Purpose

Use the showWMQConnectionFactory command to display all the parameters, and their values, associated
with a particular WebSphere MQ messaging provider connection factory.

Target object

A WebSphere MQ messaging provider connection factory at the specific scope.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQConnectionFactories("9994GKCNode01(cells/
9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)")
cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1098737234986)

wsadmin>AdminTask.showWMQConnectionFactory("cf1(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|resources.xml#MQConnectionFactory_1098737234986)")
{ name=cf1 jndiName=jms/cf/cf1 description= qmgrName=QMGR1
qmgrSvrconnChannel=TO.QMGR1 qmgrHostname=localhost qmgrPortNumber=1414
wmqTransportType=bindingsThenClient authAlias= clientId="Bob’s Magic Client"
providerVersion= sslCrl= sslResetCount= sslPeerName= rcvExit=
rcvExitInitData= sendExit= sendExitInitData= secExit= secExitInitData=
compressHeaders=NONE compressPayload=NONE msgRetention=true
pollingInterval=5000 rescanInterval=5000 maxBatchSize=10 ccsid=819
failIfQuiescing=true brokerCtrlQueue=
brokerSubQueue=SYSTEM.BROKER.CONTROL.QUEUE
brokerCCSubQueue=SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE
brokerVersion=1 msgSelection=CLIENT subStore=MIGRATE stateRefreshInt=60000
cleanupInterval=360000000 cleanupLevel=SAFE wildcardFormat=CHAR
sparseSubs=false brokerQmgr= clonedSubs=true}

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQConnectionFactories
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQConnectionFactory_1098737234986)

wsadmin>$AdminTask showWMQConnectionFactory
cf1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
aclMQConnectionFactory_1098737234986)
{ name=cf1 jndiName=jms/cf/cf1 description= qmgrName=QMGR1
qmgrSvrconnChannel=TO.QMGR1 qmgrHostname=localhost qmgrPortNumber=1414
wmqTransportType=bindingsThenClient authAlias= clientId="Bob’s Magic Client"
providerVersion= sslCrl= sslResetCount= sslPeerName= rcvExit=
rcvExitInitData= sendExit= sendExitInitData= secExit= secExitInitData=
compressHeaders=NONE compressPayload=NONE msgRetention=true

Chapter 12. Welcome to administering Messaging resources 883



pollingInterval=5000 rescanInterval=5000 maxBatchSize=10 ccsid=819
failIfQuiescing=true brokerCtrlQueue=
brokerSubQueue=SYSTEM.BROKER.CONTROL.QUEUE
brokerCCSubQueue=SYSTEM.JMS.ND.CC.SUBSCRIBER.QUEUE
brokerVersion=1 msgSelection=CLIENT subStore=MIGRATE stateRefreshInt=60000
cleanupInterval=360000000 cleanupLevel=SAFE wildcardFormat=CHAR
sparseSubs=false brokerQmgr= clonedSubs=true}

createWMQTopic command
Use the createWMQTopic command to create a JMS topic destination for the WebSphere MQ messaging
provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the createWMQTopic command to create a WebSphere MQ messaging provider topic type destination
at a specific scope.

You cannot create a WebSphere MQ messaging provider topic type destination under either of the
following conditions:

v A WebSphere MQ messaging provider topic type destination already exists with the same name, at the
same scope.

v The JNDI name clashes with another entry in WebSphere Application Server JNDI.

Target object

The scope of the WebSphere MQ messaging provider at which the WebSphere MQ messaging provider
topic type destination is to be created.

Required parameters

-name
The administrative name assigned to this WebSphere MQ messaging provider topic type destination.

-jndiName
The name used to bind this object into WebSphere Application Server JNDI.

884 Administering WebSphere applications



-topicName
The name of the WebSphere MQ topic where publications are received from, or sent to, when this
destination definition is used.

Optional parameters

-description
An administrative description assigned to the topic type destination.

-persistence
This parameter determines the level of persistence used to store messages sent to this destination.

Enter one of the following case-sensitive values:

v APP

v TDEF

v PERS

v NON

v HIGHT

APP is the default value.

-priority
The priority level to assign to messages sent to this destination.

Enter one of the following case-sensitive values:

v APP

v TDEF

or enter a positive integer in the range 0 to 9 (inclusive).

The default value is APP .

-expiry
The length of time following which messages that are sent to this destination expire and are dealt with
according to their disposition options.

Enter one of the following case-sensitive values:

v APP

v UNLIM

or enter any positive integer.

The default value is APP.

-ccsid
The coded character set identifier (CCSID).

The value of this parameter must be a positive integer or blank. See the “WebSphere MQ messaging
provider queue and topic advanced properties settings” on page 830 for more details.

The default value is 1208.

-useNativeEncoding
This parameter specifies whether to use native encoding or not. It can take a value true or false.

If it is set to true, the values of the -integerEncoding, -decimalEncoding and -floatingPointEncoding
attributes are ignored.

If it is set to false, the encoding is specified by the -integerEncoding, -decimalEncoding and
-floatingPointEncoding attributes.

-integerEncoding
The integer encoding setting for this queue.

Chapter 12. Welcome to administering Messaging resources 885



Enter one of the following case-sensitive values: Normal, Reversed.

Normal is the default value.

-decimalEncoding
The decimal encoding setting for this queue.

Enter one of the following case-sensitive values: Normal, Reversed.

The default value is Normal.

-floatingPointEncoding
The floating point encoding setting for this queue.

Enter one of the following case-sensitive values: IEEENormal, IEEEReversed, z/OS

The default value is IEEENormal.

-useRFH2
This parameter determines whether an RFH version 2 header is appended to messages sent to this
destination.

Enter one of the following case-sensitive values: true or false.

The default value is true.

-sendAsync
This parameter determines whether messages can be sent to this destination without queue manager
acknowledging that they have arrived.

Enter one of the following case-sensitive values: YES, NO or TDEF.

The default value is YES.

-readAhead
This parameter determines whether messages for non-persistent consumers can be read ahead and
cached.

Enter one of the following case-sensitive values: YES, NO or TDEF.

The default value is YES.

-readAheadClose
This property determines the behavior that occurs when closing a message consumer that is receiving
messages asynchronously by using a message listener from a destination that has the readAhead
parameter set to True.

When a value of deliverAll is specified, all read-ahead messages are delivered before closing the
consumer.

When a value of deliverCurrent is specified, only in-progress messages are delivered before closing
the consumer.

The default value is deliverCurrent.

-wildcardFormat
This parameter determines which sets of characters are interpreted as topic wildcards.

Valid values are Topic or Char.

The default value is Topic.

-brokerDurSubQueue
The name of the queue, defined to the queue manager, from which a connection consumer receives
non-durable subscription messages.

The value of this parameter must be a valid queue name or left blank

The default value is SYSTEM.JMS.D.SUBSCRIBER.QUEUE.

886 Administering WebSphere applications



-brokerCCDurSubQueue
The name of the queue, defined to the queue manager, from which a connection consumer receives
durable subscription messages.

The value of this parameter must be a valid queue name or left blank

The default value is SYSTEM.JMS.D.CC.SUBSCRIBER.QUEUE.

-brokerPubQueue
The name of the queue, defined to the queue manager, to which publication messages are sent.

The value of this parameter must be a valid queue name or left blank

The default value is SYSTEM.BROKER.DEFAULT.STREAM.

-brokerPubQmgr
The name of the queue manager on which the broker is running.

The value of this parameter must be a valid queue manager name or left blank

There is no default value.

-brokerVersion
This parameter determines the level of functionality required for publish/subscribe operations.

The value of this parameter must be V1 or V2.

The default value is V1.

-customProperties
This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider
topic type destination implementation. Typically, custom properties are used to set attributes of the
topic type destination that are not directly supported through the WebSphere administration interfaces.

Each custom property is specified using name and value table step parameters. Since these are table
steps, the order of the two parameters is fixed, so you must always specify the name first and the
value second:
v In Jython: [name value]
v In Jacl: {name value}

Note: In the following examples, code blocks beginning with wsadmin> show code that is entered by the
user. Lines that do not begin with wsadmin> show code that has been returned by the console.

The following example creates a topic definition by specifying the minimum number of parameters.

v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
MQTopic_1098737234986)

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.createWMQTopic("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)", ["-name T1 -jndiName jms/topic/t1
-topicName myTopic"])

T1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01

9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask createWMQTopic
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
{-name T1 -jndiName jms/topic/t1 -topicName myTopic}

T1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQTopic_1098737234986)

Chapter 12. Welcome to administering Messaging resources 887



deleteWMQTopic command
Use this command to delete a WebSphere MQ messaging provider topic at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the deleteWMQTopic command to delete a WebSphere MQ messaging provider topic defined at the
scope at which the command is issued.

Target object

A WebSphere MQ messaging provider topic at the specific scope.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQTopics("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")
unwantedTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQTopic_1098737234986)

wsadmin>$AdminTask deleteWMQTopic
unwantedTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQTopic_1098737234986)

v Using Jacl:

888 Administering WebSphere applications



wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQTopics
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
unwantedTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQTopic_1098737234986)

wsadmin>$AdminTask deleteWMQTopic
unwantedTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQTopic_1098737234986)

listWMQTopics command
Use the listWMQTopics command to list WebSphere MQ messaging provider topics.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

Use the listWMQTopics command to list all of the WebSphere MQ messaging provider topics defined at
the scope at which the command is issued.

Target object

WebSphere MQ messaging provider topics at the specific scope.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQTopics("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")
aaaTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#

Chapter 12. Welcome to administering Messaging resources 889



MQTopic_1098737234986)
bbbTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQTopic_1098737234987)
cccTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQTopic_1098737234988)

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQTopics
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
aaaTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQTopic_1098737234986)
bbbTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQTopic_1098737234987)
cccTopic(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQTopic_1098737234988)

modifyWMQTopic command
Use the modifyWMQTopic command to change certain parameters of a WebSphere MQ messaging provider
topic.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the modifyWMQTopic command to modify a WebSphere MQ messaging provider topic defined at the
scope at which the command is issued.

Note: You cannot change the name of an topic.

Target object

A WebSphere MQ messaging provider topic at the specific scope.

890 Administering WebSphere applications



Required parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging
provider topic.

Optional parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging
provider topic.

Note the behavior of this command on the -customProperties parameter.

-customProperties
This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider
topic implementation. Typically, custom properties are used to set attributes of the topic that are not
directly supported through the WebSphere administration interfaces.

Each custom property is specified using name and value table step parameters. Since these are table
steps, the order of the two parameters is fixed, so you must always specify the name first and the
value second:
v In Jython: [name value]
v In Jacl: {name value}

New name/value pairs are added to the existing set of custom properties using the following rules:

v If the existing set of properties does not contain a property with the same name as that supplied as
part of a modify command, the supplied property is added to the set of custom properties, unless
the custom property has no value specified, when it is disregarded.

v If the existing set of properties contains a property with the same name as that supplied as part of a
modify command, and the modify command also specifies a value for the property, the existing
value is replaced by the supplied value.

v If the existing set of properties contains a property with the same name as that supplied as part of a
modify command, but the modify command does not specify a value for the property, the property
with the same name is deleted from the existing set of custom properties.

Example
v Using Jython:

wsadmin>AdminTask.modifyWMQTopic("t1(cells/L3A3316Node04Cell/
nodes/L3A3316Node05|resources.xml#MQTopic_1204538835312)", ["-priority 7"])
t1(cells/L3A3316Node04Cell/nodes/L3A3316Node05|resources.xml#
MQTopic_1204538835312)

v Using Jacl:

wsadmin>$AdminTask modifyWMQTopic
t1(cells/L3A3316Node04Cell/nodes/L3A3316Node05|resources.xml#
MQTopic_1204538835312) {-priority 7}
t1(cells/L3A3316Node04Cell/nodes/L3A3316Node05|resources.xml#
MQTopic_1204538835312)

showWMQTopic command
Use the showWMQTopic command to display information about a specific WebSphere MQ messaging
provider topic.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

Chapter 12. Welcome to administering Messaging resources 891



This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

Use the showWMQTopic command to display all the parameters, and their values, associated with a
particular WebSphere MQ messaging provider topic.

Target object

A WebSphere MQ messaging provider topic at the specific scope.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQTopics("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")
topic1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQTopic_1098737234986)

wsadmin>AdminTask.showWMQTopic("topic1(cells/9994GKCNode01Cell/nodes/
9994GKCNode01|resources.xml#MQTopic_1098737234986)")
{specifiedExpiry=0, priority=APPLICATION_DEFINED, decimalEncoding=Normal,
baseTopicName=topic1, name=topic1, readAhead=NO, brokerPubQmgr=null,
readAheadClose=DELIVERCURRENT, brokerPubQueue=SYSTEM.BROKER.DEFAULT.STREAM,
ccsid=1208, integerEncoding=Normal, useNativeEncoding=true,
wildcardFormat=charWildcards, expiry=APP, specifiedPriority=0,
jndiName=jms/t1, sendAsync=NO,
brokerDurSubQueue=SYSTEM.JMS.D.SUBSCRIBER.QUEUE, brokerCCDurSubQueue=null,
description=null, targetClient=JMS, floatingPointEncoding=IEEENormal,
persistence=APP, brokerVersion=V1}

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQTopics
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
topic1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQTopic_1098737234986)

892 Administering WebSphere applications



wsadmin>$AdminTask showWMQTopic
topic1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQTopic_1098737234986)
{specifiedExpiry=0, priority=APPLICATION_DEFINED, decimalEncoding=Normal,
baseTopicName=topic1, name=topic1, readAhead=NO, brokerPubQmgr=null,
readAheadClose=DELIVERCURRENT, brokerPubQueue=SYSTEM.BROKER.DEFAULT.STREAM,
ccsid=1208, integerEncoding=Normal, useNativeEncoding=true,
wildcardFormat=charWildcards, expiry=APP, specifiedPriority=0,
jndiName=jms/t1, sendAsync=NO,
brokerDurSubQueue=SYSTEM.JMS.D.SUBSCRIBER.QUEUE, brokerCCDurSubQueue=null,
description=null, targetClient=JMS, floatingPointEncoding=IEEENormal,
persistence=APP, brokerVersion=V1}

manageWMQ command
Use the manageWMQ command to manage the settings of the WebSphere MQ resource adapter that is
installed at a particular scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the manageWMQ command to manage the settings associated with the WebSphere MQ resource
adapter that is installed at a particular scope.

You can use the manageWMQ command to manage the native library path and query the metadata of the
specified WebSphere MQ resource adapter.

Target object

A WebSphere MQ resource adapter.

Required parameters

None.

Chapter 12. Welcome to administering Messaging resources 893



Optional parameters

-nativePath
This parameter specifies the path to the WebSphere MQ messaging provider native libraries that are
used by the WebSphere MQ resource adapter to establish a bindings mode connection to the queue
manager. This parameter can be specified on a WebSphere MQ adapter at any scope.

-query
This parameter provides information about the level of WebSphere MQ resource adapter that is used
by the WebSphere MQ messaging provider. This parameter can be specified on a WebSphere MQ
resource adapter at any scope.

-disableWMQ
This parameter specifies whether or not to disable WebSphere MQ functionality at the scope of the
specified resource adapter, and at all scopes following it.

The value of this parameter must be true or false.

The default value is false.

In a single server environment this parameter is valid only at the server scope. In a network
deployment environment this parameter is valid at all scopes. The affect of setting this parameter to
true depends on the scope at which you set it:

v For a cell scoped WebSphere MQ resource adapter, all WebSphere MQ functionality on all
application servers in the cell is disabled.

v For a node scoped WebSphere MQ resource adapter, all WebSphere MQ functionality on all
application servers that are part of that node is disabled.

v For a cluster scoped WebSphere MQ resource adapter, all WebSphere MQ functionality on all
application servers in that cluster are disabled.

v For a server scoped WebSphere MQ resource adapter, all WebSphere MQ functionality in that
particular application server is disabled.

In all cases, all affected processes must be restarted for the changes to take effect.

The value of the parameter at a higher scope takes precedence over the value at a lower scope. For
example, if you set the parameter to false at the server scope but a higher (for example, cell) scoped
WebSphere MQ messaging provider has the parameter set to true, the value at the cell scope takes
precedence and WebSphere MQ functionality is therefore disabled in all application servers in the cell,
regardless of the parameter value at the server scope.

-maxConnections
This parameter specifies the maximum number of connections to a WebSphere MQ queue manager.

The default value is 10.

For further information, see Configuration of the ResourceAdapter object in the WebSphere MQ
information center.

-connectionConcurrency
This parameter specifies the maximum number of message-driven beans that can be supplied by each
connection.

The default value is 1.

Setting this property only affects WebSphere Application Server 7 nodes. The property has no effect
for WebSphere Application Server Version 8 or later nodes.

For further information, see Configuration of the ResourceAdapter object in the WebSphere MQ
information center.

-reconnectionRetryCount
This parameter specifies the maximum number of attempts made by a WebSphere MQ messaging
provider activation specification to reconnect to a WebSphere MQ queue manager if a connection fails.

894 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/jm40190_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/jm40190_.htm


The default value is 5.

For further information, see Configuration of the ResourceAdapter object in the WebSphere MQ
information center.

-reconnectionRetryInterval
This parameter specifies the time, in milliseconds, that a WebSphere MQ messaging provider
activation specification waits prior to making another attempt to reconnect to a WebSphere MQ queue
manager.

The default value is 300000.

For further information, see Configuration of the ResourceAdapter object in the WebSphere MQ
information center.

-customProperties
This parameter specifies custom properties to be passed to the WebSphere MQ resource adapter.
Typically, custom properties are used to set attributes of the WebSphere MQ resource adapter that are
not directly supported through the WebSphere Application Server administration interfaces.

Each custom property is specified using name and value table step parameters. Since these are table
steps, the order of the two parameters is fixed, so you must always specify the name first and the
value second:
v In Jython: [name value]
v In Jacl: {name value}

New name/value pairs are added to the existing set of custom properties using the following rules:

v If the existing set of properties does not contain a property with the same name as that which is
supplied, the supplied property is added to the set of custom properties, unless the custom property
has no value specified, when it is disregarded.

v If the existing set of properties contains a property with the same name as that supplied as part of a
modify command, and the modify command also specifies a value for the property, the existing
value is replaced by the supplied value.

v If the existing set of properties contains a property with the same name as that supplied as part of a
modify command, but the modify command does not specify a value for the property, the property
with the same name is deleted from the existing set of custom properties.

Examples

The following example shows how to enable inbound JCA message delivery on the z/OS platform.

v Using Jython:

wsadmin>AdminTask.manageWMQ("WebSphere MQ Resource Adapter
(cells/L3A3316Node04Cell/nodes/L3A3316Node05/servers/server1|resources.xml#
J2CResourceAdapter_1201601803796)", ["-enableInbound true"])

v Using Jacl:

wsadmin>$AdminTask manageWMQ "WebSphere MQ Resource Adapter
(cells/L3A3316Node04Cell/nodes/L3A3316Node05/servers/server1|resources.xml#
J2CResourceAdapter_1201601803796)" {-enableInbound true}

The following example sets the value of -maxConnections to 100 and adds a custom property with name
name1 and value value1.

v Using Jython:

AdminTask.manageWMQ("WebSphere MQ Resource Adapter(
cells/L3A3316Node01Cell|resources.xml#J2CResourceAdapter_1284547647859)",
["-maxConnections 100 -customProperties [[name1 value1]]"])

v Using Jacl:

Chapter 12. Welcome to administering Messaging resources 895

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/jm40190_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp?topic=/com.ibm.mq.csqzaw.doc/jm40190_.htm


wsadmin>$AdminTask manageWMQ "WebSphere MQ Resource Adapter(
cells/L3A3316Node01Cell|resources.xml#J2CResourceAdapter_1284547647859)"
{-maxConnections 100 -customProperties {{name1 value1}}}

showWMQ command
Use the showWMQ command to show the settings which can be set by the manageWMQ command.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the showWMQ command to display all the parameters, and their values that can be set by the manageWMQ
command. These settings are either related to the WebSphere MQ resource adapter or the WebSphere
MQ messaging provider. The command also shows custom properties which are set on the WebSphere
MQ resource adapter.

The following settings are expected:

v maxConnections

v connectionConcurrency (Setting this property only affects WebSphere Application Server 7 nodes. The
property has no effect for WebSphere Application Server Version 8 or later nodes.)

v reconnectionRetryCount

v reconnectionRetryInterval

v nativePath

v enableInbound

v disableWMQ (this parameter is only visible when setting it is valid, see the description of the
manageWMQ command for more information)

For a description of these settings, see “manageWMQ command” on page 893.

Any other setting that is shown is either a custom property or a property that is not appropriate in
WebSphere Application Server.

896 Administering WebSphere applications



Target object

A WebSphere MQ resource adapter.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminTask.showWMQ("WebSphere MQ Resource Adapter
(cells/L3A3316Node01Cell|resources.xml#J2CResourceAdapter_1284547647859)")
’{name1=value1, logWriterEnabled=true, maxConnections=100, startupReconnectionRetryCount=500,
connectionConcurrency=1, reconnectionRetryCount=3, traceEnabled=false,
reconnectionRetryInterval=4, nativePath=[], startupReconnectionRetryInterval=600, traceLevel=3}’

v Using Jacl:

wsadmin>$AdminTask showWMQ "WebSphere MQ Resource Adapter(
cells/L3A3316Node01Cell|resources.xml#J2CResourceAdapter_1284547647859)"
{name1=value1, logWriterEnabled=true, maxConnections=100, startupReconnectionRetryCount=500,
connectionConcurrency=1, reconnectionRetryCount=3, traceEnabled=false,
reconnectionRetryInterval=4, nativePath=[], startupReconnectionRetryInterval=600, traceLevel=3}

migrateWMQMLP command
Use the migrateWMQMLP command to migrate a WebSphere MQ message listener port definition to an
activation specification definition.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Chapter 12. Welcome to administering Messaging resources 897



Purpose

Use the migrateWMQMLP command to migrate a WebSphere MQ message listener port definition to an
activation specification definition. After the activation specification has been created, you can delete the
listener port.

Note that the Maximum retries listener port setting is not migrated to the new activation specification as
there is no exact equivalent.

When you are migrating a listener port associated with a message-driven bean (MDB) that has the
subscriptionDurability activation configuration property set to Durable, and that MDB already has an active
durable subscription, the durable subscription is not migrated. This is because listener ports and
WebSphere MQ activation specifications use incompatible forms of subscription name. As a result there
can be two active durable subscriptions subscribed to the relevant topic for the same MDB. As part of the
migration process, you must delete the old durable subscription that was associated with the listener port
and manually clean up any messages associated with it. For information on how do to this see the
WebSphere MQ and WebSphere Message Broker information centres.

Target object

The message listener port to be migrated.

Required parameters

-asName
The name of the activation specification to be created.

-asJNDIName
The JNDI name of the activation specification to be created.

-asScope
The type of scope at which to create the activation specification (server, node, cluster or cell). Note
that the cluster option is only supported when the server that contains the message listener port is
part of a cluster. If not specified this defaults to server. The scopes specified are relative to the
message listener port, so node is the node of the server that contains the message listener port.

Optional parameters

None.

The following example shows how to migrate a message listener port to an activation specification.

v Using Jython:

wsadmin>AdminConfig.list("ListenerPort")
lp1(cells/L3A3316Node09Cell/nodes/L3A3316Node10/servers/server1|
server.xml#ListenerPort_1211265363796)

wsadmin>AdminTask.migrateWMQMLP("lp1(cells/L3A3316Node09Cell/nodes/
L3A3316Node10/servers/server1|server.xml#ListenerPort_1211265363796)",
["-asName migratedFromLP -asJNDIName jms/as1 -asScope node"])
migratedFromLP(cells/L3A3316Node09Cell/nodes/L3A3316Node10|
resources.xml#J2CActivationSpec_1211265679078)

v Using Jacl:

wsadmin>$AdminConfig list ListenerPort
lp1(cells/L3A3316Node09Cell/nodes/L3A3316Node10/servers/server1|
server.xml#ListenerPort_1211265363796)

wsadmin>$AdminTask migrateWMQMLP
lp1(cells/L3A3316Node09Cell/nodes/L3A3316Node10/servers/server1|

898 Administering WebSphere applications



server.xml#ListenerPort_1211265363796)
{-asName migratedFromLP -asJNDIName jms/as1 -asScope node}
migratedFromLP(cells/L3A3316Node09Cell/nodes/L3A3316Node10|
resources.xml#J2CActivationSpec_1211265679078)

createWMQQueue command
Use the createWMQQueue command to create a queue type destination for the WebSphere MQ messaging
provider at a specific scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the createWMQQueue command to create a WebSphere MQ messaging provider queue type destination
at a specific scope.

You cannot create a WebSphere MQ messaging provider queue type destination under either of the
following conditions:

v A WebSphere MQ messaging provider queue type destination already exists with the same name, at
the same scope.

v The JNDI name clashes with another entry in WebSphere Application Server JNDI.

Target object

The scope of the WebSphere MQ messaging provider at which the WebSphere MQ messaging provider
queue type destination is to be created.

Required parameters

-name
The administrative name assigned to this WebSphere MQ messaging provider queue type destination.

-jndiName
The name used to bind this object into WebSphere Application Server JNDI.

Chapter 12. Welcome to administering Messaging resources 899



Optional parameters

-description
An administrative description assigned to the queue type destination.

-queueName
The name of the WebSphere MQ queue to use to store messages for the WebSphere MQ messaging
provider queue type destination definition.

-qmgr
The queue manager that hosts the WebSphere MQ queue.

-persistence
This parameter determines the level of persistence used to store messages sent to this destination.

Enter one of the following case-sensitive values:

v APP

v QDEF

v PERS

v NON

v HIGH

The default value is APP.

-priority
The priority level to assign to messages sent to this destination.

Enter one of the following case-sensitive values:

v APP

v QDEF

or enter a positive integer in the range 0 to 9 (inclusive).

The default value is APP.

-expiry
The length of time after which messages sent to this destination expire and are dealt with according to
their disposition options.

Enter one of the following case-sensitive values:

v APP

v UNLIM

or enter any positive integer.

The default value is APP.

-ccsid
The coded character set identifier (CCSID).

The value of this parameter must be a positive integer or blank. See the “WebSphere MQ messaging
provider queue and topic advanced properties settings” on page 830 for more details.

The default value is 1208.

Leaving this field empty indicates that the default value must be used.

-useNativeEncoding
This parameter specifies whether to use native encoding or not. It can take a value true or false.

If it is set to true, the values of the -integerEncoding, -decimalEncoding and -floatingPointEncoding
attributes are ignored.

900 Administering WebSphere applications



If it is set to false, the encoding is specified by the -integerEncoding, -decimalEncoding and
-floatingPointEncoding attributes.

-integerEncoding
The integer encoding setting for this queue.

Enter one of the following case-sensitive values: Normal or Reversed.

The default value is Normal.

-decimalEncoding
The decimal encoding setting for this queue.

Enter one of the following case-sensitive values: Normal or Reversed.

The default value is Normal.

-floatingPointEncoding
The floating point encoding setting for this queue.

Enter one of the following case-sensitive values: IEEENormal, IEEEReversed, z/OS

The default value is IEEENormal.

-useRFH2
This parameter determines whether an RFH version 2 header is appended to messages sent to this
destination.

Enter one of the following case-sensitive values: true or false.

The default value is true.

-sendAsync
This parameter determines whether messages can be sent to this destination without queue manager
acknowledging that they have arrived.

Enter one of the following case-sensitive values: YES, NO or QDEF.

The default value is YES.

-readAhead
This parameter determines whether messages for non-persistent consumers can be read ahead and
cached.

Enter one of the following case-sensitive values: YES, NO or QDEF.

The default value is YES.

-readAheadClose

Enter one of the following case-sensitive values: YES, NO or QDEF.

The default value is YES.

-customProperties
This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider
queue type destination implementation. Typically, custom properties are used to set attributes of the
queue type destination that are not directly supported through the WebSphere administration
interfaces.

Each custom property is specified using name and value table step parameters. Since these are table
steps, the order of the two parameters is fixed, so you must always specify the name first and the
value second:
v In Jython: [name value]
v In Jacl: {name value}

Chapter 12. Welcome to administering Messaging resources 901



Note: In the following examples, code blocks beginning with wsadmin> show code that is entered by the
user. Lines that do not begin with wsadmin> show code that has been returned by the console.

The following example creates a WebSphere MQ messaging provider queue type destination.

v Using Jython:

wsadmin>AdminTask.createWMQQueue("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)", ["-name queue1 -jndiName jms/queues/Q1
-queueName APP1.QUEUE1"])

queue1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQQueue_1098737234986)

v Using Jacl:

wsadmin>$AdminTask createWMQQueue
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
{-name queue1 -jndiName jms/queues/Q1 -queueName APP1.QUEUE1}

queue1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQQueue_1098737234986)

deleteWMQQueue command
Use this command to delete a WebSphere MQ messaging provider queue type destination at a specific
scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

Purpose

Use the deleteWMQQueue command to delete a WebSphere MQ messaging provider queue type destination
defined at the scope at which the command is issued.

Note: The WebSphere MQ messaging provider queue type destination definition is deleted from
WebSphere Application Server JNDI at the specific scope. Any messages present on the underlying
WebSphere MQ queue are not affected.

Target object

A WebSphere MQ messaging provider queue type destination at the specific scope.

902 Administering WebSphere applications



Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQQueues("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")
unwantedQueue(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQQueue_1098737234986)

wsadmin>AdminTask.deleteWMQQueue("unwantedQueue(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|resources.xml#MQQueue_1098737234986)")

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQQueues
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
unwantedQueue(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQQueue_1098737234986)

wsadmin>$AdminTask deleteWMQQueue
unwantedQueue(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQQueue_1098737234986)

listWMQQueues command
Use the listWMQQueues command to list WebSphere MQ messaging provider queue type destinations.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

Use the listWMQQueues command to list all of the WebSphere MQ messaging provider queue type
destinations defined at the scope at which the command is issued.

Chapter 12. Welcome to administering Messaging resources 903



Target object

WebSphere MQ messaging provider queue type destinations at the specific scope.

Required parameters

None.

Optional parameters

-type
If this parameter it is omitted all connection factories are shown at the appropriate scope.

Enter one of the following case-sensitive values: CF, QCF or TCF.Enter CF to list only common
connection factories, QCF to list only queue connection factories or TCF to list only topic connection
factories.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQQueues("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQQueues
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.

modifyWMQQueue command
Use the modifyWMQQueue command to change certain parameters of a WebSphere MQ messaging provider
queue type destination.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

904 Administering WebSphere applications



AdminConfig.save()

Purpose

Use the modifyWMQQueue command to modify a WebSphere MQ messaging provider queue type
destination defined at the scope at which the command is issued.

Target object

A WebSphere MQ messaging provider queue type destination at the specific scope.

Required parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging
provider queue type destination.

Optional parameters

The parameters for this command are identical to those used to create a WebSphere MQ messaging
provider queue type destination.

Note the behavior of this command on the -customProperties parameter.

-customProperties
This parameter specifies custom properties to be passed to the WebSphere MQ messaging provider
queue type destination implementation. Typically, custom properties are used to set attributes of the
queue type destination which are not directly supported through the WebSphere administration
interfaces.

Each custom property is specified using name and value table step parameters. Since these are table
steps, the order of the two parameters is fixed, so you must always specify the name first and the
value second:
v In Jython: [name value]
v In Jacl: {name value}

New name/value pairs are added to the existing set of custom properties using the following rules:

v If the existing set of properties does not contain a property with the same name as that supplied as
part of a modify command, the supplied property is added to the set of custom properties, unless
the custom property has no value specified, when it is disregarded.

v If the existing set of properties contains a property with the same name as that supplied as part of a
modify command, and the modify command also specifies a value for the property, the existing
value is replaced by the supplied value.

v If the existing set of properties contains a property with the same name as that supplied as part of a
modify command, but the modify command does not specify a value for the property, the property
with the same name is deleted from the existing set of custom properties.

Example
v Using Jython:

wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQQueues("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQQueue_1098737234986)

wsadmin>AdminTask.modifyWMQQueue("jmsq2(cells/9994GKCNode01Cell/nodes/

Chapter 12. Welcome to administering Messaging resources 905



9994GKCNode01|resources.xml#
MQQueue_1098737234986)", ["-ccsid 500"])
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQQueues
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQQueue_1098737234986)

wsadmin>$AdminTask modifyWMQQueue
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQQueue_1098737234986) {-ccsid 500}
jmsq2(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.

showWMQQueue command
Use the showWMQQueue command to display information about a specific WebSphere MQ messaging
provider queue type destination.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available WebSphere MQ messaging provider administrative commands, plus a brief
description of each command, enter the following command at the wsadmin prompt:

print AdminTask.help('WMQAdminCommands')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

Use the showWMQQueue command to display all the parameters, and their values, associated with a
particular WebSphere MQ messaging provider queue type destination.

Target object

A WebSphere MQ messaging provider queue type destination at the specific scope.

Required parameters

None.

Optional parameters

None.

Example
v Using Jython:

906 Administering WebSphere applications



wsadmin>AdminConfig.getid("/Node:9994GKCNode01")
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>AdminTask.listWMQQueues("9994GKCNode01(cells/9994GKCNode01Cell/
nodes/9994GKCNode01|node.xml#Node_1)")
ncq1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQQueue_1098737234986)

wsadmin>AdminTask.showWMQQueue("ncq1(cells/9994GKCNode01Cell/nodes/
9994GKCNode01|resources.xml#MQQueue_1098737234986)")
{expiry=0, priority=9, decimalEncoding=Normal, queueName=TARGETQ, name=q1,
readAhead=YES, readAheadClose=DELIVERALL, ccsid=1208,
useNativeEncoding=true, integerEncoding=Normal, specifiedPriority=0,
jndiName=jms/q1, sendAsync=YES, qmgr=null, description=null,
targetClient=JMS, floatingPointEncoding=IEEENormal, persistence=APP}

v Using Jacl:

wsadmin>$AdminConfig getid /Node:9994GKCNode01
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)

wsadmin>$AdminTask listWMQQueues
9994GKCNode01(cells/9994GKCNode01Cell/nodes/9994GKCNode01|node.xml#Node_1)
ncq1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQQueue_1098737234986)

wsadmin>$AdminTask showWMQQueue
ncq1(cells/9994GKCNode01Cell/nodes/9994GKCNode01|resources.xml#
MQQueue_1098737234986)
{expiry=0, priority=9, decimalEncoding=Normal, queueName=TARGETQ, name=q1,
readAhead=YES, readAheadClose=DELIVERALL, ccsid=1208,
useNativeEncoding=true, integerEncoding=Normal, specifiedPriority=0,
jndiName=jms/q1, sendAsync=YES, qmgr=null, description=null,
targetClient=JMS, floatingPointEncoding=IEEENormal, persistence=APP}

Mapping of administrative console panel names to command names
and WebSphere MQ names
Use these tables to relate the names used in the administrative console panels to the names in the
commands and the names used by WebSphere MQ.

The following tables list property mappings. Use these tables in conjunction with the WebSphere MQ
information center to get more information on a particular property.

Note that not every WebSphere Application Server panel or command property maps to a WebSphere MQ
property.

Table 49. WebSphere MQ Activation Specification property mappings. The first column of this table shows the
property names that appear on a WebSphere Application Server administrative console panel, and the second
column shows the corresponding WebSphere Application Server command names. The third column shows the
WebSphere MQ activation specification properties that the administrative console panel names and command names
map on to.

Name on WebSphere Application Server
administrative console panel

WebSphere Application Server command
name

WebSphere MQ activation
specification property

Basic panel

Queue manager qmgrName queueManager

Queue manager (when used with CCDT) ccdtQmgrName queueManager

Transport wmqTransportType transportType

Host name qmgrHostname hostName

Port qmgrPortNumber port

Chapter 12. Welcome to administering Messaging resources 907



Table 49. WebSphere MQ Activation Specification property mappings (continued). The first column of this table
shows the property names that appear on a WebSphere Application Server administrative console panel, and the
second column shows the corresponding WebSphere Application Server command names. The third column shows
the WebSphere MQ activation specification properties that the administrative console panel names and command
names map on to.

Name on WebSphere Application Server
administrative console panel

WebSphere Application Server command
name

WebSphere MQ activation
specification property

Server connection channel qmgrSvrconnChannel channel

Destination JNDI name destinationJndiName destination

Message selector messageSelector messageSelector

Destination type destinationType destinationType

Durable subscription subscriptionDurability subscriptionDurability

Subscription name subscriptionName subscriptionName

Client ID clientID clientID

Provider version providerVersion providerVersion

Client channel definition table URL ccdtUrl ccdtURL

Allow cloned durable subscriptions clonedSubs cloneSupport

Connection name list connectionNameList connectionNameList

Advanced properties panel

Compress message headers compressHeaders headerCompression

Compression algorithm for message payloads compressPayload messageCompression

Retain messages, even if no matching
consumer is available

msgRetention messageRetention

Rescan interval rescanInterval rescanInterval

Maximum server sessions maxPoolSize maxPoolDepth

Start timeout startTimeout startTimeout

Server session pool timeout poolTimeout poolTimeout

Coded character set identifier ccsid CCSID

Fail JMS method calls if the queue manager
is quiescing

failIfQuiescing failIfQuiesce

Broker properties panel

Broker control queue brokerCtrlQueue brokerControlQueue

Broker durable subscriber connection
consumer queue

brokerCCDurSubQueue brokerCCDurSubQueue

Broker subscriber queue brokerSubQueue brokerSubQueue

Broker connection consumer subscription
queue

brokerCCSubQueue brokerCCSubQueue

Version brokerVersion brokerVersion

Specify where message selection occurs msgSelection messageSelection

Subscription store subStore subscriptionStore

Durable subscription state refresh interval stateRefreshInt statusRefreshInterval

Subscription cleanup level cleanupLevel cleanupLevel

Subscription cleanup interval cleanupInterval cleanupInterval

Subscription wildcard format wildcardFormat wildcardFormat

Optimize for sparse subscription patterns sparseSubs sparseSubscriptions

Broker queue manager brokerQmgr brokerQueueManager

Client transport properties panel

Certificate revocation list sslCrl sslCertStores

Peer name sslPeerName sslPeerName

908 Administering WebSphere applications



Table 49. WebSphere MQ Activation Specification property mappings (continued). The first column of this table
shows the property names that appear on a WebSphere Application Server administrative console panel, and the
second column shows the corresponding WebSphere Application Server command names. The third column shows
the WebSphere MQ activation specification properties that the administrative console panel names and command
names map on to.

Name on WebSphere Application Server
administrative console panel

WebSphere Application Server command
name

WebSphere MQ activation
specification property

Reset count sslResetCount sslResetCount

Receive exits rcvExit receiveExit

Receive exit initialization data rcvExitInitData receiveExitInit

Send exits sendExit sendExit

Send exit initialization data sendExitInitData sendExitInit

Security exit secExit securityExit

Security exit initialization data secExitInitData securityExitInit

Other properties that are only on commands

localAddress localAddress

Table 50. WebSphere MQ connection factory property mappings. This table shows how the connection factory
property names that appear on a WebSphere Application Server administrative console panel, and the corresponding
WebSphere Application Server command names map to WebSphere MQ JMS Admin short and long names.

Name on WebSphere Application
Server administrative console
panel

WebSphere Application Server
command name

WebSphere MQ JMS
Admin short name

WebSphere MQ JMS
Admin long name

Basic panel

Description description DESC DESCRIPTION

Queue manager qmgrName QMGR QMANAGER

Queue manager (when used with
client channel definition table
(CCDT))

ccdtQmgrName QMGR QMANAGER

Transport wmqTransportType TRAN TRANSPORT

Host name qmgrHostname HOST HOSTNAME

Port qmgrPortNumber PORT PORT

Server connection channel qmgrSvrconnChannel CHAN CHANNEL

Client ID clientID CID CLIENTID

Allow cloned durable subscriptions clonedSubs CLS CLONESUPP

Provider version providerVersion PVER PROVIDERVERSION

Client channel definition table URL ccdtUrl CCDT CCDTURL

Connection name list connectionNameList CNLIST CONNECTIONNAMELIST

Advanced properties panel

Client reconnect options clientReconnectOptions CROPT CLIENTRECONNECT
OPTIONS

Client reconnect timeout clientReconnectTimeout CRT CLIENTRECONNECT
TIMEOUT

Compress message headers compressHeaders HC COMPHDR

Compression algorithm for
message payloads

compressPayload MC COMPMSG

WebSphere MQ model queue
name

modelQueue TM TEMPMODEL

Temporary queue prefix tempQueuePrefix TQP TEMPQPREFIX

Temporary topic prefix tempTopicPrefix TTP TEMPTOPICPREFIX

Chapter 12. Welcome to administering Messaging resources 909



Table 50. WebSphere MQ connection factory property mappings (continued). This table shows how the connection
factory property names that appear on a WebSphere Application Server administrative console panel, and the
corresponding WebSphere Application Server command names map to WebSphere MQ JMS Admin short and long
names.

Name on WebSphere Application
Server administrative console
panel

WebSphere Application Server
command name

WebSphere MQ JMS
Admin short name

WebSphere MQ JMS
Admin long name

Retain messages, even if no
matching consumer is available

msgRetention MRET MSGRETENTION

Polling interval pollingInterval PINT POLLINGINT

Rescan interval rescanInterval RINT RESCANINT

Maximum batch size maxBatchSize MBS MSGBATCHSZ

Coded character set identifier ccsid CCS CCSID

Append an RFH version 2 header
to reply messages

replyWithRFH2 TCM TARGCLIENTMATCHING

Fail JMS method calls if the queue
manager is quiescing

failIfQuiescing FIQ FAILIFQUIESCE

Broker properties panel

Broker control queue brokerCtrlQueue BCON BROKERCONQ

Broker publication queue brokerPubQueue BPUB BROKERPUBQ

Broker subscriber queue brokerSubQueue BSUB BROKERSUBQ

Broker connection consumer
subscription queue

brokerCCSubQueue CCSUB BROKERCCSUBQ

Version brokerVersion BVER BROKERVER

Specify where message selection
occurs

msgSelection MSEL MSGSELECTION

Subscription store subStore SS SUBSTORE

Durable subscription state refresh
interval

stateRefreshInt SRI STATREFRESHINT

Subscription cleanup level cleanupLevel CL CLEANUP

Subscription cleanup interval cleanupInterval CLINT CLEANUPINT

Subscription wildcard format wildcardFormat WCFMT WILDCARDFORMAT

Publish acknowledgement window pubAckInterval PAI PUBACKINT

Optimize for sparse subscription
patterns

sparseSubs SSUBS SPARSESUBS

Broker queue manager brokerQmgr BQM BROKERQMGR

Client transport properties panel

Certificate revocation list sslCrl CRL SSLCRL

Peer name sslPeerName SPEER SSLPEERNAME

Reset count sslResetCount SRC SSLRESETCOUNT

Receive exits rcvExit RCX RECEXIT

Receive exit initialization data rcvExitInitData RCXI RECEXITINIT

Send exits sendExit SDX SENDEXIT

Send exit initialization data sendExitInitData SDXI SENDEXITINIT

Security exit secExit SCX SECEXIT

Security exit initialization data secExitInitData SCXI SECEXITINIT

Other properties that are only on commands

localAddress LA LOCALADDRESS

910 Administering WebSphere applications



Table 51. WebSphere MQ Queue property mappings. This table shows how the queue property names that appear
on a WebSphere Application Server administrative console panel, and the corresponding WebSphere Application
Server command names map to WebSphere MQ JMS Admin short and long names.

Name on WebSphere Application
Server administrative console
panel

WebSphere Application Server
command name

WebSphere MQ JMS
Admin short name

WebSphere MQ JMS
Admin Long Name

Basic panel

Description description DESC DESCRIPTION

Queue name queueName QU QUEUE

Queue manager or Queue-sharing
group name

qmgr QMGR QMANAGER

Advanced properties panel

Persistence persistence PER PERSISTENCE

Priority priority PRI PRIORITY

Expiry expiry EXP EXPIRY

Coded character set identifier ccsid CCS CCSID

Native encoding/Integer
encoding/Decimal
encoding/Floating point encoding

useNativeEncoding/
integerEncoding/decimalEncoding/
floatingPointEncoding

ENC ENCODING

Append RFH version 2 headers to
messages sent to this destination

useRFH2 TC TARGCLIENT

Message body messageBody MBODY MSGBODY

ReplyTo destination style replyToDestinationStyle RTOST REPLYTOSTYLE

Asynchronously send messages to
the queue manager

sendAsync PAALD PUTASYNCALLOWED

Read ahead, and cache,
non-persistent messages for
consumers

readAhead RAALD READAHEADALLOWED

Read ahead consumer close
method

readAheadClose RACP READAHEADCLOSE
POLICY

MQMD read enabled mqmdReadEnabled MDR MDREAD

MQMD write enabled mqmdWriteEnabled MDW MDWRITE

MQMD message context mqmdMessageContext MDCTX MDMSGCTX

Table 52. WebSphere MQ topic property mappings. This table shows how the topic property names that appear on a
WebSphere Application Server administrative console panel, and the corresponding WebSphere Application Server
command names map to WebSphere MQ JMS Admin short and long names.

Name on WebSphere Application
Server administrative console
panel

WebSphere Application Server
command name

WebSphere MQ JMS
Admin short name

WebSphere MQ JMS
Admin long name

Basic panel

Description description DESC DESCRIPTION

Topic name topicName TOP TOPIC

Broker durable subscription queue brokerDurSubQueue BDSUB BROKERDURSUBQ

Broker durable subscriber
connection consumer queue

brokerCCDurSubQueue CCDSUB BROKERCCDURSUBQ

Broker publication queue brokerPubQueue BPUB BROKERPUBQ

Broker publication queue manager brokerPubQmgr BQM BROKERPUBQMGR

Advanced properties panel

Persistence persistence PER PERSISTENCE

Priority priority PRI PRIORITY

Expiry expiry EXP EXPIRY

Chapter 12. Welcome to administering Messaging resources 911



Table 52. WebSphere MQ topic property mappings (continued). This table shows how the topic property names that
appear on a WebSphere Application Server administrative console panel, and the corresponding WebSphere
Application Server command names map to WebSphere MQ JMS Admin short and long names.

Name on WebSphere Application
Server administrative console
panel

WebSphere Application Server
command name

WebSphere MQ JMS
Admin short name

WebSphere MQ JMS
Admin long name

Coded character set identifier ccsid CCS CCSID

Native encoding/Integer
encoding/Decimal
encoding/Floating point encoding

useNativeEncoding/
integerEncoding/decimalEncoding/
floatingPointEncoding

ENC ENCODING

Append RFH version 2 headers to
messages sent to this destination

useRFH2 TC TARGCLIENT

Message body messageBody MBODY MSGBODY

ReplyTo destination style replyToDestinationStyle RTOST REPLYTOSTYLE

Asynchronously send messages to
the queue manager

sendAsync PAALD PUTASYNCALLOWED

Read ahead, and cache,
non-persistent messages for
consumers

readAhead RAALD READAHEADALLOWED

Read ahead consumer close
method

readAheadClose RACP READAHEADCLOSE
POLICY

MQMD read enabled mqmdReadEnabled MDR MDREAD

MQMD write enabled mqmdWriteEnabled MDW MDWRITE

MQMD message context mqmdMessageContext MDCTX MDMSGCTX

Other properties that are only on commands

wildcardFormat WCFMT WILDCARDFORMAT

brokerVersion BVER BROKERVER

WebSphere MQ messaging provider custom properties

WebSphere MQ messaging provider custom properties can be specified in the administrative console.
Click Resources > JMS. Select the type of JMS resource for which you want create custom properties
(JMS destinations, connection factories, or activation specifications). In the contents pane, select the
specific WebSphere MQ messaging provider JMS resource name. Information about the resource is
displayed. To create custom properties, select [Additional Properties] Custom properties.

You can define the following WebSphere MQ messaging provider custom properties:

v “WAS_EndpointInitialState”

WAS_EndpointInitialState

This custom property is for use with activation specifications.

This parameter determines whether the endpoint is activated when the endpoint is registered.

This parameter should be ignored for subsequent activation or deactivation via the J2CMessageEndpoint.

Table 53. WAS_EndpointInitialState custom property. The table includes the data type and acceptable values for the
property.

Information Value

Data type String

Acceptable values ACTIVE, INACTIVE

912 Administering WebSphere applications



Managing messaging with a third-party messaging provider
For messaging between application servers, most requirements are best met by either the default
messaging provider or the WebSphere MQ messaging provider. However, you can instead use a
third-party messaging provider (that is, use another company's product as the provider). You might want to
do this, for example, if you have existing investments.

Before you begin

If you are not sure which provider combination is best suited to your needs, see Types of messaging
providers.

About this task

Enterprise applications in WebSphere Application Server can use asynchronous messaging through
services based on Java Message Service (JMS) messaging providers and their related messaging
systems. These messaging providers conform to the JMS Version 1.1 specification.

The choice of provider depends on what your JMS application needs to do, and on other factors relating to
your business environment and planned changes to that environment.

Procedure

Choose a third-party messaging provider.
To administer a third-party messaging provider, you use either the resource adaptor (for a Java EE
Connector Architecture (JCA) 1.5-compliant or 1.6-compliant messaging provider) or the client (for a
non-JCA messaging provider) that is supplied by the third party. You use the WebSphere Application
Server administrative console to administer the activation specifications, connection factories and
destinations that are within WebSphere Application Server, but you cannot use the administrative console
to administer the JMS provider itself, or any of its resources that are outside of WebSphere Application
Server.
To use message-driven beans, third-party messaging providers must either provide an inbound JCA
1.5-compliant or 1.6-compliant-resource adapter, or (for non-JCA messaging providers) include Application
Server Facility (ASF), an optional feature that is part of the JMS Version 1.1 specification.
To work with a third-party provider, choose one of the following options:

1. Manage messaging with a third-party JCA 1.5-compliant messaging provider.

2. Manage messaging with a third-party non-JCA messaging provider.

Managing messaging with a third-party JCA 1.5 or 1.6-compliant
messaging provider
You can configure WebSphere Application Server to use a third-party JCA 1.5-compliant or 1.6-compliant
messaging provider. You might want to do this, for example, if you have existing investments.

Before you begin

For messaging between application servers, perhaps with some interaction with a WebSphere MQ system,
you can use the default messaging provider. To integrate WebSphere Application Server messaging into a
predominately WebSphere MQ network, you can use the WebSphere MQ messaging provider. You can
also use a third-party messaging provider as described in this topic. To choose the provider that is best
suited to your needs, see Choosing a messaging provider.

About this task

A third-party JCA 1.5-compliant or 1.6-compliant messaging provider takes the form of a resource adapter
that you install in WebSphere Application Server. You use the administrative console to administer the

Chapter 12. Welcome to administering Messaging resources 913



activation specifications (for message-driven beans) and other J2C administered objects for the provider.

Procedure
v Install the third-party JCA 1.5-compliant or 1.6-compliant messaging provider.

Install the resource adapter for the third-party provider, as described in “Installing a resource adapter
archive” on page 156.

v Configure an activation specification for a third-party JCA resource adapter.

v Configure an administered object for a third-party JCA resource adapter.

Configuring an activation specification for a third-party JCA resource adapter
You can configure an activation specification that is used to deploy message-driven beans with a Java™

Connector Architecture (JCA), also called J2EE Connector (J2C), resource adapter that is not included as
part of the WebSphere Application Server.

Before you begin

For guidance about when to configure your message-driven beans to work with listener ports rather than
activation specifications. see Message-driven beans, activation specifications, and listener ports.

This task assumes that you have installed the resource adapter for the third-party provider, as described in
“Installing a resource adapter archive” on page 156.

About this task

Use this task if you want to use a message-driven bean as a listener on a JCA resource adapter other
than the default messaging provider or the WebSphere MQ messaging provider.

Procedure
1. Start the administrative console.

2. Display the resource adapter. In the navigation pane, click Resources > Resource Adapters >
adapter_name. This displays in the content pane a table of properties for the resource adapter,
including links to the types of JCA resource that it provides.

3. Optional: Change the Scope setting to the scope level at which the activation specification is to be
visible to applications, according to your needs.

4. In the content pane, under the Activation specifications heading, click J2C Activation Specifications.
This lists any existing activation specifications for the resource adapter.

5. Display the properties of the activation specification.

If you want to display an existing activation specification, click one of the names listed.

Alternatively, if you want to create a new activation specification, click New, then specify the following
required properties:

Name Type the name by which the activation specification is known for administrative purposes. The
JNDI name is automatically generated based on the value for the Name property.

Message listener type
Select the message listener type that this activation specification instance should support. This
list is based on the deployment descriptor of the resource adapter.

Depending on the resource adapter, there can be additional required properties that you must supply.
To provide values for these properties, click Custom properties. When creating a new activation
specification, you might have to click Apply before this custom property selection is available.

6. Specify properties for the activation specification, according to your needs.

7. Click OK.

8. Save your changes to the master configuration.

914 Administering WebSphere applications



Configuring an administered object for a third-party JCA resource adapter
You can configure an administered object for a Java™ Connector Architecture (JCA), also called J2EE
Connector (J2C), resource adapter that is not included as part of the WebSphere Application Server.

Before you begin

This task assumes that you have installed the resource adapter for the third-party provider, as described in
“Installing a resource adapter archive” on page 156.

About this task

Use this task if you want to configure a JCA administered object for a JCA resource adapter other than the
default messaging provider or the WebSphere MQ messaging provider.

Procedure
1. Start the administrative console.

2. Display the resource adapter. In the navigation pane, click Resources > Resource Adapters >
adapter_name. This displays in the content pane a table of properties for the resource adapter,
including links to the types of JCA resource that it provides.

3. Optional: Change the Scope setting to the scope level at which the administered object is to be visible
to applications, according to your needs.

4. In the content pane, under the Additional Properties heading, click J2C Administered Objects. This
lists any existing administered objects for the resource adapter.

5. Display the properties of the administered object.

If you want to display an existing administered object, click one of the names listed.

Alternatively, if you want to create a new administered object, click New, then specify the following
required properties:

Name Type the name by which the administered object is known for administrative purposes. The
JNDI name is automatically generated based on the value for the Name property.

Administered object class
Select the administered object class that this instance should support. This list is based on the
deployment descriptor of the resource adapter.

Depending on the resource adapter, there can be additional required properties that you must supply.
To provide values for these properties, click Custom properties. When creating a new administered
object, you might have to click Apply before this custom property selection is available.

6. Specify properties for the administered object, according to your needs.

7. Click OK.

8. Save your changes to the master configuration.

Managing messaging with a third-party non-JCA messaging provider
You can configure WebSphere Application Server to use a third-party non-JCA messaging provider. You
might want to do this, for example, if you have existing investments. You can configure any third-party
non-JCA messaging provider that supports the JMS Version 1.1 unified connection factory.

Before you begin

For messaging between application servers, perhaps with some interaction with a WebSphere MQ system,
you can use the default messaging provider. To integrate WebSphere Application Server messaging into a
predominately WebSphere MQ network, you can use the WebSphere MQ messaging provider. You can
also use a third-party messaging provider as described in this topic. To choose the provider that is best
suited to your needs, see Choosing a messaging provider.

Chapter 12. Welcome to administering Messaging resources 915



To work with message-driven beans, the third-party non-JCA messaging provider must include Application
Server Facility (ASF), an optional feature that is part of the JMS Version 1.1 specification.

About this task

To administer a third-party non-JCA messaging provider, you use the client that is supplied by the third
party. You use the administrative console to administer the connection factories and destinations that are
within WebSphere Application Server, but you cannot use the administrative console to administer the JMS
provider itself, or any of its resources that are outside of WebSphere Application Server.

Procedure
v Define a third-party non-JCA messaging provider.

v List JMS resources for a third-party non-JCA messaging provider.

v Configure JMS resources for a third-party non-JCA messaging provider.

Defining a third-party non-JCA messaging provider
Use this task to define a third-party non-JCA messaging provider to WebSphere Application Server. You
might want to do this, for example, if you have existing investments.

Before you begin

Before you define a third-party non-JCA messaging provider, you might want to check whether your
requirement can be met by the default messaging provider or the WebSphere MQ messaging provider that
are supplied with WebSphere Application Server. To choose the provider that is best suited to your needs,
see Choosing a messaging provider.

To work with message-driven beans, the third-party non-JCA messaging provider must include Application
Server Facility (ASF), an optional feature that is part of the JMS Version 1.1 specification.

About this task

You can configure any third-party non-JCA messaging provider that supports the JMS Version 1.1 unified
connection factory.

To administer a third-party non-JCA messaging provider, you use the client that is supplied by the third
party. You use the administrative console to administer the connection factories and destinations that are
within WebSphere Application Server, but you cannot use the administrative console to administer the JMS
provider itself, or any of its resources that are outside of WebSphere Application Server.

Procedure
1. Start the administrative console.

2. In the navigation pane, click Resources > JMS->JMS providers. The existing messaging providers
are displayed, including the default messaging provider and the WebSphere MQ messaging provider.

3. To define a new third-party non-JCA messaging provider, click New in the content pane. Otherwise, to
change the definition of an existing messaging provider, click the name of the provider.

4. Specify the following required properties. You can specify other properties, as described in a later step.

Name The name by which this messaging provider is known for administrative purposes within
WebSphere Application Server.

External initial context factory
The Java classname of the initial context factory for the JMS provider.

External provider URL
The JMS provider URL for external JNDI lookups.

5. Optional: Click Apply. This enables you to specify additional properties.

916 Administering WebSphere applications



6. Optional: Specify other properties for the messaging provider.

Under Additional Properties, you can use the Custom Properties link to specify custom properties for
your initial context factory, in the form of standard javax.naming properties.

7. Click OK.

8. Save the changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

What to do next

You can now configure JMS resources for your messaging provider, as described in “Configuring JMS
resources for a third-party non-JCA messaging provider” on page 918.

Listing JMS resources for a third-party non-JCA messaging provider
Use the WebSphere Application Server administrative console to list JMS resources for a third party
non-JCA messaging provider.

Before you begin

This topic assumes that you have defined a third-party non-JCA messaging provider.

About this task

You use the WebSphere Application Server administrative console to list JMS resources, if you want to
view, modify or delete any of the following resources:

v Unified connection factories

v Queue connection factories

v Topic connection factories

v Queues

v Topics

When you use the administrative console to locate these resources, two different navigation pathways are
available:

v Provider-centric navigation lets you view all providers, or just those for a specified scope, then
navigate to a specific resource for a specific provider. This is the traditional way of navigating to a
resource when you know which provider supports it. Any navigation that starts with Resources >
JMS->JMS providers is provider-centric.

v Resource-centric navigation lets you view all resources of a specified type, then navigate to a
resource. This is useful if you want to find a resource, but you do not know which provider supports it
(you can list all resources of a given type across all scopes, for all providers, in a single panel). Any
navigation that follows the pattern Resources > JMS > resource_type is resource-centric, where
resource_type is one of the resource types previously listed.

You can use either of these navigation pathways to locate JMS resources of any type.

Procedure
v Use provider-centric navigation, for example to navigate to a specified queue connection factory.

1. Start the administrative console.

2. In the navigation pane, click Resources > JMS->JMS providers.

The JMS providers collection panel is displayed. This lists all currently configured messaging
providers across all scopes (you can modify the scope if required).

3. Select the required JMS provider.

Chapter 12. Welcome to administering Messaging resources 917



The settings panel for this provider is displayed. The configuration tab contains a set of links to all
the JMS resources owned by this provider.

4. Click the link for a JMS resource type. For example, click Queue connection factories.

The queue connection factories collection panel is displayed. This panel lists all the queue
connection factories for this provider.

5. Select the required queue connection factory.

v Use resource-centric navigation, for example to navigate to a specified queue connection factory.

1. Start the administrative console..

2. In the navigation pane, click Resources > JMS->Queue connection factories.

The queue connection factories collection panel is displayed. This panel lists all the queue
connection factories across all messaging providers.

3. Select the required queue connection factory.

Results

You can now view and work with the resource properties.

Configuring JMS resources for a third-party non-JCA messaging provider
Use this task to configure the JMS connection factories and destinations for a third-party non-JCA
messaging provider.

Before you begin

You only have to complete these tasks if your WebSphere Application Server environment uses a
third-party non-JCA messaging provider to support enterprise applications that use JMS.

Before you can configure resources for your third-party non-JCA messaging provider, you must have
defined your messaging provider.

About this task

To configure JMS resources for a third-party non-JCA messaging provider, complete the following tasks:

Procedure
v Configure a JMS connection factory for a third-party non-JCA messaging provider.

v Configure a JMS destination for a third-party non-JCA messaging provider.

Configuring a JMS connection factory for a third-party non-JCA messaging provider:

Use this task to view or change the properties of a JMS connection factory for use with a third-party
non-JCA messaging provider.

About this task

To view or change the configuration of a JMS connection factory for use with a third-party non-JCA
messaging provider, use the administrative console to complete the following steps:

Procedure

1. Display the third-party non-JCA messaging provider. In the navigation pane, click Resources >
JMS->JMS providers.

2. Select the third-party non-JCA messaging provider for which you want to configure a connection
factory.

918 Administering WebSphere applications



3. Optional: Select the Scope setting corresponding to the scope of the connection factories that you
want to view or change.

4. In the content pane, under Additional Properties, click Connection factories This displays a table
listing any existing JMS connection factories, with a summary of their properties.

5. To browse or change an existing JMS connection factory, click its name in the list. Otherwise, to create
a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later
step.

Name The name by which this JMS connection factory is known for administrative purposes
within IBM WebSphere Application Server.

Type Select whether the connection factory is for JMS queues (QUEUE) or JMS topics (TOPIC).

JNDI Name
The JNDI name that is used to bind the JMS connection factory into the WebSphere
Application Server namespace.

External JNDI Name
The JNDI name that is used to bind the JMS connection factory into the namespace of the
messaging provider.

c. Click Apply. This defines the JMS connection factory to WebSphere Application Server, and
enables you to browse or change additional properties.

6. Optional: Change properties for the JMS connection factory, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS destination for a third-party non-JCA messaging provider:

Use this task to browse or change the properties of a JMS destination for use with a third-party non-JCA
messaging provider.

Before you begin

Before starting this task, you should have defined the messaging provider to WebSphere Application
Server.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Resources > JMS->JMS providers.

3. Click the name of the third-party non-JCA messaging provider.

4. In the content pane, under Additional Properties, click Queues for point-to-point messaging or Topics
for publish/subscribe messaging. This displays a table listing any existing JMS destinations, with a
summary of their properties.

5. To browse or change an existing JMS destination, click its name in the list. Otherwise, to create a new
destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later
step.

Name The name by which this JMS destination is known for administrative purposes within
WebSphere Application Server.

Chapter 12. Welcome to administering Messaging resources 919



Type Select whether the destination is for JMS queues (QUEUE) or JMS topics (TOPIC).

JNDI Name
The JNDI name that is used to bind the JMS destination into the WebSphere Application
Server namespace.

External JNDI Name
The JNDI name that is used to bind the JMS destination into the namespace of the
messaging provider.

c. Click Apply. This defines the JMS destination to WebSphere Application Server, and enables you
to browse or change additional properties.

6. Optional: Change properties for the JMS destination, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

J2C Activation Specifications collection
This page contains a list of Java 2 Connector (J2C) activation specifications for a resource adapter
configuration and is used to create new J2C activation specifications, to select J2C activation
specifications for configuration changes, or to delete J2C activation specifications.

Activation specification definitions and classes are provided by a resource adapter when it is installed.
Using this information, the administrator can create and configure J2C activation specifications with JNDI
names that are then available for applications to use. The resource adapter uses a J2C activation
specification to configure a specific endpoint instance. Each application configuring one or more endpoints
must specify the resource adapter that sends messages to the endpoint. The application must use the
activation specification to provide the configuration properties related to the processing of the inbound
messages.

If you are using J2EE 1.4 and EJB 2.1 with WebSphere Application Server Version 6 or later, the decision
on whether to use an activation specification or listener port depends on whether your JMS provider API is
implemented with JCA. In J2EE 1.4, the JMS 1.1 API can be implemented with the JCA 1.5 API. If so,
your MDB is a JMS MDB that is implemented as a connector MDB, and must therefore be configured with
an activation specification. If not, this is the same JMS situation as for J2EE 1.3, and you must configure
this EJB 2.1 MDB in the same way as you would configure an EJB 2.0 MDB, which in WebSphere
Application Server is to use a listener port.

You can access this administrative console page in one of two ways:

v Resources > Resource Adapters > Resource adapters > resource_adapter > J2C activation
specifications.

v Resources > Resource Adapters > J2C activation specifications.

Name
Specifies the display name of the J2C activation specification instance.

A string with no spaces meant to be a meaningful text identifier for the J2C activation specification.

Information Value
Data type String

JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name for the J2C activation specification
instance.

920 Administering WebSphere applications



Information Value
Data type String

Scope
Specifies the scope of the resource adapter that supports this activation specification. Only applications
that are installed within this scope can use this activation specification.

Provider
Specifies the resource adapter that encapsulates the appropriate classes for this activation specification.

Description
A free-form text string to describe the J2C activation specification instance.

Information Value
Data type String

Message Listener Type
The Message Listener Type that is used by this activation specification.

The list of available classes is provided by the resource adapter.

Information Value
Data type String

J2C Activation Specifications settings
Use this page to specify the settings for a Java 2 Connector (J2C) activation specification.

The resource adapter uses a J2C activation specification to configure a specific endpoint instance. Each
application configuring one or more endpoints must specify the resource adapter that sends messages to
the endpoint. The application must use the activation specification to provide the configuration properties
related to the processing of the inbound messages.

You can access this administrative console page in one of two ways:

v Resources > Resource Adapters > Resource adapters > resource_adapter > J2C activation
specifications > activation_specification.

v Resources > Resource Adapters > J2C activation specifications > activation_specification.

Scope
Specifies the scope of the resource adapter that supports this activation specification. Only applications
that are installed within this scope can use this activation specification.

Provider
Specifies the resource adapter that encapsulates the appropriate classes for this activation specification.

For new objects, available resource adapters are listed in a drop-down list. After you create the activation
specification, the field is a read only text field.

Information Value
Data type Drop-down list or text

Chapter 12. Welcome to administering Messaging resources 921



Name
Specifies the display name of the J2C activation specification instance.

A string with no spaces meant to be a meaningful text identifier for the J2C activation specification. Name
is required

Information Value
Data type String

JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name for the J2C activation specification
instance.

The JNDI name is required. If you do not specify one, it is created from the Name field. If not specified,
the JNDI name defaults to eis/[name]

Information Value
Data type String

Description
A free-form text string to describe the J2C activation specification instance.

Information Value
Data type String

Authentication alias
This optional field is used to bind the J2C activation specification to an authentication alias (configured
through the security JAAS screens).

This alias is used to access a user name and password that are set on the configured J2C activation
specification. This field is meaningful only if the J2C activation specification that you are configuring has a
UserName and Password field.

If you have defined security domains in the application server, you can click Browse... to select a J2C
authentication alias for the resource that you are configuring. Security domains allow you to isolate J2C
authentication aliases between servers. The tree view is useful in determining the security domain to which
an alias belongs, and the tree view can help you determine the servers that is able to access each
authentication alias. The tree view is tailored for each resource, so domains and aliases are hidden when
you cannot use them.

The Browse button is only accessible if at least one security domain is defined and assigned a scope that
is applicable to the resource that is being edited. Additionally, that security domain must contain at least
one JAAS J2C Authentication alias.

Information Value
Data type Drop-down list

Message Listener Type
The Message Listener Type used by this activation specification.

922 Administering WebSphere applications



For new objects, the list of available classes is provided by the resource adapter in a drop-down list. After
you create the activation specification, the field is a read only text field.

Information Value
Data type Drop-down list or text

Destination JNDIName
The destination JNDIName field appears only when a message of type javax.jms.Destination with name
Destination is received.

J2C Administered Objects collection
This page contains a list of Java 2 Connector Architecture (JCA) administered objects for a resource
adapter configuration. This page is also used to create JCA administered objects, select J2C administered
objects for configuration changes, or to delete J2C administered objects.

Administered object definitions and classes are provided by a resource adapter when you install it. Using
this information, the administrator can create and configure J2C administered objects with JNDI names
that are then available for applications to use. Some messaging styles might need applications to use
special administered objects for sending and synchronously receiving messages through connection
objects with messaging style-specific APIs. Administered objects can also be used to perform
transformations on an asynchronously received message in a message provider-specific way. Administered
objects can be accessed by a component by using either a resource environment reference or a message
destination reference (preferred).

You can access this administrative console page in one of two ways:

v Resources > Resource Adapters > Resource adapters > resource_adapter > J2C administered
objects

v Resources > Resource Adapters > Resource adapters > J2C administered objects

Name
Specifies display name assigned to this administered object.

Information Value
Data type String

JNDI Name
Specifies the JNDI name of the administered object.

Information Value
Data type String

Scope
Specifies the scope of the resource adapter that supports this administered object. Only applications that
are installed within this scope can use this object.

Provider
Specifies the resource adapter that encapsulates the appropriate classes for this administrative object.

For new objects, available resource adapters are listed in a drop-down list. After you create the
administered object, the field is a read only text field.

Chapter 12. Welcome to administering Messaging resources 923



Information Value
Data type Drop-down list or text

Description
Specifies a description for the administered object.

Information Value
Data type String

Administered object class
Specifies the Administered Object class that is associated with this J2C administered object. This class
must be one that is provided by the resource adapter.

Information Value
Data type String

J2C Administered Object settings
Use this page to specify the settings for a Java 2 Connector (J2C) administered object.

Administered object definitions and classes are provided by a resource adapter when you install it. Using
this information, the administrator can create and configure J2C administered objects with Java Naming
and Directory Interface (JNDI) names that are then available for applications to use. Some messaging
styles may need applications to use special administered objects for sending and synchronously receiving
messages (through connection objects using messaging style specific APIs). It is also possible that
administered objects may be used to perform transformations on an asynchronously received message in
a message provider-specific way. Administered objects can be accessed by a component by using either a
resource environment reference or a message destination reference (preferred).

You can access this administrative console page in one of two ways:

v Resources > Resource Adapters > Resource adapters > resource_adapter > J2C administered
objects > J2C_administered_object

v Resources > Resource Adapters > Resource adapters > J2C administered objects >
J2C_administered_object

Scope
Specifies the scope of the resource adapter that supports this administered object. Only applications that
are installed within this scope can use this object.

Provider
Specifies the resource adapter that encapsulates the appropriate classes for this administrative object.

For new objects, a list of available resource adapters appears in a drop-down list. After you create the
administered object, the field is a read only text field.

Information Value
Data type Drop-down list or text

Name
Specifies the name of the J2C administered object instance.

924 Administering WebSphere applications



A string with no spaces meant to be a meaningful text identifier for the administered object. This name is
required.

Information Value
Data type String

JNDI name
Specifies the JNDI name that this administered object is bound under.

The JNDI name is required. If you do not specify one, it is created from the Name field. If not specified,
the JNDI name defaults to eis/[name]

Information Value
Data type String

Description
Specifies a text description of the J2C administered object instance.

Information Value
Data type String

Administered object class
For new objects, the list of available classes is provided by the resource adapter in a drop-down list. You
can only select classes from this list.

After you create the administered object, you cannot modify the administered object class; it is read only.

Information Value
Data type Class name

JMS provider settings
Use this panel to view the configuration properties of a selected JMS provider.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources > JMS->JMS providers. This displays a list of JMS providers
in the content pane. For each JMS provider in the list, the entry indicates the scope level at which JMS
resource definitions are visible to applications. You can create the same type of JMS provider at
different Scope settings, to offer JMS resources at different levels of visibility to applications.

2. (optional) If you want to manage JMS resources that are defined at a different scope setting, change
the Scope setting to the required level.

3. In the Providers column of the list displayed, click the name of a JMS provider.

If you want to browse or change JMS resources of the JMS provider, click the link for the type of resource
under Additional Properties. For more information about the administrative console panels for the types of
JMS resources, see the related topics.

For the default messaging provider (which is based on service integration technologies) and the
WebSphere MQ messaging provider, the scope, name, and description properties are displayed for
information only. You cannot change these properties.

Chapter 12. Welcome to administering Messaging resources 925



For a third-party non-JCA provider that you have defined yourself, the properties of that provider are
displayed.

Scope
The level (cell, node, or server level) at which this resource definition is available.

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at
multiple scopes, with resources defined at more specific scopes overriding duplicates that are defined at
more general scopes. For more information about the scope setting, see Scope settings.

Name
The name by which the JMS provider is known for administrative purposes.

Information Value
Data type String
Default v Default messaging provider.

For JMS resources to be provided by a service
integration bus, as part of WebSphere Application
Server.

v My JMSprovider

For JMS resources to be provided by a third-party JMS
provider that you specify, rather than by the default
messaging provider or the WebSphere MQ messaging
provider that are available as part of WebSphere
Application Server. You assign the name, for example
“My JMSprovider”, when you define the third-party JMS
provider to WebSphere Application Server. You must
also have installed and configured the third-party JMS
provider before applications can use its JMS resources.

v WebSphere MQ messaging provider

For JMS resources to be provided by WebSphere MQ.
You must have installed and configured WebSphere
MQ before applications can use its JMS resources.

Description
A description of the JMS provider, for administrative purposes within WebSphere Application Server.

Information Value
Data type String

Classpath
A list of paths or JAR file names that together form the location for the JMS provider classes. Each class
path entry is on a separate line (separated by using the Enter key) and must not contain path separator
characters (such as ';' or ': '). Class paths can contain variable (symbolic) names to be substituted by
using a variable map. Check your driver installation notes for specific JAR file names that are required.

Note: This property is only available for third-party messaging providers.

Information Value
Data type String

926 Administering WebSphere applications



Native library path
An optional path to any native libraries (*.dll, *.so). Each native path entry is on a separate line (separated
by using the Enter key) and must not contain path separator characters (such as ';' or ': '). Native paths
can contain variable (symbolic) names to be substituted by using a variable map.

Note: This property is only available for the WebSphere MQ messaging provider and third-party
messaging providers.

Information Value
Data type String

Update resource adapter
This button can be used to update the WebSphere MQ resource adapter that provides the function made
available by the WebSphere MQ messaging provider. This button must only be used as directed by a
member of IBM service, otherwise it may result in the use of an unsupported level of the WebSphere MQ
resource adapter.

Normally the WebSphere MQ resource adapter is automatically updated by applying WebSphere
Application Server fix packs. It is important to note that use of the Update resource adapter button
prevents these automatic updates from happening for future fix packs for any node on which the button is
used. If, in the future, you require the WebSphere MQ resource adapter used by the node to receive
updates when a fix pack is applied then you must re-establish the recommended resource adapter
configuration. For more information see “Maintaining the WebSphere MQ resource adapter” on page 693.

Note: This property is only available for the WebSphere MQ messaging provider.

Information Value
Data type Button

External initial context factory
The Java classname of the initial context factory for the JMS provider.

For example, for an LDAP service provider the value has the form: com.sun.jndi.ldap.LdapCtxFactory.

Note: This property is only available for third-party messaging providers.

Information Value
Data type String
Default Null

External provider URL
The JMS provider URL for external JNDI lookups.

For example, an LDAP URL for a messaging provider has the form: ldap://hostname.company.com/
contextName.

Note: This property is only available for third-party messaging providers.

Information Value
Data type String
Default Null

Chapter 12. Welcome to administering Messaging resources 927



Disable WebSphere MQ
This check box is only valid for the WebSphere MQ messaging provider. When selected, this check box
disables all WebSphere MQ functionality on affected application servers. Note that you must restart the
affected application server processes for this change to take effect.

In a single server environment this check box is only available on the WebSphere MQ messaging provider
panel where the scope is set to server, and has the effect of disabling all WebSphere MQ functionality in
that application server.

In a network deployment environment this check box is available on all WebSphere MQ messaging
provider panels. The effect of selecting the check box depends on the scope at which you select it:

v At the cell scope, all WebSphere MQ functionality is disabled on all application servers in the cell.

v At the node scope, all WebSphere MQ functionality is disabled on all application servers that are part of
that node.

v At the cluster scope, all WebSphere MQ functionality is disabled on all application servers in that
cluster.

v At the server scope, all WebSphere MQ functionality is disabled in that particular application server.

The value of the check box at a higher scope takes precedence over the value at a lower scope. For
example, if you do not select the check box for a WebSphere MQ messaging provider at the server scope,
but do select it for a WebSphere MQ messaging provider at a higher scope (such as the cell scope), the
value of the check box at the cell scope takes precedence and WebSphere MQ functionality is therefore
disabled in all application servers in the cell, regardless of whether the check box is selected at the server
scope.

An informational message indicating that WebSphere MQ has been disabled is added to all WebSphere
MQ messaging provider panels that are at affected scopes, but this message does not appear on those
panels where the check box is selected. In a single server environment this informational message is only
displayed after a server restart is performed. In a network deployment environment the informational
message is displayed immediately.

For more information see “Disabling WebSphere MQ functionality in WebSphere Application Server” on
page 712.

Information Value
Data type Check box
Default Not selected

Additional properties
Connection factories

A connection factory is used to create connections to the associated JMS provider. These
connection factories can be used for accessing JMS Queue and JMS Topic destinations.

Queue connection factories
A queue connection factory is used to create connections to the associated JMS provider of the
JMS queue destinations, for point-to-point messaging.

Topic connection factories
A topic connection factory is used to create connections to the associated JMS provider of JMS
topic destinations, for publish and subscribe messaging.

Queues
A JMS queue is used as a destination for point-to-point messaging.

Topics
A JMS topic is used as a destination for publish/subscribe messaging.

928 Administering WebSphere applications



Activation specifications
A JMS activation specification is associated with one or more message-driven beans and provides
configuration necessary for them to receive messages.

Resource adapter properties
These properties are used to configure the WebSphere MQ resource adapter, which is used by
the WebSphere MQ messaging provider. In particular most of these settings affect the behavior of
WebSphere MQ messaging provider activation specifications.

JMS providers collection
Use this panel to list JMS providers, or to select a JMS provider to view or change its configuration
properties.

To view this administrative console page, click Resources > JMS->JMS providers

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS providers that are available to WebSphere applications. For each JMS provider in
the list, the entry indicates the scope level at which JMS resource definitions are visible to applications.
You can create the same type of JMS provider at different Scope settings, to offer JMS resources at
different levels of visibility to applications.

If you want to manage existing JMS resource definitions, or create a new JMS resource definition, you can
select the name of one of the JMS providers in the list.

If you want to define a new third-party JMS provider (that is, a provider other than the default messaging
provider or the WebSphere MQ messaging provider), select the Scope setting at which JMS resource
definitions are to be visible for that provider, then click New.

Name The name by which this JMS provider is known for administrative purposes.

Description
A description of this JMS provider for administrative purposes.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Information Value
New Create a new JMS resource of this type.
Delete Delete the selected items.

Connection factory collection
A JMS connection factory is used to create connections to the associated messaging provider of JMS
destinations, for both point-to-point and publish/subscribe messaging. Use connection factory
administrative objects to manage JMS connection factories for the default messaging provider, the
WebSphere MQ messaging provider or a third-party messaging provider.

Chapter 12. Welcome to administering Messaging resources 929



In the administrative console, to view this page click Resources > JMS->Connection factories.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS connection factories that are available to WebSphere Application Server
applications at the scope indicated by the Scope field.

A JMS connection factory is used to create connections to JMS destinations. When an application needs a
JMS connection, an instance can be created by the factory of the messaging provider named in the
Provider column of the list.

This type of connection factory is for applications that use the JMS 1.1 domain-independent interfaces
(referred to as the “common interfaces” in the JMS specification).

This type of JMS connection factory can also be used by the domain-specific (queue and topic) interfaces,
as used in JMS 1.0.2, so applications can still use those interfaces without the need for you to create a
domain-specific connection factory, such as a queue connection factory.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

Name The display name of each connection factory instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each connection factory instance.

Provider
The messaging provider that supports each connection factory instance. This is the default
messaging provider (service integration), the WebSphere MQ messaging provider or a third-party
messaging provider.

Description
An optional description of each connection factory instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

Delete Delete the selected items.

930 Administering WebSphere applications



Queue connection factory collection
A queue connection factory is used to create connections to the associated JMS provider of the JMS
queue destinations, for point-to-point messaging.

In the administrative console, to view this page click Resources > JMS->Queue connection factories.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS queue connection factories that are available to WebSphere Application Server
applications at the scope indicated by the Scope field.

A JMS queue connection factory is used to create connections to JMS destinations. When an application
needs a JMS queue connection, an instance can be created by the factory for the JMS provider that is
named in the Provider column of the list.

This type of connection factory is for applications that use the JMS 1.0.2 queue-specific interfaces.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

Name The display name of each queue connection factory instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each queue connection factory instance.

Provider
The messaging provider that supports each queue connection factory instance.

Description
An optional description of each queue connection factory instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

Delete Delete the selected items.

Chapter 12. Welcome to administering Messaging resources 931



Topic connection factory collection
A JMS topic connection factory is used to create connections to the associated messaging provider of JMS
topic destinations, for publish and subscribe messaging.

In the administrative console, to view this page click Resources > JMS->Topic connection factories.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS topic connection factories that are available to WebSphere Application Server
applications at the scope indicated by the Scope field.

A JMS connection factory is used to create connections to JMS destinations. When an application needs a
JMS connection, an instance can be created by the factory for the JMS provider that is named in the
Provider column of the list.

This type of connection factory is for applications that use the JMS 1.0.2 topic-specific interfaces.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

General properties

Name The display name of each topic connection factory instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each topic connection factory instance.

Provider
The messaging provider that supports each topic connection factory instance.

Description
An optional description of each topic connection factory instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

Delete Delete the selected items.

932 Administering WebSphere applications



Queue collection
A JMS queue destination is used for point-to-point messaging. Use this panel to create or delete queue
destinations, or to select a queue destination to view or change its configuration properties.

In the administrative console, to view this page click Resources > JMS->Queues.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS queue destinations that are available to WebSphere Application Server
applications at the scope indicated by the Scope field.

Use a queue destination to manage JMS queues for the JMS provider that is named in the Provider
column of the list. Connections to the queue are created by a unified connection factory or queue
connection factory for that JMS provider.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

General properties

Name The display name of each queue destination instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each queue destination instance.

Provider
The messaging provider that supports each queue destination instance.

Description
An optional description of each queue destination instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

Delete Delete the selected items.

Chapter 12. Welcome to administering Messaging resources 933



Topic collection
A JMS topic destination is used for publish and subscribe messaging. Use this panel to create or delete
topic destinations, or to select a topic destination to view or change its configuration properties.

In the administrative console, to view this page click Resources > JMS->Topics.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS topic destinations that are available to WebSphere Application Server applications
at the scope indicated by the Scope field.

Use a topic destination to manage JMS topics for the JMS provider that is named in the Provider column
of the list. Connections to the topic are created by a unified connection factory or topic connection factory
for that JMS provider.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

General properties

Name The display name of each topic destination instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each topic destination instance.

Provider
The messaging provider that supports each topic destination instance.

Description
An optional description of each topic destination instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

Delete Delete the selected items.

934 Administering WebSphere applications



Third-party JMS connection factory settings
Use this panel to browse or change the configuration properties of a JMS connection factory configured for
use with a third-party non-JCA messaging provider. These configuration properties control how
connections are created to the JMS destinations on the provider.

A JMS connection factory is used to create connections to JMS destinations. The JMS connection factory
is created by the associated JMS provider.

To view this page, use the administrative console to complete the following steps:
1. In the navigation pane, click Resources > JMS->JMS providers. The JMS providers collection panel

is displayed. This lists all currently configured messaging providers across all scopes (you can modify
the scope if required).

2. Click the name of the third-party non-JCA messaging provider.
3. Under Additional Properties, click Connection factories.
4. Click the name of the JMS connection factory that you want to work with.

Scope
Specifies the level to which this resource definition is visible to applications.

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at
multiple scopes, with resources defined at more specific scopes overriding duplicates that are defined at
more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse
or change this resource (or other resources) at a different scope, change the scope on the messaging
provider settings panel, then click Apply, before clicking the link for the type of resource.

Information Value
Data type String

Name
The name by which this JMS connection factory is known for administrative purposes within IBM
WebSphere Application Server. The name must be unique within the associated messaging provider.

Information Value
Data type String

Type
Whether this connection factory is for creating JMS queue destinations or JMS topic destinations.

Select one of the following options:
QUEUE

A JMS queue connection factory for point-to-point messaging.
TOPIC

A JMS topic connection factory for publish/subscribe messaging.

JNDI name
The JNDI name that is used to bind the connection factory into the WebSphere Application Server
namespace.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

Chapter 12. Welcome to administering Messaging resources 935



This name is used to link the platform binding information. The binding associates the resources defined
by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the
platform.

Information Value
Data type String

Description
A description of this connection factory for administrative purposes within IBM WebSphere Application
Server.

Information Value
Data type String
Default Null

Category
A category used to classify or group this connection factory, for your IBM WebSphere Application Server
administrative records.

Information Value
Data type String

External JNDI name
The JNDI name that is used to bind the connection factory into the namespace of the third-party
messaging provider.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined
by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the
platform.

Information Value
Data type String

Component-managed Authentication Alias
This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for
application-managed authentication.

This property provides a list of the J2C authentication data entry aliases that have been defined to
WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of
a new connection to the JMS provider.

If you have enabled administrative security for WebSphere Application Server, select the alias that
specifies the user ID and password used to authenticate the creation of a new connection to the JMS
provider. The use of this alias depends on the resource authentication (res-auth) setting declared in the
connection factory resource reference of the deployment descriptors for an application component.

936 Administering WebSphere applications



Container-managed Authentication Alias
This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for
container-managed authentication.

This property provides a list of the J2C authentication data entry aliases that have been defined to
WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of
a new connection to the JMS provider.

If you have enabled administrative security for WebSphere Application Server, select the alias that
specifies the user ID and password used to authenticate the creation of a new connection to the JMS
provider. The use of this alias depends on the resource authentication (res-auth) setting declared in the
connection factory resource reference of the deployment descriptors for an application component.

Mapping-Configuration Alias
The module used to map authentication aliases.

This field provides a list of the modules that have been configured on the Global Security > JAAS
Configuration > Application Logins Configuration property. For more information about the mapping
configurations, see Java Authentication and Authorization service configuration entry settings.

Information Value
Data type Enum
Default Null
Range ClientContainer

The client container maps authentication aliases.
WSLogin

The WSLogin module maps authentication
aliases.

DefaultPrincipalMapping
The JAAS configuration maps an authentication
alias to its userid and password.

Connection pool
Specifies an optional set of connection pool settings.

Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve
performance. You have to configure the connection and session pool properties appropriately for your
applications, otherwise you may not get the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the
default value. The size of the connection pool is set on a per queue or topic basis.

Session pool
An optional set of session pool settings.

This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve
performance. You have to configure the connection and session pool properties appropriately for your
applications, otherwise you may not get the connection and session behavior that you want.

Chapter 12. Welcome to administering Messaging resources 937



Custom properties
An optional set of name and value pairs for custom properties passed to the messaging provider.

Third-party JMS destination settings
Use this panel to browse or change the configuration properties of the selected JMS destination for use
with an associated third-party non-JCA messaging provider.

A JMS destination is used to configure the properties of a JMS destination for the associated third-party
non-JCA messaging provider. Connections to the JMS destination are created by the associated JMS
connection factory.

To navigate to this panel, complete the following steps:
1. In the navigation pane, click Resources > JMS->JMS providers. The JMS providers collection panel

is displayed. This lists all currently configured messaging providers across all scopes (you can modify
the scope if required).

2. Click the name of the third-party non-JCA messaging provider.
3. Under Additional Properties, click Queues for point-to-point messaging or Topics for publish/subscribe

messaging.
4. Click the name of the JMS destination that you want to work with.

Scope
Specifies the level to which this resource definition is visible to applications.

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at
multiple scopes, with resources defined at more specific scopes overriding duplicates that are defined at
more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse
or change this resource (or other resources) at a different scope, change the scope on the messaging
provider settings panel, then click Apply, before clicking the link for the type of resource.

Information Value
Data type String

Name
The name by which the queue is known for administrative purposes within WebSphere Application Server.

Information Value
Data type String

Type
Whether this JMS destination is a queue (for point-to-point) or topic (for publish/subscribe).

Select one of the following options:
Queue

A JMS queue destination for point-to-point messaging.
Topic A JMS topic destination for publish/subscribe messaging.

JNDI name
The JNDI name that is used to bind the queue into the application server namespace.

938 Administering WebSphere applications



As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined
by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the
platform.

Information Value
Data type String

Description
A description of the queue, for administrative purposes

Information Value
Data type String

Category
A category used to classify or group this queue, for your WebSphere Application Server administrative
records.

Information Value
Data type String

External JNDI name
The JNDI name that is used to bind the queue into the application server namespace.

As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the
logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined
by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the
platform.

Information Value
Data type String

JMS provider settings
Use this panel to view the configuration properties of a selected JMS provider.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources > JMS->JMS providers. This displays a list of JMS providers
in the content pane. For each JMS provider in the list, the entry indicates the scope level at which JMS
resource definitions are visible to applications. You can create the same type of JMS provider at
different Scope settings, to offer JMS resources at different levels of visibility to applications.

2. (optional) If you want to manage JMS resources that are defined at a different scope setting, change
the Scope setting to the required level.

3. In the Providers column of the list displayed, click the name of a JMS provider.

Chapter 12. Welcome to administering Messaging resources 939



If you want to browse or change JMS resources of the JMS provider, click the link for the type of resource
under Additional Properties. For more information about the administrative console panels for the types of
JMS resources, see the related topics.

For the default messaging provider (which is based on service integration technologies) and the
WebSphere MQ messaging provider, the scope, name, and description properties are displayed for
information only. You cannot change these properties.

For a third-party non-JCA provider that you have defined yourself, the properties of that provider are
displayed.

Scope
The level (cell, node, or server level) at which this resource definition is available.

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at
multiple scopes, with resources defined at more specific scopes overriding duplicates that are defined at
more general scopes. For more information about the scope setting, see Scope settings.

Name
The name by which the JMS provider is known for administrative purposes.

Information Value
Data type String
Default v Default messaging provider.

For JMS resources to be provided by a service
integration bus, as part of WebSphere Application
Server.

v My JMSprovider

For JMS resources to be provided by a third-party JMS
provider that you specify, rather than by the default
messaging provider or the WebSphere MQ messaging
provider that are available as part of WebSphere
Application Server. You assign the name, for example
“My JMSprovider”, when you define the third-party JMS
provider to WebSphere Application Server. You must
also have installed and configured the third-party JMS
provider before applications can use its JMS resources.

v WebSphere MQ messaging provider

For JMS resources to be provided by WebSphere MQ.
You must have installed and configured WebSphere
MQ before applications can use its JMS resources.

Description
A description of the JMS provider, for administrative purposes within WebSphere Application Server.

Information Value
Data type String

Classpath
A list of paths or JAR file names that together form the location for the JMS provider classes. Each class
path entry is on a separate line (separated by using the Enter key) and must not contain path separator
characters (such as ';' or ': '). Class paths can contain variable (symbolic) names to be substituted by
using a variable map. Check your driver installation notes for specific JAR file names that are required.

940 Administering WebSphere applications



Note: This property is only available for third-party messaging providers.

Information Value
Data type String

Native library path
An optional path to any native libraries (*.dll, *.so). Each native path entry is on a separate line (separated
by using the Enter key) and must not contain path separator characters (such as ';' or ': '). Native paths
can contain variable (symbolic) names to be substituted by using a variable map.

Note: This property is only available for the WebSphere MQ messaging provider and third-party
messaging providers.

Information Value
Data type String

Update resource adapter
This button can be used to update the WebSphere MQ resource adapter that provides the function made
available by the WebSphere MQ messaging provider. This button must only be used as directed by a
member of IBM service, otherwise it may result in the use of an unsupported level of the WebSphere MQ
resource adapter.

Normally the WebSphere MQ resource adapter is automatically updated by applying WebSphere
Application Server fix packs. It is important to note that use of the Update resource adapter button
prevents these automatic updates from happening for future fix packs for any node on which the button is
used. If, in the future, you require the WebSphere MQ resource adapter used by the node to receive
updates when a fix pack is applied then you must re-establish the recommended resource adapter
configuration. For more information see “Maintaining the WebSphere MQ resource adapter” on page 693.

Note: This property is only available for the WebSphere MQ messaging provider.

Information Value
Data type Button

External initial context factory
The Java classname of the initial context factory for the JMS provider.

For example, for an LDAP service provider the value has the form: com.sun.jndi.ldap.LdapCtxFactory.

Note: This property is only available for third-party messaging providers.

Information Value
Data type String
Default Null

External provider URL
The JMS provider URL for external JNDI lookups.

For example, an LDAP URL for a messaging provider has the form: ldap://hostname.company.com/
contextName.

Note: This property is only available for third-party messaging providers.

Chapter 12. Welcome to administering Messaging resources 941



Information Value
Data type String
Default Null

Disable WebSphere MQ
This check box is only valid for the WebSphere MQ messaging provider. When selected, this check box
disables all WebSphere MQ functionality on affected application servers. Note that you must restart the
affected application server processes for this change to take effect.

In a single server environment this check box is only available on the WebSphere MQ messaging provider
panel where the scope is set to server, and has the effect of disabling all WebSphere MQ functionality in
that application server.

In a network deployment environment this check box is available on all WebSphere MQ messaging
provider panels. The effect of selecting the check box depends on the scope at which you select it:

v At the cell scope, all WebSphere MQ functionality is disabled on all application servers in the cell.

v At the node scope, all WebSphere MQ functionality is disabled on all application servers that are part of
that node.

v At the cluster scope, all WebSphere MQ functionality is disabled on all application servers in that
cluster.

v At the server scope, all WebSphere MQ functionality is disabled in that particular application server.

The value of the check box at a higher scope takes precedence over the value at a lower scope. For
example, if you do not select the check box for a WebSphere MQ messaging provider at the server scope,
but do select it for a WebSphere MQ messaging provider at a higher scope (such as the cell scope), the
value of the check box at the cell scope takes precedence and WebSphere MQ functionality is therefore
disabled in all application servers in the cell, regardless of whether the check box is selected at the server
scope.

An informational message indicating that WebSphere MQ has been disabled is added to all WebSphere
MQ messaging provider panels that are at affected scopes, but this message does not appear on those
panels where the check box is selected. In a single server environment this informational message is only
displayed after a server restart is performed. In a network deployment environment the informational
message is displayed immediately.

For more information see “Disabling WebSphere MQ functionality in WebSphere Application Server” on
page 712.

Information Value
Data type Check box
Default Not selected

Additional properties
Connection factories

A connection factory is used to create connections to the associated JMS provider. These
connection factories can be used for accessing JMS Queue and JMS Topic destinations.

Queue connection factories
A queue connection factory is used to create connections to the associated JMS provider of the
JMS queue destinations, for point-to-point messaging.

942 Administering WebSphere applications



Topic connection factories
A topic connection factory is used to create connections to the associated JMS provider of JMS
topic destinations, for publish and subscribe messaging.

Queues
A JMS queue is used as a destination for point-to-point messaging.

Topics
A JMS topic is used as a destination for publish/subscribe messaging.

Activation specifications
A JMS activation specification is associated with one or more message-driven beans and provides
configuration necessary for them to receive messages.

Resource adapter properties
These properties are used to configure the WebSphere MQ resource adapter, which is used by
the WebSphere MQ messaging provider. In particular most of these settings affect the behavior of
WebSphere MQ messaging provider activation specifications.

JMS providers collection
Use this panel to list JMS providers, or to select a JMS provider to view or change its configuration
properties.

To view this administrative console page, click Resources > JMS->JMS providers

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS providers that are available to WebSphere applications. For each JMS provider in
the list, the entry indicates the scope level at which JMS resource definitions are visible to applications.
You can create the same type of JMS provider at different Scope settings, to offer JMS resources at
different levels of visibility to applications.

If you want to manage existing JMS resource definitions, or create a new JMS resource definition, you can
select the name of one of the JMS providers in the list.

If you want to define a new third-party JMS provider (that is, a provider other than the default messaging
provider or the WebSphere MQ messaging provider), select the Scope setting at which JMS resource
definitions are to be visible for that provider, then click New.

Name The name by which this JMS provider is known for administrative purposes.

Description
A description of this JMS provider for administrative purposes.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Information Value
New Create a new JMS resource of this type.
Delete Delete the selected items.

Chapter 12. Welcome to administering Messaging resources 943



Queue connection factory collection
A queue connection factory is used to create connections to the associated JMS provider of the JMS
queue destinations, for point-to-point messaging.

In the administrative console, to view this page click Resources > JMS->Queue connection factories.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS queue connection factories that are available to WebSphere Application Server
applications at the scope indicated by the Scope field.

A JMS queue connection factory is used to create connections to JMS destinations. When an application
needs a JMS queue connection, an instance can be created by the factory for the JMS provider that is
named in the Provider column of the list.

This type of connection factory is for applications that use the JMS 1.0.2 queue-specific interfaces.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

Name The display name of each queue connection factory instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each queue connection factory instance.

Provider
The messaging provider that supports each queue connection factory instance.

Description
An optional description of each queue connection factory instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

Delete Delete the selected items.

944 Administering WebSphere applications



Topic connection factory collection
A JMS topic connection factory is used to create connections to the associated messaging provider of JMS
topic destinations, for publish and subscribe messaging.

In the administrative console, to view this page click Resources > JMS->Topic connection factories.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS topic connection factories that are available to WebSphere Application Server
applications at the scope indicated by the Scope field.

A JMS connection factory is used to create connections to JMS destinations. When an application needs a
JMS connection, an instance can be created by the factory for the JMS provider that is named in the
Provider column of the list.

This type of connection factory is for applications that use the JMS 1.0.2 topic-specific interfaces.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

General properties

Name The display name of each topic connection factory instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each topic connection factory instance.

Provider
The messaging provider that supports each topic connection factory instance.

Description
An optional description of each topic connection factory instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

Delete Delete the selected items.

Chapter 12. Welcome to administering Messaging resources 945



Queue collection
A JMS queue destination is used for point-to-point messaging. Use this panel to create or delete queue
destinations, or to select a queue destination to view or change its configuration properties.

In the administrative console, to view this page click Resources > JMS->Queues.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS queue destinations that are available to WebSphere Application Server
applications at the scope indicated by the Scope field.

Use a queue destination to manage JMS queues for the JMS provider that is named in the Provider
column of the list. Connections to the queue are created by a unified connection factory or queue
connection factory for that JMS provider.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

General properties

Name The display name of each queue destination instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each queue destination instance.

Provider
The messaging provider that supports each queue destination instance.

Description
An optional description of each queue destination instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

Delete Delete the selected items.

946 Administering WebSphere applications



Topic collection
A JMS topic destination is used for publish and subscribe messaging. Use this panel to create or delete
topic destinations, or to select a topic destination to view or change its configuration properties.

In the administrative console, to view this page click Resources > JMS->Topics.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

This page lists the JMS topic destinations that are available to WebSphere Application Server applications
at the scope indicated by the Scope field.

Use a topic destination to manage JMS topics for the JMS provider that is named in the Provider column
of the list. Connections to the topic are created by a unified connection factory or topic connection factory
for that JMS provider.

If WebSphere MQ functionality has been disabled, an informational message indicating that WebSphere
MQ has been disabled appears when the scope field is set to a scope which is the same as, or above, the
scope at which WebSphere MQ has been disabled, or when the scope field is set to display all scopes.
Note that this informational message is not displayed if you are viewing a provider specific collection that
is not for WebSphere MQ (for example, the default messaging provider collection). In a single server
environment this informational message is only displayed when the server is restarted after WebSphere
MQ functionality has been disabled. For more information see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

General properties

Name The display name of each topic destination instance.

JNDI name
The Java Naming and Directory Interface (JNDI) name of each topic destination instance.

Provider
The messaging provider that supports each topic destination instance.

Description
An optional description of each topic destination instance.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server
level.

Buttons

Button Description

New Create a new JMS resource of this type.

Delete Delete the selected items.

Session pool settings
Use this page to configure session pool settings.

Chapter 12. Welcome to administering Messaging resources 947



This administrative console page is common to JMS unified connection factories, queue connection
factories and topic connection factories. To view this page, you select an instance of the resource type
then click Session pools. For example, click Resources > JMS->Queue connection
factories->queue_connection_factory->[Additional Properties] Session pools.

Connection Timeout
Specifies the interval, in seconds, after which a connection request times out and a
ConnectionWaitTimeoutException is thrown.

The wait is necessary when the maximum value of connections (Max Connections) to a particular
connection pool is reached . For example, if Connection Timeout is set to 300 and the maximum number
of connections is reached, the Pool Manager waits for 300 seconds for an available physical connection. If
a physical connection is not available within this time, the Pool Manager throws a
ConnectionWaitTimeoutException. It usually does not make sense to retry the getConnection() method,
because if a longer wait time is required, you should set the Connection Timeout setting to a higher
value. Therefore, if this exception is caught by the application, the administrator should review the
expected usage of the application and tune the connection pool and the database accordingly.

If Connection Timeout is set to 0, the Pool Manager waits as long as necessary until a connection is
allocated (which happens when the number of connections falls below the value of Max Connections).

If Max Connections is set to 0, which enables an infinite number of physical connections, then the
Connection Timeout value is ignored.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Max Connections
Specifies the maximum number of physical connections that you can create in this pool.

These are the physical connections to the backend resource. Once this number is reached, no new
physical connections are created and the requester waits until a physical connection that is currently in
use returns to the pool, or a ConnectionWaitTimeoutException is thrown.

For example, if the Max Connections value is set to 5, and there are five physical connections in use, the
pool manager waits for the amount of time specified in Connection Timeout for a physical connection to
become free.

If Max Connections is set to 0, the Connection Timeout value is ignored.

For better performance, set the value for the connection pool lower than the value for the Max
Connections option in the web container. Lower settings, such as 10-30 connections, perform better than
higher settings, such as 100.

If clones are used, one data pool exists for each clone. Knowing the number of data pools is important
when configuring the database maximum connections.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool.
If the number of concurrent waiters is greater than 0, but the CPU load is not close to 100%, consider
increasing the connection pool size. If the Percent Used value is consistently low under normal workload,
consider decreasing the number of connections in the pool.

948 Administering WebSphere applications



Information Value
Data type Integer
Default 10
Range 0 to max int

Min Connections
Specifies the minimum number of physical connections to maintain.

Until this number is reached, the pool maintenance thread does not discard physical connections.
However, no attempt is made to bring the number of connections up to this number. If you set a value for
Aged Timeout, the minimum is not maintained. All connections with an expired age are discarded.

For example if the Min Connections value is set to 3, and one physical connection is created, the Unused
Timeout thread does not discard that connection. By the same token, the thread does not automatically
create two additional physical connections to reach the Min Connections setting.

Information Value
Data type Integer
Default 1
Range 0 to max int

Reap Time
Specifies the interval, in seconds, between runs of the pool maintenance thread.

For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap
Time interval affects the accuracy of the Unused Timeout and Aged Timeout settings. The smaller the
interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less
than the values of Unused Timeout and Aged Timeout. When the pool maintenance thread runs, it
discards any connections remaining unused for longer than the time value specified in Unused Timeout,
until it reaches the number of connections specified in Min Connections. The pool maintenance thread
also discards any connections that remain active longer than the time value specified in Aged Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread
runs more often and degrades performance.

To disable the pool maintenance thread set Reap Time to 0, or set both Unused Timeout and Aged
Timeout to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, in
which case Unused Timeout and Aged Timeout are ignored. However, if Unused Timeout and Aged
Timeout are set to 0, the pool maintenance thread runs, but only physical connections that timeout due to
non-zero timeout values are discarded.

Information Value
Data type Integer
Units Seconds
Default 180
Range 0 to max int

Unused Timeout
Specifies the interval in seconds after which an unused or idle connection is discarded.

Set the Unused Timeout value higher than the Reap Timeout value for optimal performance. Unused
physical connections are only discarded if the current number of connections not in use exceeds the Min

Chapter 12. Welcome to administering Messaging resources 949



Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance
thread is enabled (Reap Time is not 0), any physical connection that remains unused for two minutes is
discarded. Note that accuracy of this timeout, as well as performance, is affected by the Reap Time value.
For more information, see Reap Time.

Information Value
Data type Integer
Units Seconds
Default 1800
Range 0 to max int

Aged Timeout
Specifies the interval in seconds before a physical connection is discarded.

Setting Aged Timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the
Aged Timeout value higher than the Reap Timeout value for optimal performance. For example, if the
Aged Timeout value is set to 1200, and the Reap Time value is not 0, any physical connection that
remains in existence for 1200 seconds (20 minutes) is discarded from the pool. Note that accuracy of this
timeout, as well as performance, are affected by the Reap Time value. For more information, see Reap
Time.

Information Value
Data type Integer
Units Seconds
Default 0
Range 0 to max int

Purge Policy
Specifies how to purge connections when a stale connection or fatal connection error is detected.

Valid values are EntirePool and FailingConnectionOnly. Java EE Connector Architecture (JCA) data
sources can have either option. WebSphere Version 4.0 data sources always have a purge policy of
EntirePool.

Information Value
Data type String
Default FailingConnectionOnly

950 Administering WebSphere applications



Information Value
Range

EntirePool
All connections in the pool are marked stale. Any
connection not in use is immediately closed. A
connection in use is closed and throws a
StaleConnectionException during the next
operation on that connection. Subsequent
getConnection requests from the application
result in new connections to the database
opening. When using this purge policy, there is a
slight possibility that some connections in the
pool are closed unnecessarily when they are not
stale. However, this is a rare occurrence. In most
cases, a purge policy of EntirePool is the best
choice.

FailingConnectionOnly
Only the connection that caused the
StaleConnectionException is closed. Although
this setting eliminates the possibility that valid
connections are closed unnecessarily, it makes
recovery from an application perspective more
complicated. Because only the currently failing
connection is closed, there is a good possibility
that the next getConnection request from the
application can return a connection from the pool
that is also stale, resulting in more stale
connection exceptions.

Managing message-driven beans
You can manage the Java EE Connector Architecture (JCA) Version 1.5-compliant message-driven beans
that you deploy as message endpoints, and you can manage the message listener resources for non-JCA
message-driven beans that you deploy against listener ports.

Before you begin

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your
beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications.

For more information about when to use listener ports rather than activation specifications, see
Message-driven beans, activation specifications, and listener ports.

Chapter 12. Welcome to administering Messaging resources 951



About this task

You can manage the following resources for message-driven beans:

v JCA 1.5-compliant message-driven beans that you deploy as message endpoints, and the associated
activation specifications.

v The message listener service, listener ports, and listeners for non-JCA message-driven beans that you
deploy against listener ports.

Procedure
v Manage JCA 1.5-compliant message-driven beans that are used as message endpoints.

JCA 1.5-compliant message-driven beans, deployed by using activation specifications, can be used as
message endpoints. You can start and stop specific endpoints within your applications to ensure that
messages are delivered only to listening message-driven beans that are interacting with healthy
resources.

v Manage message listener resources for message-driven beans.

The message listener service supports message-driven beans that are used with a non-JCA messaging
provider. A listener port defines the association between a connection factory, a destination, and a
deployed message-driven bean. When you deploy a message-driven bean, you associate the bean with
a listener port. When a message arrives on the destination, the listener passes the message to a new
instance of a message-driven bean for processing. You can manage the resources used by the
message listener service, including being able to start and stop specific listener ports manually.

Managing messages with message endpoints
Manage message delivery for message-driven beans (MDB) that are deployed as message endpoints. The
message endpoints are managed beans (MBeans) for inbound resource adapters that are compliant with
Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA) Version 1.5.

About this task

The application server provides message endpoint MBeans to assist you in managing the delivery of a
message to your message-driven beans that are acting as listeners on specific endpoints, which are
destinations, and in managing the enterprise information system (EIS) resources that are utilized by these
message-driven beans. Message-driven beans that are deployed as message endpoints are not the same
as message-driven beans that are configured against a listener port. Message-driven beans that are used
as message endpoints must be deployed using an ActivationSpecification that is defined within a resource
adapter configuration for JCA Version 1.5.

With message endpoint MBeans, you can activate and deactivate specific endpoints within your
applications to ensure that messages are delivered only to listening message-driven beans that are
interacting with healthy EIS resources. This capability allows you to optimize the performance of your JMS
applications in situations where an EIS resource is not behaving as expected. Message delivery to an
endpoint typically fails when the message driven bean that is listening invokes an operation against a
resource that is not healthy. For example, a messaging provider, which is an inbound resource adapter
that is JCA Version 1.5 compliant, might fail to deliver messages to an endpoint when its underlying
message-driven bean attempts to commit transactions against a database server that is not responding.

Note: Design your message-driven beans to delegate business processing to other enterprise beans. Do
not access the EIS resources directly in the message-driven bean, but do so indirectly through a
delegate bean.

Message endpoint MBeans alleviate two problems that are inherent to applications that provide message
endpoints that access resources:

952 Administering WebSphere applications



v Failed messages require additional processing, such as delivering them to the listening endpoint again
or redirecting them to alternate destinations that process failed messages. In addition, a resource
adapter might redeliver a message to an endpoint an infinite number of times.

v Message redirection requires the implementation of specialized destinations (queues and listeners) to
process failed messages, as well as the logic to detect message failures. Message redirection is
potentially error prone and computationally expensive due to its complexity.

The capability to deactivate (pause) and reactivate (resume) a specific message endpoint alleviates these
problems by enabling the administrator to deactivate the endpoint from processing messages that are
destined to fail. When the message endpoint is deactivated, you can repair the resource that is causing
the problems and reactivate the endpoint to resume handling message requests. In the course of
troubleshooting, you will not affect the resource adapter or the application that is hosting the endpoint.

If you are connecting to WebSphere MQ, you can also use the WAS_EndpointInitialState custom property
in the activation specification to make the message endpoint start out in a deactivated state. When you set
this property to Inactive, the message-driven bean connects with the destination, but does not start
receiving messages. Use this setting to automatically deactivate a message endpoint when you know that
certain tasks must be completed, services must be started, or checks must be carried out, before message
handling begins. You activate the message endpoint in the same way as you would reactivate a message
endpoint that you paused during its operation.

Procedure
1. Using the administrative console, navigate to the Message Endpoints panel for the application that is

hosting the message endpoint.

a. Select the Applications > Application Types > Websphere enterprise applications >
application_name.

b. Select the Runtime panel.

c. Select Message Endpoints. The panel lists the set of message endpoints that are hosted by the
application.

2. Optional: Temporarily disable a message endpoint from handling messages and troubleshoot the
problem.

a. Deactivate the message endpoint by selecting the appropriate endpoint and clicking Pause.

b. When the message endpoint is inactive, diagnose and repair the underlying cause of the delivery
failures.

c. Reactivate the message endpoint by selecting the appropriate endpoint and clicking Resume.

3. Optional: Activate a message endpoint that started out in a deactivated state. Select the appropriate
endpoint and click Resume.

Results

The behavior you will observe when you deactivate (pause) a message endpoint using the message
endpoint MBean is dependent upon a variety of factors, including the resource adapter that manages the
message endpoint, the configuration of the message endpoint and the application server topology. Some
specific examples of interest are as follows:

v MDB listening on a non-durable topic (dependent on configuration): The behavior that is implied by
the deactivation (pause) of a message endpoint is often dependent upon the function that it is fulfilling.
For example, if you have configured a message-driven bean to listen on a non-durable topic on the
service integration bus, deactivating the message endpoint is analogous to stopping the application and
will cause the subscription to be closed. This means that any messages that are published during the
time that the message endpoint is paused will not be received by the message-driven bean.

v Clustered message-driven bean (dependent on topology): In this scenario a message-driven bean
application has been deployed to a cluster of servers. A given message endpoint MBean controls only
the behavior of the MDB in one server from the cluster, so will cause only one server to stop processing

Chapter 12. Welcome to administering Messaging resources 953



messages. Depending upon the messaging configuration and the specific resource adapter in use the
messages that would have been consumed by the paused message endpoint may be consumed by the
active message endpoints in the cluster, or they may remain unconsumed until the paused message
endpoint is resumed.

v Clustered message-driven bean, a non-clustered queue: In this scenario, you have a cluster of
servers with the same message-driven bean deployed to them. This is similar to the case, in which you
have different message-driven beans with the same message selection criteria, except that in this case
the message-driven beans are logically the same message-driven bean. Pausing the endpoint will
cause only one of the servers to stop receiving messages, and the other message-driven beans will
receive all the messages; none of the messages will be orphaned. To stop all of the endpoints, you
must direct each server in the cluster to stop the local message endpoint.

v Clustered message-driven bean, clustered queue: In this scenario, each message-driven bean is
pulling messages from a different partition of the queue. Messaging through WebSphere MQ and the
Service Integration Bus have similar, but different, capabilities. If you are using WebSphere MQ, then
pausing one endpoint will not allow the other instances of the message-driven bean to receive the
messages. In the Service Integration Bus, messages from a paused endpoint will be redirected to the
other message-driven beans.

Managing message listener resources for message-driven beans
Manage the resources used by the message listener service to support message-driven beans, typically
for use with a messaging provider that does not have a Java EE Connector Architecture (JCA) 1.5
resource adapter.

Before you begin

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your
beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications.

If you have existing message-driven beans that use the WebSphere MQ messaging provider (or a
compliant third-party JMS provider) with listener ports, and instead you want to use EJB 3 message-driven
beans with listener ports, these new beans can continue to use the same messaging provider.

For more information about when to use listener ports rather than activation specifications, see
Message-driven beans, activation specifications, and listener ports.

About this task

The message listener service is an extension to the JMS functions of the JMS provider and provides a
listener manager, which controls and monitors one or more JMS listeners. Each listener monitors either a
JMS queue destination (for point-to-point messaging) or a JMS topic destination (for publish/subscribe
messaging). A listener port defines the association between a connection factory, a destination, and a
deployed message-driven bean. When you deploy a message-driven bean, you associate the bean with a
listener port. When a message arrives on the destination, the listener passes the message to a new

954 Administering WebSphere applications



instance of a message-driven bean for processing. For more information, see Message-driven beans -
listener port components.

Procedure
1. Configure the message listener service.

2. Administer listener ports.

You can complete any of the following administrative tasks:

v Create or configure a listener port.

v Start or stop a listener port.

v Delete a listener port.

3. Configure security for message-driven beans that use listener ports.

Results

You have configured the resources needed by the message listener service to support message-driven
beans.

Configuring the message listener service
To support message-driven beans deployed against listener ports, you must configure the properties of the
message listener service for your application server.

Before you begin

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your
beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications.

If you have existing message-driven beans that use the WebSphere MQ messaging provider (or a
compliant third-party JMS provider) with listener ports, and instead you want to use EJB 3 message-driven
beans with listener ports, these new beans can continue to use the same messaging provider.

For more information about when to use listener ports rather than activation specifications, see
Message-driven beans, activation specifications, and listener ports.

About this task

The message listener service is an extension to the JMS functions of the JMS provider and provides a
listener manager, which controls and monitors one or more JMS listeners. Each listener monitors either a
JMS queue destination (for point-to-point messaging) or a JMS topic destination (for publish/subscribe
messaging). For more information, see Message-driven beans - listener port components.

When you deploy an enterprise application to use message-driven beans with listener ports, you can
browse or change the configuration of the message listener service for a given application server.

If your messaging system is running in non-ASF mode, to avoid unwanted transaction
timeouts, you must allow a sufficient amount of time for processing to be completed before the total
transaction lifetime timeout is reached. Therefore, you must make sure that the value that you specify for
the NON.ASF.RECEIVE.TIMEOUT message listener service custom property is smaller than the value that you
specify for the Total transaction lifetime timeout transaction service property, and also that the
difference between the values of the two properties is greater than the amount of time that the
onMessage() method of the message-driven bean (MDB) takes to process the message.

Chapter 12. Welcome to administering Messaging resources 955



Procedure
1. Display the listener service settings page:

a. In the navigation pane, select Servers > Server Types > WebSphere application servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging > Message Listener Service.

2. Optional: Browse or change the value of properties for the message-driven bean thread pool.

a. Click Thread Pool.

b. Change the following properties, as required:

Minimum size
The minimum number of threads to allow in the pool.

Maximum size
The maximum number of threads to allow in the pool.

Thread inactivity timeout
The number of milliseconds of inactivity that should elapse before a thread is reclaimed. A
value of 0 indicates not to wait and a negative value (less than 0) means to wait forever.

Note: The administrative console does not allow you to set the inactivity timeout to a
negative number. To do this you must modify the value directly in the config.xml file.

Allow thread allocation beyond maximum thread size
Select this check box to enable the number of threads to increase beyond the maximum
size configured for the thread pool.

c. Click OK.

3. Optional: Specify any message listener service custom properties that you need, as Custom
properties of the message listener service.

a. Click Custom properties

b. For each custom property, specify the name and value you require.

If you have not specified a property before:

1) Click New.

2) Type the name of the property.

3) Type the value of the property.

4) Click OK.

For more information about these custom properties, see “Message listener service custom properties”
on page 407.

4. Save your changes to the master configuration.

5. To activate the changed configuration, stop then restart the application server.

Results

You have configured the properties of the message listener service for a given application server.

Avoiding transaction timeouts in non-ASF mode:

If your messaging system runs in non-Application Server Facilities (non-ASF) mode, you must configure
the Total transaction lifetime timeout transaction service property and the NON.ASF.RECEIVE.TIMEOUT
message listener service custom property correctly, to avoid unwanted transaction timeouts.

956 Administering WebSphere applications



Before you begin

To carry out the steps in this task, your messaging system must be running in non-ASF mode. To change
from ASF mode to non-ASF mode, add the NON.ASF.RECEIVE.TIMEOUT custom property to the message
listener service as described in “Configuring the message listener service” on page 394.

About this task

For WebSphere Application Server Version 7 and later, listener ports are stabilized. For more information,
read the article on stabilized features. You should plan to migrate your WebSphere MQ message-driven
bean deployment configurations from using listener ports to using activation specifications. However, you
should not begin this migration until you are sure the application does not have to work on application
servers earlier than WebSphere Application Server Version 7. For example, if you have an application
server cluster with some members at Version 6.1 and some at a later version, you should not migrate
applications on that cluster to use activation specifications until after you migrate all the application servers
in the cluster to the later version.

If your messaging system is running in non-ASF mode, to avoid unwanted transaction timeouts, you must
allow a sufficient amount of time for processing to be completed before the total transaction lifetime
timeout is reached. Therefore, you must make sure that the value that you specify for the
NON.ASF.RECEIVE.TIMEOUT message listener service custom property is smaller than the value that you
specify for the Total transaction lifetime timeout transaction service property, and also that the
difference between the values of the two properties is greater than the amount of time that the
onMessage() method of the message-driven bean (MDB) takes to process the message.

Procedure

1. To configure the Total transaction lifetime timeout transaction service property, complete step 8 in
“Configuring transaction properties for an application server” on page 2593.

2. To configure the NON.ASF.RECEIVE.TIMEOUT message listener service custom property, click Servers >
Server Types > WebSphere application servers > server_name > [Communications] Messaging
> Message Listener Service > Custom Properties.

3. Click NON.ASF.RECEIVE.TIMEOUT. The General Properties page is displayed.

4. Modify the Value field. The value of NON.ASF.RECEIVE.TIMEOUT must be specified in milliseconds. Make
sure that the value you specify, when converted into seconds (by dividing by 1000), is less than the
value that you specified for Total transaction lifetime timeout, and that the difference between the
values of the two properties is greater than the maximum number of seconds that the onMessage()
method of your MDB takes to process a message.

5. Click OK.

6. Stop and restart the application server.

Example

As the following example shows, if Total transaction lifetime timeout and NON.ASF.RECEIVE.TIMEOUT
are not correctly configured, transactions can time out before they are completed. This is because the
thread begins calling the receive() method as soon as the transaction is created. In the following
example, NON.ASF.RECEIVE.TIMEOUT is set to 110000 milliseconds (110 seconds), Total transaction
lifetime timeout is set to 120 seconds and the onMessage () method of the MDB takes 15 seconds to
process a message. The example supposes that a message does not appear at the destination until the
receive() method has almost timed out:

1. The listener port starts and allocates a thread from the thread pool and creates a transaction on the
thread.

2. The thread calls the receive() method to listen for messages.

3. After 110 seconds a message appears at the destination.

Chapter 12. Welcome to administering Messaging resources 957



4. The thread removes the message from the destination and calls the onMessage() method of the MDB
to begin processing the message.

5. Ten seconds later, the transaction timeout is reached. The application server marks the transaction for
rollback.

6. Five seconds later, the onMessage() method finishes processing the message and tries to commit the
transaction.

7. The total amount of time that has elapsed since the transaction was started is 125 seconds (110
seconds waiting for a message, plus 15 seconds to process the message). As this time is longer than
the transaction timeout, the application server prevents the transaction from being committed, and it is
rolled back.

Administering listener ports
You can use the WebSphere Application Server administrative console to administer listener ports, which
each define the association between a connection factory, a destination, and a message-driven bean.

Before you begin

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your
beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications.

If you have existing message-driven beans that use the WebSphere MQ messaging provider (or a
compliant third-party JMS provider) with listener ports, and instead you want to use EJB 3 message-driven
beans with listener ports, these new beans can continue to use the same messaging provider.

For more information about when to use listener ports rather than activation specifications, see
Message-driven beans, activation specifications, and listener ports.

About this task

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. If you set the initial state of a listener port to Started, the listener port is started
automatically when a message-driven bean associated with that port is installed.

Listener ports can be manually started and stopped. If a message-driven bean fails to process a message
several times, the listener port is automatically stopped by the application server. When a listener port is
stopped, the listener manager stops the listeners for all message-driven beans associated with the port.
Consequently, the associated message-driven beans can no longer process messages.

Note: You do not usually need to start or stop a listener port manually.

Procedure
v Create a new listener port.

Create a new listener port, to specify a new association between a connection factory, a destination,
and a message-driven bean. This association enables deployed message-driven beans associated with
the port to retrieve messages from the destination.

v Configure a listener port.

Browse or change the configuration properties of a listener port.

v Start a listener port.

v Stop a listener port.

v Delete a listener port.

958 Administering WebSphere applications



Creating a new listener port:

You create a new listener port for the message listener service to define the association between a
connection factory, a destination, and a deployed message-driven bean. This association enables the
message-driven bean to retrieve messages from the associated destination.

Before you begin

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your
beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications.

If you have existing message-driven beans that use the WebSphere MQ messaging provider (or a
compliant third-party JMS provider) with listener ports, and instead you want to use EJB 3 message-driven
beans with listener ports, these new beans can continue to use the same messaging provider.

For more information about when to use listener ports rather than activation specifications, see
Message-driven beans, activation specifications, and listener ports.

About this task

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. This association enables deployed message-driven beans associated with the port
to retrieve messages from the destination. For more information, see Message-driven beans - listener port
components.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Servers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service > [Additional
Properties] Listener Ports > listener_port. The “Message listener port collection” on page 402 panel
is displayed.

3. Click New.

4. Specify the following required properties:

Name The name by which the listener port is known for administrative purposes.

Connection factory JNDI name
The JNDI name for the JMS connection factory to be used by the listener port; for example,
jms/connFactory1.

Destination JNDI name
The JNDI name for the destination to be used by the listener port; for example, jms/destn1.

5. Optional: Change other properties for the listener port, as required.

6. Click OK.

7. Save your changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

Results

If you set the initial state of a listener port to Started, the listener port is started automatically when a
message-driven bean associated with that port is installed.

Configuring a listener port:

Chapter 12. Welcome to administering Messaging resources 959



Use this task to browse or change the properties of an existing listener port, which is used by
message-driven beans associated with the port to retrieve messages.

Before you begin

If you want to use message-driven beans with a messaging provider that does not have a JCA Version 1.5
or 1.6 resource adapter, you cannot use activation specifications and therefore you must configure your
beans against a listener port. There are also a few scenarios in which, although you could use activation
specifications, you might still choose to use listener ports. For example, for compatability with existing
message-driven bean applications. For more information about when to use listener ports rather than
activation specifications, see Message-driven beans, activation specifications, and listener ports.

About this task

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. This association enables deployed message-driven beans associated with the port
to retrieve messages from the destination. For more information, see Message-driven beans - listener port
components.

When you deploy an enterprise application to use message-driven beans with listener ports, you can
browse or change the configuration of a listener port.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Servers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service > [Additional
Properties] Listener Ports > listener_port

The “Message listener port collection” on page 402 panel is displayed.

3. Select the name of the listener port that you want to work with. This displays the properties of the
listener port in the content pane.

4. Optional: Change properties for the listener port, according to your needs.

5. Click OK.

6. Save your changes to the master configuration.

7. To have a changed configuration take effect, stop then restart the application server.

Starting a listener port:

Use this task to start a listener port on an application server, to enable the listeners for message-driven
beans associated with the port to retrieve messages.

About this task

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. For more information, see Message-driven beans - listener port components.

A listener is active, that is able to receive messages from a destination, if the deployed message-driven
bean, listener port, and message listener service are all started. Although you can start these components
in any order, they must all be in a started state before the listener can retrieve messages.

If you set the initial state of a listener port to Started, the listener port is started automatically when a
message-driven bean associated with that port is installed. You can also start a listener port manually.

When a listener port is started, the listener manager tries to start the listeners for each message-driven
bean associated with the port. If a message-driven bean is stopped, the port is started but the listener is

960 Administering WebSphere applications



not started, and remains stopped. If you start a message-driven bean, the related listener is started.

Procedure

1. Start the administrative console.

2. If you want the listener for a deployed message-driven bean to be able to receive messages at the
port, check that the message-driven bean has been started.

3. In the navigation pane, click Servers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service > [Additional
Properties] Listener Ports > listener_port

The “Message listener port collection” on page 402 panel is displayed.

4. Select the check box for the listener port that you want to start.

5. Click Start.

6. Save your changes to the master configuration.

Stopping a listener port:

Use this task to stop a listener port on an application server, to prevent the listeners for message-driven
beans associated with the port from retrieving messages.

About this task

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. For more information, see Message-driven beans - listener port components.

If a message-driven bean fails to process a message several times, the listener port is automatically
stopped by the application server. You can also stop a listener port manually. When a listener port is
stopped, the listener manager stops the listeners for all message-driven beans associated with the port.
Consequently, the associated message-driven beans can no longer process messages.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Servers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service > [Additional
Properties] Listener Ports > listener_port

The “Message listener port collection” on page 402 panel is displayed.

3. Select the check box for the listener port that you want to stop.

4. Click Stop.

5. Save your changes to the master configuration.

6. To have the changed configuration take effect, stop then restart the application server.

Deleting a listener port:

Use this task to delete a listener port from the message listener service, to prevent message-driven beans
associated with the port from retrieving messages.

About this task

A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. For more information, see Message-driven beans - listener port components.

To delete a listener port, use the administrative console to complete the following steps:

Chapter 12. Welcome to administering Messaging resources 961



Procedure

1. Start the administrative console.

2. In the navigation pane, click Servers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service > [Additional
Properties] Listener Ports > listener_port

The “Message listener port collection” on page 402 panel is displayed.

3. Select the check box for the listener port that you want to delete.

4. Click Delete.

This action stops the port (needed to allow the port to be deleted) then deletes the port.

5. Save your changes to the master configuration.

6. To have the changed configuration take effect, stop then restart the application server.

Monitoring server session pools for listener ports:

You can minimize the number of resources that server sessions use by enabling server session pool
monitoring and defining the timeout value to be applied to a server session.

About this task

Each listener port uses one or more server sessions, which are held in a server session pool. Each server
session is associated with a JMS session, which is taken from the JMS session pool that is associated
with the JMS connection factory that the listener port is configured to use.

By default, server session pool monitoring is disabled. When a listener port uses a server session the
listener port does not release the server session from the server session pool until the listener port is shut
down. This means that the associated JMS session is not released into the JMS session pool until the
listener port is shut down, even if the listener port is not processing any messages. Consequently the
resources that the JMS session uses, for example TCP/IP connections, can be held for a long time, and
this can cause problems for resource-constrained systems.

To minimize the number of resources that server sessions use, you must monitor the server session pools.
When you enable server session pool monitoring each server session in each server session pool that a
listener port uses is monitored to determine how much time has elapsed since the server session was last
used. If the elapsed time is greater than the timeout value that you have configured, the server session is
removed from the server session pool and its associated JMS session is returned to the JMS session
pool. The returned JMS session can be either reused by another application or closed, depending on your
JMS session pool settings. You can also configure additional pooling mechanisms, depending on your JMS
provider.

Note: Server session pool monitoring cannot be used if the message listener service is operating in
non-Application Server Facilities (non-ASF) mode, that is if the NON.ASF.RECEIVE.TIMEOUT
message listener service custom property is set to a non-zero value.

Procedure

To enable server session pool monitoring, configure the following message listener service custom
properties on each application server as required.

SERVER.SESSION.POOL.REAP.TIME
To enable server session pool monitoring, set this property to the time in seconds between checks
on server session pools (this must be a non-negative value).

SERVER.SESSION.POOL.UNUSED.TIMEOUT
To specify the default server session pool timeout, set this property to the required number of
seconds for the timeout. When this property is set to a non-negative value, it is compared with the

962 Administering WebSphere applications



time that has elapsed since a server session was used. If the timeout value is less than the
elapsed time, the server session is removed from the server session pool and its JMS session is
returned to the JMS session pool. For example, if the timeout value is one second and the time
that has elapsed since a particular server session was used is two seconds, that server session is
removed from the server session pool and its JMS session is returned to the JMS session pool.

SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname
To override the default SERVER.SESSION.POOL.UNUSED.TIMEOUT value for the listener port
with the name lpname, set this property to the appropriate value:

v To override the SERVER.SESSION.POOL.UNUSED.TIMEOUT for the specified listener port,
set this property to a non-negative value defining the required number of seconds for the server
session timeout for this listener port.

v To disable server session pool monitoring for the specified listener port, set this property to a
negative value.

The value that you set for this property applies to all message-driven beans that are using the
specified listener port.

Example

For example, consider an application server that is configured with listener ports lp1, and lp2.

The following rules apply:

No properties set
If none of the properties are set, server session pool monitoring is disabled and JMS sessions
used by server sessions are not returned to the JMS session pool until the listener port (lp1 or
lp2), or its associated message-driven bean, is shut down.

SERVER.SESSION.POOL.REAP.TIME and SERVER.SESSION.POOL.UNUSED.TIMEOUT set
Consider, for example, the following settings:

SERVER.SESSION.POOL.REAP.TIME=60

SERVER.SESSION.POOL.UNUSED.TIMEOUT=120

The server session pool of both listener ports (lp1 and lp2) is checked for inactive server sessions
every 60 seconds. If a server session is detected as being inactive for more than 120 seconds, it
is removed from the server session pool and its JMS session is returned to the JMS session pool.
Taking into account the SERVER.SESSION.POOL.REAP.TIME value, the server session pool
could be removed from the session pool between two and three minutes after the server session
was last used.

SERVER.SESSION.POOL.REAP.TIME and SERVER.SESSION.POOL.UNUSED.TIMEOUT set, and
overrides set for SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname

Consider, for example, the following settings:

SERVER.SESSION.POOL.REAP.TIME=60

SERVER.SESSION.POOL.UNUSED.TIMEOUT=120

SERVER.SESSION.POOL.UNUSED.TIMEOUT.lp2=-1

SERVER.SESSION.POOL.UNUSED.TIMEOUT.lp1=60

The server session pool for listener port lp2 is not checked because it has a negative timeout
value. In the server session pool for listener port lp1, any server sessions that are inactive for
more than 60 seconds are removed from the server session pool.

Message listener port collection
The message listener ports configured in the administrative domain

Chapter 12. Welcome to administering Messaging resources 963



A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. This association enables deployed message-driven beans associated with the port
to retrieve messages from the destination.

This panel displays a list of the message listener ports configured in the administrative domain. You can
use this panel to add new listener ports or to change the properties of existing listener ports.

To view this administrative console panel, click Servers > Server Types > WebSphere application
servers > server_name > [Messaging] Message Listener Service > Listener Ports

To manage a listener port, select the check box beside the listener port name in the list and click a button:

Button Resulting action
Convert to activation
specification

Opens a wizard that helps you convert the selected listener port to an activation
specification.

New Accesses the panel to configure a new listener port.
Delete Deletes the selected listener port or ports.
Start Starts the selected listener port or ports.
Stop Stops the selected listener port or ports.

Listener port settings
A listener port defines the association between a connection factory, a destination, and a deployed
message-driven bean. This association enables deployed message-driven beans associated with the port
to retrieve messages from the destination.

Use this panel to view or change the configuration properties of the selected listener port.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers->server_name > [Communications] Messaging > Message listener service > [Additional
Properties] Listener Ports > listener_port.

Name
The name by which the listener port is known for administrative purposes.

Information Value
Data type String
Default Null

Initial state
The state that you want the listener port to have when the application server is next restarted

Information Value
Data type Enum
Units Not applicable
Default Started

964 Administering WebSphere applications



Information Value
Range Started

When the application server is next started, the
listener port is started automatically.

Stopped
When the application server is next started, the
listener port is not started automatically. If
message-driven beans are to use this listener
port on the application server, the system
administrator must start the port manually or
select the Started value of this property then
restart the application server.

Description
A description of the listener port, for administrative purposes within IBM WebSphere Application Server.

Information Value
Data type String
Default Null

Connection factory JNDI name
The JNDI name for the JMS connection factory to be used by the listener port; for example,
jms/connFactory1.

Information Value
Data type String
Default Null

Destination JNDI name
The JNDI name for the destination to be used by the listener port; for example, jms/destn1.

You cannot use a temporary destination for late responses.

Information Value
Data type String
Default Null

Maximum sessions
The maximum number of concurrent sessions that a listener can have with the JMS server to process
messages.

Each session corresponds to a separate listener thread and therefore controls the number of concurrently
processed messages. Adjust this parameter when the server does not fully use the available capacity of
the machine.

Information Value
Data type Integer
Units Sessions
Default 1
Range 1 through 2147483647

Chapter 12. Welcome to administering Messaging resources 965



Information Value
Recommended v For message concurrency, that is to process multiple

messages simultaneously, set this property to a value
greater than 1. Keep this value as low as possible to
prevent overloading client applications. A good starting
point for a 100% JMS workload with short transaction
times is 2 to 4 sessions per processor. If longer running
transactions exist, you might need more sessions,
which should be determined by experimentation.

The total number of sessions specified in the Maximum
Sessions property of all configured listener ports must
be less than or equal to the number of threads
specified for the Maximum Size property of the
message listener service thread pool.

Maximum retries
The maximum number of times that the listener tries to deliver a message to a message-driven bean
instance before the listener is stopped, in the range 0 through 2147483647.

Note: A WebSphere MQ queue has a similar property called the BackoutThreshold property. If your
listener port is reading from a WebSphere MQ queue, then the retry limit and the behavior when
the limit is reached is determined by whichever of these two properties is set to the lower limit:

v If you exceed the WebSphere MQ queue BackoutThreshold limit, the message that cannot be
delivered is moved to somewhere else by WebSphere MQ (for example, to the WebSphere MQ
backout requeue queue or the WebSphere MQ dead letter queue) and the listener port services
the next message on the queue. In this case, WebSphere Application Server might not know that
the message has not been delivered successfully.

v If you exceed the listener port maximum retries limit, the listener port stops. You then manually
intervene to investigate the problem, possibly to remove the message from the WebSphere MQ
queue then restart the listener port.

Information Value
Data type Integer
Units Retry attempts
Default 0 (no retries)
Range 0 (no retries) through 2147483647

Maximum messages
The maximum number of messages that the listener can process in one transaction.

If the queue is empty, the listener processes each message when it arrives. Each message is processed
within a separate transaction.

For WebSphere MQ as the JMS provider, if messages start accumulating on the queue then the listener
can start processing messages in batches. For third-party messaging providers, this property value is
passed to the JMS provider but the effect depends on the JMS provider.

Information Value
Data type Integer
Units Number of messages
Default 1
Range 1 through 2147483647

966 Administering WebSphere applications



Information Value
Recommended For WebSphere MQ as the JMS provider, to process

multiple messages in a single transaction, set this value to
more than 1. If messages start accumulating on the
queue, a value greater than 1 enables multiple messages
to be batch-processed into a single transaction, and
eliminates much of the transaction processing costs for
JMS messages.
CAUTION:

v If one message in the batch fails processing with an
exception, the entire batch of messages is put back on
the queue for processing.

v Any resource lock held by any of the interactions for the
individual messages are held for the duration of the
entire batch.

v Depending on the amount of processing that messages
need, and if XA transactions are being used, setting a
value greater than 1 can cause the transaction to time
out. If an XA transaction does time out routinely
because processing multiple messages exceeds the
transaction timeout, reduce this property to 1 (to limit
processing to one message per transaction) or increase
your transaction timeout.

Message listener service
The message listener service is an extension to the JMS functions of the JMS provider. It provides a
listener manager that controls and monitors one or more JMS listeners, which each monitor a JMS
destination on behalf of a deployed message-driven bean.

This panel displays links to the Additional Properties pages for Listener Ports, Thread Pool,
and Custom Properties for the message listener service.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > [Communications] Messaging > Message Listener Service

Listener Ports

You can use the Listener Ports page to create and modify listener ports by specifying the following
properties:

v Name

v Initial State

v Description

v Connection factory JNDI name

v Destination JNDI name

v Maximum sessions

v Maximum retries

v Maximum messages

Thread pool

You can use the Thread pool page to change the following properties for the message-driven bean thread
pool:

Chapter 12. Welcome to administering Messaging resources 967



v Minimum size

v Maximum size

v Thread inactivity timeout

Custom Properties

You can use the Custom properties page to define the following properties for use by the message listener
service.

v “DYNAMIC.CONFIGURATION.ENABLED” on page 407

v “MAX.RECOVERY.RETRIES” on page 408

v “MQJMS.POOLING.THRESHOLD” on page 408

v “MQJMS.POOLING.TIMEOUT” on page 408

v “NON.ASF.RECEIVE.TIMEOUT” on page 408

v “NON.ASF.BMT.ROLLBACK.ENABLED” on page 409

v “RECOVERY.RETRY.INTERVAL” on page 410

v “SERVER.SESSION.POOL.REAP.TIME” on page 410

v “SERVER.SESSION.POOL.UNUSED.TIMEOUT” on page 410

v “SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname” on page 411

Message listener service custom properties
Use this panel to view or change custom properties of the message listener service.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > [Communications] Messaging > Message Listener Service > Custom
Properties.

You can use the Custom properties page to define the following properties for use by the message listener
service:

v “DYNAMIC.CONFIGURATION.ENABLED” on page 407

v “MAX.RECOVERY.RETRIES” on page 408

v “MQJMS.POOLING.THRESHOLD” on page 408

v “MQJMS.POOLING.TIMEOUT” on page 408

v “NON.ASF.RECEIVE.TIMEOUT” on page 408

v “NON.ASF.BMT.ROLLBACK.ENABLED” on page 409

v “RECOVERY.RETRY.INTERVAL” on page 410

v “SERVER.SESSION.POOL.REAP.TIME” on page 410

v “SERVER.SESSION.POOL.UNUSED.TIMEOUT” on page 410

v “SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname” on page 411

DYNAMIC.CONFIGURATION.ENABLED
This property controls whether the application server on which a listener port is created requires to be
restarted. Set this property to true to enable dynamic configuration.

Information Value
Data type Boolean
Default False (not selected)

968 Administering WebSphere applications



MAX.RECOVERY.RETRIES
The maximum number of times that a listener port managed by this service tries to recover from a failure
before giving up and stopping. When stopped the associated listener port is changed to the stop state.
The interval between retry attempts is defined by the RECOVERY.RETRY.INTERVAL property.

A failure can be caused by either of the following conditions:

v An unexpected error has occurred when a listener port tries to get a message from the JMS provider.

v The connection between the application server and the JMS provider has been lost, usually due to a
network error.

Information Value
Data type Integer
Units Retry attempts
Default 5
Range 0 (no retries) through 2147483647

MQJMS.POOLING.THRESHOLD
The maximum number of unused connections in the pool.

An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys
connections on a least-recently-used basis. By default, a connection is destroyed if there are more than
ten unused connections in the pool.

Information Value
Data type Integer
Units Number of connections
Default 10

MQJMS.POOLING.TIMEOUT
The number of milliseconds after which a connection in the pool is destroyed if it has not been used.

An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys
connections on a least-recently-used basis. By default, a connection is destroyed if it has not been used
for five minutes.

Information Value
Data type Integer
Units Milliseconds
Default 5 minutes

NON.ASF.RECEIVE.TIMEOUT
The timeout in milliseconds for synchronous message receives performed by message-driven bean listener
sessions in the non-ASF mode of operation.

Note: The message listener service has two modes of operation, Application Server Facilities (ASF) and
non-Application Server Facilities (non-ASF):

v ASF mode provides concurrency and transactional support for applications. For publish/subscribe
message-drive beans, ASF mode provides better throughput and concurrency, because in the
non-ASF mode the listener is single-threaded.

Chapter 12. Welcome to administering Messaging resources 969



v Non-ASF mode is mainly for use with third-party messaging providers that do not support JMS
ASF, which is an optional extension to the JMS specification. Non-ASF mode is also
transactional but, because the path length is shorter than for ASF mode, usually provides
improved performance.

To enable the non-ASF mode of operation for all message-driven bean listeners on the application server,
set this property to a non-zero value.

If your messaging system is running in non-ASF mode, to avoid unwanted transaction timeouts, you must
allow a sufficient amount of time for processing to be completed before the total transaction lifetime
timeout is reached. Therefore, you must make sure that the value that you specify for the
NON.ASF.RECEIVE.TIMEOUT message listener service custom property is smaller than the value that you
specify for the Total transaction lifetime timeout transaction service property, and also that the
difference between the values of the two properties is greater than the amount of time that the
onMessage() method of the message-driven bean (MDB) takes to process the message.

For example, if your message-driven bean onMessage() method typically takes a maximum of 10 seconds,
and the transaction timeout is set to 120 seconds, you might set the NON.ASF.RECEIVE.TIMEOUT property to
no more than 110000 milliseconds (that is, 110 seconds).

Information Value
Data type Integer
Units Milliseconds
Default ASF mode (custom property not created)
Range 0 or greater milliseconds

0 Non-ASF mode is disabled

1 or more
The timeout in milliseconds for non-ASF
message-driven bean listener synchronous
session receives

NON.ASF.BMT.ROLLBACK.ENABLED
When the non-Application Server Facilities (non-ASF) mode of operation is in use (because you have set
the NON.ASF.RECEIVE.TIMEOUT property to a non-zero value), and a message-driven bean that uses
bean-managed transactions generates a runtime exception, the NON.ASF.BMT.ROLLBACK.ENABLED property
determines whether messages are returned to the destination.

Note: The message listener service has two modes of operation, Application Server Facilities (ASF) and
non-Application Server Facilities (non-ASF):

v ASF mode provides concurrency and transactional support for applications. For publish/subscribe
message-drive beans, ASF mode provides better throughput and concurrency, because in the
non-ASF mode the listener is single-threaded.

v Non-ASF mode is mainly for use with third-party messaging providers that do not support JMS
ASF, which is an optional extension to the JMS specification. Non-ASF mode is also
transactional but, because the path length is shorter than for ASF mode, usually provides
improved performance.

When this property is set to false (default), the message is automatically acknowledged before it is
passed to the message-driven bean.

When this property is set to true, the message listener service sends a message acknowledgement to the
client after the message is successfully processed by the message-driven bean, and the message listener
service requests recovery of any message for which the bean generates an exception.

970 Administering WebSphere applications



Information Value
Data type Boolean
Default False

RECOVERY.RETRY.INTERVAL
The time in seconds between retry attempts by a listener port to recover from a failure. The maximum
number of retry attempts is defined by the MAX.RECOVERY.RETRIES property.

A failure can be caused by either of the following conditions:

v An unexpected error has occurred when a listener port tries to get a message from the JMS provider.

v The connection between the application server and the JMS provider has been lost, usually due to a
network error.

Information Value
Data type Integer
Units Seconds
Default 60
Range 1 through 2147483647

SERVER.SESSION.POOL.REAP.TIME
The time in seconds between checks on server session pools. To enable server session pool monitoring,
set this property to a non-negative value.

The SERVER.SESSION.POOL.REAP.TIME custom property is not applicable if your messaging system is
running in non-ASF mode.

Information Value
Data type Integer
Units Seconds
Default -1 (disabled)
Range -2147483648 through 2147483647

SERVER.SESSION.POOL.UNUSED.TIMEOUT
The default server session pool timeout in seconds.

When this property is set to a non-negative value, it is compared to the time that has elapsed since a
server session was used. If the timeout value is less than the elapsed time, the server session is removed
from the server session pool and its JMS session is returned to the JMS session pool. For example, if the
timeout value is one second and the time that has elapsed since a particular server session was used is
two seconds, that server session is removed from the server session pool and its JMS session is returned
to the JMS session pool.

The SERVER.SESSION.POOL.UNUSED.TIMEOUT custom property is not applicable if your messaging system is
running in non-ASF mode.

Information Value
Data type Integer
Units Seconds
Default -1 (disabled)
Range -2147483648 through 2147483647

Chapter 12. Welcome to administering Messaging resources 971



SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname
This property overrides the default SERVER.SESSION.POOL.UNUSED.TIMEOUT value for the listener port with
the name defined for lpname. This value applies to all message-driven beans that use the specified
listener port.

If this override is set to a non-negative value, it overrides the SERVER.SESSION.POOL.UNUSED.TIMEOUT
property, even if the SERVER.SESSION.POOL.UNUSED.TIMEOUT property has a negative value.

If this override is set to a negative value, it disables server session pool monitoring for the specified
listener port.

The SERVER.SESSION.POOL.UNUSED.TIMEOUT.lpname custom property is not applicable if your messaging
system is running in non-ASF mode.

Information Value
Data type Integer
Units Seconds
Default Not set
Range -2147483648 through 2147483647

972 Administering WebSphere applications



Chapter 13. Administering naming and directory

This page provides a starting point for finding information about naming support. Naming includes both
server-side and client-side components. The server-side component is a Common Object Request Broker
Architecture (CORBA) naming service (CosNaming). The client-side component is a Java Naming and
Directory Interface (JNDI) service provider. JNDI is a core component in the Java Platform, Enterprise
Edition (Java EE) programming model.

The product JNDI service provider can be used to interoperate with any CosNaming name server
implementation. Yet product name servers implement an extension to CosNaming, and the JNDI service
provider uses those WebSphere extensions to provide greater capability than CosNaming alone. Some
added capabilities are binding and looking up of non-CORBA objects.

Java EE applications use the JNDI service provider supported by WebSphere Application Server to obtain
references to objects related to server applications, such as enterprise bean (EJB) homes, which have
been bound into a CosNaming name space.

Configuring namespace bindings
Instead of creating namespace bindings from a program, you can configure namespace bindings using the
administrative console. Name servers add these configured bindings to the namespace view by reading
the configuration data for the bindings. Configured bindings are created each time a server starts, even
when the binding is created in a transient partition of the namespace. One major use of configured
bindings is to provide fixed qualified names for server application objects.

Before you begin

Assemble and deploy your application onto an application server. If the application is a client to an
application running in another server process, specify qualified jndiName values for the server objects of
the other application during assembly or deployment. For more information on qualified names, refer to the
topic on lookup names support in deployment descriptors and thin clients.

About this task

A deployed application requires qualified fixed names if the application is accessed by thin client
applications or by Java Platform, Enterprise Edition (Java EE) client applications or server applications
running in another server process.

When you configure a namespace binding, you create a qualified fixed name for a server object. A fixed
name does not change if the object is moved to another server. A qualified fixed name with a cell scope
has the following form:
cell/persistent/fixedName

The fixedName is an arbitrary fixed name.

You can configure namespace bindings, and thus qualified fixed names, for the following objects:
v A string constant value
v An enterprise bean (EJB) home installed on a server in the cell
v A CORBA object available from a CosNaming name server
v An object bound in a WebSphere Application Server namespace that is accessible using a Java Naming

and Directory Interface (JNDI) indirect lookup

To view or configure a namespace binding for an object of a deployed application, complete the following:

© Copyright IBM Corp. 2012 973



Procedure
1. Go to the Name space bindings page.

In the administrative console, click Environment > Naming > Name space bindings.

2. Select the desired scope.

The scope determines where in the namespace binding is created. It also affects which name servers
contain the binding in the namespace that they manage. Regardless of the scope, a namespace
binding is accessible from all name servers in the cell. However, the scope can affect whether the
lookup can be resolved locally by a name server or whether the name server must make a remote call
to another name server to resolve the binding.

Only namespace bindings created with the selected scope are visible in the collection table on the
page. By changing the scope, you can see and create bindings in other scopes.

a. Select a scope.

If you are creating a new namespace binding, refer to the table below as a guide in selecting a
scope:

Table 54. Namespace binding scope descriptions. The scope can be a cell, node, server, or cluster.

Scope Description

Cell Cell-scoped bindings are created under the cell persistent root context. Select Cell if the namespace
binding is not specific to any particular node or server, or if you do not want the binding to be associated
with any specific node or server. For example, you can use cell-scoped bindings to create fixed qualified
names for enterprise beans. Fixed qualified names do not have any node or server names embedded
within them.

Node Node-scoped bindings are created under the node persistent root context for the selected node. Select
Node if the namespace binding is specific to a particular node, or if you want the binding to be associated
with a specific node.

Server Server-scoped bindings are created under the server root context for the selected server. Select Server if
a binding is to be used only by clients of an application running on a particular server, or if you want to
configure a binding with the same name on different servers which resolve to different objects. Note that
two servers can have configured bindings with the same name but resolve to different objects.

Server-scoped bindings are created in the process of the selected application server. Therefore, the name
server running in the selected application server can resolve those bindings locally. No remote invocations
to other name servers are necessary to resolve the bindings. However, all other name servers in the cell
must make remote calls to the selected server in order to resolve the bindings. For example, in order for
the name server running in server1 in node node1 to resolve the name cell/nodes/node1/servers/
server2/serverScopedConfiguredBinding, it must make a remote call to server2 in node1. Only the name
server in server2 in node1 can resolve that name without invoking any other name servers.

b. Click Apply.

3. Create a new namespace binding.

a. Open the New Name Space Binding wizard.

On the Name space bindings page, click New.

b. On the Specify binding type page, select the binding type.

The namespace binding can be for a constant string value, an EJB home, a CORBA CosNaming
NamingContext or CORBA leaf node object, or an object that you can look up indirectly using
JNDI.

c. On the Specify basic properties page, specify the binding identifier and other properties for the
binding.

For property descriptions, refer to the following:
v “String binding settings” on page 977
v “EJB binding settings” on page 978
v “CORBA object binding settings” on page 979
v “Indirect lookup binding settings” on page 980

974 Administering WebSphere applications



d. On the Summary page, verify the settings and click Finish.

The name of the new binding is displayed in the collection table on the Name space bindings page.

4. Optional: Edit a previously created binding.

a. From the collection table on the Name space bindings page, click the name of the binding that you
want to edit.

b. Edit the binding properties as desired. Step 3(c) provides links to property descriptions.

c. Click OK.

Results

Cell-scoped bindings are created under the cell persistent root context. Node-scoped bindings are created
under the node persistent root context for the specified node. Server-scoped bindings are created under
the server root context for the selected server.

Name space binding collection
Use this page to configure a name binding of an EJB, a CORBA CosNaming NamingContext, a CORBA
leaf node object, an object that you can look up using Java Naming and Directory Interface (JNDI), or a
constant string value.

Binding information for configured bindings is stored in the configuration and applied upon startup of the
name server for each server within the scope of the binding.

To view the Name space bindings page, click Environment > Naming > Name space bindings.

Click the check boxes to select one or more of the bindings in your collection. Use the buttons to control
the selected bindings.

When creating a new binding, select a scope before clicking New. The Scope setting filters what bindings
are listed in the collection as well as sets the scope of the new binding.

Name
Shows the names given to uniquely identify these configured bindings.

Scope
Shows the scope of the configured binding. This value indicates the configuration location for the
namebindings.xml file. This field is for information purposes only and cannot be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the
configured binding is node-scoped, the starting context is the node persistent root context. If the
configured binding is server-scoped, the starting context is the server's server root context.

Binding type
Shows the type of binding configured. Valid values are String, EJB, CORBA, and Indirect. This field is for
information purposes only and cannot be updated.

Specify binding type settings
Use this page to select the type of namespace binding that you want.

To view this administrative console page, click Environment > Naming > Name space bindings > New.

You can configure a namespace binding for any of the following objects:

v A string constant value

v An enterprise bean (EJB) home installed on a server in the cell

Chapter 13. Administering naming and directory 975



v A CORBA object available from a CosNaming name server

v An object bound in a WebSphere Application Server namespace that is accessible using a Java Naming
and Directory Interface (JNDI) indirect lookup

On this page, select a binding type and then click Next.

Binding type
Specifies the type of binding configured.

Table 55. Namespace binding types. Available types include String, EJB, CORBA, or Indirect.

String Select String to configure a namespace binding for a string constant value.

To configure a String binding, you need the following information:
v The string constant value
v The target root context for the configured binding (scope)
v The name of the configured binding, relative to the target root context

You can create a file that maps multiple variable names to values and specify the file name for the
String value. By default, a name server performs variable substitution on the string value of a String
namespace binding. Thus, by default, the com.ibm.websphere.naming.expandStringBindings property is
set to true and a name server expands the value of String bindings.
Tip: Variable substitution can result in errors or unexpected changes to a string. For example, with
variable substitution, a $$ string is expanded as $. You can disable variable substitution and cause the
name server to treat the String value as a literal or constant. Create a custom property with Name set
to com.ibm.websphere.naming.expandStringBindings and Value set to false. You can define a custom
property at the cell, node, server, or name server scope. Create the custom property on a console page
for the appropriate scope:
Cell scope

Click System administration > Cell > Custom properties > New.
Node scope

Click System administration > Nodes > node_name > Custom properties > New.
Server scope

Click Servers > Server Types > WebSphere application servers > server_name >
Administration > Custom properties > New.

Name server scope
Click Servers > Server Types > WebSphere application servers > server_name >
Administration > Server components > Name server > Custom properties > New.

All name servers within the specified custom property scope apply the setting. Settings at a narrower
scope override settings at a wider scope. For example, on multiple-server products, settings at the node
scope override settings at the cell scope. Select a custom property scope that is at least as wide as the
namespace binding scope. Thus, to prevent variable expansion in a cell-scoped String namespace
binding, define the custom property at the cell scope. If the custom property has a scope narrower than
the namespace binding, only name servers within the scope prevent variable expansion in the String
namespace binding. Name servers outside of the scope expand the variable reference and handle the
reference differently.

EJB Select EJB to configure a namespace binding for an EJB home installed on a server in the cell. Use a
cell-scoped EJB binding to create a fixed qualified lookup name for an enterprise bean. A fixed qualified
lookup name is not dependent on the cell topology.

To configure an EJB home binding, you need the following information:
v The JNDI name of the EJB server or server cluster where the enterprise bean is deployed
v The target root context for the configured binding (scope)
v The name of the configured binding, relative to the target root context

On stand-alone servers, do not configure an EJB binding that resolves to another server. The name
server cannot read configuration data for other servers. That data is required to construct the binding.

976 Administering WebSphere applications



Table 55. Namespace binding types (continued). Available types include String, EJB, CORBA, or Indirect.

CORBA Select CORBA to configure a namespace binding for a Common Object Request Broker: Architecture
and Specification (CORBA) object available from a Object Management Group (OMG) Interoperable
Naming (CosNaming) name server. Identify a CORBA object bound into an INS compliant CosNaming
server with a corbaname URL. The referenced object does not have to be available until the binding is
actually referenced by an application.

To configure a CORBA binding, you need the following information:
v The corbaname URL of the CORBA object
v An indicator if the bound object is a context or leaf node object (to set the correct CORBA binding

type of context or object)
v The target root context for the configured binding
v The name of the configured binding, relative to the target root context

Indirect Select Indirect to configure a namespace binding for an object bound in a WebSphere Application
Server namespace that is accessible using a JNDI indirect lookup. You can select Indirect for CORBA
objects as well as for javax.naming.Referenceable, javax.naming.Reference, and java.io.Serializable
objects.

The target object itself is not bound to the namespace. Only the information required to look up the
object is bound. Therefore, the referenced name server does not have to be running until the binding is
actually referenced by some application.

To configure an indirect JNDI lookup binding, you need the following information:
v The JNDI provider URL of the name server where the object resides
v The JNDI lookup name of the object
v The target root context for the configured binding (scope)
v The name of the configured binding, relative to the target root context

The following information is optional:
v The JNDI initial context factory class name. The default is the WebSphere Application Server initial

context factory, com.ibm.websphere.naming.WsnInitialContextFactory.
v Additional properties to pass to the javax.naming.InitialContext constructor.

A cell-scoped indirect binding is useful when creating a fixed qualified lookup name for a bound object
so that the qualified lookup name is not dependent on the cell topology.

String binding settings
Use this page to view or configure a string binding.

To view this administrative console page, click Environment > Naming > Name space bindings >
string_namespace_binding. The settings on this page are similar to those on the Specify basic
properties panel of the New name space binding wizard.

Scope
Shows the scope of the configured binding. This value indicates the configuration location for the
namebindings.xml file.

The Scope setting is shown only when you edit an existing binding on the console page, and is not shown
when you create a new binding on the wizard panel. This setting is for information purposes and cannot
be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the
configured binding is node-scoped, the starting context is the node persistent root context. If the
configured binding is server-scoped, the starting context is the server's server root context.

Chapter 13. Administering naming and directory 977



Binding type
Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This setting
is for information purposes only and cannot be updated.

Binding identifier
Specifies the name that uniquely identifies this configured binding.

Name in name space
Specifies the name used for this binding in the namespace. This name can be a simple or compound
name depending on the portion of the namespace where this binding is configured.

String value
Specifies the string to be bound into the namespace.

You can create a file that maps multiple variable names to values and specify the file name for the String
value. By default, a name server performs variable substitution on the string value of a String namespace
binding. Thus, by default, the com.ibm.websphere.naming.expandStringBindings property is set to true
and a name server expands the value of String bindings.

Tip: Variable substitution can result in errors or unexpected changes to a string. For example, with
variable substitution, a $$ string is expanded as $. You can disable variable substitution and cause
the name server to treat the String value as a literal or constant. Create a custom property with
Name set to com.ibm.websphere.naming.expandStringBindings and Value set to false. You can
define a custom property at the cell, node, server, or name server scope. Create the custom property
on a console page for the appropriate scope:
Cell scope

Click System administration > Cell > Custom properties > New.
Node scope

Click System administration > Nodes > node_name > Custom properties > New.
Server scope

Click Servers > Server Types > WebSphere application servers > server_name >
Administration > Custom properties > New.

Name server scope
Click Servers > Server Types > WebSphere application servers > server_name >
Administration > Server components > Name server > Custom properties > New.

All name servers within the specified custom property scope apply the setting. Settings at a narrower
scope override settings at a wider scope. For example, on multiple-server products, settings at the
node scope override settings at the cell scope. Select a custom property scope that is at least as
wide as the namespace binding scope. Thus, to prevent variable expansion in a cell-scoped String
namespace binding, define the custom property at the cell scope. If the custom property has a scope
narrower than the namespace binding, only name servers within the scope prevent variable
expansion in the String namespace binding. Name servers outside of the scope expand the variable
reference and handle the reference differently.

EJB binding settings
Use this page to configure a new enterprise bean (EJB) binding, or to view or edit an existing EJB binding.

To view this console page, click Environment > Naming > Name space bindings >
EJB_namespace_binding. The settings on this page are similar to those on the Specify basic
properties panel of the New name space binding wizard.

Scope
Shows the scope of the configured binding. This value indicates the configuration location for the
namebindings.xml file.

978 Administering WebSphere applications



The Scope setting is shown only when you edit an existing binding on the console page, and is not shown
when you create a new binding on the wizard panel. This setting is for information purposes and cannot
be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the
configured binding is node-scoped, the starting context is the node persistent root context. If the
configured binding is server-scoped, the starting context is the server's server root context.

Binding type
Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This setting
is for information purposes only and cannot be updated.

Binding identifier
Specifies the name that uniquely identifies this configured binding.

Name in name space
Specifies the name used for this binding in the namespace. This name can be a simple or compound
name depending on the portion of the namespace where this binding is configured.

Enterprise bean location
Specifies whether the enterprise bean is running in a single server. If Single server is specified, type the
node name.

Server
Specifies the name of the server in which the enterprise bean is configured.

JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name of the deployed enterprise bean. It is the
bean's JNDI name that is in the enterprise bean bindings, not the java:comp name.

CORBA object binding settings
Use this page to configure a new name binding of a CORBA object binding, or to view or edit an existing
CORBA object binding.

To view this console page, click Environment > Naming > Name space bindings >
CORBA_namespace_binding. The settings on this page are similar to those on the Specify basic
properties panel of the New name space binding wizard.

Scope
Shows the scope of the configured binding. This value indicates the configuration location for the
namebindings.xml file.

The Scope setting is for information purposes and cannot be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the
configured binding is node-scoped, the starting context is the node persistent root context. If the
configured binding is server-scoped, the starting context is the server's server root context.

Binding type
Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This setting
is for information purposes and cannot be updated.

Binding identifier
Specifies the name that uniquely identifies this configured binding.

Chapter 13. Administering naming and directory 979



Name in name space
Specifies the name used for this binding in the namespace. This name can be a simple or compound
name depending on the portion of the namespace where this binding is configured.

Corbaname URL
Specifies the CORBA name URL string identifying where the object is bound in a CosNaming server.

Federated context
Specifies whether the target is a CosNaming context (true) or a leaf node object (false).

Information Value
true The target object is bound with a context CORBA binding type. If the corbaname URL

does not resolve to a NamingContext, an error occurs when the binding is first used
(which is when the URL is first resolved).

false The target object is bound with an object CORBA binding type.

Indirect lookup binding settings
Use this page to configure a new indirect lookup name binding, or to view or edit an existing indirect
lookup binding.

To view this console page, click Environment > Naming > Name space bindings >
indirect_lookup_namespace_binding. The settings on this page are similar to those on the Specify
basic properties panel of the New name space binding wizard.

Scope
Shows the scope of the configured binding. This value indicates the configuration location for the
namebindings.xml file.

The Scope setting is shown only when you edit an existing binding on the console page, and is not shown
when you create a new binding on the wizard panel. This setting is for information purposes and cannot
be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the
configured binding is node-scoped, the starting context is the node persistent root context. If the
configured binding is server-scoped, the starting context is the server's server root context.

Binding type
Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This setting
is for information purposes only and cannot be updated.

Binding identifier
Specifies the name that uniquely identifies this configured binding.

Name in name space
Specifies the name used for this binding in the namespace. This name can be a simple or compound
name depending on the portion of the namespace where this binding is configured.

Provider URL
Specifies the provider URL string needed to obtain a Java Naming and Directory Interface (JNDI) initial
context.

JNDI name
Specifies the name used to look up the target object from the initial context.

Initial context factory name
Specifies the class name of the initial context factory used to obtain a JNDI initial context.

980 Administering WebSphere applications



This field is optional. If no factory is specified, the WebSphere Application Server initial context factory is
used.

If the scope of the indirect lookup binding includes servers or nodes previous to Version 6.1, the initial
context factory name and other context factory properties are not shown on the console page.

Configuring name servers
Name servers add configured name space bindings to the name space view by reading the configuration
data for the bindings. If you use configured bindings, you do not need to create name space bindings from
a program.

About this task

You can configure a name server to provide a display name and initial state for an application server, as
well as specify custom properties for the name server. Configure a name server using the administrative
console.

Procedure
1. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name > Administration > Server components > Name server.

2. Edit the fields as needed.

All of the fields are mandatory.

3. To make other changes, click Custom properties and configure a custom property.

4. Click OK to register your changes.

What to do next

Examine and start the name server.

Name server settings
Use this page to configure Naming Service Provider settings for the application server.

To view this administrative console page, click one of the following paths:

v Servers > Server Types > WebSphere application servers > server_name > Administration >
Server components > Name server

Name
Specifies the display name for the server component.

Information Value
Data type String

Initial state
Specifies the execution state. The options are: Started and Stopped.

Data type String
Default Started

Chapter 13. Administering naming and directory 981



982 Administering WebSphere applications



Chapter 14. Administering Object pools

This page provides a starting point for finding information about object pools.

Object pools provide an effective means of improving application performance at run time, by supporting
the reuse of multiple instances of objects.

Using object pools
An object pool helps an application avoid creating new Java objects repeatedly. Most objects can be
created once, used and then reused. An object pool supports the pooling of objects waiting to be reused.

About this task

Object pools are not meant to be used for pooling JDBC connections or Java Message Service (JMS)
connections and sessions. WebSphere Application Server provides specialized mechanisms for dealing
with those types of objects. These object pools are intended for pooling application-defined objects or
basic Developer Kit types.

To use an object pool, the product administrator must define an object pool manager using the
administrative console. Multiple object pool managers can be created in an Application Server cell.

Note: The Object pool manager service is only supported from within the EJB container or Web container.
Looking up and using a configured object pool manager from a Java 2 Platform Enterprise Edition
(J2EE) application client container is not supported.

Procedure
1. Start the administrative console.

2. Click Resources > Object pool managers.

3. Specify a Scope value and click New.

4. Specify the required properties for work manager settings.
Scope The scope of the configured resource. This value indicates the location for the configuration

file.
Name The name of the object pool manager. This name can be up to 30 ASCII characters long.
JNDI Name

The Java Naming and Directory Interface (JNDI) name for the pool manager.

5. [Optional] Specify a Description and a Category for the object pool manager.

Results

After you have completed these steps, applications can find the object pool manager by doing a JNDI
lookup using the specified JNDI name.

Example

The following code illustrates how an application can find an object pool manager object:
InitialContext ic = new InitialContext();
ObjectPoolManager opm = (ObjectPoolManager)ic.lookup("java:comp/env/pool");

When the application has an ObjectPoolManager, it can cache an object pool for classes of the types it
wants to use. The following is an example:
ObjectPool arrayListPool = null;
ObjectPool vectorPool = null;
try

© Copyright IBM Corp. 2012 983



{
arrayListPool = opm.getPool(ArrayList.class);
vectorPool = opm.getPool(Vector.class);

}
catch(InstantiationException e)
{
// problem creating pool

}
catch(IllegalAccessException e)
{
// problem creating pool

}

When the application has the pools, the application can use them as in the following example:
ArrayList list = null;
try
{
list = (ArrayList)arrayListPool.getObject();
list.clear(); // just in case
for(int i = 0; i < 10; ++i)
{
list.add("" + i);
}
// do what ever we need with the ArrayList

}
finally
{
if(list != null) arrayListPool.returnObject(list);

}

This example presents the basic pattern for using object pooling. If the application does not return the
object, then the only adverse effect is that the object cannot be reused.

Object pool managers
Object pool managers control the reuse of application objects and Developer Kit objects, such as Vectors
and HashMaps.

Multiple object pool managers can be created in an Application Server cell. Each object pool manager has
a unique cell-wide Java Naming and Directory Interface (JNDI) name. Applications can find a specific
object pool manager by doing a JNDI lookup using the specific JNDI name.

The object pool manager and its associated objects implement the following interfaces:
public interface ObjectPoolManager
{
ObjectPool getPool(Class aClass)
throws InstantiationException, IllegalAccessException;
ObjectPool createFastPool(Class aClass)
throws InstantiationException, IllegalAccessException;

}

public interface ObjectPool
{
Object getObject();
void returnObject(Object o);

}

The getObject() method removes the object from the object pool. If a getObject() call is made and the pool
is empty, then an object of the same type is created. A returnObject( ) call puts the object back into the
object pool. If returnObject() is not called, then the object is no longer allocatable from the object pool. If
the object is not returned to the object pool, then it can be garbage collected.

984 Administering WebSphere applications



Each object pool manager can be used to pool any Java object with the following characteristics:
v The object must be a public class with a public default constructor.
v If the object implements the java.util.Collection interface, it must support the optional clear() method.

Each pooled object class must have its own object pool. In addition, an application gets an object pool for
a specific object using either the ObjectPoolManager.getPool() method or the
ObjectPoolManager.createFastPool() method. The difference between these methods is that the getPool()
method returns a pool that can be shared across multiple threads. The createFastPool() method returns a
pool that can only be used by a single thread.

If in a Java virtual machine (JVM), the getPool() method is called multiple times for a single class, the
same pool is returned. A new pool is returned for each call when the createFastPool() method is called.
Basically, the getPool() method returns a pool that is thread-synchronized.

The pool for use by multiple threads is slightly slower than a fast pool because of the need to handle
thread synchronization. However, extreme care must be taken when using a fast pool.

Consider the following interface:
public interface PoolableObject
{
void init();
void returned();
}

If the objects placed in the pool implement this interface and the ObjectPool.getObject() method is called,
the object that the pool distributes has the init() method called on it. When the ObjectPool.returnObject()
method is called, the PoolableObject.returned() method is called on the object before it is returned to the
object pool. Using this method objects can be pre-initialized or cleaned up.

It is not always possible for an object to implement PoolableObject. For example, an application might
want to pool ArrayList objects. The ArrayList object needs clearing each time the application reuses it. The
application might extend the ArrayList object and have the ArrayList object implement a poolable object.
For example, consider the following:
public class PooledArrayList extends ArrayList implements PoolableObject
{
public PooledArrayList()
{
}

public void init() {
}

public void returned()
{
clear();
}
}

If the application uses this object, in place of a true ArrayList object, the ArrayList object is cleared
automatically when it is returned to the pool.

Clearing an ArrayList object simply marks it as empty and the array backing the ArrayList object is not
freed. Therefore, as the application reuses the ArrayList, the backing array expands until it is big enough
for all of the application requirements. When this point is reached, the application stops allocating and
copying new backing arrays and achieves the best performance.

It might not be possible or desirable to use the previous procedure. An alternative is to implement a
custom object pool and register this pool with the object pool manager as the pool to use for classes of

Chapter 14. Welcome to administering Object pools 985



that type. The class is registered by the WebSphere administrator when the object pool manager is
defined in the cell. Take care that these classes are packaged in Java Archive (JAR) files available on all
of the nodes in the cell where they might be used.

Object pool managers collection
An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects
repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling
of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database
Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere
Application Server provides specialized mechanisms for dealing with those types of objects. These object
pools are intended for pooling application-defined objects or basic Developer Kit types.

To view this administrative console page, click Resources > Object pool managers.

To use an object pool, the product administrator must define an object pool manager using the
administrative console. Multiple object pool managers can be created in an Application Server cell.

Name
Specifies the name by which the object pool manager is known for administrative purposes.

Information Value
Data type String
Range 1 through 30 ASCII characters

JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name for the object pool manager.

Information Value
Data type String

Scope
Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Description
Specifies the description of the object pool manager.

Information Value
Data type String

Category
Specifies the category name used to classify or group this object pool manager.

Information Value
Data type String

Object pool managers settings
An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects
repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling
of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database
Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere
Application Server provides specialized mechanisms for dealing with those types of objects. These object
pools are intended for pooling application-defined objects or basic Developer Kit types.

986 Administering WebSphere applications



To view this administrative console page, click Resources > Object pool managers >
objectpoolmanager_name

To use an object pool, the product administrator must define an object pool manager using the
administrative console. Multiple object pool managers can be created in an Application Server cell.

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Name:

The name by which the object pool manager is known for administrative purposes.

Information Value
Data type String
Range 1 through 30 ASCII characters

JNDI Name:

The Java Naming and Directory Interface (JNDI) name for the object pool manager.

Information Value
Data type String

Description:

A description of the object pool manager.

Information Value
Data type String

Category:

A category name used to classify or to group this object pool manager.

Information Value
Data type String

Custom object pool collection:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects
repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling
of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database
Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere
Application Server provides specialized mechanisms for dealing with those types of objects. These object
pools are intended for pooling application-defined objects or basic Developer Kit types.

To view this administrative console page, click Resources > Object pool managers >
objectpoolmanager_name > Custom object pools.

Use custom object pools to insert additional logic around the following mechanisms:

v Constructing an object pool (A list of properties can be set)

v Flushing the object pool

Chapter 14. Welcome to administering Object pools 987



v Getting objects from the pool

v Returning objects from the pool

These features allow for actions such as, clearing the state of an object when returning it to the pool,
configuring the state of an object when retrieving it from the pool, or configuring generic pools and sending
instructions on how to behave using custom properties.

To use an object pool the product administrator must define an object pool manager using the
administrative console. You can create multiple object pool managers in an Application Server cell.

Pool class name:

Specifies the fully qualified class name of the objects that are stored in the custom object pool.

Information Value
Data type String

Pool implementation class name:

Specifies the fully qualified class name of the implementation class for the custom object pool.

Information Value
Data type String

Custom object pool settings:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects
repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling
of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database
Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere
Application Server provides specialized mechanisms for dealing with those types of objects. These object
pools are intended for pooling application-defined objects or basic Developer Kit types.

To view this administrative console page, click Resources > Object pool managers >
objectpoolmanager_name > Custom object pools > objectpool_name.

Use custom object pools to insert additional logic around the following mechanisms:

v Constructing an object pool (A list of properties can be set)

v Flushing the object pool

v Getting objects from the pool

v Returning objects from the pool

These features allow for actions such as, clearing the state of an object when returning it to the pool,
configuring the state of an object when retrieving it from the pool, or configuring generic pools and sending
instructions on how to behave using custom properties.

To use an object pool, the product administrator must define an object pool manager using the
administrative console. Multiple object pool managers can be created in an Application Server cell.

Pool Class Name:

The fully qualified class name of the objects that are stored in the object pool.

Information Value
Data type String

988 Administering WebSphere applications



Pool Impl Class Name:

The fully qualified class name of the CustomObjectPool implementation class for this object pool.

Information Value
Data type String

Object pool service settings
Use this page to enable or disable the object pool service, which manages object pool resources used by
the server.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Container Services > Object pool service.

Enable service at server startup
Specifies whether the server attempts to start the object pool service.

Information Value
Default Cleared
Range Selected

When the application server starts, it attempts to start the object pool
service automatically.

Cleared
The server does not try to start the object pool service. If object pool
resources are used on this server, then the system administrator
must start the object pool service manually or select this property,
and then restart the server.

Object pools: Resources for learning
This topic provides links to find relevant supplemental information about object pools.

Use the following links to find relevant supplemental information about object pools. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

Furthermore, these links provide guidance on using object pools. Since object pooling is a general topic
and the WebSphere Application Server product implementation is only one way to use it, you must
understand when object pooling is necessary. These articles help you make that decision.

Programming model and decisions
v Build your own ObjectPool in Java to boost application speed
v Improve the robustness and performance of your ObjectPool
v Recycle broken objects in resource pools

Chapter 14. Welcome to administering Object pools 989

http://www.javaworld.com/jw-06-1998/jw-06-object-pool.html
http://www.javaworld.com/jw-08-1998/jw-08-object-pool.html
http://www.javaworld.com/javaworld/javatips/jw-javatip78.html


MBeans for object pool managers and object pools
Legacy MBean names for object pool managers and object pools are deprecated. The legacy names are
based on the object pool manager name (which is not required to be unique) rather than the object pool
manager JNDI name.

About this task

For object pools, the legacy name is also lacking any identifier of the version of the pooled class.
Additionally, object pool Performance Monitoring Instrumentation (PMI) statistics are aggregated for object
pools with the same legacy object pool MBean name.

For example, if the object pool manager and pooled class are as follows:
object pool manager name: My ObjectPool
object pool manager JNDI name: op/MyObjectPool
pooled class name: java.util.ArrayList
hash code of java.util.ArrayList.class: 1111eb3f (hexadecimal)

the legacy object pool manager MBean name will be:
ObjectPoolManager_My ObjectPool

and the legacy object pool MBean name will be:
ObjectPool_My ObjectPool_java.util.ArrayList

Instead of using the deprecated legacy MBean names, use the MBean names that are based on the JNDI
name of the object pool manager.

For the example above, the JNDI name-based object pool manager MBean name is:
ObjectPoolManager_op/MyObjectPool

and the JNDI name-based object pool MBean name is:
ObjectPool_op/MyObjectPool_java.util.ArrayList.class@1111eb3f

Formats for MBean names

Type Name format

Deprecated legacy object pool manager MBean name: ObjectPoolManager_[object pool manager name]

JNDI name-based object pool manager MBean name: ObjectPoolManager_[object pool manager JNDI name]

Deprecated legacy object pool MBean name: ObjectPool_[object pool manager name]_[pooled class
name]

JNDI name-based object pool MBean name: ObjectPool_[object pool manager JNDI name]_[pooled
class name].class@[hexadecimal representation of the
hash code of the pooled class' java.lang.Class reference]

In all of the above formats, characters that are not valid for MBean names are replaced with the '.'
character.

990 Administering WebSphere applications



Chapter 15. Administering Object Request Broker (ORB)

This page provides a starting point for finding information about the Object Request Broker (ORB). The
product uses an ORB to manage communication between client applications and server applications as
well as among product components. These Java Platform, Enterprise Edition (Java EE) standard services
are relevant to the ORB: Remote Method Invocation/Internet Inter-ORB Protocol (RMI/IIOP) and Java
Interface Definition Language (Java IDL).

The ORB provides a framework for clients to locate objects in the network and call operations on those
objects as though the remote objects were located in the same running process as the client, providing
location transparency.

Administering Object Request Brokers

Object Request Broker service settings
Use this page to configure the Java Object Request Broker (ORB) service.

To view this administrative console page:

v For an application server, click Servers > Server Types > WebSphere application servers >
server_name > Container services > ORB service.

v For a deployment manager, click System administration > Deployment manager > ORB service.

Several settings are available for controlling internal Object Request Broker (ORB) processing. You can
use these settings to improve application performance in the case of applications that contain enterprise
beans. You can make changes to these settings for the default server or any application server that is
configured in the administrative domain.

Request timeout
Specifies the number of seconds to wait before timing out on a request message.

If you use command-line scripting, the full name of this system property is
com.ibm.CORBA.RequestTimeout.

Information Value
Data type int
Units Seconds
Default 180
Range 0 - largest integer recognized by Java

Request retries count

Specifies the number of times that the ORB attempts to send a request if a server fails. Retrying
sometimes enables recovery from transient network failures. This field is ignored for z/OS.

If you use command-line scripting, the full name of this system property is
com.ibm.CORBA.requestRetriesCount.

Information Value
Data type int
Default 1
Range 1 to 10

© IBM Corporation 2009 991



Request retries delay

Specifies the number of milliseconds between request retries. This field is ignored for z/OS.

If you use command-line scripting, the full name of this system property is
com.ibm.CORBA.requestRetriesDelay.

Information Value
Data type int
Units Milliseconds
Default 0
Range 0 to 60,000

Connection cache maximum

Specifies the maximum number of entries that can occupy the ORB connection cache before the ORB
starts to remove inactive connections from the cache. This field is ignored for z/OS.

It is possible that the number of active connections in the cache will temporarily exceed this threshold
value. If necessary, the ORB will continue to add connections as long as resources are available.

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.MaxOpenConnections.

Information Value
Data type Integer
Units Connections
Default 240
Range 10 - largest integer recognized by Java

Connection cache minimum

Specifies the minimum number of entries in the ORB connection cache. This field is ignored for z/OS.

The ORB will not remove inactive connections when the number of entries is below this value.

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.MinOpenConnections.

Information Value
Data type Integer
Units Connections
Default 100
Range Any integer that is at least 5 less than the value specified

for the Connection cache maximum property.

ORB tracing
Enables the tracing of ORB General Inter-ORB Protocol (GIOP) messages.

992 Administering WebSphere applications



This setting affects two system properties: com.ibm.CORBA.Debug and com.ibm.CORBA.CommTrace. If
you set these properties through command-line scripting, you must set both properties to true to enable
the tracing of GIOP messages.

Information Value
Data type Boolean
Default Not enabled (false)

Locate request timeout

Specifies the number of seconds to wait before timing out on a LocateRequest message. This field is
ignored for z/OS.

If you use command-line scripting, the full name of this system property is
com.ibm.CORBA.LocateRequestTimeout.

Information Value
Data type int
Units Seconds
Default 180
Range 0 to 300

Force tunneling

Controls how the client ORB attempts to use HTTP tunneling. This field is ignored for z/OS.

If you use command-line scripting, the full name of this system property is com.ibm.CORBA.ForceTunnel.

Information Value
Data type String
Default NEVER
Range Valid values are ALWAYS, NEVER, or WHENREQUIRED.

Considering the following information when choosing the valid value:
ALWAYS

Use HTTP tunneling immediately, without trying TCP connections first.
NEVER

Disable HTTP tunneling. If a TCP connection fails, a CORBA system exception (COMM_FAILURE)
occurs.

WHENREQUIRED
Use HTTP tunneling if TCP connections fail.

Tunnel agent URL

Specifies the web address of the servlet to use in support of HTTP tunneling. This field is ignored on the
z/OS platform.

This web address must be a proper format:

http://w3.mycorp.com:81/servlet/com.ibm.CORBA.services.IIOPTunnelServlet

Chapter 15. Welcome to administering Object Request Broker (ORB) 993



For applets: http://applethost:port/servlet/com.ibm.CORBA.services.IIOPTunnelServlet.

This field is required if HTTP tunneling is set. If you use command-line scripting, the full name of this
system property is com.ibm.CORBA.TunnelAgentURL.

Pass by reference
Specifies how the ORB passes parameters. If enabled, the ORB passes parameters by reference instead
of by value, to avoid making an object copy. If you do not enable the pass by reference option, a copy of
the parameter passes rather than the parameter object itself. This can be expensive because the ORB
must first make a copy of each parameter object.

You can use this option only when the Enterprise JavaBeans (EJB) client and the EJB are on the same
classloader. This requirement means that the EJB client and the EJB must be deployed in the same EAR
file.

If the Enterprise JavaBeans (EJB) client and server are installed in the same instance or the product, and
the client and server use remote interfaces, enabling the pass by reference option can improve
performance up to 50%. The pass by reference option helps performance only where non-primitive object
types are passed as parameters. Therefore, int and floats are always copied, regardless of the call model.

gotcha: Enable this property with caution because unexpected behavior can occur. If an object reference
is modified by the callee, the caller's object is modified as well, since they are the same object.

If you use command-line scripting, the full name of this system property is
com.ibm.CORBA.iiop.noLocalCopies.

Information Value
Data type Boolean
Default Not enabled (false)

The use of this option for enterprise beans with remote interfaces violates Enterprise JavaBeans (EJB)
Specification, Version 2.0 (see section 5.4). Object references passed to Enterprise JavaBeans (EJB)
methods or to EJB home methods are not copied and can be subject to corruption.

Consider the following example:
Iterator iterator = collection.iterator();
MyPrimaryKey pk = new MyPrimaryKey();
while (iterator.hasNext()) {

pk.id = (String) iterator.next();
MyEJB myEJB = myEJBHome.findByPrimaryKey(pk);

}

In this example, a reference to the same MyPrimaryKey object passes into the product with a different ID
value each time. Running this code with pass by reference enabled causes a problem within the
application server because multiple enterprise beans are referencing the same MyPrimaryKey object. To
avoid this problem, set the com.ibm.websphere.ejbcontainer.allowPrimaryKeyMutation system property to
true when the pass by reference option is enabled. Setting the pass by reference option to true causes
the EJB container to make a local copy of the PrimaryKey object. As a result, however, a small portion of
the performance advantage of setting the pass by reference option is lost.

As a general rule, any application code that passes an object reference as a parameter to an enterprise
bean method or to an EJB home method must be scrutinized to determine if passing that object reference
results in loss of data integrity or in other problems.

After examining your code, you can enable the pass by reference option by setting the
com.ibm.CORBA.iiop.noLocalCopies system property to true. You can also enable the pass by reference

994 Administering WebSphere applications



option in the administrative console. Click Servers > Server Types > Application servers > server_name
> Container services > ORB Service and select Pass by reference.

Object Request Broker custom properties
There are several ways to configure an Object Request Broker (ORB). For example, you can use ORB
custom property settings, or system property settings to configure an ORB, or you can provide objects
during ORB initialization. If you use the following ORB custom properties to configure an ORB, remember
that two types of default values exist for some of these properties: the Java SE Development Kit (JDK)
default values and the WebSphere Application Server default values.

The JDK default is the value that the ORB uses for a property if the property is not specified in any way.
The WebSphere Application Server default is the value that the WebSphere Application Server sets for a
property in one of the following files:
v The orb.properties file when an application server is installed.
v The server.xml file when an application server is configured.

Because WebSphere Application Server explicitly sets its default value, if both a WebSphere Application
Server and a JDK default value are defined for a property, the WebSphere Application Server default takes
precedence over the JDK default.

For more information about the different ways to specify ORB properties and the precedence order, read
the JDK Diagnostic Guide for the version of the JDK that you are using.

The orb.properties file, that is located in the was_home/properties directory, contains ORB custom
properties that are initially set to the WebSphere Application Server default values during the product
installation process. These values are passed to the ORB in a properties object and take precedence over
Java virtual machine (JVM) arguments and other orb.properties files in either the java_home/lib or
user_home directories.

You can use the administrative console to specify new values for these ORB custom properties. Any value
that you specify takes precedence over any JDK or WebSphere Application Server default values for these
properties, including JVM arguments. The ORB custom properties settings that you specify in the
administrative console are stored in the server.xml system file and are passed to an ORB in a properties
object whenever an ORB is initialized.

To use the administrative console to set ORB custom properties, click Servers > Server Types >
Application servers > server_name > Container services > ORB service > Custom properties. You
can then change the setting of one of the listed custom properties or click New to add a new property to the
list. Then, click Apply to save your change. When you finish the changes, click OK and then click Save to
save your changes.

To use the java command on a command line, use the -D option; for example:
java -Dcom.ibm.CORBA.propname1=value1 -Dcom.ibm.CORBA.propname2=value2 ... application name

To use the launchclient command on a command line, prefix the property with -CC; for example:
launchclient yourapp.ear -CCDcom.ibm.CORBA.propname1=value1 -CCDcom.ibm.CORBA.propname2=value2

... optional application arguments

The Custom properties page might already include Secure Sockets Layer (SSL) properties that were
added during product installation. A list of the additional properties that are associated with the ORB
service follows. Unless otherwise indicated, the default values that are provided in the descriptions of
these properties are the JDK default values.

You can use the custom properties page to define the following properties for use by the ORB.

v “com.ibm.CORBA.BootstrapHost” on page 996

Chapter 15. Welcome to administering Object Request Broker (ORB) 995



v “com.ibm.CORBA.BootstrapPort”

v “com.ibm.CORBA.ConnectTimeout” on page 997

v “com.ibm.CORBA.ConnectionInterceptorName” on page 997

v “com.ibm.CORBA.enableLocateRequest” on page 997

v “com.ibm.CORBA.FragmentSize” on page 998

v “com.ibm.CORBA.ListenerPort” on page 998

v “com.ibm.CORBA.LocalHost” on page 998

v “com.ibm.CORBA.numJNIReaders” on page 998

v “com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.JNIReaderPoolImpl” on
page 999

v “com.ibm.CORBA.RasManager” on page 999

v “com.ibm.CORBA.ServerSocketQueueDepth” on page 999

v “com.ibm.CORBA.ShortExceptionDetails” on page 1000

v “com.ibm.CORBA.WSSSLClientSocketFactoryName” on page 1000

v “com.ibm.CORBA.WSSSLServerSocketFactoryName” on page 1000

v “com.ibm.websphere.orb.threadPoolTimeout” on page 1000

v “com.ibm.websphere.threadpool.strategy.implementation” on page 1000

v “com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.calcinterval” on page 1001

v “com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.lruinterval” on page 1001

v “com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.outqueues” on page 1001

v “com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.statsinterval” on page 1002

v “com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.workqueue” on page 1002

v “com.ibm.ws.orb.services.lsd.EnableSecurityServiceCheck” on page 1002

v “com.ibm.ws.orb.services.lsd.SecurityServiceCheckInterval” on page 1003

v “com.ibm.ws.orb.services.lsd.SecurityServiceCheckRetry” on page 1003

v “com.ibm.ws.orb.services.redirector.MaxOpenSocketsPerEndpoint” on page 1003

v “com.ibm.ws.orb.services.redirector.RequestTimeout” on page 1003

v “com.ibm.ws.orb.transport.SSLHandshakeTimeout” on page 1004

v “com.ibm.ws.orb.transport.useMultiHome” on page 1004

v “javax.rmi.CORBA.UtilClass” on page 1004

com.ibm.CORBA.BootstrapHost
Specifies the domain name service (DNS) host name or IP address of the machine on which initial server
contact for this client resides.

depfeat: This setting is deprecated.

For a command-line or programmatic alternative, read the topic Client-side programming tips for the Object
Request Broker service.

com.ibm.CORBA.BootstrapPort
Specifies the port that the ORB uses to bootstrap to the machine on which the initial server contact for this
client listens.

depfeat: This setting is deprecated.

For a command line or programmatic alternative, read the topic Client-side programming tips for the Object
Request Broker service.

996 Administering WebSphere applications



Information Value
Default 2809

com.ibm.CORBA.ConnectTimeout
The com.ibm.CORBA.ConnectTimeout property specifies the maximum time, in seconds, that the client
ORB waits prior to timing out when attempting to establish an IIOP connection with a remote server ORB.
Typically, client applications use this property. You can specify the property for each individual application
server through the administrative console.

Client applications can specify the com.ibm.CORBA.ConnectTimeout property in one of two ways:
v By including it in the orb.properties file
v By using the -CCD option to set the property with the launchclient script. The following example

specifies a maximum timeout value of 10 seconds:
launchclient clientapp.ear -CCDcom.ibm.com.CORBA.ConnectTimeout=10...

Begin with the default timeout value, but consider factors such as network congestion and application
server load and capacity. Lower values provide better failover performance in the case of extended
problems with the remote server, such as downtime. Higher values are better for slow network or remote
server performance. However, exceptions can occur if the remote server does not have enough time to
complete the subsequent request. A value of 0 means that the ORB relies on the timeout set by the
operating system TCP/IP layer. For most operating systems, the timeout is set to 75 seconds.

Note: The default for the com.ibm.CORBA.ConnectTimeout property for Version 8 and later is 10. Earlier
than Version 8, the default is 0.

Information Value
Valid Range 0-300
Default

10

com.ibm.CORBA.ConnectionInterceptorName
Specifies the connection interceptor class that is used to determine the type of outbound IIOP connection
to use for a request, and if secure, the quality of protection characteristics associated with the request.

Information Value
WebSphere Application Server default com.ibm.ISecurityLocalObjectBaseL13Impl.

SecurityConnectionInterceptor
JDK default None

com.ibm.CORBA.enableLocateRequest
Specifies whether the ORB uses the locate request mechanism to find objects in a WebSphere Application
Server cell. Use this property for performance tuning.

When this property is set to true, the ORB first sends a short message to the server to find the object that
it needs to access. This first contact is called the locate request. If most of your initial method invocations
are small, setting this property to false might improve performance because this setting change can
reduce the GIOP traffic by as much as one-half. If most of your initial method invocations are large, you
should set this property to true. When the property is set to true, the small locate request message is
sent instead of the large locate request message. The large message is then sent to the target following
the desired object is found.

Information Value
WebSphere Application Server default true
JDK default false

Chapter 15. Welcome to administering Object Request Broker (ORB) 997



com.ibm.CORBA.FragmentSize

Specifies the size of GIOP fragments that the ORB uses when it sends requests. If the total size of a
request exceeds the set value, the ORB breaks the request into fragments, and sends each fragment
separately until the entire request is sent. Set this property on the client side with a -D system property if
you use a stand-alone Java application.

Adjust the value specified for the com.ibm.CORBA.FragmentSize property if the amount of data that is
sent over IIOP in most GIOP requests exceeds 1 KB, or if thread dumps show that most client-side
threads are waiting while sending or receiving data. Most messages should have few or no fragments.

If you want to instruct the ORB not to chunk any of the requests or replies it sends, set this property to 0.
However, setting the value to zero does not prevent the ORB from receiving GIOP fragments in requests
or replies sent by another ORB.

Information Value
Units Bytes
Default 1024
Range From 64 to the largest value of a Java integer type that is

divisible by 8

com.ibm.CORBA.ListenerPort
Specifies the port on which this server listens for incoming requests. This setting only applies for
client-side ORBs.

Information Value
Default Next available system-assigned port number
Range 0 - 2147483647

com.ibm.CORBA.LocalHost
Specifies the host name or IP address of the system on which the application server or client application
ORB is running.

For application servers, this property is automatically set to the host name of the
ORB_LISTENER_ADDRESS endpoint. Any value specified by the user will be overwritten by the
ORB_LISTENER_ADDRESS host name.

v If the ORB_LISTENER_ADDRESS host name is “*”, then the property is set to the local host name by
using the InetAddress.getLocalHost().getCanonicalHostName() method.

v For client applications, if no value is specified for this property, the ORB obtains a value at run time by
calling the InetAddress.getLocalHost().getHostAddress() method.

Note: Do not set this property to the “localhost”string or “127.0.0.1”value as these values can result in
unpredictable behavior for both clients and servers. Those values might impact callback behavior,
the use of server IORs, and the creation of ORB connections.

com.ibm.CORBA.numJNIReaders

Specifies the number of JNI reader threads to be allocated in the JNI reader thread pool that is used by
the ORB. Each thread can handle up to 1024 connections.

998 Administering WebSphere applications



gotcha: Prior to specifying this property, verify that a JSSE provider is selected as the provider for the
SSL repertoire that is associated with the port on which the ORB service listens for incoming
requests. You can specify either IBMJSSE2 SSL or IBMJSSE SSL. IBMJSSE2 SSL is the default
provider setting for SSL repertoires.

Information Value
Valid Range 1 - 2147483647
Default 4

com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.JNIReaderPoolImpl

Specifies that JNI reader threads are used. The property name specifies the class name of the ORB
component that manages the pool of JNI reader threads and interacts with the native OS library used to
process multiple connections simultaneously.

gotcha:

v Verify that the library is located in the bin directory for the product.

For an Intel operating system, the name of the file that contains the library name is
Selector.dll

For a UNIX-based operating system, the name of the file that contains the library is either
libSelector.a or libSelector.so. If the lib prefix is missing from the file name, rename the file
such that the name includes the lib prefix.

v When you specify this property using the administrative console, enter
com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.JNIReaderPoolImpl for the
property name and an empty string (“""”) for the value.

When you specify this property on the java command, do not include a value:
-Dcom.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.JNIReaderPoolImpl

Information Value
Valid Range Not applicable
Default None

com.ibm.CORBA.RasManager
Specifies an alternative to the default RAS manager of the ORB. This property must be set to
com.ibm.websphere.ras.WsOrbRasManager prior to the ORB can be integrated with the rest of the RAS
processing for the product.

Information Value
WebSphere Application Server default com.ibm.websphere.ras.WsOrbRasManager
JDK default None

com.ibm.CORBA.ServerSocketQueueDepth
Specifies the maximum number of connection requests that can be waiting to be handled by the Server
ORB prior to the product starts to reject new incoming connection requests. This property corresponds to
the backlog argument to a ServerSocket constructor and is handled directly by TCP/IP.

If you see a “connection refused” message in a trace log, typically, either the port on the target machine is
not open, or the server is overloaded with queued-up connection requests. Increasing the value specified
for this property can help alleviate this problem if there does not appear to be any other problem in the
system.

Chapter 15. Welcome to administering Object Request Broker (ORB) 999



Information Value
Default 50
Range From 50 to the largest value of the Java int type

com.ibm.CORBA.ShortExceptionDetails
Specifies that the exception detail message that is returned whenever the server ORB encounters a
CORBA system exception contains a short description of the exception as returned by the toString method
of java.lang.Throwable class. Otherwise, the message contains the complete stack trace as returned by
the printStackTrace method of java.lang.Throwable class.

com.ibm.CORBA.WSSSLClientSocketFactoryName
Specifies the class that the ORB uses to create SSL sockets for secure outbound IIOP connections.

Information Value
WebSphere Application Server default com.ibm.ws.security.orbssl.WSSSLClientSocketFactoryImpl
JDK default None

com.ibm.CORBA.WSSSLServerSocketFactoryName
Specifies the class that the ORB uses to create SSL sockets for inbound IIOP connections.

Information Value
WebSphere Application Server default com.ibm.ws.security.orbssl.WSSSLServerSocketFactoryImpl
JDK default None

com.ibm.websphere.orb.threadPoolTimeout
Use this custom property to specify the length of time in which the object request broker (ORB) waits for
an available thread from the ORB thread pool prior to rejecting a request.

When the ORB receives an incoming request, the request is read by an ORB reader thread. The ORB
reader thread attempts to hand off the request for processing by a worker thread in the ORB thread pool.
When all the worker threads are handling other requests, the reader thread waits until a worker thread
becomes available. While the reader thread is waiting, new requests are not processed by that particular
reader thread. This situation can lead to deadlocks between the ORB thread pools on two different Java
virtual machine (JVM) processes. The deadlocks are prominent when the ORB in one JVM process must
call back to the ORB in the other JVM process to complete its request. Therefore, it is highly advisable to
set this property to a positive non-zero value, which configures a finite wait period and can limit deadlock
situations. However, configure the value for this custom property based on its effect on the average
request processing time, the ORB request timeout value, and whether servers are making additional
circular or backend calls.

Information Value
Data type Integer
Units Milliseconds
Default 0
Range 0 - largest integer that is recognized by the Java run time

com.ibm.websphere.threadpool.strategy.implementation

Specifies the logical pool distribution (LPD) thread pool strategy that takes effect the next time you start
the application server, and is enabled if set to com.ibm.ws.threadpool.strategy.LogicalPoolDistribution.

depfeat: The logical pool distribution function is deprecated. Do not configure logical pool distribution
unless you have already configured it for a previous release of the product.

1000 Administering WebSphere applications



Some requests have shorter start times than others. LPD is a mechanism for providing these shorter
requests more access to start threads. For more information, read the topic Logical pool distribution, that is
included in the product information center.

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.calcinterval

Specifies how often the logical pool distribution (LPD) mechanism readjusts the pool start target times.
This property cannot be turned off once this support is installed.

depfeat: The logical pool distribution function is deprecated. Do not configure logical pool distribution
unless you have already configured it with a previous release of the product.

If you use this property, LPD must be enabled. Read the description of the
com.ibm.websphere.threadpool.strategy.implementation property for more information.

Information Value
Data type Integer
Units Milliseconds
Default 30
Range 20,000 milliseconds minimum

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.lruinterval

Specifies, in milliseconds, how long the logical pool distribution internal data is kept for inactive requests.
This mechanism tracks several statistics for each request type that is received. Consider removing
requests that have been inactive for an unusually long length of time.

depfeat: This function is deprecated. Do not configure logical pool distribution unless you have already
configured it with a previous release of the product.

If you use this property, LPD must be enabled. Read the description of the
com.ibm.websphere.threadpool.strategy.implementation property for more information.

Information Value
Data type Integer
Units Milliseconds
Default 300000 (5 minutes)
Range 60000 (1 minute) minimum

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.outqueues

Specifies how many pools are created and how many threads are allocated to each pool in the logical pool
distribution mechanism.

depfeat: The logical pool distribution function is deprecated. Do not configure logical pool distribution
unless you have already configured it with a previous release of the product.

The ORB parameter for specifying the maximum number of threads controls the total number of threads.
The outqueues parameter is specified as a comma-separated list of percentages that add up to 100. For
example, the list 25,25,25,25 sets up 4 pools, each allocated 25 percent of the available ORB thread pool.
The pools are indexed left to right from 0 to n-1. The calculation mechanism dynamically assigns each

Chapter 15. Welcome to administering Object Request Broker (ORB) 1001



outqueue a target start time. Target start times are assigned to outqueues in increasing order. Therefore,
pool 0 gets the requests with the least start time, and pool n-1 gets requests with the highest start times.

If you specify this property, LPD must be enabled. Read the description of the
com.ibm.websphere.threadpool.strategy.implementation property for more information.

Information Value
Data type Integers in comma-separated list
Default 25,25,25,25
Range Percentages in list must total 100 percent

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.statsinterval

Specifies that statistics are dumped to stdout once this interval expires, but only if requests are processed.
This process keeps the mechanism from filling the log files with redundant information. These statistics are
beneficial for tuning the logical pool distribution mechanism.

depfeat: The logical pool distribution function is deprecated. Do not configure logical pool distribution
unless you have already configured it with a previous release of the product.

If you use this property, LPD must be enabled. Read the description of the
com.ibm.websphere.threadpool.strategy.implementation property for more information.

Information Value
Data type Integer
Units Milliseconds
Default 0 (off)
Range 30,000 (30 seconds) minimum

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.workqueue

Specifies the size of a new queue where incoming requests wait for dispatch. Pertains to the logical pool
distribution mechanism.

depfeat: The logical pool distribution function is deprecated. Do not configure logical pool distribution
unless you have already configured it with a previous release of the product.

If you use this property, LPD must be enabled. Read the description of the
com.ibm.websphere.threadpool.strategy.implementation property for more information.

Information Value
Data type Integer
Default 96
Range 10 minimum

com.ibm.ws.orb.services.lsd.EnableSecurityServiceCheck
Prevents Location Service Daemon (LSD) related outgoing ORB calls from being invoked before the
Security Service is initialized.

Sometimes Location Service Daemon (LSD) related outgoing ORB calls fail authentication because the
calls are made before the server is ready to authenticate users. If you want the server to wait until the
Security Service is initialized before invoking outgoing ORB calls, set this property to true.

1002 Administering WebSphere applications



The default value is false.

com.ibm.ws.orb.services.lsd.SecurityServiceCheckInterval
Specifies, in milliseconds, how frequently the server checks to see if the Security Service is up and
running.

If you set the com.ibm.ws.orb.services.lsd.EnableSecurityServiceCheck custom property to true, use this
property to indicate how frequently the server checks to see if the Security Service is up and running.

The default value is 5000 milliseconds, which is equivalent to 5 seconds.

com.ibm.ws.orb.services.lsd.SecurityServiceCheckRetry
Specifies the maximum number of times the server checks to see if the Security Service is up and running
before issuing an error message that indicates that a Location Service Daemon (LSD) related outgoing
ORB call failed authentication.

The default value is 10.

com.ibm.ws.orb.services.redirector.MaxOpenSocketsPerEndpoint
Specifies the maximum number of connections that the IIOP Tunnel Servlet maintains in its connection
cache for each target host and port. If the number of concurrent client requests to a single host and port
exceeds the setting for this property, the IIOP Tunnel Servlet opens a temporary connection to the target
server for each extra client request, and then closes the connection once it receives the reply. Connections
that are opened, but not used within 5 minutes, are removed from the cache for the IIOP Tunnel Servlet.

Information Value
WebSphere Application Server default 3
JDK default Not applicable
Range 0 - largest integer recognized by Java

com.ibm.ws.orb.services.redirector.RequestTimeout
Specifies the number of seconds that the IIOP Tunnel Servlet waits for a reply from the target server on
behalf of a client prior to timing out. If a value is not specified for this property, or is incorrectly specified,
the com.ibm.CORBA.RequestTimeout property setting for the application server, on which the IIOP Tunnel
Servlet is installed, is used as the setting for the com.ibm.ws.orb.services.redirector.RequestTimeout
property.

The value you specify for this property must be at least as high as the highest client setting for the
com.ibm.CORBA.RequestTimeout property; otherwise the IIOP Tunnel Servlet might timeout more quickly
than the client typically times out while waiting for a reply. If this property is set to zero, the IIOP Tunnel
Servlet does not timeout.

Information Value
WebSphere Application Server default com.ibm.CORBA.RequestTimeout property setting for the

application server on which the IIOP Tunnel Servlet is
installed.

The request_timeout request-level Reliability Availability
and Serviceability (RAS) attribute overrides the
com.ibm.CORBA.RequestTimeout property for IIOP
requests. You define the request-level RAS attributes in
the workload classification file.

JDK default Not applicable
Range 0 - largest integer recognized by Java

Chapter 15. Welcome to administering Object Request Broker (ORB) 1003



com.ibm.ws.orb.transport.SSLHandshakeTimeout
This custom property specifies a timeout value for reading Secure Sockets Layer (SSL) handshake-related
messages.

When you set the com.ibm.ws.orb.transport.SSLHandshakeTimeout custom property to a positive integer
value, the listener thread does not hang if a message is received following the specified timeout period. If
you do not set this custom property or do not set it to a positive integer value, the timeout value defaults to
zero (0), a timeout period is not added, and the listener thread can hang.

Information Value
Data type Integer
Default Zero (0)
Units Milliseconds

com.ibm.ws.orb.transport.useMultiHome
Specifies whether the server ORB binds to all network interfaces in the system. If you specify true, the
ORB binds to all network interfaces that are available to it. If you specify false, the ORB only binds to the
network interface that is specified for the com.ibm.CORBA.LocalHost system property.

Information Value
WebSphere Application Server default true
JDK default true

javax.rmi.CORBA.UtilClass
Specifies the name of the Java class that the product uses to implement the
javax.rmi.CORBA.UtilDelegate interface.

This property supports delegation for method implementations in the javax.rmi.CORBA.Util class. The
javax.rmi.CORBA.Util class provides utility methods that can be used by stubs and ties to perform
common operations. The delegate is a singleton instance of a class that implements this interface and
provides a replacement implementation for all of the methods of javax.rmi.CORBA.Util. To enable a
delegate, provide the class name of the delegate as the value of the javax.rmi.CORBA.UtilClass system
property. The default value provides support for the com.ibm.CORBA.iiop.noLocalCopies property.

Information Value
WebSphere Application Server default com.ibm.ws.orb.WSUtilDelegateImpl
JDK default None

Character code set conversion support for the Java Object Request
Broker service
The CORBA/IIOP specification defines a framework for negotiation and conversion of character code sets
used by the Java Object Request Broker (ORB) service.

This product supports the framework and provides the following system properties for modifying the default
settings:
com.ibm.CORBA.ORBCharEncoding

Specifies the name of the native code set that the ORB uses for character data (referred to as
NCS-C in the CORBA/IIOP specification). By default, the ORB uses UTF8. Valid code set values for
this property are shown in the table that follows this list; values that are valid only for
ORBWCharDefault are indicated.

com.ibm.CORBA.ORBWCharDefault
Specifies the default code set that the ORB uses for transmission of wide character data when no
code set for wide character data is found in the tagged component in the Interoperable Object

1004 Administering WebSphere applications



Reference (IOR) or in the GIOP service context. If no code set for wide character data is found
and this property is not set, the ORB raises an exception, as specified in the CORBA specification.
No default value is set for this property. The only valid code set values for this property are UCS2 or
UTF16.

The CORBA code set negotiation and conversion framework specifies the use of code set registry IDs as
defined in the Open Software Foundation (OSF) code set registry. The ORB translates the Java
file.encoding names shown in the following table to the corresponding OSF registry IDs. These IDs are
then used by the ORB in the IOR Code set tagged component and GIOP code set service context as
specified in the CORBA and IIOP specification.

Table 56. OSF code set registry IDs for Java file.encoding names. The following table lists the OSF code set
registry IDs for the Java file.encoding names.

Java name OSF registry ID Comments

ASCII 0x00010020

ISO8859_1 0x00010001

ISO8859_2 0x00010002

ISO8859_3 0x00010003

ISO8859_4 0x00010004

ISO8859_5 0x00010005

ISO8859_6 0x00010006

ISO8859_7 0x00010007

ISO8859_8 0x00010008

ISO8859_9 0x00010009

ISO8859_15_FDIS 0x0001000F

Cp1250 0x100204E2

Cp1251 0x100204E3

Cp1252 0x100204E4

Cp1253 0x100204E5

Cp1254 0x100204E6

Cp1255 0x100204E7

Cp1256 0x100204E8

Cp1257 0x100204E9

Cp943C 0x100203AF

Cp943 0x100203AF

Cp949C 0x100203B5

Cp949 0x100203B5

Cp1363C 0x10020553

Cp1363 0x10020553

Cp950 0x100203B6

Cp1381 0x10020565

Cp1386 0x1002056A

EUC_JP 0x00030010

EUC_KR 0x0004000A

EUC_TW 0x00050010

Chapter 15. Welcome to administering Object Request Broker (ORB) 1005



Table 56. OSF code set registry IDs for Java file.encoding names (continued). The following table lists the OSF
code set registry IDs for the Java file.encoding names.

Java name OSF registry ID Comments

Cp964 0x100203C4

Cp970 0x100203CA

Cp1383 0x10020567

Cp33722C 0x100283BA

Cp33722 0x100283BA

Cp930 0x100203A2

Cp1047 0x10020417

UCS2 0x00010100 Valid only for the ORBWCharDefault

UTF8 0x05010001

UTF16 0x00010109 Valid only for the ORBWCharDefault

1006 Administering WebSphere applications



Chapter 16. Administering OSGi applications

Configure an enterprise bundle archive (EBA) asset, and maintain the bundle versions used by the EBA
asset. Administer bundles, composite bundles, composite bundle extensions, and bundle repositories.

Before you begin

This topic assumes that you have already packaged your OSGi application as an enterprise bundle
archive (EBA) file, and imported it into WebSphere Application Server, as described in Developing an
OSGi application. You might also have added one or more composite bundle extensions to the deployed
application.

Procedure
v Check the bundle download status of an EBA asset.

Updating an asset to use a new bundle version might require bundle downloads. You cannot update an
asset until bundle downloads are complete from any previous update. Before you try and update bundle
versions, you can check the bundle download status of the asset. This status is either “Bundles
downloading...”, “Bundle downloads are complete”, or “No bundles downloads are required”.

v Check the update status of an OSGi composition unit.

When you change the versions of bundles or composite bundles that an enterprise OSGi application
uses, or add or remove a composite bundle extension, the bundles used by the deployed application
can get out of synchronization with those bundles that are available. To check that your business-level
application is running the most recent version of the EBA asset and any composite bundle extensions,
you check the update status of the associated OSGi composition unit.

v Update bundle versions for an EBA asset.

After you import your OSGi application as an asset, newer versions of the bundles or composite
bundles that the asset uses might become available. You can configure the deployed asset to use an
updated version of any bundle or composite bundle that is used by the asset. You can choose to use a
specific bundle version, or to pull in the latest compatible version. Use either of the following methods:

– Update bundle versions using the administrative console.

– Update bundle versions using the editAsset command.

v Maintain an OSGi composition unit.

Whenever an enterprise bundle archive (EBA) asset is updated, you can (optionally) update the
associated composition unit. You might also update a composition unit to add or remove a composite
bundle extension. If any updates need configuration changes, you can also modify the configuration
information for the composition unit.

v Administer bundle repositories.

OSGi applications can share many common utility bundles. To simplify maintenance, and reduce the
application footprint, the application does not have to include its own copy of each utility bundle.
Instead, bundles can be hosted in a bundle repository, from where they are retrieved during
deployment. You can administer bundles and composite bundles held in the internal bundle repository of
the product, and also add links to external bundle repositories.

v Export and import a deployment manifest file.

You can export the deployment manifest file from an application, then import the manifest file into
another instance of the same application located somewhere else. This process is useful when an
application moves from one environment to another, for example from a test environment to a
production environment.

© Copyright IBM Corp. 2012 1007



Updating bundle versions for an EBA asset
After you import your OSGi application as an asset, newer versions of the bundles or composite bundles
that the asset uses might become available. You can configure the deployed asset to use an updated
version of any bundle or composite bundle that is used by the asset. You can choose to use a specific
bundle version, or to pull in the latest compatible version.

Before you begin

You can update bundle and composite bundle versions for an EBA asset by using the administrative
console as described in this topic, or by using wsadmin commands as described in “Updating bundle
versions for an EBA asset using the editAsset command” on page 1009.

About this task

When you first create an OSGi application, each bundle and composite bundle in the application is either
directly contained in the EBA file or pulled in by reference. After you import your application as an asset,
you can no longer change the direct contents of the asset. To update bundles and composite bundles that
are specified in an asset, you add the updated versions to a repository then apply the updates to the
asset. The asset is not updated automatically when new bundle versions become available; it is up to you
to decide if and when to update the asset.

For each bundle or composite bundle specified by your EBA asset you can select either of the following
options:

v Use a specific available bundle version.

v Use any version. In this case, the latest available version that is compatible with your selections for
other bundles is used.

After you make your selections for this asset, the system tries to resolve the changes you have requested,
and shows you the results. When you have selected a working configuration, you can commit your
selections and the bundle version updates for the asset are applied.

You cannot update bundles that are provisioned by the runtime environment.

Note: When an EBA asset is updated, the update does not automatically affect the running business-level
application. To update the running application, you update the composition unit of the business-level
application that contains the asset.

For users who are moving from a previous version: In the WebSphere Application Server Version 7
Feature Pack for OSGi Applications and Java
Persistence API 2.0, bundle changes to the asset
are applied by restarting the business-level
application, rather than by updating the
composition unit. The current approach means
that many bundle changes can be applied in
place, without restarting the running
business-level application.

Procedure
1. Start the administrative console.

2. Navigate to Applications > Application Types > Assets > asset_name.

The Asset settings panel is displayed.

3. Check the current bundle download status for all bundles and composite bundles for this asset.

1008 Administering WebSphere applications



If the asset has previously been updated, the bundle downloads for the previous update must have
completed.

The current bundle download status for all bundles and composite bundles for this asset is displayed in
the EBA Dependencies section. This status is either “Bundles downloading...”, “Bundle downloads are
complete”, or “No bundles downloads are required”.

If the bundle downloads for any previous update are complete, the option to update bundle versions is
available under the Additional Properties section.

4. Click [Additional Properties] Update bundle versions in this application. The “Update bundle
versions in this application [Settings]” on page 1104 panel is displayed. This panel contains a tabular
overview of the bundles and composite bundles currently deployed in the asset. Application bundles
are listed separately from use bundles.

5. Choose the update bundle version preference for each bundle in this application.

In the table, you can select the update preference for each bundle from a list. You can choose either of
the following options:

v Choose a specific available bundle version. For example, “1.0.0”.

v Choose “No preference”. If you select this option, the latest available version that is compatible with
your other bundle selections is used.

6. Click Preview. A similar table is displayed in the “Preview bundle versions update [Settings]” on page
1100 panel, showing the result of the proposed changes to the bundle versions in this application. If
the changes resolve successfully, the following message is displayed: “The selected bundle versions
can be resolved, so you can now create a new deployment with the proposed bundle versions. The
new deployment will not affect any composition units for this asset until the composition units are
updated to use the new deployment.” Otherwise, the message displayed is “The selected versions
cannot be resolved, so you cannot create a new deployment with the proposed bundle versions.”

7. Optional: If the changes are not all resolved successfully, click Cancel to return to the “Update bundle
versions in this application [Settings]” on page 1104 panel, then select a different update preference for
each bundle that could not be resolved.

8. When you have selected a working configuration, click Create. The bundle and composite bundle
version updates for the asset are applied.

9. Save your changes to the master configuration. The bundle updates are downloaded.

What to do next

If you plan to update the composition unit at this time, check that all bundle downloads are complete. See
“Checking the update status of an OSGi composition unit” on page 1048.

Updating bundle versions for an EBA asset using the editAsset
command
After you import your OSGi application as an asset, newer versions of the bundles or composite bundles
that the asset uses might become available. You can use the editAsset command to configure the
deployed asset to use an updated version of any bundle or composite bundle that is used by the asset.
You can choose to use a specific bundle version, or to pull in the latest compatible version.

Before you begin

You can update bundle and composite bundle versions for an EBA asset by using wsadmin commands as
described in this topic, or by using the administrative console as described in “Updating bundle versions
for an EBA asset” on page 1008.

Chapter 16. Administering OSGi applications 1009



About this task

When you first create an OSGi application, each bundle and composite bundle in the application is either
directly contained in the EBA file or pulled in by reference. After you import your application as an asset,
you can no longer change the direct contents of the asset. To update bundles and composite bundles that
are specified in an asset, you add the updated versions to a repository then apply the updates to the
asset. The asset is not updated automatically when new bundle versions become available; it is up to you
to decide if and when to update the asset.

For each bundle or composite bundle specified by your EBA asset you can select either of the following
options:

v Use a specific available bundle version.

v Use any version. In this case, the latest available version that is compatible with your selections for
other bundles is used.

After you make your selections for this asset, the system tries to resolve the changes you have requested,
and shows you the results. When you have selected a working configuration, the bundle and composite
bundle version updates for the asset are applied.

You cannot update bundles that are provisioned by the runtime environment.

Note: When an EBA asset is updated, the update does not automatically affect the running business-level
application. To update the running application, you update the composition unit of the business-level
application that contains the asset.

For users who are moving from a previous version: In the WebSphere Application Server Version 7
Feature Pack for OSGi Applications and Java
Persistence API 2.0, bundle changes to the asset
are applied by restarting the business-level
application, rather than by updating the
composition unit. The current approach means
that many bundle changes can be applied in
place, without restarting the running
business-level application.

Procedure
1. Check the current bundle download status for all bundles in this asset.

If the asset has previously been updated, the bundle downloads for the previous update must have
completed.

You can use the editCompUnit wsadmin command to check the bundle download status for an asset.
This command checks the status of the associated OSGi composition unit, as described in “Checking
the update status of an OSGi composition unit” on page 1048. This status is one of the following
values:

v Using latest OSGi application deployment.

v New OSGi application deployment not yet available because it requires bundles that are still
downloading.

v New OSGi application deployment available.

v New OSGi application deployment cannot be applied because bundle downloads have failed.

Wait until the bundle downloads for any previous update have completed.

2. Choose the update bundle version preference for each bundle in this application.

To select bundle versions for an EBA asset using the editAsset command, open a wsadmin command
prompt then run the following jython command. Under the -UpdateAppContentVersions parameter,
include an entry (that is, the bundle_name current_version and update_preference) for each bundle

1010 Administering WebSphere applications



that is listed in the application manifest between the application content header and the use bundle
header. Include every bundle, whether or not you are updating the bundle version.

For users who are moving from a previous version: In the WebSphere Application Server Version
7 Feature Pack for OSGi Applications and
Java Persistence API 2.0, bundle changes to
the asset are applied by restarting the
business-level application. In WebSphere
Application Server Version 8.0 and later
versions, these changes are applied by
updating the composition unit. To enable the
current approach, the
UpdateAppContentVersionsStep parameter has
been replaced with the
UpdateAppContentVersions parameter, and
instead of restarting the business-level
application you run the editCompUnit
command with the CompUnitStatusStep
parameter. See the following troubleshooting
tip: The behavior has changed for using
wsadmin commands to update bundle
versions.

AdminTask.editAsset(’[
-assetID asset_name
-UpdateAppContentVersions [
[bundle_1_name current_version update_preference]
[bundle_2_name current_version update_preference]
[bundle_3_name current_version update_preference]
[bundle_4_name current_version update_preference]
[bundle_5_name current_version update_preference]

]]’)

Notes:

v current_version specifies either a bundle version number, for example 1.0.0, or
NOT_DEPLOYED for shared bundles (that is, use bundles) that are declared in the application
manifest but not deployed by the runtime environment. This argument describes the current
configuration of the bundle, and is not used to change the configuration.

v update_preference specifies the new bundle version preference. This is either a bundle
version number, for example 1.0.0, or NOT_DEPLOYED for shared bundles, or NO_PREF if you
want the system to choose a bundle version for you. If you do not want to update the
version for a given bundle, set this attribute to the same value that you are using for the
current_version attribute.

For more information about using the editAsset command, see BLAManagement command group for
the AdminTask object using wsadmin scripting.

After you make your selections for this asset, the system tries to resolve the changes you have
requested, and shows you the results. When you have selected a working configuration, the bundle
and composite bundle version updates for the asset are applied.

3. Save your changes to the master configuration.

To save your configuration changes, use the following command:

AdminConfig.save()

The bundle updates are downloaded.

Chapter 16. Administering OSGi applications 1011



What to do next

If you plan to update the composition unit at this time, check that all bundle downloads are complete. See
“Checking the update status of an OSGi composition unit” on page 1048.

Maintaining an OSGi composition unit
Whenever an enterprise bundle archive (EBA) asset is updated, you can (optionally) update the associated
composition unit. You might also update a composition unit to add or remove a composite bundle
extension. If any updates need configuration changes, you can also modify the configuration information
for the composition unit.

About this task

An OSGi composition unit consists of an EBA asset, (optionally) one or more composite bundle
extensions, and configuration information for running the asset and composite bundle extensions in a
business-level application. If a new OSGi application deployment is available, you can update the OSGi
composition unit so that the business-level application uses the newer configuration.

If any updates need configuration changes, you can also modify the configuration information for the
composition unit. The configuration information can include HTTP session management, context roots,
virtual hosts, security roles, run-as roles, JNDI mappings for Session enterprise beans, JNDI mappings for
EJB references, and web application or Blueprint resource reference bindings for your OSGi application.

Procedure
v Add or remove composite bundle extensions for an OSGi composition unit

Use either of the following methods:

– Add or remove composite bundle extensions using the administrative console.

– Add or remove composite bundle extensions using wsadmin commands.

v Update an OSGi composition unit.

Use either of the following methods:

– Update an OSGi composition unit using the administrative console.

– Update an OSGi composition unit using the editCompUnit command.

When all bundle downloads are complete, you can update the OSGi composition unit so that the
business-level application uses the newer configuration. If any of the updates contain configuration
options, you update the configuration information. You can also take the opportunity to make additional,
non-essential configuration changes.

v Modify the configuration of an OSGi composition unit.

You can modify the configuration information for an OSGi composition unit at any time by using either of
the following methods:

– Modify the configuration of an OSGi composition unit using the administrative console.

– Modify the configuration of an OSGi composition unit using wsadmin commands.

Results

When you save the changes to the composition unit, the associated business-level application is updated
to use the new configuration. If the business-level application is running, the bundle and configuration
updates are applied immediately.

If possible (that is, depending on the nature of the updates) the system applies the updates without
restarting the application. If you update a bundle that provides only OSGi services to the rest of the
application, then only that bundle is restarted. If you update a bundle that provides one or more packages
to other bundles, then those bundles and any bundles to which they provide packages are restarted. If,

1012 Administering WebSphere applications



however, a new package or service dependency is added, or an existing package or service dependency
is removed, then the application is restarted; a newly added package and service can come from a
newly-provisioned bundle, or from a bundle that has already been provisioned.

If the business-level application is defined as an SCA component, then after an update to the composition
unit, or the addition or removal or one or more extensions, the application must be manually restarted so
that the changes are visible to the SCA runtime environment.

Updating an OSGi composition unit
If a new OSGi application deployment is available, you can update the OSGi composition unit so that the
business-level application uses the newer configuration. If any of the updates contain configuration
options, a wizard prompts you to update the configuration information.

Before you begin

This topic assumes that you have either updated the asset that the composition unit contains, or added a
composite bundle as an extension to the composition unit. You do not have to update the composition unit
every time you update the asset or add a composite bundle extension. You cannot update the composition
unit until all bundle downloads are complete.

You can update an OSGi composition unit by using the administrative console as described in this topic, or
by using wsadmin commands as described in “Updating an OSGi composition unit by using the
editCompUnit command” on page 1015.

About this task

An OSGi composition unit consists of an EBA asset, (optionally) one or more composite bundle
extensions, and configuration information for running the asset and composite bundle extensions in a
business-level application. The configuration information can include HTTP session management, context
roots, virtual hosts, security roles, run-as roles, JNDI mappings for Session enterprise beans, JNDI
mappings for EJB references, and web application or Blueprint resource reference bindings for your OSGi
application.

When all bundle downloads are complete, you can update the OSGi composition unit so that the
business-level application uses the newer configuration. If any of the updates contain configuration
options, a wizard prompts you to update the configuration information. You can also take the opportunity to
make additional, non-essential configuration changes.

For users who are moving from a previous version: In the WebSphere Application Server Version 7
Feature Pack for OSGi Applications and Java
Persistence API 2.0, bundle changes to the asset
are applied by restarting the business-level
application, rather than by updating the
composition unit. The current approach means
that many bundle changes can be applied in
place, without restarting the running
business-level application.

This topic describes the specific task of updating an OSGi composition unit. The more generalized task of
updating the configuration of any composition unit is described in Updating business-level applications.

Procedure
1. Start the administrative console.

2. Navigate to Applications > Application Types > Business-level applications > application_name >
composition_unit_name.

Chapter 16. Administering OSGi applications 1013



The Composition unit settings panel is displayed. The deployment status is displayed under [General
Properties] OSGi application deployment status, and shows one of the following values:

v Using latest OSGi application deployment.

v New OSGi application deployment not yet available because it requires bundles that are still
downloading.

v New OSGi application deployment available.

v New OSGi application deployment cannot be applied because bundle downloads have failed.

If the status is “New OSGi application deployment available”, the Update to latest deployment ...
button is available.

3. Update the composition unit to use the latest version of the EBA asset or composite bundle extension.

If the status is “New OSGi application deployment available”, click Update to latest deployment ....
The “Preview composition unit upgrade [Settings]” on page 1100 panel is displayed.

Because multiple updates might be available, and because updates do not have to be applied
immediately, you might not be fully aware of the changes that you are about to make to the deployed
application. So that you can see the cumulative effect of all the changes, this panel displays the
complete list, bundle by bundle, of the updates that are about to be applied. If the result is not what
you want, you can cancel the update. Otherwise, click OK.

4. Update the configuration information for running the asset or composite bundle extension in the
business-level application.

Bundle changes might also require configuration changes to the composition unit. For example, if you
update a bundle in an EBA asset, or replace a composite bundle extension, you might introduce a
resource that requires additional configuration, such as a new or changed Blueprint resource
reference, or security role mapping.

If any of the updates contain configuration options, a wizard prompts you to update the configuration
information. This wizard is based on the Set options settings wizard that you use when creating a new
OSGi composition unit. See Adding an EBA asset to a composition unit by using the administrative
console.

5. Save your changes to the master configuration.

Results

When you save the changes to the composition unit, the associated business-level application is updated
to use the new configuration. If the business-level application is running, the bundle and configuration
updates are applied immediately.

If possible (that is, depending on the nature of the updates) the system applies the updates without
restarting the application. If you update a bundle that provides only OSGi services to the rest of the
application, then only that bundle is restarted. If you update a bundle that provides one or more packages
to other bundles, then those bundles and any bundles to which they provide packages are restarted. If,
however, a new package or service dependency is added, or an existing package or service dependency
is removed, then the application is restarted; a newly added package and service can come from a
newly-provisioned bundle, or from a bundle that has already been provisioned.

If your application has a client bundle that references an enterprise bean in a service bundle, then to
prevent the application being restarted if the service bundle is updated, configure the enterprise bean
dependency in one of the following ways:

v Declare the enterprise bean in the Export-EJB header in the bundle manifest file of the service bundle,
so that the enterprise bean is registered in the OSGi service registry, and use a reference element in
the Blueprint XML file of the client bundle to inject and call the enterprise bean; for more information,
see References and the Blueprint Container. This procedure is the preferred way to configure the EJB
dependency.

1014 Administering WebSphere applications



v In the client bundle, declare an EJB reference to the target enterprise bean, in either an @EJB
annotation or a binding XML file, and map the EJB reference to the EJB JNDI name when the
application is deployed; for more information, see “EJB references [Settings]” on page 1087.

If you do not declare the enterprise bean by using the Export-EJB header or by binding the EJB reference
into JNDI, then a JNDI binding is generated automatically when you deploy the application, provided that
there is exactly one match between the interface that the EJB class implements, and an interface that is
specified in an EJB reference. However, the JNDI name that is generated contains the bundle version,
which changes if you update the bundle; in this case, when you update the composition unit, the JNDI is
regenerated to contain the updated version, and this configuration change results in the application being
restarted.

Messages relating to any restart operations are written to the WebSphere Application Server
SystemOut.log file.

Updating an OSGi composition unit by using the editCompUnit command
Use the editCompUnit command to select a composition unit that contains an enterprise OSGi application,
and update the composition unit so that the business-level application uses the newer configuration. If any
of the updates contain configuration options, run the editCompUnit command a second time to update the
configuration information. You can also take the opportunity to make additional, non-essential configuration
changes.

Before you begin

This topic assumes that you have either updated the asset that the composition unit contains, or added a
composite bundle as an extension to the composition unit. You do not have to update the composition unit
every time you update the asset or add a composite bundle extension. You cannot update the composition
unit until all bundle downloads are complete.

You can update an OSGi composition unit by using the editCompUnit command as described in this topic,
or by using the administrative console as described in “Updating an OSGi composition unit” on page 1013.

About this task

An OSGi composition unit consists of an EBA asset, (optionally) one or more composite bundle
extensions, and configuration information for running the asset and composite bundle extensions in a
business-level application. The configuration information can include HTTP session management, context
roots, virtual hosts, security roles, run-as roles, JNDI mappings for Session enterprise beans, JNDI
mappings for EJB references, and web application or Blueprint resource reference bindings for your OSGi
application.

When all bundle downloads are complete, you can update the OSGi composition unit so that the
business-level application uses the newer configuration. If any of the updates contain configuration
options, run the editCompUnit command a second time to update the configuration information. You can
also take the opportunity to make additional, non-essential configuration changes.

For users who are moving from a previous version: In the WebSphere Application Server Version 7
Feature Pack for OSGi Applications and Java
Persistence API 2.0, bundle changes to the asset
are applied by restarting the business-level
application, rather than by updating the
composition unit. The current approach means
that many bundle changes can be applied in
place, without restarting the running
business-level application. See the following

Chapter 16. Administering OSGi applications 1015



troubleshooting tip: The behavior has changed for
using wsadmin commands to update bundle
versions.

Procedure
1. Check the update status of the composition unit.

There are four distinct deployment statuses for an OSGi composition unit:

v Using latest OSGi application deployment.

v New OSGi application deployment not yet available because it requires bundles that are still
downloading.

v New OSGi application deployment available.

v New OSGi application deployment cannot be applied because bundle downloads have failed.

2. Update the composition unit to use the latest version of the EBA asset or composite bundle extension.

If the status is “New OSGi application deployment available”, open a wsadmin command prompt then
run the following jython command:

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-CompUnitStatusStep [[asset_name.eba true]]

]’)

For example:

AdminTask.editCompUnit(’[
-blaId WebSphere:blaname=test.app
-cuId WebSphere:cuname=com.ibm.ws.eba.extension.componenttest_0001.eba
-CompUnitStatusStep [[com.ibm.ws.eba.extension.componenttest.eba true]]

]’)

3. If you make bundle changes that require configuration changes to the composition unit, you must
update the configuration information for running the asset in the business-level application.

For example, if you update a bundle in an EBA asset, or replace a composite bundle extension, you
might introduce a resource that requires additional configuration, such as a new or changed Blueprint
resource reference, or security role mapping.

If any of the updates contain configuration options, run the editCompUnit command a second time to
update the configuration information. You can also take the opportunity to make additional,
non-essential configuration changes. See “Modifying the configuration of an OSGi composition unit by
using wsadmin commands” on page 1029.

CAUTION:
If you omit this step, then when you save your changes, the application will fail to restart.

4. Save your changes to the master configuration.

To save your configuration changes, use the following command:

AdminConfig.save()

Results

When you save the changes to the composition unit, the associated business-level application is updated
to use the new configuration. If the business-level application is running, the bundle and configuration
updates are applied immediately.

If possible (that is, depending on the nature of the updates) the system applies the updates without
restarting the application. If you update a bundle that provides only OSGi services to the rest of the
application, then only that bundle is restarted. If you update a bundle that provides one or more packages
to other bundles, then those bundles and any bundles to which they provide packages are restarted. If,

1016 Administering WebSphere applications



however, a new package or service dependency is added, or an existing package or service dependency
is removed, then the application is restarted; a newly added package and service can come from a
newly-provisioned bundle, or from a bundle that has already been provisioned.

If your application has a client bundle that references an enterprise bean in a service bundle, then to
prevent the application being restarted if the service bundle is updated, configure the enterprise bean
dependency in one of the following ways:

v Declare the enterprise bean in the Export-EJB header in the bundle manifest file of the service bundle,
so that the enterprise bean is registered in the OSGi service registry, and use a reference element in
the Blueprint XML file of the client bundle to inject and call the enterprise bean; for more information,
see References and the Blueprint Container. This procedure is the preferred way to configure the EJB
dependency.

v In the client bundle, declare an EJB reference to the target enterprise bean, in either an @EJB
annotation or a binding XML file, and map the EJB reference to the EJB JNDI name when the
application is deployed; for more information, see “EJB references [Settings]” on page 1087.

If you do not declare the enterprise bean by using the Export-EJB header or by binding the EJB reference
into JNDI, then a JNDI binding is generated automatically when you deploy the application, provided that
there is exactly one match between the interface that the EJB class implements, and an interface that is
specified in an EJB reference. However, the JNDI name that is generated contains the bundle version,
which changes if you update the bundle; in this case, when you update the composition unit, the JNDI is
regenerated to contain the updated version, and this configuration change results in the application being
restarted.

Adding or removing extensions for an OSGi composition unit
Add composite bundle extensions to, or remove them from, a composition unit that contains an enterprise
OSGi application.

Before you begin

This topic assumes that you have developed a composite bundle, and added it to the internal bundle
repository or to an external repository that can process composite bundles. See Developing a composite
bundle.

You can manage extensions for a composition unit by using the administrative console as described in this
topic, or by using wsadmin commands as described in “Adding or removing extensions for an OSGi
composition unit using wsadmin commands” on page 1018.

About this task

After you import the enterprise bundle archive (EBA) file for your OSGi application as an asset, you can
update versions of existing bundles but you cannot add extra bundles to the asset. However, after you
have added the asset as a composition unit to a business-level application, you can extend the
business-level application by adding one or more composite bundles to the composition unit.

You can add a composite bundle to, or remove it from, a composition unit. To update an extension to one
with newer constituent bundles, you remove the composite bundle from the composition unit then add a
new version of the composite bundle.

You can also view read-only information about each listed composite bundle.

Procedure
1. Start the administrative console.

2. Navigate to Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] Extensions for this composition unit.

Chapter 16. Administering OSGi applications 1017



The “Extensions for this composition unit [Collection]” on page 1090 panel is displayed. This panel lists
all the composite bundle extensions that are currently added to this composition unit. To view read-only
information about a composite bundle, click the composite bundle name in the list.

3. Add or remove composite bundle extensions.

v Add one or more composite bundles as extensions to a composition unit.

a. In the “Extensions for this composition unit [Collection]” on page 1090 panel, click Add. The
“Add extensions [Collection]” on page 1075 panel is displayed.

This panel lists all the composite bundles that are currently available to be added to the
composition unit. That is, all composite bundles that are installed in an available bundle
repository, and that have not already been added as a composite bundle extension or used by a
deployed EBA asset. To view read-only information about a composite bundle, click the
composite bundle name in the list.

b. Select one or more composite bundles to add.

c. Click Add. The composite bundle is added, and displayed in the list of composite bundle
extensions in the “Extensions for this composition unit [Collection]” on page 1090 form.

v Remove one or more composite bundle extensions from a composition unit.

a. In the “Extensions for this composition unit [Collection]” on page 1090 panel, select one or more
composite bundle extensions to remove.

b. Click Remove. The selected composite bundles are removed, and the updated list of composite
bundle extensions is displayed.

4. Save your changes to the master configuration. If you extended a deployed OSGi application, the
composite bundle, including its constituent bundles, is downloaded.

What to do next

If you plan to update the composition unit at this time, check that all bundle downloads are complete. See
“Checking the update status of an OSGi composition unit” on page 1048.

Adding or removing extensions for an OSGi composition unit using wsadmin
commands
Use the addOSGiExtension or addOSGiExtensions command to add composite bundle extensions to a
composition unit that contains an enterprise OSGi application. Similarly, use the removeOSGiExtension or
removeOSGiExtensions command to remove composite bundle extensions. Use the listOSGiExtensions
command to list all the extensions that are currently added to the composition unit.

Before you begin

This topic assumes that you have developed a composite bundle, and added it to the internal bundle
repository or to an external repository that can process composite bundles. See Developing a composite
bundle.

You can manage extensions for a composition unit by using wsadmin commands as described in this
topic, or by using the administrative console as described in “Adding or removing extensions for an OSGi
composition unit” on page 1017.

About this task

After you import the enterprise bundle archive (EBA) file for your OSGi application as an asset, you can
update versions of existing bundles but you cannot add extra bundles to the asset. However, after you
have added the asset as a composition unit to a business-level application, you can extend the
business-level application by adding one or more composite bundles to the composition unit.

1018 Administering WebSphere applications



You can add a composite bundle to, or remove it from, a composition unit. To update an extension to one
with newer constituent bundles, you remove the composite bundle from the composition unit then add a
new version of the composite bundle.

Procedure
1. Optional: List composite bundle extensions.

Use the listOSGiExtensions command to list the symbolic names and versions of all the extensions
that are currently added to a composition unit.

AdminTask.listOSGiExtensions(’-cuName cu_name’)

Note: The output from the listOSGiExtensions command is formatted so that you can copy the list of
extensions, then paste them into the removeOSGiExtensions command.

For more information, see “listOSGiExtensions command” on page 1023.

2. Add or remove composite bundle extensions.

v Add one or more composite bundles as extensions to a composition unit.

Use the addOSGiExtension or addOSGiExtensions command:
AdminTask.addOSGiExtension(’
-cuName cu_name
-symbolicName cba_symbolic_name
-version cba_version

’)

AdminTask.addOSGiExtensions([
’-cuName’, ’cu_name’,
’-extensions’,
’cba1_symbolic_name;cba1_version
cba2_symbolic_name;cba2_version
cba3_symbolic_name;cba3_version
’

])

The composite bundle must be available in the internal bundle repository, or in an external
repository that can process composite bundles.

To find out what extensions are available for you to add to a composition unit, use the
listAvailableOSGiExtensions command:
AdminTask.listAvailableOSGiExtensions(’-cuName cu_name’)

For more information, see “addOSGiExtension command” on page 1020, “addOSGiExtensions
command” on page 1022, and “listAvailableOSGiExtensions command” on page 1024.

v Remove one or more composite bundle extensions from a composition unit.

Use the removeOSGiExtension or removeOSGiExtensions command:
AdminTask.removeOSGiExtension(’
-cuName cu_name
-symbolicName cba_symbolic_name
-version cba_version

’)

AdminTask.removeOSGiExtensions([
’-cuName’, ’cu_name’,
’-extensions’,
’cba1_symbolic_name;cba1_version
cba2_symbolic_name;cba2_version
cba3_symbolic_name;cba3_version
’

])

Note: The output from the listOSGiExtensions command is formatted so that you can copy the list
of extensions, then paste them into the removeOSGiExtensions command.

For more information, see “removeOSGiExtension command” on page 1021 or
“removeOSGiExtensions command” on page 1025.

Chapter 16. Administering OSGi applications 1019



3. Save your changes to the master configuration.

To save your configuration changes, use the following command:

AdminConfig.save()

If you extended a deployed OSGi application, the composite bundle, including its constituent bundles,
is downloaded.

What to do next

If you plan to update the composition unit at this time, check that all bundle downloads are complete. See
“Checking the update status of an OSGi composition unit” on page 1048.

addOSGiExtension command:

Use the addOSGiExtension command to add a composite bundle as an extension to a composition unit.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command adds a composite bundle as an extension to a composition unit. The composite bundle
must be available in the internal bundle repository, or in an external repository that can process composite
bundles.

Target object

The specified composition unit.

Required parameters

-cuName cu_name
The name of the composition unit.

-symbolicName cba_symbolic_name
The non-localizable name for this composite bundle.

-version cba_version
The version of this composite bundle.

The composite bundle version is in the form n.n.n, for example 1.1.0. The symbolic name, together with
the version, uniquely identifies a composite bundle.

1020 Administering WebSphere applications



Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.addOSGiExtension(’
-cuName cu_name
-symbolicName cba_symbolic_name
-version cba_version

’)

removeOSGiExtension command:

Use the removeOSGiExtension command to remove a composite bundle extension from a composition unit.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes a composite bundle extension from a composition unit.

Target object

The specified composition unit.

Required parameters

-cuName cu_name
The name of the composition unit.

-symbolicName cba_symbolic_name
The non-localizable name for this composite bundle.

-version cba_version
The version of this composite bundle.

The composite bundle version is in the form n.n.n, for example 1.1.0. The symbolic name, together with
the version, uniquely identifies a composite bundle.

Chapter 16. Administering OSGi applications 1021



Note: You can use the listOSGiExtensions command to list the symbolic names and versions of all the
extensions that are currently added to a composition unit.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.removeOSGiExtension(’
-cuName cu_name
-symbolicName cba_symbolic_name
-version cba_version

’)

addOSGiExtensions command:

Use the addOSGiExtensions command to add several composite bundles as extensions to a composition
unit.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command adds several composite bundles as extensions to a composition unit. The composite
bundles must be available in the internal bundle repository, or in an external repository that can process
composite bundles.

Target object

The specified composition unit.

Required parameters

-cuName cu_name
The name of the composition unit.

-extensions

1022 Administering WebSphere applications



A list of the composite bundle extensions to be added. Each list entry contains the symbolic name and
the version for a composite bundle. The symbolic name, together with the version, uniquely identifies a
composite bundle.

cba_symbolic_name
The non-localizable name for this composite bundle.

cba_version
The version of this composite bundle.

The composite bundle version is in the form n.n.n, for example 1.1.0.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.addOSGiExtensions([
’-cuName’, ’cu_name’,
’-extensions’,
’cba1_symbolic_name;cba1_version
cba2_symbolic_name;cba2_version
cba3_symbolic_name;cba3_version
’

])

listOSGiExtensions command:

Use the listOSGiExtensions command to list the symbolic names and versions of all the extensions that
are currently added to a composition unit.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists the symbolic names and versions of all the extensions that are currently added to a
composition unit. This corresponds to the list that is displayed in the WebSphere Application Server
administrative console if you open the details of a composition unit, and click Manage extensions for this
composition unit . The output from the listOSGiExtensions command is formatted so that you can copy
the list of extensions, then paste them into the removeOSGiExtensions command.

Chapter 16. Administering OSGi applications 1023



Target object

The specified composition unit.

Required parameters

-cuName cu_name
The name of the composition unit.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.listOSGiExtensions(’-cuName cu_name’)

listAvailableOSGiExtensions command:

Use the listAvailableOSGiExtensions command to list the symbolic names and versions of all the
extensions that are available to be added to a specified composition unit. The command returns all those
extensions that are available from a bundle repository, but that have not yet been deployed as an
extension to the composition unit.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists the symbolic names and versions of all the extensions that are available to be added
to a specified composition unit. This corresponds to the list that is displayed in the WebSphere Application
Server administrative console if you open the details of a composition unit, and click Manage extensions
for this composition unit and then click Add. The output from the listAvailableOSGiExtensions
command is formatted so that you can copy the list of extensions, then paste them into the
removeOSGiExtensions command.

Target object

The specified composition unit.

Required parameters

-cuName cu_name
The name of the composition unit.

1024 Administering WebSphere applications



Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.listAvailableOSGiExtensions(’-cuName cu_name’)

removeOSGiExtensions command:

Use the removeOSGiExtensions command to remove several composite bundle extensions from a
composition unit.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes several composite bundle extensions from a composition unit.

You can use the listOSGiExtensions command to list the symbolic names and versions of all the
extensions that are currently added to a composition unit. The output from the listOSGiExtensions
command is formatted so that you can copy the list of extensions, then paste them into the
removeOSGiExtensions command.

Target object

The specified composition unit.

Required parameters

-cuName cu_name
The name of the composition unit.

-extensions

A list of the composite bundle extensions to be removed. Each list entry contains the symbolic name
and the version for a composite bundle. The symbolic name, together with the version, uniquely
identifies a composite bundle.

Chapter 16. Administering OSGi applications 1025



cba_symbolic_name
The non-localizable name for this composite bundle.

cba_version
The version of this composite bundle.

The composite bundle version is in the form n.n.n, for example 1.1.0.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.removeOSGiExtensions([
’-cuName’, ’cu_name’,
’-extensions’,
’cba1_symbolic_name;cba1_version
cba2_symbolic_name;cba2_version
cba3_symbolic_name;cba3_version
’

])

Modifying the configuration of an OSGi composition unit
You can modify the configuration information for a composition unit that contains an enterprise OSGi
application. An OSGi composition unit consists of an EBA asset, (optionally) one or more composite
bundle extensions, and configuration information for running the asset and composite bundle extensions in
a business-level application. The configuration information can include HTTP session management,
context roots, virtual hosts, security roles, run-as roles, JNDI mappings for Session enterprise beans, JNDI
mappings for EJB references, and web application or Blueprint resource reference bindings for your OSGi
application.

Before you begin

You can modify the configuration of an OSGi composition unit by using the administrative console as
described in this topic, or by using wsadmin commands as described in “Modifying the configuration of an
OSGi composition unit by using wsadmin commands” on page 1029.

About this task

An OSGi composition unit consists of an EBA asset, (optionally) one or more composite bundle
extensions, and some or all of the following configuration information:

v Mappings from the composition unit to a target application server, web server, or cluster.

v Configuration of the session manager, context roots or virtual hosts of the application.

v Mappings from enterprise beans to JNDI names.

v Bindings to any associated web applications or blueprint resource references.

v Mappings from security roles to particular users or groups.

You first specify the configuration of an EBA asset or composite bundle extension when you add it to a
composition unit. If bundles in the asset or composite bundle extension are later changed, or if you have
to remap resources, you can update the configuration. For example, if you update a bundle in an EBA
asset, or replace a composite bundle extension, you might introduce a resource that requires additional
configuration, such as a new or changed Blueprint resource reference, or security role mapping.

1026 Administering WebSphere applications



This topic describes the specific task of modifying the configuration of an OSGi composition unit. The more
generalized task of modifying the configuration of any composition unit is described in Updating
business-level applications.

Procedure
1. Start the administrative console.

2. Navigate to Applications > Application Types > Business-level applications > application_name >
composition_unit_name.

The Composition unit settings panel is displayed.

3. Under the Additional Properties section, click any of the following options then modify the settings as
required.

v Session management

Configure HTTP session management for the web application bundles. For more information, see
Configuring session management by level.

The Session management option is only visible if the OSGi application uses web application bundles.

v Context root for web modules

Select a web application bundle (WAB) from the list, then enter the context root for the WAB. For
example, /sample. For more information, see “Context root for web modules [Settings]” on page
1085.

The Context root for web modules option is visible only if the application uses web application
bundles.

v Listeners for message-driven beans

For each message-driven bean (MDB) that is defined in either an ejb-jar.xml file or an
@MessageDriven annotation in the composition unit, you can specify the settings necessary to bind
an MDB listener to the MDB. By binding a listener to an MDB, you configure the association of the
MDB with the JMS destination from which the MDB receives messages. For more information, see
“Listeners for message-driven beans [Settings]” on page 1097.

The Listeners for message-driven beans option is visible only if the OSGi application contains at
least one EJB bundle that has at least one MDB.

v EJB JNDI names

For each Session enterprise bean in the composition unit, you can specify the JNDI name by which
the enterprise bean is known in the runtime environment. For more information, see “EJB JNDI
names [Settings]” on page 1085.

The EJB JNDI names option is visible only if the OSGi application contains at least one EJB bundle
that has at least one session enterprise bean.

v EJB references

For each EJB reference that is defined in either an ejb-jar.xml file, a web.xml file, or an @EJB
annotation in the composition unit, you can specify the JNDI name by which the EJB reference is
known in the runtime environment. For more information, see “EJB references [Settings]” on page
1087.

The EJB references option is visible only if the OSGi application contains at least one EJB
reference, defined either in an ejb-jar.xml file, a web.xml file, or in an @EJB annotation.

v EJB resource references

The list of available EJB resource references in this asset is displayed. That is, resources of type
resource-ref (resource reference), as defined in the Java specification JSR-250: Common
Annotations for the Java Platform. For each reference, specify the JNDI name under which the
resource is known in the runtime environment. For more information, see “EJB resource references
[Settings]” on page 1088.

Chapter 16. Administering OSGi applications 1027



The EJB resource references option is visible only if the OSGi application contains at least one
resource reference, defined either in an ejb-jar.xml file, or through an @Resource annotation on an
enterprise bean.

v EJB message destination references

The list of available EJB message destination and resource environment references in this asset is
displayed. That is, resources of type message-destination-ref (message destination reference) or
resource-env-ref (resource environment reference), as defined in the Java specification JSR-250:
Common Annotations for the Java Platform. For each reference, specify the JNDI name under which
the resource is known in the runtime environment. For more information, see “EJB message
destination references [Settings]” on page 1086.

The EJB message destination references option is visible only if the OSGi application contains at
least one JMS message destination reference or resource environment reference, defined either in
an ejb-jar.xml file, or through an @Resource annotation on an enterprise bean.

v Virtual hosts for web modules

The list of available WABs in this asset is displayed. For each WAB, you can change the associated
virtual host by selecting a different one from the list. If you specify an existing virtual host in the
ibm-web-bnd.xml or .xmi file for a WAB, the specified virtual host is set by default. Otherwise, the
default virtual host setting is default_host. For more information, see “Virtual hosts for web modules
[Settings]” on page 1107.

The Virtual hosts for web modules option is visible only if the application uses web application
bundles.

v Security role to user or group mapping

Change the security mapping as needed. For more information, see “Security role to user or group
mapping [Settings]” on page 1102.

The Security role to user or group mapping option is visible only if the application uses security
roles.

v RunAs roles for users

You can map a specified user identity and password to a RunAs role. This mapping enables you to
specify application-specific privileges for individual users, so that they can run specific tasks using
another user identity. For more information, see “RunAs roles for users [Collection]” on page 1101.

The RunAs roles for users option is visible only if the application uses RunAs roles.

v Blueprint resource references

The list of available Blueprint resource references in this asset is displayed. For each reference, you
can optionally select an authentication alias from the list. Default authentication aliases (from
ibm-eba-bnd.xml files) are offered only if they exist on every target server or cluster. For more
information, see “Blueprint resource references [Settings]” on page 1078.

The Blueprint resource references option is visible only if the bundle includes Blueprint resource
reference declarations.

v Web module message destination references

The list of available web application message destination and resource environment references in
this asset is displayed. That is, resources of type message-destination-ref (message destination
reference) or resource-env-ref (resource environment reference), as defined in the Java specification
JSR-250: Common Annotations for the Java Platform. For each reference, specify the JNDI name
under which the resource is known in the runtime environment. For more information, see “Web
module message destination references [Settings]” on page 1108.

The Bind web module message destination references to administered objects wizard step and
the Web module message destination references property are visible only if the bundle includes a
web application.

v Web module resource references

The list of available web application resource references in this asset is displayed. That is,
resources of type resource-ref (resource reference), as defined in the Java specification JSR-250:

1028 Administering WebSphere applications



Common Annotations for the Java Platform. For each reference, specify the JNDI name under which
the resource is known in the runtime environment. Optionally, set authentication properties and
extended data source custom properties, which affect how the resource is accessed at run time. To
specify the JNDI name mapping, either type the JNDI name into the box, or click Browse... then
select the resource reference from the list of available resources. To modify the authentication
method, or to set extended data source custom properties that apply to the database connection,
select a single reference then click Modify Resource Authentication Method... or Extended
Properties.... For more information, see “Web module resource references [Settings]” on page
1109.

The Web module resource references option is visible only if the bundle includes a web application.

4. Save your changes to the master configuration.

Results

When you save the changes to the composition unit, the associated business-level application is updated
to use the new configuration. If the business-level application is running, the bundle and configuration
updates are applied immediately.

If possible (that is, depending on the nature of the updates) the system applies the updates without
restarting the application. If you update a bundle that provides only OSGi services to the rest of the
application, then only that bundle is restarted. If you update a bundle that provides one or more packages
to other bundles, then those bundles and any bundles to which they provide packages are restarted. If,
however, a new package or service dependency is added, or an existing package or service dependency
is removed, then the application is restarted; a newly added package and service can come from a
newly-provisioned bundle, or from a bundle that has already been provisioned.

If your application has a client bundle that references an enterprise bean in a service bundle, then to
prevent the application being restarted if the service bundle is updated, configure the enterprise bean
dependency in one of the following ways:

v Declare the enterprise bean in the Export-EJB header in the bundle manifest file of the service bundle,
so that the enterprise bean is registered in the OSGi service registry, and use a reference element in
the Blueprint XML file of the client bundle to inject and call the enterprise bean; for more information,
see References and the Blueprint Container. This procedure is the preferred way to configure the EJB
dependency.

v In the client bundle, declare an EJB reference to the target enterprise bean, in either an @EJB
annotation or a binding XML file, and map the EJB reference to the EJB JNDI name when the
application is deployed; for more information, see “EJB references [Settings]” on page 1087.

If you do not declare the enterprise bean by using the Export-EJB header or by binding the EJB reference
into JNDI, then a JNDI binding is generated automatically when you deploy the application, provided that
there is exactly one match between the interface that the EJB class implements, and an interface that is
specified in an EJB reference. However, the JNDI name that is generated contains the bundle version,
which changes if you update the bundle; in this case, when you update the composition unit, the JNDI is
regenerated to contain the updated version, and this configuration change results in the application being
restarted.

Messages relating to any restart operations are written to the WebSphere Application Server
SystemOut.log file.

Modifying the configuration of an OSGi composition unit by using wsadmin
commands
You can use the editCompUnit command and the AdminConfig commands to modify the configuration
information for a composition unit that contains an enterprise OSGi application. An OSGi composition unit
consists of an EBA asset, (optionally) one or more composite bundle extensions, and configuration
information for running the asset and composite bundle extensions in a business-level application. The
configuration information can include HTTP session management, context roots, virtual hosts, security

Chapter 16. Administering OSGi applications 1029



roles, run-as roles, JNDI mappings for Session enterprise beans, JNDI mappings for EJB references, and
web application or Blueprint resource reference bindings for your OSGi application.

Before you begin

You can modify the configuration of an OSGi composition unit by using wsadmin commands as described
in this topic, or by using the administrative console as described in “Modifying the configuration of an OSGi
composition unit” on page 1026.

About this task

An OSGi composition unit consists of an EBA asset, (optionally) one or more composite bundle
extensions, and some or all of the following configuration information:

v Mappings from the composition unit to a target application server, web server, or cluster.

v Configuration of the session manager, context roots or virtual hosts of the application.

v Mappings from enterprise beans to JNDI names.

v Bindings to any associated web applications or blueprint resource references.

v Mappings from security roles to particular users or groups.

You first specify the configuration of an EBA asset or composite bundle extension when you add it to a
composition unit. If bundles in the asset or composite bundle extension are later changed, or if you have
to remap resources, you can update the configuration. For example, if you update a bundle in an EBA
asset, or replace a composite bundle extension, you might introduce a resource that requires additional
configuration, such as a new or changed Blueprint resource reference, or security role mapping.

To configure all elements of the composition unit except the HTTP session manager, you use the
editCompUnit command. To configure the HTTP session manager, you use the AdminConfig commands to
configure the deployed object represented by the appDeploy variable.

In the following procedure, all the steps and substeps are optional. You only need to re-configure the
elements that have changed.

Procedure
v Configure all elements of the composition unit except the HTTP session manager.

Each of the following substeps describes the syntax for modifying a single element of the composition
unit using the editCompUnit command. You can run the command once for each element, or you can
modify several elements in a batch.

For several of the elements, the values you specify include bundle identifiers. If your EBA asset includes
or references composite bundles, the command syntax is slightly different. For clarity, the differences for
composite bundles are described, step by step, in a linked topic.

1. Identify the composition unit that you want to edit.

You identify a particular composition unit by specifying its business-level application ID and
composition unit ID. Whenever you run the editCompUnit command, you must always include
these two parameters in the command.

-blaID
Specifies the configuration ID of the business-level application.

-cuID
Specifies the ID of the composition unit.

The Jython syntax for this aspect of the command is as follows:

1030 Administering WebSphere applications



AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
...

]’)

For example:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
...

]’)

2. Map the target node and server, or the target cluster.

You cannot edit the deployable unit URI (which, for a composition unit that contains an OSGi
application, is ebaDeploymentUnit). You can edit the target node and server, or the target cluster.
To add an additional target, you use the plus sign character ( + ) as a prefix.

If the target is one cluster, the Jython syntax for this aspect of the command is as follows:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-MapTargets [[ebaDeploymentUnit WebSphere:cluster=cluster_name]]

]’)

For example:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-MapTargets [[ebaDeploymentUnit WebSphere:cluster=cluster1]]

]’)

If the target is two servers, the Jython syntax for this aspect of the command is as follows::
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-MapTargets [
[ebaDeploymentUnit WebSphere:node=node_name,server=server_name+

WebSphere:node=node2_name,server=server2_name]]
]’)

For example:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-MapTargets [
[ebaDeploymentUnit WebSphere:node=node01,server=server1+

WebSphere:node=node01,server=web1]]
]’)

3. Map context root for web modules.

Context roots determine where the web pages of a particular web application bundle (WAB) are
found at run time. The context root that you specify here is combined with the defined server
mapping to compose the full URL that you enter to access the pages of the WAB. For example, if
the application server default host is www.example.com:8080 and the context root of the WAB is
/sample, the web pages are available at www.example.com:8080/sample.

The Jython syntax for this aspect of the command is as follows. The list of bundles under the
ContextRootStep must contain all the WABs contained in the OSGi application.

Note: For composite bundles, the syntax is slightly different. See Step: Map context root for web
modules in composite bundles.

Chapter 16. Administering OSGi applications 1031



AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-ContextRootStep [
[bundle_symbolic_name_1 bundle_version_1 context_root_1]
[bundle_symbolic_name_2 bundle_version_2 context_root_2]]

]’)

For example, for an EBA file that contains two WABs (com.ibm.ws.eba.helloWorldService.web at
version 1.0.0, which is to be mapped to /hello/web, and
com.ibm.ws.eba.helloWorldService.withContextRoot at version 0.9.0, which is to be mapped to
/hello/service), this aspect of the command is as follows:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-ContextRootStep [
[com.ibm.ws.eba.helloWorldService.web 1.0.0 "/hello/web"]
[com.ibm.ws.eba.helloWorldService.withContextRoot 0.9.0 "/hello/service"]]

]’)

4. Bind listeners for message-driven beans

For each message-driven bean (MDB) that is defined in either an ejb-jar.xml file or an
@MessageDriven annotation in the composition unit, you can specify the settings necessary to
bind an MDB listener to the MDB. By binding a listener to an MDB, you configure the association
of the MDB with the JMS destination from which the MDB receives messages.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Bind listeners for
message-driven beans in composite bundles

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-MDBBindingsStep [
[bundle_symbolic_name_1 bundle_version_1 uri_1

activation_spec_1 destination_jndi_name_1 authentication_alias_1]
[bundle_symbolic_name_2 bundle_version_2 uri_2

activation_spec_2 destination_jndi_name_2 authentication_alias_2]]
]’)

In the following example, an EBA file contains two EJB bundles, com.ibm.ws.eba.currencyService
at version 1.0.0, and com.ibm.ws.eba.accountService at version 0.9.0. The currencyService bundle
contains a message-driven bean called ExchangeRateMDB, bound to an activation specification with
a JNDI name of eis/ExchangeRate_Act_Spec; the destination JNDI name that is defined in the
activation specification is overridden by a destination whose JNDI name is jms/ExchangeRateQueue,
and the authentication alias that is defined in the activation specification is overridden by an
authentication alias called ExchangeRate_Auth_Alias. The accountService bundle contains an MDB
called CustomerDetailsMDB, bound to an activation specification with a JNDI name of
eis/CustomerDetails_Act_Spec; the destination JNDI name that is defined in the activation
specification is overridden by a destination whose JNDI name is jms/CustomerDetailsQueue, and
the authentication alias that is defined in the activation specification is overridden by an
authentication alias called CustomerDetails_Auth_Alias.
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=financeService
-cuID WebSphere:cuname=com.ibm.ws.eba.financeService_0001.eba
-MDBBindingsStep [
[com.ibm.ws.eba.currencyService 1.0.0 META-INF/ejb-jar.xml/ExchangeRateMDB
eis/ExchangeRate_Act_Spec jms/ExchangeRateQueue ExchangeRate_Auth_Alias]

[com.ibm.ws.eba.accountService 0.9.0 META-INF/ejb-jar.xml/CustomerDetailsMDB
eis/CustomerDetails_Act_Spec jms/CustomerDetailsQueue CustomerDetails_Auth_Alias]]

]’)

1032 Administering WebSphere applications



5. Provide EJB JNDI names

For each Session enterprise bean in the composition unit, you can specify the JNDI name by
which the enterprise bean is known in the runtime environment.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Provide EJB JNDI names
in composite bundles

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-EJBMappingsStep [
[bundle_symbolic_name_1 bundle_version_1 ejb_name_1

ejb_interface_1 ejb_iterface_type_1 jndi_name_1]
[bundle_symbolic_name_2 bundle_version_2 ejb_name_2

ejb_interface_2 ejb_iterface_type_2 jndi_name_2]]
]’)

In the following example, an EBA file contains two EJB bundles, com.ibm.ws.eba.currencyService
at version 1.0.0, and com.ibm.ws.eba.accountService at version 0.9.0. The currencyService bundle
contains an enterprise bean called ExchangeRate_ejb, with a Local interface called
com.ibm.ws.eba.ejb.ExchangeRate, that is mapped to a JNDI name of ejb/ExchangeRate. The
accountService bundle contains an enterprise bean called CustomerDetails_ejb, with a Remote
interface called com.ibm.ws.eba.ejb.CustomerDetails, that is mapped to a JNDI name of
ejb/CustomerDetails.
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=financeService
-cuID WebSphere:cuname=com.ibm.ws.eba.financeService_0001.eba
-EJBMappingsStep [
[com.ibm.ws.eba.currencyService 1.0.0 ExchangeRate_ejb
com.ibm.ws.eba.ejb.ExchangeRate Local ejb/ExchangeRate]

[com.ibm.ws.eba.accountService 0.9.0 CustomerDetails_ejb
com.ibm.ws.eba.ejb.CustomerDetails Remote ejb/CustomerDetails]]

]’)

6. Map EJB references

For each EJB reference that is defined in either an ejb-jar.xml file, a web.xml file, or an @EJB
annotation in the composition unit, you can specify the JNDI name by which the EJB reference is
known in the runtime environment.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Map EJB references in
composite bundles

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-EJBRefStep [
[bundle_symbolic_name_1 bundle_version_1 uri_1

ejb_reference_name_1 business_interface_1 jndi_name_1]
[bundle_symbolic_name_2 bundle_version_2 uri_2

ejb_reference_name_2 business_interface_2 jndi_name_2]]
]’)

The uri parameter specifies the location where the EJB reference is defined.

In the following example, an EBA file contains two bundles, com.ibm.ws.eba.currencyService at
version 1.0.0, and com.ibm.ws.eba.accountService at version 0.9.0. The currencyService bundle
contains an EJB reference called ExchangeRate, from the CurrencyExchange enterprise bean,
defined in META-INF/ejb-jar.xml, that is mapped to a JNDI name of ejb:ExchangeRate. The
accountService bundle contains an EJB reference called CustomerDetails, defined in web.xml, that
is mapped to a JNDI name of ejb:CustomerDetails.

Chapter 16. Administering OSGi applications 1033



AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=financeService
-cuID WebSphere:cuname=com.ibm.ws.eba.financeService_0001.eba
-EJBRefStep [
[com.ibm.ws.eba.currencyService 1.0.0 META-INF/ejb-jar.xml/CurrencyExchange
ExchangeRate com.ibm.ws.eba.ejb.ExchangeRate ejb:ExchangeRate]

[com.ibm.ws.eba.accountService 0.9.0 WEB-INF/web.xml
CustomerDetails com.ibm.ws.eba.ejb.CustomerDetails ejb:CustomerDetails]]

]’)

7. Map EJB resource references to resources

Binding a resource reference maps a resource dependency of an enterprise bean to an actual
resource available in the server runtime environment. At a minimum, you can be achieve this
mapping by specifying the JNDI name under which the resource reference is known in the runtime
environment. By default, the JNDI name is retrieved from pre-existing bindings, or set to the value
of the mapped-name specified in the resource reference definition. Use this option to bind
resources of type resource-ref (resource reference), as defined in the Java specification JSR-250:
Common Annotations for the Java Platform.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Map EJB resource
references to resources in composite bundles

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-EJBResourceRefs [
[
bundle_symbolic_name
bundle_version
ejb_name
resource_reference_id
resource_type
target_jndi_name
resource_authentication_method
mapping_properties
extended_properties
]]

]’)

The mapping_properties parameter defines arbitrary name and value pairs for extended data
source properties, in the following format (one continuous string):
WebSphere:name=property_name1,value=property_value1,description=property_description1
+WebSphere:name=property_name2,value=property_value2,description=property_description2
+ ...

The extended_properties parameter defines extended data source custom properties in the
following format (one continuous string):
property_name1=property_value1+property_name2=property_value2+ ...

For example:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=financeService
-cuID WebSphere:cuname=com.ibm.ws.eba.financeService_0001.eba
-EJBResourceRefs [
[com.ibm.ws.eba.currencyService 1.0.0 ExchangeRate
dataSource1 javax.sql.DataSource ref/ds1 ClientContainer
"WebSphere:name=mprop1,value=val1,description=desc1"
"exprop1=expropval1+exprop2=expropval2"]

[com.ibm.ws.eba.accountService 0.9.0 CustomerDetails
dataSource2 javax.sql.DataSource ref/ds2 WSLogin "" ""]]

]’)

8. Bind EJB message destination references to administered objects.

1034 Administering WebSphere applications



Binding a message destination reference or resource environment reference maps a resource
dependency of an enterprise bean to an actual resource available in the server runtime
environment. At a minimum, you can achieve this mapping by specifying the JNDI name under
which the message destination reference or resource environment reference is known in the
runtime environment. By default, the JNDI name is retrieved from pre-existing bindings, or set to
the value of the mapped-name specified in the message destination reference definition. Use this
option to bind resources of type message-destination-ref (message destination reference) or
resource-env-ref (resource environment reference), as defined in the Java specification JSR-250:
Common Annotations for the Java Platform.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Bind EJB message
destination references to administered objects in composite bundles.

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-EJBMsgDestRefs [
[
bundle_symbolic_name
bundle_version
ejb_name
resource_reference_id
resource_type
target_jndi_name
]]

]’)

For example:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=financeService
-cuID WebSphere:cuname=com.ibm.ws.eba.financeService_0001.eba
-EJBMsgDestRefs [
[com.ibm.ws.eba.currencyService 1.0.0 ExchangeRate
jms/myQ javax.jms.Queue jms/workQ]

[com.ibm.ws.eba.accountService 0.9.0 CustomerDetails
jms/myT javax.jms.Topic jms/notificationTopic]]

]’)

9. Map virtual hosts for web modules.

You use a virtual host to associate a unique port with a web application. The aliases of a virtual
host identify the port numbers defined for that virtual host. A port number specified in a virtual host
alias is used in the URL that is used to access artifacts such as servlets and JavaServer Page
(JSP) files in a web application. For example, the alias myhost:8080 is the host_name:port_number
portion of the URL http://myhost:8080/sample.

Each WAB that is contained in a deployed asset must be mapped to a virtual host. WABs can be
installed on the same virtual host, or dispersed among several virtual hosts.

If you specify an existing virtual host in the ibm-web-bnd.xml or .xmi file for a WAB, the specified
virtual host is set by default. Otherwise, the default virtual host setting is default_host, which
provides several port numbers through its aliases:
80 An internal, insecure port used when no port number is specified
9080 An internal port
9443 An external, secure port

Unless you want to isolate your WAB from other WABs or resources on the same node,
default_host is a suitable virtual host. In addition to default_host, WebSphere Application Server
provides admin_host, which is the virtual host for the administrative console system application.
admin_host is on port 9060. Its secure port is 9043. Do not select admin_host unless the WAB
relates to system administration.

The Jython syntax for this aspect of the command is as follows.

Chapter 16. Administering OSGi applications 1035



Note: For composite bundles, the syntax is slightly different. See Step: Map virtual hosts for web
modules in composite bundles.

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-VirtualHostMappingStep [
[bundle_symbolic_name_1 bundle_version_1
web_module_name_1 virtual_host_1]
[bundle_symbolic_name_2 bundle_version_2
web_module_name_2 virtual_host_2]]

]’)

For example, for an EBA file containing two WABs (com.ibm.ws.eba.helloWorldService.web at
version 1.0.0, which is to be mapped to default_host, and
com.ibm.ws.eba.helloWorldService.withContextRoot at version 0.9.0, which is to be mapped to
test_host), this aspect of the command is as follows:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-VirtualHostMappingStep [
[com.ibm.ws.eba.helloWorldService.web 1.0.0
"HelloWorld service" default_host]
[com.ibm.ws.eba.helloWorldService.withContextRoot 0.9.0
"HelloWorld second service" test_host]]

]’)

10. Map security roles to users or groups.

The Jython syntax for this aspect of the command is as follows:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-MapRolesToUsersStep [
[role_name everyone?
all_authenticated_in_realm?
usernames groups]]

]’)

Key:

– role_name is a role name defined in the application.

– everyone? is set to Yes or No, to specify whether everyone is in the role.

– all_authenticated_in_realm? is set to Yes or No, to specify whether all authenticated users
can access the application realm.

– usernames is a list of WebSphere Application Server user names, separated by the "|"
character.

– groups is a list of WebSphere Application Server groups, separated by the "|" character.

Note: For usernames, and groups, the empty string "" means "use the default or existing value".
The default value is usually that no users or groups are bound to the role. However, when
an application contains an ibm-application-bnd.xmi file, the default value for usernames is
obtained from this file. If you are deploying an application that contains an
ibm-application-bnd.xmi file, and you want to remove the bound users, specify just the "|"
character (which is the separator for multiple user names). This setting explicitly specifies
"no users", and therefore guarantees that no users are bound to the role.

For example:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-MapRolesToUsersStep [
[ROLE1 No Yes "" ""]

1036 Administering WebSphere applications



[ROLE2 No No WABTestUser1 ""]
[ROLE3 No No "" WABTestGroup1]
[ROLE4 Yes No "" ""]]

]’)

For more information about the -MapRolesToUsersStep option, see the information for the
$AdminApp install command “MapRolesToUsers” option. This is the equivalent option for Java EE
applications. For more general information, see Security role to user or group mapping.

11. Map RunAs roles to users

You can map a specified user identity and password to a RunAs role. This mapping enables you to
specify application-specific privileges for individual users, so that they can run specific tasks using
another user identity. The Jython syntax for this aspect of the command is as follows:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-MapRunAsRolesToUsersStep [
[role_name user_name password]]

]’)

For example:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-MapRunAsRolesToUsersStep [
[Role1 User1 password1]
[AdminRole User3 password3]]

]’)

For more information about the -MapRunAsRolesToUsers option, see the information for the
$AdminApp install command “MapRunAsRolesToUsers” option. This is the equivalent option for
Java EE applications. For more general information, see Map RunAs roles to users.

12. Add authentication aliases to Blueprint resource references.

Blueprint components can access WebSphere Application Server resource references. Each
reference is declared in a Blueprint XML file, and can be secured using a Java Platform, Enterprise
Edition (Java EE) Connector Architecture (JCA) authentication alias. Each bundle in an OSGi
application can contain any number of resource reference declarations in its various Blueprint XML
files.

When you secure resource references, those resource references can be bound only to JCA
authentication aliases that exist on every server or cluster on which the application is deployed. An
OSGi application can be deployed to multiple servers and clusters that are in the same security
domain. Therefore, each JCA authentication alias must exist in either the security domain of the
target servers and clusters, or the global security domain.

You must declare the resource references in the Blueprint XML file. For example:
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:rr="http://www.ibm.com/appserver/schemas/8.0/blueprint/resourcereference">
<!-- Other Blueprint declarations ... -->

<rr:resource-reference id="resourceRef"
interface="javax.sql.DataSource"
filter="(osgi.jndi.service.name=jdbc/Account)">

<rr:res-auth>Container</rr:res-auth>
<rr:res-sharing-scope>Shareable</rr:res-sharing-scope>

</rr:resource-reference>
</blueprint>

This declaration includes the resource reference ID (for example resourceRef), the service filter (for
example jdbc/Account), the authentication type (for example Container), and the sharing setting
(for example Shareable).

Chapter 16. Administering OSGi applications 1037



The Blueprint resource references to authentication alias bindings for each bundle are stored in a
file ibm-eba-bnd.xml in the META-INF directory of that bundle. If an OSGi application contains any of
these files when it is deployed as an asset, these files provide the default authentication alias
values that are used when binding the resource references. For example:
<eba-bnd>
<resource-ref>
<jndi-name>jdbc/Acount</jndi-name>
<authentication-alias>Alias1</authentication-alias>
<interface>javax.sql.DataSource</interface>
<authentication>Container</authentication>
<sharing-scope>Shareable</sharing-scope>
<id>resourceRef</id>

</resource-ref>
</eba-bnd>

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Add authentication aliases
to Blueprint resource references in composite bundles.

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-BlueprintResourceRefPostDeployStep [
[
bundle_symbolic_name
bundle_version
blueprint_resource_reference_id
interface_name
jndi_name
authentication_type
sharing_setting
authentication_alias_name
]]

]’)

Note: The value for jndi_name must match the JNDI name that you declare in the filter attribute
of the resource reference element in the Blueprint XML file.

For example, for an EBA file that contains a bundle
com.ibm.ws.eba.helloWorldService.properties.bundle.jar at Version 1.0.0, which is to be bound
to authentication alias alias1, the command is as follows:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-BlueprintResourceRefPostDeployStep[
[com.ibm.ws.eba.helloWorldService.properties.bundle 1.0.0 resourceRef
javax.sql.DataSource jdbc/Account Container Shareable alias1]]

]’)

13. Bind web module message destination references to administered objects.

Binding a resource reference maps a resource dependency of the web application to an actual
resource available in the server runtime environment. At a minimum, you can achieve this mapping
by specifying the JNDI name under which the resource is known in the runtime environment. By
default, the JNDI name is the resource ID that you specified in the web.xml file during development
of the web application bundle (WAB). Use this option to bind resources of type
message-destination-ref (message destination reference) or resource-env-ref (resource
environment reference), as defined in the Java specification JSR-250: Common Annotations for the
Java Platform.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Bind web module message
destination references to administered objects in composite bundles.

1038 Administering WebSphere applications



AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-WebModuleMsgDestRefs [
[
bundle_symbolic_name
bundle_version
resource_reference_id
resource_type
target_jndi_name
]]

]’)

For example:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-WebModuleMsgDestRefs [
[com.ibm.ws.eba.helloWorldService.web 1.0.0
jms/myQ javax.jms.Queue jms/workQ]
[com.ibm.ws.eba.helloWorldService.web 1.0.0
jms/myT javax.jms.Topic jms/notificationTopic]]

]’)

14. Map web module resource references to resources.

Binding a resource reference maps a resource dependency of the web application to an actual
resource available in the server runtime environment. At a minimum, you can achieve this mapping
by specifying the JNDI name under which the resource is known in the runtime environment. By
default, the JNDI name is the resource ID that you specified in the web.xml file during development
of the web application bundle (WAB). Use this option to bind resources of type resource-ref
(resource reference), as defined in the Java specification JSR-250: Common Annotations for the
Java Platform.

The Jython syntax for this aspect of the command is as follows.

Note: For composite bundles, the syntax is slightly different. See Step: Map web module resource
references to resources in composite bundles.

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-WebModuleResourceRefs [
[
bundle_symbolic_name
bundle_version
resource_reference_id
resource_type
target_jndi_name
login_configuration
login_properties
extended_properties
]]

]’)

For example:
AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-WebModuleResourceRefs [
[com.ibm.ws.eba.helloWorldService.web 1.0.0
jdbc/jtaDs javax.sql.DataSource
jdbc/helloDs "" "" ""]

Chapter 16. Administering OSGi applications 1039



[com.ibm.ws.eba.helloWorldService.web 1.0.0
jdbc/nonJtaDs javax.sql.DataSource
jdbc/helloDsNonJta "" "" "extprop1=extval1"]]

]’)

Note: If you use multiple extended properties, the jython syntax is
"extprop1=extval1,extprop2=extval2".

v Configure the HTTP session manager.

To configure the HTTP session manager, you use the AdminConfig commands to configure the deployed
object represented by the appDeploy variable. Session management for OSGi applications is configured
in the same way as for enterprise applications, except for a minor difference in syntax when getting the
deployed object.

1. Get the deployed object.

Use the instructions given in Configuring applications for session management using scripting. Note
that, for enterprise applications, you use the following two line script:
deployments = AdminConfig.getid(’/Deployment:myApp/’)
appDeploy = AdminConfig.showAttribute(deployments, ’deployedObject’)

For OSGi applications, the equivalent script is the following single line:
appDeploy = AdminTask.getOSGiApplicationDeployedObject(’-cuName cu_name’)

where cu_name is the name of the composition unit. For example:
appDeploy = AdminTask.getOSGiApplicationDeployedObject(’

-cuName com.ibm.ws.eba.helloWorldService_0001.eba’)

2. Create or modify the session management options.

Use the instructions given in Configuring applications for session management using scripting. The
command usage for creating and modifying session management options is exactly the same for
enterprise applications and OSGi applications.

What to do next

After using these commands, save your changes to the master configuration by using the following
command:

AdminConfig.save()

When you save the changes to the composition unit, the associated business-level application is updated
to use the new configuration. If the business-level application is running, the bundle and configuration
updates are applied immediately.

If possible (that is, depending on the nature of the updates) the system applies the updates without
restarting the application. If you update a bundle that provides only OSGi services to the rest of the
application, then only that bundle is restarted. If you update a bundle that provides one or more packages
to other bundles, then those bundles and any bundles to which they provide packages are restarted. If,
however, a new package or service dependency is added, or an existing package or service dependency
is removed, then the application is restarted; a newly added package and service can come from a
newly-provisioned bundle, or from a bundle that has already been provisioned.

If your application has a client bundle that references an enterprise bean in a service bundle, then to
prevent the application being restarted if the service bundle is updated, configure the enterprise bean
dependency in one of the following ways:

v Declare the enterprise bean in the Export-EJB header in the bundle manifest file of the service bundle,
so that the enterprise bean is registered in the OSGi service registry, and use a reference element in

1040 Administering WebSphere applications



the Blueprint XML file of the client bundle to inject and call the enterprise bean; for more information,
see References and the Blueprint Container. This procedure is the preferred way to configure the EJB
dependency.

v In the client bundle, declare an EJB reference to the target enterprise bean, in either an @EJB
annotation or a binding XML file, and map the EJB reference to the EJB JNDI name when the
application is deployed; for more information, see “EJB references [Settings]” on page 1087.

If you do not declare the enterprise bean by using the Export-EJB header or by binding the EJB reference
into JNDI, then a JNDI binding is generated automatically when you deploy the application, provided that
there is exactly one match between the interface that the EJB class implements, and an interface that is
specified in an EJB reference. However, the JNDI name that is generated contains the bundle version,
which changes if you update the bundle; in this case, when you update the composition unit, the JNDI is
regenerated to contain the updated version, and this configuration change results in the application being
restarted.

Modifying the configuration of an OSGi composition unit that includes composite bundles by using
the editCompUnit command:

You can use the editCompUnit command to modify the configuration information for a composition unit that
contains an enterprise bundle archive (EBA) asset. If the EBA asset includes composite bundles, the
command syntax is slightly different.

Before you begin

For a full description of how you modify this configuration information, see “Modifying the configuration of
an OSGi composition unit by using wsadmin commands” on page 1029. When you work through that task,
each step where the syntax is different for composite bundles is linked to an equivalent step in this task.

About this task

An OSGi composition unit includes an EBA asset and some or all of the following configuration
information:

v Mappings from the composition unit to a target application server, web server, or cluster.

v Configuration of the session manager, context roots or virtual hosts of the application.

v Mappings from enterprise beans to JNDI names.

v Bindings to any associated web applications or blueprint resource references.

v Mappings from security roles to particular users or groups.

For several of the elements, the values you specify include bundle identifiers. If your EBA asset includes
or references composite bundles, the command syntax is slightly different. The differences for composite
bundles are described in the following steps.

Procedure

v Map context root for web modules in composite bundles.

The Jython syntax for this aspect of the command is as follows:

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-ContextRootStep [
[bundle_symbolic_name_1 bundle_version_1 context_root_1]
[bundle_symbolic_name_2 bundle_version_2 context_root_2]]

]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.Name_CBA.bundle.version/WAB.symbolic.name

Chapter 16. Administering OSGi applications 1041



For example, for a composite bundle com.ibm.ws.eba.helloWorldCBA at version 1.0.0 that contains two
WABs (com.ibm.ws.eba.helloWorldService.web at version 1.0.0, which is to be mapped to /hello/web,
and com.ibm.ws.eba.helloWorldService.withContextRoot at version 0.9.0, which is to be mapped to
/hello/service), this aspect of the command is as follows:

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-ContextRootStep [
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web 1.0.0
"/hello/web"]
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.withContextRoot 0.9.0
"/hello/service"]]

]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Map context
root for web modules.

v Bind listeners for message-driven beans in composite bundles

The Jython syntax for this aspect of the command is as follows:

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-MDBBindingsStep [
[bundle_symbolic_name_1 bundle_version_1 uri_1

activation_spec_1 destination_jndi_name_1 authentication_alias_1]
[bundle_symbolic_name_2 bundle_version_2 uri_2

activation_spec_2 destination_jndi_name_2 authentication_alias_2]]
]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.Name_CBA.bundle.version/EJBBundle.symbolic.name

In the following example, a composite bundle com.ibm.ws.eba.financeCBA, at version 1.0.0, contains
two EJB bundles, com.ibm.ws.eba.currencyService at version 1.0.0, and
com.ibm.ws.eba.accountService at version 0.9.0. The currencyService bundle contains a
message-driven bean called ExchangeRateMDB, bound to an activation specification with a JNDI name of
eis/ExchangeRate_Act_Spec; the destination JNDI name that is defined in the activation specification is
overridden by a destination whose JNDI name is jms/ExchangeRateQueue, and the authentication alias
that is defined in the activation specification is overridden by an authentication alias called
ExchangeRate_Auth_Alias. The accountService bundle contains an MDB called CustomerDetailsMDB,
bound to an activation specification with a JNDI name of eis/CustomerDetails_Act_Spec; the destination
JNDI name that is defined in the activation specification is overridden by a destination whose JNDI
name is jms/CustomerDetailsQueue, and the authentication alias that is defined in the activation
specification is overridden by an authentication alias called CustomerDetails_Auth_Alias.

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=financeService
-cuID WebSphere:cuname=com.ibm.ws.eba.financeService_0001.eba
-MDBBindingsStep [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0
META-INF/ejb-jar.xml/ExchangeRateMDB eis/ExchangeRate_Act_Spec
jms/ExchangeRateQueue ExchangeRate_Auth_Alias]
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountService 0.9.0
META-INF/ejb-jar.xml/CustomerDetailsMDB eis/CustomerDetails_Act_Spec
jms/CustomerDetailsQueue CustomerDetails_Auth_Alias]]

]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Bind
listeners for message-driven beans

v Provide EJB JNDI names in composite bundles

The Jython syntax for this aspect of the command is as follows:

1042 Administering WebSphere applications



AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-EJBMappingsStep [
[bundle_symbolic_name_1 bundle_version_1 ejb_name_1

ejb_interface_1 ejb_interface_type_1 jndi_name_1]
[bundle_symbolic_name_2 bundle_version_2 ejb_name_2

ejb_interface_2 ejb_interface_type_2 jndi_name_2]]
]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.Name_CBA.bundle.version/EJBBundle.symbolic.name

In the following example, a composite bundle com.ibm.ws.eba.financeCBA, at version 1.0.0, contains
two EJB bundles, com.ibm.ws.eba.currencyService at version 1.0.0, and
com.ibm.ws.eba.accountService at version 0.9.0. The currencyService bundle contains an enterprise
bean called ExchangeRate_ejb, with a Local interface called com.ibm.ws.eba.ejb.ExchangeRate, that is
mapped to a JNDI name of ejb/ExchangeRate. The accountService bundle contains an enterprise bean
called CustomerDetails_ejb, with a Remote interface called com.ibm.ws.eba.ejb.CustomerDetails, that
is mapped to a JNDI name of ejb/CustomerDetails.

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=financeService
-cuID WebSphere:cuname=com.ibm.ws.eba.financeService_0001.eba
-EJBMappingsStep [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0 ExchangeRate_ejb
com.ibm.ws.eba.ejb.ExchangeRate Local ejb/ExchangeRate]

[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountServicee 0.9.0 CustomerDetails_ejb
com.ibm.ws.eba.ejb.CustomerDetails Remote ejb/CustomerDetails]]

]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Provide EJB
JNDI names

v Map EJB references in composite bundles

The Jython syntax for this aspect of the command is as follows:

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-EJBRefStep [
[bundle_symbolic_name_1 bundle_version_1 uri_1

ejb_reference_name_1 business_interface_1 jndi_name_1]
[bundle_symbolic_name_2 bundle_version_2 uri_2

ejb_reference_name_2 business_interface_2 jndi_name_2]]
]’)

The uri parameter specifies the location where the EJB reference is defined.

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.Name_CBA.bundle.version/EJBBundle.symbolic.name

In the following example, a composite bundle com.ibm.ws.eba.financeCBA, at version 1.0.0, contains
two bundles, com.ibm.ws.eba.currencyService at version 1.0.0, and com.ibm.ws.eba.accountService at
version 0.9.0. The currencyService bundle contains an EJB reference called ExchangeRate, from the
CurrencyExchange enterprise bean, defined in META-INF/ejb-jar.xml that is mapped to a JNDI name of
ejb:ExchangeRate. The accountService bundle contains an EJB reference called CustomerDetails,
defined in web.xml, that is mapped to a JNDI name of ejb:CustomerDetails.

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=financeService
-cuID WebSphere:cuname=com.ibm.ws.eba.financeService_0001.eba
-EJBRefStep [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0
META-INF/ejb-jar.xml/CurrencyExchange ExchangeRate com.ibm.ws.eba.ejb.ExchangeRate

Chapter 16. Administering OSGi applications 1043



ejb:ExchangeRate]
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountService 0.9.0
WEB-INF/web.xml CustomerDetails com.ibm.ws.eba.ejb.CustomerDetails ejb:CustomerDetails]]

]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Map EJB
references

v Map EJB resource references to resources in composite bundles

The Jython syntax for this aspect of the command is as follows.

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-EJBResourceRefs [
[
bundle_symbolic_name
bundle_version
ejb_name
resource_reference_id
resource_type
target_jndi_name
resource_authentication_method
mapping_properties
extended_properties
]]

]’)

The mapping_properties parameter defines arbitrary name and value pairs for extended data source
properties, in the following format (one continuous string):

WebSphere:name=property_name1,value=property_value1,description=property_description1
+WebSphere:name=property_name2,value=property_value2,description=property_description2
+ ...

The extended_properties parameter defines extended data source custom properties in the following
format (one continuous string):

property_name1=property_value1+property_name2=property_value2+ ...

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.Name_CBA.bundle.version/EJBBundle.symbolic.name

For example:

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=financeService
-cuID WebSphere:cuname=com.ibm.ws.eba.financeService_0001.eba
-EJBResourceRefs [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0
ExchangeRate dataSource1 javax.sql.DataSource ref/ds1 ClientContainer
"WebSphere:name=mprop1,value=val1,description=desc1"
"exprop1=expropval1+exprop2=expropval2"]
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountService 0.9.0
CustomerDetails dataSource2 javax.sql.DataSource ref/ds2 WSLogin "" ""]]

]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Map EJB
resource references to resources

v Bind EJB message destination references to administered objects in composite bundles.

The Jython syntax for this aspect of the command is as follows.

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-EJBMsgDestRefs [
[

1044 Administering WebSphere applications



bundle_symbolic_name
bundle_version
ejb_name
resource_reference_id
resource_type
target_jndi_name
]]

]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.Name_CBA.bundle.version/EJBBundle.symbolic.name

For example:

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=financeService
-cuID WebSphere:cuname=com.ibm.ws.eba.financeService_0001.eba
-EJBMsgDestRefs [
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.currencyService 1.0.0
ExchangeRate jms/myQ javax.jms.Queue jms/workQ]
[com.ibm.ws.eba.financeCBA_1.0.0/com.ibm.ws.eba.accountService 0.9.0
CustomerDetails jms/myT javax.jms.Topic jms/notificationTopic]]

]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Bind EJB
message destination references to administered objects.

v Map virtual hosts for web modules in composite bundles.

The Jython syntax for this aspect of the command is as follows:

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-VirtualHostMappingStep [
[bundle_symbolic_name_1 bundle_version_1
web_module_name_1 virtual_host_1]
[bundle_symbolic_name_2 bundle_version_2
web_module_name_2 virtual_host_2]]

]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.Name_CBA.bundle.version/WAB.symbolic.name

For example, for a composite bundle com.ibm.ws.eba.helloWorldCBA at version 1.0.0 that contains two
WABs (com.ibm.ws.eba.helloWorldService.web at version 1.0.0, which is to be mapped to
default_host, and com.ibm.ws.eba.helloWorldService.withContextRoot at version 0.9.0, which is to be
mapped to test_host), this aspect of the command is as follows:

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-VirtualHostMappingStep [
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0 "HelloWorld service" default_host]
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.withContextRoot
0.9.0
"HelloWorld second service" test_host]]

]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Map virtual
hosts for web modules.

v Add authentication aliases to Blueprint resource references in composite bundles.

The Jython syntax for this aspect of the command is as follows.

Chapter 16. Administering OSGi applications 1045



AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-BlueprintResourceRefPostDeployStep [
[
bundle_symbolic_name
bundle_version
blueprint_resource_reference_id
interface_name
jndi_name
authentication_type
sharing_setting
authentication_alias_name
]]

]’)

Notes:

– For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.Name_CBA.bundle.version/inner_bundle.symbolic.name

– The value for jndi_name must match the JNDI name that you declare in the filter attribute
of the resource reference element in the Blueprint XML file.

For example, for a composite bundle com.ibm.ws.eba.helloWorldCBA at version 1.0.0 that contains a
bundle com.ibm.ws.eba.helloWorldService.properties.bundle.jar at Version 1.0.0, which is to be
bound to authentication alias alias1, the command is as follows:

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-BlueprintResourceRefPostDeployStep[
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.properties.bundle
1.0.0 resourceRef javax.sql.DataSource jdbc/Account Container Shareable alias1]]

]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Add
authentication aliases to Blueprint resource references.

v Bind web module message destination references to administered objects in composite bundles.

The Jython syntax for this aspect of the command is as follows.

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-WebModuleMsgDestRefs [
[
bundle_symbolic_name
bundle_version
resource_reference_id
resource_type
target_jndi_name
]]

]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.Name_CBA.bundle.version/WAB.symbolic.name

For example:

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-WebModuleMsgDestRefs [
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0
jms/myQ javax.jms.Queue

1046 Administering WebSphere applications



jms/workQ]
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0
jms/myT javax.jms.Topic
jms/notificationTopic]]

]’)

Note: For bundles other than composite bundles, the syntax is slightly different. See Step: Bind web
module message destination references to administered objects.

v Map web module resource references to resources in composite bundles.

The Jython syntax for this aspect of the command is as follows.

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=bla_name
-cuID WebSphere:cuname=cu_name
-WebModuleResourceRefs [
[
bundle_symbolic_name
bundle_version
resource_reference_id
resource_type
target_jndi_name
login_configuration
login_properties
extended_properties
]]

]’)

For composite bundles, the bundle symbolic name has the following syntax:
CBA.symbolic.Name_CBA.bundle.version/WAB.symbolic.name

For example:

AdminTask.editCompUnit(’[
-blaID WebSphere:blaname=helloWorldService
-cuID WebSphere:cuname=com.ibm.ws.eba.helloWorldService_0001.eba
-WebModuleResourceRefs [
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0
jdbc/jtaDs javax.sql.DataSource
jdbc/helloDs "" "" ""]
[com.ibm.ws.eba.helloWorldCBA_1.0.0/com.ibm.ws.eba.helloWorldService.web
1.0.0
jdbc/nonJtaDs javax.sql.DataSource
jdbc/helloDsNonJta "" "" "extprop1=extval1"]]

]’)

Notes:

– If you use multiple extended properties, the jython syntax is
"extprop1=extval1,extprop2=extval2".

– For bundles other than composite bundles, the syntax is slightly different. See Step: Map
web module resource references to resources.

Checking the bundle download status of an EBA asset
Updating an asset to use a new bundle version might require bundle downloads. You cannot update an
asset until bundle downloads are complete from any previous update. Before you try and update bundle
versions, you can check the bundle download status of the asset.

Chapter 16. Administering OSGi applications 1047



Before you begin

In addition to the approach given in this task, you can also check the bundle download status indirectly, by
checking the status of the associated OSGi composition unit as described in “Checking the update status
of an OSGi composition unit.”

About this task

You use the administrative console to check the bundle download status of an EBA asset. This status is
either “Bundles downloading...”, “Bundle downloads are complete”, or “No bundles downloads are
required”.

Procedure
1. Start the administrative console.

2. Navigate to Applications > Application Types > Assets > asset_name.

The Asset settings panel is displayed.

Results

The current bundle download status for all bundles and composite bundles for this asset is displayed in
the EBA Dependencies section. If the bundle downloads for any previous update are complete, the option
to update bundle versions is available under the Additional Properties section.

What to do next
v If bundle downloads for the asset are complete, or no bundle downloads are required, you can update

the asset as described in “Updating bundle versions for an EBA asset” on page 1008.

v If a new version of the EBA asset is available, and all bundle downloads for the asset are complete, you
can update the OSGi composition unit so that the business-level application uses the newer
configuration. See “Updating an OSGi composition unit” on page 1013.

Checking the update status of an OSGi composition unit
When you change the versions of bundles or composite bundles that an enterprise OSGi application uses,
or add or remove a composite bundle extension, the bundles used by the deployed application can get out
of synchronization with those bundles that are available. To check that your business-level application is
running the most recent version of the EBA asset and any composite bundle extensions, you check the
update status of the associated OSGi composition unit.

About this task

When an EBA asset is updated, or a composite bundle extension is added or replaced, the update does
not automatically affect the running business-level application. To update the running application, you
update the composition unit of the business-level application that contains the asset.

The deployment status shows whether an updated version is available of the EBA asset or composite
bundle extension that is contained in the composition unit. There are four distinct deployment statuses for
an OSGi composition unit:

Using latest OSGi application deployment.
The composition unit is running the latest configuration of the backing asset and any composite
bundle extensions.

New OSGi application deployment not yet available because it requires bundles that are still
downloading.

The bundle downloads that were started after you last updated an asset, or added a composite
bundle extension, have not yet finished.

1048 Administering WebSphere applications



New OSGi application deployment available.
The backing asset is available at a newer configuration than the configuration that is currently
running in this composition unit, or a composite bundle extension has been added or replaced.

New OSGi application deployment cannot be applied because bundle downloads have failed.
The bundle downloads that were started after you last updated an asset, or added a composite
bundle extension, have not succeeded. Resolve the problem, then download the bundles again.
See “Interacting with the OSGi bundle cache” on page 1066.

You can check whether the OSGi composition unit is up to date by using the administrative console, or by
using the viewCompUnit command.

Procedure
v Check the update status of the OSGi composition unit using the administrative console.

1. Start the administrative console.

2. Navigate to Applications > Application Types > Business-level applications >
application_name > composition_unit_name.

The Composition unit settings panel is displayed. The deployment status is displayed under [General
Properties] OSGi application deployment status, and shows one of the following values:

– Using latest OSGi application deployment.

– New OSGi application deployment not yet available because it requires bundles that are still
downloading.

– New OSGi application deployment available.

– New OSGi application deployment cannot be applied because bundle downloads have failed.

v Check the update status of the OSGi composition unit using the viewCompUnit command.

1. Open a wsadmin command prompt.

2. Run the following jython command:
AdminTask.viewCompUnit(’[-blaID WebSphere:blaname=bla_name

-cuID WebSphere:cuname=cu_name ]’)

For more information about using the viewCompUnit command, see the step “Display composition
units and configuration settings” in topic Managing composition units using wsadmin scripting.

The set of information about the OSGi composition unit is displayed, including the composition unit
status. This status is one of the following values:

– Using latest OSGi application deployment.

– New OSGi application deployment not yet available because it requires bundles that are still
downloading.

– New OSGi application deployment available.

– New OSGi application deployment cannot be applied because bundle downloads have failed.

What to do next
v If there is no update in progress, or bundle downloads for the asset have not succeeded, you can

update the asset as described in “Updating bundle versions for an EBA asset” on page 1008.

v If a new OSGi application deployment is available, you can update the OSGi composition unit so that
the business-level application uses the newer configuration. See “Updating an OSGi composition unit”
on page 1013.

Chapter 16. Administering OSGi applications 1049



Administering bundle repositories
OSGi applications can share many common utility bundles. To simplify maintenance, and reduce the
application footprint, the application does not have to include its own copy of each utility bundle. Instead,
bundles can be hosted in a bundle repository, from where they are retrieved during deployment. You can
administer bundles and composite bundles held in the internal bundle repository of the product, and also
add links to external bundle repositories.

About this task

WebSphere Application Server includes an internal bundle repository, in which you can store the bundles
and composite bundles for your OSGi applications. The external bundle repositories are bundle
repositories that are available outside of WebSphere Application Server. If your OSGi applications
reference bundles that are stored in an external bundle repository, you must configure a link (name and
URL) to the repository so that the provisioner can retrieve the bundles when required. When an OSGi
application is imported as an asset, the provisioner attempts to satisfy all its dependencies by using the
contents of the asset, the contents of the internal bundle repository, and the contents of any available
external bundle repositories.

You can link to any external bundle repository that complies with the OSGi Alliance RFC-0112 Bundle
Repository Draft Specification. Such a repository consists of a website with a bundle repository XML file
that describes an OSGi-compliant repository. Depending on how the external bundle repository is
implemented, you might not be able to use it to provision services, or to store composite bundles or
bundles referenced by composite bundles.

If your bundle includes Blueprint XML files that specify service or reference elements, and the bundle is
included in an EBA asset or installed in the internal bundle repository, then these elements are respected
during provisioning and appropriate services are provisioned when needed. For more information, see
Provisioning for OSGi applications.

Procedure
v Move bundles from an OSGi application to a bundle repository.

You can change the configuration of an enterprise OSGi application so that bundles and composite
bundles that were directly contained in the enterprise bundle archive (EBA) file are instead pulled in by
reference and provisioned from a repository. Before you deploy the application, you can move bundles
or composite bundles from the EBA file to a bundle repository. You might want to move bundles to
decrease the size of the EBA file, or so that bundles can be shared between multiple applications rather
than each application deploying its own copy of a common library.

v List, delete, add, or show details for bundles and composite bundles in the internal bundle repository.

Do this using the administrative console or wsadmin commands:

– “Administering bundles in the internal bundle repository” on page 1051

– “Administering bundles in the internal bundle repository using wsadmin commands” on page 1053

v List, delete, add, modify, or show details for links to external bundle repositories.

Do this using the administrative console or wsadmin commands:

– “Administering links to external bundle repositories” on page 1060

– “Administering links to external bundle repositories using wsadmin commands” on page 1061

v Interact with the OSGi bundle cache.

Moving bundles from an OSGi application to a bundle repository
You can change the configuration of an enterprise OSGi application so that bundles and composite
bundles that were directly contained in the enterprise bundle archive (EBA) file are instead pulled in by
reference and provisioned from a repository.

1050 Administering WebSphere applications



Before you begin

After you import your application as an asset, you can no longer change the direct contents of the asset.To
update bundles and composite bundles that are specified in an asset, you add the updated versions to a
repository then apply the updates to the asset. See Updating bundle versions in a deployed OSGi
application.

About this task

When you first create an OSGi application, each bundle and composite bundle in the application is either
directly contained in the EBA file or pulled in by reference. Before you deploy the application, you can
move bundles or composite bundles from the EBA file to a bundle repository. You might want to move
bundles to decrease the size of the EBA file, or so that bundles can be shared between multiple
applications rather than each application deploying its own copy of a common library.

Composite bundles, and any bundles that are used by composite bundles, can be moved to the internal
bundle repository or to an external repository that can process composite bundles. You can move the
whole composite bundle to the repository, or move one or more of the bundles that the composite bundle
uses to the repository. For more information, see Composite bundles.

Procedure
1. Use your preferred development tool to remove the bundle or composite bundle from the EBA file.

See Developing an OSGi application.

2. Ensure that the EBA file has an application manifest and that the bundle or composite bundle is listed
in the Application-Content header of the application manifest.

See Enterprise bundle archives.

3. Install the bundle that you removed into a bundle repository.

Composite bundles, and bundles referenced by composite bundles, are installed in the internal bundle
repository or in an external repository that can process composite bundles. See “Administering bundle
repositories” on page 1050.

What to do next

You can deploy your OSGi application. See Deploying an OSGi application as a business-level application.

Administering bundles in the internal bundle repository
Use the administrative console to list, delete, add, or show further details for bundles and composite
bundles that are held in the bundle repository that is included in the product.

Before you begin

You can administer bundles and composite bundles in the internal bundle repository by using the
administrative console as described in this topic, or by using wsadmin commands as described in
“Administering bundles in the internal bundle repository using wsadmin commands” on page 1053.

About this task

WebSphere Application Server includes an internal bundle repository, in which you can store the bundles
and composite bundles for your OSGi applications.

If your OSGi applications are configured to expect to find certain bundles in the internal bundle repository,
you must add those bundles to the repository. Composite bundles can either be included directly in your
applications, or provisioned from the internal bundle repository or from an external repository that can
process composite bundles. If your bundle includes Blueprint XML files that specify service or reference

Chapter 16. Administering OSGi applications 1051



elements, and the bundle is included in an EBA asset or installed in the internal bundle repository, then
these elements are respected during provisioning and appropriate services are provisioned when needed.
For more information, see Provisioning for OSGi applications.

You can install bundles singly, or you can install a set of bundles packaged as a compressed archive file
with a .zip file extension. In both cases, the bundles are available individually in the repository. If you
install a composite bundle in a bundle repository, and the composite bundle includes bundles by reference,
you must ensure that the referenced bundles are also available in the same repository. If you use the
internal bundle repository, and the composite bundle directly contains bundles, the contained bundles are
not listed separately and are only available as part of the composite bundle. For more information, see
Composite bundles.

You can list, delete, add, or show further details for bundles and composite bundles that are held in the
internal bundle repository.

Procedure
1. Start the administrative console.

2. Navigate to Environment > OSGi bundle repositories > Internal bundle repository.

The list of bundles and composite bundles stored in the internal bundle repository is displayed in the
“Internal bundle repository [Collection]” on page 1095 form.

3. Delete, add, or show details of bundles that are held in the internal bundle repository.

v To delete one or more bundles from the repository, select the required bundles then click Delete.

You cannot delete a bundle if it is referenced by a composite bundle. You must delete the composite
bundle first, then delete the bundle.

v To add a new bundle or composite bundle to the repository:

a. Click New. The “Upload bundle [Settings]” on page 1105 form is displayed.

b. Enter the path to the bundle, composite bundle or grouped-up set of bundles that you want to
add. Each individual bundle must be packaged as a .jar file, and must contain a
suitably-configured bundle manifest file. Each composite bundle must be packaged as a
compressed archive file with a .cba file extension, and must contain a suitably-configured
composite bundle manifest file. Each grouped-up set of bundles must be packaged as a
compressed archive file with a .zip file extension.

c. Click OK. The file is uploaded, and displayed in the list of bundles and composite bundles in the
“Internal bundle repository [Collection]” on page 1095 form.

Note: If you add a composite bundle that exports a package from a contained bundle, and the
attributes and directives that are specified for that package in the Export-Package header of
the composite bundle manifest file do not exactly match those specified in the manifest file of
the contained bundle, the composite bundle is not added but no error message is displayed.
However, the following error is written to the WebSphere Application Server FFDC log
directory:
[18/04/12 11:32:43:562 BST] FFDC Exception:com.ibm.ws.eba.admin.utils.EBAAdminCommandException
SourceId:com.ibm.ws.console.eba.utils.WsadminHelper ProbeId:74
com.ibm.ws.eba.admin.utils.EBAAdminCommandException:
CWSAJ0063E: Cannot install the Composite Bundle Archive, test.cba_1.0.0.201203301454,
because the following export packages differ from those contained by the Composite Bundle Archive:
[org.apache.velocity] at com.ibm.ws.eba.admin.bundles.OBRRepositoryWorkspaceImpl.
validateCBADeploy(OBRRepositoryWorkspaceImpl.java:660)

.

.

.

v To show the details for an existing bundle or composite bundle in the repository, click the name of
the bundle or composite bundle. The details are displayed in the “Internal bundle repository
[Settings]” on page 1095 form. You cannot modify these details.

1052 Administering WebSphere applications



4. If you added or removed a bundle or composite bundle, save your changes to the master
configuration.

What to do next
v If you updated a bundle or composite bundle, and you want to update an asset that uses it, see

“Updating bundle versions for an EBA asset” on page 1008.

v If you added or updated a bundle or composite bundle, and you want to install an enterprise OSGi
application that uses it, see Deploying an OSGi application as a business-level application.

v If you added or updated a composite bundle, and you want to use it to extend a composition unit, see
“Adding or removing extensions for an OSGi composition unit” on page 1017.

Administering bundles in the internal bundle repository using wsadmin commands
Use wsadmin commands to list, add, remove, or show further details for bundles and composite bundles
that are held in the bundle repository that is included in the product.

Before you begin

You can administer bundles and composite bundles in the internal bundle repository by using wsadmin
commands as described in this topic, or by using the administrative console as described in “Administering
bundles in the internal bundle repository” on page 1051.

About this task

WebSphere Application Server includes an internal bundle repository, in which you can store the bundles
and composite bundles for your OSGi applications.

If your OSGi applications are configured to expect to find certain bundles in the internal bundle repository,
you must add those bundles to the repository. Composite bundles can either be included directly in your
applications, or provisioned from the internal bundle repository or from an external repository that can
process composite bundles. If your bundle includes Blueprint XML files that specify service or reference
elements, and the bundle is included in an EBA asset or installed in the internal bundle repository, then
these elements are respected during provisioning and appropriate services are provisioned when needed.
For more information, see Provisioning for OSGi applications.

You can install bundles singly, or you can install a set of bundles packaged as a compressed archive file
with a .zip file extension. In both cases, the bundles are available individually in the repository. If you
install a composite bundle in a bundle repository, and the composite bundle includes bundles by reference,
you must ensure that the referenced bundles are also available in the same repository. If you use the
internal bundle repository, and the composite bundle directly contains bundles, the contained bundles are
not listed separately and are only available as part of the composite bundle. For more information, see
Composite bundles.

You can list, add, remove, or show further details for bundles and composite bundles that are held in the
internal bundle repository.

Procedure
v List all bundles and composite bundles that are held in the internal bundle repository.

Use the listLocalRepositoryBundles command. For example:

AdminTask.listLocalRepositoryBundles()

For more information, see “listLocalRepositoryBundles command” on page 1054.

Notes:

– The list includes any bundles that you have added since you last saved your changes, and
excludes any bundles that you have removed since you last saved your changes.

Chapter 16. Administering OSGi applications 1053



– The output from this command is formatted so that you can copy the list of bundles, then
paste them into the removeLocalRepositoryBundles command.

v Add a bundle, composite bundle or grouped-up set of bundles to the internal bundle repository.

Use the addLocalRepositoryBundle command. For example:

AdminTask.addLocalRepositoryBundle(’-file path’)

Each individual bundle must be packaged as a .jar file, and must contain a suitably-configured bundle
manifest file. Each composite bundle must be packaged as a compressed archive file with a .cba file
extension, and must contain a suitably-configured composite bundle manifest file. Each grouped-up set
of bundles must be packaged as a compressed archive file with a .zip file extension.

For more information, see “addLocalRepositoryBundle command” on page 1055.

v Remove one or more bundles or composite bundles from the internal bundle repository.

Use the removeLocalRepositoryBundle or removeLocalRepositoryBundles command. For example:

AdminTask.removeLocalRepositoryBundle(’-symbolicName bundle_symbolic_name
-version bundle_version’)

AdminTask.removeLocalRepositoryBundles([
’bundle1_symbolic_name;bundle1_version
bundle2_symbolic_name;bundle2_version
bundle3_symbolic_name;bundle3_version
’

])

Notes:

– The output from the listLocalRepositoryBundles command is formatted so that you can
copy the list of bundles, then paste them into the removeLocalRepositoryBundles command.

– You cannot remove composite bundles at the same time as you remove any bundles that
they reference. You must first remove the composite bundles, then run the
removeLocalRepositoryBundles command a second time to remove the referenced bundles.

For more information, see “removeLocalRepositoryBundle command” on page 1056 and
“removeLocalRepositoryBundles command” on page 1057.

v Show further details (for example, imported packages, exported packages, and required bundles) for a
bundle or composite bundle in the internal bundle repository.

Use the showLocalRepositoryBundle command. For example:

AdminTask.showLocalRepositoryBundle(’-symbolicName bundle_symbolic_name
-version bundle_version’)

For more information, see “showLocalRepositoryBundle command” on page 1059.

What to do next
v If you added or removed a bundle or composite bundle, save your changes to the master configuration.

v If you updated a bundle or composite bundle, and you want to update an asset that uses it, see
“Updating bundle versions for an EBA asset using the editAsset command” on page 1009.

v If you added or updated a bundle or composite bundle, and you want to install an enterprise OSGi
application that uses it, see Deploying an OSGi application as a business-level application.

v If you added or updated a composite bundle, and you want to use it to extend a composition unit, see
“Adding or removing extensions for an OSGi composition unit using wsadmin commands” on page
1018..

listLocalRepositoryBundles command:

Use the listLocalRepositoryBundles command to list all bundles held in the bundle repository that is
included in the product.

1054 Administering WebSphere applications



To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists all bundles that are held in the internal bundle repository. The list includes any bundles
that you have added since you last saved your changes, and excludes any bundles that you have
removed since you last saved your changes.

Target object

None.

Required parameters

None.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.listLocalRepositoryBundles()

addLocalRepositoryBundle command:

Use the addLocalRepositoryBundle command to add a bundle, composite bundle or grouped-up set of
bundles to the internal bundle repository that is included in the product.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Chapter 16. Administering OSGi applications 1055



After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command adds a bundle, a composite bundle or a grouped-up set of bundles to the internal bundle
repository.

You can install bundles singly, or you can install a set of bundles packaged as a compressed archive file
with a .zip file extension. In both cases, the bundles are available individually in the repository. If you
install a composite bundle in a bundle repository, and the composite bundle includes bundles by reference,
you must ensure that the referenced bundles are also available in the same repository. If you use the
internal bundle repository, and the composite bundle directly contains bundles, the contained bundles are
not listed separately and are only available as part of the composite bundle. For more information, see
Composite bundles.

Target object

None

Required parameters

-file path
The path and file name of a compressed archive file that has a .jar, .cba or .zip file extension and is
available on the server file system.

Each individual bundle must be packaged as a .jar file, and must contain a suitably-configured
bundle manifest file. Each composite bundle must be packaged as a compressed archive file with a
.cba file extension, and must contain a suitably-configured composite bundle manifest file. Each
grouped-up set of bundles must be packaged as a compressed archive file with a .zip file extension.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.addLocalRepositoryBundle(’-file path’)

removeLocalRepositoryBundle command:

Use the removeLocalRepositoryBundle command to remove a bundle or composite bundle from the bundle
repository that is included in the product.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

1056 Administering WebSphere applications



print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes a bundle or composite bundle from the internal bundle repository.

You cannot delete a bundle if it is contained in, or referenced by, a composite bundle. You must delete the
composite bundle first, then delete the bundle.

Target object

The specified bundle.

Required parameters

-symbolicName bundle_symbolic_name
One of the following:

v The non-localizable name for this bundle.

v The bundle symbolic name of this composite bundle.

The bundle symbolic name, together with the bundle version, uniquely identifies a bundle.

-version bundle_version
One of the following:

v The version of this bundle.

v The version of this composite bundle.

The bundle version is in the form n.n.n, for example 1.1.0. The bundle symbolic name, together with
the bundle version, uniquely identifies a bundle.

Note: You can use the listLocalRepositoryBundles command to list the symbolic names and versions of
the bundles currently held in the repository.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.removeLocalRepositoryBundle(’-symbolicName bundle_symbolic_name

-version bundle_version’)

removeLocalRepositoryBundles command:

Use the removeLocalRepositoryBundles command to remove bundles and composite bundles from the
bundle repository that is included in the product.

Chapter 16. Administering OSGi applications 1057



To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes bundles and composite bundles from the internal bundle repository.

You cannot remove composite bundles at the same time as you remove any bundles that they reference.
You must first remove the composite bundles, then run the removeLocalRepositoryBundles command a
second time to remove the referenced bundles.

You can use the listLocalRepositoryBundles command to list the symbolic names and versions of the
bundles currently held in the repository. The output from the listLocalRepositoryBundles command is
formatted so that you can copy the list of bundles, then paste them into the
removeLocalRepositoryBundles command.

Target object

The specified bundles.

Required parameters

A list of the bundles to be removed.

The list entry for each bundle or composite bundle contains the bundle symbolic name and the bundle
version. The bundle version is in the form n.n.n, for example 1.1.0. The bundle symbolic name, together
with the bundle version, uniquely identifies a bundle.

Conditional parameters

None.

Optional parameters

None.

1058 Administering WebSphere applications



Example
AdminTask.removeLocalRepositoryBundles([

’bundle1_symbolic_name;bundle1_version
bundle2_symbolic_name;bundle2_version
bundle3_symbolic_name;bundle3_version
’

])

showLocalRepositoryBundle command:

Use the showLocalRepositoryBundle command to show further details (in particular all manifest header
entries) for a bundle in the bundle repository that is included in the product.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command shows the values of the following properties for the specified bundle stored in the internal
bundle repository:

v Bundle symbolic name

v Bundle version

v Bundle name

v Bundle description

v Imported packages

v Exported packages

v Required bundles

For more information about these properties, see “Internal bundle repository [Settings]” on page 1095.

Target object

The specified bundle.

Required parameters

-symbolicName bundle_symbolic_name
The non-localizable name for this bundle. The bundle symbolic name, together with the bundle
version, uniquely identifies a bundle.

-version bundle_version
The version of this bundle. The bundle version is in the form n.n.n, for example 1.1.0. The bundle
symbolic name, together with the bundle version, uniquely identifies a bundle.

Note: You can use the listLocalRepositoryBundles command to list the symbolic names and versions of
the bundles currently held in the repository.

Chapter 16. Administering OSGi applications 1059



Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.showLocalRepositoryBundle(’-symbolicName bundle_symbolic_name

-version bundle_version’)

Administering links to external bundle repositories
Use the administrative console to list, delete, add, modify, or show details for links to external bundle
repositories.

Before you begin

You can administer links to external bundle repositories by using the administrative console as described
in this topic, or by using wsadmin commands as described in “Administering links to external bundle
repositories using wsadmin commands” on page 1061.

About this task

The external bundle repositories are bundle repositories that are available outside of WebSphere
Application Server. If your OSGi applications reference bundles that are stored in an external bundle
repository, you must configure a link (name and URL) to the repository so that the provisioner can retrieve
the bundles when required. When an OSGi application is imported as an asset, the provisioner attempts to
satisfy all its dependencies by using the contents of the asset, the contents of the internal bundle
repository, and the contents of any available external bundle repositories.

Depending on how the external bundle repository is implemented, you might not be able to use it to
provision services, or to store composite bundles or bundles referenced by composite bundles. If your
bundle includes Blueprint XML files that specify service or reference elements, and the bundle is included
in an EBA asset or installed in the internal bundle repository, then these elements are respected during
provisioning and appropriate services are provisioned when needed. For more information, see
Provisioning for OSGi applications.

Procedure
1. Start the administrative console.

2. Navigate to Environment > OSGi bundle repositories > External bundle repositories.

The list of external bundle repository links is displayed in the “External bundle repositories [Collection]”
on page 1092 form.

3. Delete, add, show, or modify links to external bundle repositories.

v To delete one or more repository links from the list, select the required links then click Delete.

v To add a new link to an external bundle repository, click New then type the link properties (name,
optional description, and URL of the bundle repository XML file) into the “External bundle
repositories [Settings]” on page 1093 form.

v To show or modify an existing link to an external bundle repository, click the name of the link. The
link properties are displayed. If required, modify the link properties (optional description, and URL of
the bundle repository XML file) in the “External bundle repositories [Settings]” on page 1093 form.
You cannot modify the bundle repository name property.

1060 Administering WebSphere applications



4. If you add, modify, or remove a link to an external bundle repository, save your changes to the master
configuration.

If you add or modify a link to an external bundle repository, you must save the changes before you can
install an enterprise bundle archive (EBA) that depends on a bundle in that repository.

Administering links to external bundle repositories using wsadmin commands
Use wsadmin commands to list, remove, add, modify, or show details for links to external bundle
repositories.

Before you begin

You can administer links to external bundle repositories by using wsadmin commands as described in this
topic, or by using the administrative console as described in “Administering links to external bundle
repositories” on page 1060.

About this task

The external bundle repositories are bundle repositories that are available outside of WebSphere
Application Server. If your OSGi applications reference bundles that are stored in an external bundle
repository, you must configure a link (name and URL) to the repository so that the provisioner can retrieve
the bundles when required. When an OSGi application is imported as an asset, the provisioner attempts to
satisfy all its dependencies by using the contents of the asset, the contents of the internal bundle
repository, and the contents of any available external bundle repositories.

Depending on how the external bundle repository is implemented, you might not be able to use it to
provision services, or to store composite bundles or bundles referenced by composite bundles. If your
bundle includes Blueprint XML files that specify service or reference elements, and the bundle is included
in an EBA asset or installed in the internal bundle repository, then these elements are respected during
provisioning and appropriate services are provisioned when needed. For more information, see
Provisioning for OSGi applications.

Procedure
v List all links to external bundle repositories.

Use the listExternalBundleRepositories command. For example:

AdminTask.listExternalBundleRepositories()

For more information, see “listExternalBundleRepositories command” on page 1062.

Note: The list includes any repository links that you have added since you last saved your changes,
and excludes any repository links that you have removed since you last saved your changes.

v Show the configured parameters of an external bundle repository.

Use the showExternalBundleRepository command. For example:

AdminTask.showExternalBundleRepository(’-name bundle_repository_name’)

For more information, see “showExternalBundleRepository command” on page 1065.

v Remove a link to an external bundle repository.

Use the removeExternalBundleRepository command. For example:

AdminTask.removeExternalBundleRepository(’-name bundle_repository_name’)

For more information, see “removeExternalBundleRepository command” on page 1063.

v Add a link to an external bundle repository.

Use the addExternalBundleRepository command. For example:

AdminTask.addExternalBundleRepository(’-name bundle_repository_name
-url bundle_repository_URL
[-description bundle_repository_description]’)

Chapter 16. Administering OSGi applications 1061



Square brackets (“[ ]”) indicate that a parameter is optional.

For more information, see “addExternalBundleRepository command” on page 1063.

v Modify a link to an external bundle repository.

Use the modifyExternalBundleRepository command. For example:

AdminTask.modifyExternalBundleRepository(’-name bundle_repository_name
[-url bundle_repository_URL]
[-description bundle_repository_description]’)

Square brackets (“[ ]”) indicate that a parameter is optional.

For more information, see “modifyExternalBundleRepository command” on page 1064.

What to do next

If you add, modify, or remove a link to an external bundle repository, save your changes to the master
configuration.

If you add or modify a link to an external bundle repository, you must save the changes before you can
install an enterprise bundle archive (EBA) that depends on a bundle in that repository.

listExternalBundleRepositories command:

Use the listExternalBundleRepositories command to list all links to external bundle repositories.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists all links to external bundle repositories. The list includes any repository links that you
have added since you last saved your changes, and excludes any repository links that you have removed
since you last saved your changes.

Target object

None.

Required parameters

None.

Conditional parameters

None.

1062 Administering WebSphere applications



Optional parameters

None.

Example
AdminTask.listExternalBundleRepositories()

removeExternalBundleRepository command:

Use the removeExternalBundleRepository command to remove a link to an external bundle repository.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes a link to an external bundle repository.

Target object

The specified bundle repository link.

Required parameters

-name bundle_repository_name
The name by which the bundle repository link is known. You can use the
listExternalBundleRepositories command to list the names of existing bundle repository links.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.removeExternalBundleRepository(’-name bundle_repository_name’)

addExternalBundleRepository command:

Use the addExternalBundleRepository command to add a link to an external bundle repository.

Chapter 16. Administering OSGi applications 1063



To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command adds a link to an external bundle repository.

Target object

None

Required parameters

-name bundle_repository_name
The name by which you want the external bundle repository link to be known.

-url bundle_repository_URL
The URL of the bundle repository XML file. For example, http://external_location/repository.xml.

Conditional parameters

None.

Optional parameters

-description bundle_repository_description
An optional description of the bundle repository.

Example
AdminTask.addExternalBundleRepository(’-name bundle_repository_name

-url http://external_location/repository.xml
[-description bundle_repository_description]’)

Square brackets (“[ ]”) indicate that a parameter is optional.

modifyExternalBundleRepository command:

Use the modifyExternalBundleRepository command to modify a link to an external bundle repository.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

1064 Administering WebSphere applications



Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command modifies a link to an external bundle repository.

Target object

The specified external bundle repository link.

Required parameters

-name bundle_repository_name
The name of the external bundle repository link. You cannot change this value. You can use the
listExternalBundleRepositories command to list the names of existing bundle repository links.

Conditional parameters

None.

Optional parameters

-url bundle_repository_URL
The modified URL for the external bundle repository XML file.

-description bundle_repository_description
The modified description of the external bundle repository link.

Example
AdminTask.modifyExternalBundleRepository(’-name bundle_repository_name

[-url http://external_location/repository.xml]
[-description bundle_repository_description]’)

Square brackets (“[ ]”) indicate that a parameter is optional.

showExternalBundleRepository command:

Use the showExternalBundleRepository command to show the configured parameters of an external
bundle repository.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

Chapter 16. Administering OSGi applications 1065



v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command shows the name, description when available, and URL of the bundle repository XML file, of
an external bundle repository.

Target object

None.

Required parameters

-name repository_name
The name of a link to an external bundle repository.

Note: You can use the listExternalBundleRepositories command to list all links to external bundle
repositories.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.showExternalBundleRepository(-name ExternalRepository1)

Interacting with the OSGi bundle cache
The bundle cache is a cell-wide store (or server-wide for single-server systems) of bundles that are
referenced by OSGi applications, and that have been downloaded from both internal and external
repositories. You can interact with the bundle cache using either the administrative console, or the
methods of the OSGi BundleCacheManager MBean.

About this task

You can get an up-to-date list of the bundles in the bundle cache, check if all bundles are successfully
downloaded, and request that one or more bundles be downloaded again. For a given bundle you can
view the bundle size, the download status, and a list of the assets and composition units that use the
bundle. You can also view and refresh the repository URL for the repository that hosts the bundle.

The main differences between interacting with the OSGi bundle cache by using the administrative console
and by using the MBean interface are as follows:

v You can use the “Bundle cache [Collection]” on page 1080 panel to change the sort order in the table,
and to filter by (for example) bundle name, or by bundle state.

v You can use the MBean interface to remove a bundle from the cache.

1066 Administering WebSphere applications



The methods for the OSGi BundleCacheManager MBean interface are documented in the Additional
Application Programming Interfaces (APIs) section of the generated API documentation.

You use the MBean methods with the AdminControl object of the wsadmin scripting client. For example:

objNameString = AdminControl.completeObjectName(’WebSphere:type=BundleCacheManager,*’)
print AdminControl.invoke(objNameString, ’areAllDownloadsComplete’)

For more information about using MBean methods with the AdminControl object, see the “invoke” and
“invoke_jmx” sections of Commands for the AdminControl object using wsadmin scripting.

Some common tasks for which you might interact with the bundle cache are as follows:

Procedure
v Interrogate the state of bundles.

You can use the MBean interface to complete the following tasks:

– Check the state of a specific bundle.

– List the completed downloads.

– List the unsuccessful downloads.

Similarly, the state of all bundles is displayed on the “Bundle cache [Collection]” on page 1080 panel.
This is one of the following states:

Unknown
The bundle is not in the bundle cache and there has been no request to download the bundle.

Download requested
A request has been issued to download the bundle, but the download has not yet begun.

Downloading
The bundle is downloading.

Downloaded
The bundle download is complete.

Failed The bundle download has failed.

Unsaved
The bundle is unsaved if you have imported an asset and not yet saved your changes to the
master configuration.

The bundle is not downloaded until you save your changes.

v Check that all bundle downloads are complete before adding an enterprise bundle archive (EBA) asset
to a business-level application.

If all bundle downloads are complete, the state of every bundle is displayed as “Downloaded” on the
“Bundle cache [Collection]” on page 1080 panel.

You can use scripting to import an EBA file as an asset, then add the EBA asset to a business-level
application. However, you cannot add the asset to the application until all the bundles are downloaded.
You might therefore choose to code your script to call the areAllDownloadsComplete () method, then
wait until the method confirms that all bundles are downloaded before adding the EBA asset to the
business-level application.

v Resolve an unsuccessful bundle download.

If a bundle does not download, complete the following steps:

1. Fix the cause (for example an incorrect repository address, or a network failure).

The Bundle cache [Settings] form for the bundle shows the repository address, and includes a
button to refresh this address. This is useful if a bundle has been moved, for example from the

Chapter 16. Administering OSGi applications 1067



internal bundle repository to an external repository. If the bundle state is “Failed”, the “Bundle
download exceptions” pane is displayed. This pane contains trace information to help you
understand why the bundle download has failed.

2. Download the bundle again.

Use either of the following approaches:

– Use the resetBundleDownload () method to make the bundle available for download again, then
use the downloadBundles () method to retry the download.

– On the “Bundle cache [Collection]” on page 1080 panel, select one or more bundles then click
Download Bundle Again.

v Remove a bundle from the cache.

You can do this only by using the MBean interface; complete the following steps:

– Uninstall the applications that use the bundle.

– Use the removeBundleFromCache () method to remove the bundle from the bundle cache.

– Reinstall the applications.

Exporting and importing a deployment manifest file
You can export the deployment manifest file from an application, then import the manifest file into another
instance of the same application located somewhere else. This process is useful when an application
moves from one environment to another, for example from a test environment to a production environment.

About this task

A deployment manifest file, META-INF/DEPLOYMENT.MF, is created automatically when you import an EBA
asset. The deployment manifest file lists, at specific versions, all the bundles and composite bundles that
make up the application, including bundles that are determined following dependency analysis. The
manifest file is used to ensure that each time an application server starts, the bundles that make up the
application are the same.

You can export the current deployment manifest from an EBA asset, then import the deployment manifest
into another asset that contains the same application. The target asset then uses the imported manifest
instead of the generated manifest. This is useful during application development, when an application is
fully tested and moves to a production environment. By importing the deployment manifest from the test
environment, you ensure that the bundles and their versions that make up the application in the production
environment are exactly the same as the bundles that make up the application in the test environment.

Note:

v Do not edit an exported manifest file. Use the export and import options only in situations where
you can treat the exported file as a “black box”.

v If you deploy an application and subsequently extend it by adding one or more composite
bundles, information about the composite bundles is not included in the exported deployment
manifest file.

Procedure
v Export the deployment manifest file from an EBA asset.

You might want to do this to save the information, or to import it into another identical application.

v Import the deployment manifest file to an EBA asset.

When you import the file, the bundles are resolved. If the bundles cannot be resolved, the import does
not complete and an exception message is generated.

1068 Administering WebSphere applications



Exporting a deployment manifest
You can export the current deployment manifest file from an enterprise bundle archive (EBA) asset. You
might want to do this to save the information, or to import it into another identical application.

Before you begin

You can export a deployment manifest by using the administrative console as described in this topic, or by
using wsadmin commands, as described in “Exporting a deployment manifest using the
exportDeploymentManifest command.”

About this task

A deployment manifest file, META-INF/DEPLOYMENT.MF, is created automatically when you import an EBA
asset. The deployment manifest file lists, at specific versions, all the bundles and composite bundles that
make up the application, including bundles that are determined following dependency analysis. The
manifest file is used to ensure that each time an application server starts, the bundles that make up the
application are the same.

You can export the current deployment manifest from an EBA asset, then import the deployment manifest
into another asset that contains the same application. The target asset then uses the imported manifest
instead of the generated manifest. This is useful during application development, when an application is
fully tested and moves to a production environment. By importing the deployment manifest from the test
environment, you ensure that the bundles and their versions that make up the application in the production
environment are exactly the same as the bundles that make up the application in the test environment. Do
not edit an exported manifest file. Use the export and import options only in situations where you can treat
the exported file as a “black box”.

Procedure
1. Start the administrative console.

2. Navigate to Applications > Application Types > Assets.

3. Click the name of the asset from which you want to export the deployment manifest. The Asset
settings panel is displayed.

4. Click [Additional Properties] Export the deployment manifest from this application.

5. Use the web browser dialog that is displayed to save the file to your required location. If the dialog
does not offer the options that you need, check you web browser options, for example the options to
download or save files.

Results

The current deployment manifest for the application is exported.

What to do next

The deployment manifest is available to import into an EBA asset. See “Importing a deployment manifest”
on page 1071.

Exporting a deployment manifest using the exportDeploymentManifest command
You can use this command to export the current deployment manifest file from an enterprise bundle
archive (EBA) asset. You might want to do this to save the information, or to import it into another identical
application.

Chapter 16. Administering OSGi applications 1069



Before you begin

You can export a deployment manifest by using wsadmin commands, as described in this topic, or by
using the administrative console, as described in “Exporting a deployment manifest” on page 1069.

About this task

A deployment manifest file, META-INF/DEPLOYMENT.MF, is created automatically when you import an EBA
asset. The deployment manifest file lists, at specific versions, all the bundles and composite bundles that
make up the application, including bundles that are determined following dependency analysis. The
manifest file is used to ensure that each time an application server starts, the bundles that make up the
application are the same.

You can export the current deployment manifest from an EBA asset, then import the deployment manifest
into another asset that contains the same application. The target asset then uses the imported manifest
instead of the generated manifest. This is useful during application development, when an application is
fully tested and moves to a production environment. By importing the deployment manifest from the test
environment, you ensure that the bundles and their versions that make up the application in the production
environment are exactly the same as the bundles that make up the application in the test environment. Do
not edit an exported manifest file. Use the export and import options only in situations where you can treat
the exported file as a “black box”.

Procedure
1. Start the wsadmin scripting client if it is not already running.

2. Use the exportDeploymentManifest command. For example:

AdminTask.exportDeploymentManifest(’[-asset
com.ibm.ws.eba.example.blabber.app.eba -path /test/temp/]’)

Results

The current deployment manifest for the application is exported.

What to do next

The deployment manifest is available to import into an EBA asset. See “Importing a deployment manifest
using the importDeploymentManifest command” on page 1073.

exportDeploymentManifest command:

Use the exportDeploymentManifest command to export the current deployment manifest, the
DEPLOYMENT.MF file, from an enterprise bundle archive (EBA) asset. You might want to do this to save the
information, or to import it into another identical application.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

1070 Administering WebSphere applications



Purpose

This command exports the current deployment manifest from an EBA asset.

Target object

None.

Required parameters

-asset
The name of the EBA asset to export the deployment manifest from. This must be an installed EBA
asset.

-path
The file path for the location of the exported deployment manifest. If the location does not exist, the
export process creates it.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.exportDeploymentManifest(’[-asset
com.ibm.ws.eba.example.blabber.app.eba -path /test/temp/]’)

Importing a deployment manifest
You can import a suitable deployment manifest to an enterprise bundle archive (EBA) asset. When you
import the file, the bundles are resolved. If the bundles cannot be resolved, the import does not complete
and an exception message is generated.

Before you begin

The file to import must be a valid deployment manifest file, using the naming format file_name.MF, for
example DEPLOYMENT_TEST.MF. When you import the deployment manifest into the EBA asset, the file is
renamed to DEPLOYMENT.MF.

For the import to succeed, the following conditions must be met:

v The deployment manifest to import must correspond with the application manifest of the OSGi
application that is contained in the EBA asset.

v The bundles and their versions that are listed in the deployment manifest must be available, either
within the EBA file or from a bundle repository.

v If the asset has previously been updated, the bundle downloads for the previous update must have
completed. See “Checking the bundle download status of an EBA asset” on page 1047.

You can import a deployment manifest by using the administrative console, as described in this topic, or
by using wsadmin commands, as described in “Importing a deployment manifest using the
importDeploymentManifest command” on page 1073.

Chapter 16. Administering OSGi applications 1071



About this task

A deployment manifest file, META-INF/DEPLOYMENT.MF, is created automatically when you import an EBA
asset. The deployment manifest file lists, at specific versions, all the bundles and composite bundles that
make up the application, including bundles that are determined following dependency analysis. The
manifest file is used to ensure that each time an application server starts, the bundles that make up the
application are the same.

You can export the deployment manifest file from an application, then import the manifest file into another
instance of the same application located somewhere else. This is useful during application development,
when an application is fully tested and moves to a production environment. By importing the deployment
manifest from the test environment, you ensure that the bundles and their versions that make up the
application in the production environment are exactly the same as the bundles that make up the
application in the test environment.

When you import a deployment manifest into an EBA asset, the content of the deployment manifest must
correspond with the existing application manifest in the EBA asset.

The application resolving process checks whether the deployment manifest contains all the required
bundles. It should not have to pull in extra bundles to resolve the EBA asset.

Procedure
1. Start the administrative console.

2. Navigate to Applications > Application Types > Assets.

3. Click the name of the asset into which you want to import the deployment manifest. The Asset settings
panel is displayed. If the bundle downloads for any previous update have completed, then the option to
import a deployment manifest is displayed under the Additional Properties section.

4. Click [Additional Properties] Import a deployment manifest into this application.

The Import a deployment manifest into this application panel is displayed.

5. Click Local file system or Remote file system, as required, then enter the fully-qualified path to the
deployment manifest file that you want to import. The file must be a valid deployment manifest, with a
.MF file extension.

6. Click OK. The deployment manifest is checked to ensure that the bundles that it lists can be resolved,
then it is imported into the EBA asset. The file name changes to DEPLOYMENT.MF. Any new bundles that
are required to provision the application are downloaded.

7. Save your changes to the master configuration.

8. Optional: Check the update status of the composition unit.

If you plan to update the composition unit at this time, check the update status of the associated OSGi
composition unit. This status is one of the following values:

v Using latest OSGi application deployment.

v New OSGi application deployment not yet available because it requires bundles that are still
downloading.

v New OSGi application deployment available.

v New OSGi application deployment cannot be applied because bundle downloads have failed.

9. Optional: Update the composition unit to the latest deployment.

When all bundle downloads are complete, you can update the OSGi composition unit so that the
business-level application uses the newer configuration. You do not have to update the composition
unit every time you update the asset. If any of the updates contain configuration options, you update
the configuration information. You can also take the opportunity to make additional, non-essential
configuration changes. When you save the changes to the composition unit, the associated
business-level application is updated to use the new configuration. If the business-level application is
running, the bundle and configuration updates are applied immediately. If possible (that is, depending

1072 Administering WebSphere applications



on the nature of the updates) the system applies the updates without restarting the application. If you
update a bundle that provides only OSGi services to the rest of the application, then only that bundle is
restarted. If you update a bundle that provides one or more packages to other bundles, then those
bundles and any bundles to which they provide packages are restarted. If, however, a new package or
service dependency is added, or an existing package or service dependency is removed, then the
application is restarted; a newly added package and service can come from a newly-provisioned
bundle, or from a bundle that has already been provisioned.

Importing a deployment manifest using the importDeploymentManifest command
You can use this command to import a suitable deployment manifest to an enterprise bundle archive
(EBA) asset. When you import the file, the bundles are resolved. If the bundles cannot be resolved, the
import does not complete and an exception message is generated.

Before you begin

The file to import must be a valid deployment manifest file, using the naming format file_name.MF, for
example DEPLOYMENT_TEST.MF. When you import the deployment manifest into the EBA asset, the file is
renamed to DEPLOYMENT.MF.

For the import to succeed, the following conditions must be met:

v The deployment manifest to import must correspond with the application manifest of the OSGi
application that is contained in the EBA asset.

v The bundles and their versions that are listed in the deployment manifest must be available, either
within the EBA file or from a bundle repository.

v If the asset has previously been updated, the bundle downloads for the previous update must have
completed. See “Checking the bundle download status of an EBA asset” on page 1047.

You can import a deployment manifest by using the wsadmin commands, as described in this topic, or by
using administrative console, as described in “Importing a deployment manifest” on page 1071.

About this task

A deployment manifest file, META-INF/DEPLOYMENT.MF, is created automatically when you import an EBA
asset. The deployment manifest file lists, at specific versions, all the bundles and composite bundles that
make up the application, including bundles that are determined following dependency analysis. The
manifest file is used to ensure that each time an application server starts, the bundles that make up the
application are the same.

You can export the deployment manifest file from an application, then import the manifest file into another
instance of the same application located somewhere else. This is useful during application development,
when an application is fully tested and moves to a production environment. By importing the deployment
manifest from the test environment, you ensure that the bundles and their versions that make up the
application in the production environment are exactly the same as the bundles that make up the
application in the test environment.

When you import a deployment manifest into an EBA asset, the content of the deployment manifest must
correspond with the existing application manifest in the EBA asset.

The application resolving process checks whether the deployment manifest contains all the required
bundles. It should not have to pull in extra bundles to resolve the EBA asset.

Procedure
1. Start the wsadmin scripting client if it is not already running.

2. Use the importDeploymentManifest command. For example:

Chapter 16. Administering OSGi applications 1073



AdminTask.importDeploymentManifest(’[-asset
com.ibm.ws.eba.example.blabber.app.eba -file /test/temp/DEPLOYMENT.MF]’)

The deployment manifest is checked to ensure that the bundles that it lists can be resolved.

3. Save your changes to the master configuration.

To save your configuration changes, use the following command:

AdminConfig.save()

The deployment manifest is imported into the EBA asset and any new bundles that are required to
provision the application are downloaded. The file name changes to DEPLOYMENT.MF.

4. Optional: Check the update status of the composition unit.

If you plan to update the composition unit at this time, check the update status of the associated OSGi
composition unit. This status is one of the following values:

v Using latest OSGi application deployment.

v New OSGi application deployment not yet available because it requires bundles that are still
downloading.

v New OSGi application deployment available.

v New OSGi application deployment cannot be applied because bundle downloads have failed.

5. Optional: Update the composition unit to the latest deployment.

When all bundle downloads are complete, you can update the OSGi composition unit so that the
business-level application uses the newer configuration. You do not have to update the composition
unit every time you update the asset. If any of the updates contain configuration options, you update
the configuration information. You can also take the opportunity to make additional, non-essential
configuration changes. When you save the changes to the composition unit, the associated
business-level application is updated to use the new configuration. If the business-level application is
running, the bundle and configuration updates are applied immediately. If possible (that is, depending
on the nature of the updates) the system applies the updates without restarting the application. If you
update a bundle that provides only OSGi services to the rest of the application, then only that bundle is
restarted. If you update a bundle that provides one or more packages to other bundles, then those
bundles and any bundles to which they provide packages are restarted. If, however, a new package or
service dependency is added, or an existing package or service dependency is removed, then the
application is restarted; a newly added package and service can come from a newly-provisioned
bundle, or from a bundle that has already been provisioned.

importDeploymentManifest command:

Use the importDeploymentManifest command to import a deployment manifest to an enterprise bundle
archive (EBA) asset. When you import the file, the bundles are resolved. If the bundles cannot be
resolved, the import does not complete and an exception message is generated.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

1074 Administering WebSphere applications



After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command imports a deployment manifest to an EBA asset.

For the import to succeed, the following conditions must be met:

v The deployment manifest to import must correspond with the application manifest of the OSGi
application that is contained in the EBA asset.

v The bundles and their versions that are listed in the deployment manifest must be available, either
within the EBA file or from a bundle repository.

v If the asset has previously been updated, the bundle downloads for the previous update must have
completed. See “Checking the bundle download status of an EBA asset” on page 1047.

When the deployment manifest is successfully imported to the EBA asset, its file name changes to
DEPLOYMENT.MF, and any new bundles that are required to provision the application are downloaded.

Target object

None.

Required parameters

-asset
The name of the EBA asset to import the deployment manifest into. This must be an installed EBA
asset.

-file
The fully qualified file path for the location of the deployment manifest to import.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.importDeploymentManifest(’[-asset
com.ibm.ws.eba.example.blabber.app.eba -file /test/temp/DEPLOYMENT.MF]’)

OSGi applications administrative console panels
You can use these administrative console panels to manage your OSGi applications.

Add extensions [Collection]
After you import the enterprise bundle archive (EBA) file for your OSGi application as an asset, you can
update versions of existing bundles but you cannot add extra bundles to the asset. However, after you
have added the asset as a composition unit to a business-level application, you can extend the
business-level application by adding one or more composite bundles to the composition unit.

Chapter 16. Administering OSGi applications 1075



This panel lists all the composite bundles that are currently available to be added to the composition unit.
That is, all composite bundles that are installed in an available bundle repository, and that have not
already been added as a composite bundle extension or used by a deployed EBA asset.

To view this panel in the administrative console, click the following path:

Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] Extensions for this composition unit > Add

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items on which
you want to act, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

To view read-only information about a composite bundle, click the composite bundle name in the list.

Symbolic name
The non-localizable name for this composite bundle.

Version
The version of this composite bundle.

Buttons

Label Action

Add Add the selected items as composite bundle extensions
to this composition unit.

Cancel Cancel any changes made, then return to the previous
panel.

Add extensions [Settings]
View read-only information about a composite bundle in the internal bundle repository that is currently
available to be added as an extension to a composition unit.

After you import the enterprise bundle archive (EBA) file for your OSGi application as an asset, you can
update versions of existing bundles but you cannot add extra bundles to the asset. However, after you
have added the asset as a composition unit to a business-level application, you can extend the
business-level application by adding one or more composite bundles to the composition unit.

To view this panel in the administrative console, click the following path:

Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] Extensions for this composition unit > Add >
cba_name

Configuration tab

The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

The Configuration tab displays the following properties:

1076 Administering WebSphere applications



Symbolic name
The non-localizable name for this composite bundle.

The symbolic name, together with the version, uniquely identifies a composite bundle.

Version
The version of this composite bundle.

The composite bundle version is in the form n.n.n, for example 1.1.0. The symbolic name,
together with the version, uniquely identifies a composite bundle.

Extension name
The name for this composite bundle in a form that users can understand.

This name can contain spaces.

Extension description
A short description of this composite bundle.

Imported packages
The imported packages for this composite bundle.

Exported packages
The exported packages for this composite bundle.

Required extensions
The list of other extensions that are required by this composite bundle.

This composite bundle is bound to all the exports of each required extension, regardless of what
those exports are.

Application OSGi frameworks [Collection]
This panel lists all the OSGi frameworks that are associated with a given application.

You can explore or debug bundles by interrogating the contents of OSGi frameworks. A framework
contains a collection of bundles, together with the packages and services associated with the bundles.
There are two types of framework:

Isolated framework
An isolated framework contains the bundles that are defined exclusively for a specific application;
each OSGi application runs in its own isolated framework. In a network deployment environment,
there is one isolated framework for each server on which the application is installed. If an
application includes one or more composite bundles, either as part of the application, or as an
extension to the application, there is a separate isolated framework for each composite bundle.

Share bundle framework
There is a shared bundle framework per server, containing all the shared bundles that are
available to the applications that are installed on that server. If the applications indirectly reference
one or more composite bundles through package dependencies, there is a shared bundle
framework for each composite bundle.

You can find the state of the bundles in a framework, and see which bundles import or export certain
packages, or which bundles register or consume a particular service. You can also see the values of the
headers in the bundle manifest files.

You can navigate trails through bundles, packages, and services. For example, you might navigate the
following trail:

1. Select a package.

2. See which bundle exports this package.

3. Find out the services that this bundle registers.

Chapter 16. Administering OSGi applications 1077



4. Find out which other bundles consume each of these services.

5. Explore the details of each of these bundles.

The panels have a breadcrumb trail that shows you where you are in a trail, and allows you to retrace the
steps that you have taken through the trail.

Note: You can view the frameworks for an application only if the application has been started. If the
application fails to start, the link to access the framework panels is not available.

To view this panel in the administrative console, click the following path:

Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console

To browse the properties of a listed item, select its name in the list.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

For each framework, the panel displays the following information:

Framework name
The name of the OSGi framework.

Framework version
The version of the OSGi framework.

Framework node
The node on which the OSGi framework resides.

Framework server
The server on which the OSGi framework resides.

Blueprint resource references [Settings]
Blueprint components can access WebSphere Application Server resource references. Each reference is
declared in a Blueprint XML file, and can be secured using a Java Platform, Enterprise Edition (Java EE)
Connector Architecture (JCA) authentication alias. Each bundle in an OSGi application can contain any
number of resource reference declarations in its various Blueprint XML files.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name > [Deployed
assets] Add > Add Asset > asset_name > Wizard step: Bind Blueprint resource references

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] Blueprint resource references

The Bind Blueprint resource references wizard step and the Blueprint resource references property
are visible only if the bundle includes Blueprint resource reference declarations.

When you secure resource references, those resource references can be bound only to JCA
authentication aliases that exist on every server or cluster on which the application is deployed. An OSGi
application can be deployed to multiple servers and clusters that are in the same security domain.
Therefore, each JCA authentication alias must exist in either the security domain of the target servers and
clusters, or the global security domain.

You must declare the resource references in the Blueprint XML file. For example:

1078 Administering WebSphere applications



<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:rr="http://www.ibm.com/appserver/schemas/8.0/blueprint/resourcereference">
<!-- Other Blueprint declarations ... -->

<rr:resource-reference id="resourceRef"
interface="javax.sql.DataSource"
filter="(osgi.jndi.service.name=jdbc/Account)">

<rr:res-auth>Container</rr:res-auth>
<rr:res-sharing-scope>Shareable</rr:res-sharing-scope>

</rr:resource-reference>
</blueprint>

This declaration includes the resource reference ID (for example resourceRef), the service filter (for
example jdbc/Account), the authentication type (for example Container), and the sharing setting (for
example Shareable).

The Blueprint resource references to authentication alias bindings for each bundle are stored in a file
ibm-eba-bnd.xml in the META-INF directory of that bundle. If an OSGi application contains any of these files
when it is deployed as an asset, these files provide the default authentication alias values that are used
when binding the resource references. For example:

<eba-bnd>
<resource-ref>
<jndi-name>jdbc/Acount</jndi-name>
<authentication-alias>Alias1</authentication-alias>
<interface>javax.sql.DataSource</interface>
<authentication>Container</authentication>
<sharing-scope>Shareable</sharing-scope>
<id>resourceRef</id>

</resource-ref>
</eba-bnd>

General Properties

Composite bundle identifier
This identifier is displayed only if the EBA asset uses composite bundles. Each composite bundle
is identified by a string in the following form: Composite bundle archive
(CBA)’composite.bundle.symbolic.name_composite.bundle.version’. Bundles that are part of a
composite bundle are listed beneath the composite bundle identifier.

Composite bundle symbolic name
The non-localizable name for this composite bundle.

Composite bundle version
The version of this composite bundle.

The symbolic name, together with the version, uniquely identifies a composite bundle.

Bundle identifier
Each bundle is identified by a string that contains the bundle symbolic name and bundle version.
Bundles that are part of a composite bundle are listed beneath the composite bundle identifier.

Bundle symbolic name
The non-localizable name for this bundle.

Bundle version
The version of this bundle.

The bundle symbolic name, together with the bundle version, uniquely identifies a bundle.

Resource reference ID
The ID of the resource reference as declared in the Blueprint.

Chapter 16. Administering OSGi applications 1079



Resource reference interface
The interface for this resource reference.

Your Blueprint application can use any of the following resource types:

v Default messaging JMS queues destinations

v Default messaging JMS topic destinations

v Data source

v Generic JMS connection factory

v Mail session

v J2C connection factory

v JMS queue connection factory for the JMS provider of WebSphere MQ

v JMS queue destination for WebSphere MQ

v JMS topic connection factory for WebSphere MQ

v JMS topic destination for WebSphere MQ

v Unified JMS connection factory for WebSphere MQ

v URL configuration

Resource reference service filter
The name of the service filter that is the mapping target of the resource reference. For example,
jdbc/AccountDS2.

Resource reference authentication
The resource reference is either authenticated by the application, or by the container.

Resource reference sharing
The resource reference is either shareable or non-shareable.

Authentication alias
The authentication alias, if any, that is used for securing the resource reference.

For each reference, you can optionally select an authentication alias from the list. Default
authentication aliases (from ibm-eba-bnd.xml files) are offered only if they exist on every target
server or cluster.

Bundle cache [Collection]
The bundle cache is a cell-wide store (or server-wide for single-server systems) of bundles that are
referenced by OSGi applications, and that have been downloaded from both internal and external
repositories. You can get an up-to-date list of the bundles in the bundle cache, check if all bundles are
successfully downloaded, and request that one or more bundles be downloaded again.

A bundle download is requested when you import an enterprise bundle archive (EBA) file as an asset, and
when you update an asset to use new bundle versions. A bundle download is also requested when you
add a composite bundle as an extension to a composition unit.

To view this panel in the administrative console, click the following path:

Environment > OSGi bundle repositories > Bundle cache.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items on which
you want to act, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

1080 Administering WebSphere applications



Bundle Symbolic Name and Version
The non-localizable name and version identifier for this bundle. The bundle symbolic name,
together with the bundle version, uniquely identifies a specific version of a bundle.

State The current state of the bundle. This is one of the following states:

Unknown
The bundle is not in the bundle cache and there has been no request to download the
bundle.

Download requested
A request has been issued to download the bundle, but the download has not yet begun.

Downloading
The bundle is downloading.

Downloaded
The bundle download is complete.

Failed The bundle download has failed.

Trace information is available in the “Bundle download exceptions” pane of the “Bundle
cache [Settings]” on page 1082 panel.

To restart the download, select the bundle then click Download Bundle Again on this
panel.

Unsaved
The bundle is unsaved if you have imported an asset and not yet saved your changes to
the master configuration.

The bundle is not downloaded until you save your changes.

Download Status
The download status tells you how much of the bundle has been downloaded. If the download is
complete, “100%” is displayed. If a download is in progress and the total expected file size is
known, the approximate percentage complete is displayed. If a download is in progress and the
total expected file size is not known, for example because the file is being downloaded through an
FTP site, the number of bytes downloaded so far is displayed.

Size The size is the total size of the bundle, displayed in the most appropriate units (usually kilobytes or
megabytes). If the bundle size is not known, because the bundle download is not yet complete,
“Unknown” is displayed.

Chapter 16. Administering OSGi applications 1081



Buttons

Label Action

Download Bundle Again Use this button in either of the following situations:

v To reattempt a download of one or more bundles for
which the download failed. Select the unsuccessful
bundles, then click this button to request that they are
downloaded again.

v (Development environment only) To update binaries
that are used in the runtime environment. Before you
download a bundle again, complete the following steps:

1. Stop all applications that use the bundle.

2. Upload a new copy of the bundle to a bundle
repository.

When you click the button, the new version of the
bundle is downloaded from the bundle repository and
replaces the version of the bundle in the bundle cache.
On restart, the applications that use the bundle use the
new binaries.

CAUTION:
Redownloading a bundle in the bundle cache can,
in some situations, cause instability in
applications; for example, when the application is
deployed in a mixed version cluster. Use this
button only in a development environment.

Refresh List Get an up-to-date list of the bundles in the bundle cache.

Bundle cache [Settings]
The bundle cache is a cell-wide store (or server-wide for single-server systems) of bundles that are
referenced by OSGi applications, and that have been downloaded from both internal and external
repositories. For a given bundle you can view the bundle size, the download status, and a list of the
assets and composition units that use the bundle. You can also view and refresh the repository URL for
the repository that hosts the bundle.

A bundle download is requested when you import an enterprise bundle archive (EBA) file as an asset, and
when you update an asset to use new bundle versions. A bundle download is also requested when you
add a composite bundle as an extension to a composition unit.

To view this panel in the administrative console, click the following path:

Environment > OSGi bundle repositories > Bundle cache > bundle_name_and_version.

Configuration tab

The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

The Configuration tab displays the following properties:

Bundle Symbolic Name and Version
The non-localizable name and version identifier for this bundle. The bundle symbolic name,
together with the bundle version, uniquely identifies a specific version of a bundle.

1082 Administering WebSphere applications



State The current state of the bundle.This is one of the following states:

Unknown
The bundle is not in the bundle cache and there has been no request to download the
bundle.

Download requested
A request has been issued to download the bundle, but the download has not yet begun.

Downloading
The bundle is downloading.

Downloaded
The bundle download is complete.

Failed The bundle download has failed.

Trace information is available in the “Bundle download exceptions” pane of this panel.

To restart the download, select the bundle then click Download Bundle Again on the
“Bundle cache [Collection]” on page 1080 panel.

Unsaved
The bundle is unsaved if you have imported an asset and not yet saved your changes to
the master configuration.

The bundle is not downloaded until you save your changes.

Repository URL
The Location URL of the bundle.

Note: If a bundle has been moved, for example from the internal bundle repository to an external
repository, click Refresh Repository URL to resolve the bundle location again and update
the displayed URL.

Size The size is the total size of the bundle, displayed in bytes.

If the bundle size is not known, because the bundle download is not yet complete, “Unknown” is
displayed.

Download Status
The download status tells you how much of the bundle has been downloaded.

If the download is complete, “100%” is displayed. If a download is in progress and the total
expected file size is known, the approximate percentage complete is displayed. If a download is in
progress and the total expected file size is not known, for example because the file is being
downloaded through an FTP site, the number of bytes downloaded so far is displayed.

Bundle download exceptions
If the bundle state is “Failed”, the “Bundle download exceptions” pane is displayed. This pane
contains trace information to help you understand why the bundle download has failed.

BLA artifacts using this bundle
Use this list to identify the assets and composition units that use this bundle.

Bundle details [Settings]
This panel displays the details of a given bundle, including identification information, the values of headers
in the bundle manifest file, and bundle dependencies.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
bundle_name

Chapter 16. Administering OSGi applications 1083



v From the “Packages in OSGi framework [Collection]” on page 1099 page, or the “Services in OSGi
framework [Collection]” on page 1104 page, click Framework bundles > bundle_name.

Configuration tab

The Configuration tab displays the following details of this bundle:

ID The unique ID of the bundle. This value is generated automatically.

Bundle name
The name of the bundle.

Bundle version
The version of the bundle.

Bundle state
The state of the bundle.

Bundle manifest headers
The values of headers from the MANIFEST.MF file for this bundle.

Host bundles
The IDs and names of the host bundles of which this bundle is a fragment. Click a bundle name to
display the details of that bundle.

Fragment bundles
The IDs and names of the fragment bundles for which this bundle is a host. Click a bundle name
to display the details of that bundle.

Bundle dependencies
The IDs and names of the bundles that are required by this bundle. Bundle dependencies are
bundles that export packages that are imported by this bundle. Click a bundle name to display the
details of that bundle.

Bundle dependents
The IDs and names of the bundles that depend on this bundle. Bundle dependents are bundles
that import packages that this bundle exports. Click a bundle name to display the details of that
bundle.

Bundles in OSGi framework [Collection]
This panel lists all the bundles in a given OSGi framework.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name

v From the “Packages in OSGi framework [Collection]” on page 1099 page, or the “Services in OSGi
framework [Collection]” on page 1104 page, click Framework bundles.

To browse the properties of a listed item, select its name in the list.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

For each bundle, the panel displays the following information:

ID The unique ID of the bundle. This value is generated automatically.

Bundle name
The name of the bundle.

1084 Administering WebSphere applications



Bundle version
The version of the bundle.

Bundle state
The state of the bundle.

Context root for web modules [Settings]
Context roots determine where the web pages of a particular web application bundle (WAB) are found at
run time.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name > [Deployed
assets] Add > Add Asset > asset_name > Wizard step: Map context root for web modules

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] Context root for web modules

Note: The Map context root for web modules wizard step and Context root for web modules property
are visible only if the application uses web application bundles.

General Properties

Composite bundle identifier
This identifier is displayed only if the EBA asset uses composite bundles. Each composite bundle
is identified by a string in the following form: Composite bundle archive
(CBA)’composite.bundle.symbolic.name_composite.bundle.version’. Bundles that are part of a
composite bundle are listed beneath the composite bundle identifier.

Composite bundle symbolic name
The non-localizable name for this composite bundle.

Composite bundle version
The version of this composite bundle.

The symbolic name, together with the version, uniquely identifies a composite bundle.

Bundle symbolic name
The non-localizable name for this bundle.

Bundle version
The version of this bundle.

The bundle symbolic name, together with the bundle version, uniquely identifies a bundle.

Context root
The context root of the web application bundle.

The context root that you specify here is combined with the defined server mapping to compose
the full URL that you enter to access the pages of the WAB. For example, if the application server
default host is www.example.com:8080 and the context root of the WAB is /sample, the web pages
are available at www.example.com:8080/sample.

EJB JNDI names [Settings]
For each Session enterprise bean in the composition unit, you can specify the JNDI name by which the
enterprise bean is known in the runtime environment.

This panel displays one row of information for each Session enterprise bean. The final column, Mapped
JNDI Name, specifies the JNDI name to which the enterprise bean is mapped.

Chapter 16. Administering OSGi applications 1085



If a JNDI name mapping for an enterprise bean is defined in the ibm-ejb-jar-bnd.xml file in the EJB bundle,
the corresponding JNDI name is displayed in the Mapped JNDI Name column for that enterprise bean,
otherwise the column is empty. You can modify any existing mappings, and specify new ones, as required,
by entering the appropriate values in the Mapped JNDI Name column.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name > [Deployed
assets] Add > Add Asset > asset_name > Wizard step: Provide EJB JNDI names

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] EJB JNDI names

Note: The Provide EJB JNDI names wizard step and the EJB JNDI names property are visible only if the
OSGi application contains at least one EJB bundle that has at least one session enterprise bean.

For each enterprise bean, the panel displays the following information:

Bundle symbolic name
The non-localizable name for this bundle.

Bundle version
The version of this bundle.

EJB Name
The EJB name that has been declared in an annotation or in an XML configuration file, or the EJB
class name if the EJB name has not been declared explicitly.

EJB Interface
The EJB interface name.

Interface Type
The interface type of the enterprise bean; the value displayed in this column is either "Local",
"Remote", or "No Interface".

Mapped JNDI Name
The JNDI name to which the enterprise bean is mapped. You can change the value in this column
as required.

EJB message destination references [Settings]
For each message destination reference and resource environment reference, specify the JNDI name
under which the resource is known in the runtime environment.

Binding a message destination reference or resource environment reference maps a resource dependency
of an enterprise bean to an actual resource available in the server runtime environment. At a minimum,
you can achieve this mapping by specifying the JNDI name under which the message destination
reference or resource environment reference is known in the runtime environment. By default, the JNDI
name is retrieved from pre-existing bindings, or set to the value of the mapped-name specified in the
message destination reference definition.

If a JNDI name mapping for a message destination reference or resource environment reference is defined
in an ibm-ejb-jar-bnd.xml file in the bundle, the corresponding JNDI name is displayed in the JNDI Name
column for that reference, otherwise the column is empty. You can modify any existing mappings, and
specify new ones, as required, by entering the appropriate values in the JNDI Name column.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name > [Deployed
assets] Add > Add Asset > asset_name > Wizard step: Bind EJB message destination references
to administered objects

1086 Administering WebSphere applications



v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] EJB message destination references

Note: The Bind EJB message destination references to administered objects wizard step and the EJB
message destination references property are visible only if the OSGi application contains at least
one JMS message destination reference or resource environment reference, defined either in an
ejb-jar.xml file, or through an @Resource annotation on an enterprise bean.

General Properties

Bundle symbolic name
The non-localizable name for this bundle.

Bundle version
The version of this bundle.

The bundle symbolic name, together with the bundle version, uniquely identifies a bundle.

EJB name
The name of the enterprise bean that declares the message destination reference or resource
environment reference.

Reference name
The name of a message destination reference or resource environment reference that is used in
the application, if applicable, and is declared in the deployment descriptor of the EJB bundle.

Resource Type
The type of the message destination reference or resource environment reference.

You can use this panel to specify bindings for any message-destination-ref (message destination
reference) resource or resource-env-ref (resource environment reference) resource, as defined in
the Java specification JSR-250: Common Annotations for the Java Platform. For example, the
following are all types of message-destination-ref resource:

v Default messaging JMS queues destinations

v Default messaging JMS topic destinations

v JMS queue destination for WebSphere MQ

v JMS topic destination for WebSphere MQ

JNDI name
The Java Naming and Directory Interface (JNDI) name of the message destination or resource
environment that is the mapping target of the resource reference.

EJB references [Settings]
For each EJB reference that is defined in either an ejb-jar.xml file, a web.xml file, or an @EJB annotation
in the composition unit, you can specify the JNDI name by which the EJB reference is known in the
runtime environment.

This panel displays one row of information for each EJB reference. The final column, EJB Reference
JNDI Name, specifies the JNDI name to which the EJB reference is mapped.

If a JNDI name mapping for an EJB reference is defined in either an ibm-ejb-jar-bnd.xml file or an
ibm-web-bnd.xml file in the bundle, the corresponding JNDI name is displayed in the EJB Reference JNDI
Name column for that EJB reference, otherwise the column is empty. You can modify any existing
mappings, and specify new ones, as required, by entering the appropriate values in the EJB Reference
JNDI Name column.

To view this panel in the administrative console, click one of the following paths:

Chapter 16. Administering OSGi applications 1087



v Applications > Application Types > Business-level applications > application_name > [Deployed
assets] Add > Add Asset > asset_name > Wizard step: Map EJB references

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] EJB references

Note: The Map EJB references wizard step and the EJB references property are visible only if the OSGi
application contains at least one EJB reference, defined either in an ejb-jar.xml file, a web.xml file,
or in an @EJB annotation.

For each enterprise bean, the panel displays the following information:

Bundle symbolic name
The non-localizable name for this bundle.

Bundle version
The version of this bundle.

URI The URI of the location where the EJB reference is defined. The following table describes the
syntax of the URI depending on the location of the EJB reference:

Location of EJB reference URI syntax Examples

ejb-jar.xml file Path to the file, followed by the name
of the enterprise bean from which the
reference is defined.

META-INF/ejb-jar.xml/CustomerDetails
or WEB-INF/ejb-jar.xml/
CustomerDetails

web.xml file Path to the file. WEB-INF/web.xml

@EJB annotation in an enterprise
bean

Path to the ejb-jar.xml file that
contains the definition of the
enterprise bean in which the @EJB
annotation is declared, followed by
the name of the enterprise bean.

META-INF/ejb-jar.xml/CustomerDetails
or WEB-INF/ejb-jar.xml/
CustomerDetails

@EJB annotation in a servlet Path to the web.xml file that contains
the definition of the servlet in which
the @EJB annotation is declared.

WEB-INF/web.xml

EJB Reference Name
The name of the EJB reference. This corresponds to the EJB reference name that is defined in
the <ejb-ref-name> element in the ejb-jar.xml file or the web.xml file, or the fully qualified EJB
reference name if the EJB reference is defined in an @EJB annotation.

Business Interface
The fully qualified local or remote interface name of the enterprise bean to which the EJB
reference refers.

EJB Reference JNDI Name
The JNDI name to which the EJB reference is mapped. You can change the value in this column
as required.

EJB resource references [Settings]
For each reference, specify the JNDI name under which the resource is known in the runtime
environment.Optionally, set authentication properties and extended data source custom properties, which
affect how the resource is accessed at run time.

Binding a resource reference maps a resource dependency of an enterprise bean to an actual resource
available in the server runtime environment. At a minimum, you can achieve this mapping by specifying
the JNDI name under which the resource reference is known in the runtime environment. By default, the
JNDI name is retrieved from pre-existing bindings, or set to the value of the mapped-name specified in the
resource definition.

1088 Administering WebSphere applications



If a JNDI name mapping for a resource reference is defined in an ibm-ejb-jar-bnd.xml file in the bundle,
the corresponding JNDI name is displayed in the JNDI Name column for that reference, otherwise the
JNDI name defaults to the resource reference name. You can modify the mappings, as required, by
entering the appropriate values in the JNDI Name column.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name > [Deployed
assets] Add > Add Asset > asset_name > Wizard step: Map EJB resource references to
resources

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] EJB resource references

Note: The Map EJB resource references to resources wizard step and the EJB resource references
property are visible only if the OSGi application contains at least one resource reference, defined
either in an ejb-jar.xml file, or through an @Resource annotation on an enterprise bean.

General Properties

Select To modify the authentication method, or to set extended data source custom properties that apply
to the database connection, select a single reference then click Modify Resource Authentication
Method... or Extended Properties....

Bundle symbolic name
The non-localizable name for this bundle.

Bundle version
The version of this bundle.

The bundle symbolic name, together with the bundle version, uniquely identifies a bundle.

EJB name
The name of the enterprise bean that declares the resource reference.

Resource Reference
The name of a resource reference that is used in the application, if applicable, and is declared in
the deployment descriptor of the EJB bundle.

Resource Type
The type of the resource reference.

You can use this panel to specify bindings for any resource-ref (resource reference) resource, as
defined in the Java specification JSR-250: Common Annotations for the Java Platform. For
example, the following are all types of resource-ref resource:

v Data source

v Generic JMS connection factory

v Mail session

v J2C connection factory

v JMS queue connection factory for the JMS provider of WebSphere MQ

v JMS topic connection factory for WebSphere MQ

v Unified JMS connection factory for WebSphere MQ

v URL configuration

JNDI name
The Java Naming and Directory Interface (JNDI) name of the resource that is the mapping target
of the resource reference.

Chapter 16. Administering OSGi applications 1089



Login Configuration
The authorization type and the authentication method for securing the resource.
Container-managed authorization indicates that the product signs on to the resource rather than
the enterprise bean code.

Buttons

Label Action

Browse... To specify the JNDI name mapping for a specific EJB
resource reference, use this option to select the resource
reference from a list of available resources.

Modify Resource Authentication Method... You can select one of the following options:

None

Use default method (many-to-one mapping)
For information about the default mapping
configuration, see J2EE connector security.

Select this option, then select an authentication
alias from the list.

Use trusted connections (one-to-one mapping)
You can use this option if your resource is a
data source that has trusted context enabled.

Select this option, then select an authentication
alias from the list that matches an alias that is
already defined in the data source.

Use custom login configuration
For information about custom Java
Authentication and Authorization Service (JAAS)
login configurations, see J2EE connector
security.

Select this option, then select a JAAS login
configuration from the list.

Extended properties... If your resource is a data source, and the backend
database supports extended data source custom
properties, you can use this option to add, modify or
delete these properties. These are custom properties
(name/value pairs) that can be used (for example) to
obtain a data source for you.
Note: If you use multiple values for an extended data
source property, you must enclose those values in
quotation marks.

For more information, see Extended data source
properties.

Mapping properties... Define arbitrary name and value pairs for extended data
source properties that apply to the resource
authentication method. This button is visible only if you
have selected Use trusted connections or Use custom
login configuration for the resource authentication
method.

Extensions for this composition unit [Collection]
Add composite bundle extensions to, or remove them from, a composition unit that contains an enterprise
OSGi application.

1090 Administering WebSphere applications



After you import the enterprise bundle archive (EBA) file for your OSGi application as an asset, you can
update versions of existing bundles but you cannot add extra bundles to the asset. However, after you
have added the asset as a composition unit to a business-level application, you can extend the
business-level application by adding one or more composite bundles to the composition unit. If you extend
a deployed OSGi application, the composite bundle, including its constituent bundles, is downloaded when
you save your changes.

To update an extension to one with newer constituent bundles, you remove the composite bundle from the
composition unit then add a new version of the composite bundle.

To view this panel in the administrative console, click the following path:

Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] Extensions for this composition unit

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items on which
you want to act, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

To view read-only information about a composite bundle, click the composite bundle name in the list.

Symbolic name
The non-localizable name for this composite bundle.

Version
The version of this composite bundle. The composite bundle version is in the form n.n.n, for
example 1.1.0.

The symbolic name, together with the version, uniquely identifies a composite bundle.

Buttons

Label Action

Add Add a new item to the list.

Remove Remove the selected item from the list.

Extensions for this composition unit [Settings]
View read-only information about a composite bundle that is currently added as an extension to this
composition unit.

After you import the enterprise bundle archive (EBA) file for your OSGi application as an asset, you can
update versions of existing bundles but you cannot add extra bundles to the asset. However, after you
have added the asset as a composition unit to a business-level application, you can extend the
business-level application by adding one or more composite bundles to the composition unit.

To view this panel in the administrative console, click the following path:

Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] Extensions for this composition unit >
cba_extension_name

Chapter 16. Administering OSGi applications 1091



Configuration tab

The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

The Configuration tab displays the following properties:

Symbolic name
The non-localizable name for this composite bundle.

The symbolic name, together with the version, uniquely identifies a composite bundle.

Version
The version of this composite bundle.

The composite bundle version is in the form n.n.n, for example 1.1.0. The symbolic name,
together with the version, uniquely identifies a composite bundle.

Extension name
The name for this composite bundle in a form that users can understand.

This name can contain spaces.

Extension description
A short description of this composite bundle.

Imported packages
The imported packages for this composite bundle.

Exported packages
The exported packages for this composite bundle.

Required extensions
The list of other extensions that are required by this composite bundle.

This composite bundle is bound to all the exports of each required extension, regardless of what
those exports are.

External bundle repositories [Collection]
The external bundle repositories are bundle repositories that are available outside of WebSphere
Application Server. If your OSGi applications reference bundles that are stored in an external bundle
repository, you must add a link to the repository to the set of external repositories listed on this panel. The
provisioner can then retrieve the bundles when required.

When you import an enterprise bundle archive (EBA) file as an asset, or update an asset to use new
bundle versions, or add a composite bundle as an extension to a composition unit, provisioning ensures
that all the required OSGi bundles are available. An OSGi application can use bundles from external
repositories, bundles from the internal repository, and bundles that are included in an EBA file or a
composite bundle archive (CBA) file.

To view this panel in the administrative console, click the following path:

Environment > OSGi bundle repositories > External bundle repositories

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items on which
you want to act, then use the buttons provided.

1092 Administering WebSphere applications



To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Bundle repository name
The name of the bundle repository configuration.

Bundle repository description
An optional description of the bundle repository.

Bundle repository URL
The URL of the bundle repository XML file.

Buttons

Label Action

New Create a new administrative object of this type.

Delete Delete the selected items.

External bundle repositories [Settings]
The external bundle repositories are bundle repositories that are available outside of WebSphere
Application Server. Use this panel to configure a link (name and URL) to an external bundle repository.
The provisioner can then retrieve from the repository any bundles that are pulled in by reference by your
OSGi applications.

When you import an enterprise bundle archive (EBA) file as an asset, or update an asset to use new
bundle versions, or add a composite bundle as an extension to a composition unit, provisioning ensures
that all the required OSGi bundles are available. An OSGi application can use bundles from external
repositories, bundles from the internal repository, and bundles that are included in an EBA file or a
composite bundle archive (CBA) file.

To view this panel in the administrative console, click the following path:

Environment > OSGi bundle repositories > External bundle repositories > bundle_repository_name

Configuration tab

The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

The Configuration tab displays the following properties:

Bundle repository name
The name of the bundle repository configuration.

You set this property when you first create this link to an external bundle repository. You cannot
subsequently modify this property.

This property is required.

Bundle repository description
An optional description of the bundle repository.

Bundle repository URL
The URL of the bundle repository XML file.

For example, http://external_location/repository.xml.

This property is required.

Chapter 16. Administering OSGi applications 1093



Import a deployment manifest into this application [Settings]
You can export the deployment manifest file from an application, then import the manifest file into another
instance of the same application located somewhere else. This process is useful when an application
moves from one environment to another, for example from a test environment to a production environment.
When you import the file, the bundles are resolved. If the bundles cannot be resolved, the import does not
complete and an exception message is generated.

To view this panel in the administrative console, click the following path:

Applications > Application Types > Assets > asset_name > [Additional Properties] Import a
deployment manifest into this application

A deployment manifest file, META-INF/DEPLOYMENT.MF, is created automatically when you import an EBA
asset. The deployment manifest file lists, at specific versions, all the bundles and composite bundles that
make up the application, including bundles that are determined following dependency analysis. The
manifest file is used to ensure that each time an application server starts, the bundles that make up the
application are the same.

You can export the current deployment manifest from an EBA asset, then import the deployment manifest
into another asset that contains the same application. The target asset then uses the imported manifest
instead of the generated manifest. This is useful during application development, when an application is
fully tested and moves to a production environment. By importing the deployment manifest from the test
environment, you ensure that the bundles and their versions that make up the application in the production
environment are exactly the same as the bundles that make up the application in the test environment.

Note: Do not edit an exported manifest file. Use the export and import options only in situations where
you can treat the exported file as a “black box”.

The file to import must be a valid deployment manifest file, using the naming format file_name.MF, for
example DEPLOYMENT_TEST.MF. When you import the deployment manifest into the EBA asset, the file is
renamed to DEPLOYMENT.MF. At this time, any new bundles that are required to provision the application are
downloaded.

For the import to succeed, the following conditions must be met:

v The deployment manifest to import must correspond with the application manifest of the OSGi
application that is contained in the EBA asset.

v The bundles and their versions that are listed in the deployment manifest must be available, either
within the EBA file or from a bundle repository.

v If the asset has previously been updated, the bundle downloads for the previous update must have
completed. See Checking the bundle download status of an EBA asset.

Path to deployment manifest

Specifies the fully qualified path to the deployment manifest file that you want to import. The file must be a
valid deployment manifest, with a .MF file extension.

Select Local file system when the browser and the deployment manifest are on the same machine,
whether or not the server is also on that machine.

Select Remote file system when the deployment manifest is on any node in the current cell context, or if
the deployment manifest file is already on the machine that runs the application server.

1094 Administering WebSphere applications



Internal bundle repository [Collection]
The internal bundle repository can store bundles that are referenced by OSGi applications running in
WebSphere Application Server. You can install single bundles, composite bundles, and grouped-up sets of
bundles.

To view this panel in the administrative console, click the following path:

Environment > OSGi bundle repositories > Internal bundle repository

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items on which
you want to act, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

When you import an enterprise bundle archive (EBA) file as an asset, or update an asset to use new
bundle versions, or add a composite bundle as an extension to a composition unit, provisioning ensures
that all the required OSGi bundles are available. An OSGi application can use bundles from external
repositories, bundles from the internal repository, and bundles that are included in an EBA file or a
composite bundle archive (CBA) file.

If your OSGi applications are configured to expect to find certain bundles in the internal bundle repository,
you must add those bundles to the set of bundles listed on this panel. Composite bundles can either be
included directly in your applications, or provisioned from the internal bundle repository or from an external
repository that can process composite bundles. If your bundle includes Blueprint XML files that specify
service or reference elements, and the bundle is included in an EBA asset or installed in the internal
bundle repository, then these elements are respected during provisioning and appropriate services are
provisioned when needed. For more information, see Provisioning for OSGi applications.

You can install bundles singly, or you can install a set of bundles packaged as a compressed archive file
with a .zip file extension. In both cases, the bundles are listed individually on this panel. If you install a
composite bundle in a bundle repository, and the composite bundle includes bundles by reference, you
must ensure that the referenced bundles are also available in the same repository. If you use the internal
bundle repository, and the composite bundle directly contains bundles, the contained bundles are not listed
separately and are only available as part of the composite bundle.

Bundle symbolic name
The non-localizable name for this bundle.

Bundle version
The version of this bundle.

Buttons

Label Action

New Create a new administrative object of this type.

Delete Delete the selected items.

Internal bundle repository [Settings]
The internal bundle repository can store bundles that are referenced by OSGi applications running in
WebSphere Application Server. This panel records the details of a bundle that is installed in the internal

Chapter 16. Administering OSGi applications 1095



bundle repository. The provisioner can then retrieve the bundle when it is included by reference in any of
your OSGi applications. You can store bundles and composite bundles in the internal repository. If the
bundle is a composite bundle, extra fields are visible.

To view this panel in the administrative console, click the following path:

Environment > OSGi bundle repositories > Internal bundle repository > bundle_name

When you import an enterprise bundle archive (EBA) file as an asset, or update an asset to use new
bundle versions, or add a composite bundle as an extension to a composition unit, provisioning ensures
that all the required OSGi bundles are available. An OSGi application can use bundles from external
repositories, bundles from the internal repository, and bundles that are included in an EBA file or a
composite bundle archive (CBA) file. If your bundle includes Blueprint XML files that specify service or
reference elements, and the bundle is included in an EBA asset or installed in the internal bundle
repository, then these elements are respected during provisioning and appropriate services are provisioned
when needed. For more information, see Provisioning for OSGi applications.

Composite bundles can either be included directly in your applications, or provisioned from the internal
bundle repository or from an external repository that can process composite bundles. If you install a
composite bundle in a bundle repository, and the composite bundle includes bundles by reference, you
must ensure that the referenced bundles are also available in the same repository. If you use the internal
bundle repository, and the composite bundle directly contains bundles, the contained bundles are not listed
separately and are only available as part of the composite bundle.

Configuration tab

The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

The Configuration tab displays the following properties:

Bundle symbolic name
The non-localizable name for this bundle.

The bundle symbolic name, together with the bundle version, uniquely identifies a bundle.

Bundle version
The version of this bundle.

The bundle version is in the form n.n.n, for example 1.1.0. The bundle symbolic name, together
with the bundle version, uniquely identifies a bundle.

Composite bundle manifest version
The manifest version of the COMPOSITEBUNDLE.MF file.

This field is only displayed if the bundle is a composite bundle. The composite bundle manifest
version is in the form n.n.n, for example 1.1.0.

Bundle name
The name for this bundle in a form that users can understand.

This name can contain spaces.

Bundle description
A short description of this bundle.

Composite content
The bundles that are directly contained in this composite bundle.

This field is only displayed if the bundle is a composite bundle.

1096 Administering WebSphere applications



Imported packages
The imported packages for this bundle.

Exported packages
The exported packages for this bundle.

Imported services
Services that are imported by this composite bundle.

This field is only displayed if the bundle is a composite bundle.

Exported services
Services that are exported by this composite bundle.

This field is only displayed if the bundle is a composite bundle.

Required bundles
The list of other bundles that are required by this bundle.

This bundle is bound to all the exports of each required bundle, regardless of what those exports
are.

Listeners for message-driven beans [Settings]
For each message-driven bean (MDB) that is defined in either an ejb-jar.xml file or an @MessageDriven
annotation in the composition unit, you can specify the settings necessary to bind an MDB listener to the
MDB.

By binding a listener to an MDB, you configure the association of the MDB with the JMS destination from
which the MDB receives messages.

This panel displays one row of information for each MDB. The final three columns, Activation
Specification JNDI Name, Destination JNDI Name, and Authentication Alias, specify the binding
information.

If any binding setting is defined in an XML configuration file, or in an @MessageDriven annotation, that
setting is displayed in the corresponding column, otherwise the column is empty. You can modify any
existing binding settings, and specify new ones, as required, by entering values in the appropriate
columns.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name > [Deployed
assets] Add > Add Asset > asset_name > Wizard step: Bind listeners for message-driven beans

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] Listeners for message-driven beans

Note: The Bind listeners for message-driven beans wizard step and the Message-driven beans
listener bindings property are visible only if the OSGi application contains at least one EJB
bundle that has at least one MDB.

General Properties

Bundle symbolic name
The non-localizable name for this bundle.

Bundle version
The version of this bundle.

The bundle symbolic name, together with the bundle version, uniquely identifies a bundle.

Chapter 16. Administering OSGi applications 1097



URI The URI of the location where the MDB is defined. The following table describes the syntax of the
URI depending on the location of the MDB definition:

Location of MDB definition URI syntax Examples

ejb-jar.xml file Path to the file, followed by the name
of the MDB.

META-INF/ejb-jar.xml/CustomerDetails
or WEB-INF/ejb-jar.xml/
CustomerDetails

@MessageDriven annotation in an
enterprise bean

Path to the ejb-jar.xml file that
contains the definition of the MDB in
which the @MessageDriven
annotation is declared, followed by
the name of the MDB.

META-INF/ejb-jar.xml/CustomerDetails
or WEB-INF/ejb-jar.xml/
CustomerDetails

Activation Specification JNDI Name
The JNDI name of the activation specification that you want to associate with the MDB. The
activation specification provides the configuration necessary for the MDB to receive messages
from a JMS destination.

Destination JNDI Name
The JNDI name of the JMS destination from which the MDB receives messages. Specify a value
only if you want to override the JMS destination that is configured on the activation specification.

Activation Specification Authentication Alias
If the activation specification is secured, specify the associated authentication alias that defines the
user ID and password. Specify a value only if you want to override the authentication alias that is
configured on the activation specification.

Apply Multiple Mappings

Use the Apply Multiple Mappings option to apply a binding setting to two or more MDBs in a single
operation. Complete the following steps:

1. Select the check boxes, in the Select column, alongside the MDBs to which you want to apply the
binding setting.

2. Expand Apply Multiple Mappings.

3. Select the Activation Specification JNDI Name, Destination JNDI Name, or Activation
Specification Authentication Alias binding setting that you want to apply to the selected MDBs, and
click the corresponding Apply button.

The binding setting is applied to the selected MDBs.

Package details [Settings]
This panel displays the details of a given package, including identification information, and the bundles that
export and import the package.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
Framework packages > package_name

v From the “Bundles in OSGi framework [Collection]” on page 1084 page, or the “Services in OSGi
framework [Collection]” on page 1104 page, click Framework packages > package_name.

v From the “Bundle details [Settings]” on page 1083 page, click Bundle packages > package_name.

Configuration tab

The Configuration tab displays the following details of this package:

1098 Administering WebSphere applications



Package name
The name of the package.

Package version
The version of the package.

Exporting bundles
The IDs and names of the bundles that export this package. Click a bundle name to display the
details of that bundle.

Importing bundles
The IDs and names of the bundles that import this package. Click a bundle name to display the
details of that bundle.

Packages in bundle [Collection]
This panel lists all the imported packages and exported packages for a given OSGi bundle.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
bundle_name > Bundle packages

v From the “Packages in OSGi framework [Collection]” page, or the “Services in OSGi framework
[Collection]” on page 1104 page, click Framework bundles > bundle_name > Bundle packages.

To browse the properties of a listed item, select its name in the list.

For each package, the panel displays the following information:

Package name
The name of the package.

Package version
The version of the package.

Packages in OSGi framework [Collection]
This panel lists all the packages in a given OSGi framework.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
Framework packages

v From the “Bundles in OSGi framework [Collection]” on page 1084 page, or the “Services in OSGi
framework [Collection]” on page 1104 page, click Framework packages.

To browse the properties of a listed item, select its name in the list.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

For each package, the panel displays the following information:

Package name
The name of the package.

Package version
The version of the package.

Chapter 16. Administering OSGi applications 1099



Preview bundle versions update [Settings]
A preview of the result of the proposed changes to the bundle versions in this application.

To view this panel in the administrative console, click the following path:

Applications > Application Types > Assets > asset_name > [Additional Properties] Update bundle
versions in this application > Preview

A table similar to the one in the “Update bundle versions in this application [Settings]” on page 1104 panel
is displayed. This table shows the results of the proposed changes to the bundle versions. If the changes
resolve successfully, the following message is displayed: “The selected bundle versions can be resolved,
so you can now create a new deployment with the proposed bundle versions. The new deployment will not
affect any composition units for this asset until the composition units are updated to use the new
deployment.” Otherwise, the message displayed is “The selected versions cannot be resolved, so you
cannot create a new deployment with the proposed bundle versions.”

If the changes are not all resolved successfully, click Cancel to return to the “Update bundle versions in
this application [Settings]” on page 1104 panel, then select a different update preference for each bundle
that could not be resolved. When you have selected a working configuration, you can commit your
selections and the bundle version updates for the asset are applied.

Note: When an EBA asset is updated, the update does not automatically affect the running business-level
application. To update the running application, you update the composition unit of the business-level
application that contains the asset.

Symbolic name
The non-localizable name for the bundle.

Deployed version
The version of the bundle that is currently deployed. For example, “1.0.0”. If the runtime
environment does not currently deploy the bundle, this field contains the statement “Not deployed”.

New version
The new bundle version that you chose from the list on the “Update bundle versions in this
application [Settings]” on page 1104 panel. For example, “1.0.0”. If the runtime does not currently
deploy the bundle, and decides that the bundle is still not needed, this field contains the statement
“Not deployed”.

Buttons

Label Action

Create Apply the bundle version updates for the asset, then
return to the Asset settings panel.

Cancel Cancel any changes made, then return to the previous
panel.

Preview composition unit upgrade [Settings]
A preview of the result of the proposed changes to the bundle versions for this composition unit.

Bundle updates might become available from bundle updates made to the underlying asset, or from one or
more composite bundle extensions that have been added or removed. So that you can see the cumulative
effect of all the changes, this panel displays the complete list, bundle by bundle, of the updates that are
about to be applied. If the result is not what you want, you can cancel the update.

To view this panel in the administrative console, click the following path:

1100 Administering WebSphere applications



Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [OSGi application deployment status] Update to latest deployment ...

Symbolic name
The non-localizable name for the bundle.

Deployed version
The version of the bundle that is currently deployed. For example, “1.0.0”. If the runtime
environment does not currently deploy the bundle, this field contains the statement “Not deployed”.

New version
The new bundle version that will be deployed by this update. For example, “1.1.0”. If the bundle is
being removed, this field contains the statement “Not deployed”.

Buttons

Label Action

OK Apply the bundle version updates for the composition
unit, then return to the Composition unit settings panel.

Cancel Do not apply the bundle version updates for the
composition unit, and return to the Composition unit
settings panel.

RunAs roles for users [Collection]
You can map a specified user identity and password to a RunAs role. This mapping enables you to specify
application-specific privileges for individual users, so that they can run specific tasks using another user
identity.

The OSGi application that you are importing or updating contains predefined RunAs roles. RunAs roles are
used by applications that need to run as a particular role for recognition when interacting with another
application.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name > [Deployed
assets] Add > Add Asset > asset_name > Wizard step: Map RunAs roles to users

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] RunAs roles for users

Note: The Map RunAs roles to users wizard step and the RunAs roles for users property are visible
only if the application uses RunAs roles.

Username
Specifies a user name for the RunAs role user.

This user already maps to the role specified in the “Security role to user or group mapping
[Settings]” on page 1102 panel. You can map the user to the appropriate role by either mapping
the user to that role directly or mapping a group that contains the user to that role. After you
specify the user name and password for the user and select a RunAs role, click Apply.

Password
Specifies the password for the RunAs user.

Role Maps specific capabilities to a user.

The authorization policy is enforced only when global security is enabled.

Chapter 16. Administering OSGi applications 1101



Security role to user or group mapping [Settings]
You can specify the users and groups that are mapped to the security roles used with the OSGi
application.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name > [Deployed
assets] Add > Add Asset > asset_name > Wizard step: Map security roles to users or groups

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] Security role to user or group mapping

Note: The Map security roles to users or groups wizard step and the Security role to user or
group mapping property are visible only if the application uses security roles.

General Properties

Role Lists the specific capabilities for a user. Role privileges give users and groups permission to run as
specified.

For example, you might map the user Joe to the administrator role, which enables user Joe to
complete all of the tasks associated with the administrator role.

The authorization policy is enforced only when global security is enabled.

Mapped users
Lists the users that are mapped to the specified role within this application.

Mapped groups
Lists the groups that are mapped to this specified role within this application.

Special subjects
Lists which special subjects are mapped to the security role when an application uses multiple
realms.

Buttons

Label Action

Map Users Lists the users that are mapped to the specified role within this application. You can
search for, and then select, available users to map to the role.

Map Groups Lists the groups that are mapped to this specified role within this application. You can
search for, and then select, available groups to map to the role.

Map Special Subjects Map any of the following special subjects to a selected role:

v All authenticated in application realm: All authenticated users that are in the
applications realm, which specifies whether to map all the authenticated users to a
specified role. When you map all authenticated users to a specified role, all the valid
users in the current registry who have been authenticated can access resources that
are protected by this role.

This selection also applies to all authenticated users regardless of the realm.

v All authenticated in trusted realms: This option is available only when multiple realms
are used. All authenticated users that are in any of the trusted realms are mapped to
the specified role. A list of realms to search is displayed. Users from the non-default
realm are displayed as user@realm.

v Everyone: Map everyone to the specified role. When you map everyone to a role,
anyone can access the resources that are protected by this role and, essentially, there
is no security.

v None: Do not map anyone to the specified role.

1102 Administering WebSphere applications



Note:

v If the secured realm cannot be reached, the list of available users is replaced with the text fields
name, realm, and uid so that you can add the user directly.

v You cannot map two subjects to the same role in this release of the product.

Service details [Settings]
This panel displays the details of a given service, including identification information, the service interfaces,
the bundles that have registered or that use the service, and the service properties.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
Framework services > service_identifier

v From the “Packages in OSGi framework [Collection]” on page 1099 page, or the “Bundles in OSGi
framework [Collection]” on page 1084 page, click Framework services > service_identifier.

v From the “Bundle details [Settings]” on page 1083 page, click Bundle services > service_identifier.

Configuration tab

The Configuration tab displays the following details of this service:

Service identifier
The unique ID of the service. This value is generated automatically. Click the service identifier to
display the details of the service.

Service interfaces
The interfaces under which the service is registered.

Service owning bundle
The ID and name of the bundle that registered this service. Click the bundle name to display the
details of the bundle.

Bundles using service
The IDs and names of the bundles that are using this service. Click a bundle name to display the
details of that bundle.

Service properties
The properties that are defined for this service.

Services in bundle [Collection]
This panel lists all the services that are registered, and all the services that are consumed, by a given
OSGi bundle.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
bundle_name > Bundle services

v From the “Packages in OSGi framework [Collection]” on page 1099 page, or the “Bundles in OSGi
framework [Collection]” on page 1084 page, click Framework bundles > bundle_name > Bundle
services.

To browse the properties of a listed item, select its identifier in the list.

For each service, the panel displays the following information:

Chapter 16. Administering OSGi applications 1103



Service identifier
The unique ID of the service. This value is generated automatically. Click the service identifier to
display the details of the service.

Service interfaces
The interfaces under which the service is registered.

Services in OSGi framework [Collection]
This panel lists all the services in a given OSGi framework.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] OSGi application console > framework_name >
Framework services

v From the “Packages in OSGi framework [Collection]” on page 1099 page, or the “Bundles in OSGi
framework [Collection]” on page 1084 page, click Framework services.

To browse the properties of a listed item, select its identifier in the list.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

If you want to filter the entries based on the values in the Service interfaces column, you can supply an
OSGi service filter in the Search terms field that filters the entries according to the values of service
properties. The filter must comply with the OSGi filter format as defined in section 3.2.7 of the OSGi
Service Platform Release 4 Version 4.2 Core Specification.

The following example uses a single property filter:
(objectClass=org.osgi.service.packageadmin.PackageAdmin)

The following example uses a multiple property filter that requires both property expressions to be
satisfied:
(&(objectClass=javax.resource.Referenceable)(ibm.private.jndi.object=true))

For each service, the panel displays the following information:

Service identifier
The unique ID of the service. This value is generated automatically. Click the service identifier to
display the details of the service.

Service interfaces
The interfaces under which the service is registered.

Update bundle versions in this application [Settings]
Update the versions of the bundles that comprise this application. You can configure the deployed asset to
use an updated version of any bundle or composite bundle that is used by the asset. You can choose to
use a specific bundle version, or to pull in the latest compatible version.

To view this panel in the administrative console, click the following path:

Applications > Application Types > Assets > asset_name > [Additional Properties] Update bundle
versions in this application

Note: This option is not available if the bundle downloads for any previous update have not yet
completed.

1104 Administering WebSphere applications



This panel contains a tabular overview of the bundles and composite bundles currently deployed in the
asset. Application bundles are listed separately from use bundles.

In the table, you can select the update preference for each bundle from a list. You can choose either of the
following options:

v Choose a specific available bundle version. For example, “1.0.0”.

v Choose “No preference”. If you select this option, the latest available version that is compatible with
your other bundle selections is used.

After you make your selections for this asset, click Preview to see the result of the proposed changes in
the “Preview bundle versions update [Settings]” on page 1100 panel.

Note: When an EBA asset is updated, the update does not automatically affect the running business-level
application. To update the running application, you update the composition unit of the business-level
application that contains the asset.

Symbolic name
The non-localizable name for the bundle.

Content type
The content type is always “Bundle”.

Sharing
The sharing status for the bundle. This is either “Isolated” or “Shared”. Application bundles are
always “Isolated”, and use bundles are always “Shared”.

Deployed version
The version of the bundle that is currently deployed. For example, “1.0.0”. If the runtime
environment does not currently deploy the bundle, this field contains the statement “Not deployed”.

New version
Choose a new bundle version from the list. Choose either “No preference”, or a specific available
bundle version: For example, “1.0.0”.

Buttons

Label Action

Preview Preview the effect of your changes. A similar table is
displayed in the “Preview bundle versions update
[Settings]” on page 1100 panel, showing the result of the
proposed changes to the bundle versions in this
application.

Cancel Cancel any changes made, then return to the previous
panel.

Upload bundle [Settings]
Upload a bundle into the internal bundle repository. You can upload single bundles, composite bundles,
and grouped-up sets of bundles.

If your OSGi applications are configured to expect to find certain bundles in the internal bundle repository,
you must add those bundles to the repository. Composite bundles can either be included directly in your
applications, or provisioned from the internal bundle repository or from an external repository that can
process composite bundles. If your bundle includes Blueprint XML files that specify service or reference
elements, and the bundle is included in an EBA asset or installed in the internal bundle repository, then
these elements are respected during provisioning and appropriate services are provisioned when needed.
For more information, see Provisioning for OSGi applications.

Chapter 16. Administering OSGi applications 1105



You can install bundles singly, or you can install a set of bundles packaged as a compressed archive file
with a .zip file extension. In both cases, the bundles are available individually in the repository. If you
install a composite bundle in a bundle repository, and the composite bundle includes bundles by reference,
you must ensure that the referenced bundles are also available in the same repository. If you use the
internal bundle repository, and the composite bundle directly contains bundles, the contained bundles are
not listed separately and are only available as part of the composite bundle.

For users who are moving from a previous version:

v In the WebSphere Application Server Version 7
Feature Pack for OSGi Applications and Java
Persistence API 2.0, when you add a
composite bundle to the internal bundle
repository, and that composite bundle directly
contains bundles (in compressed files in the
root directory of the composite bundle archive
file), those bundles are added to the internal
bundle repository both as part of the composite
bundle and as individually-available bundles. If
you later delete the composite bundle from the
repository, the individually-available copies of
the bundles are not deleted. You might have
used this mechanism as a convenient way to
upload sets of bundles to the repository.

v In the current version, when you add to the
repository a composite bundle that directly
contains bundles, those bundles are not also
added individually. If you want to add sets of
bundles to the internal bundle repository, you
package each set as a compressed archive file
with a .zip file extension, then add the archive
file to the repository. The system expands the
file, and all the bundles in its root directory are
added individually to the repository.

To view this panel in the administrative console, click the following path:

Environment > OSGi bundle repositories > Internal bundle repository > New

Path to bundle

Specifies the fully qualified path to the bundle, composite bundle or grouped-up set of bundles that you
want to upload. Each individual bundle must be packaged as a .jar file, and must contain a
suitably-configured bundle manifest file. Each composite bundle must be packaged as a compressed
archive file with a .cba file extension, and must contain a suitably-configured composite bundle manifest
file. Each grouped-up set of bundles must be packaged as a compressed archive file with a .zip file
extension.

Use Local file system if the browser and files are on the same machine, whether or not the server is also
on that machine.

Use Remote file system if the file is on any node in the current cell context, or if the file is already on the
machine that runs the application server. For example, the field value might be profile_root/
feature_packs/aries/installableApps/my.bundle_1.0.0.jar.

1106 Administering WebSphere applications



Virtual hosts for web modules [Settings]
Each web application bundle (WAB) that is contained in a deployed asset must be mapped to a virtual
host. WABs can be installed on the same virtual host, or dispersed among several virtual hosts.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name > [Deployed
assets] Add > Add Asset > asset_name > Wizard step: Map virtual hosts for web modules

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] Virtual hosts for web modules

Note: The Map virtual hosts for web modules wizard step and the Virtual hosts for web modules
property are visible only if the application uses web application bundles.

You use a virtual host to associate a unique port with a web application. The aliases of a virtual host
identify the port numbers defined for that virtual host. A port number specified in a virtual host alias is used
in the URL that is used to access artifacts such as servlets and JavaServer Page (JSP) files in a web
application. For example, the alias myhost:8080 is the host_name:port_number portion of the URL
http://myhost:8080/sample.

To check existing virtual hosts by using the administrative console, click Environment > Virtual hosts.

If you specify an existing virtual host in the ibm-web-bnd.xml or .xmi file for a WAB, the specified virtual
host is set by default. Otherwise, the default virtual host setting is default_host, which provides several
port numbers through its aliases:
80 An internal, insecure port used when no port number is specified
9080 An internal port
9443 An external, secure port

Unless you want to isolate your WAB from other WABs or resources on the same node, default_host is a
suitable virtual host. In addition to default_host, WebSphere Application Server provides admin_host,
which is the virtual host for the administrative console system application. admin_host is on port 9060. Its
secure port is 9043. Do not select admin_host unless the WAB relates to system administration.

General Properties

Composite bundle identifier
This identifier is displayed only if the EBA asset uses composite bundles. Each composite bundle
is identified by a string in the following form: Composite bundle archive
(CBA)’composite.bundle.symbolic.name_composite.bundle.version’. Bundles that are part of a
composite bundle are listed beneath the composite bundle identifier.

Composite bundle symbolic name
The non-localizable name for this composite bundle.

Composite bundle version
The version of this composite bundle.

The symbolic name, together with the version, uniquely identifies a composite bundle.

Bundle symbolic name
The non-localizable name for this bundle.

Bundle version
The version of this bundle.

The bundle symbolic name, together with the bundle version, uniquely identifies a bundle.

Web module
The human-readable name for this web module.

Chapter 16. Administering OSGi applications 1107



Virtual host
The name of the virtual host to which the web application bundle is currently mapped.

To change a mapping, select a different virtual host from the list.

Web module message destination references [Settings]
For each reference, specify the JNDI name under which the resource is known in the runtime environment.

Binding a resource reference maps a resource dependency of the web application to an actual resource
available in the server runtime environment. At a minimum, you can achieve this mapping by specifying
the JNDI name under which the resource is known in the runtime environment. By default, the JNDI name
is the resource ID that you specified in the web.xml file during development of the web application bundle
(WAB).

The rows contain the JNDI names of resource mapping targets for your references only if you bound them
together during application assembly. You can modify the mappings, as required, by entering the
appropriate values in the JNDI Name column.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name > [Deployed
assets] Add > Add Asset > asset_name > Wizard step: Bind web module message destination
references to administered objects

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] Web module message destination references

Note: The Bind web module message destination references to administered objects wizard step and
the Web module message destination references property are visible only if the bundle includes a
web application.

General Properties

Composite bundle identifier
This identifier is displayed only if the EBA asset uses composite bundles. Each composite bundle
is identified by a string in the following form: Composite bundle archive
(CBA)’composite.bundle.symbolic.name_composite.bundle.version’. Bundles that are part of a
composite bundle are listed beneath the composite bundle identifier.

Composite bundle symbolic name
The non-localizable name for this composite bundle.

Composite bundle version
The version of this composite bundle.

The symbolic name, together with the version, uniquely identifies a composite bundle.

Bundle symbolic name
The non-localizable name for this bundle.

Bundle version
The version of this bundle.

The bundle symbolic name, together with the bundle version, uniquely identifies a bundle.

Reference name
The name of a resource reference that is used in the application, if applicable, and is declared in
the deployment descriptor of the WAB.

Resource Type
The type of the resource reference.

1108 Administering WebSphere applications



You can use this panel to specify bindings for any message-destination-ref (message destination
reference) resource or resource-env-ref (resource environment reference) resource, as defined in
the Java specification JSR-250: Common Annotations for the Java Platform. For example, the
following are all types of message-destination-ref resource:

v Default messaging JMS queues destinations

v Default messaging JMS topic destinations

v JMS queue destination for WebSphere MQ

v JMS topic destination for WebSphere MQ

Note: To specify bindings for a resource-ref (resource reference) resource, use the “Web module
resource references [Settings]” panel.

JNDI name
The Java Naming and Directory Interface (JNDI) name of the message destination or resource
environment that is the mapping target of the resource reference.

Web module resource references [Settings]
For each reference, specify the JNDI name under which the resource is known in the runtime environment.
Optionally, set authentication properties and extended data source custom properties, which affect how the
resource is accessed at run time.

Binding a resource reference maps a resource dependency of the web application to an actual resource
available in the server runtime environment. At a minimum, you can achieve this mapping by specifying
the JNDI name under which the resource is known in the runtime environment. By default, the JNDI name
is the resource ID that you specified in the web.xml file during development of the web application bundle
(WAB).

The rows contain the JNDI names of resource mapping targets for your references only if you bound them
together during application assembly. You can modify the mappings, as required, by entering the
appropriate values in the JNDI Name column.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name > [Deployed
assets] Add > Add Asset > asset_name > Wizard step: Map web module resource references to
resources

v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] Web module resource references

Note: The Map web module resource references to resources wizard step and the Web module resource
references property are visible only if the bundle includes a web application.

General Properties

Select To modify the authentication method, or to set extended data source custom properties that apply
to the database connection, select a single reference then click Modify Resource Authentication
Method... or Extended Properties....

Composite bundle identifier
This identifier is displayed only if the EBA asset uses composite bundles. Each composite bundle
is identified by a string in the following form: Composite bundle archive
(CBA)’composite.bundle.symbolic.name_composite.bundle.version’. Bundles that are part of a
composite bundle are listed beneath the composite bundle identifier.

Composite bundle symbolic name
The non-localizable name for this composite bundle.

Chapter 16. Administering OSGi applications 1109



Composite bundle version
The version of this composite bundle.

The symbolic name, together with the version, uniquely identifies a composite bundle.

Bundle symbolic name
The non-localizable name for this bundle.

Bundle version
The version of this bundle.

The bundle symbolic name, together with the bundle version, uniquely identifies a bundle.

Resource Reference
The name of a resource reference that is used in the application, if applicable, and is declared in
the deployment descriptor of the WAB.

Resource Type
The type of the resource reference.

You can use this panel to specify bindings for any resource-ref (resource reference) resource, as
defined in the Java specification JSR-250: Common Annotations for the Java Platform. For
example:

v Data source

v Generic JMS connection factory

v Mail session

v J2C connection factory

v JMS queue connection factory for the JMS provider of WebSphere MQ

v JMS topic connection factory for WebSphere MQ

v Unified JMS connection factory for WebSphere MQ

v URL configuration

Note: To specify bindings for a message-destination-ref (message destination reference) resource,
or a resource-env-ref (resource environment reference) resource, use the “Web module
message destination references [Settings]” on page 1108 panel.

JNDI name
The Java Naming and Directory Interface (JNDI) name of the resource that is the mapping target
of the resource reference.

Login configuration
The authorization type and the authentication method for securing the resource.
Container-managed authorization indicates that the product signs on to the resource rather than
the enterprise bean code.

Buttons

Label Action

Browse... To specify the JNDI name mapping for a specific web
module resource reference, use this option to select the
resource reference from a list of available resources.

1110 Administering WebSphere applications



Label Action

Modify Resource Authentication Method... You can select one of the following options:

None

Use default method (many-to-one mapping)
For information about the default mapping
configuration, see J2EE connector security.

Select this option, then select an authentication
alias from the list.

Use trusted connections (one-to-one mapping)
You can use this option if your resource is a
data source that has trusted context enabled.

Select this option, then select an authentication
alias from the list that matches an alias that is
already defined in the data source.

Use custom login configuration
For information about custom Java
Authentication and Authorization Service (JAAS)
login configurations, see J2EE connector
security.

Select this option, then select a JAAS login
configuration from the list.

Extended properties... If your resource is a data source, and the backend
database supports extended data source custom
properties, you can use this option to add, modify or
delete these properties. These are custom properties
(name/value pairs) that can be used (for example) to
obtain a data source for you.
Note: If you use multiple values for an extended data
source property, you must enclose those values in
quotation marks.

For more information, see Extended data source
properties.

Mapping properties... Define arbitrary name and value pairs for extended data
source properties that apply to the resource
authentication method. This button is visible only if you
have selected Use trusted connections or Use custom
login configuration for the resource authentication
method.

Web module resource references: Available resources [Collection]
This panel lists the currently available resources that can be assigned to the resource reference selected
on the previous panel.

Each table row corresponds to an available resource that you can bind to your web module resource
reference.

To view this panel in the administrative console, click one of the following paths:

v Applications > Application Types > Business-level applications > application_name > [Deployed
assets] Add > Add Asset > asset_name > Wizard step: Map web module resource references to
resources, then click Browse for a given web module resource reference binding.

Chapter 16. Administering OSGi applications 1111



v Applications > Application Types > Business-level applications > application_name >
composition_unit_name > [Additional Properties] Web module resource references, then click
Browse for a given web module resource reference binding.

Note: The Map web module resource references to resources wizard step and the Web module resource
references property are visible only if the bundle includes a web application.

Select Select the resource that you want to bind to your web module resource reference.

Name The name of the resource.

JNDI name
The Java Naming and Directory Interface (JNDI) name of the resource.

Scope The scope of the resource. Note that this administrative console page displays only resources that
are configured for a scope at which your application operates.

Description
A short description of the resource.

Buttons

Label Action

Apply Apply the selected resource to the web module resource
reference.

Cancel Cancel any changes made, then return to the previous
panel.

OSGiApplicationCommands: OSGi Applications administrative
commands for the AdminTask object
You can use these administrative commands to manage your OSGi applications.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided so that you can make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

addExternalBundleRepository command
Use the addExternalBundleRepository command to add a link to an external bundle repository.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

1112 Administering WebSphere applications



Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command adds a link to an external bundle repository.

Target object

None

Required parameters

-name bundle_repository_name
The name by which you want the external bundle repository link to be known.

-url bundle_repository_URL
The URL of the bundle repository XML file. For example, http://external_location/repository.xml.

Conditional parameters

None.

Optional parameters

-description bundle_repository_description
An optional description of the bundle repository.

Example
AdminTask.addExternalBundleRepository(’-name bundle_repository_name

-url http://external_location/repository.xml
[-description bundle_repository_description]’)

Square brackets (“[ ]”) indicate that a parameter is optional.

addLocalRepositoryBundle command
Use the addLocalRepositoryBundle command to add a bundle, composite bundle or grouped-up set of
bundles to the internal bundle repository that is included in the product.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

Chapter 16. Administering OSGi applications 1113



print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command adds a bundle, a composite bundle or a grouped-up set of bundles to the internal bundle
repository.

You can install bundles singly, or you can install a set of bundles packaged as a compressed archive file
with a .zip file extension. In both cases, the bundles are available individually in the repository. If you
install a composite bundle in a bundle repository, and the composite bundle includes bundles by reference,
you must ensure that the referenced bundles are also available in the same repository. If you use the
internal bundle repository, and the composite bundle directly contains bundles, the contained bundles are
not listed separately and are only available as part of the composite bundle. For more information, see
Composite bundles.

Target object

None

Required parameters

-file path
The path and file name of a compressed archive file that has a .jar, .cba or .zip file extension and is
available on the server file system.

Each individual bundle must be packaged as a .jar file, and must contain a suitably-configured
bundle manifest file. Each composite bundle must be packaged as a compressed archive file with a
.cba file extension, and must contain a suitably-configured composite bundle manifest file. Each
grouped-up set of bundles must be packaged as a compressed archive file with a .zip file extension.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.addLocalRepositoryBundle(’-file path’)

addOSGiExtension command
Use the addOSGiExtension command to add a composite bundle as an extension to a composition unit.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

1114 Administering WebSphere applications



v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command adds a composite bundle as an extension to a composition unit. The composite bundle
must be available in the internal bundle repository, or in an external repository that can process composite
bundles.

Target object

The specified composition unit.

Required parameters

-cuName cu_name
The name of the composition unit.

-symbolicName cba_symbolic_name
The non-localizable name for this composite bundle.

-version cba_version
The version of this composite bundle.

The composite bundle version is in the form n.n.n, for example 1.1.0. The symbolic name, together with
the version, uniquely identifies a composite bundle.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.addOSGiExtension(’
-cuName cu_name
-symbolicName cba_symbolic_name
-version cba_version

’)

addOSGiExtensions command
Use the addOSGiExtensions command to add several composite bundles as extensions to a composition
unit.

To run the command, use the AdminTask object of the wsadmin scripting client.

Chapter 16. Administering OSGi applications 1115



The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command adds several composite bundles as extensions to a composition unit. The composite
bundles must be available in the internal bundle repository, or in an external repository that can process
composite bundles.

Target object

The specified composition unit.

Required parameters

-cuName cu_name
The name of the composition unit.

-extensions

A list of the composite bundle extensions to be added. Each list entry contains the symbolic name and
the version for a composite bundle. The symbolic name, together with the version, uniquely identifies a
composite bundle.

cba_symbolic_name
The non-localizable name for this composite bundle.

cba_version
The version of this composite bundle.

The composite bundle version is in the form n.n.n, for example 1.1.0.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.addOSGiExtensions([
’-cuName’, ’cu_name’,
’-extensions’,
’cba1_symbolic_name;cba1_version

1116 Administering WebSphere applications



cba2_symbolic_name;cba2_version
cba3_symbolic_name;cba3_version
’

])

exportDeploymentManifest command
Use the exportDeploymentManifest command to export the current deployment manifest, the
DEPLOYMENT.MF file, from an enterprise bundle archive (EBA) asset. You might want to do this to save the
information, or to import it into another identical application.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command exports the current deployment manifest from an EBA asset.

Target object

None.

Required parameters

-asset
The name of the EBA asset to export the deployment manifest from. This must be an installed EBA
asset.

-path
The file path for the location of the exported deployment manifest. If the location does not exist, the
export process creates it.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.exportDeploymentManifest(’[-asset
com.ibm.ws.eba.example.blabber.app.eba -path /test/temp/]’)

Chapter 16. Administering OSGi applications 1117



importDeploymentManifest command
Use the importDeploymentManifest command to import a deployment manifest to an enterprise bundle
archive (EBA) asset. When you import the file, the bundles are resolved. If the bundles cannot be
resolved, the import does not complete and an exception message is generated.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command imports a deployment manifest to an EBA asset.

For the import to succeed, the following conditions must be met:

v The deployment manifest to import must correspond with the application manifest of the OSGi
application that is contained in the EBA asset.

v The bundles and their versions that are listed in the deployment manifest must be available, either
within the EBA file or from a bundle repository.

v If the asset has previously been updated, the bundle downloads for the previous update must have
completed. See “Checking the bundle download status of an EBA asset” on page 1047.

When the deployment manifest is successfully imported to the EBA asset, its file name changes to
DEPLOYMENT.MF, and any new bundles that are required to provision the application are downloaded.

Target object

None.

Required parameters

-asset
The name of the EBA asset to import the deployment manifest into. This must be an installed EBA
asset.

-file
The fully qualified file path for the location of the deployment manifest to import.

Conditional parameters

None.

1118 Administering WebSphere applications



Optional parameters

None.

Example
AdminTask.importDeploymentManifest(’[-asset
com.ibm.ws.eba.example.blabber.app.eba -file /test/temp/DEPLOYMENT.MF]’)

listExternalBundleRepositories command
Use the listExternalBundleRepositories command to list all links to external bundle repositories.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists all links to external bundle repositories. The list includes any repository links that you
have added since you last saved your changes, and excludes any repository links that you have removed
since you last saved your changes.

Target object

None.

Required parameters

None.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.listExternalBundleRepositories()

listLocalRepositoryBundles command
Use the listLocalRepositoryBundles command to list all bundles held in the bundle repository that is
included in the product.

To run the command, use the AdminTask object of the wsadmin scripting client.

Chapter 16. Administering OSGi applications 1119



The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists all bundles that are held in the internal bundle repository. The list includes any bundles
that you have added since you last saved your changes, and excludes any bundles that you have
removed since you last saved your changes.

Target object

None.

Required parameters

None.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.listLocalRepositoryBundles()

listOSGiExtensions command
Use the listOSGiExtensions command to list the symbolic names and versions of all the extensions that
are currently added to a composition unit.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

1120 Administering WebSphere applications



Purpose

This command lists the symbolic names and versions of all the extensions that are currently added to a
composition unit. This corresponds to the list that is displayed in the WebSphere Application Server
administrative console if you open the details of a composition unit, and click Manage extensions for this
composition unit . The output from the listOSGiExtensions command is formatted so that you can copy
the list of extensions, then paste them into the removeOSGiExtensions command.

Target object

The specified composition unit.

Required parameters

-cuName cu_name
The name of the composition unit.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.listOSGiExtensions(’-cuName cu_name’)

listAvailableOSGiExtensions command
Use the listAvailableOSGiExtensions command to list the symbolic names and versions of all the
extensions that are available to be added to a specified composition unit. The command returns all those
extensions that are available from a bundle repository, but that have not yet been deployed as an
extension to the composition unit.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists the symbolic names and versions of all the extensions that are available to be added
to a specified composition unit. This corresponds to the list that is displayed in the WebSphere Application
Server administrative console if you open the details of a composition unit, and click Manage extensions
for this composition unit and then click Add. The output from the listAvailableOSGiExtensions
command is formatted so that you can copy the list of extensions, then paste them into the
removeOSGiExtensions command.

Chapter 16. Administering OSGi applications 1121



Target object

The specified composition unit.

Required parameters

-cuName cu_name
The name of the composition unit.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.listAvailableOSGiExtensions(’-cuName cu_name’)

modifyExternalBundleRepository command
Use the modifyExternalBundleRepository command to modify a link to an external bundle repository.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command modifies a link to an external bundle repository.

Target object

The specified external bundle repository link.

Required parameters

-name bundle_repository_name
The name of the external bundle repository link. You cannot change this value. You can use the
listExternalBundleRepositories command to list the names of existing bundle repository links.

1122 Administering WebSphere applications



Conditional parameters

None.

Optional parameters

-url bundle_repository_URL
The modified URL for the external bundle repository XML file.

-description bundle_repository_description
The modified description of the external bundle repository link.

Example
AdminTask.modifyExternalBundleRepository(’-name bundle_repository_name

[-url http://external_location/repository.xml]
[-description bundle_repository_description]’)

Square brackets (“[ ]”) indicate that a parameter is optional.

removeExternalBundleRepository command
Use the removeExternalBundleRepository command to remove a link to an external bundle repository.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes a link to an external bundle repository.

Target object

The specified bundle repository link.

Required parameters

-name bundle_repository_name
The name by which the bundle repository link is known. You can use the
listExternalBundleRepositories command to list the names of existing bundle repository links.

Conditional parameters

None.

Chapter 16. Administering OSGi applications 1123



Optional parameters

None.

Example
AdminTask.removeExternalBundleRepository(’-name bundle_repository_name’)

removeLocalRepositoryBundle command
Use the removeLocalRepositoryBundle command to remove a bundle or composite bundle from the bundle
repository that is included in the product.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes a bundle or composite bundle from the internal bundle repository.

You cannot delete a bundle if it is contained in, or referenced by, a composite bundle. You must delete the
composite bundle first, then delete the bundle.

Target object

The specified bundle.

Required parameters

-symbolicName bundle_symbolic_name
One of the following:

v The non-localizable name for this bundle.

v The bundle symbolic name of this composite bundle.

The bundle symbolic name, together with the bundle version, uniquely identifies a bundle.

-version bundle_version
One of the following:

v The version of this bundle.

v The version of this composite bundle.

The bundle version is in the form n.n.n, for example 1.1.0. The bundle symbolic name, together with
the bundle version, uniquely identifies a bundle.

1124 Administering WebSphere applications



Note: You can use the listLocalRepositoryBundles command to list the symbolic names and versions of
the bundles currently held in the repository.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.removeLocalRepositoryBundle(’-symbolicName bundle_symbolic_name

-version bundle_version’)

removeLocalRepositoryBundles command
Use the removeLocalRepositoryBundles command to remove bundles and composite bundles from the
bundle repository that is included in the product.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes bundles and composite bundles from the internal bundle repository.

You cannot remove composite bundles at the same time as you remove any bundles that they reference.
You must first remove the composite bundles, then run the removeLocalRepositoryBundles command a
second time to remove the referenced bundles.

You can use the listLocalRepositoryBundles command to list the symbolic names and versions of the
bundles currently held in the repository. The output from the listLocalRepositoryBundles command is
formatted so that you can copy the list of bundles, then paste them into the
removeLocalRepositoryBundles command.

Target object

The specified bundles.

Chapter 16. Administering OSGi applications 1125



Required parameters

A list of the bundles to be removed.

The list entry for each bundle or composite bundle contains the bundle symbolic name and the bundle
version. The bundle version is in the form n.n.n, for example 1.1.0. The bundle symbolic name, together
with the bundle version, uniquely identifies a bundle.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.removeLocalRepositoryBundles([

’bundle1_symbolic_name;bundle1_version
bundle2_symbolic_name;bundle2_version
bundle3_symbolic_name;bundle3_version
’

])

removeOSGiExtension command
Use the removeOSGiExtension command to remove a composite bundle extension from a composition unit.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes a composite bundle extension from a composition unit.

Target object

The specified composition unit.

Required parameters

-cuName cu_name
The name of the composition unit.

1126 Administering WebSphere applications



-symbolicName cba_symbolic_name
The non-localizable name for this composite bundle.

-version cba_version
The version of this composite bundle.

The composite bundle version is in the form n.n.n, for example 1.1.0. The symbolic name, together with
the version, uniquely identifies a composite bundle.

Note: You can use the listOSGiExtensions command to list the symbolic names and versions of all the
extensions that are currently added to a composition unit.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.removeOSGiExtension(’
-cuName cu_name
-symbolicName cba_symbolic_name
-version cba_version

’)

removeOSGiExtensions command
Use the removeOSGiExtensions command to remove several composite bundle extensions from a
composition unit.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes several composite bundle extensions from a composition unit.

You can use the listOSGiExtensions command to list the symbolic names and versions of all the
extensions that are currently added to a composition unit. The output from the listOSGiExtensions
command is formatted so that you can copy the list of extensions, then paste them into the
removeOSGiExtensions command.

Chapter 16. Administering OSGi applications 1127



Target object

The specified composition unit.

Required parameters

-cuName cu_name
The name of the composition unit.

-extensions

A list of the composite bundle extensions to be removed. Each list entry contains the symbolic name
and the version for a composite bundle. The symbolic name, together with the version, uniquely
identifies a composite bundle.

cba_symbolic_name
The non-localizable name for this composite bundle.

cba_version
The version of this composite bundle.

The composite bundle version is in the form n.n.n, for example 1.1.0.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.removeOSGiExtensions([
’-cuName’, ’cu_name’,
’-extensions’,
’cba1_symbolic_name;cba1_version
cba2_symbolic_name;cba2_version
cba3_symbolic_name;cba3_version
’

])

showExternalBundleRepository command
Use the showExternalBundleRepository command to show the configured parameters of an external
bundle repository.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

1128 Administering WebSphere applications



Purpose

This command shows the name, description when available, and URL of the bundle repository XML file, of
an external bundle repository.

Target object

None.

Required parameters

-name repository_name
The name of a link to an external bundle repository.

Note: You can use the listExternalBundleRepositories command to list all links to external bundle
repositories.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.showExternalBundleRepository(-name ExternalRepository1)

showLocalRepositoryBundle command
Use the showLocalRepositoryBundle command to show further details (in particular all manifest header
entries) for a bundle in the bundle repository that is included in the product.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere Application Server scripts.

Command-line help is provided for OSGi Applications commands:

v For a list of the available OSGi Applications commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('OSGiApplicationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command shows the values of the following properties for the specified bundle stored in the internal
bundle repository:

v Bundle symbolic name

v Bundle version

v Bundle name

v Bundle description

v Imported packages

Chapter 16. Administering OSGi applications 1129



v Exported packages

v Required bundles

For more information about these properties, see “Internal bundle repository [Settings]” on page 1095.

Target object

The specified bundle.

Required parameters

-symbolicName bundle_symbolic_name
The non-localizable name for this bundle. The bundle symbolic name, together with the bundle
version, uniquely identifies a bundle.

-version bundle_version
The version of this bundle. The bundle version is in the form n.n.n, for example 1.1.0. The bundle
symbolic name, together with the bundle version, uniquely identifies a bundle.

Note: You can use the listLocalRepositoryBundles command to list the symbolic names and versions of
the bundles currently held in the repository.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.showLocalRepositoryBundle(’-symbolicName bundle_symbolic_name

-version bundle_version’)

1130 Administering WebSphere applications



Chapter 17. Administering Portlet applications

This page provides a starting point for finding information about portlet applications, which are special
reusable Java servlets that appear as defined regions on portal pages. Portlets provide access to many
different applications, services, and web content.

Portlet container settings and custom properties

Portlet container settings
Use this page to configure and manage the portlet container of this application server.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Portlet Container Settings > Portlet container.

Enable portlet fragment cache
Specifies whether to create a cached entry when a portlet is invoked, similar to servlet caching of the web
container settings.

Portlet fragment caching requires that servlet caching is enabled. Therefore, enabling portlet fragment
caching automatically enables servlet caching. Disabling servlet caching automatically disables portlet
fragment caching.

Portlet container custom properties
You can configure name-value pairs of data, where the name is a property key and the value is a string
value that you can use to set internal system configuration properties. Defining a new property enables
you to configure a setting beyond that which is available in the administrative console. The following is a
list of the available Portlet container custom properties.

To specify Portlet container custom properties:

1. In the administrative console click Servers > Server Types > WebSphere application servers >
server_name > Portlet Container Settings > Portlet container.

2. Under Additional Properties select Custom Properties.

3. On the Custom Properties page, click New.

4. On the settings page, enter the name of the custom property that you want to configure in the Name
field and the value that you want to set it to in the Value field.

5. Click Apply or OK.

6. Click Save on the console task bar to save your configuration changes.

7. Restart the server.

You can use the custom properties page to define the following portlet container custom properties:

v “useShortMBeanNames”

useShortMBeanNames

Portlet MBeans are registered by both their short name and full name. To enable the use of short MBean
names for Portlet and PortletApplication MBeans, create the following name-value pair:

Name Value

useShortMBeanNames true

© IBM Corporation 2009 1131



The default is false.

MBeans registered by the full identifiable name, have the following format:
<ApplicationName>#<WARfilename.war>_portlet.<portlet_name> for the Portlet MBean
<ApplicationName>#<WARfilename.war>_portlet for the PortletApplication MBean

where <..> is replaced by the corresponding application data. For example,
SampleApplication#SamplePortlet.war_portlet.SamplePortlet.

Portlet and PortletApplication MBeans
The MBeans of type portlet and portletapplication provide information about a given portlet application and
its portlets. Through the MBean of type portletapplication, you can retrieve a list of names of all portlets
that belong to a portlet application. By querying the MBean of type portlet with a given portlet name, you
can retrieve portlet specific information from the MBean of type portlet.

Each MBean that corresponds to a portlet or portlet application is uniquely identifiable by its name. Portlet
applications are not required to have a name set within the portlet.xml. The MBean name for MBeans of
the portletapplication type is the enterprise archive (EAR) file name followed by "#" and the web module
name concatenated with the string "_portlet". For example, portletapplication type MBeans have the
following format:
<EarFileName>#<WarFileName>_portlet

The name chosen for the MBean of type portlet is the name of the MBean of type portletapplication that
the portlet belongs to, concatenated with the portlet name:
<EarFileName>#<WarFileName>_portlet.<portletname>

The following is an example of the resulting PortletApplication MBean name and portlet names:
EarName SampleEar
WebModule SampleWar.war

PortletApplication MBean name: SampleEar#SampleWar_portlet
Portlet: SampleEar#SampleWar_portlet.BookmarkPortlet

The MBean names have been changed compared to version 6.1, because the old naming patterns are not
unique and can lead to problems under certain circumstances. If you rely on the old naming pattern, you
can set the portlet container custom property, useShortMBeanNames, to true to activate the previous known
MBean names. Because this is a performance impact, you might not want to activate the old naming
pattern if it is not necessary.

A full stop separates the preceding web module name from the portlet name. Review the Portlet and
PortletApplication MBean type API documentation for additional information. The generated API
documentation is available in the information center table of contents from the path, Reference >
Administrator > API documentation > MBean interfaces.

The following code is an example of how to invoke the MBean of type portletapplication for an application
with the name, SampleWar.
String myPortletApplicationName = "SampleEar#SampleWar_portlet";
This name is composed by the Ear file name followed by "#" and
the web module name concatenated with the substring "_portlet"

com.ibm.websphere.management.AdminService adminService =
com.ibm.websphere.management.AdminServiceFactory.getAdminService();

javax.management.ObjectName on =
new ObjectName("WebSphere:type=PortletApplication,name=" + myPortletApplicationName + ",*");

Iterator onIter = adminService.queryNames(on, null).iterator();

1132 Administering WebSphere applications



while(onIter.hasNext())
{
on = (ObjectName)onIter.next();
}

String ctxRoot = (java.lang.String)adminService.getAttribute(on, "webApplicationContextRoot");

In the previous example, the MBeanServer is first queried for an MBean of type portletapplication. If this
query is successful, the webApplicationContextRoot attribute is retrieved on that MBean or the first MBean
that is found. The result is stored in the ctxRoot variable. This variable now contains the context root of the
web application that contains the portlet application that was searched. The variable is similar to
"/bookmark".

The next code example demonstrates how to invoke the MBean of type portlet for a portlet with the name,
BookmarkPortlet.
String myPortletName = "SampleEar#SampleWar_portlet.BookmarkPortlet";
This name is composed by the name of the MBean of type portletapplication and
the portlet name, separated by a full stop because the same portlet name may
be used within different web modules, but must be unique within the system.

com.ibm.websphere.management.AdminService adminService =
com.ibm.websphere.management.AdminServiceFactory.getAdminService();

javax.management.ObjectName on =
new ObjectName("WebSphere:type=Portlet,name=" + myPortletName + ",*");

Iterator iter = adminService.queryNames(on, null).iterator();

while(iter.hasNext())
{
on = (ObjectName)iter.next;
}

java.util.Locale locale = (java.util.Locale) adminService.getAttribute(on, "defaultLocale");

The locale returned by the method getAttribute method for the MBean is the default locale defined for this
portlet.

Full names for Portlet and PortletApplication MBeans

MBeans are also registered by the full identifiable name:
<ApplicationName>#<WARfilename.war>_portlet.<portlet_name> for the Portlet MBean
<ApplicationName>#<WARfilename.war>_portlet for the PortletApplication MBean

where <..> is replaced by the corresponding application data. For example,
SampleApplication#SamplePortlet.war_portlet.SamplePortlet. You can enable the short MBean names
by setting the useShortMBeanNames portlet container custom property to true.

Chapter 17. Welcome to administering Portlet applications 1133



1134 Administering WebSphere applications



Chapter 18. Administering Scheduler service

This page provides a starting point for finding information about the scheduler service, a WebSphere
programming extension responsible for starting actions at specific times or intervals.

Schedulers are persistent and transactional timer services that run Enterprise JavaBeans (EJB) methods
or send Java Message Service (JMS) messages for any Java Platform, Enterprise Edition (Java EE)
server application.

The scheduler service helps minimize IT costs and increase application speed and responsiveness by
maximizing utilization of existing computing resources.

The scheduler service provides the ability to reliably process workloads using parallel processing and
schedule resource-intensive tasks to process during low traffic off-hours.

Installing default scheduler calendars

Scheduler calendars
The scheduler provides stateless session bean interfaces which allow creating common calendars which
can be used by the scheduler and any Java Platform, Enterprise Edition (Java EE) application.

The SchedulerCalendars.ear application is available and provides a default UserCalendar Enterprise Java
Beans (EJB) implementation which allows using the SIMPLE and CRON calendars. Although this
application is not required when using the scheduler, it is available to use from any Java EE application.

For details on how the SIMPLE and CRON calendars behave, see the API documentation for the
com.ibm.websphere.scheduler.UserCalendar interface.

Specifying a UserCalendar with the scheduler

A UserCalendar is specified using the setUserCalendar() method of the TaskInfo interface of the scheduler.
This interface allows you to select the Java Naming and Directory Interface (JNDI) name of the home
interface of a UserCalendar bean. Because some UserCalendar bean implementations might handle
multiple types of calendars, the interface also allows you to optionally select which type of calendar to use.
A list of valid calendar types can be retrieved by invoking the getCalendarNames() method of the
UserCalendar interface.

If the setUserCalendar() method is not invoked, or if a value of null or empty-string is specified for the
home JNDI name parameter, then the default UserCalendar is used internally by the scheduler. When the
default UserCalendar is accessed internally, it is not necessary that the SchedulerCalendars.ear system
application be installed.If you want to use the default UserCalendar with a CRON entry, you must switch to
the CRON entry manually. The following code sample shows this switch:
BeanTaskInfo taskInfo = (BeanTaskInfo)scheduler.createTaskInfo(BeanTaskInfo.class);
String calendarVariant = "CRON";
taskInfo.setUserCalendar(null, calendarVariant);
// cron table entry
String cronTableEntry = "0 17,20,23 * ? * *";
taskInfo.setStartTimeInterval(cronTableEntry);

You might want to use the default UserCalendar directly in your other Java EE applications, apart from the
scheduler. In this case, you may use the UserCalendarHome.DEFAULT_CALENDAR_JNDI_NAME value
to look up the default UserCalendar from your applications. You may also supply this value to the
setUserCalendar() method of the TaskInfo interface. You will need to ensure the SchedulerCalendars.ear
system application was either automatically installed or that you have installed it manually.

© IBM Corporation 2009 1135



Installing default scheduler calendars
The default scheduler SIMPLE and CRON calendars are available in the SchedulerCalendars.ear system
application and are automatically installed on standalone server profiles. System applications cannot be
installed and uninstalled like traditional Java Platform, Enterprise Edition (Java EE) applications.

About this task

The following steps are required to map the SchedulerCalendars.ear system application on a server or
cluster in a network deployment environment.

Procedure
1. Start the wsadmin tool and connect to the deployment manager.

2. Install the system application.

v To install on a non-clustered server:

– Using Jacl:
$AdminApp install
"/${WAS_INSTALL_ROOT}/systemApps/SchedulerCalendars.
ear" {-systemApp -appname SchedulerCalendars -cell
mycell -node mynode -server myserver}

– Using Jython list:
AdminApp.install(’${WAS_INSTALL_ROOT}/systemApps/
SchedulerCalendars.ear’, [’-systemApp’, ’–appname’,
’SchedulerCalendars’,’-cell’, ’mycell’, ’-node’,
’mynode’, ’-server’, ’myserver’])

– Using Jython string:
AdminApp.install(’${WAS_INSTALL_ROOT}/systemApps/
SchedulerCalendars.ear’, ’[-systemApp –appname
SchedulerCalendars –cell mycell –node mynode
-server myserver]’)

Where:

Table 57. Variable options.. Variable values and options

Value Option

mycell the value of the cell option

mynode the value of the node option

myserver the value of the server option

v To install on a cluster:

– Using Jacl:
$AdminApp install
"\${WAS_INSTALL_ROOT}/systemApps/SchedulerCalendars.
ear" {-systemApp -appname SchedulerCalendars -cell
mycell -cluster mycluster}

– Using Jython list:
AdminApp.install(’${WAS_INSTALL_ROOT}/systemApps/
SchedulerCalendars.ear’, [’-systemApp’, ’–appname’,
’SchedulerCalendars’,’-cell’, ’mycell’, ’-cluster’,
’mycluster’])

– Using Jython string:
AdminApp.install(’${WAS_INSTALL_ROOT}/systemApps/
SchedulerCalendars.ear’, ’[-systemApp –appname
SchedulerCalendars –cell mycell -cluster mycluster]’)

Where:

1136 Administering WebSphere applications



Table 58. Variable options.. Variable values and options

Value Option

mycell the value of the cell option

mycluster the value of the cluster option

3. Save the configuration changes. Refer to the Saving configuration changes with the wsadmin tool topic
for more information.

Uninstalling default scheduler calendars
The default scheduler SIMPLE and CRON calendars are available in the SchedulerCalendars.ear system
application and are automatically installed on standalone server profiles. System applications cannot be
installed and uninstalled like traditional Java Platform, Enterprise Edition (Java EE) applications.

About this task

Remove the SchedulerCalendars system application on federated node, as follows:

Procedure
1. Open a command window on the federated node.

2. Run the following command:

On Unix platforms:
$Install_Root/bin/wsadmin.sh -conntype none -profile $Profile_Name

On Windows platforms:
$Install_Root/bin/wsadmin -conntype none -profile $Profile_Name

where:

v Install_Root is the directory where WebSphere Application Server is installed.

v Profile_Name is the name of the profile where the target server is located.

3. At the wsadmin> prompt, enter the following command for each server that exists on the node where
you want to have the SchedulerCalendars application available:
wsadmin> $AdminApp uninstall SchedulerCalendars "-cell $MyCell -node $MyNode -server $MyServer"

where:

v $Install_Root is the directory where WebSphere Application Server is installed.

v $MyCell, $MyNode, and $MyServer are the values with the name of the cell, node, and server.

Important: Each of these values are case-sensitive.

4. Repeat step three for each server in the current profile for which you will uninstall the
SchedulerCalendars application.

5. When uninstallation is complete for the system application on all appropriate servers, enter the
following commands:
wsadmin> $AdminConfig save
wsadmin> exit

6. Using the Administrative Console or scripting, start or restart the servers to unload the
SchedulerCalendars application.

Results

The SchedulerCalendars application should now be removed.

Chapter 18. Welcome to administering Scheduler service 1137



Example: Using default scheduler calendars
The SIMPLE and CRON calendars can be used from any J2EE application. This topic describes that
process.

Using default scheduler calendars involves looking-up the default UserCalendarHome Enterprise
JavaBeans (EJB) home object, creating the UserCalendar bean and calling the applyDelta() method. For
details on the applyDelta method as well as the syntax for the SIMPLE and CRON calendars, see the
UserCalendar interface topic.

Example:
import java.util.Date;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import com.ibm.websphere.scheduler.UserCalendar;
import com.ibm.websphere.scheduler.UserCalendarHome;

// Create an initial context
InitialContext ctx = new InitialContext();

// Lookup and narrow the default UserCalendar home.
UserCalendarHome defaultCalHome=(UserCalendarHome)
PortableRemoteObject.narrow(ctx.lookup(

UserCalendarHome.DEFAULT_CALENDAR_JNDI_NAME),
UserCalendarHome.class);

// Create the default UserCalendar instance.
UserCalendar defaultCal = defaultCalHome.create();

// Calculate a date using CRON based on the current
// date and time. Return the next date that is
// Saturday at 2AM
Date newDate =

defaultCal.applyDelta(new Date(),
"CRON", "0 0 2 ? * SAT");

Managing schedulers

Managing schedulers
Schedulers are configured using the administrative console, configuration service or scripting and are
available to all servers on which a scheduler is visible.

About this task

You can create multiple schedulers within a single server, cluster, node or cell. Each configured scheduler
is an independent task scheduling engine that has a unique Java Naming and Directory Interface (JNDI)
name, persistent storage device and daemon.

Procedure
1. Configure schedulers.

2. Create the database for schedulers.

Scheduler daemon
A scheduler daemon is a background thread that searches for tasks to run in the database.

A scheduler daemon is started for each scheduler defined on each server. If Scheduler 1 is configured on
server1, then only one scheduler daemon runs on server1 unless it is cloned. If Scheduler 1 is defined at
the node scope level, then the scheduler will run on each server within that node.

1138 Administering WebSphere applications



The poll interval determines the frequency at which the persistent store is queried. By default, this value is
set to 30 seconds. When a task is found that is scheduled to run within the current poll interval, an
asynchronous beans alarm is set. The task then runs as close to this time as possible using an alarm
thread from the scheduler's associated work manager. Thus, the number of alarm threads configured on
the work manager determines how many concurrent tasks are executed. No tasks are lost. If we reach this
limit, then new tasks are simply queued to be executed when an alarm thread becomes available. The
actual firing time is dictated by server load and availability of free threads in the alarm thread pool of the
associated work manager.

Scheduler daemons in a cluster

When multiple schedulers are configured to use the same tables (as is the case in a clustered
environment), any of the daemons can find a task and set the alarm in its Java virtual machine (JVM). The
task is executed in the virtual machine where the scheduler daemon first runs, until the daemon is stopped
and another daemon starts. If an application on server1 schedules a task to run and server2 was started
before server1, then the task runs on server2.

Example: Stopping and starting scheduler daemons using Java
Management Extensions API
Use the wsadmin scripting tool to invoke a Jacl script and stop and start a scheduler daemon.

This example JACL script can be invoked using the wsadmin scripting tool. It will attempt to stop and start
a scheduler daemon.
# Example JACL Script to restart a Scheduler Daemon

set schedJNDIName sched/MyScheduler

# Find the WASScheduler MBean
regsub -all {/} $schedJNDIName "." schedJNDIName
set mbeanName Scheduler_$schedJNDIName
puts "Looking up Scheduler MBean $mbeanName"
set sched [$AdminControl queryNames WebSphere:*,type=WASScheduler,name=$mbeanName]

# Invoke the stopDaemon operation.
puts "Stopping the daemon..."
$AdminControl invoke $sched stopDaemon
puts "The daemon has stopped."

# Invoke the startDaemon operation.
puts "Starting the daemon..."
$AdminControl invoke $sched startDaemon 0
puts "The daemon has started."

Example: Dynamically changing scheduler daemon poll intervals using
Java Management Extensions API
Use the wsadmin scripting tool to invoke a Jacl script and dynamically change scheduler daemon poll
intervals.

To dynamically change scheduler daemon poll intervals, use the wsadmin scripting tool to invoke this
example JACL script. Invoking this example sets the poll interval of the scheduler daemon to 60 seconds.
# Example JACL Script to set the Scheduler daemon’s poll interval

set schedJNDIName sched/MyScheduler

# Find the WASScheduler MBean
regsub -all {/} $schedJNDIName "." schedJNDIName
set mbeanName Scheduler_$schedJNDIName
puts "Looking-up Scheduler MBean $mbeanName"

Chapter 18. Welcome to administering Scheduler service 1139



set sched [$AdminControl queryNames WebSphere:*,type=WASScheduler,name=$mbeanName]

# Set the poll interval to 60 seconds (60000 ms)
$AdminControl setAttribute $sched pollInterval 60000
puts "Poll interval set."

Configuring schedulers
Before your application can make use of the scheduler service, you must configure a scheduler using the
administrative console, configuration service or scripting. Conceptually, a scheduler is similar to a data
source in that you must specify various configuration attributes, including a JNDI name where the instance
is bound. Once defined, an application using the Scheduler API or WASScheduler MBean can look up the
scheduler object and call various methods to manage tasks.

About this task

The scheduler service is always enabled. In previous versions of the product, the scheduler service could
be disabled using the administrative console or configuration service. Scheduler service configuration
objects are present in the configuration service, but the enabled attribute is ignored.

To achieve high availability, you can configure a duplicate scheduler on each server in a cluster, or create
a scheduler at the cluster scope. For example, each server that contains a scheduler with the JNDI name
sched/MyScheduler, with the same database configuration parameters (data source and table prefix)
behaves as a single clustered scheduler. Each server in the scheduler cluster has a running scheduler
instance, which increases the number of poll daemons and allows automatic failover. For more information
on creating clusters for high availability, see the article, "WebSphere Enterprise Scheduler planning and
administration guide."

Typically, create schedulers at the server or cluster scope. Scheduler poll daemons run in each server
within the configured scope, which means that if you create a scheduler at the node or cell scope, the
scheduler poll daemon can attempt to run tasks on any of the servers in the node or cell. If applications
are not mapped uniformly over each server in that scope, the scheduler might not run tasks correctly.
Because applications are mapped to servers and clusters, there is less chance for error and less
competition between daemons to run tasks.

Depending on your preferred method of configuration, select one of the following steps to configure
schedulers.

Procedure
1. Configuring schedulers using the administrative console.

2. Configuring schedulers using Java Management Extensions API (JMX).

Results

A scheduler is configured and ready to use.

Configuring scheduler default transaction isolation
The scheduler uses read-committed transaction isolation, by default, when reading tasks using the get or
find APIs on the com.ibm.websphere.scheduler.Scheduler interface and WASScheduler MBean. The
default behavior for a scheduler can be changed to read-uncommitted, which allows the get and find
methods to return the current or next state of the task in the database. This topic describes how to change
the default behavior for the get and find methods.

1140 Administering WebSphere applications



About this task

See the scheduler API documentation to view the
com.ibm.websphere.scheduler.TaskInfo.setTaskExecutionOptions() method, which details how to return the
next state of the task or the current state of the task.

Attention: If the scheduler database does not support uncommitted reads, such as Oracle, this parameter
has no effect.

To change the default behavior for the get and find methods, complete the following steps:

Procedure
1. From the administrative console, click Resources > Schedulers > scheduler_name.

2. Click Custom Properties.

3. Click New.

4. Add the following properties:

Name defaultReadTransactionIso

Type java.lang.Integer

Value 1 (for read-uncommitted transaction isolation)
2 (for read-committed transaction isolation)

5. Click Apply or

6. Click OK.

7. Save the changes and verify that you initiate a file synchronization before restarting the servers.

8. Restart the application server for the changes to take effect.

Configuring schedulers using the administrative console
Schedulers can be created or configured using the administrative console.

Procedure
1. Start the administrative console.

2. Select Resources > Schedulers.

3. Click New.

4. Specify configuration settings.

Fields marked with an asterisk (*) are required. The settings are described in detail in the topic
"Scheduler settings".

bprac: If you do not require interoperability with PME Version 5.0 tasks, under Additional Properties,
click Custom Properties > New. Then specify disableV50TaskInteroperability in the Name
field, true in the Value field, and select java.lang.boolean from the list of available Type
options. When this property is set to true, tablespace scans that are only required for PME
Version 5.0 tasks no longer occur.

5. Click OK or Apply to save the changes.

6. Save the changes to the configuration repository.

Results

A scheduler is now configured and ready to use for newly installed applications. If the scheduler JNDI
name is not yet visible to your application, restarting the application or restarting application server will
allow the scheduler to be seen.

Chapter 18. Welcome to administering Scheduler service 1141



When schedulers are created for the first time, the poll daemon will not automatically start and must be
started manually and will only start automatically the next time the server is started. To start the poll
daemon manually, refer to the scheduler daemons topic.

Attention: Changes to existing scheduler configurations will not take affect until after the application
server is restarted.

Schedulers collection:

Use this page to manage scheduler configurations. Schedulers are persistent and transactional timer
services that can run business logic. Each scheduler runs tasks independently and has a programming
interface accessible from Java Platform, Enterprise Edition (Java EE) applications using the Java Naming
and Directory Interface (JNDI). You can also manage schedulers using a Java Management Extensions
(JMX) MBean. See the scheduler documentation in the Information Center for details on how to configure
and use schedulers.

To view this administrative console page, click Resources > Schedulers.

Name:

Specifies the name of the data source where persistent tasks are stored.

Information Value
Data type String

JNDI name:

Specifies the JNDI name of the work manager, which is used to manage the number of tasks that can run
concurrently with the scheduler. The work manager also can limit the amount of Java EE context applied
to the task.

The JNDI name specifies where this scheduler instance is bound in the name space. Clients can look this
name up directly, although the use of resource references is recommended.

Information Value
Data type String

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Data source JNDI name:

Specifies the alias for the user name and password that are used to access the data source.

Any data source available in the name space can be used with a scheduler. Multiple schedulers can share
a single data source while using different tables by specifying a table prefix.

Information Value
Data type String

Table prefix:

Specifies the string prefix to affix to the scheduler tables.

1142 Administering WebSphere applications



Multiple independent schedulers can share the same database if each instance specifies a different prefix
string.

Information Value
Data type String

Poll interval:

Specifies the interval, in seconds, that a scheduler polls the database. The default value is appropriate for
most applications.

Each poll operation can be consuming. If the interval is extremely small and there are many scheduled
tasks, polling can consume a large portion of system resources.

Information Value
Data type Integer
Units Seconds
Default 30
Range Any positive long integer

Work manager JNDI name:

Specifies the JNDI name of the work manager, which is used to manage the number of tasks that can run
concurrently with the scheduler. The work manager also can limit the amount of Java EE context applied
to the task.

The work manager is a server object that serves as a logical thread pool for the scheduler. Each repeating
task that is created using this scheduler uses the Number of alarm threads specified in the work
manager, which affects the number of tasks that can run concurrently. Use the work manager Service
Names property to limit the amount of context information that is propagated to the task when it runs.

When a task runs, the task is run in the work manager associated with the scheduler instance. You can
control the number of actively running tasks at a given time by configuring schedulers with a specific work
manager. The number of tasks that can run concurrently is governed by the Number of alarm threads
parameter on the work manager.

Verify tables:

Specifies to validate that scheduler data sources, table prefixes, security authentication information and
tables are configured correctly.

You can use this verification method in production and development environments without altering
database properties.

Create tables:

Specifies to create the necessary tables and indices required for a scheduler to operate.

This method of creating scheduler tables is designed for simple topologies and development environments.
Use the supplied scheduler data definition language files for advanced or production environments and for
databases that do not support this feature.

Drop tables:

Specifies the removal of tables and indices required for schedulers to operate.

Chapter 18. Welcome to administering Scheduler service 1143



This method of removing scheduler tables and indices is recommended for development environments and
does not delete previously scheduled tasks.

Schedulers settings:

Use this page to modify scheduler settings.

To view this administrative console page, click Resources > Schedulers > scheduler_name.

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Name:

Specifies the name by which this scheduler is known for administrative purposes.

Information Value
Data type String

JNDI name:

Specifies the name of the data source where persistent tasks are stored.

The Java™ Naming and Directory Interface (JNDI) name specifies where this scheduler instance is bound
in the namespace. Clients can look this name up directly, although the use of resource references is
recommended.

Information Value
Data type String

Description:

Specifies the description of this scheduler for administrative purposes.

Information Value
Data type String

Category:

Specifies a string that can be used to classify or group this scheduler.

Information Value
Data type String

Data source JNDI name:

Specifies the name of the data source where persistent tasks are stored.

Any data source available in the name space can be used with a scheduler. Multiple schedulers can share
a single data source while using different tables by specifying a table prefix.

Information Value
Data type String

1144 Administering WebSphere applications



Data source alias:

Specifies the alias for the user name and password that are used to access the data source.

Information Value
Data type String

Table prefix:

Specifies the string prefix to affix to the scheduler tables. Multiple independent schedulers can share the
same database if each scheduler specifies a different prefix string.

Multiple independent schedulers can share the same database if each instance specifies a different prefix
string.

Important: Use a table prefix with all capital characters. If lowercase characters are used for the table
prefix, they are automatically capitalized at run time.

Information Value
Data type String

Poll interval:

Specifies the interval, in seconds, that a scheduler polls the database. The default value is appropriate for
most applications.

Each poll operation can be consuming. If the interval is extremely small and there are many scheduled
tasks, polling can consume a large portion of system resources.

Information Value
Data type Integer
Units Seconds
Default 30
Range 2000000

Work manager JNDI name:

Specifies the JNDI name of the work manager, which is used to manage the number of tasks that can run
concurrently with the scheduler. The work manager also can limit the amount of Java Platform, Enterprise
Edition (Java EE) context applied to the task.

The work manager is a server object that serves as a logical thread pool for the scheduler. Each repeating
task that is created using this scheduler uses the Number of alarm threads specified in the work
manager, which affects the number of tasks that can run concurrently. Use the work manager Service
Names property to limit the amount of context information that is propagated to the task when it runs.

When a task runs, the task is run in the work manager associated with the scheduler instance. You can
control the number of actively running tasks at a given time by configuring schedulers with a specific work
manager. The number of tasks that can run concurrently is governed by the Number of alarm threads
parameter on the work manager.

Use administration roles:

Chapter 18. Welcome to administering Scheduler service 1145



Specifies that when this option and administrative security are both enabled, the user administration roles
are enforced when the scheduler JMX commands or APIs are used to create and modify tasks. If this
option is not enabled, all the users can create and modify tasks.

Schedulers require several user roles to plan for, develop, administer and operate the scheduler service:
administrator, developer and operator.

Information Value
Data type check box
Default unchecked
Range v Operator, Administrator - Calls any of the scheduler

MBean or API methods and runs any of the scheduler
administrative console functions.

v Monitor, Configurator - Calls the scheduler MBean or
API methods, but cannot create tasks or modify the
state of any tasks. Only read-only methods and
properties are accepted.

Configuring schedulers using Java Management Extensions
Schedulers can be created or configured using the Java Management Extensions (JMX) API using one of
several scripting languages or Java.

About this task

To run with Java, the following JAR file needs to be present in the program class path:
com.ibm.ws.admin.client_6.1.0.jar..

Complete these steps when using Java programs that utilize JMX.

Procedure
1. Look up the host and get an administration client handle.

2. Get a configuration service handle.

3. Update the resource-pme.xml file using the configuration service, as needed.

a. Find the SchedulerProvider for a given scope.

b. Create a SchedulerConfiguration and specify all required parameters identifying the
SchedulerProvider as the parent object.

4. Reload the resource-pme.xml file to bind the newly created scheduler into the JNDI namespace.
Perform this step if you want to use the newly created scheduler immediately, without restarting the
application server.

a. Locate the DataSourceConfigHelper MBean using the name.

b. Invoke the reload() operation.

Results

A scheduler is now configured and ready to use for newly installed applications. If the scheduler JNDI
name is not yet visible to your application, reinstalling the application or restarting the application server
will allow the scheduler to be seen.

When schedulers are created for the first time, the poll daemon does not automatically start, and you must
start it manually. When you restart the server, the poll daemon starts automatically. To start the poll
daemon manually, refer to the scheduler daemons topic.

1146 Administering WebSphere applications



Note: Changes to existing scheduler configurations will not take affect until after the application server is
restarted.

Example: Using scripting to create and configure schedulers:

Use the wsadmin scripting tool to invoke a Jacl script and create a SchedulerConfiguration resource.

The following Jacl example script can be invoked using the wsadmin scripting tool, which creates a
SchedulerConfiguration resource using the DefaultWorkManager at the server scope.
# Example JACL Script to create a SchedulerConfiguration
# at the server scope

# Change the cell, node and server to match your environment
set cellName MyCell
set nodeName MyNode
set serverName server1

# We can just grab the first provider, since there is only one at the
# server scope level.

set schedProv [$AdminConfig getid /Cell:$cellName/Node:$nodeName/Server:$serverName/
SchedulerProvider:SchedulerProvider]

if {$schedProv == ""} {
puts "Unable to find SchedulerProvider for server: $serverName. Aborting."
exit

}
puts "Found a SchedulerProvider"

# Create a WorkManager for our scheduler at the server scope.
# We could use any of the other scopes as long as it is at the same
# or higher than the Scheduler’s scope.

set wrkMgrProv [$AdminConfig getid /Cell:$cellName/Node:$nodeName/Server:$serverName/
WorkManagerProvider:WorkManagerProvider/]

if {$wrkMgrProv == ""} {
puts "Unable to find the WorkManagerProvider for server: $serverName. Aborting."
exit

}
puts "Found a WorkManagerProvider"

set wmName "MyScheduler WorkManager"
set wmJNDIName "wm/MySchedWorkManager"
set wmIsGrowable false
set wmMaxThreads 1
set wmMinThreads 0
set wmNumAlarmThreads 10
set wmServiceNames "com.ibm.ws.i18n;security;UserWorkArea;zos.wlm"
set wmThreadPriority 5

# Setup our DefaultWorkManager attributes
set createAttrs [subst { \

{isGrowable $wmIsGrowable} \
{jndiName $wmJNDIName} \
{maxThreads $wmMaxThreads} \
{minThreads $wmMinThreads} \
{name "$wmName"} \
{numAlarmThreads $wmNumAlarmThreads} \
{serviceNames "$wmServiceNames"} \
{threadPriority $wmThreadPriority} }]

puts "Creating a WorkManager"
$AdminConfig create WorkManagerInfo $wrkMgrProv $createAttrs
puts "WorkManager Created"

# Setup our SchedulerConfiguration attributes

Chapter 18. Welcome to administering Scheduler service 1147



set schedulerName MyScheduler
set schedulerJNDIName sched/MyScheduler
set datasourceJNDIName jdbc/MySchedulerDatasource
set datasourceAlias MySchedulerAlias
set pollInterval 30
set tablePrefix MSCD
set useAdminRoles true

set createAttrs [subst { \
{name $schedulerName} \
{datasourceJNDIName $datasourceJNDIName} \
{datasourceAlias $datasourceAlias} \
{jndiName $schedulerJNDIName} \
{pollInterval $pollInterval} \
{tablePrefix $tablePrefix} \
{useAdminRoles true} \
{workManagerInfoJNDIName $wmJNDIName}}]

puts "Creating a Scheduler"
$AdminConfig create SchedulerConfiguration $schedProv $createAttrs
puts "Scheduler created"

# Save the configuration
$AdminConfig save

Creating a scheduler resource reference
When you define schedulers in the server configuration, the object instance is bound into the global name
space under the configured Java Naming Directory Interface (JNDI) name. You can use a resource
reference to avoid manually coding this JNDI name into your application. Using a resource reference
allows administrators to map applications to the appropriate schedulers.

About this task

You can alternatively create a scheduler resource reference by editing the XML directly. A Scheduler
resource reference is a Java Platform, Enterprise Edition (Java EE) compliant resource that uses the class
com.ibm.websphere.scheduler.Scheduler as the object type. For information regarding the XML file format,
see the Java EE Specification.

Procedure
1. Start an assembly tool, such as Rational Application Developer.

2. Open the Java EE perspective.

3. Open your Enterprise JavaBeans (EJB) or Web module with the Deployment Descriptor Editor.

4. Click the Reference tab at the bottom of the window.

5. Click Add.

6. Select the Resource reference option.

7. Click Next.

8. Complete the Reference fields as shown in the following properties:
Name The reference name, for example, sched/MyScheduler. According to this example, the name

you choose has a local reference name of java:comp/env/sched/MyScheduler.
Type Select com.ibm.websphere.scheduler.Scheduler, and click OK.
Authentication

Select container.
Description

Any relevant description.

9. Click finish.

1148 Administering WebSphere applications



10. (Optional) Enter a global JNDI name of a configured scheduler in the JNDI name field in the
Bindings section of the Reference window. You can specify or override this value when you install
the application.

11. Save your changes to the deployment descriptor.

Results

A scheduler resource reference is now available to use within your application

Creating the database for schedulers
Each scheduler requires a database in which to store its persistent information. Schedulers use this
database for storing tasks and then running them. The choice of database and location should be
determined by the application developer and server administrator.

Before you begin

Scheduler performance is ultimately limited by database performance. If you need more tasks per second,
you can run the scheduler daemons on larger systems, use clusters for the session beans used by the
tasks or partition the tasks by using multiple schedulers. Eventually, however, the scheduler database
becomes saturated, and a larger or better-tuned database system is needed. For detailed information on
scheduler topologies refer to the "WebSphere Enterprise Scheduler planning and administration guide"
technical paper.

Multiple schedulers can share a database when you specify unique table prefix values in each scheduler
configuration. This sharing can lower the cost of administering scheduler databases. However, do not
configure schedulers with non-unique table prefixes such that two separate servers share the same
database table. A lease occurs between a specific database table and a scheduler running on a server.
This lease allows one server at a time to own the lease to a specific database table. This process exists to
ensure that one server runs schedule events, such as Enterprise JavaBeans (EJB) timers, in a cluster
environment. If the server with this lease is unavailable, another server in the cluster obtains the lease.

About this task

Complete the following steps to create scheduler databases.

Procedure
1. Create a database. To create the database for a scheduler or to determine if an existing database is

adequate for a scheduler, review the Create scheduler databases topic.

2. Create the scheduler tables. There are three methods for creating the tables for a scheduler:

a. Create tables for schedulers using the administrative console. Use the administrative console to
add, delete and verify database tables through your Web browser. This method is ideal for
developers and simple scheduler topologies.

b. Create tables for schedulers using JMX or scripting.

Use JMX to add, delete and verify database tables programmatically with Java or scripting. This
method is ideal for automating scheduler configurations for simple scheduler topologies.

c. Create tables for schedulers using DDL files. Manually edit the DDL files using your favorite text
editor, and verify that mapping between the table names and the scheduler resources and data
sources is correct.

Creating scheduler databases
The scheduler uses the scheduler database for storing and running tasks. To create a scheduler database,
your database system must be installed and available.

Chapter 18. Welcome to administering Scheduler service 1149



Before you begin

The performance of schedulers is ultimately limited by the performance of the database. If you need more
tasks per second, you can run the scheduler daemons on larger systems or you can use clusters for the
session beans used by the tasks. Eventually, however, the task database becomes saturated and you then
need a larger or better-tuned database system.

Multiple applications can share a scheduler database. This sharing can lower the cost of administering
scheduler databases.

About this task

The scheduler requires a database, a JDBC provider, and a data source.

Procedure
1. Create the database according to the description for your database system:

v Creating Apache Derby databases for schedulers.

v Creating a DB2 database for schedulers.

v Creating a DB2 for iSeries database for schedulers.

v Creating an Informix database for schedulers.

v Creating a Microsoft SQL Server database for schedulers.

v Creating an Oracle database for schedulers.

v Creating a Sybase database for schedulers.

2. If the database is not on the same machine as your IBM WebSphere Application Server, verify that you
can access the database from your application server machine.

3. Configure your JDBC provider and data source. For details, refer to the Creating and configuring a
JDBC provider and data source topic. The JDBC driver can be either one-phase or two-phase commit
depending on whether other transactions take place using other data sources, for example, while using
the scheduler. The data source can represent multiple versions of the product.

Results

The database is created and ready for you to create scheduler tables.

Creating Apache Derby databases for schedulers:

This topic describes how to create Apache Derby databases for schedulers using data definition language
(DDL) or structured query language (SQL) files.

About this task

To create Apache Derby databases for schedulers, using data definition language (DDL) or structured
query language (SQL) files, use these steps.

Procedure

1. Open a command-line window.

2. Verify that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all
characters that can be handled in Java code, which results in code page conversion problems when a
client uses an incompatible code page.

4. Use the ij utility supplied with the Apache Derby system to create the database. To use ij to create a
database called scheddb which is located in /opt, for example, you would do the following:

1150 Administering WebSphere applications



ij.sh
ij>connect ’/opt/scheddb;create=true’;
ij>quit;

The embedded version of Apache Derby supports only one local connection. If the Application Server
product is running and accessing a Apache Derby database, then any attempts to open a second
connection to the database from the command line are rejected.

Note: Add a semi-colon (;) at the end of each command. Otherwise, ij does not execute the
command.

5. Exit the ij utility by issuing the quit command: quit;

Results

The Apache Derby database for the scheduler service exists.

Creating DB2 databases for schedulers:

This topic describes how to create DB2 databases for scheduler, using data definition language (DDL) or
structured query language (SQL) files.

About this task

To create DB2 databases for scheduler, using data definition language (DDL) or structured query language
(SQL) files, use these steps.

Procedure

1. Open a DB2 command-line window.

2. Make sure that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, it cannot store all the characters that
can be handled in Java code, which might result in code page conversion problems, when a client
uses an incompatible code page.

To avoid deadlocks, be sure that the DB2 isolation level is set to "read stability". If necessary, enter the
command
db2set DB2_RR_TO_RS=YES

then restart the DB2 instance to activate the change.

4. In the DB2 command line processor, enter this command to create the database with an example
name, scheddb:
db2 CREATE DATABASE scheddb USING CODESET UTF-8 TERRITORY en-us

A DB2 database named scheddb has been created.

Results

The DB2 database for the scheduler exists.

Creating DB2 for iSeries databases for schedulers:

This topic describes how to create DB2 for iSeries databases for scheduler, using data definition language
(DDL) or structured query language (SQL) files.

Chapter 18. Welcome to administering Scheduler service 1151



About this task

To create DB2 for iSeries databases for scheduler, using data definition language (DDL) or structured
query language (SQL) files, use these steps.

Procedure

1. Run the following command to start an interactive SQL session:
STRSQL

2. In interactive SQL, enter this command to create the collection with an example name, scheddb:
CREATE COLLECTION scheddb

3. Exit the interactive SQL session.

4. Change the owner for the new collection to QEJBSVR by executing the following command:
CHGOBJOWN OBJ(scheddb) OBJTYPE(*LIB) NEWOWN(QEJBSVR)

where scheddb is the name of the collection you created in the previous step.

Results

The DB2 for iSeries database for the scheduler exists.

Creating Informix databases for schedulers:

This topic describes how to create Informix databases for schedulers, using data definition language (DDL)
or structured query language (SQL) files.

About this task

To create Informix databases for schedulers, using data definition language (DDL) or structured query
language (SQL) files, use these steps.

Procedure

1. Open a command-line window.

2. Verify that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all
characters that can be handled in the Java code, which results in code page conversion problems,
when a client uses an incompatible code page.

4. If you want to create a new database named scheddb, for example, enter the command:
dbaccess CREATE DATABASE scheddb with log

Results

The Informix database for scheduler exists.

Creating Microsoft SQL Server databases for schedulers:

This topic describes how to create Microsoft SQL Server databases for schedulers, using data definition
language (DDL) or structured query language (SQL) files.

About this task

To create Microsoft SQL Server databases for schedulers, using data definition language (DDL) or
structured query language (SQL) files, use these steps.

1152 Administering WebSphere applications



Procedure

1. Make sure that you are using a user ID that has administrator rights for the database system.

2. In the Enterprise Manager, expand a server group, then expand a server. A Microsoft SQL Server
database named scheddb is created.

3. Right-click Databases, then click New Database.

4. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all
characters that can be handled in the Java code, which results in code page conversion problems,
when a client uses an incompatible codepage.

5. Type the name scheddb.

6. Modify any default values, and save your changes. The Microsoft SQL Server database, scheddb, is
created.

Results

The Microsoft SQL Server database for scheduler exists.

Creating Oracle databases for schedulers:

This topic describes how to create Oracle databases for schedulers, using data definition language (DDL)
or structured query language (SQL) files.

About this task

To create Oracle databases for schedulers, using data definition language (DDL) or structured query
language (SQL) files, use these steps.

Procedure

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all
characters that can be handled in the Java code, which results in code page conversion problems,
when a client uses an incompatible code page.

4. Use the Database Configuration Assistant to create the database, scheddb, for example. Verify that you
select the JServer option for the database. Use a Unicode code page when creating the database.
The text data you pass to the APIs must be compatible with the selected code page.

Results

The Oracle database for scheduler exists.

Creating Sybase databases for schedulers:

This topic describes how to create Sybase databases for schedulers, using data definition language (DDL)
or structured query language (SQL) files.

About this task

This topic describes how to create Sybase databases for schedulers, using data definition language (DDL)
or structured query language (SQL) files, use these steps.

Procedure

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

Chapter 18. Welcome to administering Scheduler service 1153



3. Make sure that you have the DTM option for Sybase ASE installed.

4. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all
characters that can be handled in the Java code, which results in code page conversion problems,
when a client uses an incompatible code page.

5. Use the Sybase isql utility to create the database, scheddb, for example. See your Sybase product
documentation for details.

Results

The Sybase database for the scheduler exists.

Scheduler table management functions
The administration console and the WASSchedulerConfiguration MBeans provide simplified methods for
creating scheduler tables and schema, verifying that the scheduler tables and schema are setup properly
and are accessible and removing scheduler tables and schema.

Note: There are limitations when running the table management functions relating to data source access.
See the Verifying a connection topic for details on these limitations. If a connection cannot be
verified successfully, the scheduler table management functions will fail.

Verify tables

Validates that scheduler data sources, table prefixes, security authentication information and tables are
configured correctly. You can use this verification method in production and development environments
without altering database properties.

Create tables

Creates the necessary tables and indices required for schedulers to operate. This method of creating
scheduler tables is designed for simple topologies and development environments. Use the supplied
scheduler data definition language files for advanced or production environments and for databases that
do not support this feature. For details, see the topic Creating scheduler tables using the administrative
console.

Drop tables

Specifies the removal of tables and indices required for schedulers to operate. This method of removing
scheduler tables and indices is recommended for development environments. When you drop tables, the
action removes all previously scheduled tasks, and the scheduler no longer operates successfully, until the
tables are recreated.

Scheduler table definition
Schedulers require database tables and indices with a table prefix. This page provides reference
information about the tables.

Each scheduler requires several database tables and indices to operate. Each table name and index
described in this topic requires a table prefix. For example, if the scheduler is configured with a table prefix
value, SCHED_, the table with the name, TASK, would be named SCHED_TASK. See Scheduler settings
for details on the table prefix.

To create the tables, see Creating the database for schedulers. To see the exact schema definition such
as field sizes and types, see Creating scheduler tables using DDL files. This section references the
location where the DDL or SQL statements are stored. These statements create the table schema.

1154 Administering WebSphere applications



Note: The information in this topic is provided for problem determination. Do not alter the scheduler table
names, field names or index names. The data content format might change without notice. Be
aware of this factor when accessing the tables directly. Modifying data in the tables without using
the Scheduler API might cause failures.

TASK

The TASK table contains the tasks that have been scheduled, but not yet purged. The primary key for this
table is the TASKID which equates to the getTaskID() method on the
com.ibm.websphere.scheduler.TaskStatus interface.

Since there is one row in this table for each task, it is important that the database and table support
row-locking. Using page, or table locks, inhibits the scheduler from running tasks concurrently.

Table 59. TASK table.. Displays scheduled tasks

Field name Purpose and notes

TASKID Contains all of the tasks that have been scheduled, but not yet purged. The primary key for
this table is TASKID which equates to the getTaskID() method on the
com.ibm.websphere.scheduler.TaskStatus interface.

Since there is one row in this table for each task, it is important that the database and table
support row-locking. Using page, or table locks, will inhibit the scheduler from running tasks
concurrently.

VERSION Internal version ID of this row format.

ROW_VERSION The version of this row. Used for optimistic locking.

TASKTYPE The type of task: 1=BeanTaskInfo, 2=MessageTaskInfo

TASKSUSPENDED This value indicates if the task is suspended or if it is running. The task is suspended if the
value BITWISE AND 1 equals 1. The task is running if the value BITWISE AND 2 equals 2.

CANCELLED The value, 1, if the task is cancelled.

NEXTFIRETIME The date in milliseconds using java.util.Date.getTime() when the task is scheduled to run
next.

STARTBYINTERVAL The start-by-interval of the task.

STARTBYTIME Reserved.

VALIDFROMTIME The task start time.

VALIDTOTIME Reserved.

REPEATINTERVAL The task repeat interval.

MAXREPEATS The number of times to run the task.

REPEATSLEFT The number of times the task has yet to run.

TASKINFO Internal binary data.

NAME The task name.

AUTOPURGE The value, 1, if the task is to automatically purge upon completion.

FAILUREACTION Reserved.

MAXATTEMPTS Reserved.

QOS Reserved.

PARTITIONID Reserved.

OWNERTOKEN The task owner.

CREATETIME The time in milliseconds using java.util.Date.getTime() when the task was created.

Chapter 18. Welcome to administering Scheduler service 1155



The TASK table also has the following indices that are required to allow the scheduler to run and access
tasks concurrently:

v TASK_IDX1 – Used to access individual tasks using the Scheduler API.

v TASK_IDX2 – Used by the poll daemon to load expiring tasks.

TREG

The TREG table is used to store scheduler information that is shared between redundant schedulers. This
table is not highly used.

Table 60. TREG table.. Displays scheduler information between redundant schedulers

Field name Purpose and notes

REGKEY The registry key. This is the primary key of the table.

REGVALUE The registry value.

LMGR

The LMGR table is used to track the leases that redundant schedulers use. This table is not highly used.

Table 61. LMGR table.. Displays redundant scheduler leases

Field name Purpose and notes

LEASENAME The name of the lease. This is the scheduler JNDI name and is the primary key.

LEASEOWNER The owner of the lease. The format is Cell/Node/Server.

LEASE_EXPIRE_TIME The time in milliseconds using java.util.Date.getTime() when the lease for the scheduler
expires.

DISABLED Reserved.

LMPR

The LMPR table is used to store arbitrary properties for the lease. This table is not highly utilized.

Table 62. LMPR table.. Displays arbitrary lease properties

Field name Purpose and notes

LEASENAME The name of the lease. See the LMGR table.

NAME The name of the property.

VALUE The value of the property.

The LMPR table also has the following index:

v LMPR_IDX1 – Used to retrieve properties for a given lease.

Creating scheduler tables using the administrative console
To create scheduler tables using the administrative console, the scheduler requires a database, a Java
DataBase Connectivity (JDBC) provider and a data source.

Before you begin

Note: Limitations for Oracle XA databases

Oracle XA prohibits required schema operations in a global transaction environment. Local
transactions are not supported. If you have schedulers that use an Oracle XA data source, either

1156 Administering WebSphere applications



temporarily change the scheduler configuration to use a non-XA Oracle data source, or create the
tables manually using the supplied DDL files. If you use the administrative console to create or drop
scheduler tables for a scheduler configured to use an Oracle XA data source, then you receive a
SchedulerDataStoreException error message, and the operation fails.

Note: Limitations for DB2 z/OS databases

Creating and dropping tables using the administrative console is not supported for DB2 z/OS databases. A
database administrator is typically involved with defining and managing databases on DB2 z/OS systems.
The administration interface is targeted for the non-database administrator or developer who does not
want to know the specifics of setting up the scheduler database. The scheduler has DDL files available for
the database administrator to create the required tables.

Procedure
1. Verify that the database to be used for this scheduler is available and accessible by the application

server. Review the Creating scheduler databases and tables topic for instructions on creating a
database. The remaining steps describe how to create scheduler tables in an existing database.

2. Start the administrative console.

3. Create a JDBC data source that refers to the scheduler database.

4. Test the data source connection.

5. Create a scheduler. This configuration object contains the desired table prefix and the JNDI name of
the JDBC data source. Verify that you save the new Scheduler to the configuration repository before
you proceed to the next step.

6. Click Resources > Schedulers to view all defined schedulers.

7. Select one or more schedulers.

8. Click Create Tables to create the tables for the selected schedulers in their associated database. The
tables and indices you created reflect the table prefixes and data sources specified in each scheduler
configuration.

9. Restart the server or start the poll daemon to run scheduler tasks.

Results

Scheduler tables and schema are created.

Creating scheduler tables using scripting and Java Management Extensions
Creating scheduler tables using scripting and Java Management Extensions requires a database, a Java
DataBase Connectivity (JDBC) provider, and a data source.

Before you begin

Attention: Limitations for Oracle XA databases

Oracle XA prohibits required schema operations in a global transaction environment. Local transactions
are not supported. If you have schedulers that use an Oracle XA data source, either temporarily change
the scheduler configuration to use a non-XA Oracle data source, or create the tables manually using the
supplied DDL files. If you use the administrative console to create or drop scheduler tables for a scheduler
configured to use an Oracle XA data source, then you receive a SchedulerDataStoreException error
message, and the operation fails.

Attention: Limitations for DB2 z/OS databases

Creating and dropping tables using the administrative console is not supported for DB2 z/OS databases. A
database administrator is typically involved with defining and managing databases on DB2 z/OS systems.
The administration interface is targeted for the non-database administrator or developer who does not

Chapter 18. Welcome to administering Scheduler service 1157



want to know the specifics of setting up the scheduler database. The scheduler has DDL files available for
the database administrator to create the required tables.

Procedure
1. Verify that the database to be used for this Scheduler is available and accessible by the application

server. Review the Creating scheduler databases and tables topic for instructions on creating a
database. The remainder of these steps describe how to create scheduler tables in an existing
database.

2. Launch the wsadmin tool and connect to an application server. This process requires an active server
to be available and fails, if you are disconnected from the server.

3. Create a JDBC data source that refers to the scheduler database.

4. Test the data source connection.

5. Create a scheduler. This configuration object contains the desired table prefix and the JNDI name of
the JDBC data source. Verify that you save the new Scheduler to the configuration before you proceed
to the next step.

6. Run the createTables MBean operation.

a. Look up the SchedulerConfiguration object or use the object you created in a previous step.

b. Locate the WASSchedulerConfiguration MBean.

c. Run one of the createTables MBean operation on the WASSchedulerConfiguration object to
create the tables for the specified SchedulerConfiguration object in its associated database. The
tables and indices that you created reflect the table prefix and data source specified in the
scheduler configuration.

7. Restart the server or start the poll daemon to run scheduler tasks.

Results

Scheduler tables and schema are created.

Example: Using scripting to verify scheduler tables:

Use the wsadmin scripting tool to invoke a Jacl script and verify tables and indices for a scheduler.

The following Jacl example script can be invoked using the wsadmin scripting tool, which verifies that the
tables and indices are created correctly for a scheduler. See the “Configuring Schedulers” topic for details
on how a scheduler is created.
# Example JACL Script to verify the scheduler tables

# The name of the scheduler to verify
set schedName "My Scheduler"

puts ""
puts "Looking-up Scheduler Configuration Helper MBean"
puts ""
set schedHelper [$AdminControl queryNames WebSphere:*,type=WASSchedulerCfgHelper]

#Access the configuration object.
set myScheduler [$AdminConfig getid /SchedulerConfiguration:$schedName/]

if {$myScheduler == ""} {
puts ""
puts "Error: Scheduler $schedName could not be found."
puts ""
exit

}

# Invoke the verifyTables method on the helper MBean.

1158 Administering WebSphere applications



puts ""
puts "Verifying tables for:"
puts "$myScheduler"
puts ""

if { [catch {$AdminControl invoke $schedHelper verifyTables $myScheduler} errorInfo] } {
puts ""
puts "Error verifying tables: $errorInfo"
puts ""

} else {
puts ""
puts "Tables verified successfully."
puts ""

}

Example: Using scripting to create scheduler tables:

Use the wsadmin scripting tool to invoke a Jacl script and create scheduler tables.

The following Jacl example script can be invoked using the wsadmin scripting tool, which creates the
scheduler tables for a configured scheduler. See the Configuring Schedulers topic for details on how to
create a scheduler.
# Example JACL Script to create the scheduler tables

# The name of the scheduler to create tables for
set schedName "My Scheduler"

puts ""
puts "Looking-up Scheduler Configuration Helper MBean"
puts ""
set schedHelper [$AdminControl queryNames WebSphere:*,type=WASSchedulerCfgHelper]

#Access the configuration object.
set myScheduler [$AdminConfig getid /SchedulerConfiguration:$schedName/]

if {$myScheduler == ""} {
puts ""
puts "Error: Scheduler with name: $schedName could not be found."
puts ""
exit

}

# Invoke the createTables method on the helper MBean.

puts ""
puts "Creating tables for:"
puts "$myScheduler"
puts ""

if {[catch {
set result [$AdminControl invoke $schedHelper createTables $myScheduler]
if {$result} {

puts ""
puts "Successfully created the tables."
puts ""

} else {
puts ""
puts "The tables were already created."
puts ""

}
} errorInfo ] } {

puts ""
puts $errorInfo
puts ""

}

Chapter 18. Welcome to administering Scheduler service 1159



Example: Using scripting to drop scheduler tables:

Use the wsadmin scripting tool to invoke a Jacl script and remove scheduler tables.

The following Jacl example script can be invoked using the wsadmin scripting tool, which removes the
scheduler tables for a configured scheduler. See the “Configuring Schedulers” topic for details on how a
scheduler is created
# Example JACL Script to drop the scheduler tables

# The name of the scheduler to drop the tables for
set schedName "My Scheduler"

puts ""
puts "Looking-up Scheduler Configuration Helper MBean"
puts ""
set schedHelper [$AdminControl queryNames WebSphere:*,type=WASSchedulerCfgHelper]

#Access the configuration object.
set myScheduler [$AdminConfig getid /SchedulerConfiguration:$schedName/]

if {$myScheduler == ""} {
puts ""
puts "Error: Scheduler with name: $schedName could not be found."
puts ""
exit

}

# Invoke the dropTables method on the helper MBean.

puts ""
puts "Dropping tables for:"
puts "$myScheduler"
puts ""

if {[catch {
set result [$AdminControl invoke $schedHelper dropTables $myScheduler]
if {$result} {

puts ""
puts "Successfully dropped the tables."
puts ""

} else {
puts ""
puts "The tables were already dropped."
puts ""

}
} errorInfo ] } {

puts ""
puts $errorInfo
puts ""

}

Creating scheduler tables using DDL files
This topic provides the steps for creating scheduler tables using DDL files.

Before you begin

Your database system must be installed and available.

The scheduler requires a database, a Java™ Database Connectivity (JDBC) provider, and a data source.

About this task

Complete the following steps to create scheduler tables using DDL files.

1160 Administering WebSphere applications



Procedure
1. Verify that your database is created. Refer to the Creating scheduler databases topic.

2. Create the database tables according to the instructions for your database system:

v Creating Apache Derby tables for schedulers

v Creating DB2 tables for schedulers.

v Creating DB2 tables for z/OS for schedulers.

v Creating DB2 for iSeries tables for schedulers.

v Creating Informix tables for schedulers.

v Creating Microsoft SQL Server tables for schedulers.

v Creating Oracle tables for schedulers.

v Creating Sybase tables for schedulers.

The following scripts are deprecated, but will still work:

Table 63. Deprecated scripts.. Deprecated DDL scripts

Deprecated script New script

createSchemaDB2.ddl createSchemaMod1DB2.ddl

createSchemaDB2iSeries.ddl createSchemaMod1DB2iSeries.ddl

createSchemaDerby.ddl createSchemaMod1Derby.ddl

createSchemaMSSQL.sql createSchemaMod1MSSQL.sql

createSchemaInformix.sql createSchemaMod1Informix.sql

createSchemaOracle.ddl createSchemaMod1Oracle.ddl

createSchemaSybase12.ddl createSchemaMod1Sybase12.ddl

dropSchemaMSSQL.sql dropSchemaMod1MSSQL.sql

dropSchemaDB2.ddl dropSchemaMod1DB2.ddl

dropSchemaDB2iSeries.ddl dropSchemaMod1DB2iSeries.ddl

dropSchemaDerby.ddl dropSchemaMod1Derby.ddl

dropSchemaInformix.sql dropSchemaMod1Informix.sql

dropSchemaOracle.ddl dropSchemaMod1Oracle.ddl

dropSchemaSybase12.ddl dropSchemaMod1Sybase12.ddl

Creating Apache Derby tables for schedulers:

This topic describes how to create tables for schedulers on Apache Derby databases, using data definition
language (DDL) or structured query language (SQL) files.

Before you begin

This task requires you to configure a database and make it available. Refer to the Creating Cloudscape
databases for schedulers topic, for more information.

About this task

To create tables for schedulers on Apache Derby databases, using data definition language (DDL) or
structured query language (SQL) files, use these steps.

Chapter 18. Welcome to administering Scheduler service 1161



Procedure

1. Open a command-line window.

2. Create the schema.

a. Using a text editor, edit the script, %app_server_root%\Scheduler\createSchemaMod1Derby.ddl,
according to the instructions at the top of the file.

Attention: When setting the table prefix, capitalize all characters.

b. Enter one of the following commands.

Attention: Apache Derby provides both an embedded and network server version. This example
is for the embedded version of Apache Derby. See the Apache Derby product documentation for
more details on running DDL scripts.
On Windows systems (using the example name, scheddb):
%app_server_root%\derby\bin\embedded\ij.bat %app_server_root%\Scheduler\createSchemaMod1Derby.ddl

On UNIX systems (using the example name, scheddb):
%app_server_root%/derby/bin/embedded/ij.sh %app_server_root%/Scheduler/createSchemaMod1Derby.ddl

Results

The Apache Derby tables and schema for the scheduler exist.

Creating DB2 tables for schedulers:

This topic describes how to create tables for scheduler on DB2 databases, using data definition language
(DDL) or structured query language (SQL) files.

Before you begin

This task requires you to configure a database and make it available. Refer to the Creating DB2
databases for schedulers topic for more information.

About this task

To create tables for scheduler on DB2 databases, using data definition language (DDL) or structured query
language (SQL) files, use these steps.

Procedure

1. Open a DB2 command-line window.

2. Verify that you have administrator rights for the database system.

3. Create the table space and schema.

a. Analyze the results of your experiences during development and system testing. The size of your
database depends on many factors. If possible, distribute table space containers across different
logical disks, and implement an appropriate security policy. Consider the performance implications
of your choices for buffer pools and log file settings.

b. Using a text editor, edit the following scripts according to the instruction at the top of each file.

Note: When setting the table prefix, capitalize all characters.
%WAS_HOME%\Scheduler\createTablespaceDB2.ddl, %WAS_HOME%\Scheduler\createSchemaMod1DB2.ddl,
%WAS_HOME%\Scheduler\dropSchemaMod1DB2.ddl, and %WAS_HOME%\Scheduler\dropTablespaceDB2.ddl.

c. Verify that you are attached to the correct instance. Check the environment variable
DB2INSTANCE.

d. To connect to the database, scheddb, for example, and enter the command:
db2 connect to scheddb

1162 Administering WebSphere applications



e. Create the table space. Enter the following command:
db2 -tf createTablespaceDB2.ddl

Verify that the script output contains no errors. If there were any errors, you can drop the table
space using the following script:
dropTablespaceDB2.ddl

f. To create the schema (tables and indices), in the DB2 command line processor, enter the command
db2 -tf createSchemaMod1DB2.ddl. Verify that the script output contains no errors. If there were any
errors, you can use the following file to drop the schema:
dropSchemaMod1DB2.ddl

g. Verify that the DB2_RR_TO_RS DB2 flag is set to YES to avoid deadlocks. Restart the DB2
instance to activate the change, if needed.

Results

The DB2 tables and schema for the scheduler exist.

Creating DB2 for iSeries tables for schedulers:

This topic describes how to create tables for scheduler on DB2 for iSeries databases, using data definition
language (DDL) or structured query language (SQL) files.

Before you begin

This task requires you to configure a database and make it available. See the " Creating DB2 for iSeries
databases for schedulers" topic for more information.

About this task

To create tables for scheduler on DB2 for iSeries databases, using data definition language (DDL) or
structured query language (SQL) files, use these steps.

Procedure

1. Start a QShell session by running the following command from a CL command line:
STRQSH

2. Create a new IFS directory under your profile directory:
mkdir profile_root/scheduler

Where profile_root is the fully qualified path of the directory that contains your profile.

3. Copy the following scripts to this new directory:
%WAS_HOME%/scheduler/createDB2iSeriesSchema.ddl
%WAS_HOME%/scheduler/dropSchemaDB2iSeries.ddl

4. Using a text editor, edit these scripts in the new directory. Replace all occurrences of
@TABLE_PREFIX@ with <collection_name>, <table_prefix> where <collection_name> is the name of
the collection that will be used to store the database files and is the collection that was created in the "
Creating DB2 for iSeries databases for schedulers" topic. The <table_prefix> precedes each table
name.

5. Use the iSeries Navigator to create the database files on your iSeries server.

a. Start iSeries Navigator.

b. Expand the iSeries icon to locate the system where you want to create the database files.

c. Expand Database, and right-click the system database.

d. Select Run SQL Scripts.

Chapter 18. Welcome to administering Scheduler service 1163



e. Select File > Open.

f. Navigate to the createDB2iSeriesSchema.ddl file in your profile directory.

g. Select Run > All.

h. Select View > Job Log to verify that the tables were created.

6. Execute the following command to change the owner for the new database files to QEJBSVR:
CHGOBJOWN OBJ(*ALL) OBJTYPE(*ALL) NEWOWN(QEJBSVR)

Results

The DB2 for iSeries tables and schema for the scheduler exist.

Creating Informix tables for schedulers:

This topic describes how to create tables for schedulers on Informix databases, using data definition
language (DDL) or structured query language (SQL) files.

Before you begin

This task requires that you configure a database and make it available. Refer to the Creating Informix
databases for schedulers topic for more information.

About this task

To create tables for schedulers on Informix databases, using data definition language (DDL) or structured
query language (SQL) files, use these steps.

Procedure

1. Open a command-line window.

2. Verify that you have administrator rights for the database system.

3. Create the schema.

a. Using a text editor, edit the script %WAS_HOME%\Scheduler\createSchemaMod1Informix.sql according
to the instruction at the top of the file.

Note: When setting the table prefix, capitalize all characters.

b. Enter the following command, using the database, scheddb, for example:
dbaccess scheddb createSchemaMod1Informix.sql

Results

The Informix tables and schema for the scheduler exist.

Creating Microsoft SQL Server tables for schedulers:

This topic describes how to create tables for schedulers on Microsoft SQL Server databases, using data
definition language (DDL) or structured query language (SQL) files.

Before you begin

This task requires you to configure a database and make it available. Refer to the Creating Microsoft SQL
Server databases for schedulers topic for more information.

1164 Administering WebSphere applications



About this task

To create tables for schedulers on Microsoft SQL Server databases, using data definition language (DDL)
or structured query language (SQL) files, use these steps.

Procedure

1. Open a command-line window.

2. Change to the directory where the configuration scripts for scheduler are located. This is the Scheduler
subdirectory of the IBM WebSphere Application Server installation directory.

3. Use a text editor to edit the schema creation script, createSchemaMod1MSSQL.sql, according to the
instructions at the beginning of the file.

Tip: When setting the table prefix, capitalize all characters.

4. Create the schema:

a. Verify that you have administrator rights for the database system. The user ID you use to create
the schema must be the one that you configure WebSphere Application Server to use when
accessing the database.

b. Run the following script to create the schema (tables and views) :
sqlcmd -S <servername> -U<userid> -P<password> -d<databaseName> -i<script name>

Results

The Microsoft SQL Server tables and schema for scheduler exist.

Creating Oracle tables for schedulers:

This topic describes how to create tables for schedulers on Oracle databases, using data definition
language (DDL) or structured query language (SQL) files.

Before you begin

This task requires you to configure a database and make it available. Refer to the Creating Oracle
databases for schedulers topic for more information.

About this task

To create tables for schedulers on Oracle databases, using data definition language (DDL) or structured
query language (SQL) files, use these steps.

Procedure

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Create the table space and schema.

a. Using a text editor, edit the following scripts according to the instructions at the top of the files.

Tip: When setting the table prefix, capitalize all characters.
%app_server_root%\Scheduler\createTablespaceOracle.ddl and %app_server_root%\createSchemaMod1Oracle.ddl

b. Set the environment variable ORACLE_SID, if you do not want the schema to be created in the
default instance.

c. Run the script, createTablespaceOracle.ddl, to create the table space.

For test purposes, use the same location for all table spaces and pass the path as a command line
argument to the script.

Chapter 18. Welcome to administering Scheduler service 1165



d. Run the script, createSchemaMod1Oracle.ddl, to create the schema.

Results

The Oracle tables and schema for scheduler exist.

Creating Sybase tables for schedulers:

This topic describes how to create tables for schedulers on Sybase databases, using data definition
language (DDL) or structured query language (SQL) files.

Before you begin

This task requires you to configure a database and make it available. Refer to the Creating Sybase
databases for schedulers topic for more information.

About this task

To create tables for schedulers on Sybase databases, using data definition language (DDL) or structured
query language (SQL) files, use these steps.

Procedure

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Make sure that you have the Distributed Transaction Management (DTM) option for Sybase ASE
installed.

a. Set enable DTM to 1 in the Sybase server configuration.

b. Set enable xact coordination to 1 in the Sybase server configuration.

c. Add the dtm_tm_role role to the Sybase administration user ID. For example, enter the user ID sa.

d. Restart the Sybase server.

4. Use the Sybase isql utility to create a database. For example, enter the database name scheddb. See
your Sybase product documentation for details.

5. Create the schema:

a. Using a text editor, edit the following script according to the instructions located at the top of the
file.

Tip: When setting the table prefix, capitalize all characters.
app_server_root\Scheduler\createSchemaMod1Sybase12.ddl

b. Enter the following command:
isql -S <servername> -U <userid> -P <password> -D scheddb -i createSchemaMod1Sybase12.ddl

Results

The Sybase tables and schema for scheduler exist.

1166 Administering WebSphere applications



Chapter 19. Administering application security

Setting up, enabling and migrating security
You must address several issues prior to authenticating users, authorizing access to resources, securing
applications, and securing communications. These security issues include migration, interoperability, and
installation.

About this task

After installing WebSphere Application Server, you can determine the proper level of security that is
needed for your environment. By default, administrative security is enabled and provides the authentication
of users using the WebSphere administration functions, the use of Secure Sockets Layer (SSL), and the
choice of user account repository.

You can also use the following permissions to enhance security:

v Use the getSSLConfig permission to give your application code the ability to call several of the
JSSEHelper methods. For more information about these methods, see the description of the
com.ibm.websphere.ssl.JSSEHelper API in the Programming interfaces section of the Information
Center.

v Use the AdminPermission permission to give your application code the ability to call WebSphere
Application Server administrative APIs. See the topic Setting Java 2 security permissions for an
example of how to set this permission.

v Use the accessRuntimeClasses permission to give your application code the ability to load classes that
are included with the product. If you are operating in an environment that normally restricts access to
these classes, this permission enables your application code to bypass this restriction during class
loading. See the topic Global security settings for a description of how to set this permission.

The following information is covered in this section:

Procedure

Enable security for all your application servers or for specific application servers in your realm.
For more information, see “Enabling security” on page 1180.

What to do next

After installing WebSphere Application Server and securing your environment, you must authenticate
users. For more information, see “Authenticating users” on page 1264.

Migrating, coexisting, and interoperating – Security considerations
Use this topic to migrate the security configuration of previous WebSphere Application Server releases and
its applications to the new installation of WebSphere Application Server.

Before you begin

This information addresses the need to migrate your security configurations from a previous release of
IBM WebSphere Application Server to WebSphere Application Server 8.0. Complete the following steps to
migrate your security configurations:
v If security is enabled in the previous release, obtain the administrative server ID and password of the

previous release. This information is needed in order to run certain migration jobs.
v You can optionally disable security in the previous release before migrating the installation. No logon is

required during the installation.

© Copyright IBM Corp. 2012 1167



Note: In WebSphere Application Server Version 8.0, be aware of the following additional migration
requirements for security:

v When migrating from WebSphere Application Server Version 7.x to Version 8.0, if you have a
business need to preserve security audit logs from the older release you must first archive the
security audit log files in Version 7.x. WebSphere Application Server does not support the
migration of security audit log files from the older release to Version 8.0.

v If your WebSphere Application Server Version 7.x environment is enabled for Kerberos, and you
are migrating to version 8.0 on a different machine, the keytab and configuration files for
Kerberos must be at the same location on the Version 8.0 machine as on the Version 7.x
machine or the configuration will not work.

Procedure

Follow the steps in "Migrating product configurations".

Results

The security configuration of previous WebSphere Application Server releases and its applications are
migrated to the new installation of WebSphere Application Server Version 8.5.

What to do next

You must migrate any custom class files that are not migrated.

If the previous version instance is configured to enable secure connections using digital
certificates that are signed by the Digital Certificate Manager (DCM) local certificate authority, those
certificates must be renewed. For example, they must be renewed for the previous version instance, the
WebSphere Application Server Version 8.5 profile, and all of the Secure Socket Layer-enabled clients and
servers that connect to WebSphere Application Server. For more information, see SSL handshake failure
using digital certificates signed by a Digital Certificate Manager (DCM) local certificate authority.

IBM i *SYSTEM certificate stores for applications are deprecated in WebSphere Application
Server Version 5. In WebSphere Application Server Version 8.5, you must migrate your applications to use
Java keystores.

Interoperating with previous product versions
IBM WebSphere Application Server inter-operates with the previous product versions. Use this topic to
configure this behavior.

Before you begin

The current release of the Application Server distinguishes the identities of the user who acts
as an administrator, managing the Application Server environment, from the identity of the user that is
used for authenticating between servers. In prior releases, the end user had to specify a server user ID
and password as the user identity for authenticating between servers. In the current release of the
Application Server, the server user ID is generated automatically and internally; however, the end user can
specify that the server user ID and password not be automatically generated. This option is especially
important in the case of a mixed-release cell, where the server user ID and password are specified in a
down-level version of the Application Server. In such a scenario, the end user should opt out of
automatically generating the server user ID and instead use the server user ID and password that is
specified in the down-level version of the Application Server, in order to ensure backwards compatibility.

Interoperability is achieved only when the Lightweight Third Party Authentication (LTPA)
authentication mechanism and a distributed user registry is used such as Lightweight Directory Access
Protocol (LDAP) or a distributed Custom user registry. LocalOS on most platforms is not considered a
distributed user registry (except on z/OS within the z/OS environment).

1168 Administering WebSphere applications

http://www-1.ibm.com/support/docview.wss?rs=727&uid=swg21198366
http://www-1.ibm.com/support/docview.wss?rs=727&uid=swg21198366


Procedure
1. Configure WebSphere Application Server Version 8.5 with the same distributed user registry (that is,

LDAP or Custom) that is configured with the previous version. Make sure that the same LDAP user
registry is shared by all of the product versions.

a. In the administrative console, select Security > Global security.

b. Choose an available Realm definition and click Configure.

c. Enter a Primary administrative user name. This identity is the user with administrative
privileges that is defined in your local operating system. If you are not using the local OS ad the
user registry, select the Server identity that is stored in the user repository, enter the
Server user ID, and the associated password. The user name is used to log on to the
administrative console when administrative security is enabled. WebSphere Application Server
Version 6.1 requires an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for
both administrative access and internal process communication. When migrating to Version 8.5,
this identity is used as the server user identity. You need to specify another user for the
administrative user identity.

d. When interoperating with Version 6.0.x or previous versions, you must select the Server identity
that is stored in the user repository. Enter the Server user id and the associated Password.

2. Configure the LTPA authentication mechanism. Automatic generation of the LTPA keys should be
disabled. If not, keys used by a previous release are lost. Export the current LTPA keys from
WebSphere Application Server Version 8.0 and import them into the previous release or export the
LTPA keys from the previous release into Version 8.0.

a. In the administrative console select Security > Global security.

b. From Authentication mechanisms and expiration, click LTPA.

c. Click the Key set groups link , then click the key set group that displays in the Key set groups
panel.

d. Clear the Automatically generate keys check box.

e. Click OK, then click Authentication mechanisms and expiration in the path at the top of the Key set
groups panel.

f. Scroll down to the Cross-cell single sign-on section, and enter a password to use for encrypting the
LTPA keys when adding them to the file.

g. Enter the password again to confirm the password.

h. Enter the Fully qualified key file name that contains the exported keys.

i. Click Export keys.

j. Follow the instructions provided in the previous release to import the exported LTPA keys into that
configuration.

3. If you are using the default SSL configuration, extract all of the signer certificates from the WebSphere
Application Server Version 8.5 common trust store. Otherwise, extract signers where necessary to
import them into the previous release.

a. In the administrative console, click Security > SSL certificate and key management.

b. Click Key stores and certificates.

c. Click NodeDefaultTrustStore.

d. Click Signer certificates.

e. Select one signer and click Extract.

f. Enter a unique path and filename for the signer. For example, /tmp/signer1.arm.

g. Click OK. Repeat for all of the signers in the trust store.

h. Check other trust stores for other signers that might need to be shared with the other server.
Repeat steps e through h to extract the other signers.

Chapter 19. Administering application security 1169



You can also import a signer certificate, which is also called a certificate authority (CA) certificate, from
a truststore on a non-z/OS platform server to a z/OS keyring. the z/OS keyring contains the signer
certificates that originated on the non-z/OS platform server. For more information, see Importing a
signer certificate from a truststore to a z/OS keyring.

4. Add the exported signers to DummyServerTrustFile.jks and DummyClientTrustFile.jks in the /etc
directory of the back-level product version. If the previous release is not using the dummy certificate,
the signer certificate(s) from the previous release must be extracted and added into the WebSphere
Application Server Version 8.5 release to enable SSL connectivity in both directions.

a. Open the key management utility, iKeyman, for that product version.

b. Start ikeyman.bat or ikeyman.sh from the ${USER_INSTALL_ROOT}/bin directory.

c. Select Key Database File > Open.

d. Open ${USER_INSTALL_ROOT}/etc/DummyServerTrustFile.jks.

e. Enter WebAS for the password.

f. Select Add and enter one of the files extracted in step 2. Continue until you have added all of the
signers.

g. Repeat steps c through f for the DummyClientTrustFile.jks file.

5. Verify that the application uses the correct Java Naming and Directory Interface (JNDI) name and
naming bootstrap port for performing a naming lookup.

6. Stop and restart all of the servers.

Migrating trust association interceptors
Use this topic to manually migrate trust associations.

Before you begin

Note: Data sources are not supported for use within a Trust Association Interceptor (TAI). Data sources
are intended for use within J2EE applications and designed to operate within the EJB and web
containers. Trust Association Interceptors do not run within a container, and while data sources may
function in the TAI environment, they are untested and not guaranteed to function properly.

The following topics are addressed in this document:
v Changes to the product-provided trust association interceptors
v Migrating product-provided trust association interceptors
v Changes to the custom trust association interceptors
v Migrating custom trust association interceptors

Changes to the product-provided trust association interceptors

For the product-provided implementation for the WebSEAL server, a new optional
com.ibm.websphere.security.webseal.ignoreProxy property is added. If this property is set to true or yes,
the implementation does not check for the proxy host names and the proxy ports to match any of the host
names and ports that are listed in the com.ibm.websphere.security.webseal.hostnames and the
com.ibm.websphere.security.webseal.ports property respectively. For example, if the VIA header contains
the following information:
HTTP/1.1 Fred (Proxy), 1.1 Sam (Apache/1.1),
HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

and the com.ibm.websphere.security.webseal.ignoreProxy property is set to true or yes, the host name
Fred, is not used when matching the host names. By default, this property is not set, which implies that
any proxy host names and ports that are expected in the VIA header are listed in the host names and the
ports properties to satisfy the isTargetInterceptor method.

The previous VIA header information was split onto two lines for illustrative purposes only.

1170 Administering WebSphere applications



For more information about the com.ibm.websphere.security.webseal.ignoreProxy property, see the article
in the information center on configuring single signon using trust association interceptor ++.

Migrating product-provided trust association interceptors

The properties that are located in the webseal.properties and trustedserver.properties files are not
migrated from previous versions of WebSphere Application Server. You must migrate the appropriate
properties to WebSphere Application Server Version 6.0.x using the trust association panels in the
administrative console. For more information, see Configuring trust association interceptors.

Changes to the custom trust association interceptors

If the custom interceptor extends the
com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor property, implement the following
new method to initialize the interceptor:

public int init (java.util.Properties props);

WebSphere Application Server checks the return status before using the trust association implementation.
Zero (0) is the default value for indicating that the interceptor is successfully initialized.

However, if a previous implementation of the trust association interceptor returns a different error status,
you can either change your implementation to match the expectations or make one of the following
changes:
Method 1:

Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust association
interceptor custom properties. Set the property to the value that indicates the interceptor is
successfully initialized. All of the other possible values imply failure. In case of failure, the
corresponding trust association interceptor is not used.

Method 2:
Add the com.ibm.websphere.security.trustassociation.ignoreInitStatus property in the trust
association interceptor custom properties. Set the value of this property to true, which tells
WebSphere Application Server to ignore the status of this method. If you add this property to the
custom properties, WebSphere Application Server does not check the return status, which is
similar to previous versions of WebSphere Application Server.

The public int init (java.util.Properties props method replaces the public int init (String propsFile) method.

The init(Properties) method accepts a java.util.Properties object, which contains the set of properties that
is required to initialize the interceptor. All of the properties set for an interceptor are sent to this method.
The interceptor can then use these properties to initialize itself. For example, in the product-provided
implementation for the WebSEAL server, this method reads the hosts and ports so that a request coming
in can be verified to come from trusted hosts and ports. A return value of Zero (0) implies that the
interceptor initialization is successful. Any other value implies that the initialization is not successful and
the interceptor is not used.

The init(String) method still works if you want to use it instead of implementing the init(Properties) method.
The only requirement is that you enter the file name containing the custom trust association properties
using the Custom Properties link of the interceptor in the administrative console or by using scripts. You
can enter the property using either of the following methods. The first method is used for backward
compatibility with previous versions of WebSphere Application Server.

Method 1:
The same property names used in the previous release are used to obtain the file name. The file
name is obtained by concatenating .config to the
com.ibm.websphere.security.trustassociation.types property value. If the myTAI.properties file is
located in the profile_root/properties directory, set the following properties:

Chapter 19. Administering application security 1171



v com.ibm.websphere.security.trustassociation.types = myTAItype
v com.ibm.websphere.security.trustassociation.myTAItype.config = profile_root/

properties/myTAI.properties
Method 2:

You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in the trust
association custom properties to the location of the file. For example, set the following property:

com.ibm.websphere.security.trustassociation.initPropsFile=
profile_root/properties/myTAI.properties

The previous line of code is split into two lines for illustrative purposes only. Type as one
continuous line.

However, it is highly recommended that your implementation be changed to implement the init(Properties)
method instead of relying on the init (String propsfile) method.

Migrating custom trust association interceptors

The trust associations from previous versions of WebSphere Application Server are not automatically
migrated to WebSphere Application Server Version 8.5. You can manually migrate these trust associations
using the following steps:

Procedure
1. Recompile the implementation file, if necessary.

For more information, refer to the "Changes to the custom trust association interceptors" section
previously discussed in this document.

a. Enter QSH from a command line to start the QShell environment.

b. Change to the directory that contains your Java source file.

c. Enter the command to recompile the implementation file.
javac -Djava.version=1.6 -classpath
app_server_root/plugins/com.ibm.ws.runtime.jar:install_root/dev/JavaEE/j2ee.jar your_implementation_file.java

2. Copy the custom trust association interceptor class files to a location in your product class
path. Copy these class files into the profile_root/classes directory.

3. Restart all the serversWebSphere Application Server.

4. Enable security to use the trust association interceptor. The properties that are located in your custom
trust association properties file and in the trustedserver.properties file are not migrated from
previous versions of WebSphere Application Server. You must migrate the appropriate properties to
WebSphere Application Server Version 8.5 using the trust association panels in the administrative
console.

For more information, see Configuring trust association interceptors.

Migrating Common Object Request Broker Architecture programmatic login to
Java Authentication and Authorization Service (CORBA and JAAS)
Use this topic as an example of how to perform programmatic login using the CORBA-based
programmatic login APIs.

Before you begin

This document outlines the deprecated Common Object Request Broker Architecture (CORBA)
programmatic login APIs and the alternatives that are provided by JAAS. WebSphere Application Server
fully supports the Java Authentication and Authorization Service (JAAS) as programmatic login application
programming interfaces (API). Refer to the Securing applications and their environment PDF for more
details on JAAS support.

The following list includes the deprecated CORBA programmatic login APIs.

1172 Administering WebSphere applications



v profile_root/installedApps/sampleApp.ear/default_app.war/WEB-INF/classes/
ServerSideAuthenticator.java.

v org.omg.SecurityLevel2.Credentials. This API is included with the product, but it is not
recommended that you use the API.

The APIs that are provided in WebSphere Application Server are a combination of standard JAAS APIs
and a product implementation of standard JAAS interfaces.

The following information is only a summary; refer to the JAAS documentation for your platform located at:
http://www.ibm.com/developerworks/java/jdk/security/ .
v Programmatic login APIs:

– javax.security.auth.login.LoginContext
– javax.security.auth.callback.CallbackHandler interface: The WebSphere Application Server product

provides the following implementation of the javax.security.auth.callback.CallbackHandler interface:
com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl

Provides a non-prompt CallbackHandler handler when the application pushes basic
authentication data (user ID, password, and security realm) or token data to product login
modules. This API is recommended for server-side login.

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl
Provides a login prompt CallbackHandler handler to gather basic authentication data (user
ID, password, and security realm). This API is recommended for client-side login.

If this API is used on the server side, the server is blocked for input.
– javax.security.auth.callback.Callback interface:

javax.security.auth.callback.NameCallback
Provided by JAAS to pass the user name to the LoginModules interface.

javax.security.auth.callback.PasswordCallback
Provided by JAAS to pass the password to the LoginModules interface.

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl
Provided by the product to perform a token-based login. With this API, an application can
pass a token-byte array to the LoginModules interface.

– javax.security.auth.spi.LoginModule interface

WebSphere Application Server provides a LoginModules implementation for client and server-side
login. Refer to the Securing applications and their environment PDF for details.

v javax.security.Subject:
com.ibm.websphere.security.auth.WSSubject

An extension provided by the product to invoke remote J2EE resources using the credentials in
the javax.security.Subject

com.ibm.websphere.security.cred.WSCredential
After a successful JAAS login with the WebSphere Application Server LoginModules interfaces,
a com.ibm.websphere.security.cred.WSCredential credential is created and stored in the
Subject.

com.ibm.websphere.security.auth.WSPrincipal
An authenticated principal that is created and stored in a Subject that is authenticated by the
WebSphere Application Server LoginModules interface.

Procedure
1. Use the following as an example of how to perform programmatic login using the

CORBA-based programmatic login APIs: The CORBA-based programmatic login APIs are replaced by
JAAS login.

Note: The LoginHelper application programming interface (API) that is used in the following example
is deprecated in WebSphere Application Server Version 8.5 and will be removed in a future
release. It is recommended that you use the JAAS programmatic login APIs that are shown in
the next step.

Chapter 19. Administering application security 1173

http://www.ibm.com/developerworks/java/jdk/security/


public class TestClient {
...
private void performLogin() {
// Get the ID and password of the user.
String userid = customGetUserid();
String password = customGetPassword();

// Create a new security context to hold authentication data.
LoginHelper loginHelper = new LoginHelper();
try {
// Provide the ID and password of the user for authentication.
org.omg.SecurityLevel2.Credentials credentials =
loginHelper.login(userid, password);

// Use the new credentials for all future invocations.
loginHelper.setInvocationCredentials(credentials);
// Retrieve the name of the user from the credentials
// so we can tell the user that login succeeded.

String username = loginHelper.getUserName(credentials);
System.out.println("Security context set for user: "+username);
} catch (org.omg.SecurityLevel2.LoginFailed e) {
// Handle the LoginFailed exception.
}
}
...
}

2. Use the following example to migrate the CORBA-based programmatic login APIs to the JAAS
programmatic login APIs.

The following example assumes that the application code is granted for the required Java 2 security
permissions. For more information, see the Securing applications and their environment PDF and the
JAAS documentation located at http://www.ibm.com/developerworks/java/jdk/security/.
public class TestClient {
...
private void performLogin() {
// Create a new JAAS LoginContext.
javax.security.auth.login.LoginContext lc = null;

try {
// Use GUI prompt to gather the BasicAuth data.
lc = new javax.security.auth.login.LoginContext("WSLogin",
new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation
// CallbackHandler implementation determine how authentication data is collected
// in this case, the authentication date is collected by login prompt
// and pass to the authentication mechanism implemented by the LoginModule.
} catch (javax.security.auth.login.LoginException e) {
System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "
+ e.getMessage());
e.printStackTrace();

// may be javax.security.auth.AuthPermission "createLoginContext" is not granted
// to the application, or the JAAS Login Configuration is not defined.
}

if (lc != null)
try {
lc.login(); // perform login
javax.security.auth.Subject s = lc.getSubject();
// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject
com.ibm.websphere.security.auth.WSSubject.doAs(s,
new java.security.PrivilegedAction() {
public Object run() {
try {
bankAccount.deposit(100.00); // where bankAccount is an protected EJB
} catch (Exception e) {
System.out.println("ERROR: error while accessing EJB resource, exception: "
+ e.getMessage());
e.printStackTrace();

1174 Administering WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/


}
return null;
}
}
);

// Retrieve the name of the principal from the Subject
// so we can tell the user that login succeeded,
// should only be one WSPrincipal.
java.util.Set ps =
s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);
java.util.Iterator it = ps.iterator();
while (it.hasNext()) {
com.ibm.websphere.security.auth.WSPrincipal p =
(com.ibm.websphere.security.auth.WSPrincipal) it.next();
System.out.println("Principal: " + p.getName());
}
} catch (javax.security.auth.login.LoginException e) {
System.err.println("ERROR: login failed with exception: " + e.getMessage());
e.printStackTrace();

// login failed, might want to provide relogin logic
}
}
...
}

Migrating from the CustomLoginServlet class to servlet filters
Use this topic to allow migration in an application that uses form-based login and servlet filters without the
use of the CustomLoginServlet class.

Before you begin

The CustomLoginServlet class is deprecated in WebSphere Application Server Version 5. Those
applications using the CustomLoginServlet class to perform authentication now need to use form-based
login. Using the form-based login mechanism, you can control the look and feel of the login screen. In
form-based login, a login page is specified and displays when retrieving the user ID and password
information. You also can specify an error page that displays when authentication fails.

If login and error pages are not enough to implement the CustomLoginServlet class, use servlet filters.
Servlet filters can dynamically intercept requests and responses to transform or use the information that is
contained in the requests or responses. One or more servlet filters attach to a servlet or a group of
servlets. Servlet filters also can attach to JavaServer Pages (JSP) files and HTML pages. All the attached
servlet filters are called before invoking the servlet.

Both form-based login and servlet filters are supported by any Servlet 2.3 specification-compliant web
container. A form login servlet performs the authentication and servlet filters can perform additional
authentication, auditing, or logging tasks.

To perform pre-login and post-login actions using servlet filters, configure these servlet filters for either
form login page or for /j_security_check URL. The j_security_check is posted by the form login page with
the j_username parameter that contains the user name and the j_password parameter that contains the
password. A servlet filter can use user name and password information to perform more authentication or
meet other special needs.

Procedure
1. Develop a form login page and error page for the application.

Refer to the Securing applications and their environment PDF for details.

2. Configure the form login page and the error page for the application.

Refer to the Securing applications and their environment PDF for details.

3. Develop servlet filters if additional processing is required before and after form login authentication.

Chapter 19. Administering application security 1175



Refer to the Securing applications and their environment PDF for details.

4. Configure the servlet filters that are developed in the previous step for either the form login page URL
or for the /j_security_check URL. Use an assembly tool or development tools like Rational Application
Developer to configure filters. After configuring the servlet filters, the web-xml file contains two stanzas.
The first stanza contains the servlet filter configuration, the servlet filter, and its implementation class.
The second stanza contains the filter mapping section and a mapping of the servlet filter to the URL.

For more information, see the Securing applications and their environment PDF.

Results

This migration results in an application that uses form-based login and servlet filters without the use of the
CustomLoginServlet class.

What to do next

The new application uses form-based login and servlet filters to replace the CustomLoginServlet class.
Servlet filters also are used to perform additional authentication, auditing, and logging.

Migrating Java 2 security policy
Use this topic for guidance pertaining to migrating Java 2 security policy.

About this task

Previous WebSphere Application Server releases

WebSphere Application Server uses the Java 2 security manager in the server runtime to prevent
enterprise applications from calling the System.exit and the System.setSecurityManager methods. These
two Java application programming interfaces (API) have undesirable consequences if called by enterprise
applications. The System.exit API, for example, causes the Java virtual machine (application server
process) to exit prematurely, which is not a beneficial operation for an application server.

To support Java 2 security properly, all the server runtime must be marked as privileged (with
doPrivileged API calls inserted in the correct places), and identify the default permission sets or policy.
Application code is not privileged and subject to the permissions that are defined in the policy files. The
doPrivileged instrumentation is important and necessary to support Java 2 security. Without it, the
application code must be granted the permissions that are required by the server runtime. This situation is
due to the design and algorithm that is used by Java 2 security to enforce permission checks. Refer to the
Java 2 security check permission algorithm.

The following two permissions are enforced by the Java 2 security manager (hard coded) for WebSphere
Application Server:
v java.lang.RuntimePermission(exitVM)
v java.lang.RuntimePermission(setSecurityManager)

Application code is denied access to these permissions regardless of what is in the Java 2 security policy.
However, the server runtime is granted these permissions. All the other permission checks are not
enforced.

Only two permissions are supported:
v java.net.SocketPermission
v java.net.NetPermission

However, not all the product server runtime is properly marked as privileged. You must grant the
application code all the other permissions besides the two listed previously or the enterprise application
can potentially fail to run. This Java 2 security policy for enterprise applications is liberal.

1176 Administering WebSphere applications



What changed

Java 2 Security is fully supported in WebSphere Application Server, which means that all permissions are
enforced. The default Java 2 security policy for an enterprise application is the recommended permission
set defined by the Java Platform, Enterprise Edition (Java EE) Version 1.4 specification. Refer to the
profile_root/config/cells/cell_name/nodes/node_name/app.policy file for the default Java 2 security
policy that is granted to enterprise applications. This policy is a much more stringent compared to previous
releases.

All policy is declarative. The product security manager honors all policy that is declared in the policy files.
There is an exception to this rule: enterprise applications are denied access to permissions that are
declared in the profile_root/config/cells/cell_name/filter.policy file.

Note: The default Java 2 security policy for enterprise applications is much more stringent and all the
permissions are enforced in WebSphere Application Server Version 8.5. The security policy might
fail because the application code does not have the necessary permissions granted where system
resources, such as file I/O, can be programmatically accessed and are now subject to the
permission checking.

In application code, do not use the setSecurityManager permission to set a security manager. When an
application uses the setSecurityManager permission, there is a conflict with the internal security manager
within WebSphere Application Server. If you must set a security manager in an application for RMI
purposes, you also must enable the Use Java 2 security to restrict application access to local
resources option on the Global security page within the WebSphere Application Server administrative
console. WebSphere Application Server then registers a security manager. The application code can verify
that this security manager is registered by using System.getSecurityManager() application programming
interface (API).

Migrating system properties

The following system properties are used in previous releases in relation to Java 2 security:
v java.security.policy. The absolute path of the policy file (action required). This system property

contains both system permissions (permissions granted to the Java virtual machine (JVM) and the
product server runtime) and enterprise application permissions. Migrate the Java 2 security policy of the
enterprise application to Version 8.5. For Java 2 security policy migration, see the steps for migrating
Java 2 security policy.

v enableJava2Security. Used to enable Java 2 security enforcement (no action required). This system
property is deprecated; a flag in the WebSphere configuration application programming interface (API) is
used to control whether to enable Java 2 security. Enable this option through the administrative console.

v was.home. Expanded to the installation directory of WebSphere Application Server (action might be
required). This system property is deprecated; superseded by the ${user.install.root} and
${was.install.root} properties. If the directory contains instance-specific data then ${user.install.root} is
used; otherwise ${was.install.root} is used. Use these properties interchangeably for the WebSphere
Application Server or the WebSphere Application Server, Network Deployment environments. See the
steps for migrating Java 2 security policy.

Migrating the Java 2 Security Policy

No easy way exists to migrate the Java policy file to Version 8.5 automatically because of a mixture of
system permissions and application permissions in the same policy file. Manually copy the Java 2 security
policy for enterprise applications to a was.policy or app.policy file. However, migrating the Java 2
security policy to a was.policy file is preferable because symbols or relative code base is used instead of
an absolute code base. This process has many advantages. Grant the permissions that are defined in the
was.policy to the specific enterprise application only, while permissions in the app.policy file apply to all
the enterprise applications that run on the node where the app.policy file belongs.

Chapter 19. Administering application security 1177



Refer to the Securing applications and their environment PDF for more details on policy management.

The following example illustrates the migration of a Java 2 security policy from a previous release. The
contents include the Java 2 security policy file for the app1.ear enterprise application and the system
permissions, which are permissions that are granted to the Java virtual machine (JVM) and the product
server runtime.

The default location for the Java 2 security policy file is profile_root/properties/java.policy.
Default permissions are omitted for clarity:
// For product Samples

grant codeBase "file:${app_server_root}/installedApps/app1.ear/-" {
permission java.security.SecurityPermission "printIdentity";
permission java.io.FilePermission "${app_server_root}${/}temp${/}somefile.txt",
"read";

};

For clarity of illustration, all the permissions are migrated as the application level permissions in this
example. However, you can grant permissions at a more granular level at the component level (Web,
enterprise beans, connector or utility Java archive (JAR) component level) or you can grant permissions to
a particular component.

Procedure
1. Ensure that Java 2 security is disabled on the application server.

2. Create a new was.policy file, if the file is not present, or update the was.policy file for migrated
applications in the configuration repository with the following contents:

grant codeBase "file:${application}" {
permission java.security.SecurityPermission "printIdentity";
permission java.io.FilePermission "

${user.install.root}${/}temp${/}somefile.txt", "read";
};

The third and fourth lines in the previous code sample are presented on two lines for illustrative
purposes only.

The was.policy file is located in the profile_root/config/cells/cell_name/applications/app.ear/
deployments/app/META-INF/ directory.

3. Use an assembly tool to attach the was.policy file to the enterprise archive (EAR) file.

You also can use an assembly tool to validate the contents of the was.policy file. For more
information, see the Securing applications and their environment PDF.

4. Validate that the enterprise application does not require additional permissions to the migrated Java 2
security permissions and the default permissions set declared in the ${user.install.root}/config/
cells/cell_name/nodes/node_name/app.policy file. This validation requires code review, code
inspection, application documentation review, and sandbox testing of migrated enterprise applications
with Java 2 security enabled in a preproduction environment. Refer to developer kit APIs protected by
Java 2 security for information about which APIs are protected by Java 2 security. If you use third-party
libraries, consult the vendor documentation for APIs that are protected by Java 2 security. Verify that
the application is granted all the required permissions, or it might fail to run when Java 2 security is
enabled.

5. Perform preproduction testing of the migrated enterprise application with Java 2 security enabled.
Enable trace for the WebSphere Application Server Java 2 security manager in a preproduction testing
environment with the following trace string: com.ibm.ws.security.core.SecurityManager=all=enabled.
This trace function can be helpful in debugging the AccessControlException exception that is created
when an application is not granted the required permission or some system code is not properly
marked as privileged. The trace dumps the stack trace and permissions that are granted to the classes
on the call stack when the exception is created.

For more information, see the Securing applications and their environment PDF.

1178 Administering WebSphere applications



Note: Because the Java 2 security policy is much more stringent compared with previous releases,
the administrator or deployer must review their enterprise applications to see if extra
permissions are required before enabling Java 2 security. If the enterprise applications are not
granted the required permissions, they fail to run.

Migrating with Tivoli Access Manager for authentication enabled
When Tivoli Access Manager security is configured for your existing environment and security is enabled,
you can migrate to WebSphere Application Server, Version 8.5.

Before you begin

Your profiles must be migrated using the migration tools to migrate product configurations.

Important: Do not restart the WebSphere Application Server Version 8.5 server until after performing the
following procedure. The migration tools omit some files that enable the server to start
correctly.

About this task

After migrating your profiles, additional steps are required when Tivoli Access Manager security is
configured.

Note: WebSphere Application Server Version 8.0 and above hosts Tivoli Access Manager specific files
under the %WAS_HOME%/tivoli/tam directory. In previous versions, these files were hosted under the
%WAS_HOME%/java/jre/ hierarchy.

Procedure
1. Copy the profile_root1/PolicyDirector directory and it's contents to

profile_root2/PolicyDirector. For this example:

v profile_root1 is the root directory of the profile being migrated.

v profile_root2 is the root directory of the version 6.1 profile.

a. From an IBM i command line, type STRQSH and press Enter.

b. Type cp -R profile_root1/PolicyDirector profile_root2 and press Enter.

2. Copy the key file of the profile being migrated to the version 8.0 profile. The location of the
key file is defined in profile_root1/PolicyDirector/PdPerm.properties. For this example:

v The PdPerm.properties file contains pdcert-url=file\:/QIBM/UserData/WebAS51/Base/AppSvr1/etc/
AppSvr1.kdb.

v /QIBM/UserData/WebAS51/Base/AppSvr1 is the root directory of a Version 6.1 profile.

a. From an IBM i command line type STRQSH and press Enter.

b. Type cp /QIBM/UserData/WebAS51/Base/AppSvr1/etc/AppSvr1.kdb profile_root2/etc/AppSvr1.kdb
and press Enter.

3. Edit the property values in profile_root2/PolicyDirector/PdPerm.properties and in
profile_root2/PolicyDirector/Pd.properties to replace occurrences of profile_root1 with
profile_root2 in the file path name values.

Migrating Java thin clients that use the password encoding algorithm
To migrate Java thin clients that are enabled for OS400 password encoding, use the following information
to modify the Java client invocation so that the os400.security.password properties are no longer set on
the invocation.

Chapter 19. Administering application security 1179



About this task

The password encoding feature offers the following encoding algorithms:

v XOR, which is the default

v OS400

In Version 5 and later, the value of the os400.security.password.validation.list.object property is dependant
upon the property value passed to the thin client using the JAVA_FLAGS environment variable. The
JAVA_FLAGS environment variable is set by the setupClient script. The setupClient script calls the
setupCmdLine script, which is where the value for the os400.security.password.validation.list.object
property is set. For example, if a Version 6.x Base Edition Java client is passed -profileName default,
then the setupClient script calls the profile_root/default/bin/setupCmdLine file.

To migrate Java thin clients that are enabled for OS400 password encoding, modify the Java client
invocation so that the os400.security.password properties are no longer set on the invocation. The
following code sample does not contain the os400.security.password properties:
java -classpath $MY_CLIENT_CLASSES:app_server_root/classes/wsa400.jar:$WAS_CLASSPATH \
$CLIENTSAS $JAVA_FLAGS \
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory \
-Djava.naming.provider.url=iiop://server1:10151 \
MyClientClass $*

Perform the following steps if the following condition is true:

v If the passwords in the sas.client.props file for that profile are encoded with the OS400 password
encoding algorithm

Procedure
1. Replace all of the OS400 encoded passwords, which have {OS400}) prefixes in the sas.client.props

file for the Application Server profile, with the clear text values of the passwords.

2. Encode the passwords using the PropFilePasswordEncoder Qshell command.

For more information, see PropFilePasswordEncoder command reference.

Results

Attention: You can configure a WebSphere Application Server profile to encode passwords with the
XOR algorithm even though the profile is enabled to decode passwords that were encoded with either the
OS400 algorithm or the XOR algorithm. If you encode these passwords with the XOR algorithm, then the
passwords in the sas.client.props file are encoded with the XOR algorithm.

Enabling security
The following provides information on how to configure security when security was not enabled during the
WebSphere Application Sever profile creation.

Before you begin

When you are installing WebSphere Application Server, it is recommended that you install with security
enabled. By design, this option ensures that everything has been properly configured. By enabling security,
you protect your server from unauthorized users and are then able to provide application isolation and
requirements for authenticating application users.

It is helpful to understand security from an infrastructure perspective so that you know the advantages of
different authentication mechanisms, user registries, authentication protocols, and so on. Picking the right
security components to meet your needs is a part of configuring security. The following sections help you
make these decisions.

1180 Administering WebSphere applications



After you understand the security components, you can proceed to configure security in WebSphere
Application Server.

Procedure
1. Start the WebSphere Application Server administrative console.

If security is currently disabled, you are prompted for a user ID. Log in with any user ID. However, if
security is currently enabled, you are prompted for both a user ID and a password. Log in with a
predefined administrative user ID and password.

2. Click Security > Global security.

Use the Security Configuration Wizard, or configure security manually. The configuration order is not
important.

gotcha: You must separately enable administrative security, and application security. Because of this
split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application
security is disabled, by default. Before you attempt to enable application security on the
target server, verify that administrative security is enabled on that server. Application security
can be in effect only when administrative security is enabled.

For more information on manual configuration, see Authenticating users.

3. Configure the user account repository. For more information, see “Selecting a registry or repository”
on page 1265. On the Global security panel, you can configure user account repositories such as
federated repositories, local operating system, stand-alone Lightweight Directory Access Protocol
(LDAP) registry, and stand-alone custom registry.

Note: You can choose to specify either a server ID and password for interoperability or enable a
WebSphere Application Server installation to automatically generate an internal server ID. For
more information about automatically generating server IDs, see “Local operating system
settings” on page 1270.

One of the details common to all user registries or repositories is the Primary administrative user
name. This ID is a member of the chosen repository, but also has special privileges in WebSphere
Application Server. The privileges for this ID and the privileges that are associated with the
administrative role ID are the same. The Primary administrative user name can access all of the
protected administrative methods.

In stand-alone LDAP registries, verify that the Primary administrative user name is a member of the
repository and not just the LDAP administrative role ID. The entry must be searchable.

The Primary administrative user name does not run WebSphere Application Server
processes. Rather, the process ID runs the WebSphere Application Server processes.

In the default configuration, WebSphere Application Server processes run under the
QEJBSVR system-provided user profile.

4. Select the Set as current option after you configure the user account repository. When you click
Apply and the Enable administrative security option is set, a verification occurs to see if an
administrative user ID has been configured and is present in the active user registry. The
administrative user ID can be specified at the active user registry panel or from the console users
link. If you do not configure an administrative ID for the active user registry, the validation fails.

Note: When you switch user registries, the admin-authz.xml file should be cleared of existing
administrative ids and application names. Exceptions will occur in the logs for ids that exist in
the admin-authz.xml file but do not exist in the current user registry.

5. Configure the authentication mechanism.

Configure Lightweight Third-Party Authentication (LTPA) or Kerberos, which is new to this release of
WebSphere Application Server, under Authentication mechanisms and expiration. LTPA credentials
can be forwarded to other machines. For security reasons, credential expire; however, you can
configure the expiration dates on the console. LTPA credentials enable browsers to visit different

Chapter 19. Administering application security 1181



product servers, which means you do not have to authenticate multiple times. For more information,
see Configuring the Lightweight Third Party Authentication mechanism

Note: You can configure Simple WebSphere Authentication Mechanism (SWAM) as your
authentication mechanism. However, SWAM was deprecated in WebSphere Application Server
Version 8.5 and will be removed in a future release. SWAM credentials are not forwardable to
other machines and for that reason do not expire.

6. Optional: Import and export the LTPA keys for cross-cell single Sign-on (SSO) between cells. For
more information, see the following articles:

v Exporting Lightweight Third Party Authentication keys.

v Importing Lightweight Third Party Authentication keys

gotcha: If one of the cells you are connecting to resides on a Version 6.0.x system, see the topic
Configuring Lightweight Third Party Authentication keys in the Version 6.0.x Information
Center for more information.

7. Configure the authentication protocol for special security requirements from Java clients, if needed.

You can configure Common Secure Interoperability Version 2 (CSIv2) through links on the
Global security panel. The Security Authentication Service (SAS) protocol is provided for backwards
compatibility with previous product releases, but is deprecated. Links to the SAS protocol panels
display on the Global security panel if your environment contains servers that use previous versions
of WebSphere Application Server and support the SAS protocol. For details on configuring CSIv2 or
SAS, see the article, “Configuring Common Secure Interoperability Version 2 (CSIV2) inbound and
outbound communication settings” on page 1602.

Attention: IBM no longer ships or supports the Secure Authentication Service (SAS)
IIOP security protocol. It is recommended that you use the Common Secure Interoperability version 2
(CSIv2) protocol.

8. Click Security > Global security to configure the rest of the security settings and enable security.
For information about these settings, see “Global security settings” on page 1195.

9. Validate the completed security configuration by clicking OK or Apply. If problems occur, they display
at the top of the console page in red type.

10. If there are no validation problems, click Save to save the settings to a file that the server uses when
it restarts. Saving writes the settings to the configuration repository.

Important: If you do not click Apply or OK in the Global security panel before you click Save, your
changes are not written to the repository. The server must be restarted for any changes
to take effect when you start the administrative console.

11. Start the WebSphere Application Server administrative console.

If security is currently disabled, log in with any user ID. If security is currently enabled, log in with a
predefined administrative ID and password. This ID is typically the server user ID that is specified
when you configured the user registry.

Administrative security
Administrative security determines whether security is used at all, the type of registry against which
authentication takes place, and other values, many of which act as defaults. Proper planning is required
because incorrectly enabling administrative security can lock you out of the administrative console or
cause the server to end abnormally.

Note: It is strongly recommended that you allow the default installation to install administrative security as
on by default.

Administrative security can be thought of as a "big switch" that activates a wide variety of security settings
for WebSphere Application Server. Values for these settings can be specified, but they will not take effect
until administrative security is activated. The settings include the authentication of users, the use of Secure

1182 Administering WebSphere applications



Sockets Layer (SSL), and the choice of user account repository. In particular, application security, including
authentication and role-based authorization, is not enforced unless administrative security is active.
Administrative security is enabled by default.

Note: Administrative security need not be activated in order for WebSphere applications to make use of
JSSE methods to encrypt communication to remote sites.

Administrative security represents the security configuration that is effective for the entire security domain.
A security domain consists of all of the servers that are configured with the same user registry realm
name. In some cases, the realm can be the machine name of a local operating system registry. In this
case, all of the application servers must reside on the same physical machine. In other cases, the realm
can be the machine name of a stand-alone Lightweight Directory Access Protocol (LDAP) registry.

The basic requirement for a security domain is that the access ID that is returned by the registry or
repository from one server within the security domain is the same access ID as that returned from the
registry or repository on any other server within the same security domain. The access ID is the unique
identification of a user and is used during authorization to determine if access is permitted to the resource.

The administrative security configuration applies to every server within the security domain.

Why turn on administrative security?

Turning on administrative security activates the settings that protect your server from unauthorized users.
Administrative security is enabled by default during the profile creation time. There might be some
environments where no security is needed such as a development system. On these systems you can
elect to disable administrative security. However, in most environments you should keep unauthorized
users from accessing the administrative console and your business applications. Administrative security
must be enabled to restrict access.

What does administrative security protect?

The configuration of administrative security for a security domain involves configuring the following
technologies:

v Authentication of HTTP clients

v Authentication of IIOP clients

v Administrative console security

v Naming security

v Use of SSL transports

v Role-based authorization checks of servlets, enterprise beans, and mbeans

v Propagation of identities (RunAs)

v The common user registry

v The authentication mechanism

v Other security information that defines the behavior of a security domain includes:

– The authentication protocol (Remote Method Invocation over the Internet Inter-ORB Protocol
(RMI/IIOP) security)

– Other miscellaneous attributes

Note: It is recommended that before registering a node with an administrative agent process, that you first
have administrative security enabled in the administrative agent and base profile. Once you register
a profile with the administrative agent, the state of administrative security enablement cannot be
changed.

Chapter 19. Administering application security 1183



Application security
Application security enables security for the applications in your environment. This type of security
provides application isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security is split into administrative security and application security, each of which
you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. Before you can enable application security, you must verify that administrative security is
enabled. Application security is in effect only when administrative security is enabled.

An Application Server Enablement Tag, which is specific to WebSphere Application Server, is imported into
the Interoperable Object Reference (IOR) to indicate if application security is disabled for the server where
the object lives. This tag is server-specific and enables clients to know when application security is
disabled at the target server of its request.

For web resources, when application security is enabled, security constraints on those resources in
web.xml are enforced. When accessing a protected resource, a web client is prompted for authentication.

For enterprise bean resources, when application security is disabled, the client Common Secure
Interoperability version 2 (CSIv2) code ignores the CSIv2 security tags for objects that are unknown
system objects. When pure clients see that application security is disabled, these clients prompt for
naming lookups, but do not prompt for enterprise bean operations.

Java 2 security
Java 2 security provides a policy-based, fine-grain access control mechanism that increases overall
system integrity by checking for permissions before allowing access to certain protected system resources.
Java 2 security guards access to system resources such as file I/O, sockets, and properties. Java 2
Platform, Enterprise Edition (J2EE) security guards access to web resources such as servlets, JavaServer
Pages (JSP) files and Enterprise JavaBeans (EJB) methods.

Because Java 2 security is relatively new, many existing or even new applications might not be prepared
for the very fine-grain access control programming model that Java 2 security is capable of enforcing.
Administrators need to understand the possible consequences of enabling Java 2 security if applications
are not prepared for Java 2 security. Java 2 security places some new requirements on application
developers and administrators.

Important: Java 2 security only restricts Java programs that run in a Java virtual machine that
has Java 2 security enabled. It does not protect system resources if Java 2 Security is
disabled or if system resources are accessed from other programs or commands. Therefore, if
you want to protect your system resources, you need to use operating system security.

Note: The application server does not support a custom Java security manager implementation.

Java 2 security for deployers and administrators

Although Java 2 security is supported, it is disabled by default. You can configure Java 2 security and
administrative security independently of one another. Disabling administrative security does not disable
Java 2 security automatically. You need to explicitly disable it.

If your applications, or third-party libraries are not ready, having Java 2 security enabled causes problems.
You can identify these problems as Java 2 security AccessControlExceptions in the system log or trace

1184 Administering WebSphere applications



files. If you are unsure about the Java 2 security readiness of your applications, disable Java 2 security
initially to get your application installed and verify that it is working properly.

The policy embodied by these policy files cannot be made more restrictive because the product might not
have the necessary Java 2 security doPrivileged APIs in place. The restrictive policy is the default policy.
You can grant additional permissions, but you cannot make the default more restrictive because
AccessControlExceptions exceptions are generated from within WebSphere Application Server. The
product does not support a more restrictive policy than the default that is defined in the policy files
previously mentioned.

Several policy files are used to define the security policy for the Java process. These policy files are static
(code base is defined in the policy file) and in the default policy format provided by the IBM Developer Kit,
Java Technology Edition. For enterprise application resources and utility libraries, WebSphere Application
Server provides dynamic policy support. The code base is dynamically calculated based on deployment
information and permissions are granted based on template policy files during runtime. Refer to the “Java
2 security policy files” on page 1189 for more information.

Syntax errors in the policy files cause the application server process to fail, so edit these policy files
carefully.

Note: Edit these policy files using the Policy Tool that is provided by the IBM Developer Kit,
Java Technology Edition. See Using PolicyTool to edit policy files for Java 2 security for more
information.

If an application is not prepared for Java 2 security, if the application provider does not provide a
was.policy file as part of the application, or if the application provider does not communicate the expected
permissions the application is likely to cause Java 2 security access control exceptions at runtime. It might
not be obvious that an application is not prepared for Java 2 security. Several run-time debugging aids
help troubleshoot applications that might have access control exceptions. See the Java 2 security
debugging aids for more details. See “Handling applications that are not Java 2 security ready” on page
1187 for information and strategies for dealing with such applications.

It is important to note when Java Security is enabled in the administrative security settings, the installed
security manager does not currently check modifyThread and modifyThreadGroup permissions for
non-system threads. Allowing web and Enterprise JavaBeans (EJB) application code to create or modify a
thread can have a negative impact on other components of the container and can affect the capability of
the container to manage enterprise bean life cycles and transactions.

Java 2 security for application developers

Application developers must understand the permissions that are granted in the default WebSphere policy
and the permission requirements of the SDK APIs that their application calls to know whether additional
permissions are required. The Permissions in the Java 2 SDK reference in the resources section describes
which APIs require which permission.

Application providers can assume that applications have the permissions granted in the default policy
previously mentioned. Applications that access resources not covered by the default WebSphere policy are
required to grant the additional Java 2 security permissions to the application.

While it is possible to grant the application additional permissions in one of the other dynamic WebSphere
policy files or in one of the more traditional java.policy static policy files, the was.policy file, which is
embedded in the EAR file ensures the additional permissions are scoped to the exact application that
requires them. Scoping the permission beyond the application code that requires it can permit code that
normally does not have permission to access particular resources.

Chapter 19. Administering application security 1185



If an application component is being developed, like a library that might actually be included in more than
one .ear file, then the library developer needs to document the required Java 2 permissions that are
required by the application assembler. There is no was.policy file for library-type components. The
developer must communicate the required permissions through application programming interface (API)
documentation or some other external documentation.

If the component library is shared by multiple enterprise applications, the permissions can be granted to all
enterprise applications on the node in the app.policy file.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

If the permission is only used internally by the component library and the application is never granted
access to resources that are protected by the permission, it might be necessary to mark the code as
privileged. Refer to the, AccessControlException, topic for more details. However, improperly inserting a
doPrivileged call might open up security holes. Understand the implication of doPrivileged call to make a
correct judgement.

The section on Dynamic policy files in “Java 2 security policy files” on page 1189 describes how the
permissions in the was.policy files are granted at runtime.

Developing an application to use with Java 2 security might be a new skill and impose a security
awareness not previously required of application developers. Describing the Java 2 security model and the
implications on application development is beyond the scope of this section. The following URL can help
you get started: http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html.

Debugging Aids

The WebSphere Application Server SYSOUT file and the com.ibm.websphere.java2secman.norethrow
property are the two primary aids for debugging.

The WebSphere System Log or Trace Files

The AccessControl exception that is logged in the system log or trace files contains the permission
violation that causes the exception, the exception call stack, and the permissions granted to each stack
frame. This information is usually enough to determine the missing permission and the code requiring the
permission.

The com.ibm.websphere.java2secman.norethrow property

When Java 2 security is enabled in WebSphere Application Server, the security manager component
creates a java.security.AccessControl exception when a permission violation occurs. This exception, if not
handled, often causes a run-time failure. This exception is also logged in the SYSOUT file.

However, when the Java virtual machine com.ibm.websphere.java2secman.norethrow property is set and
has a value of true, the security manager does not create the AccessControl exception. This information is
logged.

This property is intended for a sandbox or debug environment because it instructs the security manager
not to create the AccessControl exception. Java 2 security is not enforced. Do not use this property in a
production environment where a relaxed Java 2 security environment weakens the integrity that Java 2
security is intended to produce.

This property is valuable in a sandbox or test environment where the application can be thoroughly tested
and where the system log or trace files can be inspected for AccessControl exceptions. Because this
property does not create the AccessControl exception, it does not propagate the call stack and does not

1186 Administering WebSphere applications

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html


cause a failure. Without this property, you have to find and fix AccessControl exceptions one at a time.

Handling applications that are not Java 2 security ready

If the increased system integrity that Java 2 security provides is important, then contact the application
provider to have the application support Java 2 security or at least communicate the required additional
permissions beyond the default WebSphere Application Server policy that must be granted.

The easiest way to deal with such applications is to disable Java 2 security in WebSphere Application
Server. The downside is that this solution applies to the entire system and the integrity of the system is not
as strong as it might be. Disabling Java 2 security might not be acceptable depending on the organization
security policies or risk tolerances.

Another approach is to leave Java 2 security enabled, but to grant either just enough additional
permissions or grant all permissions to just the problematic application. Granting permissions however,
might not be a trivial thing to do. If the application provider has not communicated the required
permissions in some way, no easy way exists to determine what the required permissions are and granting
all permissions might be the only choice. You minimize this risk by locating this application on a different
node, which might help isolate it from certain resources. Grant the java.security.AllPermission permission
in the was.policy file that is embedded in the application .ear file, for example:
grant codeBase "file:${application}" {

permission java.security.AllPermission;
};

The server.policy file

The server.policy file is located in the profile_root/properties directory.

This policy defines the policy for the WebSphere Application Server classes. At present, all the server
processes on the same installation share the same server.policy file. However, you can configure this file
so that each server process can have a separate server.policy file. Define the policy file as the value of
the java.security.policy Java system properties . For details of how to define Java system properties, refer
to the Process definition section of the Manage application servers file.

The server.policy file is not a configuration file managed by the repository and the file replication service.
Changes to this file are local and do not get replicated to other machines. Use the server.policy file to
define Java 2 security policy for server resources. Use the app.policy file (per node) or the was.policy file
(per enterprise application) to define Java 2 security policy for enterprise application resources.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the
app.policy file belongs.

The java.policy file

The file represents the default permissions that are granted to all classes. The policy of this file applies to
all the processes launched by the Java Virtual Machine in the WebSphere Application Server.

Thejava.policy file is located in the${java.home}/lib/security/ directory where ${java.home}
is the path to the Software Development Kit (SDK) that you are using. The policy file is used throughout
the operating system. Do not edit the java.policy file.

Troubleshooting

Error message CWSCJ0314E

Symptom:

Chapter 19. Administering application security 1187



Error message CWSCJ0314E: Current Java 2 security policy reported a potential violation of Java 2
security permission. Refer to Problem Determination Guide for further information.{0}Permission\
:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5} Current Java 2 security policy reported a
potential violation of Java 2 Security Permission. Refer to Problem Determination Guide for further
information.{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5}

Problem:

The Java security manager checkPermission method reported a security exception on the subject
permission with debugging information. The reported information can be different with respect to
the system configuration. This report is enabled by either configuring a Reliability Availability
Service Ability (RAS) trace into debug mode or specifying a Java property.

See Enabling trace for information on how to configure RAS trace in debug mode.

Specify the following property in the JVM Settings panel from the administrative console:
java.security.debug. Valid values include:
access

Print all debug information including: required permission, code, stack, and code base
location.

stack Print debug information including: required permission, code, and stack.
failure Print debug information including: required permission and code.

Recommended response:

The reported exception might be critical to the secure system. Turn on security trace to determine
the potential code that might have violated the security policy. After the violating code is
determined, verify if the attempted operation is permitted with respect to Java 2 security, by
examining all applicable Java 2 security policy files and the application code.

If the application is running with Java Mail, this message might be benign. You can update the
was.policy file to grant the following permissions to the application:

permission java.io.FilePermission "${user.home}${/}.mailcap", "read";
permission java.io.FilePermission "${user.home}${/}.mime.types", "read";
permission java.io.FilePermission "${java.home}${/}lib${/}mailcap", "read";
permission java.io.FilePermission "${java.home}${/}lib${/}mime.types", "read";

SecurityException - Access denied

Symptom:

If Java security is enabled, and permissions to read the jaxm.properties file is not granted, when a
SOAPFactory instance is created through a call to javax.xml.soap.SOAPFactory.newInstance(), or
a MessageFactory instance is created through a call to MessageFactory.newInstance(), a
SecurityException exception occurs, and the following exception is written to the system log:

Permission:

/opt/IBM/WebSphere/AppServer/java/jre/lib/jaxm.properties : access denied
(java.io.FilePermission /opt/IBM/WebSphere/AppServer/java/jre/lib/jaxm.properties
read)

Code:

com.ibm.ws.wsfvt.test.binding.addr1.binder.AddressBinder
in {file:/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/installedApps/
ahp6405Node01Cell/DataBinding.ear/address1.war/WEB-INF/lib
/addressbinder1.jar}

Stack Trace:

java.security.AccessControlException: access denied (java.io.FilePermission
/opt/IBM/WebSphere/AppServer/java/jre/lib/jaxm.properties read)
.

Problem:

The Java 2 Security policy reports a potential violation of Java 2 Security permission.

1188 Administering WebSphere applications



Recommended response:

The SOAPFactory ignores the exception, and continues on to the next means of determining
which implementation to load. Therefore, you can ignore the log entry for this security exception.

Because this product uses the SOAPFactory to support other web services technologies, such as
WS-Addressing (WS-A), WS-Atomic Transaction (WS-AT), and WS-Notification, you can ignore
this SecurityException in any web services application where Java security is enabled.

Messages

Message: CWSCJ0313E: Java 2 security manager debug message flags are initialized\: TrDebug: {0},
Access: {1}, Stack: {2}, Failure: {3}

Problem: Configured values of the valid debug message flags for security manager.

Message: CWSCJ0307E: Unexpected exception is caught when trying to determine the code base location.
Exception: {0}

Problem: An unexpected exception is caught when the code base location is determined.

Java 2 security policy files:

The Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 and later specifications have a well-defined
programming model of responsibilities between the container providers and the application code. Using
Java 2 security manager to help enforce this programming model is recommended. Certain operations are
not supported in the application code because such operations interfere with the behavior and operation of
the containers. The Java 2 security manager is used in the product to enforce responsibilities of the
container and the application code.

Note: The application server does not support a custom Java security manager implementation.

This product provides support for policy file management. A number of policy files in the product are either
static or dynamic. Dynamic policy is a template of permissions for a particular type of resource. No relative
code base is defined in the dynamic policy template. The code base is dynamically calculated from the
deployment and run-time data.

Static policy files

Table 64. Static policy files.

This table lists the location of the static policy files.
Policy file Location

java.policy

server.policy profile_root/properties/server.policy. Default permissions are granted to all the product servers.

client.policy profile_root/properties/client.policy. Default permissions are granted for all of the product client containers and
applets on a node.

The static policy files are not managed by configuration and file replication services. Changes made in
these files are local and are not replicated to other nodes in the WebSphere Application Server, Network
Deployment cell.

Chapter 19. Administering application security 1189



Dynamic policy files

Table 65. Dynamic policy files.

This table lists the location of the dynamic policy files.
Policy file Location

spi.policy profile_root/config/cells/cell_name
/nodes/node_name/spi.policy

This template is for the Service Provider Interface (SPI) or the third-party resources that are embedded in the product.
Examples of SPI are the Java Message Service (JMS) in MQ Series and Java database connectivity (JDBC) drivers. The
code base for the embedded resources are dynamically determined from the configuration (resources.xml file) and
run-time data, and permissions that are defined in the spi.policy files are automatically applied to these resources and
JAR files that are specified in the class path of a resource adapter. The default permission of the spi.policy file is
java.security.AllPermissions.

library.policy profile_root/config/cells/cell_name/nodes
/node_name/library.policy

This template is for the library (Java library classes). You can define a shared library to use in multiple product
applications. The default permission of the library.policy file is empty.

app.policy profile_root/config/cells/cell_name
/nodes/node_name/app.policy

The app.policy file defines the default permissions that are granted to all of the enterprise applications running on
node_name in cell_name.
Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the app.policy file
belongs.

was.policy profile_root/config/cells/cell_name
/applications/ear_file_name/deployments/
application_name/META-INF/was.policy

This template is for application-specific permissions. The was.policy file is embedded in the enterprise archive (EAR)
file.

ra.xml rar_file_name/META-INF/was.policy.RAR.

This file can have a permission specification that is defined in the ra.xml file. The ra.xml file is embedded in the RAR
file.

Grant entries that are specified in the app.policy and was.policy files must have a code base defined. If
grant entries are specified without a code base, the policy files are not loaded properly and the application
can fail. If the intent is to grant the permissions to all applications, use file:${application} as a code base in
the grant entry.

Syntax of the policy file

A policy file contains several policy entries. The following example depicts each policy entry format:
grant [codebase <Codebase>] {
permission <Permission>;
permission <Permission>;
permission <Permission>;
};

<CodeBase>: A URL.
For example, "file:${java.home}/lib/tools.jar"

When [codebase <Codebase>] is not specified, listed
permissions are applied to everything.

If URL ends with a JAR file name, only the classes in the
JAR file belong to the codebase.
If URL ends with "/", only the class files in the specified
directory belong to the codebase.
If URL ends with "*", all JAR and class files in the specified
directory belong to the codebase.
If URL ends with "-", all JAR and class files in the specified
directory and its subdirectories belong to the codebase.

<Permissions>: Consists from
Permission Type : class name of the permission

Target Name : name specifying the target
Actions : actions allowed on target

For example,
java.io.FilePermission "/tmp/xxx", "read,write"

1190 Administering WebSphere applications



Refer to developer kit specifications for the details of each permission.

Syntax of dynamic policy

You can define permissions for specific types of resources in dynamic policy files for an enterprise
application. This action is achieved by using product-reserved symbols. The reserved symbol scope
depends on where it is defined. If you define the permissions in the app.policy file, the symbol applies to
all the resources on all of the enterprise applications that run on node_name. If you define the permissions
in the META-INF/was.policy file, the symbol applies only to the specific enterprise application. Valid
symbols for the code base are listed in the following table:

Table 66. Dynamic policy syntax.

This table describes valid symbols for the code base for dynamic policy files.
Symbol Meaning

file:${application} Permissions apply to all the resources within the application

file:${jars} Permissions apply to all the utility Java archive (JAR) files within the
application

file:${ejbComponent} Permissions apply to the Enterprise JavaBeans (EJB) resources within the
application

file:${webComponent} Permissions apply to the web resources within the application

file:${connectorComponent} Permissions apply to the connector resources within the application

You can specify the module name for a granular setting, except for these entries that are specified by the
code base symbols. For example:
grant codeBase "file:DefaultWebApplication.war" {

permission java.security.SecurityPermission "printIdentity";
};

grant codeBase "file:IncCMP11.jar" {
permission java.io.FilePermission
"${user.install.root}${/}bin${/}DefaultDB${/}-",
"read,write,delete";
};

The sixth and seventh lines in the previous code sample are one continuous line. You can use a relative
code base only in the META-INF/was.policy file. Several product-reserved symbols are defined to
associate the permission lists to a specific type of resources.

Table 67. Dynamic policy syntax.

This table describes several product-reserved symbols that are defined to associate the permission lists to a specific
type of resource.
Symbol Meaning

file:${application} Permissions apply to all the resources within the application

file:${jars} Permissions apply to all the utility JAR files within the application

file:${ejbComponent} Permissions apply to the enterprise beans resources within the application

file:${webComponent} Permissions apply to the web resources within the application

file:${connectorComponent} Permissions apply to the connector resources both within the application
and in the standalone connector resources.

Five embedded symbols are provided to specify the path and the name for the java.io.FilePermission
permission. These symbols enable flexible permission specification. The absolute file path is fixed after the
installation of the application.

Table 68. Dynamic policy syntax.

This table describes the embedded symbols that are provided to specify the path and name for the
java.io.FilePermission permission.
Symbol Meaning

${app.installed.path} Path where the application is installed

Chapter 19. Administering application security 1191



Table 68. Dynamic policy syntax (continued).

This table describes the embedded symbols that are provided to specify the path and name for the
java.io.FilePermission permission.
Symbol Meaning

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

Attention: Do not use the ${was.module.path} in the ${application} entry.

Carefully determine where to add a new permission. An incorrectly specified permission causes an
AccessControlException exception. Because dynamic policy resolves the code base at runtime,
determining which policy file has a problem is difficult. Add a permission only to the necessary resources.
For example, use ${ejbcomponent}, and etc instead of ${application}, and update the was.policy file
instead of the app.policy file, if possible.

Static policy filtering

Limited static policy filtering support exists. If the app.policy file and the was.policy file have permissions
that are defined in the filter.policy file with thefilterMask keyword, the runtime removes the permissions
from the applications and an audit message is logged. However, if the permissions that are defined in the
app.policy and the was.policy files are compound permissions, for example, java.security.AllPermission,
the permission is not removed, but a warning message is written to the log file. The policy filtering only
supports Developer Kit permissions; the permissions package name begins with java or javax.

Run-time policy filtering support is provided to force stricter filtering. If the app.policy file and the
was.policy file have permissions that are defined in the filter.policy file with the runtimeFilterMask
keyword, the runtime removes the permissions from the applications no matter what permissions are
granted to the application. For example, even if a was.policy file has the java.security.AllPermission
permission granted to one of its modules, specified permissions such as the runtimeFilterMask permission
are removed from the granted permission during runtime.

Policy file editing

Using the policy tool that is provided by the Developer Kit (app_server_root/java/jre/bin/policytool), to
edit the previous policy files is recommended. For WebSphere Application Server, Network Deployment,
extract the policy files from the repository before editing. After the policy file is extracted, use the policy
tool to edit the file. Check the modified policy files into the repository and synchronize them with other
nodes.

Troubleshooting

To debug the dynamic policy, choose one of three ways to generate the detail report of the
AccessControlException exception.
v Trace (Configured by RAS trace). Enables traces with the trace specification:

Attention: The following command is one continuous line
com.ibm.ws.security.policy.*=all=enabled:
com.ibm.ws.security.core.SecurityManager=all=enabled

v Trace (Configured by property). Specifies a Java java.security.debug property. Valid values for the
java.security.debug property are as follows:
– Access. Print all debug information including required permission, code, stack, and code base

location.
– Stack. Print debug information including, required permission, code, and stack.

1192 Administering WebSphere applications



– Failure. Print debug information including required permission and code.
v ffdc. Enable ffdc, modify the ffdcRun.properties file by changing Level=4 and LAE=true. Look for an

Access Violation keyword in the log file.

Access control exception for Java 2 security:

The Java 2 security behavior is specified by its security policy. The security policy is an access-control
matrix that specifies which system resources certain code bases can access and who must sign them. The
Java 2 security policy is declarative and it is enforced by the
java.security.AccessController.checkPermission method.

The following example depicts the algorithm for the java.security.AccessController.checkPermission
method. For the complete algorithm, refer to the Java 2 security check permission algorithm in the
Security: Resources for learning article.

i = m;
while (i > 0) {
if (caller i's domain does not have the permission)
throw AccessControlException;
else if (caller i is marked as privileged)
return;
i = i - 1;
};

The algorithm requires that all the classes or callers on the call stack have the permissions when a
java.security.AccessController.checkPermission method is performed or the request is denied and a
java.security.AccessControlException exception is created. However, if the caller is marked as privileged
and the class (caller) is granted these permissions, the algorithm returns and does not traverse the entire
call stack. Subsequent classes (callers) do not need the required permission granted.

A java.security.AccessControlException exception is created when certain classes on the call stack are
missing the required permissions during a java.security.AccessController.checkPermission method. Two
possible resolutions to the java.security.AccessControlException exception are as follows:
v If the application is calling a Java 2 security-protected application programming interface (API), grant the

required permission to the application Java 2 security policy. If the application is not calling a Java 2
security-protected API directly, the required permission results from the side-effect of the third-party APIs
accessing Java 2 security-protected resources.

v If the application is granted the required permission, it gains more access than it needs. In this case, it
is likely that the third party code that accesses the Java 2 security-protected resource is not properly
marked as privileged.

Example call stack

This example of a call stack indicates where application code is using a third-party API utility library to
update the password. The following example is presented to illustrate the point. The decision of where to
mark the code as privileged is application-specific and is unique in every situation. This decision requires
great depth of domain knowledge and security expertise to make the correct judgement. A number of well
written publications and books are available on this topic. Referencing these materials for more detailed
information is recommended.

Chapter 19. Administering application security 1193



You can use the PasswordUtil utility to change the password of a user. The utility types in the old
password and the new password twice to ensure that the correct password is entered. If the old password
matches the one stored in the password file, the new password is stored and the password file updates.
Assume that none of the stack frame is marked as privileged. According to the
java.security.AccessController.checkPermission algorithm, the application fails unless all the classes on the
call stack are granted write permission to the password file. The client application does not have
permission to write to the password file directly and to update the password file at will.

However, if the PasswordUtil.updatePasswordFile method marks the code that accesses the password file
as privileged, then the check permission algorithm does not check for the required permission from
classes that call thePasswordUtil.updatePasswordFile method for the required permission as long as the
PasswordUtil class is granted the permission. The client application can successfully update a password
without granting the permission to write to the password file.

The ability to mark code privileged is very flexible and powerful. If this ability is used incorrectly, the overall
security of the system can be compromised and security holes can be exposed. Use the ability to mark
code privileged carefully.

Resolution to the java.security.AccessControlException exception

As described previously, you have two approaches to resolve a java.security.AccessControlException
exception. Judge these exceptions individually to decide which of the following resolutions is best:
1. Grant the missing permission to the application.
2. Mark some code as privileged, after considering the issues and risks.

Enabling security for the realm
Use this topic to enable IBM WebSphere Application Server security. You must enable administrative
security for all other security settings to function.

About this task

WebSphere Application Server uses cryptography to protect sensitive data and to ensure confidentiality
and integrity of communications between WebSphere Application Server and other components in the
network. Cryptography is also used by Web Services Security when certain security constraints are
configured for the web services application.

Attention: Fix packs that include updates to the Software Development Kit (SDK) might overwrite
unrestricted policy files. Back up unrestricted policy files before you apply a fix pack and reapply these
files after the fix pack is applied.

1194 Administering WebSphere applications



Note: Fix packs that include updates to the Software Development Kit (SDK) might overwrite unrestricted
policy files. Back up unrestricted policy files before you apply a fix pack and reapply these files after
the fix pack is applied.

Important: Your country of origin might have restrictions on the import, possession, use, or re-export to
another country, of encryption software. Before downloading or using the unrestricted policy
files, you must check the laws of your country, its regulations, and its policies concerning the
import, possession, use, and re-export of encryption software, to determine if it is permitted.

Complete the following steps to download and install the new policy files:

1. Click Java SE 6

2. Scroll down the page then click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 6 website displays.

3. Click Sign in and provide your IBM.com ID and password.

4. Select Unrestricted JCE Policy files for SDK 6 and click Continue.

5. View the license and click I Agree to continue.

6. Click Download Now.

7. Extract the unlimited jurisdiction policy files that are packaged in the compressed file. The compressed
file contains a US_export_policy.jar file and a local_policy.jar file.

8. In your WebSphere Application Server installation, go to the $JAVA_HOME/jre/lib/security
directory and back up your US_export_policy.jar and local_policy.jar files.

9. Replace your US_export_policy.jar and local_policy.jar files with the two files that you
downloaded from the IBM.com website.

Complete the following steps to enable security for the realm:

Procedure
1. Enable security in the WebSphere Application Server. Make sure that all node agents within the cell

are active beforehand.

For more information, see “Enabling security” on page 1180. It is important to click Security > Global
security. Select an available realm definition from the list, and then click Set as current so that
security is enabled upon a server restart.

Note: In previous releases of WebSphere Application Server, the Set as current option is known as
the Enable global security option.

2. Before restarting the server, log off the administrative console. You can log off by clicking Logout at
the top menu bar.

3. Stop the server by going to the command line in the WebSphere Application Server
app_server_root/bin directory and issue a stopServer server_name command.

4. Restart the server in secure mode by issuing the command startServer server_name. Once the server
is secure, you cannot stop the server again without specifying an administrative user name and
password. To stop the server once security is enabled, issue the command, stopServer server_name
-username user_id -password password. Alternatively, you can edit the soap.client.props file in the
profile_root/properties directory, and edit the com.ibm.SOAP.loginUserid or
com.ibm.SOAP.loginPassword properties to contain these administrative IDs.

If you have any problems restarting the server, review the output logs in the profile_root/logs/
server_name directory. Check the Troubleshooting security configurations article for any common
problems.

The app_server_root variable refers to the app_server_root/bin/ default directory.

Global security settings:

Chapter 19. Administering application security 1195



Use this panel to configure administration and the default application security policy. This security
configuration applies to the security policy for all administrative functions and is used as a default security
policy for user applications. Security domains can be defined to override and customize the security
policies for user applications.

To view this administrative console page, click Security > Global security.

Security has some performance impacts on your applications. The performance impacts can
vary depending upon the application workload characteristics. You must first determine that the needed
level of security is enabled for your applications, and then measure the impact of security on the
performance of your applications.

When security is configured, validate any changes to the user registry or authentication mechanism
panels. Click Apply to validate the user registry settings. An attempt is made to authenticate the server ID
or to validate the admin ID (if internalServerID is used) to the configured user registry. Validating the user
registry settings after enabling administrative security can avoid problems when you restart the server for
the first time.

Security configuration wizard:

Launches a wizard that enables you to configure the basic administrative and application security settings.
This process restricts administrative tasks and applications to authorized users.

Using this wizard, you can configure application security, resource or Java 2 Connector (J2C) security, and
a user registry. You can configure an existing registry and enable administrative, application, and resource
security.

When you apply changes made by using the security configuration wizard, administrative security is turned
on by default.

Security configuration report:

Launches a report that gathers and displays the current security settings of the application server.
Information is gathered about core security settings, administrative users and groups, CORBA naming
roles, and cookie protection. When multiple security domains are configured the report displays the
security configuration associated with each domain.

A current limitation to the report is that it does not display application level security information. The report
also does not display information on Java Message Service (JMS) security, bus security, or Web Services
Security.

Enable administrative security:

Specifies whether to enable administrative security for this application server domain. Administrative
security requires users to authenticate before obtaining administrative control of the application server.

For more information, see the related links for administrative roles and administrative authentication.

When enabling security, set the authentication mechanism configuration and specify a valid user ID and
password (or a valid admin ID when internalServerID feature is used) in the selected registry configuration.

Note: There is a difference between the user ID (which is normally called the admin ID), which identifies
administrators who manage the environment, and a server ID, which is used for server-to-server
communication. You do not need to enter a server ID and password when you are using the
internal server ID feature. However, optionally, you can specify a server ID and password. To
specify the server ID and password, complete the following steps:

1196 Administering WebSphere applications



1. Click Security > Global security.

2. Under User accounts repository, select the repository and click Configure.

3. Specify the server ID and password in the Server user identity section.

Information Value
Default: Enabled

Enable application security:

Enables security for the applications in your environment. This type of security provides application
isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security is split into administrative security and application security, each of which
you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. To enable application security, you must enable administrative security. Application security is in
effect only when administrative security is enabled.

Information Value
Default: Disabled

Use Java 2 security to restrict application access to local resources:

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local
resources is not restricted. You can choose to disable Java 2 security, even when application security is
enabled.

When the Use Java 2 security to restrict application access to local resources option is enabled and
if an application requires more Java 2 security permissions than are granted in the default policy, the
application might fail to run properly until the required permissions are granted in either the app.policy file
or the was.policy file of the application. AccessControl exceptions are generated by applications that do
not have all the required permissions. See the related links for more information about Java 2 security.

Information Value
Default: Disabled

Warn if applications are granted custom permissions:

Specifies that during application deployment and application start, the security runtime issues a warning if
applications are granted any custom permissions. Custom permissions are permissions that are defined by
the user applications, not Java API permissions. Java API permissions are permissions in the java.* and
javax.* packages.

The application server provides support for policy file management. A number of policy files are available
in this product, some of them are static and some of them are dynamic. Dynamic policy is a template of
permissions for a particular type of resource. No code base is defined and no relative code base is used in
the dynamic policy template. The real code base is dynamically created from the configuration and
run-time data. The filter.policy file contains a list of permissions that you do not want an application to
have according to the J2EE 1.4 specification. For more information on permissions, see the related link
about Java 2 security policy files.

Chapter 19. Administering application security 1197



Important: You cannot enable this option without enabling the Use Java 2 security to restrict
application access to local resources option.

Information Value
Default: Disabled

Restrict access to resource authentication data:

Enable this option to restrict application access to sensitive Java Connector Architecture (JCA) mapping
authentication data.

Consider enabling this option when both of the following conditions are true:

v Java 2 security is enforced.

v The application code is granted the accessRuntimeClasses WebSphereRuntimePermission permission
in the was.policy file found within the application enterprise archive (EAR) file. For example, the
application code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";

The Restrict access to resource authentication data option adds fine-grained Java 2 security
permission checking to the default principal mapping of the WSPrincipalMappingLoginModule
implementation. You must grant explicit permission to Java 2 Platform, Enterprise Edition (J2EE)
applications that use the WSPrincipalMappingLoginModule implementation directly in the Java
Authentication and Authorization Service (JAAS) login when Use Java 2 security to restrict application
access to local resources and the Restrict access to resource authentication data options are
enabled.

Information Value
Default: Disabled

Current realm definition:

Specifies the current setting for the active user repository.

This field is read-only.

Available realm definitions:

Specifies the available user account repositories.

The selections appear in a drop-down list containing:

v Local operating system

v Standalone LDAP registry

v Stand-alone custom registry

Configure...:

Select to configure the global security settings.

Web and SIP security:

Under Authentication, expand Web and SIP security to view links to:

v General settings

v Single sign-on (SSO)

1198 Administering WebSphere applications



v SPNEGO web authentication

v Trust association

General settings:

Select to specify the settings for web authentication.

Single sign-on (SSO):

Select to specify the configuration values for single sign-on (SSO).

With SSO support, web users can authenticate once when accessing both WebSphere Application Server
resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans, and Lotus Domino®

resources.

SPNEGO web authentication:

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) provides a way for web clients and the
server to negotiate the web authentication protocol that is used to permit communications.

Trust association:

Select to specify the settings for the trust association. Trust association is used to connect reversed proxy
servers to the application servers.

You can use the global security settings or customize the settings for a domain.

Note: The use of trust association interceptors (TAIs) for SPNEGO authentication is now deprecated. The
SPNEGO web authentication panels now provide a much easier way to configure SPNEGO.

RMI/IIOP security:

Under Authentication, expand RMI/IIOP security to view links to:

v CSIv2 inbound communications

v CSIv2 outbound communications

CSIv2 inbound communications:

Select to specify authentication settings for requests that are received and transport settings for
connections that are accepted by this server using the Object Management Group (OMG) Common
Secure Interoperability (CSI) authentication protocol.

Authentication features include three layers of authentication that you can use simultaneously:
v CSIv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the
message layer, and then the transport layer. If a client sends all three, only the identity layer is used.
The only way to use the SSL client certificate as the identity is if it is the only information that is
presented during the request. The client picks up the interoperable object reference (IOR) from the
namespace and reads the values from the tagged component to determine what the server needs for
security.

v CSIv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets
Layer (SSL) client certificate as the identity.

v CSIv2 message layer. The message layer might contain a user ID and password or an
authenticated token with an expiration.

CSIv2 outbound communications:

Chapter 19. Administering application security 1199



Select to specify authentication settings for requests that are sent and transport settings for connections
that are initiated by the server using the Object Management Group (OMG) Common Secure
Interoperability (CSI) authentication protocol.

Authentication features include three layers of authentication that you can use simultaneously:
v CSIv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the
message layer, and then the transport layer. If a client sends all three, only the identity layer is used.
The only way to use the SSL client certificate as the identity is if it is the only information that is
presented during the request. The client picks up the interoperable object reference (IOR) from the
namespace and reads the values from the tagged component to determine what the server needs for
security.

v CSIv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets
Layer (SSL) client certificate as the identity.

v CSIv2 message layer. The message layer might contain a user ID and password or an
authenticated token with an expiration.

Java authentication and authorization service:

Under Authentication, expand Java authentication and authorization service to view links to:

v Application logins

v System logins

v J2C authentication data

Application logins:

Select to define login configurations that are used by JAAS.

Do not remove the ClientContainer, DefaultPrincipalMapping, and WSLogin login configurations because
other applications might use them. If these configurations are removed, other applications might fail.

System logins:

Select to define the JAAS login configurations that are used by system resources, including the
authentication mechanism, principal mapping, and credential mapping.

J2C authentication data:

Select to specify the settings for the Java Authentication and Authorization Service (JAAS) Java 2
Connector (J2C) authentication data.

You can use the global security settings or customize the settings for a domain.

LTPA:

Select to encrypt authentication information so that the application server can send the data from one
server to another in a secure manner.

The encryption of authentication information that is exchanged between servers involves the Lightweight
Third-Party Authentication (LTPA) mechanism.

Kerberos and LTPA:

Select to encrypt authentication information so that the application server can send the data from one
server to another in a secure manner.

1200 Administering WebSphere applications



The encryption of authentication information that is exchanged between servers involves the Kerberos
mechanism.

Note: Kerberos must be configured before this option can be selected.

Kerberos configuration:

Select to encrypt authentication information so that the application server can send data from one server
to anther in a secure manner.

The encryption of the authentication information that is exchanged between servers involves the KRB5 of
LTPA mechanism.

Authentication cache settings:

Select to set your authentication cache settings.

Enable Java Authentication SPI (JASPI):

Select to enable the use of Java Authentication SPI (JASPI) authentication.

You can then click Providers to create or edit a JASPI authentication provider and associated
authentication modules in the global security configuration.

Use realm-qualified user names:

Specifies that user names that are returned by methods, such as the getUserPrincipal() method, are
qualified with the security realm in which they reside.

Security domains:

Use the Security Domain link to configure additional security configurations for user applications.

For example, if you want use a different user registry for a set of user applications than the one used at
the global level, you can create a security configuration with that user registry and associate it with that set
of applications. These additional security configurations can be associated with various scopes (cell,
clusters/servers, SIBuses). Once the security configurations have been associated with a scope all of the
user applications in that scope use this security configuration. Read about “Multiple security domains” on
page 1233 for more detailed information.

For each security attribute, you can use the global security settings or customize settings for the domain.

External authorization providers:

Select to specify whether to use the default authorization configuration or an external authorization
provider.

The external providers must be based on the Java Authorization Contract for Containers (JACC)
specification to handle the Java(TM) 2 Platform, Enterprise Edition (J2EE) authorization. Do not modify
any settings on the authorization provider panels unless you have configured an external security provider
as a JACC authorization provider.

Custom properties:

Select to specify name-value pairs of data, where the name is a property key and the value is a string.

Specify extent of protection wizard settings:

Chapter 19. Administering application security 1201



Use this security wizard page to determine whether to enable application security and restrict access to
local resources. When you use the wizard, admin security is enabled by default.

To view this security wizard page, click Security > Global security > Security configuration wizard.

Enable application security:

Enables security for the applications in your environment. This type of security provides application
isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security is split into administrative security and application security, each of which
you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. To enable application security, you must enable administrative security. Application security is in
effect only when administrative security is enabled.

Information Value
Default: Disabled

Use Java 2 security to restrict application access to local resources:

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local
resources is not restricted. You can choose to disable Java 2 security, even when application security is
enabled.

When the Use Java 2 security to restrict application access to local resources option is enabled and
if an application requires more Java 2 security permissions than are granted in the default policy, the
application might fail to run properly until the required permissions are granted in either the app.policy file
or the was.policy file of the application. AccessControl exceptions are generated by applications that do
not have all the required permissions. See the related links for more information about Java 2 security.

Information Value
Default: Disabled

Security custom properties:

Use this page to understand the psecurity.allowCustomHTTPMethodsredefined custom properties that are
related to security.

To view this administrative console page, click Security > Global security > Custom properties. Then
click New to add a new custom property and its associated value.

The custom properties in this topic are set in the administrative console through the previously listed path
unless otherwise stated in the description.

You can use the custom properties page to define the following security custom properties:

v “com.ibm.audit.report.granularity” on page 1204

v “com.ibm.CSI.disablePropagationCallerList” on page 1205

v “com.ibm.CSI.propagateFirstCallerOnly” on page 1205

v “com.ibm.CSI.rmiInboundLoginConfig” on page 1205

1202 Administering WebSphere applications



v “com.ibm.CSI.rmiOutboundLoginConfig” on page 1206

v “com.ibm.CSI.supportedTargetRealms” on page 1206

v “com.ibm.security.multiDomain.setNamingReadUnprotected” on page 1206

v “com.ibm.security.useFIPS” on page 1206

v “com.ibm.websphere.crypto.config.certexp.notify.fromAddress” on page 1206

v “com.ibm.websphere.crypto.config.certexp.notify.textEncoding” on page 1206

v “com.ibm.websphere.lookupRegistryOnProcess” on page 1207

v “com.ibm.websphere.security.allowAnyLogoutExitPageHost” on page 1207

v “com.ibm.websphere.security.alwaysRestoreOriginalURL” on page 1207

v “com.ibm.websphere.security.auth.setDRSBootstrap” on page 1217

v “com.ibm.websphere.security.config.inherit.trustedRealms” on page 1207

v “com.ibm.websphere.security.console.noSSLTreePortEndpoints” on page 1208

v “com.ibm.websphere.security.customLTPACookieName” on page 1208

v “com.ibm.websphere.security.customSSOCookieName” on page 1209

v “com.ibm.websphere.security.displayRealm” on page 1209

v “com.ibm.websphere.security.disableGetTokenFromMBean” on page 1210

v usec_seccustomprop.dita#com.ibm.websphere.security.enableAuditForIsCallerInRole

v “com.ibm.websphere.security.goToLoginPageWhenTAIUserNotFound” on page 1210

v “com.ibm.websphere.security.InvokeTAIbeforeSSO” on page 1210

v “com.ibm.websphere.security.JAASAuthData.addNodeNameSecDomain” on page 1211

v “com.ibm.websphere.security.JAASAuthData.removeNodeNameGlobal” on page 1211

v “com.ibm.websphere.security.krb.canonical_host” on page 1211

v “com.ibm.websphere.security.ldap.logicRealm” on page 1211

v “com.ibm.websphere.security.ldapSSLConnectionTimeout” on page 1212

v “com.ibm.websphere.security.logoutExitPageDomainList” on page 1212

v “com.ibm.websphere.security.performTAIForUnprotectedURI” on page 1212

v “com.ibm.websphere.security.recoverContextWithNewKeys” on page 1213

v “com.ibm.websphere.security.rsaCertificateAliasCache” on page 1213

v “com.ibm.websphere.security.spnego.useBuiltInMappingToSAF” on page 1213

v “com.ibm.websphere.security.strictCredentialExpirationCheck” on page 1213

v “com.ibm.websphere.security.tokenFromMBeanSoapTimeout” on page 1214

v “com.ibm.websphere.security.useLoggedSecurityName” on page 1214

v “com.ibm.websphere.security.util.csiv2SessionCacheIdleTime” on page 1214

v “com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled” on page 1214

v “com.ibm.websphere.security.util.csiv2SessionCacheMaxSize” on page 1215

v “com.ibm.websphere.security.web.removeCacheOnFormLogout” on page 1215

v “com.ibm.websphere.security.webAlwaysLogin” on page 1216

v “com.ibm.websphere.security.useLoggedSecurityName” on page 1214

v “com.ibm.ws.security.addHttpOnlyAttributeToCookies” on page 1216

v “com.ibm.ws.security.allowNonAdminToSecurityXML” on page 1217

v “com.ibm.ws.security.config.SupportORBConfig” on page 1217

v “com.ibm.ws.security.createTokenSubjectForAsynchLogin” on page 1217

v “com.ibm.ws.security.defaultLoginConfig” on page 1217

v “com.ibm.ws.security.failSSODuringCushion” on page 1218

v “com.ibm.ws.security.ltpa.forceSoftwareJCEProviderForLTPA” on page 1218

Chapter 19. Administering application security 1203

usec_seccustomprop.dita#com.ibm.websphere.security.enableAuditForIsCallerInRole


v “com.ibm.ws.security.ssoInteropModeEnabled” on page 1218

v “com.ibm.ws.security.unprotectedUserRegistryMethods” on page 1219

v “com.ibm.ws.security.webChallengeIfCustomSubjectNotFound” on page 1219

v “com.ibm.ws.security.webInboundLoginConfig” on page 1219

v “com.ibm.ws.security.webInboundPropagationEnabled” on page 1219

v “com.ibm.wsspi.security.cred.refreshGroups” on page 1220

v “com.ibm.wsspi.security.cred.verifyUser” on page 1220

v “com.ibm.wsspi.security.ltpa.tokenFactory” on page 1220

v “com.ibm.wsspi.security.token.authenticationTokenFactory” on page 1220

v “com.ibm.wsspi.security.token.authorizationTokenFactory” on page 1220

v “com.ibm.wsspi.security.token.propagationTokenFactory” on page 1221

v “com.ibm.wsspi.security.token.singleSignonTokenFactory” on page 1221

v “com.ibm.wsspi.wssecurity.kerberos.failAuthForExpiredKerberosToken” on page 1221

v “security.allowCustomHTTPMethods” on page 1221

v “security.enablePluggableAuthentication” on page 1222

v “security.useDefaultPolicyWhenJ2SDisabled” on page 1222

com.ibm.audit.report.granularity:

Use this property to specify how much auditing data is recorded for each event type. If you only need to
record basic information about an event, such as who did what action to what resource, and when, setting
this property to high, might improve your application server performance.

You can specify values of high, medium, or low for this property. The default value is low.

Table 69. Type of data that is recorded for each event type based on the setting for
com.ibm.audit.report.granularity. The following table indicates the type of data that is recorded for each event type
based on the setting for this property.
Event type high setting medium setting low setting

SessionContext sessionId sessionId, remoteHost sessionId, remoteHost, remoteAddr,
remotePort

PropagationContext (is only
reported if SAP is enabled)

firstCaller (as part of the who) firstCaller, and if verbose mode is
enabled, the callerList

firstCaller, and if verbose mode is
enabled, the callerList

RegistryContext nothing is recorded registry type registry type

ProcessContext nothing is recorded realm realm, and domain if verbose is
enabled

EventContext creationTime creationTime, globalInstanceId creationTime, globalInstanceId,
eventTrailId, and lastTrailId if
verbose mode is enabled

DelegationContext identityName delegationType, and identityName delegationType, roleName, and
identityName

AuthnContext nothing is recorded authn type authn type

ProviderContext nothing is recorded provider provider, and providerStatus

AuthnMappingContext mappedUserName mappedUserName, and
mappedSecurityRealm

mappedUserName,
mappedSecurityRealm, and
mappedSecurityDomain

AuthnTermContext terminateReason terminateReason terminateReason

AccessContext progName, action, appUserName,
and resourceName

progName, action, appUserName,
resourceName, registryUserName,
and accessDecision

progName, action, appUserName,
resourceName, registryUserName,
accessDecision, resourceType,
permissionsChecked,
permissionsGranted, rolesChecked,
and rolesGranted

PolicyContext nothing is recorded policyName policyName, and policyType

1204 Administering WebSphere applications



Table 69. Type of data that is recorded for each event type based on the setting for
com.ibm.audit.report.granularity (continued). The following table indicates the type of data that is recorded for each
event type based on the setting for this property.
Event type high setting medium setting low setting

KeyContext keyLabel keyLabel, and keyLocation keyLabel, keyLocation, and
certificateLifetime

MgmtContext nothing is recorded mgmtType, and mgmtCommand mgmtType, mgmtCommand, and
targetInfoAttributes

com.ibm.CSI.disablePropagationCallerList:

This property disables the caller list and does not allow the caller list to change. This property prevents the
creation of multiple sessions.

This property completely disables adding a caller or host list in the propagation token. Setting this property
can be a benefit when the caller or host list in the propagation token is not needed in the environment.

gotcha: If the com.ibm.CSI.propagateFirstCallerOnly custom property is set to true, that setting takes
precedence over the setting for this property.

Information Value
Default false

com.ibm.CSI.propagateFirstCallerOnly:

This property limits the caller list to the first caller only, which means the caller list cannot change. Setting
this property to true eliminates the potential for the creation of multiple session entries.

This property logs the first caller in the propagation token that stays on the thread when security attribute
propagation is enabled. Without setting this property, all caller switches get logged, which affects
performance. Typically, only the first caller is of interest.

gotcha: If the com.ibm.CSI.disablePropagationCallerList custom property is set to true, that setting
takes precedence over the setting for this property.

Information Value
Default true

The default value of the com.ibm.CSI.propagateFirstCallerOnly security custom property is set to true.
When this custom property is set to true, the first caller in the propagation token that stays on the thread
is logged when security attribute propagation is enabled. When this property is set to false, all of the
caller switches are logged, which can affect performance.

com.ibm.CSI.rmiInboundLoginConfig:

This property specifies the Java Authentication and Authorization Service (JAAS) login configuration that is
used for Remote Method Invocation (RMI) requests that are received inbound.

By knowing the login configuration, you can plug in a custom login module that can handle specific cases
for RMI logins.

Information Value
Default system.RMI_INBOUND

Chapter 19. Administering application security 1205



com.ibm.CSI.rmiOutboundLoginConfig:

This property specifies the JAAS login configuration that is used for RMI requests that are sent outbound.

Primarily, this property prepares the propagated attributes in the Subject to be sent to the target server.
However, you can plug in a custom login module to perform outbound mapping.

Information Value
Default system.RMI_OUTBOUND

com.ibm.CSI.supportedTargetRealms:

This property enables credentials that are authenticated in the current realm to be sent to any realm that is
specified in the Trusted target realms field. The Trusted target realms field is available on the CSIv2
outbound authentication panel. This property enables those realms to perform inbound mapping of the
data from the current realm.

You should not send authentication information to an unknown realm. Thus, this property provides a way
to specify that the alternate realms are trusted. To access the CSIv2 outbound authentication panel,
complete the following steps:

1. Click Security > Global security.

2. Under RMI/IIOP security, click CSIv2 outbound authentication.

com.ibm.security.multiDomain.setNamingReadUnprotected:

This property can be set to true if you want the CosNamingRead role to protect all naming read
operations. Setting this property to true is the equivalent of assigning the CosNamingRead role the
Everyone special subject. When this property is set, any assignments made to the CosNamingRead role
are ignored.

Information Value
Default none

com.ibm.security.useFIPS:

Specifies that Federal Information Processing Standard (FIPS) algorithms are used. The application server
uses the IBMJCEFIPS cryptographic provider instead of the IBMJCE cryptographic provider.

Information Value
Default false

com.ibm.websphere.crypto.config.certexp.notify.fromAddress:

This security property is used to customize the “from address” of certificate expiration notification email.

The value you assign to this property should be an internet address, such as “Notification@abc-
company.com”. If this property is not set, the application server uses the email fromAddress:
WebSphereNotification@ibm.com.

Information Value
Default None

com.ibm.websphere.crypto.config.certexp.notify.textEncoding:

1206 Administering WebSphere applications

|
|
|

|

|



This security property is used to customize the text encoding character set for certificate expiration
notification email.

WebSphere Application Server sends notification email for certificate expiration in either US-English or the
machine default character set (if non-English locale is specified). If you want a different text encoding
character set for the certificate expiration notification email, you can use this property to customize the text
encoding character set.

Information Value
Default None

com.ibm.websphere.lookupRegistryOnProcess:

This property can be set when realm registry lookups are performed via an MBean on a remote server,
and the realm is local OS security.

By default, the user registry tasks listRegistryUsers and listRegistryGroups perform lookups from the
current process. In the case of Network Deployment (ND), that is the deployment manager.

When dealing with a local OS user registry, lookup should occur on the actual server where the registry
resides. In an ND environment, the server could be a remote machine. To perform a lookup on the server
process where the registry resides, set the com.ibm.websphere.lookupRegistryOnProcess custom property
to true.

If com.ibm.websphere.lookupRegistryOnProcess is not set, or set to false, then the lookup is performed
on the current process. The custom property can be set using the setAdminActiveSecuritySettings task for
global security or the setAppActiveSecuritySettings task for a security domain.

com.ibm.websphere.security.allowAnyLogoutExitPageHost:

When you are using application form login and logout you can provide a URL for a custom logout page.
By default, the URL must point to the host to which the request is made or to its domain. If this is not
done, then a generic logout page is displayed rather than a the custom logout page. If you want to be able
to point to any host, then you need to set this property in the security.xml file to a value of true. Setting
this property to true might open your systems to URL redirect attacks.

Information Value
Default false

com.ibm.websphere.security.alwaysRestoreOriginalURL:

Use this property to indicate whether a cookie with the value WASReqURL is honored when the custom
form login processor is used.

When this property is set to true, the value of WASReqURL takes precedence over the current URL, and
the WASReqURL cookie is removed from subsequent requests.

When this property is set to false, the value of the current URL takes precedence, and the WASReqURL
cookie is not removed from subsequent requests.

Information Value
Default false

com.ibm.websphere.security.config.inherit.trustedRealms:

Chapter 19. Administering application security 1207



This property is used to inherit the global trusted realm settings from the global security configuration in
the domain.

Security configuration trusted inbound and outbound realms are not inherited by default. However, there
are some cases where the configuration might want to use (inherit) the settings from the global security
configuration in the domain.

The value of this property can be either true or false.

com.ibm.websphere.security.console.noSSLTreePortEndpoints:

This property is used to improve the response time for large topology configurations.

When this property is set to true the status of the of the SSL port endpoints does not display on the
Manage endpoint security configurations page in the administrative console. Displaying the status of the
SSL port endpoints sometimes makes the administrative console seem like it is no longer functioning
because of a longer than expected response time.

Information Value
Default false

com.ibm.websphere.security.customLTPACookieName:

This property is used to customize the name of the cookies used for Lightweight Third Party Authentication
(LTPA) tokens.

WebSphere Application Server Version 8 and later enables you to customize the name of the cookies used
for LTPA and LTPA2 tokens. Custom cookie names allow you to logically separate authentication between
Single Sign-On (SSO) domains and to enable customized authentication to a particular environment.

To take advantage of this functionality, a custom property must be set. For LTPA tokens, the custom
property com.ibm.websphere.security.customLTPACookieName can be set to any valid string (special
characters and spaces are not permitted) for the LTPA token cookie, and
com.ibm.websphere.security.customSSOCookieName for the LTPA2 (SSO) token cookie. Each property is
case-sensitive.

The value for this property is a valid string.

Note: Before you set this custom property, consider the following:

v This property, as with most custom properties, can be set at the security domain level. In this
manner, a separate login can be forced between an administrative console login and an
application login.

v The original default LTPAToken or LTPAToken2 cookie names are accepted and trusted by
WebSphere Application Server Version 8 and later. This enables compatibility with products such
as Lotus Domino and WebSphere Portal which both utilize the default cookie name.

v Setting a custom cookie name can cause an authentication failure. For example, a connection to
a server that has a custom cookie property set sends this custom cookie to the browser. A
subsequent connection to a server that uses either the default cookie name or a different cookie
name is not able to authenticate the request via a validation of the inbound cookie.

v This property does not function properly in a mixed-cell environment. For example, a deployment
manager in WebSphere Application Server Version 8 and later might be able to create custom
cookies. However, a WebSphere Application Server Version 7.0 node or server existing in this
same cell does not understand what to do with this cookie and subsequently rejects it.

1208 Administering WebSphere applications



v If you utilize a product interacting with WebSphere Application Server that generates LTPA
tokens, such as Lotus Domino or WebSphere Portal, be aware that these products might not be
able to handle custom LTPA cookie names. Please consult the documentation for your product
regarding its handling of custom LTPA cookie names.

Note: To activate this property, a restart of WebSphere Application Server is necessary.

com.ibm.websphere.security.customSSOCookieName:

This property is used to customize the name of the cookies used for Lightweight Third Party Authentication
Version 2 (LTPA2) tokens.

WebSphere Application Server Version 8 and later enables you to customize the name of the cookies used
for LTPA and LTPA2 tokens. Custom cookie names allow you to logically separate authentication between
Single Sign-On (SSO) domains and to enable customized authentication to a particular environment.

To take advantage of this functionality, a custom property must be set. For LTPA tokens, the custom
property com.ibm.websphere.security.customLTPACookieName can be set to any valid string (special
characters and spaces are not permitted) for the LTPA token cookie, and
com.ibm.websphere.security.customSSOCookieName for the LTPA2 (SSO) token cookie. Each property is
case-sensitive.

The value for this property is a valid string.

Note: Before you set this custom property, consider the following:

v This property, as with most custom properties, can be set at the security domain level. In this
manner, a separate login can be forced between an administrative console login and an
application login.

v The original default LTPAToken or LTPAToken2 cookie names are accepted and trusted by
WebSphere Application Server Version 8 and later. This enables compatibility with products such
as Lotus Domino and WebSphere Portal which both utilize the default cookie name.

v Setting a custom cookie name can cause an authentication failure. For example, a connection to
a server that has a custom cookie property set sends this custom cookie to the browser. A
subsequent connection to a server that uses either the default cookie name or a different cookie
name is not able to authenticate the request via a validation of the inbound cookie.

v This property does not function properly in a mixed-cell environment. For example, a deployment
manager in WebSphere Application Server Version 8 and later might be able to create custom
cookies. However, a WebSphere Application Server Version 7.0 node or server existing in this
same cell does not understand what to do with this cookie and subsequently rejects it.

v If you utilize a product interacting with WebSphere Application Server that generates LTPA
tokens, such as Lotus Domino or WebSphere Portal, be aware that these products might not be
able to handle custom LTPA cookie names. Please consult the documentation for your product
regarding its handling of custom LTPA cookie names.

Note: To activate this property, a restart of WebSphere Application Server is necessary.

com.ibm.websphere.security.displayRealm:

This property specifies whether the HTTP basic authentication login window displays the realm name that
is not defined in the application web.xml file.

Note: If the realm name is defined in the application web.xml file, this property is ignored.

If the realm name is not defined in the web.xml file, one of the following occurs:

v If the property is set to false, the WebSphere realm name display is Default Realm.

Chapter 19. Administering application security 1209



v If this property is set to true, the WebSphere realm name display is the user registry realm name
for the LTPA authentication mechanism or the Kerberos realm name for the Kerberos
authentication mechanism.

Important: If this property is set to true, and the user registry's realm name contains sensitive
information, it is displayed to the user. For example, if standalone LDAP configuration is used,
the LDAP server hostname and port are displayed. For LocalOS, the hostname is displayed.

Information Value
Default false
Type string

com.ibm.websphere.security.disableGetTokenFromMBean:

Use this property to disable the outbound SOAP call to retrieve the subject from the originating server
when Single Sign-On is enabled.

Typically, when Single Sign-On is enabled, and an inbound request needs to be authenticated, the
receiving server attempts to retrieve the authentication from the originating server. The connection
between the sending and receiving servers never times out during this callback process.

When this property is set to true, the receiving server does not attempt to authenticate the inbound
request.

Information Value
Default false

com.ibm.websphere.security.enableAuditForIsCallerInRole:

Use this property to enable audit for the isCallerInRole method call.

If you set this property to false, it disables auditing for the invocation of isCallerInRole. In z/OS, SMF
records are not issued for the invocation.

Information Value
Default true

com.ibm.websphere.security.goToLoginPageWhenTAIUserNotFound:

Use this property when the user provided by a TAI is not found in the user registry so that a login page is
displayed instead of an error page.

When the user provided by a TAI is not found in the user registry, WebSphere Application Server displays
an error page. To adjust this behavior, set this property to true. Then the login page is displayed. The
default setting for this property is false and the normal behavior for WebSphere Application Server is to
display an error page.

When this property is set to true, the login page is displayed.

Default false

com.ibm.websphere.security.InvokeTAIbeforeSSO:

1210 Administering WebSphere applications



Default invocation order of Trust Association Interceptors (TAIs) in relation to Single Sign On (SSO) user
authentication can be changed using this property. The default order is to invoke Trust Association
Interceptors after SSO. This property is used to change the default order of TAI invocation with SSO. The
property value is a comma (,) separated list of TAI class names to be invoked before SSO.

Information Value
Default com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl
Type string

com.ibm.websphere.security.JAASAuthData.addNodeNameSecDomain:

By default, when JAAS authentication data entries are created at the domain security level, the alias name
for the entry will be in the format aliasName. You can enable the addition of the node name to the alias
name to create the alias name, in the format nodeName/aliasName, for the entry, by setting the following
property at the domain security level.

You can set com.ibm.websphere.security.JAASAuthData.addNodeNameSecDomain=true at the global
security level, to enable the addition of the node name to the alias name of JAAS authentication data
entries for all security domains.

Information Value
Default false

com.ibm.websphere.security.JAASAuthData.removeNodeNameGlobal:

By default, when JAAS authentication data entries are created at the global security level, the alias name
for the entry is in the format nodeName/aliasName. You can disable the addition of the node name to the
alias name for the entry, by setting a value of true for this property at the global security level.

Information Value
Default false

com.ibm.websphere.security.krb.canonical_host:

This custom property specifies whether the application server uses the canonical form of the URL/HTTP
host name in authenticating a client. This property can be used for both SPNEGO TAI and SPNEGO Web.

If you set this custom property to false, a Kerberos ticket can contain a host name that differs from the
HTTP host name header, and the application server might issue the following message:
CWSPN0011E: An invalid SPNEGO token has been encountered while authenticating a HttpServletRequest

If you set this custom property to true, you can avoid this error message and allow the application server
to authenticate using the canonical form of the URL/HTTP host name.

Information Value
Default true

com.ibm.websphere.security.ldap.logicRealm:

This custom property enables you to change the name of the realm that is placed in the token.

This custom property enables you to configure each cell to have its own LDAP host for interoperability and
backward compatibility. Also, it provides flexibility for adding or removing the LDAP host dynamically. If you
are migrating a previous installation, this modified realm name does not take effect until administrative

Chapter 19. Administering application security 1211



security is re-enabled. To be compatible with a previous release that does not support the logic realm, the
name must be the same name that is used by the previous installation. You must use the LDAP host
name, including a trailing colon and port number.

Information Value
Type String

This property must be set as the custom property of a stand-alone LDAP registry. To set this custom
property, in the administrative console:

1. Click Security > Global security.

2. Under User account repository, expand the Available realm definitions list, and select Standalone
LDAP registry, and then click Configure.

3. Under Custom properties, click New , and then enter com.ibm.websphere.security.ldap.logicRealm in
the Name field, and the new name of the realm that is placed in the token in the Value field.

4. Select this custom property and then click Apply or OK.

com.ibm.websphere.security.ldapSSLConnectionTimeout:

Use this property, when SSL is enabled on the LDAP server, to specify, in milliseconds, the maximum
amount of time the Java Virtual Machine (JVM) waits for a socket connection before issuing a timeout.

If one or more standalone LDAP servers are offline when a server process starts, and LDAP-SSL is
enabled, there might be a delay of up to three minutes in the startup procedure, even if you specify a
value for the com.sun.jndi.ldap.connect.timeout custom property. When LDAP-SSL is enabled, any value
specified for the com.sun.jndi.ldap.connect.timeout property is ignored.

When a value is specified for this property, the JVM tries to use this connection timeout value when
attempting to complete a socket connection, instead of trying to establish a directory context. When no
value is specified for this property, the JVM tries to establish a directory context.

There is no default value for this property.

com.ibm.websphere.security.logoutExitPageDomainList:

When you are using application form login and logout, you can provide a URL for a custom logout page.
By default, the URL must point to the host to which the request is made or to its domain. If this is not
done, then a generic logout page is displayed rather than a the custom logout page. If you need to point to
a different host, then you can populate this property in the security.xml file with a pipe (|) separated list of
URLs that are allowed for the logout page.

Information Value
Default none

com.ibm.websphere.security.performTAIForUnprotectedURI:

This property is used to specify TAI invocation behavior when Use available authentication data when
an unprotected URI is accessed is selected in the administrative console.

Information Value
Default false

Note: In previous versions of WebSphere Application Server, the default value of this custom property
was true. For WebSphere Application Server Version 8.0.0.1, the default value is now false.

1212 Administering WebSphere applications



com.ibm.websphere.security.recoverContextWithNewKeys:

This property affects behavior when deserializing a security context that was previously saved as part of
asynchronous security processing for Web Services or Asynch Beans.

When this property is set to true, the security context can be de-serialized even when the LTPA keys have
changed since the context was serialized out. This property should be set to true if the security context
deserialization fails with a WSSecurityException containing this message: Validation of LTPA token
failed due to invalid keys or token type.

Information Value
Default false

com.ibm.websphere.security.rsaCertificateAliasCache:

This property is used to control the size of the alias cache.

The default value is 5000 and can be increased for larger deployments. You do not need to add this
property unless your Job Manager topology exceeds 5000 registered nodes.

The value must be entered into the range of 1 - N, where N is a valid positive integer that is greater than
or equal to the number of nodes registered with the Job Manager.

Information Value
Default 5000

com.ibm.websphere.security.spnego.useBuiltInMappingToSAF:

This property is used to ensure that a mapping from a Kerberos principal to a RACF ID is performed for
SPNEGO web authentication.

If you do not add this property to your security settings, and set it to true, a mapping from a Kerberos
principal to a RACF ID is not performed for SPNEGO web authentication.

gotcha: If Kerberos authentication is used in combination with SPNEGO Web authentication, configuring
a built-in mapping for either Kerberos or SPNEGO results in a mapping being done for both.

Information Value
Default false

com.ibm.websphere.security.strictCredentialExpirationCheck:

Specifies whether credential expiration check occurs for a local Enterprise JavaBeans (EJB) call. Typically,
when an EJB invokes another EJB that is located in a local machine, a direct method invocation occurs
even if the credentials of the original invoker expire before the local EJB call occurs.

If this property is set to true, a credential expiration check occurs on a local EJB call before the EJB is
invoked on the local machine. If the credentials have expired, the EJB call is rejected.

If this property is set to false, a credential expiration check does not occur for a local EJB call.

Information Value
Default false

Chapter 19. Administering application security 1213



com.ibm.websphere.security.tokenFromMBeanSoapTimeout:

Use this property to specify the amount of time the receiving server waits for an outbound SOAP call to
retrieve the proper authentication from the originating server when Single Sign-On is enabled.

There is no default value for this property. If no value is specified, the global SOAP timeout value is used
as the timeout value for the SOAP connection.

com.ibm.websphere.security.useLoggedSecurityName:

This is a custom property of user registries. This property alters the behavior of creating WSCredential.

A setting of false indicates that the security name returned by a user registry is always used to construct
WSCredential.

A setting of true indicates that either a security name that is supplied by login module is used or a display
name that was supplied by a user registry is used. This setting is compatible with WebSphere Application
Server Version 6.1 and earlier.

Information Value
Default false

com.ibm.websphere.security.util.csiv2SessionCacheIdleTime:

This property specifies the time in milliseconds that a CSIv2 session can remain idle before being deleted.
The session is deleted if the com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom
property is set to true, and the maximum size of the CSIv2 session cache is exceeded.

This custom property only applies if you enable stateful sessions, set the
com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom property to true, and set a value
for the com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom property. Consider decreasing
the value for this custom property if your environment uses Kerberos authentication and has a short clock
skew for the configured key distribution center (KDC). In this scenario, a short clock skew is defined as
less than 20 minutes.

Important: Do not set a value for this function through the custom property panel because the value is
not validated against the expected range of values. Instead, set the value on the CSIv2
outbound communications panel, which is available in the administrative console by
completing the following steps:

1. Expand the Security section and click Global security.

2. Expand the RMI/IIOP security section and click CSIv2 outbound communications

You can set the value in the Idle session timeout field. However, when you specify this value
on the CSIv2 outbound communications panel, the administrative console value is expected in
seconds and not milliseconds.

The range of values for this custom property is 60,000 to 86,400,000 milliseconds. By default, the value is
not set.

com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled:

This custom property specifies whether to limit the size of the CSIv2 session cache.

When you set this custom property value to true, you must set values for the
com.ibm.websphere.security.util.csiv2SessionCacheIdleTime and

1214 Administering WebSphere applications



com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom properties. When you set this custom
property to false, the CSIv2 session cache is not limited. The default property value is false.

Consider setting this custom property to true if your environment uses Kerberos authentication and has a
small clock skew for the configured key distribution center (KDC). In this scenario, a small clock skew is
defined as less than 20 minutes. A small clock skew can result in a larger number of rejected CSIv2
sessions. However, with a smaller value for the
com.ibm.websphere.security.util.csiv2SessionCacheIdleTime custom property, the application server can
clean out these rejected sessions more frequently and potentially reduce the resource shortages.

Important: This custom property only applies if you enable the stateful sessions.

Important: Although you can enable the CSIv2 session cache limit option as a custom property, it is
advisable that you enable the option on the CSIv2 outbound communications panel, which is
available in the administrative console by completing the following steps:

1. Expand the Security section and click Global security.

2. Expand the RMI/IIOP security section and click CSIv2 outbound communications

You can enable the Enable CSIv2 session cache limit option. The default value is false.

com.ibm.websphere.security.util.csiv2SessionCacheMaxSize:

This property specifies the maximum size of the session cache after which expired sessions are deleted
from the cache.

Expired sessions are defined as sessions that are idle longer than the time that is specified by the
com.ibm.websphere.security.util.csiv2SessionCacheIdleTime custom property. When you use the
com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom property, consider setting its value
between 100 and 1000 entries.

Consider specifying a value for this custom property if your environment uses Kerberos authentication and
has a small clock skew for the configured key distribution center (KDC). In this scenario, a small clock
skew is defined as less than 20 minutes. Consider increasing the value of this custom property if the small
cache size causes the garbage collection to run so frequently that it impacts the performance of the
application server.

This custom property only applies if you enable stateful sessions, set the
com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom property to true, and set a value
for the com.ibm.websphere.security.util.csiv2SessionCacheIdleTime custom property.

Important: Do not set a value for this function through the custom property panel because the value is
not validated against the expected range of values. Instead, set the value on the CSIv2
outbound communications panel, which is available in the administrative console by
completing the following steps:

1. Expand the Security section and click Global security.

2. Expand the RMI/IIOP security section and click CSIv2 outbound communications

You can set the value in the Maximum cache size field.

The range of values for this custom property is 100 to 1000 entries. By default, the value is not set.

com.ibm.websphere.security.web.removeCacheOnFormLogout:

This custom property enables you to specify whether a cached object is removed from the authentication
cache and the dynamic cache when a form logout occurs. A form logout is a mechanism that enables a
user to log out of an application without having to close all Web-browser sessions.

Chapter 19. Administering application security 1215



When this property is set to false, corresponding cached entries are not removed from the authentication
cache and the dynamic cache when a form logout occurs. As a result, if the same user logs back in after a
form logout, the cached object is reused.

gotcha: Because the original cached object was created during a previous login session, the expiration
time for the object might be shorter than the configured timeout value.

When this property is set to true, the cached entries are removed from the authentication cache and the
dynamic cache when a form logout occurs.

The default value is true.

com.ibm.websphere.security.webAlwaysLogin:

This property specifies whether the login() method will throw an exception if an identity had already been
authenticated. You can overwrite this behavior by setting this property to true.

Information Value
Default false
Type string

Note: The login() method always uses the user ID and password to authenticate to the WebSphere
application server irrespective of the presence of the SSO information in the HttpServletRequest.

com.ibm.ws.security.addHttpOnlyAttributeToCookies:

This custom property enables you to set the HTTPOnly attribute for single sign-on (SSO) cookies.

You can use the com.ibm.ws.security.addHttpOnlyAttributeToCookies custom property to protect cookies
that contain sensitive values. When you set this custom property value to true, the application server sets
the HTTPOnly attribute for SSO cookies whose values are set by the server. The HTTPOnly attribute
enables the protection of sensitive values in cookies.

Also, a true value enables the application server to properly recognize, accept, and process inbound
cookies with HTTPOnly attributes and inhibit any cross-site scripting from accessing sensitive cookie
information.

A common security problem, which impacts web servers, is cross-site scripting. Cross-site scripting is a
server-side vulnerability that is often created when user input is rendered as HTML. Cross-site scripting
attacks can expose sensitive information about the users of the website. Most modern web browsers
honor the HTTPOnly attribute to prevent this attack. A cookie with this attribute is called an HTTPOnly
cookie. Information that exists in an HTTPOnly cookie is less likely to be disclosed to a hacker or a
malicious website. For more information about the HTTPOnly attribute, see the Open Web Application
Security Project (OWASP) website.

Important: When you use this custom property, HTTPOnly attribute is not added to every cookie that
passes through the application server. Also, the attribute is not added to other non-secure
cookies that are created by the application server. A list of non-HTTPOnly cookies includes:

v JSESSIONID cookies

v SSO cookies that are created by authenticators or providers from another software vendor

v Client or browser cookies that do not already contain the HTTPOnly attribute

You can set or remove this custom property from the Single sign-on panel in the administrative console by
doing the following:

1. Click Security > Global security.

1216 Administering WebSphere applications



2. Under Authentication, click Web and SIP security > Single sign-on (SSO).

Information Value
Default true
Type Boolean

com.ibm.ws.security.allowNonAdminToSecurityXML:

This property specifies whether the non-admin security roles are allowed to modify the security.xml file.
Setting this property to true gives non-admin security roles the ability to modify the security.xml file. In
Version 6.1 and later, by default, non-admin security roles have the ability to modify the security.xml file.

Information Value
Default false
Type Boolean

com.ibm.websphere.security.auth.setDRSBootstrap:

Specifies whether the data replication service (DRS) enables the DRSbootstrap function.

In high volume environments, dynamic cache data replication might increase the amount of time that it
takes a server to start. If you experience slow server startups because of data replication, add this
property to your server security settings and set it to false. When is property is set to false, the data
replication service disables the DRSbootstrap function.

True is the default setting for this property.

com.ibm.ws.security.config.SupportORBConfig:

Specifies whether to check or not check the object request broker (ORB) for properties. This property
needs to be set as a system property. You set this property to true or yes so that the ORB is checked for
properties. For any other setting, the ORB is completely ignored.

The property is to be used when a pluggable application client connects to the WebSphere Application
Server. Specifically, this property is used whenever a hashmap containing security properties is passed in
a hashmap on a new InitialContext(env) call.

com.ibm.ws.security.createTokenSubjectForAsynchLogin:

In this release, the actual LTPA token data is not available from a WSCredential.getCredentialToken() call
when called from an asynchronous bean. For an existing configuration, you can add the
com.ibm.ws.security.createTokenSubjectForAsynchLogin custom property and a true value to allow the
LTPAToken to be forwarded to asynchronous beans. This property allows portlets to successfully perform
LTPA token forwarding. This custom property is case sensitive. You must restart the application server
after you add this custom property.

gotcha: This custom property applies only to system conditions where Server A makes EJB calls from
asynchronous beans to Server B. This property does not apply for JAAS login situations.

Information Value
Default not applicable

com.ibm.ws.security.defaultLoginConfig:

Chapter 19. Administering application security 1217



This property is the JAAS login configuration that is used for logins that do not fall under the
WEB_INBOUND, RMI_OUTBOUND, or RMI_INBOUND login configuration categories.

Internal authentication and protocols that do not have specific JAAS plug points call the system login
configuration that is referenced by com.ibm.ws.security.defaultLoginConfig configuration.

Information Value
Default system.DEFAULT

com.ibm.ws.security.failSSODuringCushion:

Use the com.ibm.ws.security.failSSODuringCushion custom property to update custom JAAS Subject data
for the LTPA token.

When you do not set this custom property to true, new JAAS Subjects might not contain the custom JAAS
Subject data.

The default value is true.

com.ibm.ws.security.ltpa.forceSoftwareJCEProviderForLTPA:

Use the com.ibm.ws.security.ltpa.forceSoftwareJCEProviderForLTPA custom property to correct an “invalid
library name” error when you attempt to use a PKCS11 type keystore with a Java client.

The ssl.client.props file points to a configuration file, which in turn, points to the library name for the
cryptographic device. The code for the Java client looks for a keystore type for the correct provider name.
Without this custom property, the keystore type constant for PKCS11 is not specified correctly as it
references the IBMPKCS11Impl provider instead. Also, the Lightweight Third Party Authentication (LTPA)
code uses the provider list to determine the Java Cryptography Extension (JCE) provider. This approach
causes a problem when Secure Sockets Layer (SSL) acceleration is attempted because the
IBMPKCS11Impl provider needs to be listed before the IBMJCE provider within the java.security file.

This custom property corrects both issues so that SSL and other cryptographic mechanisms can use
hardware acceleration.

Note: LTPA cannot use hardware acceleration because the software keys for LTPA do not implement the
java.security.interfaces.RSAPrivateCrtKey interface, which is required by many accelerator cards.

Set this custom property to true when you want to use a PKCS11 type keystore with a Java client.

Information Value
Default false

com.ibm.ws.security.ltpa.useCRT:

Use this property to improve the CPU utilization during the sign() operation that occurs when a new LTPA2
(SSO) token is created. When this property is set to true, the product implements the Chinese Remainder
Theorem (CRT) algorithm when signing the new token. This property has no effect on the old style LTPA
token.

Information Value
Default false

com.ibm.ws.security.ssoInteropModeEnabled:

1218 Administering WebSphere applications



This property determines whether to send LtpaToken2 and LtpaToken cookies in the response to a web
request (interoperable).

When this property value is false, the application server just sends the new LtpaToken2 cookie which is
stronger, but not interoperable with some other products and WebSphere Application Server releases prior
to Version 5.1.1. In most cases, the old LtpaToken cookie is not needed and you can set this property to
false.

Information Value
Default true

com.ibm.ws.security.unprotectedUserRegistryMethods:

Specifies the method names on the UserRegistry interface, such as getRealm, getUsers, and isValidUser,
that you do not want protected from remote access. If you specify multiple method names, separate the
names with either a space, a comma, a semi-colon, and a separator bar. See your implementation of the
UserRegistry interface file for a complete list of valid method names.

If you specify an * as the value for this property, all methods are unprotected from remote access. If a
value is not specified for this property, all methods are protected from remote access.

If an attempt is made to remotely access a protected UserRegistry interface method, the remote process
receives a CORBA NO_PERMISSION exception with minor code 49421098.

There is no default value for this property.

com.ibm.ws.security.webChallengeIfCustomSubjectNotFound:

This property determines the behavior of a single sign-on LtpaToken2 login.

If the token contains a custom cache key and the custom Subject cannot be found, then the token is used
to log in directly as the custom information needs to be regathered if this property value is set to true. A
challenge also occurs so that the user is required to login again. When this property value is set to false
and the custom Subject is not found, the LtpaToken2 is used to login and gather all of the registry
attributes. However, the token might not obtain any of the special attributes that downstream applications
might expect.

Information Value
Default true

com.ibm.ws.security.webInboundLoginConfig:

This property is the JAAS login configuration that is used for web requests that are received inbound.

By knowing the login configuration, you can plug in a custom login module that can handle specific cases
for web logins.

Information Value
Default system.WEB_INBOUND

com.ibm.ws.security.webInboundPropagationEnabled:

This property determines whether a received LtpaToken2 cookie should search for the propagated
attributes locally before searching the original login server that is specified in the token. After the
propagated attributes are received, the Subject is regenerated and the custom attributes are preserved.

Chapter 19. Administering application security 1219



Information Value
Default true

com.ibm.wsspi.security.cred.refreshGroups:

This property affects behavior when deserializing a security context that was previously saved as part of
asynchronous security processing for Web Services or Asynch Beans.

When this property is set to true, the user registry is accessed to get the groups associated with the user.
If the user still exists in the registry, the groups from the user registry are used instead of the groups that
were serialized in the security context. If the user is not found in the user registry, and the verifyUser
property is set to false, the groups from the security context are used.

Information Value
Default false

com.ibm.wsspi.security.cred.verifyUser:

This property affects behavior when deserializing a security context that was previously saved as part of
asynchronous security processing for Web Services or Asynch Beans.

When this property is set to true, the user registry is accessed to verify that the user from the security
context still exists. If it does not exist, a WSLoginFailedException is thrown.

Information Value
Default false

com.ibm.wsspi.security.ltpa.tokenFactory:

This property specifies the Lightweight Third Party Authentication (LTPA) token factories that can be used
to validate the LTPA tokens.

Validation occurs in the order in which the token factories are specified because LTPA tokens do not have
object identifiers (OIDs) that specify the token type. The Application Server validates the tokens using each
token factory until validation is successful. The order that is specified for this property is the most likely
order of the received tokens. Specify multiple token factories by separating them with a pipe (|) without
spaces before or following the pipe.

Information Value
Default com.ibm.ws.security.ltpa.LTPATokenFactory |

com.ibm.ws.security.ltpa.LTPAToken2Factory |
com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.authenticationTokenFactory:

This property specifies the implementation that is used for an authentication token in the attribute
propagation framework. The property provides an old LTPA token implementation for use as the
authentication token.

Information Value
Default com.ibm.ws.security.ltpa.LTPATokenFactory

com.ibm.wsspi.security.token.authorizationTokenFactory:

1220 Administering WebSphere applications



This property specifies the implementation that is used for an authorization token. This token factory
encodes the authorization information.

Information Value
Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.propagationTokenFactory:

This property specifies the implementation that is used for a propagation token. This token factory encodes
the propagation token information.

The propagation token is on the thread of execution and is not associated with any specific user Subjects.
The token follows the invocation downstream flow wherever the process leads.

Information Value
Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.singleSignonTokenFactory:

This property specifies the implementation that is used for a Single Sign-on (SSO) token. This
implementation is the cookie that is set when propagation is enabled regardless of the state of the
com.ibm.ws.security.ssoInteropModeEnabled property.

By default, this implementation is the LtpaToken2 cookie.

Information Value
Default com.ibm.ws.security.ltpa.LTPAToken2Factory

com.ibm.wsspi.wssecurity.kerberos.failAuthForExpiredKerberosToken:

Use this property to specify how you want the system to handle authentication for a request after the
Kerberos token for the request expires.

When this property is set to true, if a Kerberos token cannot be refreshed after it expires, authentication
for the request fails.

When this property is set to false, authentication for the request does not fail even if the token has
expired.

The default value for this property is false.

security.allowCustomHTTPMethods:

Use this custom property to permit custom HTTP methods. The custom HTTP methods are other than the
standard HTTP methods, which are: DELETE, GET, HEAD, OPTIONS, POST, PUT or TRACE.

When this property is set to false, which is the default, if a combination of a URI pattern and a custom
HTTP method are not listed in the security-constraint element, a search of the security constraint is
performed using an URI pattern only. If there is a match, the value of the <auth-constraints> element is
enforced. This behavior minimizes a potential security exposure.

When this property is set to true, the custom HTTP methods are treated as the standard HTTP methods.
An authorization decision is made by both the URI pattern and the HTTP method. To properly protect a
target URI, make sure that the proper HTTP methods are listed in the <web-resource-collection> element.

Chapter 19. Administering application security 1221



security.enablePluggableAuthentication:

This property is no longer used. Instead, use WEB_INBOUND login configuration.

Complete the following steps to modify the WEB_INBOUND login configuration:

1. Click Security > Global security.

2. Under Java Authentication and Authorization Service, click System logins.

Information Value
Default true

security.useDefaultPolicyWhenJ2SDisabled:

The NullDynamicPolicy.getPermissions method provides an option to delegate a default policy class to
construct a Permissions object when this property is set to true. When this property is set to false, an
empty Permissions object is returned.

Information Value
Default false

Security custom property collection:

Use this page to view and manage arbitrary name-value pairs of data, where the name is a property key
and the value is a string value that can be used to set internal system configuration properties.

The administrative console contains several custom properties pages that work similarly. To view one of
these administrative pages, click a Custom properties link.

Name:

Specifies the name (or key) for the property.

Each property name must be unique. If the same name is used for multiple properties, the value specified
for the first property is used.

Do not start your property names with was. because this prefix is reserved for properties that are
predefined in the application server.

Value:

Specifies the value paired with the specified name.

Description:

Provides information about the name-value pair.

Security custom property settings:

Use this page to configure arbitrary name-value pairs of data, where the name is a property key and the
value is a string value that can be used to set internal system configuration properties. Defining a new
property enables you to configure a setting beyond that which is available in the administrative console.

The administrative console contains several custom property settings pages that work similarly. To view
one of these administrative pages, click Custom properties.

1222 Administering WebSphere applications



Name:

Specifies the name (or key) for the property.

Each property name must be unique. If the same name is used for multiple properties, the value specified
for the first property is used.

Do not start your property names with was. because this prefix is reserved for properties that are
predefined in the product.

Information Value
Data type String

Value:

Specifies the value paired with the specified name.

Information Value
Data type String

Description:

Provides information about the name and value pair.

Information Value
Data type String

Testing security after enabling it
Basic tests are available that show whether the fundamental security components are working properly.
Use this task to validate your security configuration.

Before you begin

After configuring administrative security and restarting all of your servers in a secure mode, validate that
security is properly enabled.

There are a few techniques that you can use to test the various security login types. For
example, you can test the Web-based BasicAuth login, Web-based form login, and the Java client
BasicAuth login.

Basic tests are available that show whether the fundamental security components are working properly.
Complete the following steps to validate your security configuration:

Procedure
1. After enabling security, verify that your system comes up in secure mode.

2. Test the Web-based BasicAuth with Snoop, by accessing the following URL:
http://hostname.domain:9080/snoop.

3. Test the Web-based form login by starting the administrative console: http://
hostname.domain:port_number/ibm/console. A form-based login page is displayed. If a login page does
not appear, try accessing the administrative console by typing https://myhost.domain:9043/ibm/
console.

Type in the administrative user ID and password that are used for configuring your user
registry when configuring security.

Chapter 19. Administering application security 1223



4. Test Java Client BasicAuth with dumpNameSpace.

Use the app_server_root/bin/dumpNameSpace file. A login panel appears. If a login panel
does not appear, there is a problem. Type in any valid user ID and password in your configured user
registry.

5. Test all of your applications in secure mode.

6. If all the tests pass, proceed with more rigorous testing of your secured applications. If you have any
problems, review the SYSOUT and SYSPRINT logs. For more information on common problems, see
Troubleshooting security configurations.

Results

The results of these tests, if successful, indicate that security is fully enabled and working properly.

Security Configuration Wizard
The Security Configuration Wizard guides you through the process of completing the basic requirements to
secure your application serving environment.

This wizard is available from the Security menu from the navigation pane of the admin console. To get to
the wizard, navigate to Security > Global security > Security Configuration Wizard.

Step one of the configuration wizard allows you to choose the level of security desired. Application-level
security is selected by default. You also have the option of selecting Java 2 security.

Step two of the configuration wizard allows you to select a user repository. You have the following options:

v “Federated repository wizard settings” on page 1340

v “Local operating system wizard settings” on page 1271

v “Stand-alone custom registry wizard settings” on page 1303

v “Standalone LDAP registry wizard settings” on page 1278

Step three of the configuration wizard allows you to specify the local operating system user and group
definitions as the repository, and, if necessary, to provide the name of a user with administrator privileges.

Step four of the configuration wizard provides a summary of the results of the configuration process.

Security configuration report
The security configuration report gathers and displays the current security settings of the application
server. Information is gathered about core security settings, administrative users and groups, CORBA
naming roles, and cookie protection. When multiple security domains are configured, each security domain
has it's own report with a subset of the sections shown in the global security report that apply to the
domain.

The security configuration report now includes information about session security, web Attributes, and the
HttpOnly setting to enable you to get a more complete view of your server security settings.

The report is a table with four columns: Console Name, Security Configuration Name, Value and Console
Path Name. The security information gathered is divided into sections, and groups common security
information. A row highlighted in blue with a title in the first column starts a new section.

The Security Configuration Report can be run from the administrative console by selecting Security >
Global Security and then clicking Security Configuration Report. A new window displays the report
information.

1224 Administering WebSphere applications



The columns

Console Name
Contains the name of the security attribute as found in the administrative console. If the value in
this column is on a row highlighted in blue, and is the only entry on the row, then it is the start of a
new section.

Security Configuration Name
Contains the security attribute as found in the configuration file.

Value Contains the value of the security attribute.

Console Path Name
Contains the path where the attribute is found on the console.

The sections

Security Settings
Displays information about the top-level security attributes. These attributes set the default for
administrative security for the server, such as whether security is enabled, the default user registry,
or if Java security is enabled.

For more information, read the Global security settings article.

Authentication Mechanisms and expirations
Contains all the attributes associated with each authentication mechanisms and trust associations
as defined in the configuration.

User Registry
Displays the attributes for the default user registry for the server.

Authorization configuration
Displays attributes configured for an external Java Authorization Contract for Containers (JACC)
provider.

Application login configuration
Displays application JAAS login entries and their login modules attributes.

CSI Displays the attributes that define the inbound and outbound information for the Common Secure
Interoperability (CSI) protocol.

SSL configuration repertoires
Displays the attributes that make up the Secure Sockets Layer (SSL) configuration used by the
server. There can be multiple SSL configurations defined, and information about each is displayed.
This object is often referenced by an SSL configuration group object used to associate it with an
inbound or an outbound connection.

For more information, read the SSL configurations collection article.

Key stores
Displays the keystore attributes for each keystore in the configuration. Keystore objects in the
configuration are often referenced by an SSL configuration object in the configuration.

For more information, read the Personal certificates collection article.

Trust managers
Displays the attributes that make up trust managers that can be used by the server. Trust manager
objects in the configuration are typically referenced by an SSL configuration object.

For the more information, read the Trust managers collection article.

Key managers
Displays the attributes that make up the key managers that are used by the server. Key manager
objects in the configuration are typically referenced by an SSL configuration object.

Chapter 19. Administering application security 1225



For more information, read the Key managers collection article.

SSL configuration group
Displays the attributes that make up an SSL configuration that are used for an outbound or an
inbound connection.

Management scope
Displays the attributes that make up a management scope. The SSL configuration-related objects
in the security configuration are defined within a management scope to reference the management
scope object.

For more information, read the Management scope configurations article.

Key set groups
Displays the attributes that make up a group of key sets, which are used to manage public, private
and shared keys.

For more information, read the Key set groups collection article.

Key set
Displays the attributes that make up the key set, which is used to manage public, private, and
shared keys.

For more information, read the Key sets collection article.

Schedules
Displays the attributes that make up the scheduled process in the security configuration.

Notifications
Displays the attributes that make up notification objects in the security configuration.

Manage certificate expiration
Displays the attributes that define how startCertificateExpMonitor is run on the server.

System login configuration
Displays the attributes that define the System login entries and their login modules.

For more information, read the System login configuration entry settings for Java Authentication
and Authorization Service article.

Custom properties
Displays all the custom properties that are defined in the security configuration.

For more information, read the Custom properties article.

Web Authentication
Displays properties that are used to define web authentication used by the server.

For more information, read the web authentication settings article.

Administrative Users and Groups
Displays the attributes that define roles and the users and groups associated with them as found
in the admin-authz.xml file. The column titled Administrative Role Name contains the name of the
administrative role. A column titled Administrative Role Value contains the user ID associated
with the role (if one exists).

For more information, read the Administrative roles article.

Corba Naming Console Names
Displays the defined CORBA naming roles and the users that are assigned to the roles.

For more information, read the Administrative group roles and CORBA naming service groups
article.

1226 Administering WebSphere applications



Console Name for Certificate Management
Lists all the certificate in keystore that are defined in the security configuration. There is also
information about the certificates location and their validity period.

Cookie Protection
Displays attributes that pertain to HTTP Cookies. This section differs from other sections since
information is gathered from different configuration files. The HttpOnly custom property, the web
authentication com.ibm.wsspi.security.web.webAuthReq property, and the session security setting
on each server are displayed on the report.

Java Authorization SPI Configuration
Displays the attributes that are defined for the Java Authorization SPI (JASPI) configuration. If
there is a JASPI configuration object in the security configuration, information is included
concerning whether JASPI is enabled, the name of the default JASPI provider, and a list of defined
providers and their authentication modules.

Note: If JASPI has not been configured, this section is not shown in the security configuration
report.

Adding a new custom property in a global security configuration or in a security
domain configuration
Custom properties are arbitrary name-value pairs of data, where the name is a property key and the value
is a string value that can be used to set internal system configuration properties. Defining a new property
enables you to configure settings beyond those that are available in the administrative console. You can
add new security custom properties in a security configuration or in a security domain configuration.

About this task

Adding a new custom property in a global security configuration using the administrative console

1. Click Security > Global security > Custom properties.

2. Click New,

3. Enter the property key name in the Name field.

Each property key name must be unique. If the same name is used for multiple properties, the value
specified for the first property is used.

Do not start your property names with was, because this prefix is reserved for properties that are
predefined in the application server.

4. Enter the property value in the Value field.

5. Click Apply or Save.

You can also use the -customProperties flag in the setAdminActiveSecuritySettings wsadmin command to
add a new custom property in a global security configuration. See the SecurityConfigurationCommands
command group for the AdminTask object article for more information about this command. For example:
wsadmin>AdminTask.setAdminActiveSecuritySettings(’[-customProperties
["com.ibm.websphere.security.test=false"]]’)

Adding a new custom property in a security domain configuration using the administrative console

1. Click Security > Security domains.

2. Select the global security domain you want to add a new custom property to.

3. Click Custom properties.

4. Click New.

5. Enter the property key name in the Name field.

Each property key name must be unique. If the same name is used for multiple properties, the value
specified for the first property is used.

Chapter 19. Administering application security 1227



Do not start your property names with was, because this prefix is reserved for properties that are
predefined in the application server.

6. Enter the property value in the Value field

7. Click Apply or Save.

You can also use the -customProperties flag in the setAppActiveSecuritySettings wsadmin command to
add a new custom property in a global security domain configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. Use the -securityDomainName flag to specify the security domain where the custom
property is located. For example:
wsadmin>AdminTask.setAppActiveSecuritySettings(’[ -securityDomainName testDomain
-customProperties ["com.ibm.websphere.security.test=false"]]’)

Modifying an existing custom property in a global security configuration or in a
security domain configuration
Custom properties are arbitrary name-value pairs of data, where the name is a property key and the value
is a string value that can be used to set internal system configuration properties. Defining a new property
enables you to configure settings beyond those that are available in the administrative console. You can
modify existing security custom properties in a global security configuration or in a security domain
configuration.

About this task

Modifying an existing custom property in a global security configuration using the administrative
console

1. Click Security > Global security > Custom properies.

2. Select the custom property you want to modify.

3. Click Edit In the Value field, and then enter the value you want to modify.

4. Click Apply or Save.

You can also use the -customProperties flag in the setAdminActiveSecuritySettings wsadmin command to
modify an existing custom property in a global security configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. For example:
wsadmin>AdminTask.setAdminActiveSecuritySettings(’[-customProperties
["com.ibm.websphere.security.test=false"]]’)

Modifying an existing custom property in a security domain configuration using the administrative
console

1. Click Security > Security domains.

2. Select the global security domain you want to modify.

3. Click Custom properties.

4. Select the custom property you want to modify.

5. Click Edit.In the Value field, and then enter the value you want to modify.

6. Click Apply or Save.

You can also use the -customProperties flag in the setAppActiveSecuritySettings wsadmin command to
modify an existing custom property in a global security domain configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. Use the -securityDomainName flag to specify the security domain where the custom
property is located. For example:
wsadmin>AdminTask.setAppActiveSecuritySettings(’[ -securityDomainName
testDomain -customProperties ["com.ibm.websphere.security.test=false"]]’

1228 Administering WebSphere applications



Deleting an existing custom property in a global security configuration or in a
security domain configuration
Custom properties are arbitrary name-value pairs of data, where the name is a property key and the value
is a string value that can be used to set internal system configuration properties. Defining a new property
enables you to configure settings beyond those that are available in the administrative console. You can
delete existing security custom properties in a global security configuration or in a security domain
configuration.

About this task

Deleting an existing custom property in a global security configuration using the administrative
console

1. Click Security > Global security > Custom properties.

2. Select the custom property you want to delete.

3. Click Delete.

4. Click Apply or Save.

You can also use the -customProperties flag in the setAdminActiveSecuritySettings wsadmin command to
delete an existing custom property in a global security configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. For example:
wsadmin>AdminTask.setAdminActiveSecuritySettings(’[-customProperties
["com.ibm.websphere.security.test="]]’)

Deleting an existing custom property in a security domain configuration using the administrative
console

1. Click Security > Security domains.

2. Click Custom properties.

3. Select the custom property you want to delete.

4. Click Delete.

5. In the Value field, enter the value you want to delete.

6. Click Apply or Save.

You can also use the -customProperties flag in the setAppActiveSecuritySettings wsadmin command to
delete an existing custom property in a global security domain configuration. See the
SecurityConfigurationCommands command group for the AdminTask object article for more information
about this command. Use the -securityDomainName flag to specify the security domain where the custom
property is located. .For example:
wsadmin>AdminTask.setAppActiveSecuritySettings(’[ -securityDomainName testDomain
-customProperties ["com.ibm.websphere.security.test="]]’)

Configuring multiple security domains
By default, all administrative and user applications in WebSphere Application Server use the global
security configuration. For example, a user registry defined in global security is used to authenticate users
for every application in the cell. Out-of-the-box, this behavior is the same as it was in previous releases of
WebSphere Application Server. You can create additional WebSphere security domains if you want to
specify different security attributes for some or all of your user applications. This section describes how to
configure a security domain by using the administrative console.

Chapter 19. Administering application security 1229



Before you begin

Only users assigned to the administrator role can configure or create new multiple security domains.
Enable global security in your environment before configuring multiple security domains.

Read about “Multiple security domains” on page 1233 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains enable you to define multiple security configurations for use in your environment. For
example, you can define different security (such as a different user registry) for user applications than for
administrative applications. You can also define separate security configurations for user applications
deployed to different servers and clusters.

Perform the following steps to configure a new security domain by using the administrative console:

Procedure
1. Click Security > Security domains.

2. If you are creating a new multiple security domain, click New. Supply a unique name and description
for the domain and click Apply. If you want to configure an existing multiple security domain, select
one to edit. Once you click Apply the domain name and additional sections are displayed. One section
enables you to define the security attributes for the domain, and another section enables you to select
the scopes to which the domain applies.

3. Under Assigned Scopes, select whether you want to assign the security domain to the entire cell or if
you want to select the specific servers, clusters, and service integration buses to be included in the
security domain. The Assigned Scopes section has two views. The default view is a cell topology. To
assign the security domain to the entire cell, click the check box for the cell and then click Apply or
OK.

The name of the security domain appears next to the cell name, which indicates that the domain is
now assigned to the cell. You can expand the topology and assign the domain to one or more servers
and clusters. When an item in the topology is already assigned to another security domain, the check
box is disabled and the name of the assigned domain is displayed to the right of the scope name. If
you want to assign one of these scopes to the domain, you must first disassociate it with its current
domain.

Select All assigned scopes to view a list of only those resources that are currently assigned to the
security domain.

4. Customize your security configuration by specifying security attributes for your new domain. Attributes
that are not listed can not be customized at the domain level. Domains inherit attributes from the global
security configuration.

There are twelve individually configurable security attribute sections. You can expand and collapse
each section. In the collapsed state, the name and a summary value for the section are displayed.
Additionally, the summary value text indicates whether the attribute is defined in global security and is
reused by the domain (as indicated by gray text) or if it is customized for the domain (as indicated by
black text prefixed by the word “Customized”).

Initially, each security attribute is set to use the global security settings. When an attribute is set to use
global security, there is no domain-specific configuration for that attribute. Applications that use the
domain use the global configuration for these security attributes.

Only configure the security attributes that you want to change. To configure a security attribute for a
domain, expand the security attribute section. The key properties of the global configuration display
beneath the Use global security option. These properties are provided for convenience.

To customize the configuration for the domain, select Customize for this domain. Configure the
property and then click OK or Apply.

1230 Administering WebSphere applications



Note: In general, when you select Customize for this domain, you override all of the security
configurations that are defined for that section in global security. Application logins, system
logins, and J2C authentication data entries are some exceptions. When you define entries for a
domain, applications in the domain are able to access the global entries in addition to the
domain-specific entries.

For example, you might want to use a different user registry for applications that use the security
domain but also want to use the global security configuration for all of the other security properties. In
this case, expand the User Realm section and select Customize for this domain. Select a user
registry type, click Configure, and provide the appropriate configuration details on the subsequent
panel.

You can change security attributes such as the following:

Application Security
Specifies the settings for application security and Java 2 security. You can use the global
security settings or customize the settings for a domain.

Select Enable application security to enable or disable security this choice for user
applications. When this selection is disabled, all of the EJBs and web applications in the
security domain are no longer protected. Access is granted to these resources without user
authentication. When you enable this selection, the J2EE security is enforced for all of the
EJBs and web applications in the security domain. The J2EE security is only enforced when
Global Security is enabled in the global security configuration, (that is, you cannot enable
application security without first enabling Global Security at the global level).

Java 2 Security
Select Java 2 security to enable or disable Java 2 security at the domain level. This choice
enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

User realm

This section enables you to configure the user registry for the security domain. You can
separately configure any registry that is used at the domain level. Read about “Multiple
security domains” on page 1233 for more information.

Trust association
When you configure the trust association interceptor (TAI) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify
the interceptor list at the domain level to fit your needs. Only configure those interceptors that
are to be used at the domain level.

SPNEGO Web Authentication
The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate
HTTP requests for secured resources was introduced. This function was deprecated in
WebSphere Application Server 7.0. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application
login method.

RMI/IIOP Security

The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version 2)
protocol properties. When you configure these attributes at the domain level, the RMI/IIOP
security configuration at the global level is copied for convenience.

Chapter 19. Administering application security 1231



You can change the attributes that need to be different at the domain level. The Transport
layer settings for CSIv2 inbound communications should be the same for both the global and
the domain levels. If they are different, the domain level attributes are applied to all of the
application in the process.

JAAS application logins
Specifies the configuration settings for the Java Authentication and Authorization Service
(JAAS) application logins. You can use the global security settings or customize the settings for
a domain.

Note: The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication
data aliases can all be configured at the domain level. By default, all of the applications
in the system have access to the JAAS logins configured at the global level. The
security runtime first checks for the JAAS logins at the domain level. If it does not find
them, it then checks for them in the global security configuration. Configure any of these
JAAS logins at a domain only when you need to specify a login that is used exclusively
by the applications in the security domain.

JAAS system logins
Specifies the configuration settings for the JAAS system logins. You can use the global
security settings or customize the configuration settings for a domain.

JAAS J2C authentication
Specifies the configuration settings for the JAAS J2C authentication data. You can use the
global security settings or customize the settings for a domain.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication
provider and associated authentication modules. You can use the global security settings or
customize the settings for a domain. To configure JASPI authentication providers for a domain,
select Customize for this domain and then enable JASPI. Select Providers to define
providers for the domain.

Note: The JASPI authentication provider can be enabled with providers configured at the
domain level. By default, all of the applications in the system have access to the JASPI
authentication providers configured at the global level. The security runtime first checks
for the JASPI authentication providers at the domain level. If it does not find them, it
then checks for them in the global security configuration. Configure JASPI
authentication providers at a domain only when the provider is to be used exclusively by
the applications in that security domain.

Authentication Mechanism Attributes

Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The
default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set
at the domain level, any token that is created in the security domain when accessing user
applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such as
getUserPrincipal( ) are qualified with the security realm (user registry) used by applications
in the security domain.

Authorization Provider

You can configure an external third party JACC (Java Authorization Contract for Containers)
provider at the domain level. Tivoli Access Manager's JACC provider can only be configured at

1232 Administering WebSphere applications



the global level. Security domains can still use it if they do not override the authorization
provider with another JACC provider or with the built-in native authorization.

Custom properties
Set custom properties at the domain level that are either new or different from those at the
global level. By default, all of the custom properties at the global security configuration can be
accessed by all of the applications in the cell. The security runtime code first checks for the
custom property at the domain level. If it does not find it, it then attempts to obtain the custom
property from the global security configuration.

5. Once you have configured the security attributes and assigned the domain to one or more scopes,
click Apply or OK.

6. Restart all servers and clusters for your changes to take effect.

Multiple security domains
The WebSphere Security Domains (WSD) provide the flexibility to use different security configurations in
WebSphere Application Server. The WSD is also referred to as multiple security domains, or simply,
security domains. You can configure different security attributes, such as the UserRegistry, for different
applications.

Note: Multiple security domain support was introduced in WebSphere Application Server Version 7.0. You
can create different security configurations and assign them to different applications in WebSphere
Application Server processes. By creating multiple security domains, you can configure different
security attributes for both administrative and user applications within a cell environment. You can
configure different applications to use different security configurations by assigning the servers or
clusters or service integration buses that host these applications to the security domains. Only
users assigned to the administrator role can configure multiple security domains.

The following sections describe multiple security domains in more detail:

v “Why security domains are useful”

v “Relationship between global security and security domains” on page 1234

v “Contents of a security domain” on page 1235

v “Creating security domains” on page 1236

v “Configuring attributes for security domains” on page 1237

v “Associating scopes to security domains” on page 1238

v “Relationship between old server level security and the new security domains” on page 1239

v “How domain level security attributes are used by security runtime and applications” on page 1239

v “Client and application security programming model when using security domains” on page 1243

v “Application deployment in multiple domains configurations” on page 1244

v “Cross realm communication” on page 1245

v “Federating a node with security domains” on page 1247

v “Security domains in a mixed-version environment” on page 1248

v “Modifying security domains” on page 1248

Why security domains are useful

WebSphere Security Domains provide two major benefits:

v WebSphere Application Server administrative applications can be configured with a different set of
security configurations from those for user applications.

v They enable one set of applications to have a different set of security configurations from another set of
applications.

Chapter 19. Administering application security 1233



For example, WebSphere Application Server administration can be configured to a user
registry of federated repository while the applications can be configured to a user registry of LDAP.

In previous versions of WebSphere Application Server, all administrative and user applications use security
attributes different from those attributes that are defined in global security. All administrative and user
applications in WebSphere Application Server use global security attributes by default. For example, a user
registry defined in global security is used to authenticate a user for every application in the cell.

In this release of WebSphere Application Server, however, you can use multiple security attributes for user
applications other than the global security attributes, create a security domain for those security attributes
that must differ, and associate them with the servers and clusters that host those user applications. You
also can associate a security domain with the cell. All of the user applications in the cell use this security
domain if they do not have a domain previously associated with them. However, global security attributes
are still required for administrative applications such as the administrative console, naming resources and
MBeans.

If you have used server level security in previous releases of WebSphere Application Server, you should
now use multiple security domains since they are more flexible and easier to configure.

Server level security is deprecated in this release. Read “Relationship between global security and security
domains” for more information.

Relationship between global security and security domains

Global Security applies to all administrative functions and the default security configuration for user
applications. Security domains can be used to define a customized configuration for user applications.

You must have a global security configuration defined before you can create security domains. The global
security configuration is used by all of the administrative applications such as the administrative console,
naming resources, and Mbeans. If no security domains are configured, all of the applications use
information from the global security configuration. User applications such as Enterprise JavaBeans (EJBs),
servlets and administrative applications use the same security configuration.

When you create a security domain and associate it with a scope, only the user applications in that scope
use the security attributes that are defined in the security domain. The administrative applications as well
as the naming operations in that scope use the global security configuration. Define the security attributes
at the domain level that need to be different from those at the global level. If the information is common,
the security domain does not need to have the information duplicated in it. Any attributes that are missing
in the domain are obtained from the global configuration. The global security configuration data is stored in
the security.xml file, which is located in the $WAS_HOME/profiles/$ProfileName/cells/$CellName
directory.

The following figure provides an example of a security multiple domain where the cell, a server and a
cluster are associated with different security domains. As shown in the figure, the user applications in
server S1.1 as well as the cluster use security attributes that are defined in Domain2 and Domain3
respectively (since these scopes are associated with these domains). Server S2.2 is not associated with a
domain. As a result, the user application in S2.2 uses the domain that is associated with the cell (Domain1)
by default . Security attributes that are missing from the domain level are obtained from the global
configuration.

1234 Administering WebSphere applications



The following figure shows the various high-level security attributes that can be defined at the global
security configuration and those that can be overridden at the domain level.

Contents of a security domain

A security domain is represented by two configuration files. One configuration file contains the list of
attributes that are configured in the security domain. The other configuration file contains the scopes that
use the security domain. The security domain information is stored in the $WAS_HOME/profiles/

Current global security
configuration (security.xml)

Cell

Node 1

Node 2

WebSphere ecurity omains
configuration (Domain3)

s d

(security-domain.xml)

WebSphere ecurity omains
configuration (Domain1)

s d

(security-domain.xml)

User applications

in S1.1 will use the security attributes
defined in Domain2.

in cluster will use the security attributes
defined in Domain3.

in S2.2 will use the security attributes
defined in Domain1.

Any attributes that are missing in a
domain are obtained from global
security.xml

WebSphere ecurity omains
configuration (Domain2)

s d

(security-domain.xml)

Cluster

S1.1

S1.2

S2.1

S2.2

Figure 3. Scopes that can be associated to a security domain

Global security configuration (security.xml)

RMI/IIOP Security (CSIv2 Protocol)

Authentication mechanism attributes

Custom properties
Web attributes (SSO)
Secure Sockets Layer (SSL)
Audit
LTPA Authentication mechanism
Kerberos Authentication mechanism

Application security enablement
Java 2 security
User realm (registry)
Trust Association Interceptor (TAI)
SPNEGO Web Authentication

JAAS

Authorization Provider

The configuration can
override (security-domain.xml)

WebSphere security domains

Java 2 security
User realm (registry)
Trust Association Interceptor (TAI)
SPNEGO Web Authentication
RMI/IIOP Security (CSIv2 Protocol)
Java Authentication and Authorization Service (JAAS)
Authentication mechanism attributes
Authorization Provider
Custom properties

Application security enablement

Note: Only high-level attributes are shown.

Figure 4. Security attributes that can be configured at the security domain

Chapter 19. Administering application security 1235



$ProfileName/config/waspolicies/default/securitydomains/$SecurityDomainName directory. For every
security domain that is configured, a $SecurityDomainName directory is created with two files in it: the
security-domain.xml file contains the list of security attributes configured for the security domain, and the
security-domain-map.xml file contains the scopes that use the security domain.

The following figure indicates the location of the main security domain related files and the contents of
those files.

Note: You should not modify these files manually. Use administrative console tasks or scripting
commands to modify the files instead. For a complete list of administrative tasks and scripting
commands, see the links in "Related tasks" at the bottom of this document.

Creating security domains

Use the administrative console tasks or scripting commands to create security domains. In the
administrative console, access security domains by clicking Security > Security domains. Help is
available for each administrative console panel.

For a complete list of administrative console tasks and scripting commands, see the links in "Related
tasks" at the bottom of this document.

When you create a security domain you must supply a unique name for the domain, the security attributes
you want to configure for the security domain, and the scopes that need to use the security domain. Once
configured, the servers that use the security domain must be restarted. The user applications in those
scopes then use the attributes that are defined in the security domain. Any attributes that are not
configured at the domain level are obtained from the global security configuration. Administrative
applications and naming operations in the scopes always use the security attributes from the global
security configuration. You must actively manage these attributes.

Any new security domain attributes must be compatible with those global security attributes that are
inherited by the user applications that are assigned to the domain.

Other than for JAAS and custom properties, once global attributes are customized for a domain they are
no longer used by user applications.

The security domains panel in the administrative console enables you to assign resources and to select
the appropriate security attributes for your domain. The panel displays the key security attributes at the
global configuration; you can make the decision to override them at the domain level if necessary. Once
you have configured and saved the attributes at the domain level, the summary value on the panel
displays the customized value for the domain (tagged with the word "customized" in black text).

Figure 5. Location and contents of the main security domain related files

1236 Administering WebSphere applications



A scope (a server, cluster, service integration bus or a cell) can be associated with only one domain. For
example, you cannot define two domains that both have the cell-wide scope. Multiple scopes, however,
can be defined in the same security domain. For example, a domain can be scoped to Server1 and to
Server2 only within the cell.

The assigned scopes section on the security domain panel displays two views: one view that enables you
to select and assign scopes to the domain, and another view that enables you to see a list of the currently
assigned scopes. For convenience, you also have the flexibility to copy all of the security attributes from
an existing security domain or the global configuration into a new security domain, and then modify only
those attributes that must be different. You must still associate the scopes to these copied domains.

Scripting commands also provide you with the ability to create, copy and modify security domains. Once
you create a domain, you must run the appropriate commands to associate security attributes and scopes
to it.

Configuring attributes for security domains

Security attributes that can be configured at the domain level in WebSphere Application Server Version 8.5
are:

v Application security

v Java 2 security

v User realm (registry)

v Trust association

v Simple and Protected GSS-API Negotiation (SPNEGO) web authentication

v RMI/IIOP security (CSIv2)

v JAAS logins (Application, System and J2C Authentication Data)

v Java Authentication SPI

v Authentication mechanism attributes

v Authorization provider

v Federated repositories

v Custom properties

The security domains panels in the administrative console display all of these security attributes.

Some of the other well-known attributes that you cannot override at the domain level are Kerberos, Audit,
Web Single Sign-on (SSO) and Tivoli Access Manager (TAM). The Secure Socket Layer (SSL) attribute
already supports different scopes, but it is not part of the domain configuration. For all of the attributes that
are not supported at the domain level, user applications in a domain share their configuration from the
global level.

Any new security domain attributes must be compatible with those global security attributes that are
inherited by the user applications that are assigned to the domain. You must actively manage these
attributes. For example, if you customize only a JAAS configuration at the domain level you must make
sure that it works with the user registry configured at the global level (if the user registry is not customized
at the domain level).

Other than for JAAS and custom properties, once global attributes are customized for a domain they are
no longer used by user applications.

The Tivoli Access Manager client runtime is used to provide authentication (used by
TrustAssociationInterceptor and PDLoginModule) and authorization (used for JACC) by contacting TAM
servers. There is only one Tivoli Access Manager runtime shared by all servers in a cell. Read the Tivoli
Access Manager JACC provider configuration topic for more information.

Chapter 19. Administering application security 1237



You cannot have a different Tivoli Access Manager configuration at the security domain level to override
the configuration at the cell level. However, you can to some degree specify Trust Association Interceptor
(TAI) and JACC configuration at the security domain level. For example, you can use a different TAI or a
different authorization provider. Since TAM server connectivity can only be defined at the global level, you
can have a variety of TAIs defined and configured at the security domain level. Some of these TAIs might
not use the TAM user repository, while others do. The TAIs that do need to connect to TAM will also
connect to the globally-defined TAM server. Similarly, for authorization, you can have a variety of external
authorization providers configured at the domain level. However, if any of these external authorization
providers require connection to TAM they end up talking to the singular globally-configured TAM server.

Associating scopes to security domains

In WebSphere Application Server Version 8.5, you can associate a security domain at the cell level, the
server level, the cluster level and the service integration bus level.

Note: For more information about the service integration bus and bus security in multiple security domains
for WebSphere Application Server Version 8.5, see Messaging security and multiple security
domains.

When a security domain is associated with a server that is not part of a cluster, all user applications in that
server use the attributes from the security domain. Any missing security attributes are obtained from the
global security configuration. If the server is part of a cluster, you can associate the security domain with
the cluster but not with the individual members in that cluster. The security behavior then remains
consistent across all of the cluster members.

If a server is to be part of a cluster, create a cluster first and associate the security domain to it. You might
have associated a domain to a server before it was a member of a cluster. If so, even though the domain
is associated with the server directly, the security runtime code does not look at the domain. When a
server is a cluster member, the security runtime disregards any security domains associated directly to the
server. Remove the server scope from the security domain and associate the cluster scope to it instead.

A security domain can also be associated to the cell. This is usually done when you want to associate all
user applications in WebSphere Application Server to a security domain. In this scenario, all of the
administrative applications and the naming operations use the global security configuration while all of the
user applications use the domain level configuration. If you want to split the security configuration
information for administrative and user applications, this is all that is needed.

If you have a mixed-version environment, or plan to have one in future, and you want to associate security
domains at the cell level, read “Security domains in a mixed-version environment” on page 1248 for more
information.

If you are on a base profile server that has its own security domain defined, which is then federated to a
deployment manager, associate the server scope to the security domain and not the cell scope. When you
federate that node, the security domain information is propagated to the deployment manager. If the cell
scope is associated to it, the network deployment configuration uses this security configuration, which
might impact existing applications. During federation, the cell scope is changed to the server scope that is
being federated. If the server scope is associated with the security domain, only that server uses the
security domain after the federation. Other applications in other servers and clusters are not impacted.
However, if this base profile server is registered to the Administrative Agent process you can associate the
cell scope to the security domain if you want all of the servers from the base profile to use the same
security domain for all of their user applications. Read about “Federating a node with security domains” on
page 1247 for more information.

You can have a security domain associated at the cell level and also other security domains associated to
various clusters or individual servers (those that are not part of any clusters). In this case, the security
runtime first checks if any security domains are associated with the server or a cluster. If there is a

1238 Administering WebSphere applications



security domain associated with the server or a cluster, the security attributes defined in it are used for all
of the applications in that server or cluster. Any security attributes missing from this server or cluster
domain are obtained from the global security configuration, and not from the domain configuration
associated with the cell.

If the server or cluster does not have its own domain defined, the security runtime code uses the security
attributes from the domain associated with the cell (if one is defined). Any security attributes missing from
the cell domain are inherited from the global security configuration.

Relationship between old server level security and the new security domains

In previous releases of WebSphere Application Server, you could associate a small set of security
attributes at a server level. These attributes were used by all of the applications at the server level. The
previous way of configuring the security attributes was deprecated in WebSphere Application Server 7.0,
and will be removed in a future release.

You should now use the new security domains support starting in WebSphere Application Server 7.0, as
these security domains are more easily managed and much more flexible. For example, in previous
versions of WebSphere Application Server, you must manually associate the same security configuration to
all of the cluster members by configuring the same security attributes for every server in a cluster.

The migration tool migrates the existing server level security configuration information to the new security
domain configuration when the script compatibility mode is false (-scriptCompatibility="false"). A new
security domain is created for every server security configuration if it is not part of a cluster. If it is part of a
cluster, a security domain is associated with the cluster instead of with all of the servers in that cluster. In
both cases, all of the security attributes that were configured at the server level in previous releases are
migrated to the new security domain configuration, and the appropriate scope is assigned to the security
domains.

If the script compatibility mode is set to true, the server level security configuration is not migrated to the
new security domains configuration. The old server security configuration is migrated without any changes.
The security runtime detects that the old security configuration exists and uses that information, even if a
security domain is associated either directly or indirectly to the server. If the script compatibility mode is set
to true, remove the security configuration from the server level and then create a security domain with the
same set of security attributes.

How domain level security attributes are used by security runtime and
applications

This section describes how the individual attributes at the domain level are used by the security runtime
and how that impacts the user application security. Since all of these security attributes are also defined at
the global level, more information about these attributes can be obtained elsewhere. For the purposes of
this section, the emphasis is on domain level behavior.

1. Application Security:

Select Enable application security to enable or disable security for user applications. When this
selection is disabled, all of the EJBs and web applications in the security domain are no longer
protected. Access is granted to these resources without user authentication. When you enable this
selection, the J2EE security is enforced for all of the EJBs and web applications in the security
domain. The J2EE security is only enforced when Global Security is enabled in the global security
configuration, (that is, you cannot enable application security without first enabling Global Security at
the global level).

2. Java 2 Security:

Chapter 19. Administering application security 1239



Select Use Java 2 security to enable or disable Java 2 security at the domain level or to assign or
add properties related to Java 2 security. This choice enables or disables Java 2 security at the
process (JVM) level so that all applications (both administrative and user) can enable or disable Java
2 security.

3. User Realm (User Registry):

This section enables you to configure the user registry for the security domain. You can separately
configure any registry that is used at the domain level. Read about “Configuring attributes for security
domains” on page 1237 for more information.

When configuring a registry at the domain level you can choose to define your own realm name for
the registry. The realm name distinguishes one user registry from another. The realm name is used in
multiple places – in the Java client login panel to prompt the user, in the authentication cache, and
when using native authorization.

At the global configuration level, the system creates the realm for the user registry. In previous
releases of WebSphere Application Server, only one user registry is configured in the system. When
you have multiple security domains you can configure multiple registries in the system. For the realms
to be unique in these domains, configure your own realm name for a security domain. You also can
choose the system to create a unique realm name if it is certain to be unique. In the latter case, the
realm name is based on the registry that is being used.

For LDAP registries, the host:port of the LDAP server is the system-generated realm name. For
localOS, the name of the localOS machine is the realm name. For custom user registries, the realm
is the one returned by the getRealm ( ) method of the custom registry implementation.

If the system generated realm names are unique enough, you can choose the option for the system
to generate the realm name. If not, choose a unique realm name for each security domain where you
have the user registry configured. If the underlying user repository is the same, use the same realm
name in different domains. From a security runtime perspective, same realm names have the same
set of users and groups information. For example, when users and groups information is required
from a realm, the first user repository that matches the realm is used.If a localOS registry that is not
centralized is configured for any domain, and that domain is associated with servers or clusters in
nodes not on the same system as the deployment manager, the realm name has to be provided. This
realm name has to be the same as it would be if it were generated on the node. This realm name
can be obtained by calling the getRealm() method on the SecurityAdmin MBean on that node.
Typically, the realm name for localOS registries is the hostname of the machine. In this case, you
should not let the system generate the realm name but rather get the realm name that is used by the
processes in the node.

If you select the system to generate the realm for the localOS registry at the time of the user registry
configuration, it chooses the localOS registry that is used by the deployment manager. If the realm
configured does not match the realm used by the servers then there are authorization issues. Also
note that in this case, the domain using this local registry can only be associated with servers and
clusters that belong to nodes on the same machine.

In WebSphere Application Server Version 7.0, the federated repositories user registry can only be
configured at the global level and have only one instance per cell, but any domain can use it by
configuring it as the active registry. In WebSphere Application Server Version 8.0, you can configure a
unique instance of a federated repository at the domain level in a multiple security domain
environment.

When a security domain is copied from the global level, the users and groups defined at the global
level are also copied to the security domain. This is also true when copying from an existing domain.
A newly-created security domain that uses the file-based VMM repository requires that the user
populate the repository with users and groups.

Also new in this release of WebSphere Application Server, a new checkbox on the Realm
configurations settings administrative console page, Use global schema for model, sets the global
schema option for the data model in a multiple security domain environment. Global schema refers to
the schema of the admin domain.

1240 Administering WebSphere applications



When more than one user registry is in a process, the naming lookup that uses “UserRegistry” as the
lookup name returns the user registry that is used by user applications. The user registry used by
administrative applications is bound by the lookup name, “AdminUserRegistry”.

As described in “Cross realm communication” on page 1245, when an application in one realm
communicates with an application in another realm using LTPA tokens, the realms have to be trusted.
The trust relationship can be established using the Trusted authentication realms – inbound link in
the user registry panel or by using the addTrustedRealms command. You can establish trust between
different realms. A user logged into one realm can access resources in another realm. If no trust is
established between the two realms the LTPA token validation fails.

Note: The realm name used in the web.xml file is not related to the user registry realm.

4. Trust Association:

When you configure the trust association interceptor (TAI) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify the
interceptor list at the domain level to fit your needs. Only configure those interceptors that are to be
used at the domain level.

Tivoli Access Manager's trust association interceptors can only be configured at the global level. The
domain configuration can also use them, but cannot have a different version of the trust association
interceptor. Only one instance of Tivoli Access Manager's trust association interceptors can exist in
the cell.

5. SPNEGO web authentication:

The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP
requests for secured resources was introduced. In WebSphere Application Server 7.0, this
function was deprecated. SPNEGO web authentication has taken its place to provide dynamic
reload of the SPNEGO filters and to enable fallback to the application login method.

6. RMI/IIOP Security (CSIv2):

The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version 2)
protocol properties. When you configure these attributes at the domain level, the RMI/IIOP security
configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport layer
settings for CSIv2 inbound communications should be the same for both the global and the domain
levels. If they are different, the domain level attributes are applied to all of the application in the
process.

When a process communicates with another process with a different realm, the LTPA authentication
and the propagation tokens are not propagated to the downstream server unless that server is listed
in the outbound trusted realms list. This can be done using the Trusted authentication realms –
outbound link on the CSIv2 outbound communication panel, or by using the addTrustedRealms
command task. Read about “Cross realm communication” on page 1245 for more information.

7. JAAS (Java Authentication and Authorization Service):

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data aliases
can all be configured at the domain level. By default, all of the applications in the system have access
to the JAAS logins configured at the global level. The security runtime first checks for the JAAS logins
at the domain level. If it does not find them, it then checks for them in the global security
configuration. Configure any of these JAAS logins at a domain only when you need to specify a login
that is used exclusively by the applications in the security domain.

For JAAS and custom properties only, once global attributes are customized for a domain they can
still be used by user applications.

8. Java Authentication SPI (JASPI)

Chapter 19. Administering application security 1241



Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication provider and
associated authentication modules to be applied at the domain level.

Select Providers to create or to edit a JASPI authentication provider.

Note: The JASPI authentication provider can be enabled with providers configured at the domain
level. By default, all of the applications in the system have access to the JASPI authentication
providers configured at the global level. The security runtime first checks for the JASPI
authentication providers at the domain level. If it does not find them, it then checks for them in
the global security configuration. Configure JASPI authentication providers at a domain only
when the provider is to be used exclusively by the applications in that security domain.

9. Authentication Mechanism Attributes:

Specifies the various cache settings that must be applied at the domain level.

a. Authentication cache settings - use to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

b. LTPA Timeout - You can configure a different LTPA timeout value at the domain level. The default
timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set at the
domain level, any token that is created in the security domain when accessing user applications is
created with this expiration time.

c. Use realm-qualified user names - When this selection is enabled, user names returned by
methods such as getUserPrincipal( ) are qualified with the security realm (user registry) used
by applications in the security domain.

10. Authorization Provider:

You can configure an external third party JACC (Java Authorization Contract for Containers) provider
at the domain level. Tivoli Access Manager's JACC provider can only be configured at the global
level. Security domains can still use it if they do not override the authorization provider with another
JACC provider.

The JACC attributes, for example the Policy object, are based at the JVM level. This implies that
there can be only be one JACC policy object in a JVM process. However, when you have multiple
JACC providers configured, the deployment manager process has to handle all these providers in the
same JVM because it has to propagate the authorization policy of applications to the respective
provider based on the application name.

If your JACC provider can handle propagating the authorization policy to multiple providers, you can
configure it at the global level. In this case, when an application is installed, this JACC provider is
called in the deployment manager process and it is the responsibility of this JACC provider to
propagate the information to the corresponding JACC provider based on the application name passed
in the contextID.

Another way to achieve this is to set the custom property,
com.ibm.websphere.security.allowMultipleJaccProviders=true, at the global security level. When
this property is set, WebSphere Application Server propagates the authorization policy information to
the JACC provider associated with the domain that corresponds to the target server where the
application is installed. This property is only used at the deployment manager process since the
managed servers do not host multiple JACC providers.

11. Custom properties:

Set custom properties at the domain level that are either new or different from those at the global
level. By default, all of the custom properties at the global security configuration can be accessed by
all of the applications in the cell. The security runtime code first checks for the custom property at the
domain level. If it does not find it, it then attempts to obtain the custom property from the global
security configuration.

For JAAS and custom properties only, once global attributes are customized for a domain they can
still be used by user applications.

1242 Administering WebSphere applications



Client and application security programming model when using security domains

A Java client or an application acting as a client that accesses an EJB typically does a naming lookup first.
The naming resource, which is used by both administrative and the user applications, is considered an
administrative resource. It is protected by the global security configuration information. In a multiple
domain setup where the global security is using one realm (the user registry) and a domain is using a
different realm, the Java client must authenticate to two different realms. The first authentication is required
for the realm in the global security configuration for the naming operation to succeed, and the second
authentication is required to access the EJB, which uses a different realm.

The CosNamingRead role protects all naming read operations. This role is usually assigned the Everyone
special subject. This implies that any user, valid or not, can look up the name space. When a multiple
domain is defined, if the CosNamingRead role has the Everyone special subject the security runtime code in
the client side does not prompt you to log in. It uses the UNAUTHENTICATED subject to access the
naming operation instead. Once the naming lookup operation is completed, when the client attempts to
access the EJB it is prompted with a login panel that indicates the realm that is currently used by that EJB
application (that is, the realm used in the domain). The client then presents the appropriate user
credentials for that realm, which can then access the EJB. This logic applies to all variations of login
source, including properties and stdin, not just when the login source is set to prompt.

If the Everyone special subject is removed from the CosNamingRead role, you are prompted twice. If the
login source is properties, you can uncomment the com.ibm.CORBA.loginRealm property in the
$WAS_HOME/profiles/$ProfileName/properties/sas.client.props file and add the appropriate realms
using “|” as the separator. You must also enter the corresponding users and passwords in the
com.ibm.CORBA.loginUserid and com.ibm.CORBA.loginPassword properties respectively. When you are
using the programmatic logon in the Java client code you must authenticate twice with different user
credentials; once prior to do a naming lookup for the EJB (the user should be in the global realm), and
later prior to calling any method in the EJB (the user should be in the EJB domain's realm).

In general, when a Java client needs to authenticate to multiple and different realms it has to provide the
credential information for all of those realms. If the login source is prompt or stdin it is prompted to login
multiple times, once for each realm. If the login source is set to properties, the appropriate properties in
the sas.client.props file (or any related file) are used for authenticating to different realms.

In certain scenarios, a client might make multiple calls to the same realm. For example, the Java client
can access a resource using realm1 followed by access to a resource using realm2, and then come back
to access a resource in realm1 again. In this case, the client is prompted three times; first for realm1,
secondly for realm2 and finally for realm1 again.

By default, the subject that is used to login at a realm is not cached by the client side code. If you have
this scenario, and you want the client to cache the subject based on the realm, set the
com.ibm.CSI.isRealmSubjectLookupEnabled property to true in the sas.client.props file. If the
com.ibm.CSI.isRealmSubjectLookupEnabled property is set, the client code caches the subject based on
the realm name. The next time the Java client needs to authenticate to this realm, the cache is located to
obtain the subject and the client is not prompted. Also, when the
com.ibm.CSI.isRealmSubjectLookupEnabled property is set, the same subject that was logged in the first
time is used for subsequent logins. If the subject information needs to change then this property should
not be set.

If the client is doing a programmatic login it can pass the realm along with the user and password that it
needs to authenticate. In this case, when the com.ibm.CORBA.validateBasicAuth property is set to true
(the default value) in the sas.client.props file, the registry that matches the realm name is used for login.
That realm must be supported in the process where the authentication takes place.

When using the WSLogin JAAS configurations, you also must set the use_realm_callback option in the
wsjaas_client.config file in $WAS_HOME/profiles/$ProfileName/properties for the realm name to be

Chapter 19. Administering application security 1243



passed to the call back handler. If you want to specify a different provider URL for the name server, set the
use_appcontext_callback option and pass in the provider URL properties in a hash map to WSLogin.

If you do not know the realm name, use <default> as the realm name. The authentication is performed
against the application realm. If the naming read operation does not have the Everyone special subject
assigned, you must provide the realm that is used by the administrative applications (the registry used in
the global security configuration), as well as the appropriate user and password information in that registry
for the lookup operation to succeed.

After the lookup operation succeeds, perform another programmatic login by providing the application
realm (or <default>) and the user and password information for the appropriate user in the registry that is
used by the application. This is similar to the case where the login source is prompt. You must authenticate
twice, once for the registry used by the global security configuration (for the naming lookup operation) and
again for the registry used by the application to access the EJB.

If com.ibm.CORBA.validateBasicAuth is set to false in the $WAS_HOME/profiles/$ProfileName/properties/
sas.client.props file then the programmatic login can use <default> as the realm name for both the
lookup and the EJB operations. The actual authentication occurs only when the resource is accessed on
the server side, in which case the realm is calculated based on the resource that is accessed.

The new security domain support starting in WebSphere Application Version 7.0 does not change the
current application security programming model. However, it provides more flexibility and capabilities such
as the following:

v User applications can still find the user registry object by using the naming lookup for “UserRegistry”.
For the registry object used by administrative applications, the naming lookup for “AdminUserRegistry”
can be used.

v The application usage of the JAAS login configuration does not change in a multiple domain setup.
However, if an application must refer to the JAAS configuration that is specified at the domain level, the
administrator and the deployer of that application must make sure that this domain is configured with
the JAAS configurations that are required by the application.

v If an application needs to communicate with other applications using different realms, trust relationship
should be established for both inbound and outbound communications when using the LTPA tokens.
Read about “Cross realm communication” on page 1245 for more information.

v When using programmatic login in the applications, if you want to login to the realm used by the
application, use <default> as the realm name or provide the realm name that the application is using. If
you need to login to the global realm, you must provide the global realm name. If you provide any other
realm, only a basic authentication subject is created. When the request actually flows to the server
hosting that realm, the actual authentication of the user occurs if that server hosts the realm. If the
server does not host the realm, the login fails.

Application deployment in multiple domains configurations

When deploying an application in a multiple domain setup, all of the modules in the application should be
installed in the servers or clusters that belong to the same security domain. If not, depending on the
security attributes configured in these security domains, inconsistent behavior can result. For example, if
the domains contain different user registries, the users and groups information can be different, which can
cause inconsistent behavior when accessing the modules. Another example is when the JAAS data is
different between the security domains. The JAAS configurations is not accessible from all of the modules
in the application. The security runtime code and the command tasks rely on one domain being associated
with an application when dealing with attributes such as user registry, JAAS login configurations, J2C
authentication data, and authorization.

In most cases, application deployment fails when an application is deployed across different domains.
However, since this was possible in earlier releases of WebSphere Application Server when only a few
attributes were supported at the server level, the deployment tool first checks for attributes that are

1244 Administering WebSphere applications



configured at the domains. If the attributes in the domain are the same as those supported in previous
releases, the administrative console requests confirmation to ensure that you want to deploy application
modules across multiple security domains. Unless there is an absolute requirement to deploy the
applications across different domains, stop the deployment and select the servers and clusters in the same
security domain.

Cross realm communication

When applications communicate using the RMI/IIOP protocol and LTPA is the authentication mechanism,
the LTPA token is passed between the servers involved. The LTPA token contains the realm-qualified
uniqueId, (also called the accessId), of the user who is logging into the front-end application. When this
token is received by the downstream server it attempts to decrypt the token. If the LTPA keys are shared
between the two servers, decryption succeeds and the accessId of the user is obtained from the token.
The realm in the accessId is checked with the current realm that is used by the application. If the realms
match, the LTPA token validation succeeds and it proceeds with the authorization. If the realms do not
match, the token validation fails since the user from the foreign realm cannot be validated in the current
realm of the application. If applications are not supposed to communicate with each other when using
RMI/IIOP and the LTPA authentication mechanism, you do not to have to do anything further.

If you do want the cross realm communication to succeed when using RMI/IIOP and LTPA tokens, you
must first establish trust between the realms involved, both for inbound and outbound communications.

For the server originating the request, its realm must have the realms that it can trust to send the token to.
This is referred to as outboundTrustedRealms. For the server receiving the request, its realm needs to
trust the realms that it can receive LTPA tokens from. This is referred to as inboundTrustedRealms.

Outbound trusted realms can be established using the addTrustedRealms command with the
–communicationType option set to outbound. It can also be established in the administrative console by
clicking Trusted authentication realms - outbound on the CSIv2 outbound communications panel.

Inbound trusted realms can be established using the same addTrustedRealms command task with the
–communicationType option set to inbound. It can also be established by using the administrative console.

The figure later in this section shows the communication between applications that use different user
realms (registries) using RMI/IIOP. In this example, application app1 (for example, a servlet) is configured
to use the realm1 user registry. The app2 application (for example, an EJB) is configured to use the realm2
user registry. The user (user1) initially logs into the servlet in app1, which then attempts to access an EJB
in app2. The following must be set:

v In Domain1, realm1 should trust realm2 for the outbound communication.

v In Domain2, realm2 should trust realm1 for the inbound communication.

v The accessId for user1 should be configured in the authorization table for app2.

When the LTPA token that contains the accessId of user1 is received by app2, it decrypts the token. Both
of the servers share the same LTPA keys. The LTPA token then ensures that the foreign realm is a trusted
realm, and performs the authorization based on the accessId of user1. If security attribute propagation is
not disabled, then the group information of user1 is also propagated to app2. The groups can be used for
the authorization check, provided that the authorization table contains the group information. You can
associate a special subject, AllAuthenticatedInTrustedRealms, to the roles instead of adding individual
users and groups to the authorization table.

If the applications in the previous example are deployed in different cells, you must do the following:

v Share the LTPA keys between the cells.

v Update the authorization table for app2 with foreign users and groups accessIds by using the wsadmin
utility. The administrative console does not have access to the realms outside of the scope of the cell.

Chapter 19. Administering application security 1245



Once trust has been established between the realms, when the server receives the LTPA token and the
token is decrypted, it checks to see if the foreign realm is in its inbound trusted realms list. If it is trusted,
the authentication succeeds. However, since it is a foreign realm, it does not go search the user registry to
gather information about the user. Whatever information is in the LTPA token is used to authorize the user.

The only information in the LTPA token is the unique id of the user. This unique id of the user should exist
in the authorization table for this application. If it does, authorization succeeds. However, if attribute
propagation is enabled, additional authorization attributes (groups that this user belongs to) for the user
are sent from the originating server to the receiving server. These additional attributes are used to make
the access decisions. If the groups information exists in the propagation tokens it is used when making the
authorization decision.

As previously mentioned, the information about the users and or the groups from the trusted realms should
exist in the authorization table of the receiving application. Specifically, the accessId of the users and or
groups should exist in the binding file of the application. This must be the case when the application is
deployed. In the administrative console, when an application is deployed in a domain you can add the
accessIds of the users and groups from any of its trusted realms to the authorization table.

You also have an option to associate a special subject, AllAuthenticatedInTrustedRealms, to the roles
instead of adding individual users and groups. This is similar to the AllAuthenticated special subject that
is currently supported. The difference is that the AllAuthenticated special subject refers to users in the
same realm as the application while the AllAuthenticatedInTrustedRealms special subject applies to all of
the users in the trusted realms and in the realm of the application.

You can associate the accessId by using the $AdminApp install script. Because the accessId takes a
unique format, use the command task listRegistryUsers with displayAccessIds set to true. If an invalid
name or format is entered in this field, the authorization fails.

Cell

Node1 Node2

S1.1 (Domain1) S1.2 (Domain2)

user1
LTPA Token

Contains accessId
user:realm1/cn=user1,

o=ibm,c=us

app1 app2

user1
user:realm1/cn=user1,

o=ibm,c=us

realm1
realm2

Application Authorization
Table

realm1 trusts realm2 for outbound
communication using RMI/IIOP

realm2 trusts realm1 for inbound
communication using RMI/IIOP

user1

Figure 6. Cross realm communication in a multiple realm environment

1246 Administering WebSphere applications



User and group information from the trusted realms is obtained by the deployment manager since it has
access to all of the user registry configurations in all domains. However, in certain situations it is not
possible to obtain the users and group information.

For example, if a server hosted on an external node is using localOS as the registry for its domain, the
deployment manager cannot obtain the users and groups information unless it is running in the same
operating system setup. The external operating system should be contacted to obtain this information. This
can be done by directly invoking the registry in the server associated with that domain. The servers
associated with the domain have to be started for this to work. You also must set the property,
com.ibm.websphere.allowRegistryLookupOnProcess, to true in the top-level security custom properties.
When this property is set, the deployment manager code searches one of the servers that is associated
with the security domain and obtains the users and groups information directly from it. This is possible by
calling an MBean in one of the servers.

If the MBean in any of the servers that are using that domain cannot be accessed, the administrative
console displays a panel where you can enter the user and accessId information manually for each user
and group. It is important that the correct accessId format be entered in this field. The accessId format for
the user is user:realmName/userUniqueId. The realmName is the name of the realm where the user
resides, and the userUniqueId is the uniqueId that represents the user, depending on the registry that is
used.

For example, for LDAP, the uniqueUserId is the Distinguished Name (DN), for the Windows localOS
registry and is the SID of the user. For Unix platforms, it is the UID. For custom registries, it depends on
the implementation.

Similarly, for groups, the accessId format is group:realmName/groupUniqueId. As previously mentioned,
use the listRegistryUsers and listRegistryGroups command with the –displayAccessIds option set to true
so that you can obtain the correct format for the domain or realm that you are interested in.

Once users and groups from the trusted realms or the AllAuthenticatedInTrustedRealms special subject is
added to the authorization table of the application, it is ready to accept requests from other applications
that are using any of its trusted realms. The LTPA token validation on the receiving server first checks to
make sure that the realm is trusted. The authorization engine then checks to see if the external user
and/or the groups or the AllAuthenticatedInTrustedRealms special subject are given access to the roles
needed to access the resource. If true, access is granted.

Cross realm communication is only applicable when using the WebSphere built-in authorization. If you are
using other authorization engines including SAF for z/OS, any cross realm authorization can be achieved
by implementing custom login modules that map external users to users in its own repository.

Federating a node with security domains

When a security domain is configured in the base version and is federated to a cell, the security domain
configured at the base version is also configured for that server in the cell. The same domain security
configuration can be used by the server before and after the federation. If a base server is to be federated
to a cell, the resource assigned to the security domain should be the server scope instead of the cell
scope.

If the base server is expected to be registered with an Administrative Agent process, use the cell scope as
the resource if the intention is to have all of the servers in the base profile use this security domain.

If during federation the security domain at the base already exists at the cell level, the addNode command
fails. You can use the –excludesecuritydomains option not to include the security domain during
federation.

Chapter 19. Administering application security 1247



When the federated node is removed from a cell, the resources in that node should be removed from the
security domains. If security domains have clusters associated with them that span nodes, the nodes are
not removed. You can always remove resources from the security domains or any domains that are not
used by using scripting commands or the administrative console.

Security domains in a mixed-version environment

You should create security domains once all of the nodes have been migrated to the latest version. This is
especially true if there is a need to associate the cell with a domain. However, if you want to create
security domains in a mixed- version environment, be aware of the following:

v If a cell-wide domain is created in a mixed version setup, a domain called
PassThroughToGlobalSecurity is created automatically. All mixed clusters are assigned to this domain at
the time of the creation of the cell-wide domain. This PassThroughToGlobalSecurity domain is special in
the sense that attributes cannot be added to it, only resources can be assigned to it.

All resources assigned to the PassThroughToGlobalSecurity domain use the global security
configuration information. Whenever a node in the mixed version setup is migrated to the latest version,
the servers and clusters in these nodes are added to this domain. Applications in all of the servers and
clusters in these nodes do not use the cell-wide domain; they instead use the global security
configuration before and after migration.

If any of these servers need to use the cell-wide domain, you must remove these resources from this
PassThroughToGlobalSecurity domain. New servers and clusters that are created in the migrated node
use the cell-wide domain, not the PassThroughToGlobalSecurity domain. As a result, you have a mix of
servers and clusters, some of them using global security configuration and some using the cell-wide
domain.

v Once a cell-wide domain is created, adding any old version cluster members to a WebSphere
Application Server Version 8.5 cluster is restricted since this action makes it a mixed cluster. This
restriction also holds true when a WebSphere Application Server Version 8.5 cluster is associated with a
domain. and a previous version cluster member is added to this cluster. This restriction is needed to
avoid associating a security domain to a mixed cluster.

v If possible, you should create a cell-wide domain after all of the nodes have been migrated. In this case,
the cell-wide domain is applicable to the entire cell and not just to parts of it. This also eliminates the
need to create the PassThroughToGlobalSecurity domain and the mixed cluster scenario with security
domains.

Modifying security domains

Use the administrative console tasks or scripting commands to modify security domains. For a complete
list of administrative tasks and scripting commands, see the links in "Related tasks" at the bottom of this
document.

Once a security domain is created and associated to a set of scopes, the servers associated with this new
domain must be restarted. After the restart, the applications in the scopes associated with the new domain
use the security attributes defined in the domain.

Changes to any of the domain attributes requires the restart of all of the scopes assigned to it. If new
scopes are added they also need to be restarted. Any modifications to the domain configuration, either to
the security attributes or to the scopes, has impacts on those applications that are using the domain
configuration.

Before you make modifications to an existing domain, consider the following potential impacts. For
example, if a user registry that is configured at a domain is removed, and the servers restarted, the user
registry from the cell-wide domain (if one is defined), or the global security configuration is then used. This
can impact application authentication and authorization. Users and groups associated with an application
might no longer be valid in the new registry. Another example to consider is when JAAS configurations are
removed from a domain. Applications that rely on this are no longer be able to use the JAAS

1248 Administering WebSphere applications



configurations. Whenever a security configuration is changed it might impact your applications, so all
security configuration changes should be made with the utmost care.

Creating new multiple security domains
You can create multiple security domains in your configuration. By creating multiple security domains, you
can configure different security attributes for administrative and user applications within a cell environment.

Before you begin

Only users assigned to the administrator role can create new multiple security domains. Enable global
security in your environment before creating new multiple security domains.

Read about “Multiple security domains” on page 1233 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different applications
can use different security attributes like user registry or login configurations.

Use multiple security domains to achieve the following goals:

v Configure different security attributes for administrative and user applications within a cell

v Consolidate server configurations by managing different security configurations within a cell

v Restrict access between applications with different user registries, or configure trust relationships
between applications to support communication across registries

Perform the following steps to create a new security domain using the administrative console:

Procedure
1. Click Security > Security domains.

2. On the Security domains collection page, click New.

3. Specify a unique name for the domain. A domain name must be unique within a cell and cannot
contain an invalid character. This field is required.

4. Specify a unique description for the domain. After you click Apply you are returned to the Security
domains detail page

5. Under Assigned Scopes, assign the security domain to the entire cell or select the specific servers,
clusters, and service integration buses to include in the security domain.

6. Customize your security configuration by specifying security attributes for your new domain and by
assigning it to cell resources.

You can change security attributes such as the following:

Application Security
Specifies the settings for application security and Java 2 security. You can use the global
security settings or customize the settings for a domain.

Select Enable application security to enable or disable security this choice for user
applications. When this selection is disabled, all of the EJBs and web applications in the
security domain are no longer protected. Access is granted to these resources without user
authentication. When you enable this selection, the J2EE security is enforced for all of the
EJBs and web applications in the security domain. The J2EE security is only enforced when
Global Security is enabled in the global security configuration, (that is, you cannot enable
application security without first enabling Global Security at the global level).

Chapter 19. Administering application security 1249



Java 2 Security
Select Java 2 security to enable or disable Java 2 security at the domain level. This choice
enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

User realm

This section enables you to configure the user registry for the security domain. You can
separately configure any registry that is used at the domain level. Read about “Multiple
security domains” on page 1233 for more information.

Trust association
When you configure the trust association interceptor (TAI) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify
the interceptor list at the domain level to fit your needs. Only configure those interceptors that
are to be used at the domain level.

SPNEGO Web Authentication
The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate
HTTP requests for secured resources was introduced. This function was deprecated in
WebSphere Application Server Version 7.0. SPNEGO web authentication has taken its
place to provide dynamic reload of the SPNEGO filters and to enable fallback to the
application login method.

RMI/IIOP Security

The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version 2)
protocol properties. When you configure these attributes at the domain level, the RMI/IIOP
security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport
layer settings for CSIv2 inbound communications should be the same for both the global and
the domain levels. If they are different, the domain level attributes are applied to all of the
application in the process.

JAAS application logins
Specifies the configuration settings for the Java Authentication and Authorization Service
(JAAS) application logins. You can use the global security settings or customize the settings for
a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain only
when you need to specify a login that is used exclusively by the applications in the security
domain.

JAAS system logins
Specifies the configuration settings for the JAAS system logins. You can use the global
security settings or customize the configuration settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for

1250 Administering WebSphere applications



them in the global security configuration. Configure any of these JAAS logins at a domain only
when you need to specify a login that is used exclusively by the applications in the security
domain.

Note: For both JAAS application logins and JAAS system logins, the collections are not
populated until one is created first. You can do this by selecting customize for this
domain under JAAS application logins or JAAS system logins and then by selecting
Apply or OK.

JAAS J2C authentication
Specifies the configuration settings for the JAAS J2C authentication data. You can use the
global security settings or customize the settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain only
when you need to specify a login that is used exclusively by the applications in the security
domain.

Java Authentication SPI (JASPI)

Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication
provider. You can use the global security settings or customize the settings for a domain. To
configure JASPI authentication providers for a domain, select Customize for this domain and
then enable JASPI. Select Providers to define providers for the domain.

Note: The JASPI authentication provider can be enabled with providers configured at the
domain level. By default, all of the applications in the system have access to the JASPI
authentication providers configured at the global level. The security runtime first checks
for the JASPI authentication providers at the domain level. If it does not find them, it
then checks for them in the global security configuration. Configure JASPI
authentication providers at a domain only when the provider is to be used exclusively by
the applications in that security domain.

Authentication Mechanism Attributes

Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The
default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set
at the domain level, any token that is created in the security domain when accessing user
applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such as
getUserPrincipal( ) are qualified with the security realm (user registry) used by applications
in the security domain.

Authorization Provider

You can configure an external third party JACC (Java Authorization Contract for Containers)
provider at the domain level. Tivoli Access Manager's JACC provider can only be configured at
the global level. Security domains can still use it if they do not override the authorization
provider with another JACC provider or with the built-in native authorization.

Custom properties
Set custom properties at the domain level that are either new or different from those at the
global level. By default, all of the custom properties at the global security configuration can be

Chapter 19. Administering application security 1251



accessed by all of the applications in the cell. The security runtime code first checks for the
custom property at the domain level. If it does not find it, it then attempts to obtain the custom
property from the global security configuration.

7. Click Apply.

8. After you have saved your configuration changes, restart the server for your changes to take effect.

Deleting multiple security domains
You can delete multiple security domains from your configuration. You must remove the resources
assigned to the security domains before deleting them. Only remove those security domains that are not
needed in your security configuration.

Before you begin

Only users assigned to the administrator role can delete security domains. Enable global security in your
environment before deleting security domains.

Read about “Multiple security domains” on page 1233 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different applications
can use different security attributes like user registry or login configurations.

Perform the following steps to delete an existing security domain using the administrative console:

Note: Only delete the security domains after first removing any resources associated with them. The
servers impacted should be restarted.

Procedure
1. Click Security > Security domains.

2. On the Security domains collection page, select a domain to delete.

3. Click Delete.

Copying multiple security domains
You can copy selected multiple security domains from the domain collection to create a new domain. This
is useful if you want to create a domain that is similar to a previous domain. However, you might want to
make a few slight adjustments. When copying an existing domain, you must supply a unique domain name
for the new one.

Before you begin

Only users assigned to the administrator role can copy or create new multiple security domains. Enable
global security in your environment before copying multiple security domains.

Read about “Multiple security domains” on page 1233 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different applications
can use different security attributes like user registry or login configurations.

1252 Administering WebSphere applications



Use multiple security domains to achieve the following goals:

v Configure different security attributes for administrative and user applications within a cell

v Consolidate server configurations by managing different security configurations within a cell

v Restrict access between applications with different user registries, or configure trust relationships
between applications to support communication across registries

Perform the following steps to copy an existing security domain using the administrative console:

Procedure
1. Click Security > Security domains.

2. Optional: From Preferences, you can select the maximum number of rows to display when the
domain collection is large. The default number of rows is 20. Rows that exceed that number appear
on subsequent pages.

3. Select a domain to copy.

4. Click Copy Selected Domain... to copy an existing domain from the collection. You can optionally
select Copy Global Security.. to copy an existing domain and have it maintain its global security
settings (collection selections are ignored). A new domain name is also required if you choose this
option.

5. Specify a unique name for the domain. This field is required. A domain name must be unique within a
cell and cannot contain an invalid character.

6. Specify a unique description for the domain.

7. Click Apply. After you click Apply you are returned to the Security domains detail page

8. Under Assigned Scopes, assign the security domain to the entire cell or select the specific servers,
clusters, and service integration buses to include in the security domain.

9. Customize your security configuration by specifying security attributes for your new domain and by
assigning it to cell resources.

You can change security attributes such as the following:

Application Security
Specifies the settings for application security and Java 2 security. You can use the global
security settings or customize the settings for a domain.

Select Enable application security to enable or disable security this choice for user
applications. When this selection is disabled, all of the EJBs and web applications in the
security domain are no longer protected. Access is granted to these resources without user
authentication. When you enable this selection, the J2EE security is enforced for all of the
EJBs and web applications in the security domain. The J2EE security is only enforced when
Global Security is enabled in the global security configuration, (that is, you cannot enable
application security without first enabling Global Security at the global level).

Java 2 Security
Select Java 2 security to enable or disable Java 2 security at the domain level. This choice
enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

User realm

This section enables you to configure the user registry for the security domain. You can
separately configure any registry that is used at the domain level. Read about “Multiple
security domains” on page 1233 for more information.

Trust association
When you configure the trust association interceptor (TAI) at a domain level, the interceptors
configured at the global level are copied to the domain level for convenience. You can modify
the interceptor list at the domain level to fit your needs. Only configure those interceptors that
are to be used at the domain level.

Chapter 19. Administering application security 1253



SPNEGO Web Authentication
The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. This function was
deprecated in WebSphere Application Server 7.0. SPNEGO web authentication has
taken its place to provide dynamic reload of the SPNEGO filters and to enable fallback
to the application login method.

RMI/IIOP Security

The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version
2) protocol properties. When you configure these attributes at the domain level, the RMI/IIOP
security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport
layer settings for CSIv2 inbound communications should be the same for both the global and
the domain levels. If they are different, the domain level attributes are applied to all of the
application in the process.

JAAS application logins
Specifies the configuration settings for the Java Authentication and Authorization Service
(JAAS) application logins. You can use the global security settings or customize the settings
for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain
only when you need to specify a login that is used exclusively by the applications in the
security domain.

JAAS system logins
Specifies the configuration settings for the JAAS system logins. You can use the global
security settings or customize the configuration settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain
only when you need to specify a login that is used exclusively by the applications in the
security domain.

JAAS J2C authentication
Specifies the configuration settings for the JAAS J2C authentication data. You can use the
global security settings or customize the settings for a domain.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data
aliases can all be configured at the domain level. Be default, all of the applications in the
system have access to the JAAS logins configured at the global level. The security runtime
first checks for the JAAS logins at the domain level. If it does not find them, it then checks for
them in the global security configuration. Configure any of these JAAS logins at a domain
only when you need to specify a login that is used exclusively by the applications in the
security domain.

Java Authentication SPI (JASPI)

1254 Administering WebSphere applications



Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication
provider. You can use the global security settings or customize the settings for a domain. To
configure JASPI authentication providers for a domain, select Customize for this domain
and then enable JASPI. Select Providers to define providers for the domain.

Note: The JASPI authentication provider can be enabled with providers configured at the
domain level. By default, all of the applications in the system have access to the
JASPI authentication providers configured at the global level. The security runtime first
checks for the JASPI authentication providers at the domain level. If it does not find
them, it then checks for them in the global security configuration. Configure JASPI
authentication providers at a domain only when the provider is to be used exclusively
by the applications in that security domain.

Authentication Mechanism Attributes

Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The
configuration specified on this panel is applied only to this domain.

Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The
default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is
set at the domain level, any token that is created in the security domain when accessing user
applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such
as getUserPrincipal( ) are qualified with the security realm (user registry) used by
applications in the security domain.

Authorization Provider

You can configure an external third party JACC (Java Authorization Contract for Containers)
provider at the domain level. Tivoli Access Manager's JACC provider can only be configured
at the global level. Security domains can still use it if they do not override the authorization
provider with another JACC provider or with the built-in native authorization.

Custom properties
Set custom properties at the domain level that are either new or different from those at the
global level. By default, all of the custom properties at the global security configuration can be
accessed by all of the applications in the cell. The security runtime code first checks for the
custom property at the domain level. If it does not find it, it then attempts to obtain the custom
property from the global security configuration.

10. Click Apply.

11. After you have saved your configuration changes, restart the server for your changes to take effect.

Configuring inbound trusted realms for multiple security domains
You can configure which realms to grant inbound trust to for multiple security domains. The trust
relationship between realms is used when communicating with Lightweight Third-Party Authentication
(LTPA) tokens. Once a LTPA token is decrypted by the receiving server, the realm in the token is checked
to see if it is trusted. If it is not, the validation of the token fails. A realm represents a user registry in
WebSphere Application Server.

Before you begin

For information on cross realm communications, read the section in “Multiple security domains” on page
1233.

Only users assigned to the administrator role can configure multiple security domains. Enable global
security in your environment before configuring multiple security domains.

Chapter 19. Administering application security 1255



Perform the following steps to grant inbound trusted realms for multiple security domains using the
administrative console:

Procedure
1. Click Security > Security domains.

2. Select a domain to edit or create a new one. Under Security Attributes, click User realm.

3. Click Customize for this domain.

4. Under Related Items, select Trusted authentication realms - inbound.

5. Select Trust all realms (including those external to this cell) or Trust realms as indicated below.
If Kerberos authentication is enabled, and you have cross realms or trusted realms, you must add the
Kerberos trusted realm by selecting Trust realms as indicated below.

6. Click Apply.

What to do next

The realms you selected to trust accept messages from other trusted realms but do not accept messages
from untrusted realms. Select Add External Realm to add trust for realms that are external to this cell.

Configure security domains
Use this page to configure the security attributes of a domain and to assign the domain to cell resources.
For each security attribute, you can use the global security settings or customize settings for the domain.

To view this administrative console page, click Security > Security domains. On the Security domains
collection page, select an existing domain to configure, create a new one, or copy an existing domain.

Read about “Multiple security domains” on page 1233 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

Name
Specifies a unique name for the domain. This name can not be edited after the initial submission.

A domain name must be unique within a cell and cannot contain an invalid character.

Description
Specifies a description for the domain.

Assigned Scopes
Select to display the cell topology. You can assign the security domain to the entire cell or select the
specific clusters, nodes and service integration buses to include in the security domain.

If you select All scopes, the entire cell topology is displayed.

If you select Assigned scopes, the cell topology is displayed with those servers and clusters that are
assigned to the current domain.

The name of an explicitly assigned domain appears next to any resource. Checked boxes indicate
resources that are currently assigned to the domain. You also can select other resources and click Apply
or OK to assign them to the current domain.

A resource that is not checked (disabled) indicates that it is not assigned to the current domain and must
be removed from another domain before it can be enabled for the current domain.

If a resource does not have an explicitly-assigned domain, it uses the domain assigned to the cell. If no
domain is assigned to the cell, then the resource uses global settings.

1256 Administering WebSphere applications



Cluster members cannot be individually assigned to domains; the enter cluster uses the same domain.

Application Security:
Select Enable application security to enable or disable security for user applications. You can use the
global security settings or customize the settings for a domain.

When this selection is disabled, all of the EJBs and web applications in the security domain are no longer
protected. Access is granted to these resources without user authentication. When you enable this
selection, the J2EE security is enforced for all of the EJBs and web applications in the security domain.
The J2EE security is only enforced when Global Security is enabled in the global security configuration,
(that is, you cannot enable application security without first enabling Global Security at the global level).

Enable application security
Enables security for the applications in your environment. This type of security provides application
isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both
administrative and application security were enabled. In WebSphere Application Server Version 6.1, the
previous notion of global security were split into administrative security and application security, each of
which you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is
disabled at the target server. Administrative security is enabled, by default. Application security is disabled,
by default. To enable application security, you must enable administrative security. Application security is in
effect only when administrative security is enabled.

When this selection is disabled, all of the EJBs and web applications in the security domain are no longer
protected. Access is granted to these resources without user authentication. When you enable this
selection, the J2EE security is enforced for all of the EJBs and web applications in the security domain.
The J2EE security is only enforced when Global Security is enabled in the global security configuration,
(that is, you cannot enable application security without first enabling Global Security at the global level).

Java 2 security:
Select Use Java 2 security to enable or disable Java 2 security at the domain level or to assign or add
properties related to Java 2 security. You can use the global security settings or customize the settings for
a domain.

This choice enables or disables Java 2 security at the process (JVM) level so that all applications (both
administrative and user) can enable or disable Java 2 security.

Use global security settings
Select to specify the global security settings that are being used.

Customize for this domain
Select to specify the settings that are defined in the domain, such as options to enable application and
Java 2 security and to use realm-qualified authentication data.

Use Java 2 security to restrict application access to local resources
Select to specify whether to enable or disable Java 2 security permission checking. By default, access to
local resources is not restricted. You can choose to disable Java 2 security, even when application security
is enabled.

When the Use Java 2 security to restrict application access to local resources option is enabled and
if an application requires more Java 2 security permissions than are granted in the default policy, the

Chapter 19. Administering application security 1257



application might fail to run properly until the required permissions are granted in either the app.policy file
or the was.policy file of the application. AccessControl exceptions are generated by applications that do
not have all the required permissions.

Warn if applications are granted custom permissions
Specifies that during application deployment and application start, the security runtime issues a warning if
applications are granted any custom permissions. Custom permissions are permissions that are defined by
the user applications, not Java API permissions. Java API permissions are permissions in the java.* and
javax.* packages.

The application server provides support for policy file management. A number of policy files are available
in this product, some of them are static and some of them are dynamic. Dynamic policy is a template of
permissions for a particular type of resource. No code base is defined and no relative code base is used in
the dynamic policy template. The real code base is dynamically created from the configuration and
run-time data. The filter.policy file contains a list of permissions that you do not want an application to
have according to the J2EE 1.4 specification.

Important: You cannot enable this option without enabling the Use Java 2 security to restrict
application access to local resources option.

Restrict access to resource authentication data
This option is disabled if Java 2 security has not been enabled.

Consider enabling this option when both of the following conditions are true:

v Java 2 security is enforced.

v The application code is granted the accessRuntimeClasses WebSphereRuntimePermission permission
in the was.policy file found within the application enterprise archive (EAR) file. For example, the
application code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";

The Restrict access to resource authentication data option adds fine-grained Java 2 security
permission checking to the default principal mapping of the WSPrincipalMappingLoginModule
implementation. You must grant explicit permission to Java 2 Platform, Enterprise Edition (J2EE)
applications that use the WSPrincipalMappingLoginModule implementation directly in the Java
Authentication and Authorization Service (JAAS) login when Use Java 2 security to restrict application
access to local resources and the Restrict access to resource authentication data options are
enabled.

Information Value
Default: Disabled

User Realm:
This section enables you to configure the user registry for the security domain. You can separately
configure any registry that is used at the domain level.

When configuring a registry at the domain level you can choose to define your own realm name for the
registry. The realm name distinguishes one user registry from another. The realm name is used in multiple
places – in the Java client login panel to prompt the user, in the authentication cache, and when using
native authorization.

At the global configuration level, the system creates the realm for the user registry. In previous releases of
WebSphere Application Server, only one user registry is configured in the system. When you have multiple
security domains you can configure multiple registries in the system. For the realms to be unique in these

1258 Administering WebSphere applications



domains, configure your own realm name for a security domain. You also can choose the system to create
a unique realm name if it is certain to be unique. In the latter case, the realm name is based on the
registry that is being used.

Trust Association:
Select to specify the settings for the trust association. Trust association is used to connect reversed proxy
servers to the application servers.

Trust association enables the integration of IBM WebSphere Application Server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials that are passed by the
proxy server.

Tivoli Access Manager's trust association interceptors can only be configured at the global level. The
domain configuration can also use them, but cannot have a different version of the trust association
interceptor. Only one instance of Tivoli Access Manager's trust association interceptors can exist in the
system.

Note: The use of trust association interceptors (TAIs) for Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) authentication is deprecated. The SPNEGO web authentication panels
provide a much easier way to configure SPNEGO.

Interceptors
Select to access or to specify the trust information for reverse proxy servers.

Enable trust association
Select to enable the integration of IBM WebSphere Application Server security and third-party security
servers. More specifically, a reverse proxy server can act as a front-end authentication server while the
product applies its own authorization policy onto the resulting credentials that are passed by the proxy
server.

SPNEGO Web Authentication:
Specifies the settings for Simple and Protected GSS-API Negotiation (SPNEGO) as the web authentication
mechanism.

The SPNEGO web authentication, which enables you to configure SPNEGO for web resource
authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP requests for
secured resources was introduced. In WebSphere Application Server 7.0, this function is
deprecated. SPNEGO web authentication has taken its place to provide dynamic reload of the
SPNEGO filters and to enable fallback to the application login method.

RMI/IIOP Security:
Specifies the settings for Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP).

An Object Request Broker (ORB) manages the interaction between clients and servers, using the Internet
InterORB Protocol (IIOP). It enables clients to make requests and receive responses from servers in a
network-distributed environment.

When you configure these attributes at the domain level, the RMI/IIOP security configuration at the global
level is copied for convenience. You can change the attributes that need to be different at the domain
level. The Transport layer settings for CSIv2 inbound communications should be the same for both the
global and the domain levels. If they are different, the domain level attributes are applied to all of the
applications in the process.

Chapter 19. Administering application security 1259



When a process communicates with another process with a different realm, the LTPA authentication and
the propagation tokens are propagated to the downstream server unless that server is listed in the
outbound trusted realms list. This can be done using the Trusted authentication realms – outbound link
on the CSIv2 outbound communication panel.

CSIv2 inbound communications
Select to specify authentication settings for requests that are received and transport settings for
connections that are accepted by this server using the Object Management Group (OMG) Common
Secure Interoperability (CSI) authentication protocol.

WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for
both inbound and outbound authentication requests. For inbound requests, you can specify the type of
accepted authentication, such as basic authentication.

CSIv2 outbound communications
Select to specify authentication settings for requests that are sent and transport settings for connections
that are initiated by the server using the Object Management Group (OMG) Common Secure
Interoperability (CSI) authentication protocol.

WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for
both inbound and outbound authentication requests. For outbound requests, you can specify properties
such as type of authentication, identity assertion or login configurations that are used for requests to
downstream servers.

JAAS Application logins
Select to define login configurations that are used by JAAS.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data aliases can
all be configured at the domain level. By default, all of the applications in the system have access to the
JAAS logins configured at the global level. The security runtime first checks for the JAAS logins at the
domain level. If it does not find them, it then checks for them in the global security configuration. Configure
any of these JAAS logins at a domain only when you need to specify a login that is used exclusively by
the applications in the security domain.

For JAAS and custom properties only, once global attributes are customized for a domain they can still be
used by user applications.

Do not remove the ClientContainer, DefaultPrincipalMapping, and WSLogin login configurations because
other applications might use them. If these configurations are removed, other applications might fail.

Use global and domain-specific logins
Select to specify the settings that are defined in the domain, such as options to enable application and
Java 2 security and to use realm-qualified authentication data.

JAAS System Logins:
Specifies the configuration settings for the JAAS system logins. You can use the global security settings or
customize the configuration settings for a domain.

System Logins
Select to define the JAAS login configurations that are used by system resources, including the
authentication mechanism, principal mapping, and credential mapping

JAAS J2C Authentication Data:
Specifies the settings for the JAAS J2C authentication data. You can use the global security settings or
customize the settings for a domain.

1260 Administering WebSphere applications



Java 2 Platform, Enterprise Edition (J2EE) Connector authentication data entries are used by resource
adapters and Java DataBase Connectivity (JDBC) data sources.

Use global and domain-specific entries
Select to specify the settings that are defined in the domain, such as options to enable application and
Java 2 security and to use realm-qualified authentication data.

Java Authentication SPI (JASPI)
Specifies the configuration settings for a Java Authentication SPI (JASPI) authentication provider and
associated authentication modules. You can use the global security settings or customize the settings for a
domain. To configure JASPI authentication providers for a domain, select Customize for this domain and
then you can enable JASPI. Select Providers to create or to edit a JASPI authentication provider.

Note: The JASPI authentication provider can be enabled with providers configured at the domain level. By
default, all of the applications in the system have access to the JASPI authentication providers
configured at the global level. The security runtime first checks for the JASPI authentication
providers at the domain level. If it does not find them, it then checks for them in the global security
configuration. Configure JASPI authentication providers at a domain only when the provider is to be
used exclusively by the applications in that security domain.

Authentication Mechanism Attributes:
Specifies the various cache settings that must be applied at the domain level.

v Authentication cache settings - use to specify your authentication cache settings. The configuration
specified on this panel is applied only to this domain.

v LTPA Timeout - You can configure a different LTPA timeout value at the domain level. The default
timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set at the domain
level, any token that is created in the security domain when accessing user applications is created with
this expiration time.

v Use realm-qualified user names - When this selection is enabled, user names returned by methods
such as getUserPrincipal( ) are qualified with the security realm (user registry) used by applications in
the security domain.

Authorization Provider:
Specifies the settings for the authorization provider. You can use the global security settings or customize
the settings for a domain.

You can configure an external third party JACC (Java Authorization Contract for Containers) provider at
the domain level. Tivoli Access Manager's JACC provider can only be configured at the global level.
Security domains can still use it if they do not override the authorization provider with another JACC
provider or with the built-in native authorization.

Select either the Default authorization or External authorization using a JAAC provider. The
Configure button is only enabled when External authorization using a JAAC provider is selected.

Custom properties
Select to specify name-value pairs of data, where the name is a property key and the value is a string.

Set custom properties at the domain level that are either new or different from those at the global level. By
default, all of the custom properties at the global security configuration can be accessed by all of the
applications in the system. The security runtime code first checks for the custom property at the domain
level. If it does not find it, it then attempts to obtain the custom property from the global security
configuration.

Web Services Bindings
Click Default policy set bindings to set the domain default provider and client bindings.

Chapter 19. Administering application security 1261



External realm name
Use this page to add a WebSphere Application Server realm that is external to this cell. The realm is
initially not trusted. Use the Trusted authentication realms - inbound page to establish trust.

To view this administrative console page, click Security > Security domains. Select a domain to edit or
create a new one. Under Security Attributes, click User realm. Click Customize for this domain and then
select a Realm type. Click Configure. Under Related items, click Trusted authentication realms -
inbound or Trusted authentication realms - outbound. Click Add External Realm....

External realm name
Use to specify the name of the realm that is external to the list of realms that are available to receive trust.

Trust all realms
Use this page to configure which realms to grant inbound or outbound trust to.

The inbound trust is required to validate LTPA tokens that contain a foreign realm. The outbound trust is
required to send the credential tokens to the trusted realms. For example, if an application using realmA
needs to communicate using LTPA with an application using realmB, realmA should have realmB in its
outbound trust list and realmB should have realmA in its inbound trust list.

To view this administrative console page, click Security > Security domains. Select a domain to edit or
create a new one. Under Security Attributes, click User realm. Click Customize for this domain. Select a
realm type and then click Configure.

Under Related items, click Trusted authentication realms - inbound or Trusted authentication realms -
outbound.

Trust all realms (including those external to this cell)
Select to trust all of the realms listed on this page, including those external to the cell.

Trust realms as selected
Select to trust only those realms that you have selected from the list of realms that are available to receive
inbound trust.

Add External Realm...
Select to add realms that are external to this cell to the list of realms that are available to receive inbound
trust. When an external realm is added, it is trusted by default. If it is not trusted it is removed from the list.

Security domains collection
Security domains provide a mechanism to use different security settings for administrative applications and
user applications. They also provide the ability to support multiple security settings so different application
servers can use different security attributes like user registry or login configurations.

To view this administrative console page, click Security > Security domains.

Read about “Multiple security domains” on page 1233 for a better understanding of what multiple security
domains are and how they are supported in this version of WebSphere Application Server.

Maximum rows
Specifies the maximum number of rows that display when the collection is large. The rows that are not
displayed appear on the next page.

The default is 20. Rows that exceed the maximum number display on subsequent pages.

1262 Administering WebSphere applications



Retain filter criteria
Specifies whether to use the same filter criteria entered in the show filter function to display this page the
next time you visit it.

Copy selected domain
Select to copy a selected domain from the collection (a new name is required)

Copy global security
Select to create a domain with a copy of the global security settings (collection selections are ignored). A
domain name is required.

Authentication cache settings
Use this page to specify your authentication cache settings.

To view this administrative console page, click Security > Global security > Authentication cache
settings.

Enable authentication cache
Specifies whether to disable the authentication cache.

Leave the authentication cache enabled for performance reasons. However, you can disable the
authentication cache for debug or measurement purposes. When this choice is disabled, the performance
is impacted since whenever a user is authenticated the user registry is accessed to gather information
about the user. New tokens are then created for the user.

Information Value
Default: Enabled

Cache timeout:
Specifies the time period at which the authenticated credential in the cache expires. Verify that this time
period is less than the value for the Timeout value for forwarded credentials between servers field (the
LTPA timeout).

If the application server infrastructure security is enabled, the security cache timeout can influence
performance. The timeout setting specifies how often to refresh the security-related caches. Security
information pertaining to beans, permissions, and credentials is cached. When the cache timeout expires,
all cached information not accessed within the timeout period is purged from the cache. Subsequent
requests for the information result in a database lookup. On occasion, acquiring the information requires
invoking a Lightweight Directory Access Protocol (LDAP)-bind or native authentication. Both invocations
are relatively costly operations for performance. Determine the best trade-off for the application by looking
at usage patterns and security needs for the site.

You must consider the following effects of this value on your configuration:

v Larger authentication cache timeout values can increase the security risk. For example, you might
revoke a user in the user registry or repository. However, the revoked user can log into the
administrative console using the credential that is cached in the authentication cache until the cache is
refreshed.

v Smaller authentication cache timeout values can affect performance. When this value is smaller, the
application server accesses the user registry or repository more frequently.

v Larger numbers of entries in the authentication cache, which is due to an increased number of users,
increases the memory usage by the authentication cache. Thus, the application server might slow down
and affect performance.

Chapter 19. Administering application security 1263



You can limit the size of the authentication cache by setting the maximum cache size value. Set both the
maximum cache size and the authentication cache timeout values to balance your security risk and
performance needs.

The LTPA timeout value should not be set lower than the security cache timeout value. The LTPA timeout
value should be set later than the ORB request timeout value. However, there is no relation between the
security cache timeout value and the ORB request timeout value. For more information on the LTPA
timeout value, see the documentation about authentication mechanisms and expiration. For more
information on the ORB request timeout value, see the documentation about the Object Request Broker
service settings.

Information Value
Default: 10 minutes

Initial cache size:
Specifies the initial size of the hash table caches.

A greater number of available hash values might decrease the occurrence of hash collisions. A hash
collision results in a linear search for the hash bucket, which might decrease the retrieval time. If several
entries compose a hash table cache, create a table with a larger capacity that supports more efficient hash
entries instead of allowing automatic rehashing determine the growth of the table. Rehashing causes every
entry to move each time.

Information Value
Default: 50

Maximum cache size
Indicates the maximum size of the cache.

After this limit is reached, the least used entries are removed from the cache to make space for the new
entries.

Information Value
Default: 25000

Use basic authentication cache keys (password one-way hashed):
Caches the userName and the one-way hashed password as the key lookup in the cache.

Disable this only if you do not want this information to be stored in the cache. If this is disabled, every time
a user logs in with userName and password, the user registry is accessed, which impacts performance.

Information Value
Default: True

Authenticating users
The process of authenticating users involves a user registry and an authentication mechanism. Optionally,
you can define trust between WebSphere Application Server and a proxy server, configure single sign-on
capability, and specify how to propagate security attributes between application servers.

About this task

The following security topics are covered in this section:

1264 Administering WebSphere applications



User registries
For information on local operating system, Lightweight Directory Access Protocol (LDAP), custom
user registries, and user repositories such as virtual member manager, see “Selecting a registry or
repository.”

Trust associations
For more information on trust associations, see “Trust associations” on page 1467.

Single sign-on
For more information on single sign-on, see “Single sign-on for authentication using LTPA cookies”
on page 1473.

Security attribute propagation
For more information on propagation tokens, authorization tokens, single sign-on tokens, and
authentication tokens, see “Security attribute propagation” on page 1584.

The following information is covered in this section:

Procedure
v Configure a user registry. For more information, see “Selecting a registry or repository.”

v Configure WebSEAL or a custom trust association interceptor. For more information see, “Integrating
third-party HTTP reverse proxy servers” on page 1466.

v Configure single sign-on. For more information, see “Implementing single sign-on to minimize web user
authentications” on page 1477.

v Propagate security attributes. For more information, see “Propagating security attributes among
application servers” on page 1589.

v Configure the authentication cache. For more information, see “Configuring the authentication cache” on
page 1601.

What to do next

After completing the configuring the authentication process, you must authorize access to resources. For
more information, see “Authorizing access to resources” on page 1678.

Selecting a registry or repository
Information about users and groups reside in a user registry. In WebSphere Application Server, a user
registry authenticates a user and retrieves information about users and groups to perform security-related
functions, including authentication and authorization.

Before you begin

Note: During profile creation, either during installation or post-installation, administrative security is
enabled by default. The file-based federated user repository is configured as the active user
registry. Decide if you want a different user registry.

Before configuring the user registry or repository, decide which user registry or repository to use. You can
configure one Active default registry for the Cell.

About this task

WebSphere Application Server provides implementations that support multiple types of registries and
repositories including the local operating system registry, a stand-alone Lightweight Directory Access
Protocol (LDAP) registry, a stand-alone custom registry, and federated repositories.

Chapter 19. Administering application security 1265



With WebSphere Application Server, a user registry or a repository, such as a federated repository,
authenticates a user and retrieves information about users and groups to perform security-related functions
including authentication and authorization.

With WebSphere Application Server, a user registry or repository is used for:

v Authenticating a user using basic authentication, identity assertion, or client certificates

v Retrieving information about users and groups to perform security-related administrative functions, such
as mapping users and groups to security roles

In addition to local operating system, LDAP, and Federated repository registries, WebSphere Application
Server also provides a plug-in to support any registry by using the custom registry feature. The custom
registry feature enables you to configure any user registry that is not made available through the security
configuration panels of the WebSphere Application Server.

Configuring the correct registry or repository is a prerequisite to assigning users and groups to roles for
applications. When a user registry or repository is not configured, the local operating system registry is
used by default. If your choice of user registry is not the local operating system registry, you need to first
configure the registry or repository, which is normally done as part of enabling security, restart the servers,
and then assign users and groups to roles for all your applications.

WebSphere Application Server supports the following types of user registries:

v Federated repository

v Local operating system

Restriction: Configuring a transparent LDAP server under the local operating system registry and
having authentication of users take place through that local operating system using LDAP
is unsupported.

v Standalone Lightweight Directory Access Protocol (LDAP) registry

v Stand-alone custom registry

The UserRegistry interface is used to implement both the custom registry and the federated repository
options for the user account repository. The interface is very helpful in situations where the current user
and group information exists in some other formats, for example, a database, and cannot move to local
operating system or LDAP registries. In such a case, you can implement the UserRegistry interface so that
WebSphere Application Server can use the existing registry for all the security-related operations. The
process of implementing a custom registry is a software implementation effort, and it is expected that the
implementation does not depend on WebSphere Application Server resource management for its
operation. For example, you cannot use an Application Server data source configuration; generally you
must invoke database connections and dictate their behavior directly in your code.

Note: WebSphere Application Server has implemented a user registry proxy by using the UserRegistry
interface. However, the return values are little different from the interface. For example,
getUniqueUserId returns the uniqueID with the realm name wrapped. You cannot use the return
value to pass to getUserSecurityName, as shown in the following example:

// Retrieves the default InitialContext for this server.
javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Retrieves the local UserRegistry object.
com.ibm.websphere.security.UserRegistry reg =

(com.ibm.websphere.security.UserRegistry) ctx.lookup("UserRegistry");

// Retrieves the registry uniqueID based on the userName that is specified
// in the NameCallback.

String uniqueid = reg.getUniqueUserId(userName);
// Strip the realm name and get real uniqueID
String uid = com.ibm.wsspi.security.token.WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

// Retrieves the security name from the user registry based on the uniqueID.
String securityName = reg.getUserSecurityName(uid);

1266 Administering WebSphere applications



You can use a Service Provider Interface (SPI) for this parsing function.

After the applications are assigned users and groups and you need to change the user registries, delete
all the users and groups, including any RunAs role, from the applications, and reassign them after
changing the registry through the administrative console or by using wsadmin scripting. The following
wsadmin command, which uses Jacl, removes all of the users and groups from any application:
$AdminApp deleteUserAndGroupEntries yourAppName

where yourAppName is the name of the application. Backing up the old application is advised before
performing this operation. However, if both of the following conditions are true, you might be able to switch
the registries without having to delete the users and groups information:

v All of the user and group names, including the password for the RunAs role users, in all of the
applications match in both user registries.

v The application bindings file does not contain the access IDs which are unique for each user registry
even for the same user or group name.

By default, an application does not contain access IDs in the bindings file. These IDs are generated when
the applications start. However, if you migrated an existing application from an earlier release, or if you
used the wsadmin script to add access IDs for the applications to improve performance, you have to
remove the existing user and group information and add the information after configuring the new user
registry.

For more information on updating access IDs, see updateAccess IDs in the Commands for the AdminApp
object article.

Attention: WebSphere Application Server supports a variety of user registries and repositories on
different operating systems. During the user authentication process, you might use non-alphanumeric
characters in your user name or password. Restrictions on the use of these non-alphanumeric characters
depends on both the underlying operating system and the user registry type. For more information on
which non-alphanumeric characters are not supported, see your operating system and user registry or
repository documentation.

For a comprehensive list of the non-alphanumeric characters that are not supported, see the IBM AIX
operating system documentation.

Complete one of the following steps to configure your user registry:

Procedure
v “Configuring local operating system registries” on page 1268

v “Configuring Lightweight Directory Access Protocol user registries” on page 1271

v “Configuring stand-alone custom registries” on page 1298.

v “Managing the realm in a federated repository configuration” on page 1328

What to do next
1. If you are enabling security, make sure that you complete the remaining steps. Verify that the User

account repository on the Global security panel is set to the appropriate registry or repository. As the
final step, validate the user ID and the password by clicking Apply on the Global security panel. Save,
stop and start all WebSphere Application Servers.

2. For any changes in user registry panels to be effective, you must validate the changes by clicking
Apply on the Global security panel. After validation, save the configuration and stop and start all
WebSphere Application Servers, including the cells, nodes and all of the application servers. To avoid
inconsistencies between the WebSphere Application Server processes, make sure that any changes to
the registry or repository are done when all of the processes are running. If any of the processes are
down, force synchronization to make sure that the process can start later.

Chapter 19. Administering application security 1267



If the server or servers start without any problems, the setup is correct.

Configuring local operating system registries
Use these steps to configure local operating system registries.

Before you begin

For detailed information about using the local operating system user registry, see “Local operating system
registries” on page 1269. These steps set up security based on the local operating system user registry on
which WebSphere Application Server is installed.

In WebSphere Application Server Version 6.1, you can use an internally-generated server ID
because the Security WebSphere Common Configuration Model (WCCM) model contains a new tag,
internalServerId. You do not need to specify a server user ID and a password during security configuration
except in a mixed-cell environment. See “Administrative roles and naming service authorization” on page
1679 for more detailed information about the new internal server ID.

About this task

The following steps are needed to perform this task initially when setting up security for the first
time.

Procedure
1. Click Security > Global security.

2. Under User account repository, select Local operating system and click Configure.

3. Enter a valid user name in the Primary administrative user name field. This value is the
name of a user with administrative privileges that is defined in the registry. This user name is used to
access the administrative console or used by wsadmin.

4. Click Apply.

5. Select either the Automatically generated server identity or Server identity that is
stored in the repository option. If you select the Server identity that is stored in the repository
option, enter the following information:

Server user ID or administrative user on a Version 6.0.x node
Specify the short name of the account that is chosen in the second step.

Server user password
Specify the password of the account that is chosen in the second step.

6. Enter a valid user profile name in the Primary administrative user name field.

The Primary administrative user name specifies the user profile to use when the server authenticates
to the underlying operating system. This identity is also the user that has initial authority to access the
administrative application through the administrative console. The administrative user ID is common to
all user registries. The administrative ID is a member of the chosen registry and it has special
privileges in WebSphere Application Server. However, it does not have any special privileges in the
registry that it represents. In other words, you can select any valid user ID in the registry to use as the
administrative user ID or server user ID.

For the Primary administrative user name field, you can specify any user profile that meets this
criteria:

v The user profile has a status of *ENABLED.

v The user profile has a valid password.

v The user profile is not used as a group profile.

Important: A group profile is assigned a unique group ID number, which is not assigned to a
regular user profile. Run the DSPUSRPRF Display User Profile command to determine if

1268 Administering WebSphere applications



the user profile you want to use as the Primary administrative user name has a defined
group ID number. If the Group ID field is set to *NONE, you can use the user profile as
the Primary administrative user name.

7. Click OK.

The administrative console does not validate the user ID and password when you click OK. Validation
is only done when you click OK or Apply in the Global security panel. First, make sure that you select
Local operating system as the available realm definition in the User account repository section, and
click Set as current. If security was already enabled and you had changed either the user or the
password information in this panel, make sure to go to the Global security panel and click OK or
Apply to validate your changes. If your changes are not validated, the server might not start.

Important: Until you authorize other users to perform administrative functions, you can only access
the administrative console with the server user ID and password that you specified. For
more information, see “Authorizing access to administrative roles” on page 1745.

Results

For any changes in this panel to be effective, you need to save, stop, and start all the product servers,
including nodes and application servers. If the server comes up without any problems, the setup is correct.

After completed these steps, you have configured WebSphere Application Server to use the local
operating system registry to identify authorized users.

What to do next

Complete any remaining steps for enabling security. For more information, see “Enabling security” on page
1180.

Local operating system registries:

With the registry implementation for the local operating system, the WebSphere Application Server
authentication mechanism can use the user accounts database of the local operating system.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

If you want to use the local operating system registry to represent the principals who access
your WebSphere Application Server resources, you do not have to complete any special user registry
setup steps. The local operating system registry is used for authentication and authorization of users who
access WebSphere Application Server resources, but not for WebSphere Application Server users who
access operating system resources. WebSphere Application Server does not run under the operating
system user profile of Application Server users. Instead, WebSphere Application Server runs under the
operating system profile that is configured by the Application Server administrator.

If you want to authorize a user for any WebSphere Application Server resource, a user profile
for that user must exist in the operating system. Use the Create User Profile (CRTUSRPRF) command to
create new user IDs that can be used by WebSphere Application Server

Do not use a local operating system registry in a WebSphere Application Server environment
where application servers are dispersed across more than one machine because each machine has its
own user registry.

Chapter 19. Administering application security 1269



As mentioned previously, the access IDs taken from the user registry are used during
authorization checks. Because these IDs are typically unique identifiers, they vary from machine to
machine, even if the exact users and passwords exist on each machine.

Web client certificate authentication is not currently supported when using the local operating
system user registry. However, Java client certificate authentication does function with a local operating
user registry. Java client certificate authentication maps the first attribute of the certificate domain name to
the user ID in the user registry.

Even though Java client certificates function correctly, the following error displays in the
SystemOut.log file:

CWSCJ0337E: The mapCertificate method is not supported

The error is intended for web client certificates; however, it also displays for Java client certificates. Ignore
this error for Java client certificates.

Using either the local or the domain user registry

If you want to access users and groups from either the local or the domain user registry, instead of both,
set the com.ibm.websphere.registry.UseRegistry property. This property can be set to either local or
domain. When this property is set to local (case insensitive) only the local user registry is used. When this
property is set to domain, (case insensitive) only the domain user registry is used.

Set this property by completing the following steps to access the Custom Properties panel in the
administrative console:

1. Click Security > Global security

2. Under User account repository, click the Available realm definitions drop-down list, select Local
operating system, and click Configure.

3. Under Additional properties, click Custom properties.

You can also use wsadmin to configure this property. When the property is set, the privilege requirement
for the user who is running the product process does not change. For example, if this property is set to
local, the user that is running the process requires the same privilege, as if the property was not set.

Using system user registries

The following notes apply when you use system user registries:

Local operating system settings:

Use this page to configure local operating system registry settings.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select Local
operating system.

3. Click Configure.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Primary administrative user name:

1270 Administering WebSphere applications



Specifies the name of a user with administrative privileges that is defined in your local operating system.

The user name is used to log on to the administrative console when administrative security is enabled..

Attention: In WebSphere Application Server, Version 6.1 and above, a single user identity is required for
both administrative access and internal process communication. When migrating to Version 6.1
and above, this identity is used as the server user identity. You need to specify another user
for the administrative user identity.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments
that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Information Value
Default: Enabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication. Cells that
contain Version 6.1 or later nodes require a server user identity that is defined in the active user
repository.

Information Value
Default: Enabled

Local operating system wizard settings:

Use this security wizard page to configure local operating system registry settings.

To view this security wizard page, complete the following steps:

1. Click Security > Global security > Security configuration wizard.

2. Select your protection settings and click Next.

3. Select the Local operating system option and click Next.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your local operating system.

The user name is used to log on to the administrative console when administrative security is enabled..

Attention: In WebSphere Application Server, Version 6.1 and above, a single user identity is required for
both administrative access and internal process communication. When migrating to Version 6.1
and above, this identity is used as the server user identity. You need to specify another user
for the administrative user identity.

Configuring Lightweight Directory Access Protocol user registries
To access a user registry using the Lightweight Directory Access Protocol (LDAP), you must know a valid
user name (ID) and password, the server host and port of the registry server, the base distinguished name
(DN) and, if necessary, the bind DN and the bind password. You can choose any valid user in the user
registry that is searchable. You can use any user ID that has the administrative role to log in.

Chapter 19. Administering application security 1271



Before you begin

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

There are two different identities that are used for security purposes: the user ID for administrative
functions and the server identity. When administrative security is enabled, the user ID and password for
administrative functions is authenticated with the registry. If authentication fails, access to the
administrative console is not granted or tasks with wsadmin scripts are not completed. It is important to
choose an ID and password that do not expire or change often. If this user ID or password need to
change in the registry, make sure that the changes are performed when all the application servers are up
and running. When changes are to be made in the registry, review the article on “Standalone Lightweight
Directory Access Protocol registries” on page 1440 (LDAP) before beginning this task.

The server identity is used for internal process communication. As part of this task, you can change the
server identity from the default automatically generated ID to a server ID and password from the LDAP
repository.

Procedure
1. In the administrative console, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Enter a valid user name in the Primary administrative user name field. Typically, the user name is
the short name of the user and is defined by the user filter in the Advanced LDAP settings panel.

4. Determine whether to specify the user identity that is used for internal process communication. Cells
that contain Version 5.1 or 6.x nodes require a server user identity that is defined in the active user
repository. By default, the Automatically generated server identity option is enabled, and the
application server generates the server identity. However, you can select the Server identity that is
stored in the repository option to specify both the server identity and its associated password.

5. Select the type of LDAP server to use from the Type list. The type of LDAP server determines the
default filters that are used by WebSphere Application Server. These default filters change the Type
field to Custom, which indicates that custom filters are used. This action occurs after you click OK or
Apply in the Advanced LDAP settings panel. Choose the Custom type from the list and modify the
user and group filters to use other LDAP servers, if required.

IBM Tivoli Directory Server users can choose IBM Tivoli Directory Server as the directory type. Use
the IBM Tivoli Directory Server directory type for better performance. For a list of supported LDAP
servers, see the Supported hardware, software, and APIs website.

Attention: IBM SecureWay Directory Server has been renamed to IBM Tivoli Directory Server in
WebSphere Application Server version 6.1.

6. Enter the fully qualified host name of the LDAP server in the Host field. You can enter either the IP
address or domain name system (DNS) name.

7. Enter the LDAP server port number in the Port field. The host name and the port number represent
the realm for this LDAP server in the WebSphere Application Server cell. So, if servers in different
cells are communicating with each other using Lightweight Third Party Authentication (LTPA) tokens,
these realms must match exactly in all the cells.

The default value is 389. If multiple WebSphere Application Servers are installed and configured to
run in the same single sign-on domain, or if the WebSphere Application Server interoperates with a
previous version of the WebSphere Application Server, then it is important that the port number match

1272 Administering WebSphere applications

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921


all configurations. For example, if the LDAP port is explicitly specified as 389 in a version 5.x
configuration, and a WebSphere Application Server at version 6.0.x is going to interoperate with the
version 5.x server, then verify that port 389 is specified explicitly for the version 6.0.x server.

You can set the com.ibm.websphere.security.ldap.logicRealm custom property to change the value of
the realm name that is placed in the token. For more information, see the security custom properties
topic.

8. Enter the base distinguished name (DN) in the Base distinguished name field. The base DN
indicates the starting point for searches in this LDAP directory server. For example, for a user with a
DN of cn=John Doe, ou=Rochester, o=IBM, c=US, specify the base DN as any of the following
options, assuming a suffix of c=us:

v ou=Rochester, o=IBM, c=us

v o=IBM, c=us

v c=us

For authorization purposes, this field is case sensitive by default. Match the case in your directory
server. If a token is received (for example, from another cell or Lotus Domino) the base DN in the
server must match exactly the base DN from the other cell or Domino. If case sensitivity is not a
consideration for authorization, enable the Ignore case for authorization option.

In WebSphere Application Server, the distinguished name is normalized according to the Lightweight
Directory Access Protocol (LDAP) specification. Normalization consists of removing spaces in the
base distinguished name before or after commas and equal symbols. An example of a
non-normalized base distinguished name is o = ibm, c = us or o=ibm, c=us. An example of a
normalized base distinguished name is o=ibm,c=us.

To interoperate between WebSphere Application Server Version 6.0 and later versions, you must
enter a normalized base distinguished name in the Base Distinguished Name field. In WebSphere
Application Server, Version 6.0 or later, the normalization occurs automatically during runtime.

This field is required for all LDAP directories except the Lotus Domino Directory. The Base
Distinguished Name field is optional for the Domino server.

9. Optional: Enter the bind DN name in the Bind distinguished name field. The bind DN is required if
anonymous binds are not possible on the LDAP server to obtain user and group information. If the
LDAP server is set up to use anonymous binds, leave this field blank. If a name is not specified, the
application server binds anonymously. See the Base Distinguished Name field description for
examples of distinguished names.

10. Optional: Enter the password corresponding to the bind DN in the Bind password field.

11. Optional: Modify the Search time out value. This timeout value is the maximum amount of time that
the LDAP server waits to send a response to the product client before stopping the request. The
default is 120 seconds.

12. Ensure that the Reuse connection option is selected. This option specifies that the server should
reuse the LDAP connection. Clear this option only in rare situations where a router is used to send
requests to multiple LDAP servers and when the router does not support affinity. Leave this option
selected for all other situations.

13. Optional: Verify that the Ignore case for authorization option is enabled. When you enable this
option, the authorization check is case insensitive. Normally, an authorization check involves checking
the complete DN of a user, which is unique in the LDAP server and is case sensitive. However, when
you use either the IBM Directory Server or the Sun ONE (formerly iPlanet) Directory Server LDAP
servers, you must enable this option because the group information that is obtained from the LDAP
servers is not consistent in case. This inconsistency affects the authorization check only. Otherwise,
this field is optional and can be enabled when a case sensitive authorization check is required. For
example, you might select this option when you use certificates and the certificate contents do not
match the case of the entry in the LDAP server.

You can also enable the Ignore case for authorization option when you are using single sign-on
(SSO) between the product and Lotus Domino. The default is enabled.

Chapter 19. Administering application security 1273



14. Optional: Select the SSL enabled option if you want to use Secure Sockets Layer communications
with the LDAP server.

Important: This step will only be successful provided that the Signer certificate for the LDAP is first
added to the truststore that will be eventually used. If the Signer certificate from the
LDAP is not added to the truststore, then

v An error will be issued by the Administrative console.

v the deployment manager (DMGR) systemout.log will show the CWPKI0022E: SSL
HANDSHAKE FAILURE message indicating that the Signer certificate needs to be
added to the truststore.

To ensure an error free operation for this step, You need to first extract to a file the
Signer certificate of the LDAP and send that file to the WebSphere Application Server
machine. You can then add the certificate to the truststore being defined for the LDAP. In
this way, you are assured that the remaining actions for this step will be successful.

If you select the SSL enabled option, you can select either the Centrally managed or the Use
specific SSL alias option.

Centrally managed
Enables you to specify an SSL configuration for particular scope such as the cell, node,
server, or cluster in one location. To use the Centrally managed option, you must specify the
SSL configuration for the particular set of endpoints. The Manage endpoint security
configurations and trust zones panel displays all of the inbound and outbound endpoints that
use the SSL protocol. If you expand the Inbound or Outbound section of the panel and click
the name of a node, you can specify an SSL configuration that is used for every endpoint on
that node. For an LDAP registry, you can override the inherited SSL configuration by
specifying an SSL configuration for LDAP. To specify an SSL configuration for LDAP,
complete the following steps:

a. Click Security > SSL certificate and key management > Manage endpoint security
configurations and trust zones.

b. Expand Outbound > cell_name > Nodes > node_name > Servers > server_name >
LDAP.

Use specific SSL alias
Select the Use specific SSL alias option if you intend to select one of the SSL configurations
in the menu below the option.

This configuration is used only when SSL is enabled for LDAP. The default is
DefaultSSLSettings. You can click the name of an existing configuration to modify it or
complete the following steps to create a new SSL configuration:

a. Click Security > SSL certificate and key management.

b. Under Configuration settings, click Manage endpoint security configurations.

c. Select a Secure Sockets Layer (SSL) configuration_name for selected scopes, such as a
cell, node, server, or cluster.

d. Under Related items, click SSL configurations.

e. Click New.

15. Click OK and either Apply or Save until you return to the Global security panel.

Results

This set of steps is required to set up the LDAP user registry. This step is required as part of enabling
security in the WebSphere Application Server.

1274 Administering WebSphere applications



What to do next
1. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1194.
2. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems the setup is
correct.

Standalone LDAP registry settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and groups
reside in an external LDAP directory.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

When security is enabled and any of these properties change, go to the Global security panel and click
Apply to validate the changes.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Note: The initial profile creation configures WebSphere Application Server to use a federated repositories
security registry option with the file-based registry. This security registry configuration can be
changed to use other options, including the stand-alone LDAP registry. Instead of changing from
the federated repositories option to the stand-alone LDAP registry option under the User account
repository configuration, consider employing the federated repositories option, which provides for
LDAP configuration. Federated repositories provide a wide range of capabilities, including the ability
to have one or multiple user registries. It supports federating one or more LDAPs in addition to
file-based and custom registries. It also has improved failover capabilities, and a robust set of
member (user and group) management capabilities. Federated repositories is required when you
are using the new member management capabilities in WebSphere Portal 6.1 and above, and
Process Server 6.1 and above. The use of federated repositories is required for following LDAP
referrals, which is a common requirement in some LDAP server environments (such as Microsoft
Active Directory).

It is recommended that you migrate from stand-alone LDAP registries to federated repositories. If
you move to WebSphere Portal 6.1 and above, and or WebSphere Process Server 6.1 and above,
you should migrate to federated repositories prior to these upgrades. For more information about
federated repositories and its capabilities, read the Federated repositories topic. For more
information about how to migrate to federated repositories, read the Migrating a stand-alone LDAP
repository to a federated repositories LDAP repository configuration topic.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your user registry.

The user name is used to log onto the administrative console when administrative security is enabled.
Versions 6.1 and later require an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Chapter 19. Administering application security 1275



Attention: In WebSphere Application Server, Version 6.x, a single user identity is required for both
administrative access and internal process communication. When you migrate to Version 8.x,
this identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments
that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Information Value
Default: Enabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication. Cells that
contain Version 6.1 or later nodes require a server user identity that is defined in the active user
repository.

Information Value
Default: Enabled

Type of LDAP server:

Specifies the type of LDAP server to which you connect.

IBM SecureWay Directory Server is not supported.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Specifies the host port of the LDAP server.

If multiple application servers are installed and configured to run in the same single sign-on domain or if
the application server interoperates with a previous version, it is important that the port number match all
configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 6.1 and above
configuration, and a WebSphere Application Server at Version 8.x is going to interoperate with the Version
6.1 and above server, verify that port 389 is specified explicitly for the Version 8.x server.

Information Value
Default: 389
Type: Integer

Base distinguished name (DN):

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for
LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,
when anonymous bind can satisfy all of the required functions, bind DN and bind password are not
needed.

1276 Administering WebSphere applications



For example, for a user with a DN of cn=John Doe , ou=Rochester, o=IBM, c=US, specify the Base DN as
any of the following options: ou=Rochester, o=IBM, c=US or o=IBM c=US or c=US. For authorization purposes,
this field is case sensitive. This specification implies that if a token is received, for example, from another
cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus
Domino server exactly. If case sensitivity is not a consideration for authorization, enable the Ignore case
for authorization option. This option is required for all Lightweight Directory Access Protocol (LDAP)
directories, except for the Lotus Domino Directory, IBM Tivoli Directory Server V6.0, and Novell eDirectory,
where this field is optional.

Bind distinguished name (DN):

Specifies the DN for the application server to use when binding to the directory service.

If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)
field description for examples of distinguished names.

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Search timeout:

Specifies the timeout value in seconds for a Lightweight Directory Access Protocol (LDAP) server to
respond before stopping a request.

Information Value
Default: 120

Reuse connection:

Specifies whether the server reuses the LDAP connection. Clear this option only in rare situations where a
router is used to distribute requests to multiple LDAP servers and when the router does not support
affinity.

Information Value
Default: Enabled
Range: Enabled or Disabled

Important: Disabling the Reuse connection option causes the application server to create a new LDAP
connection for every LDAP search request. This situation impacts system performance if your
environment requires extensive LDAP calls. This option is provided because the router is not
sending the request to the same LDAP server. The option is also used when the idle
connection timeout value or firewall timeout value between the application server and LDAP is
too small.

If you are using WebSphere Edge Server for LDAP failover, you must enable TCP resets with
the Edge server. A TCP reset causes the connection to immediately closed and a backup
server to failover. For more information, see “Sending TCP resets when server is down” at
http://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/
LBguide.htm#HDRRESETSERVER and the Edge Server V2 - TCP Reset feature in PTF #2
described in: http://publibfp.dhe.ibm.com/epubs/pdf/i1032540.pdf.

Ignore case for authorization:

Specifies that a case insensitive authorization check is performed when using the default authorization.

Chapter 19. Administering application security 1277

http://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER
http://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER
http://publibfp.dhe.ibm.com/epubs/pdf/i1032540.pdf


This option is required when IBM Tivoli Directory Server is selected as the LDAP directory server.

This option is required when Sun ONE Directory Server is selected as the LDAP directory server. For
more information, see “Using specific directory servers as the LDAP server” in the documentation.

This option is optional and can be enabled when a case-sensitive authorization check is required. For
example, use this option when the certificates and the certificate contents do not match the case that is
used for the entry in the LDAP server. You can enable the Ignore case for authorization option when
using single sign-on (SSO) between the application server and Lotus Domino.

Information Value
Default: Enabled
Range: Enabled or Disabled

SSL enabled:

Specifies whether secure socket communication is enabled to the Lightweight Directory Access Protocol
(LDAP) server.

When enabled, the LDAP Secure Sockets Layer (SSL) settings are used, if specified.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java
Naming and Directory Interface (JNDI) platform.

Centrally managed configurations support one location to maintain SSL configurations rather than
spreading them across the configuration documents.

Information Value
Default: Enabled

Use specific SSL alias:

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

This option overrides the centrally managed configuration for the JNDI platform.

Standalone LDAP registry wizard settings:

Use this security wizard page to provide the basic settings to connect the application server to an existing
Lightweight Directory Access Protocol (LDAP) registry.

To view this security wizard page, click Security > Global security > Security configuration wizard. You
can modify your LDAP registry configuration by completing the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone
LDAP registry, and click Configure.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your user registry.

1278 Administering WebSphere applications



The user name is used to log onto the administrative console when administrative security is enabled.
Versions 6.1 and later require an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.x, a single user identity is required for both
administrative access and internal process communication. When you migrate to Version 8.x,
this identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Type of LDAP server:

Specifies the type of LDAP server to which you connect.

IBM SecureWay Directory Server is not supported.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Specifies the host port of the LDAP server.

If multiple application servers are installed and configured to run in the same single sign-on domain or if
the application server interoperates with a previous version, it is important that the port number match all
configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 6.1 and above
configuration, and a WebSphere Application Server at Version 8.x is going to interoperate with the Version
6.1 and above server, verify that port 389 is specified explicitly for the Version 8.x server.

Information Value
Default: 389
Type: Integer

Base distinguished name (DN):

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for
LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,
when anonymous bind can satisfy all of the required functions, bind DN and bind password are not
needed.

For example, for a user with a DN of cn=John Doe , ou=Rochester, o=IBM, c=US, specify the Base DN as
any of the following options: ou=Rochester, o=IBM, c=US or o=IBM, c=US or c=US. For authorization purposes,
this field is case sensitive. This specification implies that if a token is received, for example, from another
cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus
Domino server exactly.

Bind distinguished name (DN):

Specifies the DN for the application server to use when binding to the directory service.

If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)
field description for examples of distinguished names.

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Chapter 19. Administering application security 1279



Advanced Lightweight Directory Access Protocol user registry settings:

Use this page to configure the advanced Lightweight Directory Access Protocol (LDAP) user registry
settings when users and groups reside in an external LDAP directory.

To view this administrative page, complete the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

Default values for all the user and group related filters are already completed in the appropriate fields. You
can change these values depending on your requirements. These default values are based on the type of
LDAP server that is selected in the Standalone LDAP registry settings panel. If this type changes, for
example from Netscape to Secureway, the default filters automatically change. When the default filter
values change, the LDAP server type changes to Custom to indicate that custom filters are used. When
security is enabled and any of these properties change, go to the Global security panel and click Apply or
OK to validate the changes.

Note: The initial profile creation configures WebSphere Application Server to use a federated repositories
security registry option with the file-based registry. This security registry configuration can be
changed to use other options, including the stand-alone LDAP registry. Instead of changing from
the federated repositories option to the stand-alone LDAP registry option under the User account
repository configuration, consider employing the federated repositories option, which provides for
LDAP configuration. Federated repositories provide a wide range of capabilities, including the ability
to have one or multiple user registries. It supports federating one or more LDAPs in addition to
file-based and custom registries. It also has improved failover capabilities, and a robust set of
member (user and group) management capabilities. Federated repositories is required when you
are using the new member management capabilities in WebSphere Portal 6.1 and above, and
Process Server 6.1 and above. The use of federated repositories is required for following LDAP
referrals, which is a common requirement in some LDAP server environments (such as Microsoft
Active Directory).

It is recommended that you migrate from stand-alone LDAP registries to federated repositories. If
you move to WebSphere Portal 6.1 and above, and or WebSphere Process Server 6.1 and above,
you should migrate to federated repositories prior to these upgrades. For more information about
federated repositories and its capabilities, read the Federated repositories topic. For more
information about how to migrate to federated repositories, read the Migrating a stand-alone LDAP
repository to a federated repositories LDAP repository configuration topic.

User filter:

Specifies the LDAP user filter that searches the user registry for users.

This option is typically used for security role-to-user assignments and specifies the property by which to
look up users in the directory service. For example, to look up users based on their user IDs, specify
(&(uid=%v)(objectclass=inetOrgPerson)). For more information about this syntax, see the LDAP directory
service documentation.

Information Value
Data type: String

Group filter:

1280 Administering WebSphere applications



Specifies the LDAP group filter that searches the user registry for groups

This option is typically used for security role-to-group assignments and specifies the property by which to
look up groups in the directory service. For more information about this syntax, see the LDAP directory
service documentation.

Information Value
Data type: String

User ID map:

Specifies the LDAP filter that maps the short name of a user to an LDAP entry.

Specifies the piece of information that represents users when users display. For example, to display
entries of the object class = inetOrgPerson type by their IDs, specify inetOrgPerson:uid. This field takes
multiple objectclass:property pairs delimited by a semicolon (;).

Information Value
Data type: String

Group ID map:

Specifies the LDAP filter that maps the short name of a group to an LDAP entry.

Specifies the piece of information that represents groups when groups display. For example, to display
groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches on any object
class in this case. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).

Information Value
Data type: String

Group member ID map:

Specifies the LDAP filter that identifies user-to-group relationships.

For directory types SecureWay, and Domino, this field takes multiple objectclass:property pairs, delimited
by a semicolon (;). In an objectclass:property pair, the object class value is the same object class that is
defined in the group filter, and the property is the member attribute. If the object class value does not
match the object class in the group filter, authorization might fail if groups are mapped to security roles.
For more information about this syntax, see your LDAP directory service documentation.

For IBM Directory Server, Sun ONE, and Active Directory, this field takes multiple group attribute:member
attribute pairs delimited by a semicolon (;). These pairs are used to find the group memberships of a
user by enumerating all the group attributes that are possessed by a given user. For example, attribute
pair memberof:member is used by Active Directory, and ibm-allGroup:member is used by IBM Directory
Server. This field also specifies which property of an object class stores the list of members belonging to
the group represented by the object class. For supported LDAP directory servers, see “Supported directory
services”.

Information Value
Data type: String

Perform a nested group search:

Chapter 19. Administering application security 1281



Specifies a recursive nested group search.

Select this option if the Lightweight Directory Access Protocol (LDAP) server does not support recursive
server-side group member searches and if recursive group member search is required. It is not
recommended that you select this option to locate recursive group memberships for LDAP servers.
Application server security leverages the recursive search functionality of the LDAP server to search a
user's group memberships, including recursive group memberships. For example:

v IBM Directory Server is preconfigured by the application server security to recursively calculate a user's
group memberships using the ibm-allGroup attribute.

v SunONE directory server is preconfigured to calculate nested group memberships using the nsRole
attribute.

Information Value
Data type: String

Kerberos user filter:

Specifies the Kerberos user filter value. This value can be modified when Kerberos is configured and is
active as one of the preferred authentication mechanisms.

Information Value
Data type: String

Certificate map mode:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or
CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the
mapping.

Information Value
Data type: String

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the
client certificate to entries in the LDAP registry.

If more than one LDAP entry matches the filter specification at runtime, authentication fails because the
result is an ambiguous match. The syntax or structure of this filter is:
(&(uid=${SubjectCN})(objectclass=inetOrgPerson)). The left side of the filter specification is an LDAP
attribute that depends on the schema that your LDAP server is configured to use. The right side of the
filter specification is one of the public attributes in your client certificate. The right side must begin with a
dollar sign ($) and open bracket ({) and end with a close bracket (}). You can use the following certificate
attribute values on the right side of the filter specification. The case of the strings is important:
v ${UniqueKey}
v ${PublicKey}
v ${IssuerDN}
v ${Issuer<xx>}

where <xx> is replaced by the characters that represent any valid component of the Issuer
Distinguished Name. For example, you might use ${IssuerCN} for the Issuer Common Name.

v ${NotAfter}
v ${NotBefore}
v ${SerialNumber}
v ${SigAlgName}

1282 Administering WebSphere applications



v ${SigAlgOID}
v ${SigAlgParams}
v ${SubjectDN}
v ${Subject<xx>}

where <xx> is replaced by the characters that represent any valid component of the Subject
Distinguished Name. For example, you might use ${SubjectCN} for the Subject Common Name.

v ${Version}

Information Value
Data type: String

Configuring Lightweight Directory Access Protocol search filters:

Use this topic to configure the LDAP search filters. These steps are required to modify existing user and
group filters for a particular LDAP directory type, and also to set up certificate filters to map certificates to
entries in the LDAP server.

Before you begin

WebSphere Application Server uses Lightweight Directory Access Protocol (LDAP) filters to search and
obtain information about users and groups from an LDAP directory server. A default set of filters is
provided for each LDAP server that the product supports. You can modify these filters to fit your LDAP
configuration. After the filters are modified and you click OK or Apply the directory type in the Standalone
LDAP registry panel changes to custom, which indicates that custom filters are used. Also, you can
develop filters to support any additional type of LDAP server. The effort to support additional LDAP
directories is optional and other LDAP directory types are not supported. Complete the following steps in
the administrative console.

Procedure

1. Click Security > Global security.

2. Under User account repository, select Standalone LDAP registry and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

4. Modify the user filter, if necessary. The user filter is used for searching the registry for users and is
typically used for the security role-to-user assignment. The filter is also used to authenticate a user
with the attribute that is specified in the filter. The filter specifies the property that is used to look up
users in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the user,
must be a unique key. Two LDAP entries with the same object class cannot have the same short
name. To look up users based on their user IDs (uid) and to use the inetOrgPerson object class,
specify the following syntax:

(&(uid=%v)(objectclass=inetOrgPerson)

For more information about this syntax, see the “Using specific directory servers as the LDAP server”
on page 1286 documentation.

5. Modify the Kerberos user filter, if necessary. The Kerberos user filter name is used for searching the
registry for the Kerberos principal name. Specify the LDAP attribute that holds the Kerberos principal
name.

IBM Lotus Domino default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=Person))

IBM SecureWay Directory Server default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=ePerson))

Chapter 19. Administering application security 1283



Microsoft Active Directory default krbuser filter:
(&(userprincipalname=%v)(objectcategory=user))

Sun Java System Directory Server default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=inetOrgPerson))

Novell eDirectory default krbuser filter:
(&(krbPrincipalName=%v)(objectcategory=Person))

6. Optional: If your using Federated Repositories, modify the Kerberos attribute name if necessary. The
Kerberos attribute name is used for searching the registry for Kerberos principal. Specify the LDAP
attribute that holds the Kerberos principal name.

IBM Lotus Domino default krbuser filter:
krbPrincipalName

IBM SecureWay Directory Server default krbuser filter:
krbPrincipalName

Microsoft Active Directory default krbuser filter:
userprincipalname

Sun Java System Directory Server default krbuser filter:
krbPrincipalName

Novell eDirectory default krbuser filter:
krbPrincipalName

7. Modify the group filter, if necessary. The group filter is used in searching the registry for groups and is
typically used for the security role-to-group assignment. Also, the filter is used to specify the property
by which to look up groups in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the group,
must be a unique key. Two LDAP entries with the same object class cannot have the same short
name. To look up groups based on their common names (CN) and to use either the groupOfNames
object class or the groupOfUniqueNames object class, specify the following syntax:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

For more information about this syntax, see the “Using specific directory servers as the LDAP server”
on page 1286 documentation.

8. Modify the user ID map, if necessary. This filter maps the short name of a user to an LDAP entry and
specifies the piece of information that represents users when these users are displayed with their
short names. For example, to display entries of object class = inetOrgPerson by their IDs, specify
inetOrgPerson:uid. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).
To provide a consistent value for methods like the getCallerPrincipal method and the getUserPrincipal
method, the short name that is obtained by using this filter is used. For example, the CN=Bob Smith,
ou=austin.ibm.com, o=IBM, c=US user can log in using any attributes that are defined, for example,
email address, social security number, and so on, but when these methods are called, the bob user
ID is returned no matter how the user logs in.

Note: Only the getUserDisplayName API honors the user ID map.

9. Modify the group ID map filter, if necessary. This filter maps the short name of a group to an LDAP
entry and specifies the piece of information that represents groups when groups display. For example,
to display groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches
on any object class in this case. This field takes multiple objectclass:property pairs, delimited by a
semicolon (;).

10. Modify the group member ID map filter, if necessary. This filter identifies user-to-group memberships.
For SecureWay, and Domino directory types, this field is used to query all the groups that match the
specified object classes to see if the user is contained in the specified attribute. For example, to get
all the users that belong to groups with the groupOfNames object class and the users that are
contained in the member attributes, specify groupOfNames:member. This syntax, which is a property of

1284 Administering WebSphere applications



an object class, stores the list of members that belong to the group that is represented by the object
class. This field takes multiple objectclass:property pairs that are delimited by a semicolon (;). For
more information about this syntax, see the “Using specific directory servers as the LDAP server” on
page 1286.

For the IBM Tivoli Directory Server, Sun ONE, and Active Directory, this field is used to query all
users in a group with the information that is stored in the user object. For example, the
memberof:member filter (for Active Directory) is used to get the memberof attribute of the user object
to obtain all the groups to which the user belongs. The member attribute is used to get all the users
in a group that use the Group object. Using the User object to obtain the group information improves
performance.

11. Select the Perform a nested group search option if your LDAP server does not support recursive
server-side searches.

12. Modify the Certificate map mode, if necessary. You can use the X.590 certificates for user
authentication when LDAP is selected as the registry. This field is used to indicate whether to map
the X.509 certificates into an LDAP directory user by EXACT_DN or CERTIFICATE_FILTER. If
EXACT_DN is selected, the DN in the certificate must exactly match the user entry in the LDAP
server, including case and spaces.

Select the Ignore case for authorization option on the Standalone LDAP registry settings to make
the authorization case insensitive. To access the Standalone LDAP registry settings panel, complete
the following steps:

a. Click Security > Global security.

b. Under User account repository, click the Available realm definitions drop-down list,
selectStandalone LDAP registry.

13. If you select CERTIFICATE_FILTER, specify the LDAP filter for mapping attributes in the client
certificate to entries in LDAP. If more than one LDAP entry matches the filter specification at run time,
authentication fails because an ambiguous match results. The syntax or structure of this filter is: LDAP
attribute=${Client certificate attribute} (for example, uid=${SubjectCN}).

The left side of the filter specification is an LDAP attribute that depends on the schema that your
LDAP server is configured to use. The right side of the filter specification is one of the public
attributes in your client certificate. Note that the right side must begin with a dollar sign ($), open
bracket ({), and end with a close bracket (}). Use the following certificate attribute values on the right
side of the filter specification. The case of the strings is important.
v ${UniqueKey}
v ${PublicKey}
v ${IssuerDN}
v ${Issuer<xx>}

where <xx> is replaced by the characters that represent any valid component of the Issuer
Distinguished Name. For example, you might use ${IssuerCN} for the Issuer Common Name.

v ${NotAfter}
v ${NotBefore}
v ${SerialNumber}
v ${SigAlgName}
v ${SigAlgOID}
v ${SigAlgParams}
v ${SubjectDN}
v ${Subject<xx>}

where <xx> is replaced by the characters that represent any valid component of the Subject
Distinguished Name. For example, you might use ${SubjectCN} for the Subject Common Name.

v ${Version}

To enable this field, select CERTIFICATE_FILTER for the certificate mapping.

gotcha: Subject alternative names (SANs) are not supported as certificate filter items.

14. Click Apply.

Chapter 19. Administering application security 1285



When any LDAP user or group filter is modified in the Advanced LDAP Settings panel click Apply.
Clicking OK navigates you to the Standalone LDAP registry panel, which contains the previous LDAP
directory type, rather than the custom LDAP directory type. Clicking OK or Apply in the Standalone
LDAP registry panel saves the back-level LDAP directory type and the default filters of that directory.
This action overwrites any changes to the filters that you made. To avoid overwriting changes, you
can take either of the following actions:
v Click Apply in the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings

panel. Click Security > Global security and change the User account repository type to
Stand-alone custom registry.

v Select Custom type from the Standalone LDAP registry panel. Click Apply and then change the
filters by clicking the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings
panel. After you complete your changes, click Apply or OK.

The validation of the changes does not take place in this panel. Validation is done when you click OK
or Apply on the Global security panel. If you are in the process of enabling security for the first time,
complete the remaining steps and go to the Global security panel. Select Standalone LDAP registry
as the user account repository. If security is already enabled and any information on this panel
changes, go to the Global security panel and click OK or Apply to validate your changes. If your
changes are not validated, the server might not start.

Results

These steps result in the configuration of the LDAP search filters. These steps are required to modify
existing user and group filters for a particular LDAP directory type. The steps are also used to set up
certificate filters to map certificates to entries in the LDAP server.

What to do next
1. Validate this setup by clicking OK or Apply on the Global security panel.
2. Save, stop, and start all the product servers, including the cell, nodes and all of the application servers

for any changes in this panel to become effective.
3. After the server starts, go through all the security-related tasks (getting users, getting groups, and so

on) to verify that the changes to the filters function.

Using specific directory servers as the LDAP server:

This article provides important information about the directory servers that are supported as Lightweight
Directory Access Protocol (LDAP) servers in WebSphere Application Server.

Before you begin

Microsoft Active Directory forests are not supported with the stand-alone LDAP Registry. The Federated
Repository Registry, when configured to use an Active Directory LDAP does support the use of forests.

About this task

For a list of supported LDAP servers, refer to the Supported hardware and software website.

It is expected that other LDAP servers follow the LDAP specification. Support is limited to these specific
directory servers only. You can use any other directory server by using the custom directory type in the list
and by filling in the filters that are required for that directory.

To improve performance for LDAP searches, the default filters for IBM Tivoli Directory Server, Sun ONE,
and Active Directory are defined such that when you search for a user, the result contains all the relevant
information about the user (user ID, groups, and so on). As a result, the product does not call the LDAP
server multiple times. This definition is possible only in these directory types, which support searches
where the complete user information is obtained.

1286 Administering WebSphere applications

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921


If you use the IBM Directory Server, select the Ignore case for authorization option. This option is
required because when the group information is obtained from the user object attributes, the case is not
the same as when you get the group information directly. For the authorization to work in this case,
perform a case insensitive check and verify the requirement for the Ignore case for authorization option.

v Using Directory Services as the LDAP server

Support for groups that contain other groups or nested groups depends upon the specific versions of
WebSphere Application Server and LDAP. For more information, see “Dynamic groups and nested
group support for LDAP” on page 1441.

v Using IBM Tivoli Directory Server as the LDAP server

To use IBM Tivoli Directory Server, formerly IBM Directory Server, select IBM Tivoli
Directory Server as the directory type.

The difference between these two types is group membership lookup. It is recommended that you
choose the IBM Tivoli Directory Server for optimum performance during runtime. In the IBM Tivoli
Directory Server, the group membership is an operational attribute. With this attribute, a group
membership lookup is done by enumerating the ibm-allGroups attribute for the entry. All group
memberships, including the static groups, dynamic groups, and nested groups, can be returned with the
ibm-allGroups attribute.

WebSphere Application Server supports dynamic groups, nested groups, and static groups in IBM Tivoli
Directory Server using the ibm-allGroups attribute. To utilize this attribute in a security authorization
application, use a case-insensitive match so that attribute values returned by the ibm-allGroups attribute
are all in uppercase.

Important: It is recommended that you do not install IBM Tivoli Directory Server Version 6.0 on the
same machine that you install Version 8.5. IBM Tivoli Directory Server Version 6.0 includes
WebSphere Application Server, Express Version 5.1.1, which the directory server uses for
its administrative console. Install the Web Administration tool Version 6.0 and WebSphere
Application Server, ExpressVersion 5.1.1, which are both bundled with IBM Tivoli Directory
Server Version 6.0, on a different machine from Version 8.5. You cannot use Version 8.5 as
the administrative console for IBM Tivoli Directory Server. If IBM Tivoli Directory Server
Version 6.0 and Version 8.5 are installed on the same machine, you might encounter port
conflicts.

If you must install IBM Tivoli Directory Server Version 6.0 and Version 8.5 on the same
machine, consider the following information:

– During the IBM Tivoli Directory Server installation process, you must select both the
Web Administration tool and WebSphere Application Server, Express Version 5.1.1.

– Install Version 8.5.

– When you install Version 8.5, change the port number for the application server.

– You might need to adjust the WebSphere Application Server environment variables on
Version 8.5 for WAS_HOME and WAS_INSTALL_ROOT (or APP_SERVER_ROOT for
IBM i). To change the variables using the administrative console, click Environment >
WebSphere Variables.

v Using a Lotus Domino Enterprise Server as the LDAP server

If you select the Lotus Domino Enterprise Server Version 6.5.4 or Version 7.0 and the attribute short
name is not defined in the schema, you can take either of the following actions:
– Change the schema to add the short name attribute.
– Change the user ID map filter to replace the short name with any other defined attribute (preferably

to UID). For example, change person:shortname to person:uid.

The userID map filter is changed to use the uid attribute instead of the shortname attribute as the
current version of Lotus Domino does not create the shortname attribute by default. If you want to use
the shortname attribute, define the attribute in the schema and change the userID map filter.

User ID Map : person:shortname

Chapter 19. Administering application security 1287



v Using Sun ONE Directory Server as the LDAP server

You can select Sun ONE Directory Server for your Sun ONE Directory Server system. In Sun ONE
Directory Server, the object class is the default groupOfUniqueName when you create a group. For
better performance, WebSphere Application Server uses the User object to locate the user group
membership from the nsRole attribute. Create the group from the role. If you want to use the
groupOfUniqueName attribute to search groups, specify your own filter setting. Roles unify entries.
Roles are designed to be more efficient and easier to use for applications. For example, an application
can locate the role of an entry by enumerating all the roles that are possessed by a given entry, rather
than selecting a group and browsing through the members list. When using roles, you can create a
group using a:

– Managed role

– Filtered role

– Nested role

All of these roles are computable by the nsRole attribute.

v Using Microsoft Active Directory server as the LDAP server

To use Microsoft Active Directory as the LDAP server for authentication with WebSphere Application
Server you must take specific steps. By default, Microsoft Active Directory does not permit anonymous
LDAP queries. To create LDAP queries or to browse the directory, an LDAP client must bind to the
LDAP server using the distinguished name (DN) of an account that has the authority to search and read
the values of LDAP attributes, such as user and group information, needed by the Application Server. A
group membership search in the Active Directory is done by enumerating the memberof attribute for a
given user entry, rather than browsing through the member list in each group. If you change the default
behavior to browse each group, you can change the Group Member ID Map field from
memberof:member to group:member.

The following steps describe how to set up Microsoft Active Directory as your LDAP server.

Procedure

1. Determine the full distinguished name (DN) and password of an account in the administrators group.

For example, if the Active Directory administrator creates an account in the Users folder of
the Active Directory Users and Computers Windows control panel and the DNS domain is ibm.com, the
resulting DN has the following structure:

cn=<adminUsername>, cn=users, dc=ibm,
dc=com

2. Determine the short name and password of any account in the Microsoft Active Directory.

3. Use the WebSphere Application Server administrative console to set up the information that is needed
to use Microsoft Active Directory.

a. Click Security > Global security.

b. Under User account repository, select Standalone LDAP registry and click Configure.

c. Set up LDAP with Active Directory as the type of LDAP server. Based on the information that is
determined in the previous steps, you can specify the following values on the LDAP settings panel:

Primary administrative user name
Specify the name of a user with administrative privileges that is defined in the registry. This
user name is used to access the administrative console or used by wsadmin.

Type Specify Active Directory

Host Specify the domain name service (DNS) name of the machine that is running Microsoft
Active Directory.

Base distinguished name (DN)
Specify the domain components of the DN of the account that is chosen in the first step.
For example: dc=ibm, dc=com

1288 Administering WebSphere applications



Bind distinguished name (DN)
Specify the full distinguished name of the account that is chosen in the first step. For
example: cn=adminUsername, cn=users, dc=ibm, dc=com

Bind password
Specify the password of the account that is chosen in the first step.

d. Click OK and Save to save the changes to the master configuration.

4. Click Security > Global security.

5. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

6. Select either the Automatically generated server identity or Server identity that is stored in the
repository option. If you select the Server identity that is stored in the repository option, enter the
following information:

Server user ID or administrative user on a Version 6.0.x node
Specify the short name of the account that is chosen in the second step.

Server user password
Specify the password of the account that is chosen in the second step.

7. Optional: Set ObjectCategory as the filter in the Group member ID map field to improve LDAP
performance.

a. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP)
user registry settings .

b. Add ;objectCategory:group to the end of the Group member ID map field.

8. Click OK and Save to save the changes to the master configuration.

9. Stop and restart the administrative server so that the changes take effect.

Adding users to the Lightweight Directory Access Protocol user registry:

You can use the Lightweight Directory Access Protocol (LDAP) user registry with any of the authentication
mechanisms supported by WebSphere Application Server. Therefore, it is necessary to add users into the
LDAP directory that you want to have authorization to access Application Server resources.

About this task

This information in this article is specific to the iSeries Directory Services product.

A variety of methods are available to add users. However, the easiest way is to create an LDAP Data
Interchange Format (LDIF) file. The file contains the set of users to add into the directory. The file is used
by the LDAP utilities, such as idsldapmodify. You can run these utilities from either the operating system
or from a workstation. If you run these LDAP utilities from the operating system, your LDIF file must reside
in the integrated file system.

Complete the following steps to add users to the LDAP user registry:

Procedure

1. Create an LDIF file and save it in the integrated file system. Use either the Edit File (EDTF) utility or
your workstation text editor to create the file. Save the file in the integrated file system either by
mapping a drive or using the file transfer protocol (FTP).

For WebSphere Application Server and LDAP directory services, create entries in the directory that
correspond to the ePerson schema definition.

A simple ePerson LDIF entry resembles the following example:
dn: cn=John Doe, ou=Rochester, o=IBM, c=US
objectclass: person
objectclass: inetOrgPerson
objectclass: top

Chapter 19. Administering application security 1289



objectclass: organizationalPerson
objectclass: ePerson
cn: John Doe
sn: Doe
uid: jdoe
userpassword: secretpass

This LDIF entry defines an ePerson for user John Doe. The user identification (uid) for John is set to
jdoe and his password is set to secretpass. This entry resides within the Rochester organizational unit,
which is within the IBM organization in the United States. Each of the ou, o, and c containing entries
are defined before this ePerson entry is defined. You can define a series of LDIF entries in the same
file to define Lightweight Third Party Authentication (LTPA) users for WebSphere Application Server.

If you do not specify a value for the userpassword attribute, the LDAP server attempts to authenticate
LTPA users with the user profile for the local operating system that is identified by the uid attribute
value. This action might be desirable if users have user profiles for the operating system and do not
want to manage passwords in both the operating system user registry and the LDAP directory.

When you create an ePerson entry, make sure that the cn and uid attributes each have a unique
value. Do not create two entries that have the same value for the cn and uid attributes.

Important: If you have a large user registry, login performance might be severely impacted if the
Group Member ID Map property is left at its default value, which is both
groupOfNames:member and groupOfUniqueNames:uniqueMember.

To address this performance problem, specify one of these object classes and not both. You must then
exclusively use the selected object class to implement groups in the user registry.

2. Import the LDIF file entries into your directory on the server. Use the LDAP ldapadd utility in Qshell
Interpreter (QSH) or from a workstation.

What to do next

For more information on importing LDIF entries, see the Directory Services documentation in the
Information Centers for IBM i 6.1 and 7.1.

Locating user group memberships in a Lightweight Directory Access Protocol registry:

You can configure WebSphere Application Server security to use Lightweight Directory Access Protocol
(LDAP) servers. The LDAP specifications allow for different mechanisms to define group memberships.
Depending on your LDAP server implementation, you can use methods to determine group memberships.
WebSphere Application Server can search group memberships directly or indirectly. Also, you can
configure the product to search one or more static groups, recursive or nested groups, and dynamic
groups for some Lightweight Directory Access Protocol (LDAP) servers.

Procedure

v Evaluate group memberships.

– Static group membership: All LDAP server implementations support static group membership. The
group object contains a list of users or groups that are members of the group. To determine the
groups in which a user is a member, you must get the list of all groups, and then query each group
in turn to see if the user is a member of that group. This operation results in (0)zero groups and
does not scale well.

Several LDAP servers enable user objects in the LDAP server to contain information about the
groups to which they belong. Examples of LDAP servers that support direct group searches include
Microsoft Active Directory Server and the owner of eDirectory.

– Dynamic group memberships

Some user group memberships are computable from attributes within the user object. IBM Directory
Server and Sun ONE Directory Server are two examples of LDAP servers that support dynamic
group membership. In some LDAP servers, you can use an attribute to include a user's dynamic
group memberships, nesting group memberships, and static group memberships to determine all the
group memberships from a single attribute.

1290 Administering WebSphere applications



For example, in IBM Directory Server, you can return all group memberships including the static
groups, dynamic groups, and nested groups using the ibm-allGroups attribute. In the Sun ONE
directory server you can use the nsRole attribute to calculate, all roles, including managed roles,
filtered roles, and nested roles. If an LDAP server has such an attribute in a User object to include
dynamic groups, nested groups, and static groups, you can configure WebSphere Application Server
security to use this attribute to determine these groups.

Depending on the implementation, and LDAP server can caluculate dynamic group membership. In
this case, this dynamic computation is performed entirely by the LDAP server under a single LDAP
query and is invisible to WebSphere Application Server. While this approach is not as efficient as
direct groups, server-side dynamic queries are more efficient than determining group membership
using static group queries.

Dynamic group membership, when it is supported by the LDAP server, is frequently reflected back to
the LDAP client, which is the WebSphere Application Server. In this configuration, WebSphere
Application Server is required to compose the appropriate dynamic query against LDAP for each
group. This operation results in 0(zero) groups and does not scale well.

Tips:

– Use the efficient direct group membership where possible.

– Use the relatively efficient dynamic group membership where the LDAP computes membership within
a single query.

– Use static group membership, or client side dynamic group membership as a secondary alternative.
This option only performs well on systems where the number of groups within the LDAP server is
"small".

The configurations for the supported, listed LDAP servers are pre-defined to use the optimal group
membership mechanisms. They assume that the standard object types and schemas for that LDAP
vendor are in use on the LDAP server.

v Evaluate the LDAP registry configuration.

– Standalone LDAP registry

If you are configuring an LDAP server outside of the list of pre-configured types, you must configure
the appropriate value in the Group Member ID map field on the Advanced LDAP Settings panel
using the following methods.

- If you use static group membership, you must specifiy objectclass:attribute pairs. If the objectclass
for the group object is, groupOfUniquePersons, and within that objectclass, members are listed
as persons, then the static group membership Group Member ID map is
groupOfUniquePersons:persons.

- If direct group membership is used, attributes exist in the objectclass, you must use
attribute:attribute pairs. For example, if the objectclass for the user is userand the objectclasst
contains attributes called ingroup, which contains each group membership, then the direct group
membership Group Member ID map is ingroup:member.

– LDAP Registry within a Federated Repositories Registry

If you are configuring an LDAP server outside of the list of pre-configured types, you must configure
the appropriate value in the Group attribute definition properties for the repository.

- If static group membership is used, you must specify the name of the object class, and the
attribute that is used for indicating membership in Group attribute definition -> Member
attributes. If the group objectclass for the user is, groupOfUniquePersons, and within that
objectclass, members are listed as persons, then the static group Member attributes property is
set follows:

1. In the administrative console, click Security > Global security.

2. Under Available realm definitions, select Federated repositories, and then Configure. In a
multiple security domain environment, click Security domains > domain_name. Under
Security Attributes, expand User Realm, and click Customize for this domain. Select the
Realm type as Federated repositories and then click Configure.

Chapter 19. Administering application security 1291



3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is
preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Member attributes.

7. Click New to specify a new member attribute.

Set the Name of member attribute field to persons

Set the Object class field to groupOfUniquePersons

When you finish adding or updating your federated repository configuration, go to the Security >
Global security panel and click Apply to validate the changes.

- If direct group membership is used, then attributes exist in the objectclass for the user and you
must use the attribute. For example, if the objectclass for the user is user, and it contains
attributes called ingroup that contain each group membership, then you specify the direct group
membership in the Group attribute definition property for the repository. Perform the following
steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is
preconfigured.

5. Under Additional properties, click Group attribute definition.

Set the Name of group membership attribute field to ingroup.

When you finish adding or updating your federated repository configuration, go to the Security >
Global security panel and click Apply to validate the changes.

v Evaluate Nested Groups.

– Nested Groups

Depending on the LDAP server implementation, groups can contain only users, or can contain other
groups, which is known as a nested group. You configure WebSphere Application Server to properly
discover all groups by following this nesting as it applies to either a stand-alone LDAP registry or a
LDAP Registry within a Federated Repositories Registry.

- Standalone LDAP Registry The stand-alone LDAP registry default setting performs only a single
group membership query. If the groups returned are in fact subgroups of other groups, you must
enable the Perform a nested group search property on the Advanced LDAP Settings panel of
the LDAP registry as follows:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP)
user registry settings.

Put a check mark in the Perform a nested group search check box.

- LDAP Registry within a Federated Repositories Registry Within Federated repositories, you
must configure what you expect the results of the query to return. Based on this information, the
Federated repository makes the appropriate calls to establish all group membership. If the LDAP
server returns all nested group information within a single direct group query, then you set the
Scope of group membership attribute property in the group attribute definition to Nested. as
follows:

1. In the administrative console, click Security > Global security.

1292 Administering WebSphere applications



2. Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is
preconfigured.

5. Under Additional properties, click Group attribute definition.

Set the Scope of group membership attribute property in the group attribute definition to
Nested.

- If the LDAP server returns only the direct membership, then the registry must then make
subsequent queries to establish complete membership. To force the Federated Repository to issue
subsequent queries, set the Scope of group membership attribute property in the Group
attribute definition for the repository to Direct.

Results

While using the direct method, dynamic groups, recursive groups, and static groups can be returned as
multiple values of a single attribute. For example, in IBM Directory Server all group memberships,
including the static groups, dynamic groups, and nested groups, can be returned using the ibm-allGroups
attribute. In Sun ONE, all roles, including managed roles, filtered roles, and nested roles, are calculated
using the nsRole attribute. If an LDAP server can use the nsRole attribute, dynamic groups, nested
groups, and static groups are all supported by WebSphere Application Server.

Some LDAP servers do not have recursive computing functionality. For example, although Microsoft Active
Directory server has direct group search capability using the memberOf attribute, this attribute lists the
groups beneath, which the group is directly nested only and does not contain the recursive list of nested
predecessors. The Lotus Domino LDAP server only supports the indirect method to locate the group
memberships for a user. You cannot obtain recursive group memberships from a Domino server directly.
For LDAP servers without recursive searching capability, WebSphere Application Server security provides
a recursive function that is enabled by clicking Perform a Nested Group Search in the Advanced LDAP
user registry settings. Select this option only if your LDAP server does not provide recursive searches and
you want a recursive search.

Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server:

Configure dynamic and nested groups to simplify WebSphere Application Server security management and
increase its effectiveness and flexibility.

Before you begin

To use dynamic and nested groups with WebSphere Application Server security, you must be running
WebSphere Application Server Version 6.1 or later. Refer to “Dynamic groups and nested group support
for LDAP” on page 1441 for more information on this topic.

Procedure

1. In the administrative console for WebSphere Application Server, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Select SunONE for the type of LDAP server.

4. Select the Ignore case for authorization option.

5. Under Additional Properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

6. Change the Group filter setting to &(cn=%v)(objectclass=ldapsubentry)).

7. Change the Group member ID map setting to nsRole:nsRole.

Chapter 19. Administering application security 1293



8. Click Apply or OK to validate the changes.

Configuring dynamic and nested group support for the IBM Tivoli Directory Server:

Configure dynamic and nested groups to simplify WebSphere Application Server security management and
increase its effectiveness and flexibility.

Before you begin

When creating groups, ensure that nested and dynamic group memberships work correctly.

Procedure

1. In the administrative console for WebSphere Application Server, click Security > Global security.

2. Under User account repository, click Standalone LDAP registry, and click Configure.

3. Select IBM Tivoli Directory Server for the type of LDAP server.

4. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

5. Change the Group filter value to (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs))).

6. Change the Group member ID map value to ibm-allGroups:member;ibm-allGroups:uniqueMember.

7. Click Apply or OK to validate the changes.

8. Verify that Auxiliary object class field on the Add an LDAP entry panel for your IBM Tivoli Directory
server has the appropriate value. When you create a nested group, the Auxiliary object class value is
ibm-nestedGroup. When you create a dynamic group, the Auxiliary object class value is
ibm-dynamicGroup.

Configuring multiple LDAP servers for user registry failover:

WebSphere Application Server security can be configured to attempt failovers between multiple
Lightweight Directory Access Protocol (LDAP) hosts.

Before you begin

The multiple LDAP servers involved in the failover can be replicas that are replicated from the same
master LDAP server, or they can be any LDAP host with the same schema. That is any LDAP host that
contains data that is imported from the same LDAP data interchange format (LDIF) file.

Note: When WebSphere Application Server attempts failovers between multiple Lightweight Directory
Access Protocol (LDAP) hosts, system properties are exchanged. WebSphere Application Server
Version 6.1.0 manages the SSL configuration and these system properties. You cannot expect to
set system properties yourself and expect the failover to succeed.

Procedure

1. Start the deployment manager process.

a. Start the Command Prompt application.

b. Change directories to profile_root/bin.

c. Enter startManager.

2. Start the wsadmin Command Prompt application.

a. Start the Command Prompt application.

b. Change directories to profile_root/bin.

c. Enter the following command:
wsadmin –user username –password password

1294 Administering WebSphere applications



3. Configure a second LDAP server for failover.

a. Enter the following command to set the failover LDAP server hostname:
set ldapServer [ldap server hostname]

b. Enter the following command to set the LDAP server port number:
set ldapPort [ldap server port]

c. Enter the following command to set the WebSphere LDAP failover variable:
set Attrs2 [list [list hosts [list [list [list host $ldapServer] [list port $ldapPort]]]]]

d. Modify the LDAP configuration to add the failover LDAP server by entering the following command:
set result [$AdminConfig list LDAPUserRegistry]

e. Find the LDAP server configID by entering the following command:
$AdminConfig modify $result $Attrs2

f. Enter the following command to save the configuration change:
$AdminConfig save

g. Enter exit to quit the Command Prompt application. The following is an example of the Command
Prompt application output:
wsadmin>set ldapServer [list xxxx.xxxx.xxx.com]
xxxx.xxxx.xxx.com
wsadmin>set ldapPort [list NNN]
NNN
wsadmin>set Attrs2 [list [list hosts [list [list [list host $ldapServer] [list port $ldapPort]]]]]
{hosts {{{host xxxx.xxxx.xxx.com} {port NNN}}}}
wsadmin> set result [$AdminConfig list LDAPUserRegistry]
(cells/Father2Cell01|security.xml#LDAPUserRegistry_1)
wsadmin>$AdminConfig modify $result $Attrs2

wsadmin>$AdminConfig save

4. Review the configuration change by opening the security.xml file with a text editor and review the
new entry.

5. Stop the deployment manager.

a. Start the Command Prompt application.

b. Change directories to profile_root/bin.

c. To stop the deployment manager, enter the following command:
stopManager –user username –password password

Testing an LDAP server for user registry failover:

After configuring a Lightweight Directory Access Protocol (LDAP) host for failover you should test the
failover server by stopping the main LDAP server.

Before you begin

This task assumes the following setup:

v Deployment Manager is installed on the primary LDAP server running Application Server version 6.0.2
or higher.

v All other LDAP hosts are Active Directory machines with similar user registry designs.

v Atleast one of the other LDAP hosts has been configured for failover.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the

Chapter 19. Administering application security 1295



LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Procedure

1. Stop the Active Directory Server on the failover server.

2. Start the deployment manager process.

a. Start the Command Prompt application.

b. Change directories to profile_root/bin.

c. Enter startManager.

3. Review the SystemOut.log file to see if the LDAP failover happened. The sample text is an example of
a SystemOut.log file that records a successful failover:
[7/11/05 15:38:31:324 EDT] 0000000a LdapRegistryI A SECJ0418I:
Cannot connect to the LDAP server ldap://xxxx.xxxxx.xxxx.com:NNN. {primary LDAP server}
[7/11/05 15:38:32:486 EDT] 0000000a UserRegistryI A SECJ0136I:
Custom Registry:com.ibm.ws.security.registry.ldap.LdapRegistryImpl has been initialized
[7/11/05 15:38:53:787 EDT] 0000000a LdapRegistryI A SECJ0419I:
The user registry is currently connected to the LDAP server ldap://xxxx.xxxxx.xxxx.com:NNN. {failover LDAP server}
...
[7/11/05 15:39:35:667 EDT] 0000000a WsServerImpl A WSVR0001I: Server dmgr open for e-business

4. Log into the console to see working and non-working cases.

a. Start a browser.

b. Browse to http://localhost:9060/admin.

c. Type in your user ID and password and click OK.

d. Log out of the Administrative Console.

e. Type in DummyAdmin as the user ID and dummy1admin as your password and click OK. This should
fail proving WebSphere Application Server is connected to the other LDAP server. Please make
sure that on a production system the user registries are identical so this problem does not happen
when switching between LDAP servers.

5. Stop the deployment manager.

a. Start the Command Prompt application.

b. Change directories to profile_root/bin.

c. To stop the deployment manager, enter the following command:
stopManager –user username –password password

Deleting LDAP endpoints using wsadmin:

You can delete Lightweight Directory Access Protocol (LDAP) endpoints for a user registry by using the
WebSphere Application Server administrative tool (wsadmin).

Procedure

1. Start the wsadmin scripting tool.

2. Set the LDAP variable and display a list of LDAP endpoint objects. Enter the following commands:

Using Jacl:
set ldap [$AdminConfig list LDAPUserRegistry]

$AdminConfig list EndPoint $ldap

Using Jython:
ldap=AdminConfig.list["LDAPUserRegistry"]

print AdminConfig.show(ldap)

For the Jython language, you can obtain the endpoint from the host variable after running the previous
command.

1296 Administering WebSphere applications



3. Display a list of LDAP endpoint objects. Enter the following command for each object:

Using Jacl:
$AdminConfig showall End_Point_Object

Using Jython:
AdminConfig.showall("End_Point_Object")

4. Delete an LDAP endpoint object. Enter the following command:

Using Jacl:
$AdminConfig remove End_Point_Object

Using Jython:
AdminConfig.remove ("End_Point_Object")

5. Save your configuration changes: Enter the following command:

Using Jacl:
$AdminConfig save

Using Jython:
AdminConfig.save()

Updating LDAP binding information:

Use this information to dynamically update security LDAP binding information by switching to a different
binding identity.

About this task

You can dynamically update Lightweight Directory Access Protocol (LDAP) binding information without first
stopping and restarting WebSphere Application Server by using the wsadmin tool.

The resetLdapBindInfo method in SecurityAdmin MBean is used to dynamically update LDAP binding
information at WebSphere Application Server security runtime, and it takes the bind distinguished name
(DN) and bind password parameters as input. The resetLdapBindInfo method validates the bind
information against the LDAP server. If validation passes, new binding information is stored in
security.xml, and a copy of the information is placed in WebSphere Application Server security runtime.

If the new binding information is null, null, the resetLdapBindInfo method first extracts LDAP binding
information, including bind DN, bind password, and target binding host from WebSphere Application Server
security configuration in security.xml. It then pushes the binding information to WebSphere Application
Server security runtime.

There are two ways to dynamically update WebSphere Application Server security LDAP binding
information using the SecurityAdmin MBean through wsadmin:

v “Switching to a different binding identity”

v “Switching to a failover LDAP host” on page 1298

Switching to a different binding identity:
About this task

To dynamically update security LDAP binding information by switching to a different binding identity:

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Create a new bind DN. It must have the same access authority as the current bind DN.

Chapter 19. Administering application security 1297



4. Run the SecurityAdmin MBean across all of the application server processes to validate the new
binding information, to save it to security.xml, and to push the new binding information to the runtime.

Example

The following is a sample Jacl file for step 4:
proc LDAPReBind {args} {
global AdminConfig AdminControl ldapBindDn ldapBindPassword
set ldapBindDn [lindex $args 0]
set ldapBindPassword [lindex $args 1]

set secMBeans [$AdminControl queryNames type=SecurityAdmin,*]
set plist [list $ldapBindDn $ldapBindPassword]
foreach secMBean $secMBeans {

set result [$AdminControl invoke $secMBean resetLdapBindInfo $plist]
}

}

Switching to a failover LDAP host:
About this task

To dynamically update security LDAP binding information by switching to a failover LDAP host:

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Standalone LDAP registry and click Configure.

3. Change the password for bind DN on one LDAP server (it can be the primary or the backup).

4. Update the new bind DN password to WebSphere Application security runtime by calling
resetLdapBindInfo with the bind DN and by using its new password as a parameter.

5. Use the new bind DN password for all of the other LDAP servers. The binding information is now
consistent across WebSphere Application Server and the LDAP servers.

If you call resetLdapBindInfo with null, null as input parameters, WebSphere Application Server
security runtime completes the following steps:

a. Reads the bind DN, bind password, and target LDAP hosts from security.xml.

b. Refreshes the cached connection to the LDAP server.

If you configure security to use multiple LDAP servers, this MBean call forces WebSphere Application
Server security to reconnect to the first available LDAP host in the list. For example, if three LDAP
servers are configured in the order of L1, L2, and L3, the reconnection process always starts with the
L1 server.

When LDAP failover is configured by associating a single hostname to multiple IP addresses, entering
an invalid password can cause multiple LDAP bind retries. With the default settings, the number of
LDAP bind retries is equal to one more than the number of associated IP addresses. This means a
single invalid login attempt can cause the LDAP account to be locked. If the
com.ibm.websphere.security.registry.ldap.singleLDAP custom property is set to false, LDAP bind calls
are not retried.

When LDAP failover is configured by registering backend LDAP server hostnames using wsadmin
command, set the com.ibm.websphere.security.ldap.retryBind property to false.

gotcha: Federated repository does not support failover by associating a single hostname to multiple
IP addresses. This feature is only available in stand-alone LDAP.

Configuring stand-alone custom registries
Use the following information to configure stand-alone custom registries through the administrative
console.

1298 Administering WebSphere applications



Before you begin

Before you begin this task, implement and build the UserRegistry interface. For more information on
developing stand-alone custom registries refer to Developing stand-alone custom registries. The following
steps are required to configure stand-alone custom registries through the administrative console.

Procedure
1. Click Security > Global security.

2. Under User account repositories, select Stand-alone custom registry and click Configure.

3. Enter a valid user name in the Primary administrative user name field. This ID is the security server
ID, which is only used for WebSphere Application Server security and is not associated with the
system process that runs the server. The server calls the local operating system registry to
authenticate and obtain privilege information about users by calling the native APIs in that particular
registry.

4. Enter the dot-separated class name that implements the com.ibm.websphere.security.UserRegistry
interface in the Custom registry class name field. For the sample, this file name is
com.ibm.websphere.security.FileRegistrySample.

Attention: The sample provided is intended to familiarize you with this feature. Do not use this
sample in an actual production environment.

5. Add your custom registry class name to the class path.

6. Optional: Select the Ignore case for authorization option for the authorization to perform a case
insensitive check. Enabling this option is necessary only when your user registry is case insensitive
and does not provide a consistent case when queried for users and groups.

7. Click Apply if you have any other additional properties to enter for the registry initialization.

8. Optional: Enter additional properties to initialize your implementation.

a. Click Custom properties > New.

b. Enter the property name and value.

For the sample, enter the following two properties. It is assumed that the users.props file and the
groups.props file are in the customer_sample directory under the product installation directory.
You can place these properties in any directory that you choose and reference their locations
through custom properties. However, make sure that the directory has the appropriate access
permissions.

Table 70. Additional properties.

This table lists additional custom properties when configuring stand-alone custom registries.
Property name Property value

usersFile ${USER_INSTALL_ROOT}/customer_sample /users.props

groupsFile ${USER_INSTALL_ROOT}/customer_sample /groups.props

Attention: The QEJBSVR user profile must have Execute (*X) authority for the
directory that contains user.props and groups.props files. Additionally, QEJBSVR must have
Read and Execute (*RX) authority for the user.props and groups.props files.

Samples of these two properties are available in “users.props file” on page 1322 and
“groups.props file” on page 1322.

The Description, Required, and Validation Expression fields are not used and can remain
blank.

WebSphere Application Server version 4-based custom user registry is migrated to the custom
user registry based on the com.ibm.websphere.security.UserRegistry interface.

c. Click Apply.

d. Repeat this step to add other additional properties.

Chapter 19. Administering application security 1299



9. Click Security > Global security.

10. Under User account repository, click the Available realm definitions drop-down list, select
Stand-alone custom registry, and click Configure.

11. Select either the Automatically generated server identity or Server identity that is stored in the
repository option. If you select the Server identity that is stored in the repository option, enter the
following information:

Server user ID or administrative user on a Version 6.0.x node
Specify the short name of the account that is chosen in the second step.

Server user password
Specify the password of the account that is chosen in the second step.

12. Click OK and complete the required steps to turn on security.

Results

This set of steps is required to set up the stand-alone custom registry and to enable security in
WebSphere Application Server.

Note: The security component of WebSphere Application Server expands a selected list of variables when
enabling security. See the information about variable settings for more details.

What to do next
1. Complete the remaining steps, if you are enabling security.
2. Validate the user and password. Save and synchronize in the cell environment.
3. After security is turned on, save, stop, and start all the product servers, including cell, nodes, and all of

the application servers, for any changes to take effect. If the server comes up without any problems,
the setup is correct.

Stand-alone custom registries:

A stand-alone custom registry is a customer-implemented registry that implements the UserRegistry Java
interface, as provided by the product. A custom-implemented registry can support virtually any type of an
account repository from a relational database, flat file, and so on. The custom user registry provides
considerable flexibility in adapting product security to various environments where some form of a registry
or repository other than federated repositories, stand-alone Lightweight Directory Access Protocol (LDAP)
registry or local operating system registry already exists in the operational environment.

WebSphere Application Server security provides an implementation that uses various local operating
system-based registries and various stand-alone Lightweight Directory Access Protocol (LDAP)-based
registries. However, situations can exist where your user and group data resides in other repositories or
custom user registries, such as a database, and moving this information to either a local operating system
registry or a stand-alone LDAP registry implementation might not be feasible. For these situations,
WebSphere Application Server security provides a service provider interface (SPI) that you can implement
to interact with your current registry. The custom registry feature supports any user registry that is not
implemented by WebSphere Application Server.

The SPI is the UserRegistry interface. The UserRegistry interface is a collection of methods that are
required for authorization purposes. These methods authenticate individual users using either a password
or certificates and collect information about the user, which are called privilege attributes. This interface
also includes methods that obtain user and group information so that they can be given access to
resources. When implementing the methods in the interface, you must decide how to map the information
that is manipulated by the UserRegistry interface to the information in your registry.

This interface has a set of methods to implement for the product security to interact with your registries for
all security-related tasks. The local operating system and LDAP registry implementations that are provided

1300 Administering WebSphere applications



also implement this interface. Custom user registries are sometimes called the pluggable user registries or
custom registries for short. Your custom user registry implementation is expected to be thread-safe.

Building a custom registry is a software implementation effort. The implementation does not depend on
other WebSphere Application Server resources, for example, data sources, for its operation.

Make sure that your implementation of the custom registry does not depend on any WebSphere
Application Server components such as data sources, enterprise beans, and so on. Do not have this
dependency because security is initialized and enabled prior to most of the other WebSphere Application
Server components during startup. If your previous implementation used these components, make a
change that eliminates the dependency.

The methods in the UserRegistry interface operate on the following information for users:
User security name

The user name is similar to the user profile in the operating system registry.

This name is used to log in when prompted by a secured application. By default, the Enterprise
JavaBeans (EJB) getCallerPrincipal method and the getRemoteUser and getUserPrincipal servlet
methods return this name. The user security name is also referred to as userSecurityName,
userName, or user name.

WAS_UseDisplayName
This is a custom property of User Registries. This property defines the returning value of the
getCallerPrincipal(), getUserPrincipal(), and RemoteUser() methods. The following shows
acceptable values for WAS_UseDisplayName:
v false This is default. Security Name is returned.
v true The display name is returned. This setting requires that the custom property

com.ibm.websphere.security.useLoggedSecurityName be set to true.
Unique user ID

This ID represents a unique identifier for the user, which is required by the UserRegistry interface.
The unique ID is similar to the system ID (SID) in Windows systems, the Unique ID (UID) in Linux
and UNIX systems, and the distinguished name (DN) in Lightweight Directory Authentication
Protocol (LDAP). This ID is also referred to as uniqueUserId. The unique ID is used to make the
authorization decisions for protected resources.

Display user name
The display name is the text description for the user profile.

Group security name
This name, which represents the security group, is also referred to as groupSecurityName,
groupName, and group name.

Unique group ID
The unique ID is the identifier for a group. This name is also referred to as uniqueGroupId ID.

Display group name
The display name is an optional string that describes a group.

The topic on UserRegistry interface describes each of the methods in the interface that need
implementing. An explanation of each of the methods and their usage in the sample and any changes from
the Version 4 interface are provided. The Related references section provides links to all other custom
user registries documentation, including a file-based registry sample. The Sample provided is very simple
and is intended to familiarize you with this feature. Do not use this sample in an actual production
environment.

Stand-alone custom registry settings:

Use this page to configure the stand-alone custom registry.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

Chapter 19. Administering application security 1301



2. Under User account repository, click the Available realm definitions drop-down list, select
Stand-alone custom registry, and click Configure.

After the properties are set in this panel, click Apply. Under Additional Properties, click Custom
properties to include additional properties that the custom user registry requires.

Note: Custom properties might include information such as specifying lists of users or groups.

When security is enabled and any of these custom user registry settings change, go to the Global security
panel and click Apply to validate the changes.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

The user name is used to log onto the administrative console when administrative security is enabled.
Version 6.1 requires an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When migrating to Version 6.1 and
above, this identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments
that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Information Value
Default: Enabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication. Cells that
contain Version 6.1 or later nodes require a server user identity that is defined in the active user
repository.

Information Value
Default: Enabled

Custom registry class name:

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry
interface.

Put the custom registry class name in the class path. A suggested location is the following directory.

v profile_root/classes

1302 Administering WebSphere applications



Information Value
Data type: String
Default: com.ibm.websphere.security.FileRegistrySample

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

Information Value
Default: Disabled
Range: Enabled or Disabled

Stand-alone custom registry wizard settings:

A wizard page exists in the administrative console to aid in viewing the basic settings necessary to
connect the application server to an existing stand-alone custom registry. After you have viewed the basic
settings, you can also modify the existing stand-alone customer registry configuration using the
administrative console.

To view this security wizard page, complete the following steps:

1. Click Security > Global security > Security configuration wizard.

2. Select your protection settings and click Next.

3. Select the Stand-alone custom registry option and click Next.

You can modify your stand-alone custom registry configuration by completing the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Stand-alone custom registry, and click Configure.

3. Enter additional properties to initialize your implementation

v Click Custom properties > New.

v Enter the property name and value. For the sample, enter the following two properties. It is assumed
that the users.props file and the groups.props file are in the customer_sample directory under the
product installation directory. You can place these properties in any directory that you choose and
reference their locations through Custom properties. However, make sure that the directory has the
appropriate access permissions.

Table 71. Custom properties.

This table lists additional custom properties when changing stand-alone custom registry wizard settings.
Property name Property value

usersFile ${USER_INSTALL_ROOT}/customer_sample /users.props

groupsFile ${USER_INSTALL_ROOT}/customer_sample /groups.props

Samples of these two properties are available in reference topics for the users.props file and the
groups.props file. See the related links below for more information.

The Description, Required, and Validation Expression fields are not used and can remain blank.

WebSphere Application Server Version 4 based custom user registry is migrated to the custom user
registry based on the com.ibm.websphere.security.UserRegistry interface.

v Click Apply.

Primary administrative user name:

Chapter 19. Administering application security 1303



Specifies the name of a user with administrative privileges that is defined in your custom user registry.

The user name is used to log onto the administrative console when administrative security is enabled.
Version 6.1 requires an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When migrating to Version 6.1 and
above, this identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Custom registry class name:

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry
interface.

Put the custom registry class name in the class path. A suggested location is the following directory.

v profile_root/classes

Information Value
Data type: String
Default: com.ibm.websphere.security.FileRegistrySample

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

Information Value
Default: Disabled
Range: Enabled or Disabled

FileRegistrySample.java file:

This provides an example of the FileRegistrySample.java file.

The user and group information required by this sample is contained in the “users.props file” on page 1322
and “groups.props file” on page 1322 files.

Attention: The samples that are provided are intended to familiarize you with this feature. Do not use
these samples in an actual production environment.

The contents of the FileRegistrySample.java file:

//
// 5639-D57, 5630-A36, 5630-A37, 5724-D18
// (C) COPYRIGHT International Business Machines Corp. 1997, 2005
// All Rights Reserved * Licensed Materials - Property of IBM
//

//----------------------------------------------------------------------
// This program may be used, run, copied, modified and distributed
// without royalty for the purpose of developing, using, marketing, or
// distributing.
//----------------------------------------------------------------------
//

// This sample is for the custom user registry feature in WebSphere Application Server.

1304 Administering WebSphere applications



import java.util.*;
import java.io.*;
import java.security.cert.X509Certificate;
import com.ibm.websphere.security.*;

/**
* The main purpose of this sample is to demonstrate the use of the
* custom user registry feature available in WebSphere Application Server. This
* sample is a file-based registry sample where the users and the groups
* information is listed in files (users.props and groups.props). As such
* simplicity and not the performance was a major factor. This
* sample should be used only to get familiarized with this feature. An
* actual implementation of a realistic registry should consider various
* factors like performance, scalability, thread safety, and so on.
**/
public class FileRegistrySample implements UserRegistry {

private static String USERFILENAME = null;
private static String GROUPFILENAME = null;

/** Default Constructor **/
public FileRegistrySample() throws java.rmi.RemoteException {
}

/**
* Initializes the registry. This method is called when creating the
* registry.
*
* @param props - The registry-specific properties with which to
* initialize the custom registry
* @exception CustomRegistryException
* if there is any registry-specific problem
**/
public void initialize(java.util.Properties props)

throws CustomRegistryException {
try {

/* try getting the USERFILENAME and the GROUPFILENAME from
* properties that are passed in (For example, from the
* administrative console). Set these values in the administrative
* console. Go to the special custom settings in the custom
* user registry section of the Authentication panel.
* For example:
* usersFile c:/temp/users.props
* groupsFile c:/temp/groups.props
*/
if (props != null) {

USERFILENAME = props.getProperty("usersFile");
GROUPFILENAME = props.getProperty("groupsFile");

}

} catch(Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);

}

if (USERFILENAME == null || GROUPFILENAME == null) {
throw new CustomRegistryException("users/groups information missing");

}

}

/**

Chapter 19. Administering application security 1305



* Checks the password of the user. This method is called to authenticate
* a user when the user’s name and password are given.
*
* @param userSecurityName the name of user
* @param password the password of the user
* @return a valid userSecurityName. Normally this is
* the name of same user whose password was checked
* but if the implementation wants to return any other
* valid userSecurityName in the registry it can do so
* @exception CheckPasswordFailedException if userSecurityName/
* password combination does not exist
* in the registry
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public String checkPassword(String userSecurityName, String passwd)

throws PasswordCheckFailedException,
CustomRegistryException {

String s,userName = null;
BufferedReader in = null;

try {
in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
int index1 = s.indexOf(":",index+1);
// check if the userSecurityName:passwd combination exists
if ((s.substring(0,index)).equals(userSecurityName) &&

s.substring(index+1,index1).equals(passwd)) {
// Authentication successful, return the userID.
userName = userSecurityName;
break;

}
}

}
} catch(Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);
}

if (userName == null) {
throw new PasswordCheckFailedException("Password check failed for user:"
+ userSecurityName);

}

return userName;
}

/**
* Maps an X.509 format certificate to a valid user in the registry.
* This is used to map the name in the certificate supplied by a browser
* to a valid userSecurityName in the registry
*
* @param cert the X509 certificate chain
* @return The mapped name of the user userSecurityName
* @exception CertificateMapNotSupportedException if the
* particular certificate is not supported.
* @exception CertificateMapFailedException if the mapping of
* the certificate fails.

1306 Administering WebSphere applications



* @exception CustomRegistryException if there is any registry
* -specific problem
**/
public String mapCertificate(X509Certificate[] cert)

throws CertificateMapNotSupportedException,
CertificateMapFailedException,
CustomRegistryException {

String name=null;
X509Certificate cert1 = cert[0];
try {

// map the SubjectDN in the certificate to a userID.
name = cert1.getSubjectDN().getName();

} catch(Exception ex) {
throw new CertificateMapNotSupportedException(ex.getMessage(),ex);

}

if(!isValidUser(name)) {
throw new CertificateMapFailedException("user:" + name
+ "is not valid");

}
return name;

}

/**
* Returns the realm of the registry.
*
* @return the realm. The realm is a registry-specific string
* indicating the realm or domain for which this registry
* applies. For example, for OS/400 or AIX this would be
* the host name of the system whose user registry this
* object represents. If null is returned by this method,
* realm defaults to the value of "customRealm". It is
* recommended that you use your own value for realm.
*
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public String getRealm()

throws CustomRegistryException {
String name = "customRealm";
return name;

}

/**
* Gets a list of users that match a pattern in the registry.
* The maximum number of users returned is defined by the limit
* argument.
* This method is called by the administrative console and scripting
* (command line) to make the users in the registry available for
* adding them (users) to roles.
*
* @param pattern the pattern to match. (For example, a* will
* match all userSecurityNames starting with a)
* @param limit the maximum number of users that should be
* returned. This is very useful in situations where
* there are thousands of users in the registry and
* getting all of them at once is not practical. The
* default is 100. A value of 0 implies get all the
* users and hence must be used with care.
* @return a Result object that contains the list of users
* requested and a flag to indicate if more users
* exist.
* @exception CustomRegistryException if there is any registry-

Chapter 19. Administering application security 1307



* specific problem
**/
public Result getUsers(String pattern, int limit)

throws CustomRegistryException {
String s;
BufferedReader in = null;
List allUsers = new ArrayList();
Result result = new Result();
int count = 0;
int newLimit = limit+1;
try {

in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
String user = s.substring(0,index);
if (match(user,pattern)) {

allUsers.add(user);
if (limit !=0 && ++count == newLimit) {

allUsers.remove(user);
result.setHasMore();
break;

}
}

}
}

} catch (Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);

} finally {
fileClose(in);

}

result.setList(allUsers);
return result;

}

/**
* Returns the display name for the user specified by
* userSecurityName.
*
* This method may be called only when the user information
* is displayed (information purposes only, for example, in
* the administrative console) and hence not used in the actual
* authentication or authorization purposes. If there are no
* display names in the registry return null or empty string.
*
* In WebSphere Application Server 4.x custom registry, if you
* had a display name for the user and if it was different from the
* security name, the display name was returned for the EJB
* methods getCallerPrincipal() and the servlet methods
* getUserPrincipal() and getRemoteUser().
* In Version 5.x and later, for the
* same methods, the security name will be returned by default.
* This is the recommended way as the display name is not unique
* and might create security holes. However, for backward
* compatibility if you need the display name to be returned
* set the property WAS_UseDisplayName to true.
*
*See the Information Center documentation for more information.
*
* @param userSecurityName the name of the user.
* @return the display name for the user. The display

1308 Administering WebSphere applications



* name is a registry-specific string that
* represents a descriptive, not necessarily
* unique, name for a user. If a display name
* does not exist return null or empty string.
* @exception EntryNotFoundException if userSecurityName
* does not exist.
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public String getUserDisplayName(String userSecurityName)

throws CustomRegistryException,
EntryNotFoundException {

String s,displayName = null;
BufferedReader in = null;

if(!isValidUser(userSecurityName)) {
EntryNotFoundException nsee = new EntryNotFoundException("user:"
+ userSecurityName + "is not valid");
throw nsee;

}

try {
in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
int index1 = s.lastIndexOf(":");
if ((s.substring(0,index)).equals(userSecurityName)) {

displayName = s.substring(index1+1);
break;

}
}

}
} catch(Exception ex) {

throw new CustomRegistryException(ex.getMessage(), ex);
} finally {

fileClose(in);
}

return displayName;
}

/**
* Returns the unique ID for a userSecurityName. This method is called
* when creating a credential for a user.
*
* @param userSecurityName - The name of the user.
* @return The unique ID of the user. The unique ID for a user
* is the stringified form of some unique, registry-specific,
* data that serves to represent the user. For example, for
* the UNIX user registry, the unique ID for a user can be
* the UID.
* @exception EntryNotFoundException if userSecurityName does not
* exist.
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public String getUniqueUserId(String userSecurityName)

throws CustomRegistryException,
EntryNotFoundException {

Chapter 19. Administering application security 1309



String s,uniqueUsrId = null;
BufferedReader in = null;
try {

in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
int index1 = s.indexOf(":", index+1);
if ((s.substring(0,index)).equals(userSecurityName)) {

int index2 = s.indexOf(":", index1+1);
uniqueUsrId = s.substring(index1+1,index2);
break;

}
}

}
} catch(Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);
}

if (uniqueUsrId == null) {
EntryNotFoundException nsee =
new EntryNotFoundException("Cannot obtain uniqueId for user:"
+ userSecurityName);
throw nsee;

}

return uniqueUsrId;
}

/**
* Returns the name for a user given its unique ID.
*
* @param uniqueUserId - The unique ID of the user.
* @return The userSecurityName of the user.
* @exception EntryNotFoundException if the unique user ID does not exist.
* @exception CustomRegistryException if there is any registry-specific
* problem
**/
public String getUserSecurityName(String uniqueUserId)

throws CustomRegistryException,
EntryNotFoundException {

String s,usrSecName = null;
BufferedReader in = null;
try {

in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
int index1 = s.indexOf(":", index+1);
int index2 = s.indexOf(":", index1+1);
if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

usrSecName = s.substring(0,index);
break;

}
}

}
} catch (Exception ex) {

throw new CustomRegistryException(ex.getMessage(), ex);
} finally {

1310 Administering WebSphere applications



fileClose(in);
}

if (usrSecName == null) {
EntryNotFoundException ex =

new EntryNotFoundException("Cannot obtain the
user securityName for" + uniqueUserId);

throw ex;
}

return usrSecName;

}

/**
* Determines if the userSecurityName exists in the registry
*
* @param userSecurityName - The name of the user
* @return True if the user is valid; otherwise false
* @exception CustomRegistryException if there is any registry-
* specific problem
* @exception RemoteException as this extends java.rmi.Remote
* interface
**/
public boolean isValidUser(String userSecurityName)

throws CustomRegistryException {
String s;
boolean isValid = false;
BufferedReader in = null;
try {

in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
if ((s.substring(0,index)).equals(userSecurityName)) {

isValid=true;
break;

}
}

}
} catch (Exception ex) {

throw new CustomRegistryException(ex.getMessage(), ex);
} finally {

fileClose(in);
}

return isValid;
}

/**
* Gets a list of groups that match a pattern in the registry
* The maximum number of groups returned is defined by the
* limit argument. This method is called by administrative console
* and scripting (command line) to make available the groups in
* the registry for adding them (groups) to roles.
*
* @param pattern the pattern to match. (For example, a* matches
* all groupSecurityNames starting with a)
* @param Limits the maximum number of groups to return
* This is very useful in situations where there
* are thousands of groups in the registry and getting all

Chapter 19. Administering application security 1311



* of them at once is not practical. The default is 100.
* A value of 0 implies get all the groups and hence must
* be used with care.
* @return A Result object that contains the list of groups
* requested and a flag to indicate if more groups exist.
* @exception CustomRegistryException if there is any registry-specific
* problem
**/
public Result getGroups(String pattern, int limit)

throws CustomRegistryException {
String s;
BufferedReader in = null;
List allGroups = new ArrayList();
Result result = new Result();
int count = 0;
int newLimit = limit+1;
try {

in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
String group = s.substring(0,index);
if (match(group,pattern)) {

allGroups.add(group);
if (limit !=0 && ++count == newLimit) {

allGroups.remove(group);
result.setHasMore();
break;

}
}

}
}

} catch (Exception ex) {
throw new CustomRegistryException(ex.getMessage(),ex);

} finally {
fileClose(in);

}

result.setList(allGroups);
return result;

}

/**
* Returns the display name for the group specified by groupSecurityName.
* For this version of WebSphere Application Server, the only usage of
* this method is by the clients (administrative console and scripting)
* to present a descriptive name of the user if it exists.
*
* @param groupSecurityName the name of the group.
* @return the display name for the group. The display name
* is a registry-specific string that represents a
* descriptive, not necessarily unique, name for a group.
* If a display name does not exist return null or empty
* string.
* @exception EntryNotFoundException if groupSecurityName does
* not exist.
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public String getGroupDisplayName(String groupSecurityName)

throws CustomRegistryException,
EntryNotFoundException {

1312 Administering WebSphere applications



String s,displayName = null;
BufferedReader in = null;

if(!isValidGroup(groupSecurityName)) {
EntryNotFoundException nsee = new EntryNotFoundException("group:"
+ groupSecurityName + "is not valid");
throw nsee;

}

try {
in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
int index1 = s.lastIndexOf(":");
if ((s.substring(0,index)).equals(groupSecurityName)) {

displayName = s.substring(index1+1);
break;

}
}

}
} catch(Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);
}

return displayName;
}

/**
* Returns the Unique ID for a group.

* @param groupSecurityName the name of the group.
* @return The unique ID of the group. The unique ID for
* a group is the stringified form of some unique,
* registry-specific, data that serves to represent
* the group. For example, for the UNIX user registry,
* the unique ID might be the GID.
* @exception EntryNotFoundException if groupSecurityName does
* not exist.
* @exception CustomRegistryException if there is any registry-
* specific problem
* @exception RemoteException as this extends java.rmi.Remote
**/
public String getUniqueGroupId(String groupSecurityName)

throws CustomRegistryException,
EntryNotFoundException {

String s,uniqueGrpId = null;
BufferedReader in = null;
try {

in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
int index1 = s.indexOf(":", index+1);
if ((s.substring(0,index)).equals(groupSecurityName)) {

uniqueGrpId = s.substring(index+1,index1);
break;

}
}

Chapter 19. Administering application security 1313



}
} catch(Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);
}

if (uniqueGrpId == null) {
EntryNotFoundException nsee =
new EntryNotFoundException("Cannot obtain the uniqueId for group:"
+ groupSecurityName);
throw nsee;

}

return uniqueGrpId;
}

/**
* Returns the Unique IDs for all the groups that contain the unique ID
* of a user. Called during creation of a user’s credential.
*
* @param uniqueUserId the unique ID of the user.
* @return A list of all the group unique IDs that the unique user
* ID belongs to. The unique ID for an entry is the
* stringified form of some unique, registry-specific, data
* that serves to represent the entry. For example, for the
* UNIX user registry, the unique ID for a group might be
* the GID and the Unique ID for the user might be the UID.
* @exception EntryNotFoundException if uniqueUserId does not exist.
* @exception CustomRegistryException if there is any registry-specific
* problem
**/
public List getUniqueGroupIds(String uniqueUserId)

throws CustomRegistryException,
EntryNotFoundException {

String s,uniqueGrpId = null;
BufferedReader in = null;
List uniqueGrpIds=new ArrayList();
try {

in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
int index1 = s.indexOf(":", index+1);
int index2 = s.indexOf(":", index1+1);
if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

int lastIndex = s.lastIndexOf(":");
String subs = s.substring(index2+1,lastIndex);
StringTokenizer st1 = new StringTokenizer(subs, ",");
while (st1.hasMoreTokens())

uniqueGrpIds.add(st1.nextToken());
break;

}
}

}
} catch(Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);
}

return uniqueGrpIds;

1314 Administering WebSphere applications



}

/**
* Returns the name for a group given its unique ID.
*
* @param uniqueGroupId the unique ID of the group.
* @return The name of the group.
* @exception EntryNotFoundException if the uniqueGroupId does
* not exist.
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public String getGroupSecurityName(String uniqueGroupId)

throws CustomRegistryException,
EntryNotFoundException {

String s,grpSecName = null;
BufferedReader in = null;
try {

in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
int index1 = s.indexOf(":", index+1);
if ((s.substring(index+1,index1)).equals(uniqueGroupId)) {

grpSecName = s.substring(0,index);
break;

}
}

}
} catch (Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);
}

if (grpSecName == null) {
EntryNotFoundException ex =

new EntryNotFoundException("Cannot obtain the group
security name for:" + uniqueGroupId);

throw ex;
}

return grpSecName;

}

/**
* Determines if the groupSecurityName exists in the registry
*
* @param groupSecurityName the name of the group
* @return True if the groups exists; otherwise false
* @exception CustomRegistryException if there is any registry-
* specific problem
**/
public boolean isValidGroup(String groupSecurityName)

throws CustomRegistryException {
String s;
boolean isValid = false;
BufferedReader in = null;
try {

in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)

Chapter 19. Administering application security 1315



{
if (!(s.startsWith("#") || s.trim().length() <=0 )) {

int index = s.indexOf(":");
if ((s.substring(0,index)).equals(groupSecurityName)) {

isValid=true;
break;

}
}

}
} catch (Exception ex) {

throw new CustomRegistryException(ex.getMessage(),ex);
} finally {

fileClose(in);
}

return isValid;
}

/**
* Returns the securityNames of all the groups that contain the user
*
* This method is called by the administrative console and scripting
* (command line) to verify that the user entered for RunAsRole mapping
* belongs to that role in the roles to user mapping. Initially, the
* check is done to see if the role contains the user. If the role does
* not contain the user explicitly, this method is called to get the groups
* that this user belongs to so that a check can be made on the groups that
* the role contains.
*
* @param userSecurityName the name of the user
* @return A list of all the group securityNames that the user
* belongs to.
* @exception EntryNotFoundException if user does not exist.
* @exception CustomRegistryException if there is any registry-
* specific problem
* @exception RemoteException as this extends the java.rmi.Remote
* interface
**/
public List getGroupsForUser(String userName)

throws CustomRegistryException,
EntryNotFoundException {

String s;
List grpsForUser = new ArrayList();
BufferedReader in = null;
try {

in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{

if (!(s.startsWith("#") || s.trim().length() <=0 )) {
StringTokenizer st = new StringTokenizer(s, ":");
for (int i=0; i<2; i++)

st.nextToken();
String subs = st.nextToken();
StringTokenizer st1 = new StringTokenizer(subs, ",");
while (st1.hasMoreTokens()) {

if((st1.nextToken()).equals(userName)) {
int index = s.indexOf(":");
grpsForUser.add(s.substring(0,index));

}
}

}
}

} catch (Exception ex) {

1316 Administering WebSphere applications



if (!isValidUser(userName)) {
throw new EntryNotFoundException("user:" + userName
+ "is not valid");

}
throw new CustomRegistryException(ex.getMessage(),ex);

} finally {
fileClose(in);

}

return grpsForUser;
}

/**
* Gets a list of users in a group.
*
* The maximum number of users returned is defined by the
* limit argument.
*
* This method is being used by the WebSphere Application Server
* Enterprise process choreographer (Enterprise) when
* staff assignments are modeled using groups.
*
* In rare situations, if you are working with a registry where
* getting all the users from any of your groups is not practical
* (for example if there are a large number of users) you can create
* the NotImplementedException for that particular group. Make sure
* that if the process choreographer is installed (or if installed later)
* the staff assignments are not modeled using these particular groups.
* If there is no concern about returning the users from groups
* in the registry it is recommended that this method be implemented
* without creating the NotImplemented exception.
* @param groupSecurityName the name of the group
* @param Limits the maximum number of users that should be
* returned. This is very useful in situations where there
* are lots of users in the registry and getting all of
* them at once is not practical. A value of 0 implies
* get all the users and hence must be used with care.
* @return A Result object that contains the list of users
* requested and a flag to indicate if more users exist.
* @deprecated This method will be deprecated in future.
* @exception NotImplementedException create this exception in rare
* situations if it is not practical to get this information
* for any of the group or groups from the registry.
* @exception EntryNotFoundException if the group does not exist in
* the registry
* @exception CustomRegistryException if there is any registry-specific
* problem
**/
public Result getUsersForGroup(String groupSecurityName, int limit)

throws NotImplementedException,
EntryNotFoundException,
CustomRegistryException {

String s, user;
BufferedReader in = null;
List usrsForGroup = new ArrayList();
int count = 0;
int newLimit = limit+1;
Result result = new Result();

try {
in = fileOpen(GROUPFILENAME);
while ((s=in.readLine())!=null)
{

Chapter 19. Administering application security 1317



if (!(s.startsWith("#") || s.trim().length() <=0 )) {
int index = s.indexOf(":");
if ((s.substring(0,index)).equals(groupSecurityName))
{

StringTokenizer st = new StringTokenizer(s, ":");
for (int i=0; i<2; i++)

st.nextToken();
String subs = st.nextToken();
StringTokenizer st1 = new StringTokenizer(subs, ",");
while (st1.hasMoreTokens()) {

user = st1.nextToken();
usrsForGroup.add(user);
if (limit !=0 && ++count == newLimit) {

usrsForGroup.remove(user);
result.setHasMore();
break;

}
}

}
}

}
} catch (Exception ex) {

if (!isValidGroup(groupSecurityName)) {
throw new EntryNotFoundException("group:"
+ groupSecurityName
+ "is not valid");

}
throw new CustomRegistryException(ex.getMessage(),ex);

} finally {
fileClose(in);

}

result.setList(usrsForGroup);
return result;

}

/**
* This method is implemented internally by the WebSphere Application Server
* code in this release. This method is not called for the custom
* registry implementations for this release. Return null in the
* implementation.
*
**/
public com.ibm.websphere.security.cred.WSCredential

createCredential(String userSecurityName)
throws CustomRegistryException,

NotImplementedException,
EntryNotFoundException {

// This method is not called.
return null;

}

// private methods
private BufferedReader fileOpen(String fileName)

throws FileNotFoundException {
try {

return new BufferedReader(new FileReader(fileName));
} catch(FileNotFoundException e) {

throw e;
}

}

1318 Administering WebSphere applications



private void fileClose(BufferedReader in) {
try {

if (in != null) in.close();
} catch(Exception e) {

System.out.println("Error closing file" + e);
}

}

private boolean match(String name, String pattern) {
RegExpSample regexp = new RegExpSample(pattern);
boolean matches = false;
if(regexp.match(name))

matches = true;
return matches;

}
}

//----------------------------------------------------------------------
// The program provides the Regular Expression implementation
// used in the sample for the custom user registry (FileRegistrySample).
// The pattern matching in the sample uses this program to search for the
// pattern (for users and groups).
//----------------------------------------------------------------------

class RegExpSample
{

private boolean match(String s, int i, int j, int k)
{

for(; k < expr.length; k++)
label0:

{
Object obj = expr[k];
if(obj == STAR)
{

if(++k >= expr.length)
return true;

if(expr[k] instanceof String)
{

String s1 = (String)expr[k++];
int l = s1.length();
for(; (i = s.indexOf(s1, i)) >= 0; i++)

if(match(s, i + l, j, k))
return true;

return false;
}
for(; i < j; i++)

if(match(s, i, j, k))
return true;

return false;
}
if(obj == ANY)
{

if(++i > j)
return false;

break label0;
}
if(obj instanceof char[][])
{

if(i >= j)

Chapter 19. Administering application security 1319



return false;
char c = s.charAt(i++);
char ac[][] = (char[][])obj;
if(ac[0] == NOT)
{

for(int j1 = 1; j1 < ac.length; j1++)
if(ac[j1][0] <= c && c <= ac[j1][1])

return false;

break label0;
}
for(int k1 = 0; k1 < ac.length; k1++)

if(ac[k1][0] <= c && c <= ac[k1][1])
break label0;

return false;
}
if(obj instanceof String)
{

String s2 = (String)obj;
int i1 = s2.length();
if(!s.regionMatches(i, s2, 0, i1))

return false;
i += i1;

}
}

return i == j;
}

public boolean match(String s)
{

return match(s, 0, s.length(), 0);
}

public boolean match(String s, int i, int j)
{

return match(s, i, j, 0);
}

public RegExpSample(String s)
{

Vector vector = new Vector();
int i = s.length();
StringBuffer stringbuffer = null;
Object obj = null;
for(int j = 0; j < i; j++)
{

char c = s.charAt(j);
switch(c)
{
case 63: /* ’?’ */

obj = ANY;
break;

case 42: /* ’*’ */
obj = STAR;
break;

case 91: /* ’[’ */
int k = ++j;
Vector vector1 = new Vector();
for(; j < i; j++)

1320 Administering WebSphere applications



{
c = s.charAt(j);
if(j == k && c == ’^’)
{

vector1.addElement(NOT);
continue;

}
if(c == ’\\’)
{

if(j + 1 < i)
c = s.charAt(++j);

}
else
if(c == ’]’)

break;
char c1 = c;
if(j + 2 < i && s.charAt(j + 1) == ’-’)

c1 = s.charAt(j += 2);
char ac1[] = {

c, c1
};
vector1.addElement(ac1);

}

char ac[][] = new char[vector1.size()][];
vector1.copyInto(ac);
obj = ac;
break;

case 92: /* ’\\’ */
if(j + 1 < i)

c = s.charAt(++j);
break;

}
if(obj != null)
{

if(stringbuffer != null)
{

vector.addElement(stringbuffer.toString());
stringbuffer = null;

}
vector.addElement(obj);
obj = null;

}
else
{

if(stringbuffer == null)
stringbuffer = new StringBuffer();

stringbuffer.append(c);
}

}

if(stringbuffer != null)
vector.addElement(stringbuffer.toString());

expr = new Object[vector.size()];
vector.copyInto(expr);

}

static final char NOT[] = new char[2];
static final Integer ANY = new Integer(0);

Chapter 19. Administering application security 1321



static final Integer STAR = new Integer(1);
Object expr[];

}

users.props file:

This example presents the format for the users.props file.

Attention: The sample that is provided is intended to familiarize you with this feature. Do not use this
sample in an actual production environment.
# 5639-D57, 5630-A36, 5630-A37, 5724-D18
# (C) COPYRIGHT International Business Machines Corp. 1997, 2005
# All Rights Reserved * Licensed Materials - Property of IBM
#
# Format:
# name:passwd:uid:gids:display name
# where name = userId/userName of the user
# passwd = password of the user
# uid = uniqueId of the user
# gid = groupIds of the groups that the user belongs to
# display name = a (optional) display name for the user.
bob:bob1:123:567:bob
dave:dave1:234:678:
jay:jay1:345:678,789:Jay-Jay
ted:ted1:456:678:Teddy G
jeff:jeff1:222:789:Jeff
vikas:vikas1:333:789:vikas
bobby:bobby1:444:789:

groups.props file:

The following example illustrates the format for the groups.props file.

Attention: The sample provided is intended to familiarize you with this feature. Do not use this sample
in an actual production environment.
# 5639-D57, 5630-A36, 5630-A37, 5724-D18
# (C) COPYRIGHT International Business Machines Corp. 1997, 2005
# All Rights Reserved * Licensed Materials - Property of IBM
#
# Format:
# name:gid:users:display name
# where name = groupId of the group
# gid = uniqueId of the group
# users = list of all the userIds that the group contains
# display name = a (optional) display name for the group.
admins:567:bob:Administrative group
operators:678:jay,ted,dave:Operators group
users:789:jay,jeff,vikas,bobby:

Developing the UserRegistry interface for using custom registries:

Implementing this interface enables WebSphere Application Server security to use custom registries. This
capability extends the java.rmi file. With a remote registry, you can complete this process remotely.

About this task

Provide implementations of the following methods.

Procedure

v Initialize the UserRegistry method, with initialize(java.util.Properties).
public void initialize(java.util.Properties props)

throws CustomRegistryException,
RemoteException;

This method is called to initialize the UserRegistry method. All the properties that are defined in the
Custom User Registry panel propagate to this method.

1322 Administering WebSphere applications



For the FileRegistrySample.java sample file, the initialize method retrieves the names of the registry
files that contain the user and group information.

This method is called during server bringup to initialize the registry. This method is also called when
validation is performed by the administrative console, when security is on. This method remains the
same as in Version 4.x.

v Authenticate users with checkPassword(String,String).
public String checkPassword(String userSecurityName, String password)

throws PasswordCheckFailedException
CustomRegistryException,
RemoteException;

The checkPassword method is called to authenticate users when they log in using a name or user ID
and a password. This method returns a string which, in most cases, is the user security name. A
credential is created for the user for authorization purposes. This user name is also returned for the
getCallerPrincipal enterprise bean call and the servlet calls the getUserPrincipal and getRemoteUser
methods. See the getUserDisplayName method for more information if you have display names in your
registry. In some situations, if you return a user other than the one who is logged in, you must verify
that the user is valid in the registry.

For the FileRegistrySample.java sample file, the mapCertificate method gets the distinguished name
(DN) from the certificate chain and makes sure it is a valid user in the registry before returning the user.
For the sample, the checkPassword method checks the name and password combination in the user
registry and, if they match, the method returns the user being authenticated.

This method is called for various scenarios, for example, by the administrative console to validate the
user information after the user registry is initialized. This method is also called when you access
protected resources in the product for authenticating the user and before proceeding with the
authorization. This method is the same as in Version 4.x.

v Obtain user names from X.509 certificates with mapCertificate(X509Certificate[]).
public String mapCertificate(X509Certificate[] cert)

throws CertificateMapNotSupportedException,
CertificateMapFailedException,
CustomRegistryException,
RemoteException;

The mapCertificate method is called to obtain a user name from an X.509 certificate chain that is
supplied by the browser. The complete certificate chain is passed to this method and the
implementation can validate the chain if needed and get the user information. A credential is created for
this user for authorization purposes. If browser certificates are not supported in your configuration, you
can create the CertificateMapNotSupportedException exception. The consequence of not supporting
certificates is authentication failure if the challenge type is certificates, even if valid certificates are in the
browser.

This method is called when certificates are provided for authentication. For web applications, when the
authentication constraints are set to CLIENT-CERT in the web.xml file of the application, this method is
called to map a certificate to a valid user in the registry. For Java clients, this method is called to map
the client certificates in the transport layer, when using transport layer authentication. When the identity
assertion token, using the CSIv2 authentication protocol, is set to contain certificates, this method is
called to map the certificates to a valid user.

In WebSphere Application Server Version 4.x, the input parameter is the X509Certificate certificate. In
WebSphere Application Server Version 5.x and later, this parameter changes to accept an array of
X509Certificate certificates such as a certificate chain. In Version 4.x, this parameter is called for web
applications only, but in version 5.x and later, you can call this method for both web and Java clients.

v Obtain the security realm name with getRealm.
public String getRealm()

throws CustomRegistryException,
RemoteException;

Chapter 19. Administering application security 1323



The getRealm method is called to get the name of the security realm. The name of the realm identifies
the security domain for which the registry authenticates users. If this method returns a null value, a
customRealm default name is used.

For the FileRegistrySample.java sample file, the getRealm method returns the customRealm string.
One of the calls to this method occurs when the user registry information is validated. This method is
the same method as in Version 4.x.

v Obtain the list of users from the registry with getUsers(String,int).
public Result getUsers(String pattern, int limit)

throws CustomRegistryException,
RemoteException;

The getUsers method returns the list of users from the registry. The names of users depend on the
pattern parameter. The number of users are limited by the limit parameter. In a registry that has many
users, getting all the users is not practical. So the limit parameter is introduced to limit the number of
users retrieved from the registry. A limit of zero (0) indicates to return all the users that match the
pattern and might cause problems for large registries. Use this limit with care.

The custom registry implementations are expected to support at least the wildcard search (*). For
example, a pattern of asterisk (*) returns all the users and a pattern of (b*) returns the users starting
with b.

The return parameter is an object with a com.ibm.websphere.security.Result type. This object contains
two attributes, a java.util.List and a java.lang.boolean attribute. The list contains the users that are
returned and the Boolean flag indicates if more users are available in the user registry for the search
pattern. This Boolean flag is used to indicate to the client whether more users are available in the
registry.

In the FileRegistrySample.java sample file, the getUsers method retrieves the required number of
users from the user registry and sets them as a list in the Result object. To find out if more users are
presented than requested, the sample gets one more user than requested and if it finds the additional
user, it sets the Boolean flag to true. For pattern matching, the match method in the RegExpSample
class is used, which supports wildcard characters such as the asterisk (*) and the question mark (?).

This method is called by the administrative console to add users to roles in the various
map-users-to-roles panels. The administrative console uses the Boolean set in the Result object to
indicate that more entries matching the pattern are available in the user registry.

In WebSphere Application Server Version 4.x, this method specifies to take only the pattern parameter.
The return is a list. In WebSphere Application Server Version 5.x or later, this method is changed to
take one additional parameter, the limit. Ideally, your implementation changes to take the limit value and
limits the users that are returned. The return is changed to return a Result object, which consists of the
list and a flag that indicates if more entries exist. When the list returns, use the Result.setList(List)
method to set the list in the Result object. If more entries exist than requested in the limit parameter, set
the Boolean attribute to true in the result object, using the Result.setHasMore method. The default for
the Boolean attribute in the result object is false.

v Obtain the display name of a user with getUserDisplayName(String).
public String getUserDisplayName(String userSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

The getUserDisplayName method returns a display name for a user, if one exists. The display name is
an optional string that describes the user that you can set in some registries. This descriptive name is
for the user and does not have to be unique in the registry.

For example, in IBM i systems, you can display the text description for the user profile.

If you do not need display names in your registry, return null or an empty string for this method.

If display names existed for any user in WebSphere Application Server Version 4.x, these names were
useful for the Enterprise JavaBeans (EJB) method call getCallerPrincipal and the servlet calls
getUserPrincipal and getRemoteUser. If the display names are not the same as the security name for
any user, the display names are returned for the previously mentioned enterprise beans and servlet

1324 Administering WebSphere applications



methods. Returning display names for these methods might become problematic in some situations
because the display names might not be unique in the user registry. Avoid this problem by changing the
default behavior to return the user security name instead of the user display name in this version of the
product. For more information on how to set properties for the custom registry, see the section on
Setting Properties for Custom Registries.

In the FileRegistrySample.java sample file, this method returns the display name of the user whose
name matches the user name that is provided. If the display name does not exist, this method returns
an empty string.

This method can be called by the product to present the display names in the administrative console, or
by using the command line and the wsadmin tool. Use this method for display purposes only. This
method is the same as in Version 4.x.

v Obtain the unique ID of a user with getUniqueUserId(String).
public String getUniqueUserId(String userSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique ID of the user, given the security name.

In the FileRegistrySample.java sample file, this method returns the uniqueUserId value of the user
whose name matches the supplied name. This method is called when forming a credential for a user
and also when creating the authorization table for the application.

v Obtain the security name of a user with getUserSecurityName(String).
public String getUserSecurityName(String uniqueUserId)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the security name of a user given the unique ID. In the FileRegistrySample.java
sample file, this method returns the security name of the user whose unique ID matches the supplied
ID.

This method is called to make sure a valid user exists for a given uniqueUserId. This method is called
to get the security name of the user when the uniqueUserId is obtained from a token.

v Check whether a given user is a valid user in the registry with isValidUser(String).
public boolean isValidUser(String userSecurityName)

throws CustomRegistryException,
RemoteException;

This method indicates whether the given user is a valid user in the registry.

In the FileRegistrySample.java sample file, this method returns true if the user is found in the registry,
otherwise this method returns false. This method is primarily called in situations where knowing if the
user exists in the directory prevents problems later. For example, in the mapCertificate call, when the
name is obtained from the certificate if the user is not found as a valid user in the user registry, you can
avoid trying to create the credential for the user.

v Return the list of groups from the user registry with getGroups(String,int).
public Result getGroups(String pattern, int limit)

throws CustomRegistryException,
RemoteException;

The getGroups method returns the list of groups from the user registry. The names of groups depend
on the pattern parameter. The number of groups is limited by the limit parameter. In a registry that has
many groups, getting all the groups is not practical. So, the limit parameter is introduced to limit the
number of groups retrieved from the user registry. A limit of zero (0) implies to return all the groups that
match the pattern and can cause problems for large user registries. Use this limit with care. The custom
registry implementations are expected to support at least the wildcard search (*). For example, a pattern
of asterisk (*) returns all the users and a pattern of (b*) returns the users starting with b.

The return parameter is an object of the com.ibm.websphere.security.Result type. This object contains
the java.util.List and java.lang.boolean attributes. The list contains the groups that are returned

Chapter 19. Administering application security 1325



and the Boolean flag indicates whether more groups are available in the user registry for the pattern
searched. This Boolean flag is used to indicate to the client if more groups are available in the registry.

In the FileRegistrySample.java sample file, the getUsers method retrieves the required number of
groups from the user registry and sets them as a list in the Result object. To find out if more groups are
presented than requested, the sample gets one more user than requested and if it finds the additional
user, it sets the Boolean flag to true. For pattern matching, the match method in the RegExpSample
class is used, which supports the asterisk (*) and question mark (?) characters.

This method is called by the administrative console to add groups to roles in the various
map-groups-to-roles panels. The administrative console uses the boolean set in the Result object to
indicate that more entries matching the pattern are available in the user registry.

In WebSphere Application Server Version 4, this method is used to take the pattern parameter only and
returns a list. In WebSphere Application Server Version 5.x or later, this method is changed to take the
limit parameter. Change to take the limit value and limit the users that are returned. The return is
changed to return a Result object, which consists of the list and a flag that indicates whether more
entries exist. Use the Result.setList(List) method to set the list in the Result object. If more entries exist
than requested in the limit parameter, set the Boolean attribute to true in the Result object using the
Result.setHasMore method. The default for the Boolean attribute in the Result object is false.

v Obtain the display name of a group with getGroupDisplayName(String).
public String getGroupDisplayName(String groupSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

The getGroupDisplayName method returns a display name for a group if one exists. The display name
is an optional string that describes the group that you can set in some user registries. This name is a
descriptive name for the group and does not have to be unique in the registry. If you do not need to
have display names for groups in your registry, return null or an empty string for this method.

In the FileRegistrySample.java sample file, this method returns the display name of the group whose
name matches the group name that is provided. If the display name does not exist, this method returns
an empty string.

The product can call this method to present the display names in the administrative console or through
the command line using the wsadmin tool. This method is used for display purposes only.

v Obtain the unique ID of a group with getUniqueGroupId(String).
public String getUniqueGroupId(String groupSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique ID of the group that is given the security name.

In the FileRegistrySample.java sample file, this method returns the security name of the group whose
unique ID matches the supplied ID. This method verifies that a valid group exists for a given
uniqueGroupId ID.

v Obtain the unique IDs of all groups to which a user belongs with getUniqueGroupIds(String).
public List getUniqueGroupIds(String uniqueUserId)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique IDs of all the groups to which a user belongs.

In the FileRegistrySample.java sample file, this method returns the unique ID of all the groups that
contain this uniqueUserID ID. This method is called when creating the credential for the user. As part of
creating the credential, all the groupUniqueIds IDs in which the user belongs are collected and put in
the credential for authorization purposes when groups are given access to a resource.

v Obtain the security name of a group with getGroupSecurityName(String).
public String getGroupSecurityName(String uniqueGroupId)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

1326 Administering WebSphere applications



This method returns the security name of a group given its unique ID.

In the FileRegistrySample.java sample file, this method returns the security name of the group whose
unique ID matches the supplied ID. This method verifies that a valid group exists for a given
uniqueGroupId ID.

v Determine whether a group is a valid group in the registry with isValidGroup(String).
public boolean isValidGroup(String groupSecurityName)

throws CustomRegistryException,
RemoteException;

This method indicates if the given group is a valid group in the registry.

In the FileRegistrySample.java sample file, this method returns true if the group is found in the
registry, otherwise the method returns false. This method can be used in situations where knowing
whether the group exists in the directory might prevent problems later.

v Obtain all groups to which a user belongs with getGroupsForUser(String).
public List getGroupsForUser(String userSecurityName)

throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns all the groups to which a user belongs whose name matches the supplied name.
This method is similar to the getUniqueGroupIds method with the exception that the security names are
used instead of the unique IDs.

In the FileRegistrySample.java sample file, this method returns all the group security names that
contain the userSecurityName name.

This method is called by the administrative console or the scripting tool to verify that the users entered
for the RunAs roles are already part of that role in the users and groups-to-role mapping. This check is
required to ensure that a user cannot be added to a RunAs role unless that user is assigned to the role
in the users and groups-to-role mapping either directly or indirectly through a group that contains this
user. Because a group in which the user belongs can be part of the role in the users and groups-to-role
mapping, this method is called to check if any of the groups that this user belongs to mapped to that
role.

v Retrieve users from a specified group with getUsersForGroup(String,int).
public Result getUsersForGroup(String groupSecurityName, int limit)

throws NotImplementedException,
EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method retrieves users from the specified group. The number of users returned is limited by the
limit parameter. A limit of zero (0) indicates to return all of the users in that group. This method is not
directly called by the WebSphere Application Server security component. However, this method can be
called by other components. In rare situations, if you are working with a user registry where getting all
the users from any of your groups is not practical, you can create the NotImplementedException
exception for the particular groups. In this case, verify that if the process choreographer is installed the
staff assignments are not modeled using these particular groups. If no concern exists about returning
the users from groups in the user registry, it is recommended that you do not create the
NotImplemented exception when implementing this method.

The return parameter is an object with a com.ibm.websphere.security.Result type. This object contains
the java.util.List and java.lang.boolean attributes. The list contains the users that are returned and the
Boolean flag, which indicates whether more users are available in the user registry for the search
pattern. This Boolean flag indicates to the client whether users are available in the user registry.

In the example, this method gets one user more than the requested number of users for a group, if the
limit parameter is not set to zero (0). If the method succeeds in getting one more user, the Boolean flag
is set to true.

In WebSphere Application Server Version 4, this getUsers method is mandatory for the product. For
WebSphere Application Server Version 5.x or later, this method can create the
NotImplementedException exception in situations where it is not practical to get the requested set of

Chapter 19. Administering application security 1327



users. However, create this exception in rare situations when as other components can be affected. In
Version 4, this method accepts only the pattern parameter and returns a list. In Version 5, this method
accepts the limit parameter. Change your implementation to take the limit value and limit the users that
are returned. The return changes to return a Result object, which consists of the list and a flag that
indicates whether more entries exist. When the list is returned, use the Result.setList(List) method to set
the list in the Result object. If more entries than requested are in the limit parameter, set the Boolean
attribute to true in the Result object using Result.setHasMore method. The default for the Boolean
attribute in the Result object is false.

v Implement the createCredential(String) method.

Attention: The first two lines of the following code sample are split for illustrative purposes only.
public com.ibm.websphere.security.cred.WSCredential createCredential(String userSecurityName)
throws NotImplementedException,

EntryNotFoundException,
CustomRegistryException,
RemoteException;

In this release the WebSphere Application Server, the createCredential method is not called. You can
return null. In the example, a null value is returned.

What to do next

Managing the realm in a federated repository configuration
Follow this topic to manage the realm in a federated repository configuration.

Before you begin

The realm can consist of identities in:

v The file-based repository that is built into the system

v One or more external repositories

v Both the built-in, file-based repository and in one or more external repositories

Before you configure your realm, review “Federated repositories limitations” on page 1335.

Procedure
1. Configure your realm by using one of the following topics. You might be configuring your realm for the

first time or changing an existing realm configuration.

v “Using a single built-in, file-based repository in a new configuration under Federated repositories” on
page 1338

v “Changing a federated repository configuration to include a single built-in, file-based repository only”
on page 1348

v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under
Federated repositories” on page 1350

v “Changing a federated repository configuration to include a single, Lightweight Directory Access
Protocol repository only” on page 1351

v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository
configuration” on page 1353

v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access
Protocol repositories in a federated repository configuration” on page 1354

2. Configure supported entity types using the steps described in “Configuring supported entity types in a
federated repository configuration” on page 1398. You must configure supported entity types before
you can manage this account with Users and Groups. The Base entry for the default parent
determines the repository location where entities of the specified type are placed on a create
operation.

1328 Administering WebSphere applications



3. Configure the mapping for user or group attributes of a user registry to federated repository properties
in your realm using the steps described in “Configuring user repository attribute mapping in a federated
repository configuration” on page 1401.

4. Optional: Under Additional properties, click the Custom properties link to configure custom properties.

5. Optional: Use one or more of the following tasks to extend the capabilities of storing data and
attributes in your realm:

a. Configure an entry mapping repository using the steps described in “Configuring an entry mapping
repository in a federated repository configuration” on page 1395. An entry mapping repository is
used to store data for managing profiles on multiple repositories.

b. Configure a property extension repository using the steps described in “Configuring a property
extension repository in a federated repository configuration” on page 1374. A property extension
repository is used to store attributes that cannot be stored in your Lightweight Directory Access
Protocol (LDAP) server.

a. Set up a database repository using wsadmin commands as described in “Setting up an entry
mapping repository, a property extension repository, or a custom registry database repository using
wsadmin commands” on page 1380

6. Optional: Use one or more of the following advanced user tasks to extend the capabilities of LDAP
repositories in your realm:

v “Increasing the performance of an LDAP repository in a federated repository configuration” on page
1406

v “Configuring Lightweight Directory Access Protocol entity types in a federated repository
configuration” on page 1422

v “Configuring group attribute definition settings in a federated repository configuration” on page 1431

7. Optional: Manage repositories that are configured in your system by following the steps described in
“Managing repositories in a federated repository configuration” on page 1403.

8. Optional: Add an external repository into your realm by following the steps described in “Adding an
external repository in a federated repository configuration” on page 1373.

9. Optional: Change the password for the repository that is configured under federated repositories by the
following steps described in “Changing the password for a repository under a federated repositories
configuration” on page 1336.

What to do next
1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Federated repositories:

Federated repositories enable you to use multiple repositories with WebSphere Application Server. These
repositories, which can be file-based repositories, LDAP repositories, or a sub-tree of an LDAP repository,
are defined and theoretically combined under a single realm. All of the user repositories that are
configured under the federated repository functionality are invisible to WebSphere Application Server.

Chapter 19. Administering application security 1329



When you use the federated repositories functionality, all of the configured repositories, which you specify
as part of the federated repository configuration, become active. It is required that the user ID, and the
distinguished name (DN) for an LDAP repository, be unique in multiple user repositories that are
configured under the same federated repository configuration. For example, there might be three different
repositories that are configured for the federated repositories configuration: Repository A, Repository B,
and Repository C. When user1 logs in, the federated repository adapter searches each of the repositories
for all of the occurrences of that user. If multiple instances of that user are found in the combined
repositories, an error message displays.

In addition, the federated repositories functionality in WebSphere Application Server supports the logical
joining of entries across multiple user repositories when the Application Server searches and retrieves
entries from the repositories. For example, when an application calls for a sorted list of people whose age
is greater than twenty, WebSphere Application searches all of the repositories in the federated repositories
configuration. The results are combined and sorted before the Application Server returns the results to the
application.

Unlike the local operating system, stand-alone LDAP registry, or custom registry options, federated
repositories provide user and group management with read and write capabilities. When you configure
federated repositories, you can use one of the following methods to add, create, and delete users and
groups:

Important: If you configure multiple repositories under the federated repositories realm, you must also
configure supported entity types and specify a base entry for the default parent. The base
entry for the default parent determines the repository location where entities of the specified
type are placed on write operations by user and group management. See “Configuring
supported entity types in a federated repository configuration” on page 1398 for details.

v Use the user management application programming interfaces (API). For more information, refer to
articles under "Developing with virtual member manager" in this information center.

v Use the administrative console. To manage users and groups within the administrative console, click
Users and Groups > Manage Users or Users and Groups > Manage Groups. For information on
user and group management, click the Help link that displays in the upper right corner of the window.
From the left navigation pane, click Users and Groups. To manage users and groups for a specific
domain in a multiple security domain environment, click Security > Global security > Security
Domains > domain_name. Under Security Attributes, expand User Realm, and click Customize for
this domain. Select the Realm type as Federated repositories. Click Apply and Save to the master
configuration. On Security domains panel that appears, click the domain_name again to go to the
domain configuration panel. Under User realm, click the Manage users or Manager Groups links that
are displayed now. These links to manage users and groups for a specific domain are displayed only
after you save the federated repositories configuration for the domain.

v Use the wsadmin commands. For more information, see the WIMManagementCommands command
group for the AdminTask object topic.

If you do not configure the federated repositories functionality or do not enable federated repositories as
the active repository, you cannot use the user management capabilities that are associated with federated
repositories. You can configure an LDAP server as the active user registry and configure the same LDAP
server under federated repositories, but not select federated repositories as the active user repository.
With this scenario, authentication takes place using the LDAP server, and you can use the user
management functionality for the LDAP server that is available for federated repositories.

The following table compares the federated repository functionality that is available in WebSphere
Application Server Version 8.5 with the registry functionality that remains unchanged from previous
versions of the Application Server.

1330 Administering WebSphere applications



Table 72. Federated repositories versus user registry implementations.

This table lists federated repositories versus user registry implementations.
Federated repositories User registry

Supports multiple types of repositories such as file-based, LDAP,
database, and custom. In WebSphere Application Server Version 8.5,
file-based and LDAP repositories are supported by the administrative
console. However, the federated repositories functionality does not support
local operating system implementations.

With this service release, the federated repositories functionality supports
local operating system implementations.

For database and custom repositories, you can use the wsadmin
command-line interface or the configuration application programming
interfaces (API).

Supports multiple types of registries such as the local operating system, a
stand-alone LDAP registry, and a stand-alone custom registry.

Supports multiple repositories in a realm within a cell. Supports one registry only in a realm within a cell.

Provides read and write capabilities for the repositories that are defined in
the federated repository configuration.

Provides read only capability for the registries.

Provides account and password policy support as defined by the registry
type. However, this support is not provided by the federated repository
functionality.

Provides account and password policy support as defined by the registry
type.

Supports identity profiles. Does not support identity profiles.

Uses the custom UserRegistry implementation. Uses the custom UserRegistry implementation.

Realm configuration settings:

Use this page to manage the realm. The realm can consist of identities in the file-based repository that is
built into the system, in one or more external repositories, or in both the built-in, file-based repository and
one or more external repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Security domains.

2. Under User realm, select Customize for this domain. Select Federated repositories from the Realm
type field and click Configure.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

A single built-in, file-based repository is built into the system and included in the realm by default.

You can configure one or more Lightweight Directory Access Protocol (LDAP) repositories to store
identities in the realm. Click Add base entry to realm to specify a repository configuration and a base
entry into the realm. You can configure multiple different base entries into the same repository.

Click Remove to remove selected repositories from the realm. Repository configurations and contents are
not destroyed. The following restrictions apply:

v The realm must always contain at least one base entry; therefore, you cannot remove every entry.

v If you plan to remove the built-in, file-based repository from the administrative realm, verify that at least
one user in another member repository is a console user with administrative rights. Otherwise, you must
disable security to regain access to the administrative console.

WebSphere Application Server Version 7.0 distinguishes between the user identities for administrators who
manage the environment and server identities for authenticating server to server communications. In most
cases, server identities are automatically generated and are not stored in a repository.

Realm name:

Chapter 19. Administering application security 1331



Specifies the name of the realm. You can change the realm name.

Primary administrative user name:

Specifies the name of the user with administrative privileges that is defined in the repository, for example,
adminUser.

The user name is used to log on to the administrative console when administrative security is enabled.
Version 6.1 requires an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When migrating to Version 6.1, this
identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments
that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a
user repository.

Information Value
Default: Enabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication. Cells that
contain Version 6.1 or later nodes require a server user identity that is defined in the active user
repository.

Information Value
Default: Enabled

Ignore case for authorization:

Specifies that a case-insensitive authorization check is performed.

If case sensitivity is not a consideration for authorization, enable the Ignore case for authorization
option.

Allow operations if some of the repositories are down:

Specifies whether operations (such as login, search, or get) are allowed even if the repositories in the
realm are down.

Use global schema for model:

Sets the global schema option for the data model in a multiple security domain environment. Global
schema refers to the schema of the admin domain.

Note: Application domains that are set to use global schema share the same schema of the admin
domain. If you extend the schema for an application in one domain, you must also consider how
that might affect applications of other domains, as they are bound by the same schema. For
example, adding a mandatory property for one application might cause other applications to fail.

1332 Administering WebSphere applications



Base entry:

Specifies the base entry within the realm. This entry and its descendents are part of the realm.

Repository identifier:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the
cell.

Repository type:

Specifies the repository type, such as File or LDAP.

User attribute mapping for federated repositories:

Use this page to set or to modify the mapping for user or group attributes of a user registry to the
federated repository properties in the current realm.

To view this administrative console page, click Security > Global security. Under Available realm
definitions, click Federated repositories, and then Configure.

Note: In a multiple security domain environment, click Security domains > domain_name. Under
Security Attributes, expand User Realm, and click Customize for this domain. Select the Realm
type as Federated repositories and then click Configure.

On the next page and under Additional Properties, click User repository attribute mapping.

Attribute mappings:

Select an attribute to set or to modify the mapping for the user or group attribute of a user registry to a
federated repository property, and then click Edit.

Attribute
Specifies the name of the user registry attribute.

Property for Input
Specifies the name of the federated repository property that maps to the specified user registry
attribute when it is an input parameter for the user registry interface.

Property for Output
Specifies the name of the federated repository property that maps to the specified user registry
attribute when it is an output parameter (return value) for the user registry interface. In most
cases, the propertyForInput and propertyForInput would be the same.

Custom repository details for federated repositories:

Use this panel to specify the configuration for access to a custom repository.

To view this administrative console page, click Security > Global security. Under Available realm
definitions, select Federated repositories, and then Configure. In a multiple security domain
environment, click Security domains > domain_name. Under Security Attributes, expand User Realm,
and click Customize for this domain. Select the Realm type as Federated repositories and then click
Configure. On the next panel, under Additional Properties, click Manage repositories. Under Add, select
Custom repository.

Repository identifier:

Chapter 19. Administering application security 1333



Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the
cell.

Repository adapter class name:

Specifies the implementation class name for the repository adapter. For a User Registry bridge, use
com.ibm.ws.wim.adapter.urbridge.URBridge.

Login properties:

Specifies the property names to use to log into the application server.

Custom properties:

Specifies arbitrary name and value pairs of data. The name is a property key and the value is a string
value that can be used to set internal system configuration properties.

Add federated repository settings:

Use this page to specify the configuration for access to a file repository.

To view this administrative console page, click Security > Global security. Under Available realm
definitions, select Federated repositories, and then Configure.

Note: In a multiple security domain environment, click Security domains > domain_name. Under
Security Attributes, expand User Realm, and click Customize for this domain. Select the Realm
type as Federated repositories and then click Configure.

On the next page, under Related Items, click Manage repositories. Under Add, select File repository.

Repository identifier:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the
cell.

Repository adapter class name:

Specifies the implementation class name for the repository adapter. For a User Registry bridge, use
com.ibm.ws.wim.adapter.urbridge.URBridge.

Base directory:

The base directory where the files are to be created. This directory must already exist.

File name:

The file name for the repository.

The default value is fileRegistry.xml.

Salt length:

Specifies the salt length of the randomly generated salt for password hashing.

The default value is 12.

Message digest algorithm:

1334 Administering WebSphere applications



Specifies the message digest algorithm to use for hashing the password.

Select one of the following: SHA-1, SHA-256, SHA-384 or SHA-512.

The default value is SHA-1.

Login properties:

Specifies the property names to use to log into the application server.

Custom properties:

Specifies arbitrary name and value pairs of data. The name is a property key and the value is a string
value that can be used to set internal system configuration properties.

Federated repositories limitations:

This topic outlines known limitations and important information for configuring federated repositories.

Configuring federated repositories in a mixed-version environment

In a mixed-version deployment manager cell that contains both Version 6.1.x and Version 5.x or 6.0.x
nodes, the following limitations apply for configuring federated repositories:
v You can configure only one Lightweight Directory Access Protocol (LDAP) repository under federated

repositories, and the repository must be supported by Version 5.x or 6.0.x.
v You can specify a realm name that is compatible with prior versions only. The host name and the port

number represent the realm for the LDAP server in a mixed-version nodes cell. For example,
machine1.austin.ibm.com:389.

v You must configure a stand-alone LDAP registry; the LDAP information in both the stand-alone LDAP
registry and the LDAP repository under the federated repositories configuration must match. During
node synchronization, the LDAP information from the stand-alone LDAP registry propagates to the
Version 5.x or 6.0.x nodes.

Important: Before node synchronization, verify that Federated repositories is identified in the Current
realm definition field. If Federated repositories is not identified, select Federated
repositories from the Available realm definitions field and click Set as current. Do not set
the stand-alone LDAP registry as the current realm definition.

v You cannot configure an entry mapping repository or a property extension repository in a mixed-version
deployment manager cell.

Configuring LDAP servers in a federated repository

The LDAP connection connectTimeout default value is 20 seconds. LDAP should respond within 20
seconds for any request from WebSphere Application Server. If you cannot connect to your LDAP within
this time, make sure that your LDAP is running. A connection error displays at the top of the LDAP
configuration panel when the connection timeout exceeds 20 seconds.

Coexisting with Tivoli Access Manager

For Tivoli Access Manager to coexist with a federated repositories configuration, the following limitations
apply:
v You can configure only one LDAP repository under federated repositories, and that LDAP repository

configuration must match the LDAP server configuration under Tivoli Access Manager.
v The distinguished name for the realm base entry must match the LDAP distinguished name (DN) of the

base entry within the repository. In WebSphere Application Server, Tivoli Access Manager recognizes

Chapter 19. Administering application security 1335



the LDAP user ID and LDAP DN for both authentication and authorization. The federated repositories
configuration does not include additional mappings for the LDAP user ID and DN.

v The federated repositories functionality does not recognize the metadata that is specified by Tivoli
Access Manager. When users and groups are created under user and group management, they are not
formatted using the Tivoli Access Manager metadata. The users and groups must be manually imported
into Tivoli Access Manager before you use them for authentication and authorization.

Limitation for configuring active directories with their own federated repository realms

In order to use the administrative console to perform a wildcard search for all available users on two Active
Directories, and to prevent multiple entries exceptions with all built-in IDs, you must first configure each
Active Directory with it's own federated repository realm.

However, you cannot use the administrative console to configure each Active Directory with it's own
federated repository realm. You can instead use a wsadmin script similar to the following:
$AdminTask createIdMgrRealm {-name AD1realm}
$AdminTask addIdMgrRealmBaseEntry {-name AD1realm -baseEntry o=AD1}

$AdminTask createIdMgrRealm {-name AD2realm}
$AdminTask addIdMgrRealmBaseEntry {-name AD2realm -baseEntry o=AD2}

$AdminConfig save

Limitation for repository ID in federated repositories configuration

In a federated repositories configuration, the repository ID must not exceed a length of 36 characters. If
the repository ID exceeds 36 characters, an error may occur while retrieving or storing data, especially if
the property extension repository is configured.

z/OS LDAP server with RACF not supported

WebSphere Application Server federated repositories DO NOT support a z/OS LDAP server with an SDBM
backend (resource access control facility (RACF)).

Changing the password for a repository under a federated repositories configuration:

Passwords allow security control over the repositories under a federated repositories configuration. As part
of managing the realm in a federated repository configuration, one of the optional tasks you can perform is
to change the password of an individual repository that is under a federated repositories configuration.

Before you begin

Before you change the password for the repository that is configured under federated repositories, ensure
that the WebSphere Application Server is running and the target repository for the password change is
configured under the federated repositories configuration.

Procedure

v Changing the password for a repository using the dynamic updateIdMgrLDAPBindInfo command Use
the following steps to change the Lightweight Directory Access Protocol (LDAP) bind distinguished
name (DN) or bind password of an LDAP repository.

From a wsadmin prompt, you can enter the following command to display a list of arguments for the
updateIdMgrLDAPBindInfo command: $AdminTask help updateIdMgrLDAPBindInfo

1. Start the wsadmin command-line utility. The wsadmin command is found in theapp_server_root/bin
directory. The WebSphere Application Server and wsadmin must remaining running.

2. Use an LDAP tool to change the password of the LDAP repository. Some LDAP repositories require
a stop and start of the LDAP server to change the password.

1336 Administering WebSphere applications



3. From the wsadmin prompt, enter the updateIdMgrLDAPBindInfo command to update the LDAP
password under the federated repository. The change is also reflected in the wimconfig.xml file.

v Changing the password for a repository using the updateIdMgrDBRepository command

1. Start the wsadmin command-line utility. The wsadmin command is found in the app_server_root/bin
directory. The wsadmin command session must remain running. If WebSphere Application Server is
not started, you need to open a wsadmin command session in local mode. wsadmin -conntype none

gotcha: If you are starting the wsadmin command session in local mode, you must ensure that the
location of the database driver is specified in the class path using the –wsadmin_classpath
option. For information on using this option, see the topic, wsadmin scripting tool in the
WebSphere Application Server information center.

2. Log in to the Administrative Console for WebSphere Application Server.

3. Change the password for the repository.

4. From the Administrative Console, change the data source (J2C) password. You access the proper
console page by clicking Resources > JDBC > Data sources >data_source> JAAS - J2C
authentication data.

5. From the Administrative Console, save your changes to the master configuration.

6. From the wsadmin prompt, use the updateIdMgrDBRepository command to update the password in
the wimconfig.xml file.

7. From the wsadmin prompt, save your changes to the master configuration. The following command
is used to save the master configuration: $AdminConfig save.

8. Restart the WebSphere Application Server.

v Changing the password for a repository using the setIdMgrPropertyExtensionRepository command

1. Start the wsadmin command-line utility. The wsadmin command is found in theapp_server_root/bin
directory. The wsadmin command session must remain running. If WebSphere Application Server is
not started, you need to open a wsadmin command session in local mode.

wsadmin -conntype none

2. Log in to the Administrative Console for WebSphere Application Server.

3. Change the password for the repository.

4. From the Administrative Console, change the data source (J2C) password. You access the proper
console page by clicking Resources > JDBC > Data sources > data_source > JAAS - J2C
authentication data.

5. From the Administrative Console, save your changes to the master configuration.

6. From the wsadmin prompt, use the setIdMgrPropertyExtensionRepository command to update
the password in the wimconfig.xml file.

7. From the wsadmin prompt, save your changes to the master configuration. The following command
is used to save the master configuration: $AdminConfig save.

8. Restart the WebSphere Application Server.

v Changing the password for a repository using the setIdMgrEntryMappingRepository command

1. Start the wsadmin command-line utility. The wsadmin command is found in theapp_server_root/bin
directory. The wsadmin command session must remain running. If WebSphere Application Server is
not started, you need to open a wsadmin command session in local mode.

wsadmin -conntype none

2. Log in to the Administrative Console for WebSphere Application Server.

3. Change the password for the repository.

4. From the Administrative Console, change the data source (J2C) password. You access the proper
console page by clicking Resources > JDBC > Data sources >data_source > JAAS - J2C
authentication data.

5. From the Administrative Console, save your changes to the master configuration.

Chapter 19. Administering application security 1337



6. From the wsadmin prompt, use the setIdMgrEntryMappingRepository command to update the
password in the wimconfig.xml file.

7. From the wsadmin prompt, save your changes to the master configuration. The following command
is used to save the master configuration: $AdminConfig save.

8. Restart the WebSphere Application Server.

v Changing the password for a repository using the updateIdMgrLDAPServer command

1. Start the wsadmin command-line utility. The wsadmin command is found in theapp_server_root/bin
directory. The wsadmin command session must remain running. If WebSphere Application Server is
not started, you need to open a wsadmin command session in local mode.

wsadmin -conntype none

2. Change the password for the repository.

3. From the wsadmin prompt, use the updateIdMgrLDAPServer command to update the password in
the wimconfig.xml file.

4. From the wsadmin prompt, save your changes to the master configuration. The following command
is used to save the master configuration: $AdminConfig save.

5. Restart the WebSphere Application Server.

Results

The password for the repository has been changed.

Using a single built-in, file-based repository in a new configuration under Federated repositories:

Follow this task to use a single built-in, file-based repository in a new configuration under Federated
repositories.

Before you begin

To use the default configuration under Federated repositories that includes a single built-in, file-based
repository only, you need to know the primary administrative user name of the user who manages
WebSphere Application Server resources and user accounts.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure. To configure for a specific domain in a multiple security domain
environment, click Security domains > domain_name. Under Security Attributes, expand User
Realm, and click Customize for this domain. Select the Realm type as Federated repositories and
then click Configure.

3. Optional: Leave the Realm name field value as defaultWIMFileBasedRealm.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

5. Leave the Ignore case for authorization option selected.

6. Leave the Allow operations if some of the repositories are down option cleared.

7. Optional: In a multiple security domain environment, select Use global schema for model option to
indicate that the global schema option is enabled for the data model. Global schema refers to the
schema of the admin domain.

8. Click OK.

9. Provide an administrative user password. This panel displays only when a built-in, file-based
repository is included in the realm. Otherwise, the panel does not display. If a built-in, file-based
repository is included, complete the following steps:

1338 Administering WebSphere applications



a. Supply a password for the administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

10. To modify the settings of the built-in, file-based repository, under Related items, click Manage
Repositories and then click the InternalFileRepository link.

Salt length
Specifies the salt length of the randomly generated salt for password hashing.

Message digest algorithm
Specifies the message digest algorithm to use for hashing the password.

Login properties
Specifies the property names to use to log into the application server. This field takes in
multiple login properties, delimited by a semicolon (;).

Custom properties
Specifies arbitrary name and value pairs of data. The name is a property key and the value is
a string value that can be used to set internal system configuration properties.

Results

After completing these steps, your new configuration under Federated repositories includes a single
built-in, file-based repository only.

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1398.
2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps, as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Administrative user password settings:

Use this page to set a password for the administrative user who manages the product resources and user
accounts.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. If your federated repository configuration includes a built-in, file-based repository, then the
Administrative user password panel displays when changes are applied.

Chapter 19. Administering application security 1339



When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Password:

Specifies the password of the administrative user who manages the product resources and user accounts.

Confirm password:

Confirms the password of the administrative user who manages the product resources and user accounts.

Federated repository wizard settings:

Use this security wizard page to complete the basic requirements to connect the application server to a
federated repository.

To view this security wizard page, complete the following steps

1. Click Security > Global security > Security configuration wizard.

2. Select your protection settings and click Next.

3. Select the Federated repositories option and click Next.

You can modify your federated repository configuration by completing the following steps:

1. Click Security > Global security.

2. Under User account repository, select Federated repository and click Configure.

Note: This wizard is used for the initial configuration of a built-in, file-based repository. The user name
and password do not have to be in the federated repository because they will be created. If you
have previously configured federated repositories, do not use the Security configuration wizard to
modify your configuration. Instead, modify your configuration using the Federated repositories
selection under User account repository on the Global security panel.

Primary administrative user name:

Specifies the name of the user with administrative privileges that is defined in the repository, for example,
adminUser.

The user name is used to log on to the administrative console when administrative security is enabled.
Version 6.1 requires an administrative user that is distinct from the server user identity so that
administrative actions can be audited.

Attention: In WebSphere Application Server, Version 6.0.x, a single user identity is required for both
administrative access and internal process communication. When migrating to Version 6.1, this
identity is used as the server user identity. You need to specify another user for the
administrative user identity.

Password:

Specifies the password of the administrative user who manages the product resources and user accounts.

Confirm password:

Confirms the password of the administrative user who manages the product resources and user accounts.

Adding a file-based repository to a federated repositories configuration:

1340 Administering WebSphere applications



Follow this task to add a file-based repository under federated repositories.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure. To configure for a specific domain in a multiple security domain
environment, click Security domains > domain_name. Under Security Attributes, expand User
Realm, and click Customize for this domain. Select the Realm type as Federated repositories and
then click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

5. Leave the Ignore case for authorization option selected.

6. Leave the Allow operations if some of the repositories are down option cleared.

7. Optional: In a multiple security domain environment, select Use global schema for model option to
indicate that the global schema option is enabled for the data model. Global schema refers to the
schema of the admin domain.

8. Click Add base entry to realm.

9. Enter a distinguished name for the realm base entry in the Distinguished name of a base entry
that uniquely identifies this set of entries in the realm field.

10. Enter the distinguished name of the base entry within the repository in the Distinguished name of a
base entry in this repository field.

11. Click Add > File repository.

12. Specify the required details for the new file repository:

Repository identifier
Specifies a unique identifier for the repository. This identifier uniquely identifies the repository
within the cell.

Repository adapter class name
Specifies the implementation class name for the repository adapter. For a file repository,
leave it as com.ibm.ws.wim.adapter.file.was.FileAdapter.

Base directory
The base directory where the files are to be created. This directory must already exist.

File name
The file name for the repository. The default value is fileRegistry.xml.

Salt length
Specifies the salt length of the randomly generated salt for password hashing. The default
value is 12.

Message digest algorithm
Specifies the message digest algorithm to use for hashing the password. Select one of the
following: SHA-1, SHA-256, SHA-384 or SHA-512. The default value is SHA-1.

Login properties
Specifies the property names to use to log into the application server. This field takes in
multiple login properties, delimited by a semicolon (;).

Custom properties
Specifies arbitrary name and value pairs of data. The name is a property key and the value is
a string value that can be used to set internal system configuration properties.

13. Click OK and Save to the master configuration.

Chapter 19. Administering application security 1341



Results

After completing these steps, your new configuration under Federated repositories includes a new
file-based repository.

Enabling client certificate login support for a file-based repository in federated repositories:

You can enable support for client certificate login in a realm configured with a single built-in file-based
repository or a multiple repository configuration that includes the file-based repository and other
repositories.

Before you begin

The federated repositories configuration must include a file-based repository. See the topic, Using a single
built-in, file-based repository in a new configuration under Federated repositories.

About this task

The default configuration of the built-in file-based repository ignores a certificate login request, returns an
empty search result, and does not display any error.

If you want to enable client certificate login for the built-in file-based repository, complete the following
steps to set custom properties.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories and then click the InternalFileRepository link.

4. To enable certificate login for the file-based repository, under Custom properties, enter the property
name as certificateMapMode. Specify one of the following values for this property according to your
requirement:

Note: Property names are case-sensitive, while property values are not case-sensitive.

notSupported
An error is displayed informing the user that the file-based repository does not support
certificate login.

exactDNMode
Login is attempted by mapping the PrincipalName value in the X.509 certificate to the exact
distinguished name (DN) in the repository. If a matching entity is found, login is successful. If a
matching entity is not found, an error stating that the entity is not found is displayed.

filterDescriptorMode
Login is attempted using the certificate filter for the mapping. If a single matching entity is
found, the login is successful. If more than one matching entity is found, the authentication fails
because the result is an ambiguous match and an error is displayed.

If you do not specify a valid value, an error is logged during initialization of the file adapter and an
empty search result is returned.

5. If you set the value of the certificateMapMode property to filterDescriptorMode, then you must add
another custom property, certificateFilter. The certificateFilter custom property specifies the
filter that maps attributes in the client certificate to entries in the repository.

1342 Administering WebSphere applications



Note: This step is not required if you set the value of the certificateMapMode property to
notSupported or exactDNMode.

a. Under Custom properties, click New.

b. In the new row, enter the property name as certificateFilter. Specify the filter expression as the
value for this property.

The syntax or structure of this filter is Repository attribute=${Client certificate attribute}, for
example, uid=’${SubjectCN}’.

The following conditions apply to the syntax of the certificate filter for file repositories:

v The part of the filter specification that precedes the equals sign (=) must be a valid property for
PersonAccount in the file-based repository.

v The part of the filter specification that follows the equals sign (=) is one of the public attributes in
your client certificate. It must begin with a dollar sign ($) and open bracket ({) and end with a close
bracket (}).

v You must enclose data for all federated repository string properties within single quotation marks (’).
For example, the federated repository property cn is a string; so a certificate filter that uses this
property is specified as cn=’${IssuerCN}’.

You can use the following certificate attribute values on the part of the filter specification that comes
after the equals sign (=). The case of the strings is important.
v ${UniqueKey}
v {PublicKey}
v {PublicKey}
v {Issuer<xx>} where <xx> is replaced by the characters that represent any valid component of the

Issuer Distinguished Name. For example, you might use ${IssuerCN} for the Issuer Common Name.
v ${NotAfter}
v ${NotBefore}
v ${SerialNumber}
v ${SigAlgName}
v ${SigAlgOID}
v ${SigAlgParams}
v ${Subject<xx>} where <xx> is replaced by the characters that represent any valid component of the

Subject Distinguished Name. For example, you might use ${SubjectCN} for the Subject Common
Name.

v ${Version}

The following examples are complex certificate filters for the file repository:

v ((cn=’${IssuerCN}’) and (mobile=${SerialNumber}) and (seeAlso=’${SubjectDN}’))

v ((employeeNumber=${SerialNumber}) or (seeAlso=’${SubjectDN}’)

There are several differences between the syntax used to specify certificate filters for LDAP repository
and file repository, as shown in the following table.

Table 73. Description of differences between certificate filter syntax for LDAP and file repositories

File repository certificate filters LDAP repository certificate filters

Use infix notations. Use prefix notations.

Use the logical operators and and or. Use the logical operators ampersand (&) and vertical bar
(|)

Data for all federated repository string properties must be
enclosed within single quotation marks (’),

Data for federated repository string properties does not
have to be enclosed within single quotation marks (’),

Example:

cn=’${Issuer CN}’ and mobile=${SerialNumber})

Example:

(& (cn=${IssuerCN}) (mobile=${SerialNumber}))

6. Save the configuration changes and restart WebSphere Application Server for the changes to take
effect.

Chapter 19. Administering application security 1343



Adding custom properties using wsadmin commands:

Alternately, you can also use wsadmin commands to add the custom properties as shown in the following
steps.

Procedure

1. Enter the following command to start the wsadmin tool.
wsadmin –conntype none

2. Use the setIdMgrCustomProperty command to add custom properties.
$AdminTask setIdMgrCustomProperty { -id InternalFileRepository -name certificateMapMode -value mode}
$AdminTask setIdMgrCustomProperty { -id InternalFileRepository -name certificateFilter -value filter_expression}

For example, the following command searches for a user whose CN has the value specified by the
IssureCN property of the certificate:
$AdminTask setIdMgrCustomProperty { -id InternalFileRepository -name certificateFilter -value “cn=’${IssuerCN}’”}

The following command searches for a user whose CN has the value specified by the IssuerCN
property of the certificate and whose mobile matches the SerialNumber property of the certificate.
$AdminTask setIdMgrCustomProperty { -id InternalFileRepository -name certificateFilter -value “cn=’${IssuerCN}’ and mobile=${SerialNumber}”}

3. Save the configuration changes.
$AdminConfig save

4. Restart WebSphere Application Server for the changes to take effect.

Results

After completing these steps, support for certificate login for file-based repository is enabled in the
federated repositories as shown in the following entries of the file adapter configuration:
<config:CustomProperties name="certificateMapMode" value="mode"/>
<config:CustomProperties name="certificateFilter" value="filter_expression"/>

If the certificate login request is honored, login is successful. If the certificate login request is rejected, an
error is displayed.

If only file repository is configured under federated repositories, the results of the certificate login request
are as described in the following table.

Table 74. Certificate login results in a federated repositories configuration that includes only a file repository

File repository Expected results

Default behavior (certificateMapMode custom property is
not added)

Certificate login request is ignored, an empty result is
returned, and no error is displayed

Certificate login is not supported (value of
certificateMapMode custom property is notSupported)

CertificateMapNotSupportedException occurs

Certificate login is supported (value of
certificateMapMode custom property is exactDNMode or
filterDescriptorMode) and user is not found

EntityNotFoundException occurs

Certificate login is supported (value of
certificateMapMode custom property is exactDNMode) and
an entity with DN that matches the PrincipalName in the
certificate is found

Certificate login is successful

Certificate login is supported (value of
certificateMapMode custom property is
filterDescriptorMode) and a single matching entity is
found

Certificate login is successful

1344 Administering WebSphere applications



Table 74. Certificate login results in a federated repositories configuration that includes only a file
repository (continued)

File repository Expected results

Certificate login is supported (value of
certificateMapMode custom property is
filterDescriptorMode) and more than one matching
entities are found

CertificateMapFailedException occurs and “Multiple
principals found” error message is displayed

If multiple repositories are configured under federated repositories, the final login result depends on the
behavior and results returned from the other repositories. The following tables contain examples of errors
that are displayed in various configuration scenarios.

Table 75. Certificate login results in a federated repositories configuration that includes a file and an LDAP repository

File repository LDAP repository Expected results

Default behavior Certificate login is supported and user
is found

Certificate login is successful

Default behavior Certificate login is supported and user
is not found

PasswordCheckFailedException
occurs

Certificate login is not supported Certificate login is supported and user
is found

CertificateMapFailedException occurs

Certificate login is supported and user
is found

Certificate login is supported and user
is found

DuplicateLogonIdException occurs

Certificate login is supported and user
is found

Certificate login is supported and user
is not found

Certificate login is successful

Certificate login is supported and user
is not found

Certificate login is supported and user
is found

Certificate login is successful

Certificate login is supported and user
is not found

Certificate login is supported and user
is not found

PasswordCheckFailedException
occurs

Table 76. Certificate login results in a federated repositories configuration that includes a file and local operating
system repository

File repository Local operating system repository Expected results

Default behavior Certificate login is not supported CertificateMapFailedException occurs

Certificate login is not supported Certificate login is not supported CertificateMapNotSupportedException
occurs

Certificate login is supported and user
is found

Certificate login is not supported CertificateMapFailedException occurs

Certificate login is supported and user
is not found

Certificate login is not supported CertificateMapFailedException occurs

Default behavior Certificate login is supported and user
is found

Certificate login is successful

Default behavior Certificate login is supported and user
is not found

PasswordCheckFailedException
occurs

Certificate login is not supported Certificate login is supported and user
is found

CertificateMapFailedException occurs

Certificate login is supported and user
is found

Certificate login is supported and user
is found

DuplicateLogonIdException occurs

Certificate login is supported and user
is found

Certificate login is supported and user
is not found

Certificate login is successful

Chapter 19. Administering application security 1345



Table 76. Certificate login results in a federated repositories configuration that includes a file and local operating
system repository (continued)

File repository Local operating system repository Expected results

Certificate login is supported and user
is not found

Certificate login is supported and user
is found

Certificate login is successful

Certificate login is supported and user
is not found

Certificate login is supported and user
is not found

PasswordCheckFailedException
occurs

Configuring a single built-in, file-based repository in a new configuration under federated
repositories using wsadmin:

You can use the Jython or Jacl scripting language with the wsadmin tool to configure a single built-in,
file-based repository in a new configuration under Federated repositories.

Before you begin

Shut down the application server and ensure you have the primary administrator id and password.

About this task

The federated repositories configuration file, wimconfig.xml, is supported by WebSphere Application
Server 6.1.x and is located in the app_server_root/profiles/profile_name/config/cells/cell_name/wim/
config directory.

Use the following steps to configure for use a single built-in, file-based repository in a new configuration for
federated repositories.

Procedure

1. Start the wsadmin scripting tool.

2. Create the fileRegistry.xml file, which is the user registry itself, if it does not already exist. If the
fileRegistry.xml file does exist, this step just adds the user to registry.

Using Jython:
AdminTask.addFileRegistryAccount(’-userId isoet01s01 -password oets01’)

Using Jacl:
$AdminTask addFileRegistryAccount {-userId isoet01s01 -password oets01}

For more information on the addFileRegistryAccount command, see the documentation about the
FileRegistryCommands command group for the AdminTask object.

3. Update the security.xml file to enable administrative security, set the activeUserRegistry to use
federated repositories, and update the primaryAdmin and its password.

Using Jython:

AdminTask applyWizardSettings(’-secureApps false
-secureLocalResources false
-userRegistryType WIMUserRegistry
-customRegistryClass com.ibm.ws.wim.registry.WIMUserRegistry
-adminName isoet01s01 -adminPassword oets01’)

Using Jacl:

$AdminTask applyWizardSettings {-secureApps false
-secureLocalResources false
-userRegistryType WIMUserRegistry
-customRegistryClass com.ibm.ws.wim.registry.WIMUserRegistry
-adminName isoet01s01
-adminPassword oets01}

1346 Administering WebSphere applications



For more information on the applyWizardSettings command, see the documentation about the
WizardCommands command group for the AdminTask object.

4. Save your configuration changes. Enter the following commands to save the new configuration and
close the wsadmin tool:

Using Jython:
AdminConfig.save()

Using Jacl:
$AdminConfig save

5. Restart the application server.

FileRegistryCommands command group for the AdminTask object:

Federated repositories provides a file registry. Use the commands in the FileRegistryCommands command
group to administer the file registry using the wsadmin tool.

Note: If the Use global security settings option is selected for the user realm or the Global federated
repositories option is selected as the realm type for the specified domain, the user and group
management commands are executed on the federated repository of the admin domain. For
example, if you run the createUser command for the specified domain, the user is created in the
admin domain. However, configuration changes that are performed on the domain are applied to
the security domain-specific configuration.

Use the following commands in the FileRegistryCommands group to modify the federated repository file
registry:

v “addFileRegistryAccount command”

v “changeFileRegistryAccountPassword command” on page 1348

addFileRegistryAccount command

The addFileRegistryAccount command adds an account to the file registry. You must save your
configuration changes after running this command to save the new account to the master repository.

Target object

None

Required parameters

-userId
Specifies the ID of the user to add to the file registry. (String, required)

-password
Specifies the password of the user to add to the file registry. (String, required)

Optional parameters

-securityDomainName
Specifies the name that uniquely identifies the security domain. If you do not specify this parameter,
the command uses the global federated repository. (String, optional)

-parent
Specifies the parent of the entity. (String, optional)

.

Return value

Chapter 19. Administering application security 1347



This command returns a message that indicates that the command ran successfully, as the following
example displays:
’CWWIM4544I Account newAcct(uid=newAcct,o=defaultWIMFileBasedRealm) is stored in the
file registry in the temporary workspace. You must use the "$AdminConfig save"
command to save it in the master repository.’

Batch mode example usage

v Using Jython string:
AdminTask.addFileRegistryAccount(’[-userId newAcct -password new22password]’)

Interactive mode example usage

v Using Jython string:
AdminTask.addFileRegistryAccount([’-userId’, ’newAcct’, ’-password’, ’new22password’])

changeFileRegistryAccountPassword command

The changeFileRegistryAccountPassword changes the password for the file registry account.

Target object

None.

Required parameters

-userId
Specifies the user ID of interest. (String, required)

-password
Specifies the new password. (String, required)

Optional parameters

-securityDomainName
Specifies the name that uniquely identifies the security domain. If you do not specify this parameter,
the command uses the global federated repository. (String, optional)

-uniqueName
Specifies the fully-qualified unique name of the administrator. (String, optional)

Return value

This command returns a message that indicates that the command ran successfully, as the following
example displays:
’CWWIM4545I The password is changed for newAcct(uid=newAcct,o=defaultWIMFileBasedRealm)
in the file registry in the temporary workspace. You must use the "$AdminConfig save"
command to save it in the master repository.’

Batch mode example usage

v Using Jython string:
AdminTask.changeFileRegistryAccountPassword(’[-userId newAcct -password newPassword -uniqueName
uid=newAcct,o=defaultWIMFileBasedRealm]’)

Interactive mode example usage

v Using Jython string:
AdminTask.changeFileRegistryAccountPassword([’-userId’, ’newAcct’, ’-password’, ’newPassword’,
’-uniqueName’, ’uid=newAcct,o=defaultWIMFileBasedRealm’])

Changing a federated repository configuration to include a single built-in, file-based repository
only:

1348 Administering WebSphere applications



Follow this task to change your federated repository configuration to include a single built-in, file-based
repository only.

Before you begin

To change your federated repository configuration to include a single built-in, file-based repository only,
you need to know the primary administrative user name of the user who manages WebSphere Application
Server resources and user accounts.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure. To configure for a specific domain in a multiple security domain
environment, click Security domains > domain_name. Under Security Attributes, expand User
Realm, and click Customize for this domain. Select the Realm type as Federated repositories and
then click Configure.

3. Enter the name of the realm in the Realm name field. If the realm contains a single built-in, file-based
repository only, you must specify defaultWIMFileBasedRealm as the realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

5. Enable the Ignore case for authorization option.

6. Leave the Allow operations if some of the repositories are down option cleared.

7. Optional: In a multiple security domain environment, select Use global schema for model option to
indicate that the global schema option is enabled for the data model. Global schema refers to the
schema of the admin domain.

8. Click Use built-in repository if the built-in, file-based repository is not listed in the collection.

9. Select all repositories in the collection that are not of type File and click Remove.

10. Click OK.

11. Provide an administrative user password. This panel displays only when a built-in, file-based
repository is included in the realm. Otherwise, it does not display. If a built-in, file-based repository is
included, complete the following steps:

a. Supply a password for the primary administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

12. To modify the settings of the built-in, file-based repository, under Related items, click Manage
Repositories and then click the InternalFileRepository link.

Salt length
Specifies the salt length of the randomly generated salt for password hashing.

Message digest algorithm
Specifies the message digest algorithm to use for hashing the password.

Login properties
Specifies the property names to use to log into the application server. This field takes in
multiple login properties, delimited by a semicolon (;).

Custom properties
Specifies arbitrary name and value pairs of data. The name is a property key and the value is
a string value that can be used to set internal system configuration properties.

Chapter 19. Administering application security 1349



Results

After completing these steps, your federated repository configuration, which includes a single built-in,
file-based repository only, is configured.

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1398.
2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps, as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Configuring a single, Lightweight Directory Access Protocol repository in a new configuration
under Federated repositories:

Follow this task to configure a single, Lightweight Directory Access Protocol (LDAP) repository in a new
configuration under Federated repositories.

Before you begin

To configure an LDAP repository in a new configuration under Federated repositories, you must know a
valid user name (ID), the user password, the server host and port and, if necessary, the bind distinguished
name (DN) and the bind password. You can choose any valid user in the repository that is searchable. In
some LDAP servers, administrative users are not searchable and cannot be used (for example, cn=root in
SecureWay). This user is referred to as the WebSphere Application Server administrative user name or
administrative ID in the documentation. Being an administrative ID means a user has special privileges
when calling some protected internal methods. Normally, this ID and password are used to log in to the
administrative console after you turn on security. You can use other users to log in, if those users are part
of the administrative roles.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. On the Federated repositories panel, complete the following steps:

a. Enter the name of the realm in the Realm name field. You can change the existing realm name.

b. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

c. Optional: Select the Ignore case for authorization option. When you enable this option, the
authorization check is case-insensitive. Normally, an authorization check involves checking the
complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when
all of the member repositories in the realm are case-sensitive.

1350 Administering WebSphere applications



Restriction: Some repositories contain data that is case-sensitive only, and some repositories
contain data that is case-insensitive only. Do not include both case-sensitive and
case-insensitive repositories in the realm. For example, do not include case-sensitive
repositories in the realm with a built-in, file-based repository.

d. Leave the Allow operations if some of the repositories are down option cleared.

e. Optional: In a multiple security domain environment, select Use global schema for model option
to indicate that the global schema option is enabled for the data model. Global schema refers to
the schema of the admin domain.

f. Click Add base entry to realm to add a base entry that uniquely identifies the external repository
in the realm. Then complete the steps in “Adding an external repository in a federated repository
configuration” on page 1373.

4. On the Federated repositories panel, complete the following steps:

a. Select the built-in, file-based repository in the collection, and click Remove.

Restriction: Before you remove the built-in, file-based repository from the administrative realm,
verify that at least one user in another member repository is a console user with
administrative rights. Otherwise, you must disable security to regain access to the
administrative console.

b. Click OK.

Results

After completing these steps, your new configuration under Federated repositories includes a single, LDAP
repository only.

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1398.
2. After configuring the federated repositories, click Security > Global secuity to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Changing a federated repository configuration to include a single, Lightweight Directory Access
Protocol repository only:

Follow this task to change your federated repository configuration to include a single, Lightweight Directory
Access Protocol repository (LDAP) repository only.

Before you begin

To configure an LDAP repository in a federated repository configuration, you must know a valid user name
(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and
the bind password. You can choose any valid user in the repository that is searchable. In some LDAP
servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).
This user is referred to as a WebSphere Application Server administrative user name or administrative ID
in the documentation. Being an administrative ID means a user has special privileges when calling some

Chapter 19. Administering application security 1351



protected internal methods. Normally, this ID and password are used to log into the administrative console
after you turn on security. You can use other users to log in if those users are part of the administrative
roles.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

5. Optional: Select the Ignore case for authorization option. When you enable this option, the
authorization check is case-insensitive. Normally, an authorization check involves checking the
complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when all
of the member repositories in the realm are case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories contain
data that is case-insensitive only. Do not include both case-sensitive and case-insensitive
repositories in the realm. For example, do not include case-sensitive repositories in the
realm with a built-in, file-based repository.

6. Leave the Allow operations if some of the repositories are down option cleared.

7. Optional: In a multiple security domain environment, select Use global schema for model option to
indicate that the global schema option is enabled for the data model. Global schema refers to the
schema of the admin domain.

8. Optional: Click Add base entry to realm if the LDAP repository that you need is not contained in the
collection. Then complete the steps in “Adding an external repository in a federated repository
configuration” on page 1373.

9. On the Federated repositories panel, complete the following steps:

a. Optional: Select the repositories in the collection that you do not need in the realm and click
Remove.

Restriction: The realm must always contain at least one base entry; therefore, you cannot remove
every entry.

b. Click OK.

Results

After completing these steps, your federated repository configuration, which includes a single LDAP
repository only, is configured.

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1398.
2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

1352 Administering WebSphere applications



3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository
configuration:

Follow this task to configure multiple Lightweight Directory Access Protocol (LDAP) repositories in a
federated repository configuration.

Before you begin

To configure an LDAP repository in a federated repository configuration, you must know a valid user name
(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and
the bind password. You can choose any valid user in the repository that is searchable. In some LDAP
servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).
This user is referred to as a WebSphere Application Server administrative user name or administrative ID
in the documentation. Being an administrative ID means a user has special privileges when calling some
protected internal methods. Normally, this ID and password are used to log into the administrative console
after you turn on security. You can use other users to log in if those users are part of the administrative
roles.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

5. Optional: Select the Ignore case for authorization option. When you enable this option, the
authorization check is case-insensitive. Normally, an authorization check involves checking the
complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when all
of the member repositories in the realm are case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories contain
data that is case-insensitive only. Do not include both case-sensitive and case-insensitive
repositories in the realm. For example, do not include case-sensitive repositories in the
realm with a built-in, file-based repository.

6. Optional: Select the Allow operations if some of the repositories are down option to allow
operations such get or search even if the repositories in the realm are down.

7. Optional: In a multiple security domain environment, select Use global schema for model option to
indicate that the global schema option is enabled for the data model. Global schema refers to the
schema of the admin domain.

8. Optional: Click Add base entry to realm if the LDAP repository that you need is not listed in the
collection. Then complete the steps in “Adding an external repository in a federated repository
configuration” on page 1373.

9. On the Federated repositories panel, complete the following steps:

a. Optional: Repeat step 6 if the LDAP repository that you need is not listed in the collection.

Chapter 19. Administering application security 1353



b. Optional: Select the repositories in the collection that you do not need in the realm and click
Remove. The following restrictions apply:

v The realm must always contain at least one base entry; therefore, you cannot remove every
entry.

v If you plan to remove the built-in, file-based repository from the administrative realm, verify that
at least one user in another member repository is a console user with administrative rights.
Otherwise, you must disable security to regain access to the administrative console.

c. Click OK.

Results

After completing these steps, your federated repository configuration, which includes multiple LDAP
repositories, is configured.

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1398.
2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Configuring a single built-in, file-based repository and one or more Lightweight Directory Access
Protocol repositories in a federated repository configuration:

Follow this task to configure a single built-in, file-based repository and multiple Lightweight Directory
Access Protocol (LDAP) repositories in a federated repository configuration.

Before you begin

To configure a built-in, file-based repository in a federated repository configuration, you must know the
primary administrative user name of the user who manages WebSphere Application Server resources and
user accounts.

To configure an LDAP repository in a federated repository configuration, you must know a valid user name
(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and
the bind password. You can choose any valid user in the repository that is searchable. In some LDAP
servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).
This user is referred to as a WebSphere Application Server administrative user name or administrative ID
in the documentation. Being an administrative ID means a user has special privileges when calling some
protected internal methods. Normally, this ID and password are used to log in to the administrative console
after you turn on security. You can use other users to log in if those users are part of the administrative
roles.

Procedure

1. In the administrative console, click Security > Global security.

1354 Administering WebSphere applications



2. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure. To configure for a specific domain in a multiple security domain
environment, click Security domains > domain_name. Under Security Attributes, expand User
Realm, and click Customize for this domain. Select the Realm type as Federated repositories and
then click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

Restriction: When you configure multiple repositories that includes a single built-in, file-based
repository, the primary administrative user name must exist in the file-based repository.
If the primary administrative user name does not exist in the file-based repository, then
the name is created in the file-based repository. The primary administrative user name
cannot exist in other repositories.

5. Select the Ignore case for authorization option.

Attention: When the realm includes a built-in, file-based repository, you must enable the Ignore
case for authorization option.
When you enable this option, the authorization check is case-insensitive. Normally, an authorization
check involves checking the complete DN of a user, which is unique in the realm and is
case-insensitive. Clear this option when all of the member repositories in the realm are
case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories
contain data that is case-insensitive only. Do not include both case-sensitive and
case-insensitive repositories in the realm. For example, do not include case-sensitive
repositories in the realm with a built-in, file-based repository.

6. Optional: Select the Allow operations if some of the repositories are down option to allow
operations such get or search even if the repositories in the realm are down.

7. Optional: In a multiple security domain environment, select Use global schema for model option to
indicate that the global schema option is enabled for the data model. Global schema refers to the
schema of the admin domain.

8. Optional: Click Add base entry to realm if the LDAP repository that you need is not contained in the
collection. Then complete the steps in “Adding an external repository in a federated repository
configuration” on page 1373.

9. On the Federated repositories panel, complete the following steps:

a. Optional: Repeat step 6 if the LDAP repository that you need is not listed in the collection.

b. Click Use built-in repository if the built-in, file-based repository is not listed in the collection.

c. Optional: Select the repositories in the collection that you do not need in the realm and click
Remove.

Restriction: The realm must always contain at least one base entry; therefore, you cannot
remove every entry.

d. Click OK.

10. Provide an administrative user password. This panel displays only when a built-in, file-based
repository is included in the realm. Otherwise, the panel does not display. If a built-in, file-based
repository is included, complete the following steps:

a. Supply a password for the administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

Chapter 19. Administering application security 1355



Results

After completing these steps, your federated repository configuration, which includes a single built-in,
file-based repository and one or more LDAP repositories, is configured.

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1398.
2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Manually configuring an Lightweight Directory Access Protocol repository in a federated repository
configuration:

Follow this topic to manually configure Lightweight Directory Access Protocol (LDAP) repository in a
federated repository configuration.

Before you begin

As a prerequisite, you need to add an LDAP repository to your WebSphere Application Server
configuration, where you define the following information:

Table 77. Prerequisite LDAP repository information.

This table lists prerequisite LDAP repository information,
Item Name Example

Repository identifier ldaprepo1

Directory type IBM Tivoli Directory Server

Primary host name localhost

Port 389

Bind distinguished name cn=ldapadmin

Bind password yourpwd

Login properties uid (a property containing login information)

See “Lightweight Directory Access Protocol repository configuration settings” on page 1363 for the specific
steps you must perform to establish this LDAP repository.

About this task

At this point, you have a valid LDAP repository ready to be manually configured in a federated repository
configuration.

Procedure

1. Map the federated repository entity types to the LDAP object classes.

a. Configure the LDAP repository to match the used LDAP object class for users.

1356 Administering WebSphere applications



1) In the administrative console, click Security > Global security.

2) Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure. To configure for a specific domain in a multiple security
domain environment, click Security domains > domain_name. Under Security Attributes,
expand User Realm, and click Customize for this domain. Select the Realm type as
Federated repositories and then click Configure.

3) Under Related items, click Manage repositories.

4) Select the repository (for example, ldaprepo1).

5) Click LDAP entity types.

6) Click PersonAccount.

7) Insert the objectclass name used in our LDAP server, for example, inetOrgPerson.

8) Click Apply.

9) Click Save.

See “Configuring supported entity types in a federated repository configuration” on page 1398 for
an explanation of the supported entity types.

See http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wim.doc.en/
ldap.html for a description of the LDAP default mappings.

b. Configure the LDAP repository to match the used LDAP objectclass for groups

1) In the administrative console, click Security > Global security.

2) Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure. To configure for a specific domain in a multiple security
domain environment, click Security domains > domain_name. Under Security Attributes,
expand User Realm, and click Customize for this domain. Select the Realm type as
Federated repositories and then click Configure.

3) Under Related items, click Manage repositories.

4) Select ldaprepo1.

5) Click LDAP entity types.

6) Click Group.

7) Insert the objectclass name used for your LDAP server, for example, groupOfUniqueNames.

8) Click Apply.

9) Click Save.

See “Group attribute definition settings” on page 1432 for an explanation of group attribute
definitions.

2. Map the federated repository property names to the LDAP attribute names.

a. Configure the supported LDAP repository attributes.

1) In the administrative console, click Security > Global security.

2) Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure. To configure for a specific domain in a multiple security
domain environment, click Security domains > domain_name. Under Security Attributes,
expand User Realm, and click Customize for this domain. Select the Realm type as
Federated repositories and then click Configure.

3) Under Related items, click Manage repositories > repository_ID, and then, under Additional
properties, click the LDAP attributes link.

4) If the attribute mapping exists, you must first delete the existing mapping for the LDAP
attribute, and then add a new mapping for the attribute. Select the checkbox next to the LDAP
attribute name and click Delete.

5) To add an attribute mapping, click Add, and select Supported.

Chapter 19. Administering application security 1357

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wim.doc.en/ldap.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wim.doc.en/ldap.html


6) Enter the LDAP attribute name in the Name field, the federated repositories property name in
the Property name field, and the entity type which applies the attribute mapping in the Entity
types field.

Note: For all given federated repository properties, a one-to-one mapping is assumed. If no explicit
mapping of the above type is defined, for example the federated repository property
departmentNumber, the underlying LDAP attribute name, departmentNumber is assumed.
See “Configuring Lightweight Directory Access Protocol attributes in a federated repository
configuration” on page 1427 for more information.

b. Configure the unsupported properties of the federated repository. To indicate that a given federated
repository property, such as departmentNumber is not supported by any LDAP attributes, you need
to define an unsupported property.

1) On the LDAP attributes panel, click Add, and select Unsupported from the drop-down menu.

2) Enter the federated repositories property name in the Property name field, and the entity type
in the Entity types field.

3) Click Apply and then Save.

c. Configure the LDAP repository to match the used LDAP attributes for a user.

1) Edit the file
{WAS_HOME}\profiles\{profileName}\config\cells\{cellName}\wim\config\wimconfig.xml

2) Look for the section in this file containing the LDAP repository configuration, For example,
a)

<config:repositories
xsi:type="config:LdapRepositoryType"
adapterClassName="com.ibm.ws.wim.adapter.ldap.LdapAda
pter" id="ldaprepo1" ...>

b)
<config:attributeConfiguration>

c)
...

d)
<config:attributes name="anLDAPattribute"
propertyName="aVMMattribute"/>

e)
...
<config:attributeConfiguration>

3) Add an element of type config:attributes to define the mapping between a given federated
depository property name, such as departmentNumber, to a desired LDAP attribute name, such
as warehouseSection.

Note: For all given federated depository properties, a one-to-one mapping is assumed. If no
explicit mapping of the above type is defined, for example the federated repository
property departmentNumber, the underlying LDAP attribute name, departmentNumber is
assumed.

d. Configure the unsupported properties of the federated repository.

To indicate that a given federated repository property, such as departmentNumber is not supported
by any LDAP attributes, you need to define the following type of element:

<config:repositories xsi:type="config:LdapRepositoryType"
adapterClassName="com.ibm.ws.wim.adapter.ldap.LdapAdapter"
id="ldaprepo1" ...>
<config:attributeConfiguration>
...
<config:propertiesNotSupported name=" departmentNumber"/>
...
<config:attributeConfiguration>

e. Configure the LDAP repository to match the used LDAP user membership attribute in the groups.

1) In the administrative console, click Security > Global security.

2) Under User account repository, select Federated repositories from the Available realm
definitions field and click Configure. To configure for a specific domain in a multiple security
domain environment, click Security domains > domain_name. Under Security Attributes,

1358 Administering WebSphere applications



expand User Realm, and click Customize for this domain. Select the Realm type as
Federated repositories and then click Configure.

3) Under Related items, click Manage repositories.

4) Select ldaprepo1

5) Click Group attribute defintions.

6) Click Member attributes.

7) Check if your LDAP attributes (for example, uniqueMember) is specified for your LDAP
objectclass (for example, groupOfUniqueNames).

v If not specified, click New and add the pair (objectclass / member attribute name) that
applies to your LDAP schema (for example, uniqueMember / groupOfUniqueNames

v If specified, proceed.

8) Click Apply.

9) Click Save.

3. Map other LDAP settings by configuring a new base entry for the new LDAP repository.

a. In the administrative console, click Security > Global security.

b. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure. To configure for a specific domain in a multiple security domain
environment, click Security domains > domain_name. Under Security Attributes, expand User
Realm, and click Customize for this domain. Select the Realm type as Federated repositories
and then click Configure.

c. Click Add Base Entry to Realm.

d. Select ldaprepo1.

e. Specifiy:

v The base entry within the federated repository realm, for example, o=Default Organization

v The base entry within the LDAP repository, for example, o=Default Organization

f. Click Apply.

g. Click Save.

For an explanation of base entries, see the Configuring supported entity types in a federated repository
configuration topic.

Results

After completing these steps, your federated repository matches the LDAP server settings.

What to do next

Configuring Lightweight Directory Access Protocol in a federated repository configuration:

Follow this topic to configure Lightweight Directory Access Protocol (LDAP) settings in a federated
repository configuration.

Before you begin

You have chosen among various ways to configure LDAP:

v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under
Federated repositories” on page 1350

v “Changing a federated repository configuration to include a single, Lightweight Directory Access Protocol
repository only” on page 1351

v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository
configuration” on page 1353

Chapter 19. Administering application security 1359



v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access
Protocol repositories in a federated repository configuration” on page 1354

v “Managing repositories in a federated repository configuration” on page 1403

About this task

At this point, you are viewing the LDAP repository configuration page of the administrative console.

Procedure

1. Enter a unique identifier for the repository in the Repository identifier field. This identifier uniquely
identifies the repository within the cell, for example: LDAP1.

2. Select the type of LDAP server that is used from the Directory type list. The type of LDAP server
determines the default filters that are used by WebSphere Application Server.

IBM Tivoli Directory Server users can choose either IBM Tivoli Directory Server or SecureWay as the
directory type. Use the IBM Tivoli Directory Server directory type for better performance. For a list of
supported LDAP servers, see “Using specific directory servers as the LDAP server” on page 1286.

3. Enter the fully qualified host name of the primary LDAP server in the Primary host name field. You
can enter either the IP address or the domain name system (DNS) name.

4. Enter the server port of the LDAP directory in the Port field. The host name and the port number
represent the realm for this LDAP server in a mixed version nodes cell. If servers in different cells are
communicating with each other using Lightweight Third Party Authentication (LTPA) tokens, these
realms must match exactly in all the cells.

The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a
Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for
a non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server
administrator.

If multiple WebSphere Application Servers are installed and configured to run in the same single
sign-on domain, or if WebSphere Application Server interoperates with a previous version of
WebSphere Application Server, then it is important that the port number match all configurations. For
example, if the LDAP port is explicitly specified as 389 in a Version 5.x or 6.0.x configuration, and
WebSphere Application Server at Version 6.1 is going to interoperate with the Version 5.x or 6.0.x
server, then verify that port 389 is specified explicitly for the Version 6.1 server.

5. Optional: Enter the host name of the failover LDAP server in the Failover host name field. You can
specify a secondary directory server to be used in the event that your primary directory server
becomes unavailable. After switching to a secondary directory server, LDAP repository attempts to
reconnect to the primary directory server every 15 minutes.

6. Optional: Enter the port of the failover LDAP server in the Port field and click Add. The default value
is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a Secure Sockets
Layer (SSL) connection. For some LDAP servers, you can specify a different port for a non-SSL or
SSL connection. If you do not know the port to use, contact your LDAP server administrator.

7. Optional: Select the type of referral. A referral is an entity that is used to redirect a client request to
another LDAP server. A referral contains the names and locations of other objects. It is sent by the
server to indicate that the information that the client requested can be found at another location,
possibly at another server or several servers. The default value is ignore.

ignore
Referrals are ignored.

follow Referrals are followed automatically.

8. Optional: Specify the type of support for repository change tracking. The profile manager refers to this
value before passing on the request to the corresponding adapter. If the value is none, then that
repository is not called to retrieve the changed entities.

none Specifies there is no change tracking support for this repository.

1360 Administering WebSphere applications



native Specifies that the repository's native change tracking mechanism is used by virtual member
manager to return changed entities.

9. Optional: Specify arbitrary name and value pairs of data as custom properties. The name is a
property key and the value is a string value that can be used to set internal system configuration
properties. Defining a new property enables you to configure a setting beyond that which is available
in the administrative console.

10. Optional: Enter the bind DN name in the Bind distinguished name field, for example, cn=root. The
bind DN is required if anonymous binds are not possible on the LDAP server to obtain user and
group information or for write operations. In most cases, bind DN and bind password are needed.
However, when anonymous bind can satisfy all of the required functions, bind DN and bind password
are not needed. If the LDAP server is set up to use anonymous binds, leave this field blank. If a
name is not specified, the application server binds anonymously.

Note: To create LDAP queries or to browse, an LDAP client must bind to the LDAP server using the
distinguished name (DN) of an account that has the authority to search and read the values of
LDAP attributes, such as user and group information. The LDAP administrator ensures that
read access privileges are set for the bind DN. Read access privileges allow access to the
subtree of the base DN and ensure that searches of user and group information are
successful.

The directory server provides an operational attribute in each directory entry (for example, the
IBM Directory Server uses ibm-entryUuid as the operational attribute). The value of this
attribute is a universally unique identifier (UUID), which is chosen automatically by the
directory server when the entry is added, and is expected to be unique: no other entry with the
same or different name would have this same value. Directory clients may use this attribute to
distinguish objects identified by a distinguished name or to locate an object after renaming.
Ensure that the bind credentials have the authority to read this attribute.

11. Optional: Enter the password that corresponds to the bind DN in the Bind password field.

12. Optional: Enter the property names to use to log into WebSphere Application Server in the Login
properties field. This field takes multiple login properties, delimited by a semicolon (;). For example,
uid;mail.

All login properties are searched during login. If multiple entries or no entries are found, an exception
is thrown. For example, if you specify the login properties as uid;mail and the login ID as Bob, the
search filter searches for uid=Bob or mail=Bob. When the search returns a single entry, then
authentication can proceed. Otherwise, an exception is thrown.

Note: If you define multiple login properties, the first login property is programmatically mapped to
the federated repositories principalName property. For example, if you set uid;mail as the
login properties, the LDAP attribute uid value is mapped to the federated repositories
principalName property. If you define multiple login properties, after login, the first login
property is returned as the value of the principalName property. For example, if you pass
joe@yourco.com as the principalName value and the login properties are configured as
uid;mail, the principalName is returned as joe.

13. Optional: Specify the LDAP attribute for Kerberos principal name. This field is enabled and can be
modified only when Kerberos is configured and it is one of the active or preferred authentication
mechanisms.

14. Optional: Select the certificate map mode in the Certificate mapping field. You can use the X.590
certificates for user authentication when LDAP is selected as the repository. The Certificate mapping
field is used to indicate whether to map the X.509 certificates into an LDAP directory user by
EXACT_DN or CERTIFICATE_FILTER. If EXACT_DN is selected, the DN in the certificate must
exactly match the user entry in the LDAP server, including case and spaces.

15. If you select CERTIFICATE_FILTER in the Certificate mapping field, specify the LDAP filter for
mapping attributes in the client certificate to entries in LDAP.

Chapter 19. Administering application security 1361



If more than one LDAP entry matches the filter specification at run time, authentication fails because
the result is an ambiguous match. The syntax or structure of this filter is:

LDAP attribute=${Client certificate attribute}

For example, uid=${SubjectCN}.

The left side of the filter specification is an LDAP attribute that depends on the schema that your
LDAP server is configured to use. The right side of the filter specification is one of the public
attributes in your client certificate. The right side must begin with a dollar sign ($) and open bracket
({) and end with a close bracket (}). You can use the following certificate attribute values on the right
side of the filter specification. The case of the strings is important:
v ${UniqueKey}
v ${PublicKey}
v ${IssuerDN}
v ${Issuer<xx>}

where <xx> is replaced by the characters that represent any valid component of the Issuer
Distinguished Name. For example, you might use ${IssuerCN} for the Issuer Common Name.

v ${NotAfter}
v ${NotBefore}
v ${SerialNumber}
v ${SigAlgName}
v ${SigAlgOID}
v ${SigAlgParams}
v ${SubjectDN}
v ${Subject<xx>}

where <xx> is replaced by the characters that represent any valid component of the Subject
Distinguished Name. For example, you might use ${SubjectCN} for the Subject Common Name.

v ${Version}

16. Optional: Select the Require SSL communications option if you want to use Secure Sockets Layer
communications with the LDAP server.

If you select the Require SSL communications option, you can select either the Centrally
managed or Use specific SSL alias option.

Centrally managed
Enables you to specify an SSL configuration for a particular scope, such as the cell, node,
server, or cluster in one location. To use the Centrally managed option, you must specify the
SSL configuration for the particular set of endpoints. The Manage endpoint security
configurations and trust zones panel displays all of the inbound and outbound endpoints that
use the SSL protocol. If you expand the Inbound or Outbound section of the panel and click
the name of a node, you can specify an SSL configuration that is used for every endpoint on
that node. For an LDAP registry, you can override the inherited SSL configuration by
specifying an SSL configuration for LDAP. To specify an SSL configuration for LDAP,
complete the following steps:

a. Click Security > SSL certificate and key management > Manage endpoint security
configurations and trust zones.

b. Expand Outbound > cell_name > Nodes > node_name > Servers > server_name >
LDAP.

Use specific SSL alias
Select the Use specific SSL alias option if you intend to select one of the SSL configurations
in the menu that follows the option.

This configuration is used only when SSL is enabled for LDAP. The default is
DefaultSSLSettings. To modify or create a new SSL configuration, complete the following
steps:

a. Click Security > SSL certificate and key management.

1362 Administering WebSphere applications



b. Under Configuration settings, click Manage endpoint security configurations and trust
zones > configuration_name.

c. Under Related items, click SSL configurations.

17. Click OK.

Results

After completing these steps, your LDAP repository settings are configured.

What to do next

Return to the appropriate task to complete the steps for your federated repository configuration:
v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under

Federated repositories” on page 1350
v “Changing a federated repository configuration to include a single, Lightweight Directory Access Protocol

repository only” on page 1351
v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository

configuration” on page 1353
v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access

Protocol repositories in a federated repository configuration” on page 1354
v “Managing repositories in a federated repository configuration” on page 1403

Lightweight Directory Access Protocol repository configuration settings:

Use this page to configure secure access to a Lightweight Directory Access Protocol (LDAP) repository
with optional failover servers.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Repository identifier:

Specifies a unique identifier for the LDAP repository. This identifier uniquely identifies the repository within
the cell, for example: LDAP1.

Directory type:

Specifies the type of LDAP server to which you connect.

Expand the drop-down list to display a list of LDAP directory types.

Primary host name:

Specifies the host name of the primary LDAP server. This host name is either an IP address or a domain
name service (DNS) name.

Chapter 19. Administering application security 1363



Port:

Specifies the LDAP server port.

The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a
Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for a
non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server administrator.

Information Value
Data type: Integer
Default: 389
Range: 389, which is not a Secure Sockets Layer (SSL)

connection

636, which is a Secure Sockets Layer (SSL) connection

Failover host name:

Specifies the host name of the failover LDAP server.

You can specify a secondary directory server to be used in the event that your primary directory server
becomes unavailable. After switching to a secondary directory server, the LDAP repository attempts to
reconnect to the primary directory server every 15 minutes.

Port:

Specifies the port of the failover LDAP server.

The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a
Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for a
non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server administrator.

Information Value
Data type: Integer
Range: 389, which is not a Secure Sockets Layer (SSL)

connection

636, which is a Secure Sockets Layer (SSL) connection

Support referrals to other LDAP servers:

Specifies how referrals that are encountered by the LDAP server are handled.

A referral is an entity that is used to redirect a client request to another LDAP server. A referral contains
the names and locations of other objects. It is sent by the server to indicate that the information that the
client requested can be found at another location, possibly at another server or several servers. The
default value is ignore.

Information Value
Default: ignore
Range:

ignore Referrals are ignored.

follow Referrals are followed automatically.

Support for repository change tracking:

1364 Administering WebSphere applications



Specifies the type of support for repository change tracking. The profile manager refers to this value before
passing on the request to the corresponding adapter. If the value is none, then that repository is not called
to retrieve the changed entities.

none Specifies there is no change tracking support for this repository.

native Specifies that the repository's native change tracking mechanism is used by virtual member
manager to return changed entities.

Custom properties:

Specifies arbitrary name and value pairs of data. The name is a property key and the value is a string
value that can be used to set internal system configuration properties.

Defining a new property enables you to configure a setting beyond that which is available in the
administrative console.

Bind distinguished name:

Specifies the distinguished name (DN) for the application server to use when binding to the LDAP
repository.

If no name is specified, the application server binds anonymously. In most cases, bind DN and bind
password are needed. However, when anonymous bind can satisfy all of the required functions, bind DN
and bind password are not needed.

Bind password:

Specifies the password for the application server to use when binding to the LDAP repository.

Login properties:

Specifies the property names to use to log into the application server.

This field takes multiple login properties, delimited by a semicolon (;). For example, uid;mail. All login
properties are searched during login. If multiple entries or no entries are found, an exception is thrown. For
example, if you specify the login properties as uid;mail and the login ID as Bob, the search filter searches
for uid=Bob or mail=Bob. When the search returns a single entry, then authentication can proceed.
Otherwise, an exception is thrown.

Note: If you define multiple login properties, the first login property is programmatically mapped to the
federated repositories principalName property. For example, if you set uid;mail as the login
properties, the LDAP attribute uid value is mapped to the federated repositories principalName
property. If you define multiple login properties, after login, the first login property is returned as the
value of the principalName property. For example, if you pass joe@yourco.com as the principalName
value and the login properties are configured as uid;mail, the principalName is returned as joe.

LDAP attribute for Kerberos principal name:

Specifies the LDAP attribute for Kerberos principal name. This field can be modified when Kerberos is
configured and it is one of the active or preferred authentication mechanisms.

Certificate mapping:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or
CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the
mapping.

Chapter 19. Administering application security 1365



Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the
client certificate to entries in the LDAP repository.

If more than one LDAP entry matches the filter specification at run time, authentication fails because the
result is an ambiguous match. The syntax or structure of this filter is:

LDAP attribute=${Client certificate attribute}

An example of a simple certificate filter is: uid=${SubjectCN}.

You can also specify multiple properties and values as part of the certificate filter. Two examples of
complex certificate filters are:

(&(cn=${IssuerCN}) (employeeNumber=${SerialNumber})

(& (issuer=${IssuerDN}) (serial=${SerialNumber}) (subjectdn=${SubjectDN}))

The left side of the filter specification is an LDAP attribute that depends on the schema that your LDAP
server is configured to use. The right side of the filter specification is one of the public attributes in your
client certificate. You can also use the UniqueKey certificate variable, which consists of the
base64-encoding of the MD5 hash of the subject DN and issuer DN. The right side must begin with a
dollar sign ($) and open bracket ({) and end with a close bracket (}). You can use the following certificate
attribute values on the right side of the filter specification. The case of the strings is important:
v ${UniqueKey}
v ${PublicKey}
v ${IssuerDN}
v ${Issuerxx} where xx is replaced by the characters that represent any valid component of the Issuer

Distinguished Name. For example, you might use ${IssuerCN} for the Issuer Common Name.
v ${NotAfter}
v ${NotBefore}
v ${SerialNumber}
v ${SigAlgName}
v ${SigAlgOID}
v ${SigAlgParams}
v ${SubjectDN}
v ${Subjectxx} where xx is replaced by the characters that represent any valid component of the Subject

Distinguished Name. For example, you might use ${SubjectCN} for the Subject Common Name.
v ${Version}

Require SSL communications:

Specifies whether secure socket communication is enabled to the LDAP server.

When enabled, the Secure Sockets Layer (SSL) settings for LDAP are used, if specified.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java
Naming and Directory Interface (JNDI) platform.

Centrally managed configurations support one location to maintain SSL configurations, rather than
spreading them across the configuration documents.

1366 Administering WebSphere applications



Information Value
Default: Enabled
Range: Enabled or Disabled

Use specific SSL alias:

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

This option overrides the centrally managed configuration for the JNDI platform.

Migrating a stand-alone LDAP repository to a federated repositories LDAP repository
configuration:

When configuring the security for your application server, you might need to migrate a stand-alone LDAP
registry to a federated repositories LDAP repository configuration.

Before you begin

Note the specifications of your stand-alone LDAP repository that you want to migrate, for reference when
configuring the LDAP repository in federated repositories. To access these fields, on the administrative
console, click Security > Global security, and then under User account repository, select Standalone
LDAP registry or Federated repositories from the Available realm definitions field and click Configure.
To access these fields in a multiple security domain environment, click Security > Global Security >
Security domains > domain_name, and then, under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Standalone LDAP registry or Federated
repositories, and then click Configure.

The following table shows the administrative console panels and fields of the stand-alone LDAP repository
configuration and their corresponding fields in a federated repositories LDAP repository configuration for
mapping.

Table 78. Mapping between a stand-alone LDAP repository configuration and a federated repositories LDAP
repository configuration. This table illustrates the mapping between a stand-alone LDAP repository configuration and
a federated repositories LDAP repository configuration.

Stand-alone LDAP repository configuration
LDAP repository in a federated repositories
configuration

Global security > Standalone LDAP registry

General properties – Primary administrative user name

Global security > Federated repositories

General properties – Primary administrative user name

Global security > Standalone LDAP registry

LDAP server – Type of LDAP server

Global security > Federated repositories > Manage
repositories > repository_ID

LDAP server – Directory Type

Global security > Standalone LDAP registry

LDAP server – Host

Global security > Federated repositories > Manage
repositories > repository_ID

LDAP server – Primary host name

Global security > Standalone LDAP registry

LDAP server – Port

Global security > Federated repositories > Manage
repositories > repository_ID

LDAP server – Port

Chapter 19. Administering application security 1367



Table 78. Mapping between a stand-alone LDAP repository configuration and a federated repositories LDAP
repository configuration (continued). This table illustrates the mapping between a stand-alone LDAP repository
configuration and a federated repositories LDAP repository configuration.

Stand-alone LDAP repository configuration
LDAP repository in a federated repositories
configuration

Global security > Standalone LDAP registry

LDAP server – Failover hosts

Global security > Federated repositories > Manage
repositories > repository_ID

LDAP server – Failover server used when primary is not
available

Global security > Standalone LDAP registry

LDAP server – Base distinguished name (DN)

Global security > Federated repositories > Repository
reference (Click Add Base entry to realm)

General properties – Distinguished name of a base entry
that uniquely identifies this set of entries in the realm

and

General properties – Distinguished name of a base entry
in this repository

Global security > Standalone LDAP registry

LDAP server – Search timeout

Global security > Federated repositories > Manage
repositories > repository_ID > Performance

General properties - Limit search time

Global security > Standalone LDAP registry

LDAP server – Custom properties

Global security > Federated repositories > Custom
properties

Global security > Standalone LDAP registry

LDAP server – Server user identity

Global security > Federated repositories

General properties – Server user identity

Global security > Standalone LDAP registry

Security – Bind distinguished name (DN)

Global security > Federated repositories > Manage
repositories > repository_ID

Security – Bind distinguished name

Global security > Standalone LDAP registry

Security – Bind password

Global security > Federated repositories > Manage
repositories > repository_ID

Security – Bind password

Global security > Standalone LDAP registry > Advanced
Lightweight Directory Access Protocol (LDAP) user
registry settings

General properties – Kerberos user filter

Global security > Federated repositories > Manage
repositories > repository_ID

Security – LDAP attribute used for Kerberos principal
name

Global security > Standalone LDAP registry > Advanced
Lightweight Directory Access Protocol (LDAP) user
registry settings

General properties – Certificate map mode

Global security > Federated repositories > Manage
repositories > repository_ID

Security – Certificate mapping

Global security > Standalone LDAP registry > Advanced
Lightweight Directory Access Protocol (LDAP) user
registry settings

General properties – Certificate filter

Global security > Federated repositories > Manage
repositories > repository_ID

Security – Certificate filter

The Realm name field under General Properties on the federated repositories LDAP configuration panel is
not listed in the previous table because it does not have a one-to-one correspondence with a field in the
stand-alone LDAP configuration panel. The host name and the port number represent the realm name for

1368 Administering WebSphere applications



the standalone LDAP server in the WebSphere Application Server cell. For information on changing the
realm name, see the topic Realm configuration settings.

The User Filter, Group Filter, User ID map, Group ID map, and Group member ID map fields also are not
listed in the previous table as they do not have a one-to-one correspondence with fields in the federated
repositories LDAP repository configuration panel. These LDAP attributes are set differently in the federated
repositories LDAP repository configuration and involve multiple steps. These settings are explained in
detail in the following sections and procedure.

About this task

Migrating from a stand-alone LDAP repository configuration to a federated repositories LDAP repository
configuration involves migrating the configuration parameters, most of which are straight forward as shown
in Table 1 in the previous section. Migrating the search filters is an important part of migrating a
stand-alone LDAP repository configuration to a federated repository LDAP configuration; therefore, the
concept and migration of LDAP search filters is described here in detail.

Stand-alone LDAP registry search filters follow the LDAP filter syntax, where you specify the attribute on
which the search is based and its value.

The user filter is used for searching the registry for users. It is used to authenticate a user by using the
attribute specified in the filter.

The group filter is used for searching the registry for groups. It specifies the property by which to look up
groups.

Examples of commonly used LDAP user filters: In the following examples of search filters, %v is
replaced with the corresponding search pattern of the
user or group at run time.

(&(uid=%v)(objectclass=ePerson))

Searches for users where the uid attribute matches the specified search pattern of the ePerson object
class.

(&(cn=%v)(objectclass=user))

Searches for users where the cn attribute matches the specified search pattern of the user object class.

(&(sAMAccountName=%v)(objectcategory=user))

Searches for users where the sAMAccountName attribute matches the specified search pattern of the user
object category.

(&(userPrincipalName=%v)(objectcategory=user))

Searches for users where the userPrinciplalName attribute matches the specified search pattern of the
user object category.

(&(mail=%v)(objectcategory=user))

Searches for users where the mail attribute matches the specified search pattern of the user object
category.

(&(|(sAMAccountName=%v)(userPrincipalName=%v))(objectcategory=user))

Chapter 19. Administering application security 1369



Searches for users where the sAMAccountName or the userPrincipalName matches the specified search
pattern of the user object category.

Examples of commonly used group filters:

(&cn=%v)(objectCategory=group)

Looks up groups based on their common names (cn).

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

Looks up groups based on their common names (cn) and by using the object class of either
groupOfNames or groupOfUniqueNames.

As shown in these examples, a stand-alone LDAP registry search filter consists of LDAP attributes and
object classes, based on which the search or login is performed.

You can also specify the LDAP attributes and object classes in the LDAP adapter configuration of
federated repositories, but they are configured differently and provide more flexibility. In federated
repositories the user is represented as PersonAccount entity type and group as Group entity type. Each
entity type can have its own RDN (Relative Distinguished Name) property (rdnProperties) and object class.
For example, the default RDN property of PersonAccount is uid, and the default RDN property of Group is
cn. The default object class mapping depends on the LDAP server type. For example, for Tivoli Directory
Server, the object class for PersonAccount is inetOrgPerson and object class for Group is groupOfNames.
PersonAccount can also have login properties. When a user logs in or a search is performed for a user in
a user registry, these login properties are matched with the pattern. For example, if the login properties are
uid and mail, then for the search pattern, a*, all the users who match uid=a* or mail=a* are returned.

gotcha: You can specify the value of User ID Map property (userIdMap) of the stand-alone LDAP
repository as the RDN property (rdnProperties) or the first login property (loginProperties) in
federated repositories. Though you can set both the RDN property and the login property in
federated repositories, it is sufficient if you set only the RDN property. The login property is
optional and you need to set it only if the login property is different from RDN property or if there
are more than one login properties. If both the RDN property and login property are set, the login
property takes precedence over RDN property.

Migrating search filters involves one or more of the following steps: setting the correct login properties,
mapping the attributes of the back-end repository to the federated repositories properties, setting the
object class, setting the search filter by using object class or object category, and setting the member or
membership attribute. This mapping and configuration for federated repositories is maintained in the
wimconfig.xml file.

The stand-alone LDAP registry search filter can be split into two parts:

v User or group attributes filter

v User or group object class or object category filter

For example, in the search filter, (&(cn=%v)(objectclass=user)):

v The attribute filter is (cn=%v)

v The object class filter is (objectclass=user)

These two filters are mapped separately in a federated repositories configuration:

v The attribute filter is mapped to the RDN properties or login properties configuration for user and to
RDN properties configuration for group.

v The object class filter is mapped to the entity type configuration of the LDAP adapter.

1370 Administering WebSphere applications



The default attribute and object class mapping is set based on the LDAP server type but additional steps
might be required to migrate these two filters:

v attribute filter:

– Setting either or both the RDN property and login properties (if applicable)

– Mapping the federated repository property to the LDAP attribute (if applicable)

v object class filter:

– Setting the object class for entity type (if applicable)

– Setting the search filter of entity type (if applicable)

Some of the steps in the following procedure include two examples. In these steps:

v Example 1 is applicable to the scenario where you are migrating the search filter (&(cn=
%v)(objectclass=ePerson)) from a stand-alone IBM Tivoli Directory Server LDAP repository to a
federated repositories LDAP repository with the identifier LDAPTDS.

v Example 2 is applicable to the scenario where you are migrating the search filter (&(|(sAMAccountName=
%v)(userPrincipalName=%v))(objectcategory=user)) from a stand-alone Microsoft Active Directory
LDAP repository to a federated repositories LDAP repository with the identifier LDAPAD.
sAMAccountName and userPrincipalName attributes are not defined in federated repositories, so these
attributes must be mapped to federated repository properties.

Procedure

1. Add the LDAP repository that you want to migrate to the federated repositories configuration.

See Table 1 in the Before you begin section of this topic, and follow the steps described in the topic
“Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under
Federated repositories” on page 1350. These steps include links to other procedures that you must
complete such as:

v Adding an external repository in a federated repository configuration.

v Configuring supported entity types in a federated repository configuration.

v Configuring Lightweight Directory Access Protocol in a federated repository configuration.

After you complete these steps, the LDAP repository that you want to migrate will be successfully
configured in the federated repository configuration.

2. Set the login properties (if applicable).

Login properties are the property names that are used to log on to the WebSphere Application Server.
You can specify multiple login properties by using the semicolon (;) as a delimiter. The federated
repositories properties commonly used as login properties are uid, cn, sn, givenName, mail, and so on.

To set login properties on the administrative console, follow the steps in the topic Lightweight Directory
Access Protocol repository configuration settings, and apply the settings under the section, Login
properties.

Example 1: In the Login properties field, enter cn.

Example 2: In the Login properties field, enter uid;cn.

Complete Step 3 to map these properties to LDAP attributes.

3. Map the federated repository property to the LDAP attribute (if applicable).

If the LDAP attribute is not a federated repository property, then the login property that you defined
must be mapped to the LDAP attribute.

a. In the administrative console, click Security > Global security.

b. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure. To configure for a specific domain in a multiple security domain

Chapter 19. Administering application security 1371



environment, click Security domains > domain_name. Under Security Attributes, expand User
Realm, and click Customize for this domain. Select the Realm type as Federated repositories
and then click Configure.

c. Under Related items, click Manage repositories > repository_ID, and then, under Additional
properties, click the LDAP attributes link.

d. If the attribute mapping exists, you must first delete the existing mapping for the LDAP attribute,
and then add a new mapping for the attribute. Select the checkbox next to the LDAP attribute
name and click Delete.

e. To add an attribute mapping, click Add, and select Supported from the drop-down menu. Enter the
LDAP attribute name in the Name field, the federated repositories property name in the Property
name field, and the entity type which applies the attribute mapping in the Entity types field.

Example 1: Because the federated repository property cn is implicitly mapped to the cn LDAP
attribute, no additional mapping is required.

Example 2: Here the search filter includes two LDAP attributes, sAMAccountName and
userPrincipalName.

v For the LDAP server type, Active Directory, the LDAP attribute sAMAccountName is
mapped by default to the federated repositories property, uid, as shown in the list of
attributes on LDAP attributes panel. Therefore, you do not have to execute the
addIdMgrLDAPAttr command to add an attribute configuration for sAMAccountName.

v If an attribute mapping for the LDAP attribute userPrincipalName exists, then delete the
existing attribute mapping before adding a new configuration.

a. Select the checkbox next to userPrincalName and click Delete.

b. Click Add, and select Supported from the drop-down menu.

c. In the Name field, enter userPrincipalName.

d. In the Property name field, enter cn.

e. In the Entity types field, enter PersonAccount.

4. Set the object class for an entity type (if applicable).

gotcha: Before executing this step, check the current mapping . If the object class mapping is already
set, skip this step.

To set the object class for an entity type on the administrative console, follow the steps in the topic
Lightweight Directory Access Protocol entity types settings, and apply the following settings under the
section, Object classes:

v Specify PersonAccount as the entity type name for user filters

v Specify Group as the entity type name for group filters.

Example 1: In the Entity type field, enter PersonAccount.

In the Object classes field, enter ePerson.

Example 2: In the Entity type field, enter PersonAccount.

In the Object classes field, enter user.

5. Set the search filter for the entity type (if applicable).

Federated repositories performs the search based on the object class setting. To change this default
setting and use object category as the filter, follow the steps in topic Lightweight Directory Access
Protocol entity types settings, and apply the settings under the section, Search Filter.

Example 1: Because the search is based on object class, no additional configuration is required.

1372 Administering WebSphere applications



Example 2: In the Search filter field, enter (objectcategory=user).

6. To migrate group filters, you must also configure the group attribute definition settings.

The steps to configure the group attribute definition settings through the administrative console are
specified in the topic Locating user group memberships in a Lightweight Directory Access Protocol
registry, under the section, LDAP Registry within a Federated Repositories Registry. You can also use
the wsadmin commands addIdMgrLDAPGroupDynamicMemberAttr or addIdMgrLDAPGroupMemberAttr that
are described in the topic IdMgrRepositoryConfig command group for the AdminTask object.

7. Save your configuration changes

8. Restart the application server.

Results

After completing these steps, your LDAP repository is configured for use within the federated repositories
configuration.

Adding an external repository in a federated repository configuration:

Follow this task to add an external repository into a federated repository configuration.

Procedure

1. If the external repository that you want to add to your federated repository configuration is previously
configured, select the corresponding Repository on the Repository reference panel. To access the
Repository reference panel, complete the following steps:

a. Click Security > Global security.

b. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure. To configure for a specific domain in a multiple security domain
environment, click Security domains > domain_name. Under Security Attributes, expand User
Realm, and click Customize for this domain. Select the Realm type as Federated repositories
and then click Configure.

c. Click Add base entry to realm.

d. In the Repository field, select an external repository.

2. Enter a distinguished name for the realm base entry in the Distinguished name of a base entry that
uniquely identifies this set of entries in the realm field. This base entry must uniquely identify the
external repository in the realm. If multiple repositories are included in the realm, use this field to
define an additional distinguished name (DN) that uniquely identifies this set of entries within the realm.
For example, repositories LDAP1 and LDAP2 might both use o=ibm,c=us as the base entry in the
repository. Use the DN in this field to uniquely identify this set of entries in the realm. For example:
o=ibm,c=us for LDAP1 and o=ibm2,c=us for LDAP2. The specified DN in this field maps to the LDAP
DN of the base entry within the repository.

3. Enter the DN of the base entry within the repository in the Distinguished name of a base entry in
this repository field. The base entry indicates the starting point for searches in this repository. This
entry and its descendents are mapped to the subtree that is identified by this unique base name entry
field. For example, for a user with a DN of cn=John Doe, ou=Rochester, o=IBM, c=US, specify the base
entry as any of the following options:

ou=Rochester, o=IBM, c=us or o=IBM, c=us or c=us

In most cases, this DN is the same as the distinguished name for the realm base entry.

If this field is left blank, then the subtree defaults to the root of the repository. Consult your repository
administrator to determine if your repository provides support to search from the root, or create users
and groups under the root without defining a suffix beforehand.

In WebSphere Application Server, the distinguished name is normalized according to the repository
specification. Normalization consists of removing spaces in the base distinguished name before or after

Chapter 19. Administering application security 1373



commas and equal symbols. An example of a non-normalized base distinguished name is o = ibm, c =
us or o=ibm, c=us. An example of a normalized base distinguished name is o=ibm,c=us.

4. If the repository that you want to add to your realm is not previously configured, complete the following
steps:

a. Click Add Repository on the Repository reference panel to configure the external repository. See
step 1 to access the Repository reference panel.

b. Configure the fields on the repository configuration panel, as described in “Configuring Lightweight
Directory Access Protocol in a federated repository configuration” on page 1359, “Adding a
file-based repository to a federated repositories configuration” on page 1340, or “Adding a custom
repository to a federated repositories configuration” on page 1414.

c. Select the new Repository on the Repository reference panel.

5. Click OK.

Results

You have added a new or previously configured external repository into your federated repository
configuration.

What to do next
1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1398.
2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Configuring a property extension repository in a federated repository configuration:

Follow this task to configure a property extension repository to store attributes that cannot be stored in
your Lightweight Directory Access Protocol (LDAP) server.

About this task

For security and business reasons, you might want to prohibit write operations to your repositories.
However, applications calling the federated repository configuration might need to store additional
properties for the entities. A federated repository configuration provides a property extension repository,
which is a database regardless of the type of main profile repositories, for a propertylevel join
configuration. For example, a company that uses an LDAP directory for its internal employees and a
database for external customers and business partners might not allow write access to its LDAP and its
database. The company can use the property extension repository in a federated repository configuration
to store additional properties for the people in those repositories, excluding the user ID. When an
application uses the federated repository configuration to retrieve an entry for a person, the federated
repository configuration transparently joins the properties of the person that is retrieved from either the
LDAP or the customer's database with the properties of the person that is retrieved from the property
extension repository into a single logical person entry.

1374 Administering WebSphere applications



When you configure a property extension repository, you can supply a valid data source, a direct
connection configuration, or both. The system first tries to connect by way of the data source. If the data
source is not available, then the system uses the direct access configuration.

Restriction: You cannot configure a property extension repository in a mixed version deployment
manager cell.

Procedure

1. Configure the WebSphere Application Server data source. See “Configuring the WebSphere
Application Server data source” on page 1394.

2. If you are adding new properties (including properties that are stored in the property extension
repository) to the schema, you must do the following before you create the property extension
repository.

a. Open or create the wimxmlextension.xml file under the profile_root\config\cells\cell_name\
wim\model directory.

Attention: Make sure the editor is on the deployment manager node.

b. Add the schema definition of the new property. The following sample wimxmlextension.xml file
adds a new property called ibmotherEmail to both the Person and PersonAccount entity types. This
new property type is “String” and it is multiplevalued.

<sdo:datagraph xmlns:sdo="commonj.sdo"
xmlns:wim="http://www.ibm.com/websphere/wim">

<wim:schema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="true"
propertyName="ibm-otherEmail">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>

</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="true"
propertyName="ibm-personalTitle">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>

</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="true"
propertyName="ibm-middleName">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>

</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String" multiValued="true"
propertyName="ibm-generationQualifier">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>
</wim:propertySchema>

<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-regionalLocale">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount

Chapter 19. Administering application security 1375



</wim:applicableEntityTypeNames>
</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-timeZone">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>

</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-preferredCalendar">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>
</wim:propertySchema>

<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-alternativeCalendar">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>

</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-firstDayOfWeek">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>
</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-firstWorkDayOfWeek">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>
</wim:propertySchema>
<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="false"
propertyName="ibm-gender">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>
</wim:propertySchema>

<wim:propertySchema
nsURI="http://www.ibm.com/websphere/wim"
dataType="String"
multiValued="true"
propertyName="ibm-hobby">
<wim:applicableEntityTypeNames>Person
</wim:applicableEntityTypeNames>
<wim:applicableEntityTypeNames>PersonAccount
</wim:applicableEntityTypeNames>

</wim:propertySchema>
</wim:schema>
</sdo:datagraph>

Available data types are defined in com.ibm.websphere.wim.SchemaConstants. For example:
/**
* Instance Class: java.lang.String
*/

1376 Administering WebSphere applications



String DATA_TYPE_STRING = "String";
/**
* Instance Class: int
*/
String DATA_TYPE_INT = "Int";
/**
* Instance Class: java.lang.Object
*/
String DATA_TYPE_DATE = "Date";
/**
* Instance Class: dobjava.lang.Object
*/
String DATA_TYPE_ANY_SIMPLE_TYPE = "AnySimpleType";
/**
* Instance Class: java.lang.String
*/
String DATA_TYPE_ANY_URI = "AnyURI";
/**
* Instance Class: java.lang.boolean
*/
String DATA_TYPE_BOOLEAN = "Boolean";
/**
* Instance Class: long
*/
String DATA_TYPE_LONG = "Long";
/**
* Instance Class: double
*/
String DATA_TYPE_DOUBLE = "Double";
/**
* Instance Class: short
*/
String DATA_TYPE_SHORT = "Short";

c. Add the new property to the property extension repository. Before running the
setupIdMgrPropertyExtensionRepositoryTables command, add the new properties into
install_root/etc/wim/setup/wimlaproperties.xml.

d. Follow the example inside this file to define the new property definitions. The schema file for
wimlaproperties.xml is wimdbproperty.xsd and is in the same directory. It can be used for
reference.

3. Run the setupIdMgrPropertyExtensionRepositoryTables command to create the property extension
repository and to add the new properties.

4. Set up the property extension repository using wsadmin by following the procedure discussed in
“Setting up an entry mapping repository, a property extension repository, or a custom registry database
repository using wsadmin commands” on page 1380; ignore the “Before you begin” options.

5. Configure the property extension repository by completing the following steps:

a. In the administrative console, click Security > Global security.

b. Under User account repository, select Federated repositories, and click Configure. To configure
for a specific domain in a multiple security domain environment, click Security domains >
domain_name. Under Security Attributes, expand User Realm, and click Customize for this
domain. Select the Realm type as Federated repositories and then click Configure.

c. Click Property extension repository.

d. Supply the name of the data source in the Data source name field.

e. Select the type of database that is used for the property extension repository.

f. Supply the name of the Java database connectivity (JDBC) driver in the JDBC driver field.

Values include:

DB2 com.ibm.db2.jcc.DB2Driver

Oracle
oracle.jdbc.driver.OracleDriver

Informix
com.informix.jdbc.IfxDriver

Microsoft SQL Server
com.microsoft.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

Chapter 19. Administering application security 1377



g. Supply the database URL that is used to access the property extension repository with JDBC in the
Database URL field. Use an alphanumeric text string that conforms to the standard JDBC URL
syntax.

Values include:

DB2 jdbc:db2://<hostname>:<port>/<DB2location>

Oracle
jdbc:oracle:thin:@<hostname>:<port>:<dbname>

Derby jdbc:derby:c:\derby\wim

Microsoft SQL Server
jdbc:microsoft:sqlserver://<hostname>:1433;databaseName=wim;selectmethod=cursor;

Informix
jdbc:informixsqli://<hostname>:1526/wim:INFORMIXSERVER=<IFXServerName>;

h. Supply the user name of the database administrator in the Database administrator user name field.

i. Supply the password of the database administrator in the Password field.

j. Specify the entity retrieval limit in the Entity retrieval limit field. The entity retrieval limit is the
maximum number of entities that the system can retrieve from the property extension repository
with a single database query. The default value is 200.

k. Click OK.

Results

After completing these steps, your federated repository configuration, which includes a property extension
repository, is configured.

What to do next
1. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1194. As the final step, validate this setup by clicking Apply on the Global security
panel.

2. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Property extension repository settings:

Use this page to configure a property extension repository that is used to store attributes that cannot be
stored in existing repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Additional properties, click Property extension repository.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Data source name:

1378 Administering WebSphere applications



Specifies the Java Naming and Directory Interface (JNDI) name of the data source that is used to access
the property extension repository.

Information Value
Default: jdbc/wimDS

Database type:

Specifies the type of database that is used for the property extension repository.

Information Value
Default: DB2

JDBC driver:

Specifies the Java Database Connectivity (JDBC) driver that is used to access the entry mapping
repository.

Values include:

DB2 COM.ibm.db2.jcc.DB2Driver

Oracle
oracle.jdbc.driver.OracleDriver

Informix
com.informix.jdbc.IfxDriver

DataDirect Connect
com.ddtek.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

Microsoft SQL Server
com.microsoft.sqlserver.jdbc.SQLServerDriver

Database URL:

Specifies the web address for the property extension repository.

Values include:

DB2 jdbc:db2:wim

Informix
jdbc:informix-sqli://host_name:port/wim:INFORMIXSERVER=IFXServerName;

DataDirect Connect
jdbc:datadirect:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Derby jdbc:derby:c:\derby\wim

Oracle
jdbc:oracle:thin:@host_name:port:dbname

Microsoft SQL Server
jdbc:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Database administrator user name:

Chapter 19. Administering application security 1379



Specifies the user name of the database administrator that is used to access the property extension
repository.

Password:

Specifies the password that is used to enable the database administrator to access the property extension
repository.

Entity retrieval limit:

Specifies the maximum number of entities that the system can retrieve from the property extension
repository with a single database query.

Information Value
Data type: Integer
Default: 200

Setting up an entry mapping repository, a property extension repository, or a custom registry database
repository using wsadmin commands:

You can set up an entry mapping repository, a property extension repository, or a custom registry database
repository using wsadmin commands.

Before you begin

If you are setting up an entry mapping repository, begin with the steps described in “Configuring an entry
mapping repository in a federated repository configuration” on page 1395.

If you are setting up a property extension repository, begin with the steps described in “Configuring a
property extension repository in a federated repository configuration” on page 1374.

About this task

When you create a repository, use the appropriate wsadmin commands to define the database schema
and to populate the database property definitions.

Procedure

1. Create the database. You can use any relational database product. The following examples give you
tips for specific vendors.

a. For DB2, open a DB2 command window or command center and enter the following:
db2 create database <name> using codeset UTF-8 territory US

Enter the following database tuning commands:
db2 update database configuration for <name> using applheapsz 1024
db2 update database configuration for <name> using stmtheap 4096
db2 update database configuration for <name> using app_ctl_heap_sz 2048
db2 update database configuration for <name> using locklist 1024
db2 update database configuration for <name> using indexrec RESTART
db2 update database configuration for <name> using logfilsiz 1000
db2 update database configuration for <name> using logprimary 12
db2 update database configuration for <name> using logsecond 10
db2 update database configuration for <name> using sortheap 2048
db2set DB2_RR_TO_RS=yes

b. Optional: For Informix databases using dbaccess, enter the following command:
CREATE DATABASE <name> WITH BUFFERED LOG

c. Optional: For Oracle databases, the database should already exist during Oracle installation (for
example, orcl).

1380 Administering WebSphere applications



2. Run the setupIdMgrEntryMappingRepositoryTables command, the
setupIdMgrPropertyExtensionRepositoryTables command, or the setupIdMgrDBTables command (for
custom registry repositories) by doing the following:

a. Start WebSphere Application Server.

b. Open a command window and go to the <WAS>/Profiles/<PROFILE_NAME>bin directory.

c. Start wsadmin.

d. Type the necessary commands as described below.

What to do next

Using these commands, you can:

v Specify the arguments on the command line.

v Specify the arguments in a file.

The -file option enables you to specify a file in which some or all of the parameters are specified. To use
the -file argument on the command line, enter the full path to the file. Parameters in the file must be
specified in key=value pairs and each must be on its own line. If a parameter is specified on both the
command line and in the file, the value on the command line takes precedence.

Tips for diagnosing argument errors:

v If an argument is not properly specified on the command line or in the file, a message is returned which
states that the argument was not properly specified. This might mean that the argument was not
specified at all or was required for a given configuration but was not specified.

v If the argument was not specified at all, check that the parameter is specified on the command line or in
the file, and that it is properly spelled and has matching case.

v If the argument was required for a given configuration but was not specified, it is possible that a value is
not required solely by the command but is required for the type of database and configuration you are
setting.

For example, if you set the dn, wasAdminId, or wasAdminPassword parameters, you must also specify the
dbDriver parameter.

Additionally, if the dn, wasAdminId or wasAdminPassword parameters are specified, and the databaseType
is not a Apache Derby v10.2 database, then the dbAdminId and dbAdminPassword parameters must also
be specified.

The setupIdMgrDBTables command:

The setupIdMgrDBTables command creates, and populates the tables in the database that you previously
created. Arguments are case-sensitive, both through the command line and the file.

Parameters:

schemaLocation (String, Required)
The location of the <WAS>/etc/wim/setup directory.

dbPropXML (String)
The location of database repository property definition XML file.

databaseType (String, Required)
The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,
and db2iseries.

dbURL (String, Required)
The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)
The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

Chapter 19. Administering application security 1381



dbAdminId (String)
The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)
The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

dn (String)
The default organization uniqueName to replace. For example: o=yourco. If it is not set, o=Default
Organization is used.

wasAdminId (String)
The WebSphere Application Server admin user ID. The ID should be a short name, not a
uniqueName. For example: wasadmin. After creation, the uniqueName is uid=wasadmin,
<defaultOrg>.

wasAdminPassword (String)
The WebSphere Application Server admin user password. If wasAdminId is set, then this parameter
is mandatory.

saltLength (Integer)
The salt length of the randomly generated salt for password hashing.

encryptionKey (String)
The password encryption key. Set the password encryption key to match the encryption key in the
wimconfig.xml file for the repository. If the encryption key is not set, the default is used.

derbySystemHome (String)
The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2
database.

reportSqlError (String)
Specifies whether to report SQL errors while setting up databases.

file (String)
The full path to a file containing the input parameters. Each input parameter must match a
corresponding parameter as it would be typed on the command line, and it must be placed in a
key=value pair. Each pair must be on a separate line.

dbSchema (String)
The database schema where you want to create the federated repository tables. The schema
should exist in the database. The default value is the default schema of the database according to
the database type. Typically, the default schema is the namespace of the current database user.

The deleteIdMgrDBTables command:

The deleteIdMgrDBTables command deletes the tables in the database.

Parameters:

schemaLocation (String, Required)
The location of the <WAS>/etc/wim/setup directory.

databaseType (String, Required)
The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,
and db2iseries.

dbURL (String, Required)
The database URL for direct access mode. For example: jdbc:db2:wim.

1382 Administering WebSphere applications



dbDriver (String)
The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)
The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)
The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

derbySystemHome (String)
The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2
database.

reportSqlError (String)
Specifies whether to report SQL errors while setting up databases.

file (String)
The full path to a file containing the input parameters. Each input parameter must match a
corresponding parameter as it would be typed on the command line, and it must be placed in a
key=value pair. Each pair must be on a separate line.

dbSchema (String)
The database schema from which you want to delete the federated repository tables. The schema
should exist in the database. The default value is the default schema of the database according to
the database type. Typically, the default schema is the namespace of the current database user.

The setupIdMgrPropertyExtensionRepositoryTables command:

The setupIdMgrPropertyExtensionRepositoryTables command sets up the property extension repository.
The default behavior includes creating and populating the tables in the database.

This command is available in connected or local mode.

Parameters:

schemaLocation (String, Required)
The location of the app_server_root/etc/wim/setup directory.

laPropXML (String)
The location of the property extension repository definition XML file.

databaseType (String, Required)
The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,
and db2iseries.

dbURL (String, Required)
The database URL for direct access mode. For example: jdbc:db2:wim.

dbAdminId (String)
The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)
The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

Chapter 19. Administering application security 1383



derbySystemHome (String)
The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2
database.

reportSqlError (String)
Specifies whether to report SQL errors while setting up databases.

skipDBCreation (Boolean)
Specifies whether to create the tables in the property extension repository.

If you set this parameter value to false or do not specify a value, then the command follows the
default behavior of creating and populating the tables in the database.

If you set this parameter value to true, manually set up the property extension repository before
running this command so that the tables get populated. For more information on this manual
process, see the appropriate topic on manually setting up the property extension repository for
your database.

file (String)
The full path to a file containing the input parameters. Each input parameter must match a
corresponding parameter as it would be typed on the command line, and it must be placed in a
key=value pair. Each pair must be on a separate line.

dbSchema (String)
The database schema where you want to create the federated repository tables. The schema
should exist in the database. The default value is the default schema of the database according to
the database type. Typically, the default schema is the namespace of the current database user.

The deleteIdMgrPropertyExtensionRepositoryTables command:

The deleteIdMgrPropertyExtensionRepositoryTables command deletes the tables in the property extension
database.

This command is available in the connected or local mode.

Parameters:

schemaLocation (String, Required)
The location of the <WAS>/etc/wim/setup directory.

databaseType (String, Required)
The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,
and db2iseries.

dbURL (String, Required)
The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)
The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)
The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)
The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

1384 Administering WebSphere applications



derbySystemHome (String)
The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2
database.

reportSqlError (String)
Specifies whether to report SQL errors while setting up databases.

file (String)
The full path to a file containing the input parameters. Each input parameter must match a
corresponding parameter as it would be typed on the command line, and it must be placed in a
key=value pair. Each pair must be on a separate line.

dbSchema (String)
The database schema from which you want to delete the federated repository tables. The schema
should exist in the database. The default value is the default schema of the database according to
the database type. Typically, the default schema is the namespace of the current database user.

The setupIdMgrEntryMappingRepositoryTables command:

The setupIdMgrEntryMappingRepositoryTables command sets up the entry mapping repository, which
includes creating and populating the tables of the repository.

Parameters:

schemaLocation (String, Required)
The location of the <WAS>/etc/wim/setup directory.

databaseType (String, Required)
The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,
and db2iseries.

dbURL (String, Required)
The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)
The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)
The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)
The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

derbySystemHome (String)
The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2
database.

reportSqlError (String)
Specifies whether to report SQL errors while setting up databases.

file (String)
The full path to a file containing the input parameters. Each input parameter must match a
corresponding parameter as it would be typed on the command line, and it must be placed in a
key=value pair. Each pair must be on a separate line.

dbSchema (String)
The database schema where you want to create the federated repository tables. The schema

Chapter 19. Administering application security 1385



should exist in the database. The default value is the default schema of the database according to
the database type. Typically, the default schema is the namespace of the current database user.

The deleteIdMgrEntryMappingRepositoryTables command:

The deleteIdMgrEntryMappingRepositoryTables command deletes the tables in the entry mapping
repository.

Parameters:

schemaLocation (String, Required)
The location of the <WAS>/etc/wim/setup directory.

databaseType (String, Required)
The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,
and db2iseries.

dbURL (String, Required)
The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)
The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)
The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)
The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

derbySystemHome (String)
The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2
database.

reportSqlError (String)
Specifies whether to report SQL errors while setting up databases.

file (String)
The full path to a file containing the input parameters. Each input parameter must match a
corresponding parameter as it would be typed on the command line, and it must be placed in a
key=value pair. Each pair must be on a separate line.

dbSchema (String)
The database schema from which you want to delete the federated repository tables. The schema
should exist in the database. The default value is the default schema of the database according to
the database type. Typically, the default schema is the namespace of the current database user.

Sample command line usage:

To set up a database using the command line, enter the following:
$AdminTask setupIdMgrDBTables {-schemaLocation "C:/WAS/etc/wim/setup" -dbPropXML
"C:/WAS/etc/wim/setup/wimdbproperties.xml" -databaseType db2
-dbURL jdbc:db2:wim -dbAdminId db2admin
-dbDriver com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd
-reportSqlError true}

To delete database tables using the command line, enter the following:
$AdminTask deleteIdMgrDBTables {-schemaLocation "C:/WAS/etc/wim/setup"
-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin
-dbDriver com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd
-reportSqlError true}

1386 Administering WebSphere applications



To set up a property extension repository using the command line, enter the following:
$AdminTask setupIdMgrPropertyExtensionRepositoryTables {-schemaLocation
"C:/WAS/etc/wim/setup"
-laPropXML "C:/WAS/etc/wim/setup/wimlaproperties.xml" -databaseType db2
-dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver com.ibm.db2.jcc.DB2Driver
-dbAdminPassword db2adminPwd -reportSqlError true}

To delete a property extension repository using the command line, enter the following:
$AdminTask deleteIdMgrPropertyExtensionRepositoryTables {-schemaLocation "C:/WAS/etc/wim/setup "
-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver
com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

To set up an entry mapping repository using the command line, enter the following:
$AdminTask setupIdMgrEntryMappingRepositoryTables {-schemaLocation "C:/WAS/etc/wim/setup"
-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver
com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

To delete an entry mapping repository using the command line, enter the following:
$AdminTask deleteIdMgrEntryMappingRepositoryTables {-schemaLocation "C:/WAS/etc/wim/setup"
-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver
com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

Sample CLI Usage using -file option:

To set up a database with the -file option using the example params.txt file below, enter the following:
$AdminTask setupIdMgrDBTables {–file C:/params.txt -dbPropXML
"C:/OverrideDBPropParam/wimdbproperties.xml"}

Params.txt
schemaLocation=C:/WAS/etc/wim/setup
dbPropXML=C:/Program Files/IBM/WebSphere/AppServer/profiles/default
/config/cells/mycell/wim/config/wimdbproperties.xml
laPropXML=C:/Program Files/IBM/WebSphere/AppServer/profiles/default
/config/cells/mycell/wim/config/wimlaproperties.xml
databaseType=db2
dbURL=jdbc:db2:wim
dbDriver=com.ibm.db2.jcc.DB2Driver
reportSqlError=true
dn=o=db.com
dbAdminId=db2admin
dbAdminPassword=dbPassword
wasAdminId=wasadmin
wasAdminPassword=wasadmin1

To set up a database with the -file option using a file only, enter the following:
$AdminTask setupIdMgrDBTables {-file C:/params.txt}

Note: The use of a file only works if -file is the only parameter specified on the command line. If other
parameters are specified then the file is completely ignored, and only the parameters on the
command line are used to execute the command.

Manually setting up the property extension repository for federated repositories:

You can use the createIdMgrPropExtDbTables script to create tables in the property extension repository
for federated repositories.

Before you begin

The following databases are supported by the script when the database exists on a distributed operating
system:

v IBM DB2

v Apache Derby

v IBM Informix Dynamic Server

v Oracle 11g

Chapter 19. Administering application security 1387



v Microsoft SQL Server

For a list of the supported database versions, see the IBM WebSphere Application Server detailed system
requirements.

To use the IBM DB2 on z/OS or IBM DB2 on iSeries database, read about manually setting up the
property extension repository in DB2.

If you do not have WebSphere Application Server installed on the same system on which you are setting
up the database, you must copy the following files from a system where WebSphere Application Server is
installed to the system on which you are setting up the database. Ensure that you replicate the same
directory structure within the setup directory. The db_type variable represents one of the following directory
names: db2, oracle, informix, derby, or sqlserver.
app_server_root\etc\wim\setup\bin\createIdMgrPropExtDbTables.sh
app_server_root\etc\wim\setup\bin\createIdMgrPropExtDbTables.bat
app_server_root\etc\wim\setup\lookaside\db_type\dbclean.sql
app_server_root\etc\wim\setup\lookaside\db_type\schema.sql
app_server_root\etc\wim\setup\lookaside\db_type\primarykeys.sql
app_server_root\etc\wim\setup\lookaside\db_type\indexes.sql
app_server_root\etc\wim\setup\lookaside\db_type\references.sql
app_server_root\etc\wim\setup\lookaside\keys.sql
app_server_root\etc\wim\setup\lookaside\bootstrap.sql

Specifying the database schema:

You can specify the database schema where you want to create the federated repository tables when you
are manually setting up the property extension repository.

If you want to use the default schema of the database, you must execute the following commands without
specifying the DBSCHEMA parameter. Typically, the default schema is the namespace of the current
database user.

Complete these steps to replace the schema variable in the SQL files with the actual database schema
name. If WebSphere Application Server and the database are not on the same system, set the
SCHEMA_LOCATION value to the location where you copied the SQL files.

Windows operating systems:

1. Open a command window.

2. Change to the app_server_root\etc\wim\setup directory.

3. Enter the following commands:
set SCHEMA_LOCATION=app_server_root\etc\wim\setup\lookaside
set DBTYPE=<db_type>
set DBSCHEMA=dbschemaname
set SCHEMA_DEST_LOCATION=<location where the updated SQL files with replaced variables should be copied>
ws_ant.bat -f app_server_root\etc\wim\setup\filterbuild.xml

where the value of <db_type> is db2, derby, informix, oracle, or sqlserver.

Note: : If SCHEMA_DEST_LOCATION is not set, the updated SQL files are copied to a directory with the
name as the value not substituted under the current directory. The output shows where the files are
copied.

AIX, HP-UX, Linux, and Solaris operating systems:

1. Open a command window

2. Change to the app_server_root/etc/wim/setup directory.

3. Enter the following commands:

1388 Administering WebSphere applications



export SCHEMA_LOCATION=app_server_root/etc/wim/setup/lookaside
export DBTYPE=<db_type>
export DBSCHEMA=dbschemaname
export SCHEMA_DEST_LOCATION=<location where the updated SQL files with replaced variables should be copied>
ws_ant.sh -f app_server_root/etc/wim/setup/filterbuild.xml

where the value of <db_type> is db2, derby, informix, oracle, or sqlserver.

Note: If SCHEMA_DEST_LOCATION is not set, the updated SQL files are copied to a directory with the
name as the value not substituted under the current directory. The output shows where the files are
copied.

About this task

The following notes apply to specific databases:

v Oracle 11g

– If you did not create the default database when you installed Oracle product, you must manually
create the database before you run the createIdMgrPropExtDbTables script. The value of the
ORACLE_SID variable is the same value as the name of the database.

– If you want to create the tables in the schema that you specified using DBSCHEMA (described in the
previous section, Specifying the database schema) ensure that you create the specified schema in
this database before you run the createIdMgrPropExtDbTables script.

– On the AIX, HP-UX, Linux, and Solaris operating systems, run the createIdMgrPropExtDbTables
script either as an Oracle user or as a root user with database administrator (dba) rights and
appropriate permissions to run SQL queries as a system database administrator (sysdba).

v IBM DB2

– On the Windows operating systems, you must initialize the DB2 environment before you run the
createIdMgrPropExtDbTables script. At the Windows command prompt, enter db2cmd to open a new
DB2 command window and run the createIdMgrPropExtDbTables batch file from this prompt.

v Microsoft SQL Server

– Open a command window, change to the app_server_root\bin directory, and enter the following
commands to replace the variables in the SQL files. If WebSphere Application Server and the
database are not on the same system, set the SCHEMA_LOCATION value to the location where you
copied the SQL files.
set SCHEMA_LOCATION=app_server_root\etc\wim\setup\lookaside
set DBTYPE=sqlserver
set SCHEMA_DEST_LOCATION=<location where the updated SQL files with replaced variables should be copied>
set DBOWNER=dbo
ws_ant.bat -f app_server_root\etc\wim\setup\filterbuild.xml

Note: If SCHEMA_DEST_LOCATION is not set, the updated SQL files are copied to a directory with
the name as the value not substituted under the current directory. The output shows where the
files are copied.

The following default instance is created as a part of the database installation:

v DB2: DB2

v Informix: demo_on

v SQL Server: %computername%

The Informix database is created with the following environment:
CLIENT_LOCALE=EN_US.CP1252
DB_LOCALE=EN_US.8859-1
SERVER_LOCALE=EN_US.CP1252
DBLANG=EN_US.CP125

Chapter 19. Administering application security 1389



Procedure

Run the createIdMgrPropExtDbTables.sh script or createIdMgrPropExtDbTables.bat script to create the
tables in the property extension repository.
Run the script from the following location or from the directory to which you previously copied the script
file:

AIX, HP-UX, Linux, and Solaris operating systems
app_server_root/etc/wim/setup/bin/createIdMgrPropExtDbTables.sh

Windows
app_server_root\etc\wim\setup\bin\createIdMgrPropExtDbTables.bat

Use the following parameters to specify the values that you require when you run the script:

-b Use this parameter to specify the home directory of the database.

This value is a string value that is required for all database types.

-d Use this parameter to specify the schema of the database.

The value of this parameter should be the same value that you specified for DBSCHEMA
(described in the previous section, Specifying the database schema).

This value is a string value that is optional for DB2, Derby, and SQL Server databases, if you want
to specify the database schema where you want to create the federated repository tables. This
value is not required for Oracle and Informix databases.

-h Use this parameter to display the help information. (Optional)

-i Use this parameter to specify the home directory of the database instance.

This value is a string value that is required for a DB2 database only; do not specify a value for
other database types.

This parameter applies to the AIX, HP-UX, Linux, and Solaris operating systems.

-n Use this parameter to specify the name of the database to which you are connecting.

For an Oracle database, the value of the ORACLE_SID variable is the same as the name of the
database.

This value is a string value that is required for all database types.

-p Use this parameter to specify the password of the database administrator.

This value is a string value that is required for DB2, Oracle, Informix, and SQL Server databases
only; do not specify a value for a Derby database.

-s On AIX, HP-UX, Linux, and Solaris operating systems, this parameter specifies the location of the
app_server_root/etc/wim/setup directory, or the location to which the updated files are copied
according to the steps in the previous section, Specifying the database schema.

On Windows operating systems, this parameter specifies the location of the app_server_root\etc\
wim\setup directory, or the location to which the updated files are copied according to the steps in
the previous section, Specifying the database schema.

This value is a string value that is required for all database types.

-t Use this parameter to specify a database type.

v On the AIX, HP-UX, Linux, and Solaris operating systems, specify one of the following valid
values: db2, oracle, informix, derby.

v On the Windows operating systems, specify one of the following valid values: db2, oracle,
informix, derby, or sqlserver.

This value is a string value that is required for all database types.

1390 Administering WebSphere applications



-u Use this parameter to specify the user ID of the database administrator.

This value is a string value that is required for DB2, Oracle, Informix, and SQL Server databases
only; do not specify a value for a Derby database.

Example

Run the appropriate script for your database and operating system to create tables in the property
extension repository. Use the sample values to specify database parameters. If the database exists on a
system where WebSphere Application Server is not installed, the following examples assume that your
PATH variable includes an entry for the location to which you copied the script files. For the AIX, HP-UX,
Linux, and Solaris operating systems, the entry might be the app_server_root/etc/wim/setup/bin/ or the
/setup/bin/ directory. For Windows operating systems, the entry might be the app_server_root\etc\wim\
setup\bin\ or the \setup\bin\ directory.

The examples in the following section are organized into multiple lines for illustration purposes only.

On the AIX, HP-UX, Linux, and Solaris operating systems:

Oracle databases
createIdMgrPropExtDbTables.sh
-b /space/oracle/product/10.2.0/Db_1/
-n orcl
-u system
-p manager
-s /opt/IBM/WebSphere/AppServer1/etc/wim/setup
-t oracle

Informix databases
createIdMgrPropExtDbTables.sh
-b /opt/IBM/informix/
-n demo_on
-u informix
-p informix
-s /opt/IBM/WebSphere/AppServer/etc/wim/setup
-t informix

DB2 databases
createIdMgrPropExtDbTables.sh
-b /opt/ibm/db2/V9.1/
-n db2inst1
-p db2inst1
-s /opt/IBM/WebSphere/AppServer/etc/wim/setup
-t DB2
-u db2inst1
-i /home/db2inst1/

Derby databases
createIdMgrPropExtDbTables.sh
-b /opt/ibm/derby/
-n test11
-s /opt/IBM/WebSphere/AppServer/etc/wim/setup
-t derby

On the Windows operating systems:

Oracle databases
createIdMgrPropExtDbTables.bat
-b "c:\oracle\product\10.2.0\Db_1"
-n orcl
-u system
-p manager
-s "c:\Program Files\IBM\WebSphere\AppServer1\etc\wim\setup"
-t oracle

Chapter 19. Administering application security 1391



Informix databases
createIdMgrPropExtDbTables.bat
-b "c:\Program Files\IBM\informix"
-n demo_on
-u informix
-p informix
-s "c:\Program Files\IBM\WebSphere\AppServer\etc\wim\setup"
-t informix

DB2 databases
createIdMgrPropExtDbTables.bat
-t db2
-u db2admin
-p sec001ret#
-n test23
-b "c:\Program Files\IBM\SQLLIB"
-s "c:\Program Files\IBM\WebSphere\AppServer1\etc\wim\setup"

Derby databases
createIdMgrPropExtDbTables.bat
-t derby
-b "c:\Derby"
-n test11
-s "c:\Program Files\IBM\WebSphere\AppServer1\etc\wim\setup"

Microsoft SQL Server databases
createIdMgrPropExtDbTables.bat
-t sqlserver
-u sa
-p sec001ret#
-n sqlsrv
-b "c:\Progra~1\Micros~1\90\Tools"
-s "C:\Progra~1\IBM\WebSphere\AppServer1\etc\wim\setup"

What to do next

Run the setupIdMgrPropertyExtensionRepositoryTables command with the skipDBCreation parameter set
to true to populate the tables that are created. For more information, read about setting up an entry
mapping repository, a property extension repository, or a custom registry database repository using
wsadmin commands.

Manually setting up the property extension repository for DB2 for iSeries or DB2 for z/OS:

Use this task to set up the property extension repository for DB2 for iSeries or DB2 for z/OS.

Before you begin

The information in this topic applies in the following scenarios:

v The application server and the database both exist on the IBM i operating system.

v The application server and the database both exist on the z/OS operating system.

v The application server exists on a distributed operating system, but the database exists on either the
IBM i or z/OS operating system.

If you do not have WebSphere Application Server installed in the system on which you are setting up the
database, copy the following files from a system where WebSphere Application Server is installed to the
system on which you are setting up the database:

DB2 for iSeries
app_server_root/etc/wim/setup/lookaside/db2iseries/dbclean.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/schema.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/primarykeys.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/indexes.sql

1392 Administering WebSphere applications



app_server_root/etc/wim/setup/lookaside/db2iseries/references.sql
app_server_root/etc/wim/setup/lookaside/keys.sql
app_server_root/etc/wim/setup/lookaside/bootstrap.sql

DB2 for z/OS
app_server_root/etc/wim/setup/lookaside/db2zos/dbclean.sql
app_server_root/etc/wim/setup/lookaside/db2zos/schema.sql
app_server_root/etc/wim/setup/lookaside/db2zos/primarykeys.sql
app_server_root/etc/wim/setup/lookaside/db2zos/indexes.sql
app_server_root/etc/wim/setup/lookaside/db2zos/references.sql
app_server_root/etc/wim/setup/lookaside/keys.sql
app_server_root/etc/wim/setup/lookaside/bootstrap.sql

About this task

For information about how to create a database and run SQL queries in DB2 for iSeries, see the DB2
Universal Database for iSeries in the IBM iSeries Information Center.

For information about how to create a database and run SQL queries in DB2 for z/OS, see the Information
Management Software for z/OS Solutions Information Center.

Procedure

1. Open a command window.

2. Change to the app_server_root/bin directory

3. Enter the following commands to replace the variables in the SQL files:

a. export SCHEMA_LOCATION=app_server_root/etc/wim/setup/lookaside

Set the SCHEMA_LOCATION value to the location where you copied the SQL files if you do not
have WebSphere Application Server installed on the same system on which you are setting up the
database.

b. export DBTYPE=<db_type>

where the value of <db_type> is db2iseries or db2zos

c. To specify the database schema where you want to create the federated repository tables use the
DBSCHEMA command. If you want to use the default schema, which is typically the namespace of
the current database user, do not specify the DBSCHEMA command.
export DBSCHEMA=dbschemaname

d. export TSPREFIX=<tsprefix>

where <tsprefix> is the tablespace prefix. The maximum length allowed for this string is 3
characters.

e. export SCHEMA_DEST_LOCATION=<schema_dest_location>

where <schema_dest_location> is the location where the updated SQL files with replaced variables
should be copied. If SCHEMA_DEST_LOCATION is not set, the updated SQL files are copied to a
directory with the name as the unsubstituted value under the current directory. The output indicates
where the files are copied to.

f. ./ws_ant.sh -f app_server_root/etc/wim/setup/filterbuild.xml

4. Start the DB2 server.

5. Create a database.

6. Run the SQL files, which were previously referenced, to create the tables for the property extension
repository. If you are setting up the database on the same system on which the application server is
installed, the files are located in the following locations:

DB2 for iSeries
app_server_root/etc/wim/setup/lookaside/db2iseries/dbclean.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/schema.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/primarykeys.sql
app_server_root/etc/wim/setup/lookaside/db2iseries/indexes.sql

Chapter 19. Administering application security 1393



app_server_root/etc/wim/setup/lookaside/db2iseries/references.sql
app_server_root/etc/wim/setup/lookaside/keys.sql
app_server_root/etc/wim/setup/lookaside/bootstrap.sql

DB2 for z/OS
app_server_root/etc/wim/setup/lookaside/db2zos/dbclean.sql
app_server_root/etc/wim/setup/lookaside/db2zos/schema.sql
app_server_root/etc/wim/setup/lookaside/db2zos/primarykeys.sql
app_server_root/etc/wim/setup/lookaside/db2zos/indexes.sql
app_server_root/etc/wim/setup/lookaside/db2zos/references.sql
app_server_root/etc/wim/setup/lookaside/keys.sql
app_server_root/etc/wim/setup/lookaside/bootstrap.sql

Otherwise, run the SQL files from the location to which you copied the files. If you executed the
commands to substitute variables according to the steps in the previous section, Specifying the
database schema, the SQL files are copied to the location you specified for
SCHEMA_DEST_LOCATION. If SCHEMA_DEST_LOCATION is not set, the updated SQL files are
copied to a directory with the name as the unsubstituted value under the current directory. The output
shows where the files are copied.

What to do next

Run the setupIdMgrPropertyExtensionRepositoryTables command with the skipDBCreation parameter set
to true to populate the tables that are created. For more information, read about setting up an entry
mapping repository, a property extension repository, or a custom registry database repository using
wsadmin commands.

Configuring the WebSphere Application Server data source:

Installed applications use data sources as resources to obtain connection to relational databases. To
create these connections between an application and a relational database, WebSphere Application Server
uses the driver implementation classes that are encapsulated by the JDBC provider, which is an object
that represents vendor-specific JDBC driver classes to WebSphere Application Server. For access to a
relational databases, applications use the JDBC drivers and data sources that you configure for
WebSphere Application Server.

Procedure

1. Start the WebSphere Application Server administrative console.

2. Click Security -> Global security.

3. On the Configuration panel, under Authentication, expand Java Authentication and Authorization
Service and click J2C authentication data.

4. Click New and enter the Alias, User ID and Password.

5. Click Ok.

6. On the WebSphere Application Server administrative console, expand Resources. Expand JDBC
then click JDBC Providers.

7. In the Scope section, choose the Node level from the drop-down list.

8. Click New to create a new JDBC driver.

9. Select, in this order, the Database type, Provider type, Implementation type and Name. The Name
automatically fills based on the implementation type you choose.

10. Click Next and configure the database class path. Click Next.

11. On the Summary page, click Finish.

12. Click Save to save your selections. The JDBC providers page then appears.

13. On the WebSphere Application Server administrative console, click Data sources.

1394 Administering WebSphere applications



14. Click New to create a new data source. Enter the Data source name and the JNDI name, and choose
the authentication alias from the drop-down list in Component-managed authentication alias. The
JNDI name should match the datasourceName value set in wimconfig.xml. By default, it is
jdbc/wimDS.

Note: For Apache Derby v10.2 embedded databases, leave the Component-managed authentication
alias field set to NONE.

15. Click Next.

16. Enter the Database name and deselect the checkbox, Use this data source in container managed
persistence (CMP). Click Next.

17. On the Summary page, click Finish.

18. The Data sources page displays. Click Save, Then select the check box for the authentication alias
previously created. Click Test Connection. The message should indicate that the connection is
successful. Ignore any warnings, and then click Next.

19. Save the configurations, and restart WebSphere Application Server.

Configuring an entry mapping repository in a federated repository configuration:

Follow this task to configure an entry mapping repository that is used to store data for managing profiles
on multiple repositories.

About this task

An entry-level join means that the federated repository configuration uses multiple repositories
simultaneously and recognizes the entries in the different repositories as entries representing distinct
entities. For example, a company might have a Lightweight Directory Access Protocol (LDAP) directory
that contains entries for its employees and a database that contains entries for business partners and
customers. By configuring an entry mapping repository, a federated repository configuration can use both
the LDAP and the database at the same time. The federated repository configuration hierarchy and
constraints for identifiers provide the aggregated namespace for both of those repositories and prevent
identifiers from colliding.

When you configure an entry mapping repository, you can supply a valid data source, a direct connection
configuration, or both. The system first tries to connect by way of the data source. If the data source is not
available, then the system uses the direct access configuration.

Restriction: You cannot configure an entry mapping repository in a mixed-version deployment manager
cell.

Procedure

1. Configure the WebSphere Application Server data source. See “Configuring the WebSphere
Application Server data source” on page 1394.

2. Set up the entry mapping repository using wsadmin. See “Setting up an entry mapping repository, a
property extension repository, or a custom registry database repository using wsadmin commands” on
page 1380; ignore the “Before you begin” options.

3. Configure the entry mapping repository into the federated repository by doing the following:

a. In the administrative console, click Security > Global security.

b. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure. To configure for a specific domain in a multiple security domain
environment, click Security domains > domain_name. Under Security Attributes, expand User
Realm, and click Customize for this domain. Select the Realm type as Federated repositories
and then click Configure.

c. Click Entry mapping repository.

Chapter 19. Administering application security 1395



d. Supply the name of the data source in the Data source name field.

e. Select the type of database that is used for the property extension repository.

f. Supply the name of the Java database connectivity (JDBC) driver in the JDBC driver field.

Values include:

DB2 com.ibm.db2.jcc.DB2Driver

DB2 for iSeries
com.ibm.db2.jcc.DB2Driver

Informix
com.informix.jdbc.IfxDriver

DataDirect Connect
com.ddtek.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

Microsoft SQL Server
com.microsoft.sqlserver.jdbc.SQLServerDriver

Oracle
oracle.jdbc.driver.OracleDriver

g. Supply the database URL that is used to access the property extension repository with JDBC in the
Database URL field. Use an alphanumeric text string that conforms to the standard JDBC URL
syntax.

Values include:

DB2 jdbc:db2:wim

Informix
jdbc:informix-sqli://host_name:1526/wim:INFORMIXSERVER=IFXServerName;

DataDirect Connect
jdbc:datadirect:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Derby jdbc:derby:c:\derby\wim

Microsoft SQL Server
jdbc:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Oracle
jdbc:oracle:thin:@host_name:port:dbname

h. Supply the user name of the database administrator in the Database administrator user name field.

i. Supply the password of the database administrator in the Password field.

j. Click OK.

Results

After completing these steps, your federated repository configuration, which includes an entry mapping
repository, is configured.

What to do next
1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply

1396 Administering WebSphere applications



on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Entry mapping repository settings:

Use this page to configure an entry mapping repository that is used to store data for managing profiles on
multiple repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Additional properties, click Entry mapping repository.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Data source name:

Specifies the Java Naming and Directory Interface (JNDI) name of the data source that is used to access
the entry mapping repository.

Information Value
Default: jdbc/wimDS

Database type:

Specifies the type of database that is used to access the entry mapping repository.

Information Value
Default: DB2

JDBC driver:

Specifies the Java Database Connectivity (JDBC) driver that is used to access the entry mapping
repository.

Values include:

DB2 com.ibm.db2.jcc.DB2Driver

DB2 for iSeries
com.ibm.db2.jcc.DB2Driver

Chapter 19. Administering application security 1397



DataDirect Connect
com.ddtek.jdbc.sqlserver.SQLServerDriver

Informix
com.informix.jdbc.IfxDriver

Oracle
oracle.jdbc.driver.OracleDriver

Microsoft SQL Server
com.microsoft.sqlserver.jdbc.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

Database URL:

Specifies the web address for the entry mapping repository.

Values include:

DB2 jdbc:db2:wim

Derby jdbc:derby:c:\derby\wim

DataDirect Connect
datadirect:sqlserver://:host_name1433;databaseName=wim;selectMethod=cursor;

Oracle
jdbc:oracle:thin:@host_name:port:dbname

Microsoft SQL Server
jdbc:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Informix
jdbc:informix-sqli://host_name:port/wim:INFORMIXSERVER=IFXServerName;

Database administrator user name:

Specifies the user name of the database administrator that is used to access the entry mapping repository.

Password:

Specifies the password that is used to enable the database administrator to access the entry mapping
repository.

Configuring supported entity types in a federated repository configuration:

Follow this task to configure supported entity types for user and group management.

About this task

You must configure the supported entity types before you can manage this account with Users and Groups
in the administrative console. The supported entity types are Group, OrgContainer, and PersonAccount. A
Group entity represents a simple collection of entities that might not have any relational context. An
OrgContainer entity represents an organization, such as a company or an enterprise, a subsidiary, or an
organizational unit, such as a division, a location, or a department. A PersonAccount entity represents a
human being. You cannot add or delete the supported entity types, because these types are predefined.

The Base entry for the default parent determines the repository location where entities of the specified
type are placed on write operations by user and group management.

1398 Administering WebSphere applications



Note: To manage users and groups, click Users and Groups in the console navigation tree. Click either
Manage Users or Manage Groups. To manage users and groups for a specific domain in a
multiple security domain environment, click Security > Global security > Security Domains >
domain_name. Under Security Attributes, expand User Realm, and click Customize for this
domain. Select the Realm type as Federated repositories. Click Apply and Save to the master
configuration. On Security domains panel that appears, click the domain_name again to go to the
domain configuration panel. Under User realm, click the Manage users or Manager Groups links
that are displayed now. These links to manage users and groups for a specific domain are
displayed only after you save the federated repositories configuration for the domain.

Note: You must restart the server or dmgr if the federated repository has changed before using the
Manage Users option. Otherwise, user or group changes made to the repository could be lost after
restart.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Click Supported entity types to view a list of predefined entity types.

4. Click the name of a predefined entity type to change its configuration.

5. Supply the distinguished name of a base entry in the repository in the Base entry for the default parent
field. This entry determines the default location in the repository where entities of this type are placed
on write operations by user and group management.

6. Supply the relative distinguished name (RDN®) properties for the specified entity type in the Relative
Distinguished Name properties field. Possible values are cn for Group, uid or cn for PersonAccount,
and o, ou, dc, and cn for OrgContainer. Delimit multiple properties for the OrgContainer entity with a
semicolon (;).

The following list outlines known requirements and limitations that apply to specific Lightweight
Directory Access Protocol (LDAP) servers:

Using Microsoft Active Directory as the LDAP server

v Unless you modify the LDAP schema to use uid, you must specify cn in the Relative
Distinguished Name (RDN) properties field for the PersonAccount entity type.

v Secure Sockets Layer communications must be enabled to create users with passwords. To
select the Require SSL communications option, see the topic “Configuring Lightweight
Directory Access Protocol in a federated repository configuration” on page 1359.

v Typically the value of user is specified as the value in the Object classes field for the
PersonAccount entity type and the value of group is specified as the value in the Object
classes field for the Group entity type.

Using a Lotus Domino Enterprise Server as the LDAP server

v Typically, the value of cn is specified in the Relative Distinguished Name (RDN) properties
field for the PersonAccount entity type. The value of uid is also acceptable.

v Typically, both inetOrgPerson and dominoPerson are used as values in the Object classes
field for the PersonAccount entity type.

Using Sun ONE Directory Server as the LDAP server

v Typically, groupOfUniqueNames is specified as the value in the Object classes field for the
Group entity type.

7. Click OK.

Chapter 19. Administering application security 1399



Results

After completing these steps, your federated repository configuration, which uses supported entity types, is
configured.

What to do next
1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply on the Global security
panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Supported entity types collection:

Use this page to list entity types that are supported by the member repositories or to select an entity type
to view or change its configuration properties.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Additional properties, click Supported entity types.

You must configure the supported entity types before you can manage this account with Users and Groups
in the administrative console. The Base entry for the default parent determines the repository location
where entities of the specified type are placed on write operations by user and group management.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Entity type:

Specifies the entity type name.

Base entry for the default parent:

Specifies the distinguished name of a base entry in the repository.

This entry determines the default location in the repository where entities of this type are placed on write
operations by user and group management.

Relative Distinguished Name properties:

Specifies the relative distinguished name (RDN) properties for the specified entity type.

1400 Administering WebSphere applications



Possible values are cn for Group, uid or cn for PersonAccount, and o, ou, dc, and cn for OrgContainer.
Delimit multiple properties for the OrgContainer entity with a semicolon (;).

Supported entity types settings:

Use this page to configure entity types that are supported by the member repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Additional properties, click Supported entity types.

4. Click the name of a configured entity type to view or change its configuration.

You must configure the supported entity types before you can manage this account with Users and Groups
in the administrative console. The Base entry for the default parent determines the repository location
where entities of the specified type are placed on write operations by user and group management.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Entity type:

Specifies the name of the entity type.

Base entry for the default parent:

Specifies the distinguished name of a base entry in the repository.

This entry determines the default location in the repository where entities of this type are placed on write
operations by user and group management.

Relative Distinguished Name properties:

Specifies the relative distinguished name (RDN) properties for the specified entity type.

Possible values are cn for Group, uid or cn for PersonAccount, and o, ou, dc, and cn for OrgContainer.
Delimit multiple properties for the OrgContainer entity with a semicolon (;).

Configuring user repository attribute mapping in a federated repository configuration:

Follow this task to set or modify the mapping for user or group attributes of a user registry to federated
repository properties in the current realm.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Additional properties, click the User repository attribute mapping link.

Chapter 19. Administering application security 1401



4. Select an attribute and click Edit to modify the mapping.

Property for Input
Specifies the name of the federated repository property that maps to the specified user registry
attribute when it is an input parameter for the user registry interface.

Property for Output
Specifies the name of the federated repository property that maps to the specified user registry
attribute when it is an output parameter (return value) for the user registry interface. In most
cases, the propertyForInput and propertyForInput would be the same.

5. Click OK and Save to the master configuration.

6. Restart the application server.

Results

After completing these steps, user or group attributes of the user registry are mapped to federated
repository properties in the current realm.

Supported entity types collection:

Use this page to list entity types that are supported by the member repositories or to select an entity type
to view or change its configuration properties.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Additional properties, click Supported entity types.

You must configure the supported entity types before you can manage this account with Users and Groups
in the administrative console. The Base entry for the default parent determines the repository location
where entities of the specified type are placed on write operations by user and group management.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Entity type:

Specifies the entity type name.

Base entry for the default parent:

Specifies the distinguished name of a base entry in the repository.

This entry determines the default location in the repository where entities of this type are placed on write
operations by user and group management.

Relative Distinguished Name properties:

Specifies the relative distinguished name (RDN) properties for the specified entity type.

Possible values are cn for Group, uid or cn for PersonAccount, and o, ou, dc, and cn for OrgContainer.
Delimit multiple properties for the OrgContainer entity with a semicolon (;).

1402 Administering WebSphere applications



Supported entity types settings:

Use this page to configure entity types that are supported by the member repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Additional properties, click Supported entity types.

4. Click the name of a configured entity type to view or change its configuration.

You must configure the supported entity types before you can manage this account with Users and Groups
in the administrative console. The Base entry for the default parent determines the repository location
where entities of the specified type are placed on write operations by user and group management.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Entity type:

Specifies the name of the entity type.

Base entry for the default parent:

Specifies the distinguished name of a base entry in the repository.

This entry determines the default location in the repository where entities of this type are placed on write
operations by user and group management.

Relative Distinguished Name properties:

Specifies the relative distinguished name (RDN) properties for the specified entity type.

Possible values are cn for Group, uid or cn for PersonAccount, and o, ou, dc, and cn for OrgContainer.
Delimit multiple properties for the OrgContainer entity with a semicolon (;).

Managing repositories in a federated repository configuration:

Follow this topic to manage repositories in a federated repository configuration.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories. Repositories that are configured in the system are
listed in the collection panel. This list includes repositories that are configured using the federated
repository functionality as well as repositories that are created using wsadmin commands described in
the topic IdMgrRepositoryConfig command group for the AdminTask object.

Chapter 19. Administering application security 1403



4. Optional: Click Add to configure a new external repository and select the repository type as LDAP
repository, Custom repository, or File repository.

Restriction: You cannot add a database repository using the administrative console. This repository
configuration is supported by using wsadmin commands only.

5. Optional: Click Delete to delete a repository that you specified previously using the administrative
console or wsadmin commands.

Restriction: You cannot delete the built-in, file-based repository from the collection panel.

6. Optional: Select one of the repository identifier entries to view or update an external repository that is
configured in the system previously.

v The LDAP repository configuration settings are described in detail in “Configuring Lightweight
Directory Access Protocol in a federated repository configuration” on page 1359.

v The custom repository configuration settings are described in “Adding a custom repository to a
federated repositories configuration” on page 1414.

v The file-based repository configuration settings are described in “Adding a file-based repository to a
federated repositories configuration” on page 1340.

Restriction: While database repositories that are configured in the system are listed in the collection
panel, you cannot update a database repository using the administrative console.
Updates to a database repository are supported by using wsadmin commands only.

7. Click OK.

Results

After completing these steps, the collection panel under Managing repositories reflects a current list of
repositories that are configured in your system.

What to do next

1. To add one or more external repositories that are listed on this collection panel into the realm, see
“Managing the realm in a federated repository configuration” on page 1328.

2. After configuring the federated repositories, click Security > Global security to return to the Global
security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Replicating changes to a built-in, file-based repository:

Changes to built-in, file-based repositories are not automatically replicated to managed nodes in a
federated repositories configuration. You need to use the administrative console to replicate the changes
you make to a built-in, file-based repository.

1404 Administering WebSphere applications



About this task

The network deployment support in a federated repositories configuration only updates the in-memory
state of the processes that are running on the managed nodes. Because WebSphere Application Server
synchronizes the file systems, the network deployment support does not attempt to update the file systems
of the managed nodes.

You must synchronize the node configuration to replicate the changes to the built-in, file-based repository.

Procedure

1. In the administrative console, click System Administration > Nodes. to access the nodes panel.

2. On the Nodes panel, select all the relevant nodes for which the changes to the built-in, file-based
repository need to be made.

3. Click Full Resynchronize. The resynchronize operation resolves conflicts among configuration files
and can take several minutes to complete.

Results

After completing these steps, your federated repository configuration of managed nodes reflects the
changes to the built-in, file-based repository.

Manage repositories collection:

Use this page to list repositories that are configured in the system or to select a repository to view or
change its configuration properties. You can add or delete external repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Repository identifier:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the
cell.

Repository type:

Specifies the repository type, such as File or LDAP.

Add:

Select to add a new LDAP, custom or file repository.

Repository reference settings:

Use this page to configure a repository reference. A repository reference is a single repository that
contains a set of identity entries that are referenced by a base entry into the directory information tree.

Chapter 19. Administering application security 1405



To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Click Add base entry to realm.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Repository:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the
cell.

Expand the drop-down list to display a list of previously defined repository identifiers.

Distinguished name of a base entry that uniquely identifies this set of entries in the realm:

Specifies the distinguished name (DN) that uniquely identifies this set of entries in the realm.

If multiple repositories are included in the realm, it is necessary to define an additional distinguished name
that uniquely identifies this set of entries within the realm. Overlapping base entries are not supported. You
should not define two base entries where one is c=us, and the other is o=myorg,c=us in the same realm;
otherwise a search returns duplicate results.

Distinguished name of a base entry in this repository:

Specifies the Lightweight Directory Access Protocol (LDAP) distinguished name (DN) of the base entry
within the repository. The entry and its descendents are mapped to the subtree that is identified by the
unique base name entry field.

If this field is left blank, then the subtree defaults to the root of the LDAP repository.

Increasing the performance of an LDAP repository in a federated repository configuration:

Follow the steps given here to increase the performance of an LDAP repository in a federated repository
configuration.

Before you begin

The settings that are available on the Performance panel are independent options that pertain specifically
to an LDAP repository configured using the federated repositories functionality. These options do not affect
your entire WebSphere Application Server configuration.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure. To configure for a specific domain in a multiple security domain
environment, click Security domains > domain_name. Under Security Attributes, expand User
Realm, and click Customize for this domain . Select the Realm type as Federated repositories
and then click Configure.

3. Under Related items, click Manage repositories > repository_name.

1406 Administering WebSphere applications



4. Under Additional properties, click Performance.

5. Optional: Select the Limit search time option and enter the maximum number of milliseconds that
the Application Server can use to search through your Lightweight Directory Access Protocol (LDAP)
entries.

6. Optional: Select the Limit search returns option and enter the maximum number of entries to return
that match the search criteria.

7. Optional: Select the Use connection pooling option to specify whether the Application Server can
store separate connections to the LDAP server for reuse.

8. Optional: Select the Enable context pool option to specify whether multiple applications can use the
same connection to the LDAP server. If you select the option, specify the initial, preferred, and
maximum number of entries that can use the same connection. The Enable context pool option can
be enabled either in conjunction with the Use connection pool option or separately. If this option is
disabled, a new connection is created for each context. You can also select the Context pool times
out option and specify the number of seconds after which the entries in the context pool expire.

9. Optional: Set the Maximum size value of the context pool to zero (0).

10. Optional: Select the Cache the attributes option and specify the maximum number of search
attribute entries. This option enables WebSphere Application Server to save the LDAP entries so that
it can search the entries locally rather than making multiple calls to the LDAP server. Click the Cache
times out option that is associated with the Cache the attributes option to specify the maximum
number of seconds that the Application Server can save these entries. Specify the Distribution
policy for the dynamic attribute cache in a clustered environment as Not shared, shared Push, or
shared Push and pull. This setting is read during the adapter startup process and the cache policy is
set accordingly.

11. Optional: Select the Cache the search results option and specify the maximum number of search
result entries. This option enables WebSphere Application Server to save the results of a search
inquiry instead of making multiple calls to the LDAP server to search and retrieve the results of that
search. Click the Cache times out option that is associated with the Cache the search results
option to specify the maximum number of seconds that the Application Server can save the results.
Specify the Distribution policy for the dynamic attribute cache in a clustered environment as Not
shared, shared Push, or shared Push and pull. This setting is read during the adapter startup
process and the cache policy is set accordingly.

12. Optional: Create the root DataObject object locally using the
com.ibm.websphere.wim.util.SDOHelper.createRootDataObject method instead of the
com.ibm.websphere.wim.ServiceProvider.createRootDataObject method.

Results

These options are available to potentially increase the performance of your federated repositories
configuration. However, the any increase in performance is dependant upon your specific configuration.

Lightweight Directory Access Protocol performance settings:

Use this page to minimize impacts to performance by adding opened connections and contexts to
internally maintained pools and reusing them. Also minimize performance impacts by maintaining internal
caches of retrieved data.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

Chapter 19. Administering application security 1407



3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Performance.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Limit search time:

Specifies the timeout value in milliseconds for a Lightweight Directory Access Protocol (LDAP) server to
respond before stopping a request.

Information Value
Data type: Integer
Units: Milliseconds
Default: 0
Range: Equal to or greater than 0. A value of 0 specifies that no

search time limit exists.

Limit search returns:

Specifies the maximum number of entries that are returned in a search result.

Information Value
Data type: Integer
Units: Entries
Default: 0
Range: Equal to or greater than 0. A value of 0 specifies that no

search return limit exists.

Use connection pooling:

Specifies whether to utilize the connection pooling function, which is provided in the Software Development
Kit (SDK).

Connection pooling is maintained by the Java run time. It is configured by system properties.

Information Value
Default: Disabled
Range: Enabled or Disabled

Enable context pool:

Specifies whether context pooling is enabled to the LDAP server. To improve performance, use the context
pool in combination with connection pooling.

Information Value
Default: Enabled
Range: Enabled or Disabled

Initial size:

Specifies the number of context instances in the pool when the pool is initially created by the LDAP
repository.

1408 Administering WebSphere applications



Information Value
Data type: Integer
Default: 1
Range: 1 to 50

Preferred size:

Specifies the preferred number of context instances that the context pool maintains. Both in-use and idle
context instances contribute to this number.

Information Value
Data type: Integer
Default: 3
Range: 0 to 100

Maximum size:

Specifies the maximum number of context instances that can be maintained concurrently by the context
pool. Both in-use and idle context instances contribute to this number.

When the pool size reaches the maximum size, no new context instances can be created for a new
request. The new request is blocked until a context instance is released or removed. The request
periodically checks for context instances that are available in the pool. A request for a pooled context
instance uses an existing pooled and idle context instance or a newly created pooled context instance.

A maximum pool size of 0 indicates that the context pool can maintain an infinite number of context
instances.

Information Value
Data type: Integer
Default: 0

Context pool times out:

Specifies the number of seconds for the context pool to time out and remove idle context instances.

A timeout value of 0 indicates that the context pool does not time out context instances.

Information Value
Data type: Integer
Default: 0

Cache the attributes:

Specifies whether to cache the attributes that are returned from the LDAP server.

Information Value
Default: Enabled
Range: Enabled or Disabled

Cache size:

Specifies the maximum size of the cache.

Chapter 19. Administering application security 1409



Information Value
Data type: Integer
Default: 4000
Range: Equal to or greater than 100

Cache times out:

Specifies the maximum number of seconds that the cached search results can stay in the cache.

A timeout value of 0 indicates that the cached search results stay in the cache until update operations are
made.

Information Value
Data type: Integer
Units: Seconds
Default: 1200
Range: Equal to or greater than 0

Distribution policy:

Specifies the distribution policy for the cache in a clustered environment, which is one of the following:

Not shared
Sends out new entries, both ID and data, and updates to those entries.

Push Requests data from other servers in the cluster when that data is not locally present.

Push and pull
Sends out IDs for new entries and requests from other servers in the cluster entries for IDs that
were previously broadcast. The dynamic cache always sends out cache entry invalidations.

Cache the search results:

Specifies whether to cache the search results that are returned from the LDAP server.

Information Value
Default: Enabled
Range: Enabled or Disabled

Cache size:

Specifies the maximum size of the cache.

Information Value
Data type: Integer
Default: 2000
Range: Equal to or greater than 100

Cache times out:

Specifies the maximum number of seconds that the cached search results can stay in the cache.

A timeout value of 0 indicates that the cached search results stay in the cache until update operations are
made.

1410 Administering WebSphere applications



Information Value
Data type: Integer
Units: Seconds
Default: 600
Range: Equal to or greater than 0

Distribution policy:

Specifies the distribution policy for the cache in a clustered environment, which is one of the following:

Not shared
Sends out new entries, both ID and data, and updates to those entries.

Push Requests data from other servers in the cluster when that data is not locally present.

Push and pull
Sends out IDs for new entries and requests from other servers in the cluster entries for IDs that
were previously broadcast. The dynamic cache always sends out cache entry invalidations.

Using custom adapters for federated repositories:

When the custom adapters for federated repositories are part of the default realm, the users and groups
can be managed using wsadmin commands or the administrative console.

About this task

If custom adapters for federated repositories are part of the default realm, you use the administrative
console to manage the users and groups in the realm.

Note: The default parent for PersonAccount and Group entities needs to be the same as the base entry
of the custom adapter.

To view this administrative console page, complete the following steps:

v In the administrative console, click Security > Global security.

v Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

v Under Additional properties, click Supported entity types.

You must configure the supported entity types before you can manage this account with Users and Groups
in the administrative console. The Base entry for the default parent determines the repository location
where entities of the specified type are placed on write operations by user and group management.

Procedure

1. In the administrative console, click Users and Groups to access users and groups panel. To manage
users and groups for a specific domain in a multiple security domain environment, click Security >
Global security > Security Domains > domain_name. Under Security Attributes, expand User
Realm, and click Customize for this domain. Select the Realm type as Federated repositories.
Click Apply and Save to the master configuration. On Security domains panel that appears, click the
domain_name again to go to the domain configuration panel. The links to manage users and groups
for a specific domain are displayed only after you save the federated repositories configuration for the
domain.

Chapter 19. Administering application security 1411



2. Click Manage Groups to test the basic functions of the custom adapter with respect to custom
adapters for federated repositories.

3. Click Manage Users to test the basic functions of the custom adapter with respect to custom adapters
for federated repositories.

Note: You must restart the server or dmgr if the federated repository has changed before using the
Manage Users option. Otherwise, user or group changes made to the repository could be lost
after restart.

Results

After completing these steps, you will have ensured that the custom adapter is being used properly.

What to do next

Adjustments to the custom adapter can be made by using the wsadmin tool to make configuration
changes. See “Configuring custom adapters for federated repositories using wsadmin” on page 1415 for
more details.

Sample custom adapters for federated repositories examples:

Out of the box adapters for federated repositories provide File, LDAP, and Database adapters for your use.
These adapters implement the com.ibm.wsspi.wim.Repository software programming interface (SPI). A
virtual member manager custom adapter needs to implement the same SPI.

Developing custom adapters for federated repositories

Out of the box adapters for federated repositories provide File, LDAP and Database adapters for your use.
All these adapters implement the com.ibm.wsspi.wim.Repository SPI. See the
com.ibm.wsspi.wim.Repository SPI for more information. As you develop a virtual member manager
custom adapter, you need to implement the same SPI.

Custom adapters for federated repositories must not depend on any WebSphere Application Server
components, such as data sources and enterprise beans. These WebSphere Application Server
components require that security is initialized and enabled prior to startup. If your implementation of
custom adapters for federated repositories needs to use data sources to connect to a database, you need
to use Java database connectivity (JDBC) to make the connection during server startup. Then, at a later
time, switch to using the data sources when the data source is available.

There are examples of suggested behavior and requirements of custom adapters for federated repositories
that you can find in the sample code.

A sample custom adapter for federated repositories

A sample custom adapter implementation has been provided as an example. The custom adapter is based
on file repository. The sample source code and class files are bundled in vmmsampleadapter.jar. The
vmmsampleadapter.jar can be downloaded at this location: http://www.ibm.com/developerworks/websphere/
downloads/samples/vmmsampleadapter.html.

Contents of the vmmsampleadapter.jar file are as follows:

v Class files for the sample adapter:

– com/ibm/ws/wim/adapter/sample/AbstractAdapterImpl.class

– com/ibm/ws/wim/adapter/sample/SampleFileAdapter.class

– com/ibm/ws/wim/adapter/sample/XPathHelper.class

v Source code for the sample adapter:

1412 Administering WebSphere applications

http://www.ibm.com/developerworks/websphere/downloads/samples/vmmsampleadapter.html
http://www.ibm.com/developerworks/websphere/downloads/samples/vmmsampleadapter.html


– src/com/ibm/ws/wim/adapter/sample/AbstractAdapterImpl.java

– src/com/ibm/ws/wim/adapter/sample/SampleFileAdapter.java

– src/com/ibm/ws/wim/adapter/sample/XPathHelper.java

Note: The sample files should not be used in the production environment. You should make a copy of
these files, rename them, and update them based on your specific adapter implementation. Refer to
the Javadoc in the source code for more information.

com/ibm/ws/wim/sample/adapter/AbstractAdapterImpl.java
Provides an abstract implementation class which handles most of the repository independent
internal operations for the adapter and defines some simple abstract methods that should be
implemented by the custom adapter. For most cases, you may not need to change this file.

com/ibm/ws/wim/sample/adapter/SampleFileAdapter.java
Extends from the AbstractAdapterImpl class and implements the abstracts method. This class
implements the abstract methods using file as the repository. Adapter providers can use this class
as a reference to implement these methods specific to their adapters.

com/ibm/ws/wim/sample/adapter/XPathHelper.java
Defines a helper class to parse the XPath search expression and build the search tree. This
helper class also contains the method to evaluate the search expression. If your repository
supports a search expression, then you need to convert XPath expression to an expression that
your repository can process and let your repository evaluate the expression. This helper class
evaluates the search expression based on the use of dataobjects. You can overwrite the
evaluate() method to perform the evaluation using other objects, such as java.util.Map.

Some utility classes have been provided to help adapter providers. Most of these utility methods are used
in the sample adapter. Refer to the Javadoc information for more details.

Establishing custom adapters for federated repositories:

Out of the box adapters for federated repositories provide File, LDAP, and Database adapter for your use.
These adapters implement the com.ibm.wsspi.wim.Repository software programming interface (SPI).
Custom adapters for federated repositories need to implement the same SPI.

Before you begin

Refer to the Repository SPI implementation information in the related references for information about the
custom adapters for federated repositories SPI.

Refer to the sample custom adapter code that is available in the vmmsampleadapter.jar file. The JAR file
contains the sample customer adapter code in the src/ directory. The vmmsampleadapter.jar can be
downloaded at this location: http://www.ibm.com/developerworks/websphere/library/samples/
vmmsampleadapter.html

Note:

v The sample that is provided is intended to familiarize you with the features of custom adapters
for federated repositories and the handling of various types of dataobjects. Do not use this
sample in an actual production environment.

v Copy the AbstractAdapterImpl class and rename it before making changes. Make sure that the
new name is appropriate for your adapter.

Custom adapters for federated repositories must not depend on any WebSphere Application Server
components, such as data sources and enterprise beans. These WebSphere Application Server
components require that security is initialized and enabled prior to startup. If your implementation of the
virtual member manager custom adapter needs to use data sources to connect to a database, you need to
use Java database connectivity (JDBC) to make the connection during server startup. Then, at a later

Chapter 19. Administering application security 1413

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r5/index.jsp?topic=/com.ibm.websphere.javadoc.vmm.doc/vmm/com/ibm/wsspi/wim/package-summary.html
http://www.ibm.com/developerworks/websphere/library/samples/vmmsampleadapter.html
http://www.ibm.com/developerworks/websphere/library/samples/vmmsampleadapter.html


time, switch to using the data sources when the data source is available.

Procedure

1. Build your implementation.

Note: EMF JAR files contain version number in their names, such as v200607270021. Make sure to
change the version number to reflect your installation.

To compile your code, you need the following JAR files in the classpath:

v app_server_root/plugins/com.ibm.ws.runtime_6.1.0.jar

v app_server_root/plugins/org.eclipse.emf.commonj.sdo_2.1.0.v200607270021.jar

v app_server_root/plugins/org.eclipse.emf.ecore_2.2.1.v200607270021.jar

v app_server_root/plugins/org.eclipse.emf.common_2.2.1.v200607270021.jar

v app_server_root/plugins/org.eclipse.emf.ecore.xmi_2.2.0.v200607270021.jar

v app_server_root/plugins/org.eclipse.emf.ecore.sdo_2.2.0.v200607270021.jar

Here is an example:
"${java.home}/bin/javac -classpath
app_server_root/plugins/com.ibm.ws.runtime_6.1.0.jar;app_server_root/plugins/org.eclipse.emf.commonj.sdo_2.1.0.
v200607270021.jar;app_server_root/plugins/org.eclipse.emf.ecore_2.2.1.v200607270021.jar;
app_server_root/plugins/org.eclipse.emf.
common_2.2.1.v200607270021.jar;app_server_root/plugins/org.eclipse.emf.ecore.xmi_2.2.0.v200607270021.jar;
app_server_root/plugins/org.eclipse.emf.
ecore.sdo_2.2.0.v200607270021.jar your_implementation_file.java"

2. Copy the generated class files or the packaged JAR file to the product classpath. The preferred
location is the app_server_root/lib/ext directory. This should be copied to the classpaths of all the
product processes (cell and all NodeAgents).

3. Configure your custom adapter by following the steps in “Configuring custom adapters for federated
repositories using wsadmin” on page 1415.

4. Test your custom adapter by following the steps in “Using custom adapters for federated repositories”
on page 1411

What to do next

“Configuring custom adapters for federated repositories using wsadmin” on page 1415 provides details
about configuring your custom adapter with the wsadmin tool.

Adding a custom repository to a federated repositories configuration:

Follow this task to add a custom repository under federated repositories.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure. To configure for a specific domain in a multiple security domain
environment, click Security domains > domain_name. Under Security Attributes, expand User
Realm, and click Customize for this domain. Select the Realm type as Federated repositories and
then click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for
example, adminUser.

5. Leave the Ignore case for authorization option selected.

6. Leave the Allow operations if some of the repositories are down option cleared.

1414 Administering WebSphere applications



7. Optional: In a multiple security domain environment, select Use global schema for model option to
indicate that the global schema option is enabled for the data model. Global schema refers to the
schema of the admin domain.

8. Click Add base entry to realm.

9. Enter a distinguished name for the realm base entry in the Distinguished name of a base entry
that uniquely identifies this set of entries in the realm field.

10. Enter the distinguished name of the base entry within the repository in the Distinguished name of a
base entry in this repository field.

11. Click Add > Custom repository.

12. Specify the required details for the new custom repository:

Repository identifier
Specifies a unique identifier for the repository. This identifier uniquely identifies the repository
within the cell.

Repository adapter class name
Specifies the implementation class name for the custom repository adapter, for example,
com.ibm.ws.wim.adapter.sample.SampleAdapter.

Login properties
Specifies the property names to use to log into the application server.

Custom properties
Specifies arbitrary name and value pairs of data. The name is a property key and the value is
a string value that can be used to set internal system configuration properties.

13. Click OK and Save to the master configuration.

Results

After completing these steps, your new configuration under Federated repositories includes a custom
repository.

Configuring custom adapters for federated repositories using wsadmin:

You can use the Jython or Jacl scripting language with the wsadmin tool to define custom adapters in the
federated repositories configuration file.

Before you begin

Shut down the WebSphere Application Server and the wsadmin command window.

About this task

Use the following steps to add a custom adapter to any federated repositories configuration file and to any
realm defined within the configuration file.

The following examples use the SampleFileRepository repository as the identifier for the custom
repository.

Note: For additional information about the commands to use for this topic, see the IdMgrRepositoryConfig
command group for the AdminTask object topic.

Procedure

1. Enter the following command to start the wsadmin tool:
wsadmin –conntype none

Chapter 19. Administering application security 1415



2. Use the createIdMgrCustomRepository command to add a custom repository and specify the adapter
class.

The following example configures a custom repository to use the
com.ibm.ws.wim.adapter.sample.SampleFileAdapter class and sets the SampleFileRepository
repository as the identifier.

Using Jython:
AdminTask.createIdMgrCustomRepository(’-id SampleFileRepository
-adapterClassName com.ibm.ws.wim.adapter.sample.SampleFileAdapter’)

Using Jacl:
createIdMgrCustomRepository {-id SampleFileRepository
-adapterClassName com.ibm.ws.wim.adapter.sample.SampleFileAdapter}

3. Copy the vmmsampleadapter.jar file that is provided to app_server_root/lib.

4. Disable paging in the common repository configuration. Set the supportPaging parameter for the
updateIdMgrRepository command to false to disable paging.

Note: You must perform this step because the sample adapter does not support paging.

The following examples use the SampleFileRepository repository as the identifier for the custom
repository.

Using Jython:
AdminTask.updateIdMgrRepository(’-id SampleFileRepository -supportPaging false’)

Using Jacl:
$AdminTask updateIdMgrRepository {-id SampleFileRepository -supportPaging
false}

Note: A warning will appear until the configuration of the sample repository is complete.

5. Add the necessary custom properties for the adapter. Use the setIdMgrCustomProperty command
repeatedly to add multiple properties. Use this command once per property to add multiple properties
to your configuration. You must use both the name and value parameters to add the custom property
for the specified repository. For example, to add a custom property of fileName, enter the following
command.

Using Jython:
AdminTask.setIdMgrCustomProperty(’-id SampleFileRepository -name fileName
-value "c:\sampleFileRegistry.xml"’)

Using Jacl:
$AdminTask setIdMgrCustomProperty {-id SampleFileRepository -name fileName
-value "c:\sampleFileRegistry.xml"}

6. Add a base entry to the adapter configuration. Use the addIdMgrRepositoryBaseEntry command to
specify the name of the base entry for the specified repository. For example:

Using Jython:
AdminTask.addIdMgrRepositoryBaseEntry(’-id SampleFileRepository -name
o=sampleFileRepository’)

Using Jacl:
$AdminTask addIdMgrRepositoryBaseEntry {-id SampleFileRepository -name
o=sampleFileRepository}

7. Use the addIdMgrRealmBaseEntry command to add the base entry to the realm, which will link the
realm with the repository:

Using Jython:
AdminTask.addIdMgrRealmBaseEntry(’-name defaultWIMFileBasedRealm -baseEntry o=sampleFileRepository’)

Using Jacl:
$AdminTask addIdMgrRealmBaseEntry {-name defaultWIMFileBasedRealm -baseEntry o=sampleFileRepository}

8. Save your configuration changes. Enter the following commands to save the new configuration and
close the wsadmin tool.

Using Jython:

1416 Administering WebSphere applications



AdminConfig.save()
exit

Using Jacl:
$AdminConfig save
exit

The following example displays the complete text of the newly-revised wimconfig.xml file:

Note: The federated repositories configuration file, wimconfig.xml, is located in the
app_server_root/profiles/profile_name/config/cells/cell_name/wim/config directory.

<!--
Begin Copyright

Licensed Materials - Property of IBM

virtual member manager

(C) Copyright IBM Corp. 2005 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

End Copyright
-->
<sdo:datagraph xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:config="http://www.ibm.com/websphere/wim
/config" xmlns:sdo="commonj.sdo">
<config:configurationProvider maxPagingResults="500" maxSearchResults="4500"

maxTotalPagingResults="1000"
pagedCacheTimeOut="900" pagingEntityObject="true" searchTimeOut="600000">

<config:dynamicModel xsdFileName="wimdatagraph.xsd"/>
<config:supportedEntityTypes defaultParent="o=defaultWIMFileBasedRealm" name="Group">
<config:rdnProperties>cn</config:rdnProperties>

</config:supportedEntityTypes>
<config:supportedEntityTypes defaultParent="o=defaultWIMFileBasedRealm" name="OrgContainer">
<config:rdnProperties>o</config:rdnProperties>
<config:rdnProperties>ou</config:rdnProperties>
<config:rdnProperties>dc</config:rdnProperties>
<config:rdnProperties>cn</config:rdnProperties>

</config:supportedEntityTypes>
<config:supportedEntityTypes defaultParent="o=defaultWIMFileBasedRealm" name="PersonAccount">
<config:rdnProperties>uid</config:rdnProperties>

</config:supportedEntityTypes>
<config:repositories xsi:type="config:FileRepositoryType" adapterClassName="com.ibm.
ws.wim.adapter.file.was.FileAdapter"

id="InternalFileRepository" supportPaging="false" supportSorting="false" messageDigestAlgorithm="SHA-1">
<config:baseEntries name="o=defaultWIMFileBasedRealm"/>

</config:repositories>
<config:repositories adapterClassName="com.ibm.ws.wim.adapter.sample.SampleFileAdapter"
id="SampleFileRepository">
<config:CustomProperties name="fileName" value="c:\sampleFileRegistry.xml"/>
<config:baseEntries name="o=sampleFileRepository"/>

</config:repositories>
<config:realmConfiguration defaultRealm="defaultWIMFileBasedRealm">
<config:realms delimiter="@" name="defaultWIMFileBasedRealm" securityUse="active">
<config:participatingBaseEntries name="o=defaultWIMFileBasedRealm"/>
<config:participatingBaseEntries name="o=sampleFileRepository"/>
<config:uniqueUserIdMapping propertyForInput="uniqueName" propertyForOutput="uniqueName"/>
<config:userSecurityNameMapping propertyForInput="principalName" propertyForOutput="principalName"/>
<config:userDisplayNameMapping propertyForInput="principalName" propertyForOutput="principalName"/>
<config:uniqueGroupIdMapping propertyForInput="uniqueName" propertyForOutput="uniqueName"/>
<config:groupSecurityNameMapping propertyForInput="cn" propertyForOutput="cn"/>
<config:groupDisplayNameMapping propertyForInput="cn" propertyForOutput="cn"/>

</config:realms>
</config:realmConfiguration>

</config:configurationProvider></sdo:datagraph>

9. Restart the application server.

Configuring the user registry bridge for federated repositories using wsadmin scripting:

The user registry bridge is configured like other custom adapters. You can use the Jython or Jacl scripting
language with the wsadmin scripting tool to define the user registry bridge in the federated repositories
configuration.

Before you begin

Shut down WebSphere Application Server and the wsadmin command window.

Chapter 19. Administering application security 1417



Important: If you are migrating from the stand-alone user registry on the local operating system to
federated repositories on the local operating system, you must first configure the current user
registry under federated repositories. For more information, see Managing the realm in a
federated repository configuration.

Authorization failures might occur if users or groups are mapped to roles before migration and you use
those users or groups after migrating to user registry bridge. This situation occurs because the mapping
contains registry-specific information. After migration, re-map the users or groups to avoid authorization
failures.

About this task

For additional information about the commands to use for this topic, see IdMgrRepositoryConfig command
group for the AdminTask object.

Use the following steps to add a user registry bridge to any federated repositories configuration and to any
realm that is defined within the configuration.

Procedure

1. Start the wsadmin scripting tool. You can use the following command to start the wsadmin scripting
tool:

wsadmin –conntype none

2. Use the createIdMgrCustomRepository command to add a new repository configuration for the user
registry bridge.

The following example configures a custom repository to use the
com.ibm.ws.wim.adapter.urbridge.URBridge class and sets urbcustom as the identifier:

Using Jython:
AdminTask.createIdMgrCustomRepository(’-id urbcustom
-adapterClassName com.ibm.ws.wim.adapter.urbridge.URBridge’)

Using Jacl:
$AdminTask createIdMgrCustomRepository {-id urbcustom
-adapterClassName com.ibm.ws.wim.adapter.urbridge.URBridge}

gotcha: The user registry bridge handles requests to one user registry only. Therefore, if you define
multiple repositories, each user registry implementation must have a separate instance of the
user registry bridge and you must define each implementation as a separate repository with a
unique repository ID..

3. Optional: Add the necessary registry-specific properties as custom properties. Use the
setIdMgrCustomProperty command repeatedly to add multiple properties. Use this command once per
property to add multiple properties to your configuration. You must use both the name and value
parameters to add the custom property for the specified repository. For example, to add a custom
property of uniqueUserIdProperty, enter the following command:

Using Jython:
AdminTask.setIdMgrCustomProperty(’-id urbcustom
-name uniqueUserIdProperty -value "uniqueId"’)

Using Jacl:
$AdminTask setIdMgrCustomProperty {-id urbcustom
-name uniqueUserIdProperty -value "uniqueId"}

To configure the user registry bridge to use a custom user registry, you must add the registryImplClass
property and specify the exact registry implementation class. For example, specify
com.xyz.abc.MyCustomRegistry as the value for the property.

To configure the user registry bridge to use the local operating system user registry, do not specify the
registryImplClass property. The user registry bridge identifies the underlying user registry
implementation that is provided by WebSphere Application Server for the local operating system.

1418 Administering WebSphere applications



You can set other optional properties as custom properties to define the mapping between federated
repository properties and user registry properties, such as uniqueUserIdProperty,
userSecurityNameProperty, userDisplayNameProperty, uniqueGroupIdProperty,
groupSecurityNameProperty, and groupDisplayNameProperty. For more information about the available
custom properties and their default values, see Security custom properties. To override any of these
properties at the user registry level, configure the property as a custom property.

gotcha: The mapping between a federated repository property and user registry property is
one-to-one. You can map only one federated repository property to a user registry property.

4. Add a base entry to the user registry bridge configuration. Use the addIdMgrRepositoryBaseEntry
command to specify the name of the base entry for the specified repository. For example:

Using Jython:

AdminTask.addIdMgrRepositoryBaseEntry(’-id urbcustom
-name o=custom’)

Using Jacl:

$AdminTask addIdMgrRepositoryBaseEntry {-id urbcustom
-name o=custom}

5. Use the addIdMgrRealmBaseEntry command to add the base entry to the realm, which will link the
realm with the repository.

Note: The default realm name is defaultWIMFileBasedRealm. If this realm name was previously
renamed, use the new realm name instead of defaultWIMFileBasedRealm. For example, to
ensure consistency, you can set the realm name of the federated repository configuration to be
the same name as the local operating system user registry as specified in the security.xml file.
For information about how to set the realm name, see Realm configuration settings.

Use the following command:

Using Jython:

AdminTask.addIdMgrRealmBaseEntry(’-name defaultWIMFileBasedRealm
-baseEntry o=custom’)

Using Jacl:

$AdminTask addIdMgrRealmBaseEntry {-name defaultWIMFileBasedRealm
-baseEntry o=custom}

6. Save your configuration changes. Enter the following commands to save the new configuration and
close the wsadmin scripting tool:

Using Jython:
AdminConfig.save()
exit

Using Jacl:
$AdminConfig save
exit

7. Restart the application server.

Results

The following code is an example of a basic configuration in the wimconfig.xml file for a user
registry bridge accessing a custom user registry:

Chapter 19. Administering application security 1419



<config:repositories adapterClassName="com.ibm.ws.wim.adapter.urbridge.URBridge" id="urbcustom">
<config:baseEntries name="o=custom"/>
<config:CustomProperties name="registryImplClass" value="com.ibm.registry.impl.FileRegistrySample"/>
<config:CustomProperties name="usersFile" value="${USER_PROPS}"/>
<config:CustomProperties name="groupsFile" value="${GROUP_PROPS}"/>

</config:repositories>

In the previous example, the ${USER_PROPS} and ${GROUP_PROPS} variables are used to
define the values of the custom properties.

You can use variables to define custom properties. However, these variables are resolved only
in the WebSphere Application Server connected mode. For information about how to define environment
variables, see Creating, editing, and deleting WebSphere variables.

User registry bridge for federated repositories:

The user registry bridge is a read-only adapter that provides an interface between federated repositories
and an underlying user registry implementation, which can be either a local operating system user registry
or a custom user registry implementation.

The user registry bridge enables IBM WebSphere Application Server applications to use your user registry
implementation. It can work with any user registry that implements the
com.ibm.websphere.security.UserRegistry interface, without knowing the details of its implementation. This
capability makes the bridge versatile and allows it to connect to, and use, various registries.

The user registry bridge allows access to the same repository information without any platform-specific
implementation. Thus, it eliminates the need to have a specialized user registry bridge for each operating
system.

You can federate and configure the local operating system user registry, a custom user registry, or both, as
a federated repository. The user registry bridge handles user registry-related requests from federated
repositories, makes appropriate calls to the underlying user registry implementation, and returns data that
is formatted according to the federated repositories specifications.

Therefore, to use the user registry bridge you must configure your user registry under federated
repositories. This configuration can map the properties in the underlying user registry to the properties for
the federated repository. You can also configure any user registry specific information, if required. For
information about how to configure the user registry bridge, see Configuring the user registry bridge for
federated repositories using wsadmin scripting.

The following figure illustrates the difference between configuring a federated repository user registry with
and without the user registry bridge.

1420 Administering WebSphere applications



As shown in the previous figure, using the same adapter, which is the user registry bridge, you can
configure multiple user registries under federated repositories. For example, you can configure a local
operating system user registry and one or more custom user registries.

Limitations

The following limitations exist:

v You can use the user registry bridge only for read-only operations, such as authentication and search
functions. You cannot perform write operations such as create, delete, or modify users and groups. An
attempt to perform write operations results in an exception, which notifies the user that the operation is
not supported by the bridge. This limitation exists because the user registry bridge does not have direct

Figure 7. Configuring a federated repository user registry without the user registry bridge

Figure 8. Configuring a federated repository user registry with the user registry bridge

Chapter 19. Administering application security 1421



access to the repository. Instead, the bridge uses an underlying existing user registry implementation
that is read-only; hence, it might not be able to fulfill requests for certain properties that exist in the
federated repositories.

v The user registry bridge does not support a stand-alone Lightweight Directory Access Protocol (LDAP)
user registry. LDAP repositories are supported as a standard federated repositories adapter with read
and write capabilities.

v Some of the properties that are placed in control data objects are not relevant to the user registry bridge
as they are not applicable in the underlying repository.

– The properties ignored for GroupMembershipControl and GroupMemberControl data objects are
searchBases, timeLimit, treeView, expression, and level.

– The properties ignored for SearchControl data objects are searchBases and timeLimit. The property
part of the expression, such as uid and mail, is ignored as you can search WebSphere Application
Server user registry entities with security names only. The expression is parsed to get the entity type
and the pattern with which the search must be performed.

Supported user registries

WebSphere Application Server applications can access the user registry properties of the following user
registry implementations as a read-only repository:

v Local operating system user registry

v Custom user registry

Configuring Lightweight Directory Access Protocol entity types in a federated repository
configuration:

Follow this task to configure Lightweight Directory Access Protocol (LDAP) entity types in a federated
repository configuration.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.
During LDAP configuration, based on the selected LDAP server type, some defaults and mappings are
set in the configuration. When the selected LDAP server type is custom, no default is set, and you
must set all of the mappings manually. To avoid setting all of the mappings manually, choose a
non-custom LDAP server type (for example, IBM Directory Server or SunOne) which matches closely
to your LDAP server.

Note:

v If you click Add to specify a new external repository, you must first complete the required
fields and click Apply before you can proceed to the next step.

v If you decide to use a custom LDAP server type, you must use the command-line interface to
create the entity types. Read about IdMgrRepositoryConfig command group for the
AdminTask object for more information.

After you create the entity types, you can use the administrative console to modify these
entities. You cannot use the administrative console to create entity types for a custom LDAP
server type.

5. Under Additional properties, click LDAP entity types.

1422 Administering WebSphere applications



6. View the entity types that are supported by the member repositories, or select an entity type to view or
change its configuration properties.

7. Supply the object classes that are mapped to this entity type in the Object classes field. LDAP entries
that contain one or more of the object classes belong to this entity type.

8. Supply the search bases that are used to search this entity type. The search bases specified must be
subtrees of the base entry in the repository. For example, you can specify the following search bases,
where o=ibm,c=us is the base entry in the repository:

o=ibm,c=us or cn=users,o=ibm,c=us or ou=austin,o=ibm,c=us

In the preceding example, you cannot specify search bases c=us or o=ibm,c=uk.

Delimit multiple search bases with a semicolon (;). For example:

ou=austin,o=ibm,c=us;ou=raleigh,o=ibm,c=us

9. Supply the LDAP search filter that is used to search this entity type.

For example, use (objectclass=ePerson) to search for users or
(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames) to search for groups in an external
LDAP repository.

If a search filter is not specified, the object classes and the relative distinguished name (RDN)
properties are used to generate the search filter. For information on RDN properties, see “Configuring
supported entity types in a federated repository configuration” on page 1398.

Results

After completing these steps, LDAP entity types are configured for your LDAP repository.

What to do next
1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Lightweight Directory Access Protocol entity types collection:

Use this page to list Lightweight Directory Access Protocol (LDAP) entity types that are supported by the
member repositories or to select an LDAP entity type to view or change its configuration properties.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click LDAP entity types.

Chapter 19. Administering application security 1423



When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Entity type:

Specifies the entity type name.

Object classes:

Specifies the object classes that are mapped to this entity type. LDAP entries that contain one or more of
the object classes belong to this entity type.

You cannot map multiple entity types to the same LDAP object class.

Search bases:

Specifies the search bases that are used to search this entity type.

The search bases specified must be subtrees of the base entry in the repository. For example, you can
specify the following search bases, where o=ibm,c=us is the base entry in the repository:

o=ibm,c=us or cn=users,o=ibm,c=us or ou=austin,o=ibm,c=us

In the preceding example, you cannot specify search bases c=us or o=ibm,c=uk.

Delimit multiple search bases with a semicolon (;). For example:

ou=austin,o=ibm,c=us;ou=raleigh,o=ibm,c=us

Search filter:

Specifies the LDAP search filter that is used to search this entity type.

For example, use (objectclass=ePerson) to search for users or (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames))) to search for groups in an
external LDAP repository.

If a search filter is not specified, the object classes and the relative distinguished name (RDN) properties
are used to generate the search filter.

Lightweight Directory Access Protocol attributes collection:

Use this page to add, modify, or delete the configuration of supported, unsupported, and external LDAP
attributes in a federated repositories configuration.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add > LDAP repository to specify a new external repository or select an external repository that
is preconfigured.

1424 Administering WebSphere applications



5. Under Additional properties, click LDAP attributes.

6. To add a new LDAP attribute configuration, click Add and select Supported , Unsupported, or
External.

7. To modify an existing configuration, click the Name/Property Name link and modify the details in the
panel that appears.

8. To delete an existing configuration, select the checkbox beside the Name/Property Name and click
Delete.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Supported:

Specifies the configuration for supported LDAP attributes.

Name Specifies the name of the LDAP attribute used in the repository LDAP adapter.

Property name
Specifies the name of the corresponding federated repository property.

Syntax
Specifies the syntax of the LDAP attribute. The default value is string. For example, the syntax of
the unicodePwd LDAP attribute is octetString.

Entity types
Specifies the entity type that applies the attribute mapping.

Default value
Specifies the default value of the LDAP attribute.

Default attribute
Use this parameter to specify the default attribute of the LDAP attribute.

Unsupported:

Specifies the configuration for a federated repository property that the LDAP repository does not support.

Property name
Specifies the name of the federated repository property.

Entity types
Specifies one or more entity types. Use the semicolon (;) as the delimiter to specify multiple entity
types.

External:

Specifies the configuration for an LDAP attribute that is used as an external ID in the specified LDAP
repository.

Name Specifies the name of the external ID attribute of the LDAP repository.

Syntax
Specifies the syntax of the LDAP attribute. The default value is string. For example, the syntax of
the unicodePwd LDAP attribute is octetString.

Entity types
Specifies one or more entity types. Use the semicolon (;) as the delimiter to specify multiple entity
types.

Generate value
Specifies whether or not the federated repository should generate the value of the LDAP attribute.

Chapter 19. Administering application security 1425



Lightweight Directory Access Protocol entity types settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) entity types that are supported
by the member repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click LDAP entity types.

6. Select an entity type to view or change its configuration properties.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Entity type:

Specifies the entity type.

Object classes:

Specifies the object classes that are mapped to this entity type. LDAP entries that contain one or more of
the object classes belong to this entity type.

You cannot map multiple entity types to the same LDAP object class.

Search bases:

Specifies the search bases that are used to search this entity type.

The search bases specified must be subtrees of the base entry in the repository. For example, you can
specify the following search bases, where o=ibm,c=us is the base entry in the repository:

o=ibm,c=us or cn=users,o=ibm,c=us or ou=austin,o=ibm,c=us

In the preceding example, you cannot specify search bases c=us or o=ibm,c=uk.

Delimit multiple search bases with a semicolon (;). For example:

ou=austin,o=ibm,c=us;ou=raleigh,o=ibm,c=us

Search filter:

Specifies the LDAP search filter that is used to search this entity type.

For example, use (objectclass=ePerson) to search for users or (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames))) to search for groups in an
external LDAP repository.

1426 Administering WebSphere applications



If a search filter is not specified, the object classes and the relative distinguished name (RDN) properties
are used to generate the search filter.

Configuring Lightweight Directory Access Protocol attributes in a federated repository
configuration:

Follow this task to add, modify, or delete the configuration of supported, unsupported, and external LDAP
attributes in a federated repositories configuration.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories, and then in the panel that appears, click the
repository_id of the LDAP repository.

4. Under Additional properties, click the LDAP attributes link.

5. To add a new LDAP attribute configuration, click Add and select one of the following options:

v Select Supported to add a supported LDAP attribute configuration. On the panel that appears, enter
the following details:

Name Specifies the name of the LDAP attribute used in the repository LDAP adapter.

Property name
Specifies the name of the corresponding federated repository property.

Syntax
Specifies the syntax of the LDAP attribute. The default value is string. For example, the
syntax of the unicodePwd LDAP attribute is octetString.

Entity types
Specifies the entity type that applies the attribute mapping.

Default value
Specifies the default value of the LDAP attribute.

Default attribute
Use this parameter to specify the default attribute of the LDAP attribute.

v Select Unsupported to add a configuration for a federated repository property that the LDAP
repository does not support. On the panel that appears, enter the following details:

Property name
Specifies the name of the federated repository property.

Entity types
Specifies one or more entity types. Use the semicolon (;) as the delimiter to specify multiple
entity types.

v Select External to add a configuration for an LDAP attribute that is used as an external ID in the
specified LDAP repository. On the panel that appears, enter the following details:

Name Specifies the name of the external ID attribute of the LDAP repository.

Syntax
Specifies the syntax of the LDAP attribute. The default value is string. For example, the
syntax of the unicodePwd LDAP attribute is octetString.

Chapter 19. Administering application security 1427



Entity types
Specifies one or more entity types. Use the semicolon (;) as the delimiter to specify multiple
entity types.

Generate value
Specifies whether or not the federated repository should generate the value of the LDAP
attribute.

6. To modify an existing configuration, click the Name/Property Name link and modify the details in the
panel that appears.

7. To delete an existing configuration, select the checkbox beside the Name/Property Name and click
Delete.

8. Click OK and Save to the master configuration.

9. Restart the application server.

Results

After completing these steps, LDAP attributes are configured in the federated repositories configuration.

Lightweight Directory Access Protocol entity types collection:

Use this page to list Lightweight Directory Access Protocol (LDAP) entity types that are supported by the
member repositories or to select an LDAP entity type to view or change its configuration properties.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click LDAP entity types.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Entity type:

Specifies the entity type name.

Object classes:

Specifies the object classes that are mapped to this entity type. LDAP entries that contain one or more of
the object classes belong to this entity type.

You cannot map multiple entity types to the same LDAP object class.

Search bases:

Specifies the search bases that are used to search this entity type.

The search bases specified must be subtrees of the base entry in the repository. For example, you can
specify the following search bases, where o=ibm,c=us is the base entry in the repository:

1428 Administering WebSphere applications



o=ibm,c=us or cn=users,o=ibm,c=us or ou=austin,o=ibm,c=us

In the preceding example, you cannot specify search bases c=us or o=ibm,c=uk.

Delimit multiple search bases with a semicolon (;). For example:

ou=austin,o=ibm,c=us;ou=raleigh,o=ibm,c=us

Search filter:

Specifies the LDAP search filter that is used to search this entity type.

For example, use (objectclass=ePerson) to search for users or (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames))) to search for groups in an
external LDAP repository.

If a search filter is not specified, the object classes and the relative distinguished name (RDN) properties
are used to generate the search filter.

Lightweight Directory Access Protocol entity types settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) entity types that are supported
by the member repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click LDAP entity types.

6. Select an entity type to view or change its configuration properties.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Entity type:

Specifies the entity type.

Object classes:

Specifies the object classes that are mapped to this entity type. LDAP entries that contain one or more of
the object classes belong to this entity type.

You cannot map multiple entity types to the same LDAP object class.

Search bases:

Specifies the search bases that are used to search this entity type.

Chapter 19. Administering application security 1429



The search bases specified must be subtrees of the base entry in the repository. For example, you can
specify the following search bases, where o=ibm,c=us is the base entry in the repository:

o=ibm,c=us or cn=users,o=ibm,c=us or ou=austin,o=ibm,c=us

In the preceding example, you cannot specify search bases c=us or o=ibm,c=uk.

Delimit multiple search bases with a semicolon (;). For example:

ou=austin,o=ibm,c=us;ou=raleigh,o=ibm,c=us

Search filter:

Specifies the LDAP search filter that is used to search this entity type.

For example, use (objectclass=ePerson) to search for users or (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames))) to search for groups in an
external LDAP repository.

If a search filter is not specified, the object classes and the relative distinguished name (RDN) properties
are used to generate the search filter.

Lightweight Directory Access Protocol attributes collection:

Use this page to add, modify, or delete the configuration of supported, unsupported, and external LDAP
attributes in a federated repositories configuration.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add > LDAP repository to specify a new external repository or select an external repository that
is preconfigured.

5. Under Additional properties, click LDAP attributes.

6. To add a new LDAP attribute configuration, click Add and select Supported , Unsupported, or
External.

7. To modify an existing configuration, click the Name/Property Name link and modify the details in the
panel that appears.

8. To delete an existing configuration, select the checkbox beside the Name/Property Name and click
Delete.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Supported:

Specifies the configuration for supported LDAP attributes.

Name Specifies the name of the LDAP attribute used in the repository LDAP adapter.

1430 Administering WebSphere applications



Property name
Specifies the name of the corresponding federated repository property.

Syntax
Specifies the syntax of the LDAP attribute. The default value is string. For example, the syntax of
the unicodePwd LDAP attribute is octetString.

Entity types
Specifies the entity type that applies the attribute mapping.

Default value
Specifies the default value of the LDAP attribute.

Default attribute
Use this parameter to specify the default attribute of the LDAP attribute.

Unsupported:

Specifies the configuration for a federated repository property that the LDAP repository does not support.

Property name
Specifies the name of the federated repository property.

Entity types
Specifies one or more entity types. Use the semicolon (;) as the delimiter to specify multiple entity
types.

External:

Specifies the configuration for an LDAP attribute that is used as an external ID in the specified LDAP
repository.

Name Specifies the name of the external ID attribute of the LDAP repository.

Syntax
Specifies the syntax of the LDAP attribute. The default value is string. For example, the syntax of
the unicodePwd LDAP attribute is octetString.

Entity types
Specifies one or more entity types. Use the semicolon (;) as the delimiter to specify multiple entity
types.

Generate value
Specifies whether or not the federated repository should generate the value of the LDAP attribute.

Configuring group attribute definition settings in a federated repository configuration:

Follow this task to configure group definition settings in a federated repository configuration.

Before you begin

Because group attribute definition settings apply only to a Lightweight Directory Access Protocol (LDAP)
repository, you must first configure an LDAP repository. For more information, see “Managing repositories
in a federated repository configuration” on page 1403.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click

Chapter 19. Administering application security 1431



Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add > LDAP repository to specify a new external repository or select an external repository that
is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required fields
and click Apply before you can proceed to the next step.

5. Under Additional properties, click Group attribute definition.

6. Supply the name of the group membership attribute in the Name of group membership attribute field.
Only one membership attribute can be defined for each LDAP repository.

Every LDAP entry should have this attribute to indicate the groups to which this entry belongs. For
example, memberOf is the name of the membership attribute that is used in Active Directory. The
group membership attribute contains values that reference groups to which this entry belongs. If UserA
belongs to GroupA, then the value of the memberOf attribute of UserA should contain the distinguished
name of GroupA.

If your LDAP server does not support the group membership attribute, then do not specify this
attribute. The LDAP repository can look up groups by searching the group member attributes, though
the performance might be slower.

7. Select the scope of the group membership attribute. The default value is Direct.

Direct The membership attribute contains direct groups only. Direct groups are the groups that
contain the member. For example, if Group1 contains Group2 and Group2 contains User1,
then Group2 is a direct group of User1, but Group1 is not a direct group of User1.

Nested
The membership attribute contains both direct groups and nested groups.

All The membership attribute contains direct groups, nested groups, and dynamic members.

Results

After completing these steps, group attribute definition settings are configured for your LDAP repository.

What to do next
1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Group attribute definition settings:

Use this page to specify the name of the group membership attribute. Every Lightweight Directory Access
Protocol (LDAP) entry includes this attribute to indicate the group to which this entry belongs.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

1432 Administering WebSphere applications



2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add > LDAP repository to specify a new external repository or select an external repository that
is preconfigured.

5. Under Additional properties, click Group attribute definition.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Name of group membership attribute:

Specifies the name of the group membership attribute. Only one membership attribute can be defined for
each Lightweight Directory Access Protocol (LDAP) repository.

Every LDAP entry should have this attribute to indicate the groups to which this entry belongs. For
example, memberOf is the name of the membership attribute that is used in Active Directory. The group
membership attribute contains values that reference groups to which this entry belongs. If UserA belongs
to GroupA, then the value of the memberOf attribute of UserA should contain the distinguished name of
GroupA.

If your LDAP server does not support the group membership attribute, then do not specify this attribute.
The LDAP repository can look up groups by searching the group member attributes, though the
performance might be slower.

Scope of group membership attribute:

Specifies the scope of the group membership attribute.

Information Value
Default: Direct
Range:

Direct The membership attribute contains direct groups
only. Direct groups are the groups that contain
the member. For example, if Group1 contains
Group2 and Group2 contains User1, then Group2
is a direct group of User1, but Group1 is not a
direct group of User1.

Nested The membership attribute contains both direct
groups and nested groups.

All The membership attribute contains direct groups,
nested groups, and dynamic members.

Configuring member attributes in a federated repository configuration:

Follow this task to configure member attributes in a federated repository configuration.

Before you begin

Because member attributes apply only to a Lightweight Directory Access Protocol (LDAP) repository, you
must first configure an LDAP repository. For more information, see “Managing repositories in a federated
repository configuration” on page 1403.

Chapter 19. Administering application security 1433



Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure. To configure for a specific domain in a multiple security domain
environment, click Security domains > domain_name. Under Security Attributes, expand User
Realm, and click Customize for this domain. Select the Realm type as Federated repositories and
then click Configure.

3. Under Related items, click Manage repositories.

4. Click Add > LDAP repository to specify a new external repository or select an external repository
that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required
fields and click Apply before you can proceed to the next step.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Member attributes.

7. Click New to specify a new member attribute or Delete to remove a preconfigured member attribute.

8. Accept the default, or supply the name of the member attribute in the Name of member attribute field.
For example, member and uniqueMember are two commonly used names of member attributes.

The member attribute is used to store the values that reference members that the group contains. For
example, a group type with an object class groupOfNames has a member attribute named member;
group type with object class groupOfUniqueNames has a member attribute named uniqueMember. An
LDAP repository supports multiple group types if multiple member attributes and their associated
group object classes are specified.

9. Supply the object class of the group that uses this member attribute in the Object class field. If this
field is not defined, this member attribute applies to all group object classes.

10. Select the scope of the member attribute. The default value is Direct.

Direct The member attribute contains direct members only. Direct members are members that are
directly contained by the group. For example, if Group1 contains Group2 and Group2
contains User1, then User1 is a direct member of Group2, but User1 is not a direct member
of Group1.

Nested
The member attribute contains both direct members and nested members.

All The member attribute contains direct members, nested members, and dynamic members.

Results

After completing these steps, member attributes are configured for your LDAP repository.

What to do next
1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

1434 Administering WebSphere applications



Member attributes collection:

Use this page to list Lightweight Directory Access Protocol (LDAP) member attributes or to select a
member attribute to view or change its configuration properties.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add > LDAP repository to specify a new external repository or select an external repository that
is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Member attributes.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Name:

Specifies the name of the member attribute in LDAP. For example, member and uniqueMember are two
commonly used names of member attributes.

The member attribute is used to store the values that reference members that the group contains. For
example, a group type with an object class groupOfNames has a member attribute named member; group
type with object class groupOfUniqueNames has a member attribute named uniqueMember. An LDAP
repository supports multiple group types if multiple member attributes and their associated group object
classes are specified.

Scope:

Specifies the scope of the member attribute.

Information Value
Default: Direct
Range:

Direct The member attribute contains direct members
only. Direct members are members that are
directly contained by the group. For example, if
Group1 contains Group2 and Group2 contains
User1, then User1 is a direct member of Group2,
but User1 is not a direct member of Group1.

Nested The member attribute contains both direct
members and nested members.

All The member attribute contains direct members,
nested members, and dynamic members.

Object class:

Specifies the object class of the group that uses this member attribute. If this field is not defined, this
member attribute applies to all group object classes.

Chapter 19. Administering application security 1435



Member attributes settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) member attributes.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add > LDAP repository to specify a new external repository or select an external repository that
is pre-configured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Member attributes.

7. Click New to specify a new member attribute.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Name of member attribute:

Specifies the name of the member attribute in LDAP. For example, member and uniqueMember are two
commonly used names of member attributes.

The member attribute is used to store the values that reference members that the group contains. For
example, a group type with an object class groupOfNames has a member attribute named member; group
type with object class groupOfUniqueNames has a member attribute named uniqueMember. An LDAP
repository supports multiple group types if multiple member attributes and their associated group object
classes are specified.

Object class:

Specifies the object class of the group that uses this member attribute. If this field is not defined, this
member attribute applies to all group object classes.

Scope:

Specifies the scope of the member attribute.

Information Value
Default: Direct
Range:

Direct The member attribute contains direct members
only. Direct members are members that are
directly contained by the group. For example, if
Group1 contains Group2 and Group2 contains
User1, then User1 is a direct member of Group2,
but User1 is not a direct member of Group1.

Nested The member attribute contains both direct
members and nested members.

All The member attribute contains direct members,
nested members, and dynamic members.

1436 Administering WebSphere applications



Configuring dynamic member attributes in a federated repository configuration:

Follow this task to configure dynamic member attributes in a federated repository configuration.

Before you begin

Because dynamic member attributes apply only to a Lightweight Directory Access Protocol (LDAP)
repository, you must first configure an LDAP repository. For more information, see “Managing repositories
in a federated repository configuration” on page 1403.

About this task

A dynamic group defines its members differently than a static group. Instead of listing the members
individually, the dynamic group defines its members using an LDAP search. The filter for the search is
defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass
groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the
search using a simplified LDAP URL syntax:

ldap:///<base DN of search> ? ? <scope of search> ? <searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the
objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

If both member and dynamic member attributes are specified for the same group type, this group type is a
hybrid group with both static and dynamic members.

Procedure

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions
field and click Configure. To configure for a specific domain in a multiple security domain
environment, click Security domains > domain_name. Under Security Attributes, expand User
Realm, and click Customize for this domain. Select the Realm type as Federated repositories and
then click Configure.

3. Under Related items, click Manage repositories.

4. Click Add > LDAP repository to specify a new external repository or select an external repository
that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required
fields and click Apply before you can proceed to the next step.

5. Under Additional Properties, click LDAP entity types.

6. Click the link for Group entity type.

7. In the Object Classes field, add the entry for the object class, for example, groupOfUrls. Delimit
multiple entries with a semicolon (;).

8. Click OK.

9. Under Additional properties, click Group attribute definition.

10. Under Additional properties, click Dynamic member attributes.

11. Click New to specify a new dynamic member attribute or Delete to remove a preconfigured dynamic
member attribute.

12. Specify the name of the dynamic member attribute in the Name of dynamic member attribute field.
The name of the dynamic member attribute defines the filter for dynamic group members in LDAP, for
example, memberURL is the name of a commonly used dynamic member attribute.

Chapter 19. Administering application security 1437



13. Specify the object class of the group that contains the dynamic member attribute in the Dynamic
object class field, for example, groupOfURLs. If this property is not defined, the dynamic member
attribute applies to all group object classes.

14. Save your configuration changes in the administration console: Click System administration > Save
changes to master repository > Save.

15. This next step involves using a wsadmin command and cannot be done through the administrative
console. Start the wsadmin scripting tool and connect to a server, by using the following command:
wsadmin –username username –password password

16. Use the addIdMgrPropertyToEntityTypes command to add the dynamic member attribute specified in
step 12 to the federated repositories schema. The dynamic member attribute needs to be added to
the entity type Group in the federated repositories schema otherwise an error occurs while creating a
group in an LDAP repository configured under federated repositories using the create() API and
specifying the memberURL attribute and its value. The correctness of the value of the memberURL
attribute is not validated because LDAP does not validate this.

In the following example, the memberURL property is added to the entity type Group:
$AdminTask addIdMgrPropertyToEntityTypes {-name memberURL -dataType String -entityTypeNames Group -repositoryIds repository_ID}

17. Save your configuration changes.
$AdminConfig save

Results

After completing these steps, dynamic member attributes are configured for your LDAP repository.

What to do next

1. After configuring the federated repositories, click Security > Global security to return to the Global
security panel. Verify that Federated repositories is identified in the Current realm definition field. If
Federated repositories is not identified, select Federated repositories from the Available realm
definitions field and click Set as current. To verify the federated repositories configuration, click Apply
on the Global security panel. If Federated repositories is not identified in the Current realm definition
field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the
realm” on page 1194. As the final step, validate this setup by clicking Apply in the Global security
panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)
for changes in this panel to take effect. If the server comes up without any problems, the setup is
correct.

Dynamic member attributes collection:

Use this page to manage Lightweight Directory Access Protocol (LDAP) dynamic member attributes.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add > LDAP repository to specify a new external repository or select an external repository that
is preconfigured.

5. Under Additional properties, click Group attribute definition.

1438 Administering WebSphere applications



6. Under Additional properties, click Dynamic member attributes.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Name:

Specifies the name of the attribute that defines the filter for dynamic group members in LDAP. For
example, memberURL is the name of a commonly used dynamic member attribute.

If both member and dynamic member attributes are specified for the same group type, this group type is a
hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members
individually, the dynamic group defines its members using an LDAP search. The filter for the search is
defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass
groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the
search using a simplified LDAP URL syntax:

ldap:///<base DN of search>??<scope of search>?<searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the
objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

Object class:

Specifies the object class of the group that contains this dynamic member attribute, for example,
groupOfURLs. If this property is not defined, the dynamic member attribute applies to all group object
classes.

Dynamic member attributes settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) dynamic member attributes.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field
and click Configure. To configure for a specific domain in a multiple security domain environment, click
Security domains > domain_name. Under Security Attributes, expand User Realm, and click
Customize for this domain. Select the Realm type as Federated repositories and then click
Configure.

3. Under Related items, click Manage repositories.

4. Click Add > LDAP repository to specify a new external repository or select an external repository that
is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Dynamic member attributes.

7. Click New to specify a new dynamic member attribute.

When you finish adding or updating your federated repository configuration, go to the Security > Global
security panel and click Apply to validate the changes.

Name of dynamic member attribute:

Chapter 19. Administering application security 1439



Specifies the name of the attribute that defines the filter for dynamic group members in LDAP. For
example, memberURL is the name of a commonly used dynamic member attribute.

If both member and dynamic member attributes are specified for the same group type, this group type is a
hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members
individually, the dynamic group defines its members using an LDAP search. The filter for the search is
defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass
groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the
search using a simplified LDAP URL syntax:

ldap:///<base DN of search>??<scope of search>?<searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the
objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

Dynamic object class:

Specifies the object class of the group that contains this dynamic member attribute, for example,
groupOfURLs. If this property is not defined, the dynamic member attribute applies to all group object
classes.

Standalone Lightweight Directory Access Protocol registries
A Standalone Lightweight Directory Access Protocol (LDAP) registry performs authentication using an
LDAP binding.

WebSphere Application Server security provides and supports the implementation of most major LDAP
directory servers, which can act as the repository for user and group information. These LDAP servers are
called by the product processes for authenticating a user and other security-related tasks. For example,
the servers are used to retrieve user or group information. This support is provided by using different user
and group filters to obtain the user and group information. These filters have default values that you can
modify to fit your needs. The custom LDAP feature enables you to use any other LDAP server, which is
not in the product-supported list of LDAP servers, for its user registry by using the appropriate filters.

Note: The initial profile creation configures WebSphere Application Server to use a federated repositories
security registry option with the file-based registry. This security registry configuration can be
changed to use other options, including the stand-alone LDAP registry. Instead of changing from
the federated repositories option to the stand-alone LDAP registry option under the User account
repository configuration, consider employing the federated repositories option, which provides for
LDAP configuration. Federated repositories provide a wide range of capabilities, including the ability
to have one or multiple user registries. It supports federating one or more LDAPs in addition to
file-based and custom registries. It also has improved failover capabilities, and a robust set of
member (user and group) management capabilities. Federated repositories is required when you
are using the new member management capabilities in WebSphere Portal 6.1 and higher, and
Process Server 6.1 and higher. The use of federated repositories is required for following LDAP
referrals, which is a common requirement in some LDAP server environments (such as Microsoft
Active Directory).

It is recommended that you migrate from stand-alone LDAP registries to federated repositories. If
you move to WebSphere Portal 6.1 and higher, and or WebSphere Process Server 6.1 and higher,
you should migrate to federated repositories prior to these upgrades. For more information about
federated repositories and its capabilities, read the Federated repositories topic. For more

1440 Administering WebSphere applications



information about how to migrate to federated repositories, read the Migrating a stand-alone LDAP
repository to a federated repositories LDAP repository configuration topic.

To use LDAP as the user registry, you need to know an administrative user name that is defined in the
registry, the server host and port, the base distinguished name (DN) and, if necessary, the bind DN and
the bind password. You can choose any valid user in the registry that is searchable and have
administrative privileges. In some LDAP servers, the administrative users are not searchable and cannot
be used, for example, cn=root in SecureWay. This user is referred to as WebSphere Application Server
security server ID, server ID, or server user ID in the documentation. Being a server ID means a user has
special privileges when calling some protected internal methods. Normally, this ID and password are used
to log into the administrative console after security is turned on. You can use other users to log in if those
users are part of the administrative roles.

When security is enabled in the product, the primary administrative user name and password are
authenticated with the registry during the product startup. If authentication fails, the server does not start. It
is important to choose an ID and password that do not expire or change often. If the product server user
ID or password need to change in the registry, make sure that the changes are performed when all the
product servers are up and running.

When the changes are done in the registry, use the steps that are described in “Configuring Lightweight
Directory Access Protocol user registries” on page 1271. Change the ID, password, and other
configuration information, save, stop, and restart all the servers so that the new ID or password is used by
the product. If any problems occur starting the product when security is enabled, disable security before
the server can start up. To avoid these problems, make sure that any changes in this panel are validated
in the Global security panel. When the server is up, you can change the ID, password, and other
configuration information and then enable security.

You can use the custom Lightweight Directory Access Protocol (LDAP) feature to support any LDAP server
by setting up the correct configuration. However, support is not extended to these custom LDAP servers
because many configuration possibilities exist.

The users and groups and security role mapping information is used by the configured authorization
engine to perform access control decisions.

Dynamic groups and nested group support for LDAP:

Dynamic and nested groups simplify WebSphere Application Server security management and increase its
effectiveness and flexibility.

Dynamic groups contain a group name and membership criteria:

v The group membership information is as current as the information on the user object.

v There is no need to manually maintain members on the group object.

v Dynamic groups are designed so an application does not need a large amount of information from the
directory to find out if someone is a member of a group.

Nested groups enable the creation of hierarchical relationships that are used to define inherited group
membership. A nested group is defined as a child group entry whose distinguished name (DN) is
referenced by a parent group entry attribute.

You only need to assign a larger parent group if all nested groups share the same privilege. Assigning a
role to a single parent group simplifies the run-time authorization table.

Chapter 19. Administering application security 1441



Dynamic groups and nested group support for the IBM Tivoli Directory Server

WebSphere Application Server supports all Lightweight Directory Access Protocol (LDAP) dynamic and
nested groups when using IBM Tivoli Directory Server. This function is enabled by default by taking
advantage of a new feature in IBM Tivoli Directory Server. IBM Tivoli Directory Server uses the
ibm-allGroups forward-reference group attribute that automatically calculates all the group memberships
including dynamic and recursive memberships for a user. Security directly locates a user group
membership from a user object rather than indirectly search all the groups to match group members.

For more information, see “Configuring dynamic and nested group support for the IBM Tivoli Directory
Server” on page 1294.

When you create groups, ensure that nested and dynamic group memberships work correctly.

Dynamic and nested group support for the SunONE or iPlanet Directory Server

The SunONE or iPlanet Directory Server uses two grouping mechanisms:

Groups
Entries that name other entries as a list of members or as a filter for members.

Roles Entries that name other entries as a list of members or as a filter for members. Additional
functionality is provided by generating the nsrole attribute on each role member.

Three types of roles are available:

Filtered roles
Depends upon the attributes that are contained in each entry. Entries are members, if they match
a specified Lightweight Directory Access Protocol (LDAP) filter. This role is equivalent to a dynamic
group.

Nested roles
Creates roles that contain other roles. This role is equivalent to a nested group.

Managed roles
Explicitly assigns a role to member entries. This role is equivalent to a static group.

Refer to “Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server” on
page 1293 for more information.

Security failover among multiple LDAP servers:

WebSphere Application Server security can be configured to attempt failovers between multiple
Lightweight Directory Access Protocol (LDAP) hosts.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

If the current active LDAP server is unavailable, WebSphere Application Server security attempts a failover
to the first available LDAP host in the specified host list. The multiple LDAP servers can be replicas of the
same master LDAP server, or they can be any LDAP host with the same schema, which contain data that
is imported from the same LDAP Data Interchange Format (LDIF) file.

1442 Administering WebSphere applications



Whenever a failover occurs, WebSphere Application Server security always uses the first available LDAP
server in the specified host list. For example, if there are four LDAP servers configured in the order of L1,
L2, L3, and L4, L1 is treated as the primary LDAP server. The preference of connection is from L1 to L4.
If, for example, WebSphere Application Server security is currently connected to L4, and failover or
reconnection is necessary, WebSphere Application Server security first attempts to connect to L1, L2, and
then L3 in that order until the connection is successful.

The current LDAP host name is logged in message SECJ0419I in the WebSphere Application Server log
file, SystemOut.log. If you want to reconnect to the primary LDAP host, run the WebSphere Application
Server MBean method, resetLDAPBindInfo, with null,null as the input.

To configure LDAP failover among multiple LDAP hosts, you must use wsadmin or ConfigService to
include the backup LDAP host, which does not have a number limitation. The LDAP host that is displayed
in the administrative console is the primary LDAP host, and is the first item listed in the LDAP host list in
security.xml.

The WebSphere Application Server security realm name defaults to the primary LDAP host name that is
displayed in the administrative console. It includes a trailing colon and a port number (if one exists).
However, the custom property, com.ibm.websphere.security.ldap.logicRealm, can be added to override the
default security realm name. Use the logicRealm name to configure each cell to have its own LDAP host
for interoperability and backward compatibility, and to provide flexibility for adding or removing the LDAP
host dynamically. If migrating from a previous installation, the new logicRealm name does not take effect
until administrative security is enabled again. To be compatible with a previous release that does not
support logic realm, the logicRealm name has to be the same as that used by the previous installation (the
LDAP host name, including a trailing colon and port number).

When LDAP failover is configured by associating a single hostname to multiple IP addresses through the
use of a load balancer (which does that translation transparently to WebSphere Application Server),
entering an invalid password can cause multiple LDAP bind retries. WebSphere Application Server retries
and the load balancer routes requests to multiple replicas. With the default settings, the number of LDAP
bind retries is equal to one more than the number of associated IP addresses. This means a single invalid
login attempt can cause the LDAP account to be locked. If the
com.ibm.websphere.security.registry.ldap.singleLDAP custom property is set to false, LDAP bind calls are
not retried.

When LDAP failover is configured by registering backend LDAP server hostnames using wsadmin
command, set the com.ibm.websphere.security.ldap.retryBind property to false.

The following Jacl example shows how to use wsadmin to add a backup LDAP host for failover:
#---------------------------------------------------------------
# Main
# This is a bi-modal script: it can be included in the wsadmin
# command invocation like this:
# wsadmin -f LDAPAdd.jacl ldaphost 800
#
# or the script can be sourced from the wsadmin command line:
# wsadmin> source LDAPAdd.jacl
# wsadmin> LDAPAdd ldaphost 800
#
# The script expects some parameters:
# arg1 - LDAP Server host name
# arg2 - LDAP Server port number
#---------------------------------------------------------------
if { !($argc == 2)} {

puts ""
puts "LDAPAdd: This script requires 2 parameters: LDAP server host name and LDAP server port number"
puts "For example: LDAPAdd ldaphost 389"
puts ""
return;

}
else {

set ldapServer [lindex $argv 0]
set ldapPort [lindex $argv 1]
LDAPAdd $ldapServer $ldapPort
return;

}

Chapter 19. Administering application security 1443



proc LDAPAdd {ldapServer ldapPort args} {
global AdminConfig AdminControl ldapServer ldapPort
set ldapServer lindex $args 0
set ldapPort lindex $args 1
global ldapUserRegistryId
# Get the LDAP user registry object from the security configuration
if { catch {$AdminConfig list LDAPUserRegistry} result } {

puts stdout "\$AdminConfig list LDAPUserRegistry caught an exception $result\n"
return

}
else {

if {$result != {}} {
set ldapUserRegistryId lindex $result 0

}
else {

puts stdout "\$AdminConfig list LDAPUserRegistry caught an exception $result\n"
return;

}
}
# Set the host and port values in Attrs2
set Attrs2 list list hosts list list list host
$ldapServer
list port $ldapPort

# Modify the LDAP configuration host object
$AdminConfig modify $ldapUserRegistryId $Attrs2
$AdminConfig save

}

The following Jython example shows how to use wsadmin to add a backup LDAP host for failover:
#---------------------------------------------------------------
# Add ldap hostname and port
# wsadmin -f LDAPAdd.py arg1 arg2
#
# The script expects some parameters:
# arg1 - LDAP Server hostname
# arg2 - LDAP Server portnumber
#---------------------------------------------------------------
import java

#-------------------------------------------------------
# get the line separator and use to do the parsing
# since the line separator on different platform are different
lineSeparator = java.lang.System.getProperty(’line.separator’)

#-------------------------------------------------------------------------------
# add LDAP host
#-------------------------------------------------------------------------------
def LDAPAdd (ldapServer, ldapPort):

global AdminConfig, lineSeparator, ldapUserRegistryId
try:

ldapObject = AdminConfig.list("LDAPUserRegistry")
if len(ldapObject) == 0:

print "LDAPUserRegistry ConfigId was not found\n"
return

ldapUserRegistryId = ldapObject.split(lineSeparator)[0]
print "Got LDAPUserRegistry ConfigId is " + ldapUserRegistryId + "\n"

except:
print "AdminConfig.list(’LDAPUserRegistry’) caught an exception\n"

try:
secMbeans = AdminControl.queryNames(’WebSphere:type=SecurityAdmin,*’)
if len(secMbeans) == 0:

print "Security Mbean was not found\n"
return

secMbean = secMbeans.split(lineSeparator)[0]
print "Got Security Mbean is " + secMbean + "\n"

except:
print "AdminControl.queryNames(’WebSphere:type=SecurityAdmin,*’) caught an exception\n"

attrs2 = [["hosts", [[["host", ldapServer], ["port", ldapPort]]]]]
try:

AdminConfig.modify(ldapUserRegistryId, attrs2)
try:

AdminConfig.save()
print "Done setting up attributes values for LDAP User Registry"
print "Updated was saved successfully\n"

except:
print "AdminConfig.save() caught an exception\n"

except:
print "AdminConfig.modify(" + ldapUserRegistryId + ", " + attrs2 + ") caught an exception\n"

return

#-------------------------------------------------------------------------------
# Main entry point

1444 Administering WebSphere applications



#-------------------------------------------------------------------------------
if len(sys.argv) < 2 or len(sys.argv) > 3:

print("LDAPAdd: this script requires 2 parameters: LDAP server hostname and LDAP server port number\n")
print("e.g.: LDAPAdd ldaphost 389\n")
sys.exit(1)

else:
ldapServer = sys.argv[0]
ldapPort = sys.argv[1]
LDAPAdd(ldapServer, ldapPort)
sys.exit(0)

Selecting an authentication mechanism
An authentication mechanism defines rules about security information, such as whether a credential is
forwardable to another Java process, and the format of how security information is stored in both
credentials and tokens. You can select and configure an authentication mechanism by using the
administrative console.

About this task

Authentication is the process of establishing whether a client is who or what it claims to be in a particular
context. A client can be either an end user, a machine, or an application. An authentication mechanism in
WebSphere Application Server typically collaborates closely with a user registry. The user registry is the
user and groups account repository that the authentication mechanism consults with when performing
authentication. The authentication mechanism is responsible for creating a credential, which is an internal
product representation of a successfully authenticated client user. Not all credentials are created equally.
The abilities of the credential are determined by the configured authentication mechanism.

WebSphere Application Server provides three authentication mechanisms: Lightweight Third Party
Authentication (LTPA), Kerberos, and RSA token authentication mechanism.

Security support for Kerberos as the authentication mechanism has been added for this release of
WebSphere Application Server. Kerberos (KRB5) is a mature, flexible, open, and very secure network
authentication protocol. Kerberos includes authentication, mutual authentication, message integrity and
confidentiality and delegation features. KRB5 is used for Kerberos in the administrative console and in the
sas.client.props, soap.client.props and ipc.client.props files.

The RSA token authentication mechanism is new to this release of WebSphere Application Server. It aids
the flexible management objective to preserve the base profiles configurations and isolate them from a
security perspective. This mechanism permits the base profiles managed by an administrative agent to
have different Lightweight Third-Party Authentication (LTPA) keys, different user registries, and different
administrative users.

Note: Simple WebSphere Authentication Mechanism (SWAM) is deprecated in this release. SWAM does
not provide authenticated communication between different servers.

Authentication is required for enterprise bean clients and web clients when they access protected
resources. Enterprise bean clients, like a servlet or other enterprise beans or a pure client, send the
authentication information to a web application server using one of the following protocols:

v Common Secure Interoperability Version 2 (CSIv2)

v Secure Authentication Service (SAS)

Note: SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

Web clients use the HTTP or HTTPS protocol to send the authentication information.

The authentication information can be basic authentication (user ID and password), a credential token, or
a client certificate. The web authentication is performed by the web authentication module.

Chapter 19. Administering application security 1445



You can configure web authentication for a web client by using the administrative console. Click Security
> Global security. Under Authentication, expand Web and SIP security and click General settings. The
following options exist for Web authentication:

Authenticate only when the URI is protected
Specifies that the web client can retrieve an authenticated identity only when it accesses a
protected Uniform Resource Identifier (URI). WebSphere Application Server challenges the web
client to provide authentication data when the web client accesses a URI that is protected by a
J2EE role. This default option is also available in previous versions of WebSphere Application
Server.

Use available authentication data when an unprotected URI is accessed
Specifies that the web client is authorized to call the getRemoteUser, isUserInRole, and
getUserPrincipal methods; retrieves an authenticated identity from either a protected or an
unprotected URI. Although the authentication data is not used when you access an unprotected
URI, the authentication data is retained for future use. This option is available when you select the
Authentication only when the URI is protected check box.

Authenticate when any URI is accessed
Specifies that the web client must provide authentication data regardless of whether the URI is
protected.

Default to basic authentication when certificate authentication for the HTTPS client fails.
Specifies that WebSphere Application Server challenges the web client for a user ID and password
when the required HTTPS client certificate authentication fails.

The enterprise bean authentication is performed by the Enterprise JavaBeans (EJB) authentication
module.

The EJB authentication module resides in the CSIv2 and SAS layer.

The authentication module is implemented using the Java Authentication and Authorization Service (JAAS)
login module. The web authenticator and the EJB authenticator pass the authentication data to the login
module, which can use the following mechanisms to authenticate the data:

v Kerberos

v LTPA

v RSA token

v Simple WebSphere Authentication Mechanism (SWAM)

Note: SWAM was deprecated in WebSphere Application Server Version 8.5 and will be removed in a
future release.

The authentication module uses the registry that is configured on the system to perform the authentication.
Four types of registries are supported:

v Federated repositories

v Local operating system

v Standalone Lightweight Directory Access Protocol (LDAP) registry

v Stand-alone custom registry

External registry implementation following the registry interface that is specified by IBM can replace either
the local operating system or the LDAP registry.

The login module creates a JAAS subject after authentication and stores the credential that is derived from
the authentication data in the public credentials list of the subject. The credential is returned to the web
authenticator or to the enterprise beans authenticator.

1446 Administering WebSphere applications



The web authenticator and the enterprise beans authenticator store the received credentials in
the Object Request Broker (ORB) current for the authorization service to use in performing further access
control checks. If the credentials are forwardable, they are sent to other application servers.

You can configure authentication mechanisms in the administrative console by doing the following:

Procedure
1. Click Security > Global security.

2. Under Authentication mechanisms and expiration, select an authentication mechanism to configure.

Lightweight Third Party Authentication
Lightweight Third Party Authentication (LTPA) is intended for distributed, multiple application server and
machine environments. LTPA supports forwardable credentials and single sign-on (SSO). LTPA can
support security in a distributed environment through cryptography. This support permits LTPA to encrypt,
digitally sign, and securely transmit authentication-related data, and later decrypt and verify the signature.

Application servers can securely communicate using the LTPA protocol. It also provides the single sign-on
(SSO) feature wherein a user is required to authenticate only once in a domain name system (DNS)
domain and can access resources in other WebSphere Application Server cells without getting prompted.
The realm names on each system in the DNS domain are case sensitive and must match identically.

For local OS, the realm name is the same as the host name.

For the Lightweight Directory Access Protocol (LDAP), the realm name is the host:port value of the LDAP
server.

The LTPA protocol uses cryptographic keys to encrypt and decrypt user data that passes between the
servers. These keys must be shared between the different cells for the resources in one cell to access
resources in other cells, assuming that all the cells involved use the same LDAP or custom registry.

When using LTPA, a token is created with the user information and an expiration time and is signed by the
keys. The LTPA token is time sensitive. All product servers that participate in a protection domain must
have their time and date synchronized. If not, LTPA tokens appear prematurely expired and cause
authentication or validation failures. Coordinated Universal Time (UTC) is used by default, and all other
machines must have the same UTC time. Consult your operating system documentation for information
regarding how to ensure this.

This token passes to other servers, in the same cell or in a different cell through cookies, for web
resources when SSO is enabled, or through the authentication protocol layer for enterprise beans.

If the receiving servers share the same keys as the originating server, the token can be decrypted to
obtain the user information, which then is validated to make sure that it has not expired and that the user
information in the token is valid in its registry. On successful validation, the resources in the receiving
servers are accessible after the authorization check.

Each server must have valid credentials. When the credentials expire, the server is required to
communicate to the user registry to authenticate. User registry outages can cause server processes to
hang, requiring them to be restarted to recover. Extending the time the LTPA token remains cached
reduces this risk, but does present a slightly increased security risk to be considered when defining your
security policies.

All of the WebSphere Application Server processes in a cell share the same set of keys. If key sharing is
required between different cells, export them from one cell and import them to the other. For security
purposes, the exported keys are encrypted with a random generated key and a user-defined password is
used to protect the keys. This same password is needed when importing the keys into another cell. The
password is only used to protect the keys and is not used to generate the keys.

Chapter 19. Administering application security 1447



WebSphere Application Server supports the LTPA, Kerberos and the Simple WebSphere
Authentication Mechanism (SWAM) protocols.

Note: SWAM is deprecated in WebSphere Application Server Version 8.5 and will be removed
in a future release.

When security is enabled during profile creation time, LTPA is configured by default.

LTPA requires that the configured user registry be a centrally shared repository such as LDAP or a
Windows domain-type registry so that users and groups are the same, regardless of the machine.

The use of LTPA with the local OS user registry is only applicable to configurations where all of
the servers reside on the same system.

Lightweight Third Party Authentication key sets and key set groups:

Key set groups contain lists of key sets and Lightweight Third Party Authentication (LTPA) key generation
schedules. Each key set contains key references to keys in key stores.

Note: It is not recommended that you choose to generate new keys automatically . Keys should only be
generated during off hours. Once keys are generated, you might need to export the keys and to
import the keys to other WebSphere cells or IBM products in which the keys are required to be
sync to communicate with each other.

The keys for some key configurations must be generated together. The LTPA key pair is referenced in one
key set while the secret or private key is in a separate key set. When the key set group is created, the two
key sets are added as members of the key set group. Key set group settings determine whether the keys
for both key sets are generated together automatically or manually.

The key set group contains the following attributes:

v Member key sets

v Choice of either manual or automatic key generation in the member key sets

v Schedule for automatically generating keys

Configuring LTPA and working with keys
You must configure Lightweight Third Party Authentication (LTPA) when you set up security for the first
time. LTPA is the default authentication mechanism for WebSphere Application Server. After you have
configured LTPA you can generate LTPA keys manually or automatically.

Procedure
1. Configure LTPA and generate the first LTPA keys. Use the administrative console to configure LTPA or

Kerberos when you set up security for the first time. The LTPA keys are generated automatically the
first time. Read the Configuring the Lightweight Third Party Authentication mechanism article for more
information.

Application servers distributed in multiple nodes and cells can securely communicate using the LTPA
protocol. Key set groups contain lists of key sets and LTPA authentication key generation schedules.
Each key set contains key references to keys in key stores. To generate keys automatically, each key
set must be a member of a key set group.

Read the Lightweight Third Party Authentication key sets and key set groups article for more
information.

The keys for some key configurations must be generated together. The LTPA key pair is referenced in
one key set while the secret or private key is in a separate key set. When the key set group is created,
the two key sets are added as members of the key set group. Key set group settings determine
whether the keys for both key sets are generated together automatically or manually.

1448 Administering WebSphere applications



The key set group contains the following attributes:

v Member key sets

v Choice of either manual or automatic key generation in the member key sets

v Schedule for automatically generating keys

2. Generate keys manually or automatically, and control the number of active keys. WebSphere
Application Server generates Lightweight Third Party Authentication (LTPA) keys automatically during
the first server startup. You can generate additional keys as you need them in the Authentication
mechanisms and expiration panel.

You can disable the automatic generation of new LTPA keys for key sets that are members of a key
set group. Automatic generation creates new keys on a schedule that you specify when you configure
a key set group, which manages one or more key sets. WebSphere Application Server uses key set
groups to automatically generate cryptographic keys or multiple synchronized key sets.

Generating keys manually or enabling or disabling the generation of keys are tasks that require you to
recycle the node agents and application servers to accept the new keys. If any of the node agents are
down, run a manual file synchronization utility from the node agent machine to synchronize the security
configuration from the deployment manager.

Key sets manage LTPA keys in a key store that is based on a key alias prefix. A key alias prefix is
automatically generated when you generate a new key and store it in a key store. Key stores can
contain multiple versions of keys for any given key alias prefix. You can specify a maximum number of
active keys in the key set configuration.

Read the Generating Lightweight Third Party Authentication keys article for more information.

3. Import and export keys. To support single sign-on (SSO) in WebSphere® Application Server across
multiple WebSphere Application Server domains or cells, you must share the LTPA keys and the
password among the domains. You can import LTPA keys from other domains and export keys to other
domains.

Note: You should disable automatic key generation if you import or export keys to or from another
cell. This disabling causes the imported keys to get lost and the exported keys to no longer
interoperate with this cell over time

You must recycle the node agents and application servers to accept the new keys. If any of the node
agents are down, run a manual file synchronization utility from the node agent machine to synchronize
the security configuration from the deployment manager.

Read the Importing Lightweight Third Party Authentication keys and Exporting Lightweight Third Party
Authentication keys articles for more information.

4. Manage keys from multiple cells. You can specify the shared keys and configure the authentication
mechanism that is used to exchange information between servers to import and export LTPA keys
across multiple WebSphere® Application Server cells.

You must start the server again for any changes you make to become active.

Read the Managing LTPA keys from multiple WebSphere Application Server cells article for more
information.

Kerberos (KRB5) authentication mechanism support for security
The Kerberos authentication mechanism enables interoperability with other applications (such as .NET,
DB2 and others) that support Kerberos authentication. It provides single sign on (SSO) end-to-end
interoperable solutions and preserves the original requester identity.

Note: Security support for Kerberos as the authentication mechanism was added for WebSphere
Application Server Version 7.0. Kerberos is a mature, flexible, open, and very secure network
authentication protocol. Kerberos includes authentication, mutual authentication, message integrity
and confidentiality and delegation features. You can enable Kerberos on the server side. Support is
provided to enable the rich Java client to use the Kerberos token for authentication to the
WebSphere Application Server.

Chapter 19. Administering application security 1449



The following sections describe Kerberos authentication in more detail:

v “What is Kerberos?”

v “The benefits of having Kerberos as an authentication mechanism”

v “Kerberos authentication in a single Kerberos realm environment” on page 1451

v “Kerberos authentication in a cross or trusted Kerberos realm environment” on page 1452

v “Things to consider before setting up Kerberos as the authentication mechanism for WebSphere
Application Server” on page 1455

v “Support information for Kerberos authentication” on page 1456

v “Setting up Kerberos as the authentication mechanism for WebSphere Application Server” on page 1457

v “Setting up Kerberos as the authentication mechanism for the pure Java client” on page 1457

What is Kerberos?

Kerberos has withstood the test of time and is now at version 5.0. Kerberos enjoys wide spread platform
support (for example, for Windows, Linux, Solaris, AIX, and z/OS) partly because the Kerberos source
code is freely downloadable from the Massachusetts Institute of Technology (MIT) where it was originally
created.

Kerberos is composed of three parts: a client, a server, and a trusted third party known as the Kerberos
Key Distribution Center (KDC). The KDC provides authentication and ticket granting services.

The KDC maintains a database or repository of user accounts for all of the security principals in its realm.
Many Kerberos distributions use file-based repositories for the Kerberos principal and policy DB and others
use Lightweight Directory Access Protocol (LDAP) as the repository.

Kerberos does not support any notion of groups (that is, iKeys groups or groups of users or principals).
The KDC maintains a long-term key for each principal in its accounts database. This long-term key is
derived from the password of the principal. Only the KDC and the user that the principal represents should
know what the long-term key or password is.

The benefits of having Kerberos as an authentication mechanism

The benefits of having Kerberos as the authentication mechanism for WebSphere Application Server
include the following:

v The Kerberos protocol is a standard. This enables interoperability with other applications (such as .NET,
DB2 and others) that support Kerberos authentication. It provides single sign on (SSO) end-to-end
interoperable solutions and preserves the original requester identity.

v When using Kerberos authentication, the user clear text password never leaves the user machine. The
user authenticates and obtains a Kerberos ticket granting ticket (TGT) from a KDC by using a one-way
hash value of the user password. The user also obtains a Kerberos service ticket from the KDC by
using the TGT. The Kerberos service ticket that represents the client identity is sent to WebSphere
Application Server for authentication.

v A Java client can participate in Kerberos SSO using the Kerberos credential cache to authenticate to
WebSphere Application Server.

v J2EE, web service, .NET and web browser clients that use the HTTP protocol can use the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO) token to authenticate to the WebSphere
Application Server and participate in SSO by using SPNEGO web authentication. Support for SPNEGO
as the web authentication service is new to this release of WebSphere Application Server.

Read about “Single sign-on for HTTP requests using SPNEGO web authentication” on page 1480 for
more information.

v WebSphere Application Server can support both Kerberos and Lightweight Third-Party Authentication
(LTPA) authentication mechanisms at the same time.

1450 Administering WebSphere applications



v Server-to-server communication using Kerberos authentication is provided.

Kerberos authentication in a single Kerberos realm environment

WebSphere Application Server supports Kerberos authentication in a single Kerberos realm environment
as shown in the following figure:

When the WebSphere Application Server receives a Kerberos or SPNEGO token for authentication, it uses
the Kerberos service principal (SPN) to establish a security context with a requestor. If a security context is
established, the WebSphere Kerberos login module extracts a client GSS delegation credential, creates a
Kerberos authentication token base on the Kerberos credential, and places them in the client subject with
other tokens.

If the server must use a downstream server or back-end resources, it uses the client GSS delegation
credential. If a downstream server does not support Kerberos authentication, the server uses the LTPA
token instead of the Kerberos token. If a client does not include a GSS delegation credential in the
request, the server uses the LTPA token for the downstream server . The Kerberos authentication token
and principal are propagated to the downstream server as part of the security attributes propagation
feature.

If the WebSphere Application Server and the KDC do not use the same user registry, then a JAAS custom
login module might be required to map the Kerberos principal name to the WebSphere user name.

Web services client

Web browser client

.NET client

Administrative
client

J2EE aplication/EJB client

Web services client

Administrative
client

A client

WAS

S
P
N
E
G
O

in
H
TTP

Kerberos token

Bas
ic
Aut

h
(G

SSU
P)

LT
PA

token

Kerberos token

Kerberos token

.NET Server

WebSphere
Application

Server

WASKDC
Realm1

DB2

WebSphere
Application

Server

WebSphere
Application

Server

Figure 9. Kerberos authentication in a single Kerberos realm environment

Chapter 19. Administering application security 1451



Kerberos authentication in a cross or trusted Kerberos realm environment

WebSphere Application Server also supports Kerberos authentication in a cross or trusted Kerberos realm
environment as shown in the following figure:

When the WebSphere Application Server receives a Kerberos or SPNEGO token for authentication, it uses
the Kerberos service principal (SPN) to establish a security context with a requestor. If a security context is
established, the WebSphere Kerberos login module always extracts a client GSS delegation credential and
Kerberos ticket and places them in the client subject with other tokens.

If the server must use a downstream server or backend resources, it uses the client GSS delegation
credential. If a downstream server does not support Kerberos authentication, the server uses the LTPA
token instead of the Kerberos token. If a client does not include a GSS delegation credential in the
request, the server uses the LTPA token for the downstream server . The Kerberos authentication token
and principal are propagated to the downstream server as part of the security attributes propagation
feature.

If the WebSphere Application Server and the KDC do not use the same user registry, then a JAAS custom
login module might be required to map the Kerberos principal name to the WebSphere user name.

In this release of WebSphere Application Server, the new security multiple domains only support Kerberos
at the cell level. All WebSphere Application Servers must be used by the same Kerberos realm. However,
the clients and or backend resources (such as DB2, .NET server, and others) that support Kerberos
authentication can have their own Kerberos realm. Only peer-to-peer and transitive trust cross-realm
authentication are supported. The following steps must be performed for trusted Kerberos realms:

Web services client

Web browser client

.NET client

Administrative
client

Java EE application/EJB client

Web services client

Administrative
client

A client

S
P
N
E
G
O

in
H
TTP

Kerberos token

Bas
ic
Aut

h
(G

SSU
P)

LT
PA

token

Kerberos token

Kerberos token

.NET Server

WebSphere
Application

Server

WASKDC
Realm1

DB2

WASKDC
Realm2

Trusted

WebSphere
Application

Server

WebSphere
Application

Server

Figure 10. Kerberos authentication in a cross or trusted Kerberos realm environment

1452 Administering WebSphere applications



v The Kerberos trusted realm setup must be done on each of the Kerberos KDCs. See your Kerberos
Administrator and User's guide for more information about how to set up a Kerberos trusted realm.

v The Kerberos configuration file might need to list the trusted realm.

v Add Kerberos trusted realms in the administrative console by clicking Global security > CSIv2
outbound communications > Trusted authentication realms - outbound.

The following figure shows a Java and administrative client that uses a Kerberos credential cache to
authenticate to WebSphere Application Server with a Kerberos token in a trusted Kerberos realm:

In the previous figure, the following events occur:

1. The client uses the Kerberos credential cache if it exists.

2. The client requests a cross realm ticket (TGS_REQ) for Realm A from the Realm B KDC using the
Kerberos credential cache.

3. The client uses a cross realm ticket to request Kerberos service ticket for server1 (TGS_REQ) from
the Realm A KDC.

4. The Kerberos token returned from the KDC (TGS_REP ) is added to the CSIv2 message
authentication token and sent to server1 for authentication.

5. The server calls Krb5LoginModuleWrapper to establish security context with the client using the server
Kerberos Service Principal Name (SPN) and keys from the krb5.keytab file. If the server successfully
establishes a security context with the client, it always extracts the client GSS delegation credential
and tickets and places them in the client subject.

6. Optionally, a custom JAAS Login Module might be needed if the KDC and WebSphere Application
Server do not use the same user registry.

7. The user is validated with the user registry for WebSphere Application Server.

8. The results (success or failure) are returned to the client.

The following figure shows a Java and administrative client that uses a Kerberos principal name and
password to authenticate to WebSphere Application Server with a Kerberos token:

Krb5LoginModule
ClientWrapper

Client machine

WebSphere Application
Server User Registry

WSKrb5LoginModule

Krb5LoginModule
Wrapper

JAAS
krb5LoginModule

CSIv2
Server-RI

Security Server
Authenticate()

krb5.conf

krb5.keytab

Custom JAAS
LoginModule

CSIv2 KRB
authentication

token

server1

WebSphere Application Server
Security Domain A
Kerberos Realm A

4.

8.
6.

5.Java Client
RMI/IIOP

KRB5
cache

krb5.conf

Realm B
KDC

2.

1.

Realm A
KDC

Trusted

3.

7.

Figure 11. Using a Kerberos credential cache to authenticate to WebSphere Application Server with a Kerberos token
in a trusted Kerberos realm

Chapter 19. Administering application security 1453



In the previous figure, the following events occur:

1. The client obtains the Kerberos granting ticket (TGT) from the KDC.

2. The client obtains a Kerberos service ticket for server1 (TGS_REQ) using the TGT.

3. The Kerberos token returned from the KDC (TGS_REP ) is added to the CSIv2 message
authentication token and sent to server1 for authentication.

4. The server calls Krb5LoginModuleWrapper to establish security context with the client using the server
Kerberos Service Principal Name (SPN) and keys from the krb5.keytab file. If the server successfully
establishes a security context with the client, it always extracts the client GSS delegation credential
and tickets and places them in the client subject.

5. Optionally, a custom JAAS Login Module might be needed if the KDC and WebSphere Application
Server do not use the same user registry.

6. The user is validated with the user registry for WebSphere Application Server.

7. The results are returned to the client.

The following figure shows server-to-server communications:

Krb5LoginModule
ClientWrapper

Client machine

Realm A
KDC

WebSphere Application
Server User Registry

WSKrb5LoginModule

Krb5LoginModule
Wrapper

JAAS
krb5LoginModule

CSIv2
Server-RI

Security Server
Authenticate()

krb5.conf

krb5.keytab

Custom JAAS
LoginModule

CSIv2 KRB
authentication

token

server1

WebSphere Application Server
Security Domain A
Kerberos Realm A

3.

7.

6.

5.

4.Java Client
RMI/IIOP

krb5.conf

Realm A
KDC

2.1.

Figure 12. Using a Kerberos principal name and password to authenticate to WebSphere Application Server with a
Kerberos token

1454 Administering WebSphere applications



When a WebSphere Application Server starts up, it uses the server ID and password to login to the KDC
and then obtains the TGT. It then uses the TGT to request a service ticket to communicate with another
server. If a WebSphere Application Server uses the internal server ID instead of the server ID and
password, server-to-server communication is done using an LTPA token. In the previous figure, the
following events occur:

1. WebSphere Application Server 1 invokes a method, foo(), on an Enterprise JavaBeans (EJB) running
in WebSphere Application Server 2.

2. Server1 obtains a Kerberos service ticket for Server2 (TGS_REQ) using the Server1 TGT.

3. Same as step 2.

4. The Kerberos token returned from a KDC (TGS_REP) is added to the CSIv2 message authentication
token and sent to Server2 for authentication.

5. Server2 calls the acceptSecContext() method to establish security context with server1 using the
server2 Kerberos Service Principal Name (SPN) and keys from the krb5.keytab file. If server2
successfully establishes a security context with server1, it always extracts the server1 GSS delegation
credential and tickets and places them in the subject.

6. The server id is validated with the WebSphere user registry.

Note: If a Java client application and the application server exist on the same machine and they use
different Kerberos realm names, the run time uses the default realm name from the Kerberos
configuration file. Alternatively, you can specify the realm name during the login process.

Things to consider before setting up Kerberos as the authentication mechanism for
WebSphere Application Server

WebSphere Application Server now supports SPNEGO tokens in the HTTP header, Kerberos tokens, LTPA
tokens and BasicAuth (GSSUP) for authentication.

To provide end-to-end Kerberos and end-to-end SPNEGO to Kerberos solutions, be aware of the following:

v The Enabled delegation of Kerberos credentials option must be selected. Read about Configuring
Kerberos as the authentication mechanism using the administrative console for more information about
this option.

WebSphere Application Server 1

Servlet, JSP, EJB

CSIv2
Client-RI

Krb5WSSecurityContextlmpl
initSecContext()

JGSS

2.

WebSphere Application Server 2

EJB

CSIv2
Client-RI

Krb5WSSecurityContextlmpl
acceptSecContext()

JGSS

5.

User Registry

6.

KDC

3.

4.

CSIv2/RMI/IIOP
Kerberos

GSS initial context token

1.

foo()

Figure 13. Server to server communications

Chapter 19. Administering application security 1455



v A client must obtain a ticket-granting ticket (TGT) with forwardable, address-less and renewable flags so
that a target server can extract a client delegation Kerberos credential and use it for going to the
downstream server.

v A client TGT that has an address can not be used for a downstream server, Data replication service
(DRS) cache and cluster environments.

v See your Kerberos KDC platforms to make sure that it allows for client delegation Kerberos.

v For a long running application, a client should request a TGT with a renewable flag so that a target
server can renew the delegation Kerberos.

v For a long-running application, ensure that the Kerberos ticket is valid for a period of time that is at least
as long as the application runs. For example, if the application processes a transaction that takes 5
minutes, the Kerberos ticket must be valid for at least 5 minutes.

v Kerberos authentication and SPNEGO web authentication are both supported for Active Directory cross
domain trusts within the same forest.

v In order for an administrative agent to use the Kerberos authentication mechanism, it must exchange an
LTPA key with an administrative subsystem profile.

v If you plan to use the client delegation Kerberos credential for downstream authentication, make sure
the client can request a service ticket that is greater than 10 minutes. If the client delegation Kerberos
credential lifetime is less than 10 minutes, then the server attempts to renew it.

Note: The client, WebSphere Application Server and KDC machines must keep the clock synchronized.
The best practice is to use a time server to keep all of the systems synchronized.

For this release of WebSphere Application Server, be aware of the following:

v Complete end-to-end Kerberos support with Tivoli Access Manager is available using the following
KDCs:

– z/OS

– Microsoft (single or multi-realm)

– AIX

– Linux

v You can now configure and enable Kerberos cross realms for WebSphere Application Server and the
thin client.

v WebSphere Application Server administrative function with Kerberos is limited by the following:

– The preferred authentication mechanism for flexible management activities is the Rivest Shamir
Adleman (RSA) authentication mechanism (by default).

– Job Manager configured with Kerberos as the administrative authentication does not support
Cross-Kerberos realms. They must be in the same Kerberos realm as registered nodes, or have the
administrative authentication set to RSA

– While Kerberos authentication is supported for administrative clients (wsadmin or Java clients) you
should use the same KDC realm as the WebSphere Application Server it administers. Otherwise, a
user id and password are recommended.

– Mixed cell Kerberos and LTPA configuration is not supported when some of the nodes are
WebSphere Application Server Release 6.x nodes or earlier.

Support information for Kerberos authentication

The following scenarios are supported:

v External domain trusts that are not on the same forests

v Domain trust within the same forest

v Kerberos realm trust

The following scenarios are not supported:

1456 Administering WebSphere applications



v Cross-forest trust

v Forest external trusts

Setting up Kerberos as the authentication mechanism for WebSphere Application Server

You must perform the steps in order as listed in “Setting up Kerberos as the authentication mechanism for
WebSphere Application Server” to set up Kerberos as the authentication mechanism for WebSphere
Application Server.

Note: Kerberos authentication mechanism on the server side must be done by the system administrator
and on the Java client side by end users. The Kerberos keytab file must to be protected.

Setting up Kerberos as the authentication mechanism for the pure Java client

End users can optionally set up Kerberos authentication mechanism for the pure Java client. Read about
Configuring a Java client for Kerberos authentication for more information.

Setting up Kerberos as the authentication mechanism for WebSphere Application
Server
You must perform steps in this article in order to set up Kerberos as the authentication mechanism for
WebSphere Application Server.

About this task

Note: Kerberos authentication mechanism on the server side must be done by the system administrator
and on the Java client side by end users. The Kerberos keytab file must to be protected.

You must first ensure that the KDC is configured. See your Kerberos Administrator and User's guide for
more information.

gotcha: When configuring the envar file for a z/OS KDC, order the encryption types from most secure to
least secure for the SKDC_TKT_ENCTYPES environment variable. The z/OS KDC prefers to use
the encryption types that are first in the list, from left to right.

You must perform the following steps in order to set up Kerberos as the authentication mechanism for
WebSphere Application Server.

Procedure
1. Create a Kerberos service principal name and keytab file You can create a Kerberos service principal

name and keytab file using Microsoft Windows, iSeries, Linux, Solaris, Massachusetts Institute of
Technology (MIT) and z/OS operating systems key distribution centers (KDCs).

Kerberos prefers servers and services to have a host-based service ID. The format of this ID is
<service name>/<fully qualified hostname>. The default service name is WAS. For Kerberos
authentication, the service name can be any strings that are allowed by the KDC. However, for
SPNEGO web authentication, the service name must be HTTP. An example of a WebSphere
Application Sever server ID is WAS/myhost.austin.ibm.com.

Each host must have a server ID unique to the hostname. All processes on the same node share the
same host-based service ID.

A Kerberos administrator creates a Kerberos service principal name (SPN) for each node in the
WebSphere cell. For example, for a cell with 3 nodes (such as server1.austin.ibm.com,
server2.austin.ibm.com and server3.austin.ibm.com), the Kerberos administrator must create the
following Kerberos service principals: WAS/server1.austin.ibm.com, WAS/server2.austin.ibm.com and
WAS/server3.austin.ibm.com.

The Kerberos keytab file (krb5.keytab) contains all of the SPNs for the node and must be protected.
This file can be placed in the config/cells/<cell_name> directory

Chapter 19. Administering application security 1457



Read the Creating a Kerberos principal and keytab article for more information.

2. Create a Kerberos configuration file The IBM implementation of the Java Generic Security Service
(JGSS) and KRB5 require a Kerberos configuration file (krb5.conf or krb5.ini) on each node or Java
virtual machine (JVM). In this release of WebSphere Application Server, this configuration file should
be placed in the config/cells/<cell_name> directory so that all application servers can access this file.
If you do not have a Kerberos configuration file, use a wsadmin command to create one.

Read the Creating a Kerberos configuration article for more information.

3. Configure Kerberos as the authentication mechanism for WebSphere Application Sever using the
administrative console Use the administrative console to configure Kerberos as the authentication
mechanism for the application server. When you have entered and applied the required information to
the configuration, the Kerberos service principal name is formed as <service name>/<fully qualified
hostname>@KerberosRealm, and is used to verify incoming Kerberos token requests.

Read the Configuring Kerberos as the authentication mechanism using the administrative console
article for more information.

4. Map a client Kerberos principal name to the WebSphere user registry ID You can map the Kerberos
client principal name to the WebSphere user registry ID for both Simple and Protected GSS-API
Negotiation (SPNEGO) web authentication and Kerberos authentication.

Read the Mapping of a client Kerberos principal name to the WebSphere user registry ID article for
more information.

5. Set up Kerberos as the authentication mechanism for the pure Java client (optional) A Java client can
authenticate with WebSphere Application server with a Kerberos principal name and password or with
the Kerberos credential cache (krb5Ccache).

Read the Configuring a Java client for Kerberos authentication article for more information.

RSA token authentication mechanism
The Rivest Shamir Adleman (RSA) Authentication Mechanism is used to simplify the security environment
for the Flexible Management Topology. It supports the ability to securely and easily register new servers to
the Flexible Management topology. With the Flexible Management topology, you can submit and manage
administrative jobs, locally or remotely, by using a job manager that manages applications, performs
product maintenance, modifies configurations, and controls the application server runtime. The RSA
authentication mechanism is only used for server-to-server administrative authentication, such as admin
connector and file transfer requests. The RSA authentication mechanism does not replace LTPA or
Kerboros for use by applications.

Note: The RSA token authentication mechanism aids the flexible management objective to preserve the
base profiles configurations and isolate them from a security perspective. This mechanism permits
the base profiles managed by an administrative agent to have different Lightweight Third-Party
Authentication (LTPA) keys, different user registries, and different administrative users.

Important: The RSA token is not related to the RSA SecureId token. Please note that the application
server does not provide support for SecureId.

Authentication is the process of establishing whether a client is who or what it claims to be in a particular
context. A client can be either an end user, a machine, or an application. An authentication mechanism in
WebSphere Application Server typically collaborates closely with a user registry. The user registry is the
user and groups account repository that the authentication mechanism consults with when performing
authentication. The authentication mechanism is responsible for creating a credential, which is an internal
product representation of a successfully authenticated client user. Not all credentials are created equally.
The abilities of the credential are determined by the configured authentication mechanism.

Authentication process

The RSA token authentication mechanism ensures that after the RSA root signer certificate (15 year
lifetime) is exchanged between two administrative processes, there is no need to synchronize security

1458 Administering WebSphere applications



information among disparate profiles for administrative requests. The RSA personal certificate (1 year
lifetime) is used to perform the cryptographic operations on the RSA tokens and can be verified by the
long-lived RSA root. RSA token authentication is different from LTPA where keys are shared and if one
side changes, all sides need to change. Since RSA token authentication is based on a PKI infrastructure, it
benefits from the scalability and manageability of this technology in a large topology.

An RSA token has more advanced security features than LTPA; this includes a nonce value that makes it
a one-time use token, a short expiration period (since it's a one-time use token), and trust, which is
established based on certificates in the target RSA trust store.

RSA token authentication does not use the same certificates as used by Secure Sockets Layer (SSL). This
is the reason RSA has it's own keystores. In order to isolate the trust established for RSA, the trust store,
keystore, and root keystore, need to be different from the SSL configuration.

Note: SSL personal certificates given to pure clients are often signed by the same SSL root certificate
used by servers, and this allows a pure client to send an RSA token to a server and act as an
administrator. This should be avoided for the RSA token authentication mechanism. The RSA token
authentication mechanism has its own root certificate which signs personal certificates that are used
to encrypt and sign parts of the token.

The data stored in an RSA token is based on the identity of the client subject. The client subject can be
based on LTPA or Kerberos, but the RSA token does not use this protection for administrative requests.
The RSA token is easier to use while still maintaining a secure transportation of the identity. The data in
an RSA token includes:

v Version

v Nonce

v Expiration

v Realm

v Principal

v Access ID

v Roles (not currently used)

v Groups

v Custom data

Custom data can be added to the WSCredential on the sending side (prior to going outbound) by creating
a properties object, adding custom attributes, and adding this to the WSCredential in the following way.
import com.ibm.websphere.security.cred.WSCredential;

java.util.Properties props = new java.util.Properties();
props.setProperty("myAttribute", "myValue");
WSCredential.put ("customRSAProperties", props);

Once the Subject is created at the target process, you can get access to these attributes in the following
way.
java.util.Properties props = (java.util.Properties) WSCredential.get("customRSAProperties");

This data is placed into a hash table at the target side and the hash table is used in a Java™

Authentication and Authorization Service (JAAS) login to obtain a subject at the target that contains the
same attributes from the RSA token. With the target containing the same attributes from the RSA token,
you can have a subject at the target side that is not from the same realm used by the target. For this
authorization to succeed, a cross-realm mapping is required within the administrative authorization table
unless the identity is a trusted server ID.

Chapter 19. Administering application security 1459



The figure later in this section is an overview of the RSA token authentication mechanism and describes
the process that takes place when a request is sent from a server-as-client to a target server. The
server-as-client has an administrative subject on the thread that is used as input to create the RSA token.
The other information needed is RSA public certificate of the target server. This certificate must be
retrieved by making a “bootstrap” MBean request to the target process prior to sending any real requests.
The target bootstrap request retrieves the public certificate from the target process. When creating an RSA
token, the primary purpose of obtaining the target's public certificate is to encrypt the secret key. Only the
target can decrypt the secret key, which is used to encrypt the user data.

The client's private key is used to sign both the secret key and the user data. The client's public key is
embedded in the RSA token and validated at the target. If the client's public key is not trusted when calling
the CertPath APIs at the target, the RSA token validation cannot continue. If the client's public key is
trusted, it can be used to verify the secret key and user data signatures.

The basic goal is to convert the client subject into a subject at the target by securely propagating the
required information. After the subject is generated at the target, the RSA authentication mechanism
process is complete.

Configuring the RSA token authentication mechanism
You use the WebSphere Application Server administrative console to configure the Rivest Shamir Adleman
(RSA) token authentication mechanism. The RSA token authentication mechanism can only be used for
administrative requests. As such, the authentication mechanism choices for administrative authentication
are part of the Global Security panel of the administrative console.

Before you begin

RSA token authentication mechanism is the default selection for the application server, administrative
agent, and job manager profiles. LTPA is still the default for the deployment manager profile to preserve
the same behavior for the existing topology.

1460 Administering WebSphere applications



About this task

You configure Lightweight Third-Party Authentication (LTPA) and Kerberos on the main authentication
mechanism panels of the administrative console as well as configure RSA token authentication. During
registration of a base profile with the administrative agent, the trusted certificates on both sides are
updated with the root signer for the other. The same process occurs during registration of an
administrative agent or deployment manager with a job manager. When removing the registration, the
trusted signers are removed from both sides so that trust is no longer established.

By default, the RSA mechanism is set up correctly during the registration tasks, such as registerNode or
registerWithJobManager. No further actions are necessary to establish trust within these environments.
However, if you need to establish trust between two base servers or between two admin agents, for
example, you can use the following steps to further configure the RSA token authentication mechanism:

Procedure
1. Click Security > Global security . Under Administrative security click the link to Administrative

authentication.

2. Select the RSA token radio button. Select a data encryption keystore from the drop-down list. The
option is recommend for flexible systems administration.

3. Optional: To exchange the root signers between two base servers:

a. Select the root keystore from the Data encryption keystore drop-down list (such as
NodeRSATokenRootStore).

b. Click Extract Signer.

c. Enter a fully-qualified name in the Certificate file name field.

d. Click OK.

4. Optional: Transfer the extracted root signer to the other server, and add it to that server's trusted
signers keystore:

a. Select the trusted keystore from the drop-down list (such as NodeRSATokenTrustedStore).

b. Click Add Signer.

c. Enter a unique name for the Alias.

d. Enter a fully-qualified name for the signer key file.

e. Click OK.

5. Enter the nonce cache timeout value.

6. Enter token timeout value.

7. Click Apply and Save.

Results

You have configured the RSA token authentication mechanism.

RSA token authentication settings:

Use this panel to configure RSA token authentication.

To view this administrative console page, click Security > Global security. Under Administrative security
click Administrative authentication.

The administrative authentication method is used when an administrative process on this profile connects
to another profile. If the primary authentication method is set to RSA token and that primary method fails,
the system attempts to use the current application authentication method (which could be SWAM,
Kerberos, or LTPA for example).

Chapter 19. Administering application security 1461



Note: SWAM is deprecated and will be removed in a future release.

RSA token (recommended for flexible systems administration):

RSA token is an authentication mechanism using certificates for signing and encryption portions of the
security information being propagated.

Information Value
Default: Enabled

Data encryption keystore:

This is the keystore that contains the personal certificate used to encrypt and sign RSA tokens.

Information Value
Data type: text

Personal certificate for encryption:

This is the alias found in the Data encryption keystore that is used to encrypt and sign RSA tokens.

Information Value
Data type: text

Trusted signers keystore:

This is the keystore used to contain signer certificates that can validate RSA tokens sent by other servers.
The RSA token contains a sending certificate that needs to be validated by this trust store using a
CertPath validation.

Information Value
Data type: text

Nonce cache timeout:

Specifies the amount of time, in minutes, that the issued token is valid.

This field displays the maximum timeout, in minutes, for a token to be considered valid.

Information Value
Data type: Integer
Default: 20
Minimum: 10
Maximum: Integer.MAX_VALUE

Token timeout:

Specifies the amount of time, in minutes, that the issued token is valid.

This field displays the maximum timeout, in minutes, for a token to be considered valid.

Information Value
Data type: Integer

1462 Administering WebSphere applications



Information Value
Default: 10
Minimum: 10
Maximum: Integer.MAX_VALUE

Only use the active application authentication mechanism (currently LTPA):

Select to encrypt authentication information so that the application server can send the data from one
server to another in a secure manner.

The encryption of authentication information that is exchanged between servers involves the Lightweight
Third-Party Authentication (LTPA) mechanism.

Kerberos:

Select to encrypt authentication information so that the application server can send the data from one
server to another in a secure manner.

The encryption of authentication information that is exchanged between servers involves the Kerberos
mechanism.

Note: Kerberos must be configured before this option can be selected.

RSA token certificate use:

The Rivest Shamir Adleman (RSA) token uses certificates in a similar way that Secure Sockets Layer
(SSL) uses them. However, the trust established for SSL and RSA are different, and RSA certificates
should not use SSL certificates and vice versa. The SSL certificates can be used by pure clients, and
when used for the RSA mechanism would allow the client to send an RSA token to the server. The RSA
token authentication mechanism is purely for server-to-server requests and should not be used by pure
clients. The way to prevent this is to control the certificates used by RSA in such as a way so they are
never distributed to any clients. There is a different root certificate for RSA that prevents trust being
established with clients who only need SSL certificates.

RSA root certificate

For each profile there is a root certificate stored in the rsatoken-root-key.p12 keystore. The sole purpose
of this RSA root certificate is to sign the RSA personal certificate which is stored in the rsatoken-key.p12
keystore. The RSA root certificate has a default lifetime of 15 years. The signer from the RSA root
certificate is shared with other processes to establish trust.

The keytool utility is available using the QShell Interpreter. Using the keytool utility, you can list the
contents of these keystores and display the keyEntry (personal certificate). The following example
illustrates how this is accomplished for the rsatoken-root-key.p12 (RSA root certificate) and
rsatoken-key.p12 (RSA personal certificate).
${profile_root}\config\cells\${cellname}\nodes\${nodename}> keytool -list -v -keystore rsatoken-root-key.p12
–storepass WebAS -storetype PKCS12

Alias name: root
Entry type: keyEntry
Certificate[1]:
Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Serial number: 3474fccaf789d
Valid from: 11/12/07 2:50 PM until: 11/7/27 2:50 PM
Certificate fingerprints:

MD5: 7E:E6:C7:E8:40:4E:9B:96:5A:66:E5:0B:37:0B:08:FD

Chapter 19. Administering application security 1463



SHA1: 36:94:81:55:C4:48:83:27:89:C7:16:D2:AD:3D:3E:67:DF:1D:6E:87

${profile_root}\config\cells\${cellname}\nodes\${nodename}> keytool -list -v -keystore rsatoken-key.p12
–storepass WebAS -storetype PKCS12

Alias name: default
Entry type: keyEntry
Certificate[1]:
Owner: CN=9.41.62.64, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Serial number: 3475073488921
Valid from: 11/12/07 2:50 PM until: 11/11/08 2:50 PM
Certificate fingerprints:

MD5: FF:1C:42:E3:DA:FF:DC:A4:35:B2:33:30:D1:6E:E0:19
SHA1: A4:FB:9D:7B:A1:5B:6A:37:9F:20:BD:B2:BD:98:FA:68:71:57:28:62

Certificate[2]:
Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode
04, O=IBM, C=US
Serial number: 3474fccaf789d
Valid from: 11/12/07 2:50 PM until: 11/7/27 2:50 PM
Certificate fingerprints:

MD5: 7E:E6:C7:E8:40:4E:9B:96:5A:66:E5:0B:37:0B:08:FD
SHA1: 36:94:81:55:C4:48:83:27:89:C7:16:D2:AD:3D:3E:67:DF:1D:6E:87

The purpose of the RSA personal certificate is to sign and encrypt information in the RSA token. The RSA
personal certificate has a default lifetime of one year because it is used to sign and encrypt data that is
transmitted over the wire. Refreshing the certificate is performed by the certificate expiration monitor, which
is used for any other certificate in the system including SSL certificates.

RSA token trust is established when the rsatoken-trust.p12 of the target process contains the signer of
the root certificate of the client process that sends a token. Inside the RSA token is the public certificate of
the client, which must be validated at the target before being used to decrypt data. The validation of the
client's public certificate is performed using the CertPath APIs, which use the rsatoken-trust.p12 as the
source of certificates used during the validation.

The following example shows the use of the keytool utility to list the rsatoken-trust.p12 keystore.

Note: This trust store contains three trustedCertEntry (public certificate) entries. The root public certificate
from the administrative agent, a root public certificate from a job manager to which it is registered,
and a root public certificate from a base profile to which it is registered.

${profile_root}\config\cells\${cellname}\nodes\${nodename}> keytool -list -v -keystore rsatoken-trust.p12
–storepass WebAS -storetype PKCS12

Alias name: root
Entry type: trustedCertEntry

Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US
Serial number: 3474fccaf789d
Valid from: 11/12/07 2:50 PM until: 11/7/27 2:50 PM
Certificate fingerprints:

MD5: 7E:E6:C7:E8:40:4E:9B:96:5A:66:E5:0B:37:0B:08:FD
SHA1: 36:94:81:55:C4:48:83:27:89:C7:16:D2:AD:3D:3E:67:DF:1D:6E:87

*******************************************
Alias name: cn=9.41.62.64, ou=root certificate, ou=birkt60jobmgrcell02, ou=birkt
60jobmgr02, o=ibm, c=us
Entry type: trustedCertEntry

Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60JobMgrCell02, OU=BIRKT60JobMgr02, O=IBM, C=US
Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60JobMgrCell02, OU=BIRKT60JobMgr02, O=IBM, C=US
Serial number: 34cc4c5d71740
Valid from: 11/12/07 4:30 PM until: 11/7/27 4:30 PM

1464 Administering WebSphere applications



Certificate fingerprints:
MD5: AB:65:3A:04:5B:C7:6D:A8:B1:98:B9:7B:65:A8:FA:F8
SHA1: C0:83:FE:D0:B6:30:FB:A1:10:41:4B:8E:50:4B:78:40:0F:E5:E3:35

*******************************************
Alias name: birkt60node19_signer
Entry type: trustedCertEntry

Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60Node15Cell, OU=BIRKT60Node19, O=IBM, C=US
Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60Node15Cell, OU=BIRKT60Node19, O=IBM, C=US
Serial number: 34825d997fda3
Valid from: 11/12/07 3:06 PM until: 11/7/27 3:06 PM
Certificate fingerprints:

MD5: 66:61:CE:7C:C7:44:8B:A7:23:FF:1B:68:E4:AC:24:55
SHA1: 25:E0:6B:D9:60:BB:67:5B:C6:67:BD:02:2C:54:E3:DA:24:E5:31:A3

*******************************************

You can use the WebSphere Application Server certificate management tools to create a new personal
certificate, and then replace the RSA personal certificate in the rsa-key.p12 and the public key in the
rsa-trust.p12 with this newly created personal certificate. If you replace the RSA personal certificate prior to
federation to an administrative agent or job manager, the exchange of certificates is done for you. If you
change the certificate after federation, you need to make sure the rsa-trust.p12 on the administrative agent
or job manager is updated with the signer for your new certificate to establish trust.

Simple WebSphere authentication mechanism (deprecated)
The Simple WebSphere authentication mechanism (SWAM) defines rules about security information and
the format of how security information is stored in both credentials and tokens. SWAM is intended for
simple, non-distributed, single application server runtime environments.

Note: SWAM was deprecated in WebSphere Application Server Version 8.5 and will be removed in a
future release.

The single application server restriction is due to the fact that SWAM does not support forwardable
credentials. If a servlet or enterprise bean in application server process 1, invokes a remote method on an
enterprise bean living in another application server process 2, the identity of the caller identity in process 1
is not transmitted to server process 2. What is transmitted is an unauthenticated credential, which,
depending on the security permissions configured on the EJB methods, can cause authorization failures.

Because SWAM is intended for a single application server process, single sign-on (SSO) is not supported.

The SWAM authentication mechanism is suitable for simple environments, software development
environments, or other environments that do not require a distributed security solution.

Message layer authentication
Defines the credential information and sends that information across the network so that a receiving server
can interpret it.

When you send authentication information across the network using a token the transmission is
considered message layer authentication because the data is sent with the message inside a service
context.

A pure Java client uses Kerberos (KRB5) or basic authentication, or Generic Security Services Username
Password (GSSUP), as the authentication mechanism to establish client identity.

However, a servlet can use either basic authentication (GSSUP) or the authentication
mechanism of the server, Kerberos (KRB5) or Lightweight Third Party Authentication (LTPA), to send
security information in the message layer. Use KRB5 or LTPA by authenticating or by mapping the basic
authentication credentials to the security mechanism of the server.

Chapter 19. Administering application security 1465



The security token that is contained in a token-based credential is authentication mechanism-specific. The
way that the token is interpreted is only known by the authentication mechanism. Therefore, each
authentication mechanism has an object ID (OID) representing it. The OID and the client token are sent to
the server, so that the server knows which mechanism to use when reading and validating the token. The
following list contains the OIDs for each mechanism:

BasicAuth (GSSUP): oid:2.23.130.1.1.1
KRB5: OID: 1.2.840.113554.1.2.2
LTPA: oid:1.3.18.0.2.30.2
SWAM: No OID because it is not forwardable

Note: SWAM is deprecated in WebSphere Application Server Version 8.5 and will be removed in a future
release.

On the server, the authentication mechanisms can interpret the token and create a credential, or they can
authenticate basic authentication data from the client, and create a credential. Either way, the created
credential is the received credential that the authorization check uses to determine if the user has access
to invoke the method. You can specify the authentication mechanism by using the following property on
the client side:

v com.ibm.CORBA.authenticationTarget

Basic authentication (BasicAuth) and KRB5 are currently the only valid values. You can configure the
server through the administrative console.

Note: When perform basic authentication is enabled, if the client is not similarly configured (and does not
pass a credential such as a user ID and password).

Configuring authentication retries

Situations occur where you want a prompt to display again if you entered your user ID and password
incorrectly or you want a method to retry when a particular error occurs back at the client. If you can
correct the error by information at the client side, the system automatically performs a retry without the
client seeing the failure, if the system is configured appropriately.

Some of these errors include:
v Entering a user ID and password that are not valid
v Having an expired credential on the server
v Failing to find the stateful session on the server

By default, authentication retries are enabled and perform three retries before returning the error to the
client. Use the com.ibm.CORBA.authenticationRetryEnabled property (True or False) to enable or disable
authentication retries. Use the com.ibm.CORBA.authenticationRetryCount property to specify the number
of retry attempts.

Integrating third-party HTTP reverse proxy servers
These steps are required to use a trust association interceptor with a reverse proxy security server.

About this task

WebSphere Application Server enables you to use multiple trust association interceptors. The application
server uses the first interceptor that can handle the request.

1466 Administering WebSphere applications



Procedure
1. Access the administrative console.

Type http://server_name:port_number/ibm/console in a web browser.

Port 9060 is the default port number for accessing the administrative console. During installation,
however, you might have specified a different port number. Use the appropriate port number.

2. Click Security > Global security.

3. Under Web and SIP security, click Trust association.

4. Select the Enable trust association option.

5. Under Additional properties, click Interceptors. The default value appears.

6. Verify that the appropriate trust association interceptors are listed.

Results

Trust association is enabled.

What to do next
1. If you are enabling security, make sure that you complete the remaining steps for enabling security.
2. Save, stop and restart all of the product servers (deployment managers, nodes and application

servers) for the changes to take effect.

Trust associations
Trust association enables the integration of IBM WebSphere Application Server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials that are passed by the
proxy server.

Demand for such an integrated configuration has become more compelling, especially when a single
product cannot meet all of the customer needs or when migration is not a viable solution. This article
provides a conceptual background behind the approach.

In this setup, WebSphere Application Server is used as a back-end server to further exploit its fine-grained
access control. The reverse proxy server passes the HTTP request to WebSphere Application Server that
includes the credentials of the authenticated user. WebSphere Application Server then uses these
credentials to authorize the request.

Trust association model

The idea that WebSphere Application Server can support trust association implies that the product
application security recognizes and processes HTTP requests that are received from a reverse proxy
server. WebSphere Application Server and the proxy server engage in a contract in which the product
gives its full trust to the proxy server and the proxy server applies its authentication policies on every web
request that is dispatched to WebSphere Application Server. This trust is validated by the interceptors that
reside in the product environment for every request received. The method of validation is agreed upon by
the proxy server and the interceptor.

Running in trust association mode does not prohibit WebSphere Application Server from accepting
requests that did not pass through the proxy server. In this case, no interceptor is needed for validating
trust.

WebSphere Application Server supports the following trust association interceptor (TAI) interfaces:

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus
This TAI interceptor implementation that implements the new WebSphere Application Server
interface supports WebSphere Application Server Version 5.1.1 and later. The interface supports

Chapter 19. Administering application security 1467



WebSEAL Version 5.1, but does not support WebSEAL Version 4.1. For an explanation of security
attribute propagation, see “Security attribute propagation” on page 1584.

com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl
This interceptor is new to this release. SPNEGO has replaced SPNEGO TAI as the web
authenticator for WebSphere Application Server.

IBM WebSphere Application Server: WebSEAL Integration

The integration of WebSEAL and WebSphere Application Server security is achieved by placing the
WebSEAL server at the front-end as a reverse proxy server. From a WebSEAL management perspective,
a junction is created with WebSEAL on one end, and the product web server on the other end. A junction
is a logical connection that is created to establish a path from the WebSEAL server to another server.

In this setup, a request for web resources that are stored in a protected domain of the product is submitted
to the WebSEAL server where it is authenticated against the WebSEAL security realm. If the requesting
user has access to the junction, the request is transmitted to the WebSphere Application Server HTTP
server through the junction, and then to the application server.

Meanwhile, WebSphere Application Server validates every request that comes through the junction to
ensure that the source is a trusted party. This process is referenced as validating the trust and it is
performed by a WebSEAL product-designated interceptor. If the validation is successful, WebSphere
Application Server authorizes the request by checking whether the client user has the required
permissions to access the web resource. If so, the web resource is delivered to the WebSEAL server
through the web server, which then gives the resource to the client user.

WebSEAL server

The policy director delegates all of the web requests to its web component, the WebSEAL server. One of
the major functions of the server is to perform authentication of the requesting user. The WebSEAL server
consults a Lightweight Directory Access Protocol (LDAP) directory. It can also map the original user ID to

1468 Administering WebSphere applications



another user ID, such as when global single sign-on (GSO) is used.

For successful authentication, the server plays the role of a client to WebSphere Application Server when
channeling the request. The server needs its own user ID and password to identify itself to WebSphere
Application Server. This identity must be valid in the security realm of WebSphere Application Server. The
WebSEAL server replaces the basic authentication information in the HTTP request with its own user ID
and password. In addition, WebSphere Application Server must determine the credentials of the requesting
client so that the application server has an identity to use as a basis for its authorization decisions. This
information is transmitted through the HTTP request by creating a header called iv-creds, with the Tivoli
Access Manager user credentials as its value.

HTTP server

The junction that is created in the WebSEAL server must get to the HTTP server that serves as the
product front end. However, the HTTP server is shielded from knowing that trust association is used. As
far as it is concerned, the WebSEAL product is just another HTTP client, and as part of its normal
routines, it sends the HTTP request to the product. The only requirement on the HTTP server is a Secure
Sockets Layer (SSL) configuration using server authentication only. This requirement protects the requests
that flow within the junction.

Chapter 19. Administering application security 1469



Web collaborator

When trust association is enabled, the web collaborator manages the interceptors that are configured in
the system. The web collaborator loads and initializes these interceptors when you restart your servers.
When a request is passed to WebSphere Application Server by the Web server, the web collaborator
eventually receives the request for a security check. Two actions must take place:
1. The request must be authenticated.
2. The request must be authorized.

The web authenticator is called to authenticate the request by passing the HTTP request. If successful, a
good credential record is returned by the authenticator, which the web collaborator uses to base its
authorization for the requested resource. If the authorization succeeds, the web collaborator indicates to
WebSphere Application Server that the security check has succeeded and that the requested resource can
be served.

Web authenticator

The web authenticator is asked by the web collaborator to authenticate a given HTTP request. Knowing
that trust association is enabled, the task of the web authenticator is to find the appropriate trust
association interceptor to direct the request for processing. The web authenticator queries every available
interceptor. If no target interceptor is found, the web authenticator processes the request as though trust
association is not enabled.

Note:

WebSphere Application Server Version 4 through WebSphere Application Server Version 6.x
support the com.ibm.websphere.security.TrustAssociationInterceptor.java interface. WebSphere
Application Server Version 7.0.x and later supports the
com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl interface.

1470 Administering WebSphere applications



Trust association interceptor interface

The intent of the trust association interceptor interface is to have reverse proxy security servers (RPSS)
exist as the exposed entry points to perform authentication and coarse-grained authorization, while
WebSphere Application Server enforces further fine-grained access control. Trust associations improve
security by reducing the scope and risk of exposure.

In a typical e-business infrastructure, the distributed environment of a company consists of web application
servers, web servers, existing systems, and one or more RPSS, such as the Tivoli WebSEAL product.
Such reverse proxy servers, front-end security servers, or security plug-ins registered within web servers,
guard the HTTP access requests to the web servers and the web application servers. While protecting
access to the Uniform Resource Identifiers (URIs), these RPSS perform authentication, coarse-grained
authorization, and request routing to the target application server.

When a web server, such as an IBM HTTP Server, uses a TAI to communicate with WebSphere
Application Server, sometimes it is essential for the TAI to know whether a request came through a web
server or came directly to WebSphere Application Sever. Therefore the WebSphere Application Server
Web container uses three HttpServletRequest attributes to provide the TAI with the certificate information
for a request:

v The com.ibm.websphere.ssl.direct_connection_peer_certificates attribute contains a X509Certificate[]
object of the certificate for a direct peer.

v The com.ibm.websphere.ssl.direct_connection_cipher_suite attribute contains a string object of a direct
cipher suite.

v The com.ibm.websphere.webcontainer.is_direct_connection attribute contains a boolean object that
indicates whether the connection was made through a web server, or was made directly to WebSphere
Application Server.

See the topic Web container request attributes for more information about these attributes.

Trust association settings
Use this page to enable trust association, which integrates application server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials passed by the proxy
server.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand Web security and click Trust association.

When security is enabled and any of these properties change, go to the Global security panel and click
Apply to validate the changes.

Enable trust association:

Specifies whether trust association is enabled.

Information Value
Data type: Boolean
Default: Disable
Range: Enable or Disable

Chapter 19. Administering application security 1471



Trust association interceptor collection
Use this page to specify trust information for reverse security proxy servers.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand Web and SIP security and click Trust association.

3. Under Additional Properties, click Interceptors.

When security is enabled and any of these properties are changed, go to the Global security panel and
click Apply to validate the changes.

Interceptor class name:

Specifies the trust association interceptor class name.

Data type
String

Trust association interceptor settings
Use this page to specify trust information for reverse security proxy servers.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Web and SIP security.

3. Click Trust association.

4. Under Additional Properties, click Interceptors > New.

Interceptor class name:

Specifies the trust association interceptor class name.

Data type
String

Single sign-on for authentication
With single sign-on (SSO) support, web users can authenticate once when accessing both WebSphere
Application Server resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans,
and Lotus Domino resources, such as documents in a Domino database, or accessing resources in
multiple WebSphere Application Server domains.

There are various ways to accomplish SSO, with the most common in WebSphere using LTPA cookies.
LTPA cookies do not require any particular client and allow SSO across different cells provide the registry
and LTPA keys are the same.

There are other flavors of SSO, including Simple and Protected GSS-API Negotiation (SPNEGO), which is
a way to use the token from a Kerberos login (typically Windows) to authenticate to WebSphere
Application Server. This prevents the user from having to type in their userid and passwords again.

Note: In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. This function was deprecated In
WebSphere Application Server 7.0. SPNEGO web authentication has taken its place to provide
dynamic reload of the SPNEGO filters and to enable fallback to the application login method.

1472 Administering WebSphere applications



TAIs are also a form of single sign-on when used in combination with a Proxy server that does the
front-end authentication. The TAI allows the credentials to flow to WebSphere from the Proxy server and to
be used to login without the need to re-authenticate the user.

Single sign-on for authentication using LTPA cookies
With single sign-on (SSO) support, web users can authenticate once when accessing both WebSphere
Application Server resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans,
and Lotus Domino resources, such as documents in a Domino database, or accessing resources in
multiple WebSphere Application Server domains.

Application servers distributed in multiple nodes and cells can securely communicate using the Lightweight
Third Party Authentication (LTPA) protocol. LTPA is intended for distributed, multiple application server and
machine environments. LTPA can support security in a distributed environment through cryptography. This
support permits LTPA to encrypt, digitally sign, and securely transmit authentication-related data, and later
decrypt and verify the signature.

LTPA also provides the SSO feature wherein a user is required to authenticate only once in a domain
name system (DNS) domain and can access resources in other WebSphere Application Server cells
without getting prompted. Web users can authenticate once to a WebSphere Application Server or to a
Domino server. This authentication is accomplished by configuring WebSphere Application Servers and the
Domino servers to share authentication information.

Without logging in again, web users can access other WebSphere Application Servers or Domino servers
in the same DNS domain that are enabled for SSO. You can enable SSO among WebSphere Application
Servers by configuring SSO for WebSphere Application Server. To enable SSO between WebSphere
Application Servers and Domino servers, you must configure SSO for both WebSphere Application Server
and for Domino.

Prerequisites and conditions

To take advantage of support for SSO between WebSphere Application Servers or between WebSphere
Application Server and a Domino server, applications must meet the following prerequisites and conditions:
v Verify that all servers are configured as part of the same DNS domain. The realm names on each

system in the DNS domain are case sensitive and must match identically. For example, if the DNS
domain is specified as mycompany.com, then SSO is effective with any Domino server or WebSphere
Application Server on a host that is part of the mycompany.com domain, for example, a.mycompany.com
and b.mycompany.com.

v Verify that all servers share the same registry.

This registry can be either a supported Lightweight Directory Access Protocol (LDAP)
directory server or, if SSO is configured between two WebSphere Application Servers, a stand-alone
custom registry.Domino servers do not support stand-alone custom registries, but you can use a
Domino-supported registry as a stand-alone custom registry within WebSphere Application Server.

You can use a Domino directory that is configured for LDAP access or other LDAP directories for the
registry. The LDAP directory product must have WebSphere Application Server support. Supported
products include both Domino and LDAP servers, such as IBM Tivoli Directory Server. Regardless of
the choice to use an LDAP or a stand-alone custom registry, the SSO configuration is the same. The
difference is in the configuration of the registry.

v Define all users in a single LDAP directory. Using multiple Domino directory assistance documents to
access multiple directories also is not supported.

v Enable HTTP cookies in browsers because the authentication information that is generated by the
server is transported to the browser in a cookie. The cookie is used to propagate the authentication
information for the user to other servers, exempting the user from entering the authentication
information for every request to a different server.

v For a Domino server:
– Domino Release 6.5.4 for iSeries and other platforms are supported.
– A Lotus Notes® client Release 5.0.5 or later is required for configuring the Domino server for SSO.

Chapter 19. Administering application security 1473



– You can share authentication information across multiple Domino domains.
v For WebSphere Application Server:

– WebSphere Application Server Version 3.5 or later for all platforms are supported.
– You can use any HTTP web server that is supported by WebSphere Application Server.
– You can share authentication information across multiple product administrative domains.
– Basic authentication (user ID and password) using the basic and form-login mechanisms is

supported.

Note: Form-login mechanisms for web applications require that SSO is enabled.
– By default, WebSphere Application Server does a case-sensitive comparison for authorization. This

comparison implies that a user who is authenticated by Domino matches the entry exactly (including
the base distinguished name) in the WebSphere Application Server authorization table. If case
sensitivity is not considered for the authorization, enable the Ignore Case property in the LDAP user
registry settings.

Using a WebSphere Application Server API to achieve downstream web single
sign-on with an LtpaToken2 cookie
You can programmatically perform downstream Single Sign On (SSO) web propagation of a Lightweight
Third Party Authentication (LTPA) cookie without the need for an application to store and send user
credentials.

WebSphere Application Server provides API support to propagate an LtpaToken2 cookie to downstream
web single sign-on applications.

Web applications running in mid-tier WebSphere servers might need to propagate LtpaToken2 cookies on
downstream web invocations. In this release of WebSphere Application Server, a new Application
Programming Interface (API) is provided for application developers to programmatically perform
downstream SSO without the need for an application to store and send user credentials.

This function is a public API in package com.ibm.websphere.security.WSSecurityHelper, and is defined as
follows:
/**

* Extracts an LTPA sso token from the subject of current
* thread and builds a ltpa cookie out of it for use on
* downstream web invocations.
* When the returned value is not null use Cookie methods
* getName() and getValue() to set the Cookie header
* on an http request with header value of
* Cookie.getName()=Cookie.getValue()

WebSphere Cell

browser
agent, or
programming
client

secure
web application

secure
web application

Use of the LTPA Cookie API for
downstream authentication

Figure 14. Use of the LTPA Cookie API for downstream authentication

1474 Administering WebSphere applications



*
* @return an object of type javax.servlet.http.Cookie.
*
*/

The following is an example of how you can use the new WSSecurityHelper API:
import javax.servlet.http.Cookie;
import com.ibm.websphere.security.WSSecurityHelper;

Cookie ltpaCookie = WSSecurityHelper.getLTPACookieFromSSOToken()

Note: The getLTPACookieFromSSOToken() method from the WSSecurityHelper class is deprecated. Use
the functionality provided by the getSSOCookieFromSSOToken() method from the
WebSecurityHelper class.

Subsequently, the LTPA cookie can be set on an HTTP request header. In this case, the value of the
cookie header is the string:
ltpaCookie.getName()=ltpaCookie.getValue()

For example, if you use org.apache.commons.httpclient.HttpMethod to build your HTTP request, the LTPA
cookie can be set as follows:
HttpMethod method = .; // new your HttpMethod based on the

// target URL for the web application
if (ltpaCookie != null)

method.setRequestHeader(“Cookie”, ltpaCookie.getName()+”=”+ltpaCookie.getValue());

Note: You should only send LTPA cookies over SSL connections.

Note: You must check whether the LTPA cookie that is returned from calling
WSSecurityHelper.getLTPACookieFromSSOToken() in the previous example is not null before you
issue any getter methods. Also, to successfully retrieve a LTPA cookie object, and to ensure an
SSO token on the thread of execution, make sure that the user has established a successful
authentication with the mid-tier server.

Note: WebSphere Application Server does not ship supporting jars for HTTP programming, such as the
Apache httpclient. You must provide your own supporting functions for HTTP programming.

Enterprise Identity Mapping
Enterprise Identity Mapping (EIM) for iSeries is the OS/400 implementation of an IBM infrastructure that
allows administrators and application developers to solve the problem of managing multiple user registries
across their enterprise.

Most network enterprises face the problem of multiple user registries, which require each person or entity
within the enterprise to have a user identity in each registry. The need for multiple user registries quickly
grows into a large administrative problem that affects users, administrators, and application developers.
EIM enables inexpensive solutions for easier management of multiple user registries and user identities in
your enterprise.

EIM is a mechanism for mapping and associating a person or entity to the appropriate user identities in
various registries throughout the enterprise. EIM provides application programming interfaces (API) for
creating and managing these identity mapping relationships and provides APIs that applications use to
query this information. In addition, OS/400 uses EIM and Kerberos capabilities to provide a single sign-on
environment.

iSeries Navigator, the iSeries graphical user interface, provides wizards to configure and manage EIM. In
addition, administrators can manage EIM relationships for user profiles through iSeries Navigator.

Chapter 19. Administering application security 1475



For more information on Enterprise Identity Mapping, see Enterprise Identity Mapping concepts.

Global single sign-on principal mapping for authentication
You can use the Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager to
manage authentication to enterprise information systems (EIS) such as databases, transaction processing
systems, and message queue systems that are located within the WebSphere Application Server security
domain. Such authentication is achieved using the global single sign-on (GSO) principal mapper Java
Authentication and Authorization Service (JAAS) login module for Java Platform, Enterprise Edition (Java
EE) Connector Architecture resources.

With GSO principal mapping, a special-purpose JAAS login module inserts a credential into the subject
header. This credential is used by the resource adapter to authenticate to the EIS. The JAAS login module
used is configured on a per-connection factory basis. The default principal mapping module retrieves the
user name and password information from XML configuration files. The JACC provider for Tivoli Access
Manager bypasses the credential that is stored in the Extensible Markup Language (XML) configuration
files and uses the Tivoli Access Manager global sign-on (GSO) database instead to provide the
authentication information for the EIS security domain.

WebSphere Application Server provides a default principal mapping module that associates user credential
information with EIS resources. The default mapping module is defined in the WebSphere Application
Server administrative console on the Application login panel. To access the panel, click Security > Global
security. Under Java Authentication and Authorization Service, click Application logins. The mapping
module name is DefaultPrincipalMapping.

The EIS security domain user ID and password are defined under each connection factory by an
authDataAlias attribute. The authDataAlias attribute does not contain the user name and password; this
attribute contains an alias that refers to a user name and password pair that is defined elsewhere.

The Tivoli Access Manager principal mapping module uses the authDataAlias attribute to determine the
GSO resource name and the user name that is required to perform the lookup on the Tivoli Access
Manager GSO database. The Tivoli Access Manager Policy Server retrieves the GSO data from the user
registry.

Tivoli Access Manager stores authentication information on the Tivoli Access Manager GSO database
against a resource and user name pair.

1476 Administering WebSphere applications



Implementing single sign-on to minimize web user authentications
With single sign-on (SSO) support, web users can authenticate once when accessing web resources
across multiple WebSphere Application Servers. Form login mechanisms for web applications require that
SSO is enabled. Use this topic to configure single sign-on for the first time.

Before you begin

SSO is supported only when Lightweight Third Party Authentication (LTPA) is the authentication
mechanism.

When SSO is enabled, a cookie is created containing the LTPA token and inserted into the HTTP
response. When the user accesses other web resources in any other WebSphere Application Server
process in the same domain name service (DNS) domain, the cookie is sent in the request. The LTPA
token is then extracted from the cookie and validated. If the request is between different cells of
WebSphere Application Servers, you must share the LTPA keys and the user registry between the cells for
SSO to work. The realm names on each system in the SSO domain are case sensitive and must match
identically.

The realm name is the same as the host name.

Figure 15. GSO principal mapping architecture

Chapter 19. Administering application security 1477



For the Lightweight Directory Access Protocol (LDAP) the realm name is the host:port realm name of the
LDAP server. The LTPA authentication mechanism requires that you enable SSO if any of the web
applications have form login as the authentication method.

Because single sign-on is a subset of LTPA, it is recommended that you read “Lightweight Third Party
Authentication” on page 1447 for more information.

When you enable security attribute propagation, the following cookie is always added to the response:

LtpaToken2
LtpaToken2 contains stronger encryption and enables you to add multiple attributes to the token.
This token contains the authentication identity and additional information such as the attributes that
are used for contacting the original login server and the unique cache key for looking up the
Subject when considering more than just the identity in determining uniqueness.

Note: The following cookie is optionally added to the response when the Interoperability mode
flag is enabled:

LtpaToken
LtpaToken is used for inter-operating with previous releases of WebSphere Application Server.
This token contains the authentication identity attribute only.

Note: LtpaToken is generated for releases prior to WebSphere Application Server Version
5.1.1. LtpaToken2 is generated for WebSphere Application Server Version 5.1.1 and beyond.

Table 79. LTPA token types. This table describes the LTPA token types.
Token type Purpose How to specify

LtpaToken2 only This is the default token type. It uses the
AES-CBC-PKCS5 padding encryption strength
(128-bit key size). This token is stronger than the
older LtpaToken used prior to WebSphere
Application Server Version 6.02. This is the
recommended option when interoperability with
older releases is not necessary.

Disable the Interoperability mode option in the
SSO configuration panel within the
administrative console. To access this panel,
complete the following steps:

1. Click Security > Global security.

2. Under Web security, click Single sign-on
(SSO).

LtpaToken and LtpaToken2 Use to interoperate with releases prior to
WebSphere Application Server Version 5.1.1.
The older LtpaToken cookie is present along
with the new LtpaToken2 cookie. Provided the
LTPA keys are correctly shared, you should be
able to interoperate with any version of
WebSphere using this option.

Enable the Interoperability mode option in the
SSO configuration panel within the
administrative console. To access this panel,
complete the following steps:

1. Click Security > Global security.

2. Under Web security, click Single sign-on
(SSO).

About this task

The following steps are required to configure SSO for the first time.

Procedure
1. Open the administrative console.

Type http://server_name:port_number/ibm/console to access the administrative console
in a web browser.

Port 9060 is the default port number for accessing the administrative console. During installation,
however, you might have specified a different port number. Use the appropriate port number.

2. Click Security > Global security.

3. Under Web security, click Single sign-on (SSO).

4. Click the Enabled option if SSO is disabled. After you click the Enabled option, make sure that you
complete the remaining steps to enable security.

5. Click Requires SSL if all of the requests are expected to use HTTPS.

1478 Administering WebSphere applications



6. Enter the fully qualified domain names in the Domain name field where SSO is effective. If you specify
domain names, they must be fully qualified. If the domain name is not fully qualified, WebSphere
Application Server does not set a domain name value for the LtpaToken cookie and SSO is valid only
for the server that created the cookie.

When you specify multiple domains, you can use the following delimiters: a semicolon (;), a space ( ),
a comma (,), or a pipe (|). WebSphere Application Server searches the specified domains in order from
left to right. Each domain is compared with the host name of the HTTP request until the first match is
located. For example, if you specify ibm.com®; austin.ibm.com and a match is found in the ibm.com
domain first, WebSphere Application Server does not continue to search for a match in the
austin.ibm.com domain. However, if a match is not found in either the ibm.com or austin.ibm.com
domains, then WebSphere Application Server does not set a domain for the LtpaToken cookie.

Table 80. Values to configure the Domain name field.

This table describes the values to configure the Domain name field.
Domain name value type Example Purpose

Blank The domain is not set. This causes the browser to
set the domain to the request host name. The
sign-on is valid on that single host only.

Single domain name austin.ibm.com If the request is to a host within the configured
domain, the sign-on is valid for all hosts within
that domain. Otherwise, it is valid on the request
host name only.

UseDomainFromURL UseDomainFromURL If the request is to a host within the configured
domain, the sign-on is valid for all hosts within
that domain. Otherwise, it is valid on the request
host name only.

Multiple domain names austin.ibm.com;raleigh.ibm.com The sign-on is valid for all hosts within the domain
of the request host name.

Multiple domain names and
UseDomainFromURL

v austin.ibm.com;raleigh.ibm.com;
UseDomainFromURL

The sign-on is valid for all hosts within the domain
of the request host name.

If you specify the UseDomainFromURL, WebSphere Application Server sets the SSO domain name
value to the domain of the host that makes the request. For example, if an HTTP request comes from
server1.raleigh.ibm.com, WebSphere Application Server sets the SSO domain name value to
raleigh.ibm.com .

Tip: The value, UseDomainFromURL, is case insensitive. You can type usedomainfromurl to use this
value.

For more information, see “Single sign-on settings” on page 1538.

7. Optional: Enable the Interoperability mode option if you want to support SSO connections in
WebSphere Application Server version 5.1.1 or later to interoperate with previous versions of the
application server.

This option sets the old-style LtpaToken token into the response so it can be sent to other servers that
work only with this token type. Otherwise, only the LtpaToken2 token is added to the response.

If performance is a consideration, and you are only connecting to Version 6.1 or later servers that and
are not running products that depend on the LtpaToken, do not enable Interoperability mode. When
Interoperability mode is not enabled, an LtpaToken is not returned in a response.

8. Optional: Enable the Web inbound security attribute propagation option if you want information
added during the login at a specific front-end server to propagate to other front-end servers. The SSO
token does not contain any sensitive attributes, but does understand where the original login server
exists in cases where it needs to contact that server to retrieve serialized information. For more
information, see “Security attribute propagation” on page 1584.

Important: If the following statements are true, it is recommended that you disable the Web inbound
security attribute propagation option for performance reasons:

Chapter 19. Administering application security 1479



v You do not have any specific information added to the Subject during a login that
cannot be obtained at a different front-end server.

v You did not add custom attributes to the PropagationToken token using
WSSecurityHelper application programming interfaces (APIs).

If you find that you are missing custom information in the Subject, re-enable the Web
inbound security attribute propagation option to see if the information is propagated
successfully to other front-end application servers.

The following two custom properties might help to improve performance when security
attribute propagation is enabled:

v com.ibm.CSI.propagateFirstCallerOnly

The default value of this property is true. When this custom property is set to true the
first caller in the propagation token that stays on the thread is logged when security
attribute propagation is enabled. When this property is set to false, all of the caller
switches are logged, which can affect performance.

v com.ibm.CSI.disablePropagationCallerList

When this custom property is set to true the ability to add a caller or host list in the
propagation token is completely disabled. This function is beneficial when the caller or
host list in the propagation token is not needed in the environment.

9. Click OK.

What to do next

For the changes to take effect, save, stop, and restart all the product servers.

Single sign-on for HTTP requests using SPNEGO web authentication
You can securely negotiate and authenticate HTTP requests for secured resources in WebSphere
Application Server by using the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) as the
web authentication service for WebSphere Application Server.

Note: In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. This function was deprecated in
WebSphere Application Server Version 7.0. SPNEGO web authentication has taken its place to
provide the following enhancements:

v You can configure and enable SPNEGO web authentication and filters on WebSphere Application
Server by using the administrative console.

v Dynamic reload of SPNEGO is provided without the need to stop and restart WebSphere
Application Server.

v Fallback to an application login method is provided if the SPNEGO web authentication fails.

v SPNEGO can be customized at the WebSphere security domain level. Read about “Multiple
security domains” on page 1233 for more information.

You can enable either SPNEGO TAI or SPNEGO Web Authentication but not both.

The following sections describe SPNEGO web authentication in more detail:

v “What is SPNEGO?” on page 1481

v “The benefits of SPNEGO web authentication” on page 1482

v “SPNEGO web authentication in a single Kerberos realm” on page 1482

v “SPNEGO web authentication in a trusted Kerberos realm” on page 1483

v “Support information for SPNEGO web authentication with a Java client using the HTTP protocol” on
page 1484

1480 Administering WebSphere applications



v “Support information for SPNEGO web authentication with a browser client” on page 1484

v “Setting up SPNEGO as the web authentication mechanism for WebSphere Application Server” on page
1484

What is SPNEGO?

SPNEGO is a standard specification defined in The Simple and Protected GSS-API Negotiation
Mechanism (IETF RFC 2478).

When WebSphere Application Server global and application security are enabled, and SPNEGO web
authentication is enabled, SPNEGO is initialized when processing a first inbound HTTP request. The web
authenticator component then interacts with SPNEGO, which is defined and enabled in the security
configuration repository. When the filter criteria is met, SPNEGO is responsible for authenticating access to
the secured resource that is identified in the HTTP request.

In addition to WebSphere Application Server security runtime services, some external components are
required to enable the operation of SPNEGO. These external components include:
v A client application, for example, Microsoft .NET, or web service and J2EE client that supports the

SPNEGO web authentication mechanism, as defined in IETF RFC 2478. Microsoft Internet Explorer
Version 5.5 or later and Mozilla Firefox Version 1.0 are browser examples. Any browser must be
configured to use the SPNEGO web authentication mechanism. For more information on performing this
configuration, see Configuring the client browser to use SPNEGO.

The authentication of HTTP requests is triggered by the requestor (the client-side), which generates a
SPNEGO token. WebSphere Application Server receives this token. Specifically, the SPNEGO web
authentication decodes and retrieves the requester's identity from the SPNEGO token. The identity is used
to establish a secure context between the requester and the application server.

SPNEGO web authentication is a server-side solution in WebSphere Application Server. Client-side
applications are responsible for generating the SPNEGO token for use by SPNEGO web authentication.
The requester's identity in the WebSphere Application Server security registry must be identical to the
identity that the SPNEGO web authentication retrieves. An identical match does occur when Microsoft
Windows Active Directory server is the Lightweight Directory Access Protocol (LDAP) server that is used in
WebSphere Application Server. A custom login module is available as a plug-in to support custom mapping
of the identity from the Active Directory to the WebSphere Application Server security registry.

Read about Mapping of a client Kerberos principal name to the WebSphere user registry ID for
more information about using this custom login module.

WebSphere Application Server validates the identity against its security registry. If the validation is
successful, the client Kerberos ticket and GSS delegation credential are retrieved and placed in the client
subject, which then produces a Lightweight Third Party Authentication (LTPA) security token. It then places
and returns a cookie to the requester in the HTTP response. Subsequent HTTP requests from this same
requester to access additional secured resources in WebSphere Application Server use the LTPA security
token previously created to avoid repeated login challenges.

The web administrator has access to the following SPNEGO security components and associated
configuration data, as shown in the following figure:

Chapter 19. Administering application security 1481

ftp://ftp.isi.edu/in-notes/rfc2478.txt
ftp://ftp.isi.edu/in-notes/rfc2478.txt


The benefits of SPNEGO web authentication

The benefits of having WebSphere Application Server use SPNEGO as the web authentication service for
WebSphere Application Server include the following:

v The cost of administering a large number of ids and passwords is reduced.

v A secure and mutually authenticated transmission of security credentials from the web browser or
Microsoft .NET clients is established.

v Interoperability with web services and Microsoft .NET, or web service applications that use SPNEGO
authentication at the transport level is achieved.

v With Kerberos authentication support, SPNEGO web authentication can provide an end-to-end
SPNEGO to Kerberos solution and preserve the Kerberos credential from the client.

SPNEGO web authentication in a single Kerberos realm

SPNEGO web authentication is supported in a single Kerberos realm. The challenge-response handshake
process is shown in the following figure:

In the previous figure, the following events occur:

1. The client sends an HTTP/Post/Get/Web-Service request to WebSphere Application Server.

2. WebSphere Application Server returns HTTP 401 Authenticate/Negotiate.

3. The client obtains a Ticket Granting Ticket (TGT).

Web
Authentication

Module

Security Config
Module

SPNEGO JGSS/KRB5

krb5.conf
krb5.keytab

Figure 16. SPNEGO web authentication and security configuration elements

Active Directory REALM1 KDC

Windows 2003 server machine

Browser Client

Web
Authenticator

SPNEGO

WebSphere
User Registry

Windows client machine

WebSphere Application Server

krb5.conf krb5.keytab

REALM1 KDC

5.

3.

4.

1.

6.

2.

9.

8.

7.

Figure 17. SPNEGO web authentication in a single Kerberos realm

1482 Administering WebSphere applications



4. The client requests a Service Ticket (TGS_REQ).

5. The client obtains a Service Ticket (TGS_REP).

6. The client sends HTTP/Post/Get/Web-Service and an authorization SPNEGO token to WebSphere
Application Server.

7. WebSphere Application Server validates the SPNEGO token. If the validation is successful, it retrieves
the user ID and the GSS delegation credential from the SPNEGO token. Create a KRBAuthnToken
with a client Kerberos credential.

8. WebSphere Application Server validates the user ID with the WebSphere user registry and creates an
LTPA token.

9. WebSphere Application Server returns HTTP 200, content and the LTPA token to the client.

Note: Other clients (for example, web services, .NET and J2EE) that support SPNEGO do not have to
follow the challenge-response handshake process as shown previously. Those clients can obtain a
ticket-granting ticket (TGT) and a Kerberos service ticket for the target server, create a SPNEGO
token, insert it in the HTTP header, and then follow the normal process for creating an HTTP
request.

SPNEGO web authentication in a trusted Kerberos realm

SPNEGO web authentication is also supported in a trusted Kerberos realm. The challenge-response
handshake process is shown in the following figure:

In the previous figure, the following events occur:

1. The client sends an HTTP/Post/Get/Web-Service request to WebSphere Application Server.

2. WebSphere Application Server returns HTTP 401 Authenticate/Negotiate

3. The client obtains a Ticket Granting Ticket (TGT).

4. The client requests a cross realm ticket (TGS_REQ) for REALM2 from the REALM1 KDC.

5. The client uses the cross-realm ticket from step 4 to request a Service Ticket from the REALM2 KDC.

6. The client sends HTTP/Post/Get/Web-Service and an authorization SPNEGO token to WebSphere
Application Server.

Active Directory REALM1 KDC

Windows 20003 server machine

Browser Client

Web
Authenticator

SPNEGO

WebSphere
User Registry

Windows client machine

krb5.conf krb5.keytab

Realm2 KDC
Trusted

3.

WebSphere Application Server

4. 5.

1.

6.

2.

9.

8.

7.

Figure 18. SPNEGO web authentication in a trusted Kerberos realm

Chapter 19. Administering application security 1483



7. WebSphere Application Server validates the SPNEGO token. If the validation is successful, it retrieves
the user ID and the GSS delegation credential from the SPNEGO token. Create a KRBAuthnToken
with a client Kerberos credential.

8. WebSphere Application Server validates the user ID with the WebSphere user registry and creates an
LTPA token.

9. WebSphere Application Server returns HTTP 200, content and the LTPA token to the client.

In the trusted Kerberos realms environment, be aware of the following:

v The Kerberos trusted realm setup must be done on each of the Kerberos KDCs. See your Kerberos
Administrator and User's guide for more information about how to set up Kerberos trusted realms.

v The Kerberos client principal name from the SPNEGO token might not exist in the WebSphere user
registry; the Kerberos principal mapping to the WebSphere user registry might require it.

Read about Mapping of a client Kerberos principal name to the WebSphere user registry ID
for more information.

Support information for SPNEGO web authentication with a Java client using the HTTP
protocol

The following scenarios are supported:

v Domain trust within the same forest

v External domain trust directly between domains within different forests.

v Kerberos realm trust

The following scenarios are not supported:

v Cross-forest trust

v Forest external trust

Support information for SPNEGO web authentication with a browser client

The following scenarios are supported:

v Cross-forest trusts

v Domain trust within the same forest

v Kerberos realm trust

The following scenarios are not supported:

v Forest external trusts

v Domain external trusts

Setting up SPNEGO as the web authentication mechanism for WebSphere Application
Server

Before you set up SPNEGO web authentication in the administrative console or by using wsadmin
commands, you must perform the steps as listed in “Creating a single sign-on for HTTP requests using
SPNEGO Web authentication” to set up SPNEGO web authentication for WebSphere Application Server.

Note: SPNEGO web authentication on the server side must be done by the system administrator. The
Kerberos keytab file must be protected.

Creating a single sign-on for HTTP requests using SPNEGO Web authentication
Creating single sign-ons for HTTP requests using the Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) web authentication for WebSphere Application Server requires the performance of

1484 Administering WebSphere applications



several distinct, yet related functions that when completed, allow HTTP users to log in and authenticate to
the Microsoft domain controller only once at their desktop and to receive automatic authentication from the
WebSphere Application Server.

Before you begin

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. This function was deprecated in
WebSphere Application Server Version 7.0. SPNEGO web authentication has taken its place to
provide the following enhancements:

v You can configure and enable SPNEGO web authentication and filters on the WebSphere
Application Server server side by using the administrative console.

v Dynamic reload of SPNEGO is provided without the need to stop and restart the WebSphere
Application Server server.

v Fallback to an application login method is provided if the SPNEGO web authentication fails.

You can enable either SPNEGO TAI or SPNEGO Web Authentication but not both.

Read about “Single sign-on for HTTP requests using SPNEGO web authentication” on page 1480 for a
better understanding of what SPNEGO Web Authentication is and how it is supported in this version of
WebSphere Application Server.

Before starting this task, complete the following checklist:
v The domain member has users who can log on to the domain. Specifically, you need to have a

functioning Microsoft Windows active directory domain that includes:
– Domain controller
– Client workstation
– Users who can login to the client workstation

v A server platform with WebSphere Application Server running and application security enabled.
v Users on the active directory must be able to access WebSphere Application Server protected

resources using a native WebSphere Application Server authentication mechanism.
v The domain controller and the host of WebSphere Application Server should have the same local time.
v Ensure the clock on clients, Microsoft Active Directory and WebSphere Application Server are

synchronized to within five minutes.
v Be aware that client browsers must be SPNEGO enabled, which you perform on the client application

machine (with details explained in procedure 4, "Configure the client application on the client application
machine").

About this task

The objective of this machine arrangement is to permit users to successfully access WebSphere
Application Server resources without having to authenticate again and thus achieve Microsoft Windows
desktop single sign-on capability.

Configuring the members of this environment to establish Microsoft Windows single sign-on involves
specific activities that are performed on three distinct machines:

v A Microsoft Windows server running the Active Directory Domain Controller and associated Kerberos
Key Distribution Center (KDC).

v A Microsoft Windows domain member (client application), such as a browser or Microsoft .NET client.

v A server platform with WebSphere Application Server running.

Chapter 19. Administering application security 1485



Continue with the following steps to create a single sign-on for HTTP requests using SPNEGO Web
authentication:

Procedure
1. Create a Kerberos service principal (SPN) and keytab file on your Microsoft domain controller machine

You must configure your domain controller machine to create single sign-ons for HTTP requests using
the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) web authentication for
WebSphere® Application Server. Configure the Microsoft Windows Server running the Active Directory
Domain Controller and associated Kerberos Key Distribution Center (KDC).

Read the Configuring your domain controller machine to create single sign-ons for HTTP requests
using SPNEGO article for more information.

2. Create a Kerberos configuration file The IBM implementation of the Java Generic Security Service
(JGSS) and KRB5 require a Kerberos configuration file (krb5.conf or krb5.ini) on each node or Java
virtual machine (JVM). In this release of WebSphere Application Server, this configuration file should
be placed in the config/cells/<cell_name> directory so that all application servers can access this file.
If you do not have a Kerberos configuration file, use a wsadmin command to create one.

Read the Creating a Kerberos configuration article for more information.

3. Configure and enable SPNEGO web authentication using the administrative console on your
WebSphere Application Server machine You can enable and configure the Simple and Protected
GSS-API Negotiation (SPNEGO) as the web authenticator for the application server by using the
administrative console on the WebSphere Application Server machine.

Read the Enabling and configuring SPNEGO web authentication using the administrative console
article for more information.

4. Configure the client application on the client application machine Client-side applications are
responsible for generating the SPNEGO token. You begin this configuration process by configuring
your web browser to use SPNEGO authentication.

Read the Configuring the client browser to use SPNEGO article for more information.

5. Create SPNEGO tokens for J2EE, .NET, Java, web service clients for HTTP requests (optional) You
can create a Simple and Protected GSS-API Negotiation (SPNEGO) token for your applications and
insert this token into the HTTP headers to authenticate to the WebSphere Application Server.

Read the Creating SPNEGO tokens for J2EE, .NET, Java, web service clients for HTTP requests
article for more information.

Creating a single sign-on for HTTP requests using the SPNEGO TAI (deprecated)
Creating single sign-ons for HTTP requests using the Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application Server requires the
performance of several distinct, yet related functions that when completed, allow HTTP users to log in and
authenticate only once at their desktop and receive automatic authentication from the WebSphere
Application Server.

Before you begin

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Before starting this task, complete the following checklist:
v The domain member has users who can log on to the domain. Specifically, you need to have a

functioning Microsoft Windows active directory domain that includes:

1486 Administering WebSphere applications



– Domain controller
– Client workstation
– Users who can login to the client workstation

v A server platform with WebSphere Application Server running and application security enabled.
v Users on the active directory must be able to access WebSphere Application Server protected

resources using a native WebSphere Application Server authentication mechanism.
v The domain controller and the host of WebSphere Application Server should have the same local time.
v Ensure the clock on clients, Microsoft Active Directory and WebSphere Application Server are

synchronized to within five minutes.
v Be aware that client browsers have to be SPNEGO enabled, which you perform on the client application

machine (with details explained in step 2 of this task).

About this task

The objective of this machine arrangement is to permit users to successfully access WebSphere
Application Server resources without having to reauthenticate and thus achieve Microsoft Windows
desktop single sign-on capability.

Configuring the members of this environment to establish Microsoft Windows single sign-on involves
specific activities that are performed on three distinct machines:

v Microsoft Windows Server running the Active Directory Domain Controller and associated Kerberos Key
Distribution Center (KDC)

v A Microsoft Windows domain member (client application), such as a browser or Microsoft .NET client.

v A server platform with WebSphere Application Server running.

Perform the following steps on the indicated machines to create single sign-on for HTTP requests using
SPNEGO

Procedure
1. Domain Controller Machine - Configure the Microsoft Windows Server running the Active Directory

Domain Controller and associated Kerberos Key Distribution Center (KDC) This configuration activity
has the following steps:

v Create a user account for the WebSphere Application Server in a Microsoft Active Directory. This
account will be eventually mapped to the Kerberos service principal name (SPN).

v On the Microsoft Active Directory machine where the Kerberos key distribution center (KDC) is
active, map the user account to the Kerberos service principal name (SPN). This user account
represents the WebSphere Application Server as being a Kerberize'd service with the KDC. Use the
setspn command to map the Kerberos service principal name to a Microsoft user account. The
topic, “Creating a Kerberos service principal and keytab file that is used by the WebSphere
Application Server SPNEGO TAI (deprecated)” on page 1492 has more details about using the
setspn command.

v Create the Kerberos keytab file and make it available to WebSphere Application Server. Use the
ktpass tool to create the Kerberos keytab file (krb5.keytab). The topic, “Creating a Kerberos service
principal and keytab file that is used by the WebSphere Application Server SPNEGO TAI
(deprecated)” on page 1492 has more details about using the ktpass command. to create the
keytab file.

Note: You make the keytab file available to WebSphere Application Server by copying the
krb5.keytab file from the Domain Controller (LDAP machine) to the WebSphere Application
Server machine. See “Using the ktab command to manage the Kerberos keytab file” on page
1496 for more details.

Important: Your domain controller operations must lead to the following results:

Chapter 19. Administering application security 1487



v A user account is created in the Microsoft Active Directory and mapped to a Kerberos
service principal name.

v A Kerberos keytab file (krb5.keytab) is created and made available to the WebSphere
Application Server. The Kerberos keytab file contains the Kerberos service principal
keys WebSphere Application Server uses to authenticate the user in the Microsoft
Active Directory and the Kerberos account.

2. Client Application Machine - Configure the client application. Client-side applications are responsible
for generating the SPNEGO token for use by the SPNEGO TAI. You begin this configuration process
by configuring your web browser to use SPNEGO authentication. See “Configuring the client browser
to use SPNEGO TAI (deprecated)” on page 1510 for the detailed steps required for your browser.

3. WebSphere Application Server Machine - Configure and enable the Application Server and the
associated SPNEGO TAI by performing the following tasks:

v Ensure that LTPA is enabled. See Configuring the Lightweight Third Party Authentication mechanism
for more details.

v Enable the SPNEGO TAI. See “Configuring WebSphere Application Server and enabling the
SPNEGO TAI (deprecated)” on page 1497 for more details.

v Create SPNEGO TAI properties using either the wsadmin command task or the administrative
console.

– For using the wsadmin command task, see

- SpnegoTAICommands group for the AdminTask object (deprecated)

– For using the administrative console, see “Configuring WebSphere Application Server and
enabling the SPNEGO TAI (deprecated)” on page 1497 for more details.

v Configure JVM properties and enable the SPNEGO TAI in Application Server in which it is defined.
See “Configuring JVM custom properties, filtering HTTP requests, and enabling SPNEGO TAI in
WebSphere Application Server (deprecated)” on page 1511 or “Enabling the SPNEGO TAI as JVM
custom property using scripting (deprecated)” on page 1513 for more details.

v Install the Kerberos keytab file (created in step 1) on the WebSphere Application Server machine.
“Creating a Kerberos service principal and keytab file that is used by the WebSphere Application
Server SPNEGO TAI (deprecated)” on page 1492 provides the details.

v Create a basic Kerberos configuration file (krb5.ini or krb5.conf). See The Kerberos configuration file
for details.

v Map the client Kerberos principal name to the WebSphere user registry ID, but only if the
WebSphere Application Server does not use Micorsoft Active Directory. See “Mapping Kerberos
client principal name to WebSphere user registry ID for SPNEGO TAI (deprecated)” on page 1517
for more details.

4. Optional: Using a remote HTTP server - To use a remote server, you must complete the following
steps, which assume that you have already configured the JVM properties and enabled the SPNEGO
TAI in the Application Server in which it is defined (as described in the previous three steps).

a. Complete the steps in “Creating a Kerberos service principal and keytab file that is used by the
WebSphere Application Server SPNEGO TAI (deprecated)” on page 1492 for the remote proxy
server.

b. Merge the previous keytab file created in step 1 with the keytab file created in step 4a. See “Using
the ktab command to manage the Kerberos keytab file” on page 1496 for more information.

c. Create the SPN for the remote proxy server using the addSpnegoTAIProperties wsadmin command
task. For more information, see SpnegoTAICommands group for the AdminTask object
(deprecated).

d. Restart the WebSphere Application Server.

Single sign-on for HTTP requests using SPNEGO TAI (deprecated):

1488 Administering WebSphere applications



WebSphere Application Server provides a trust association interceptor (TAI) that uses the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP
requests for secured resources in WebSphere Application Server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Read about “Creating a single sign-on for HTTP requests using SPNEGO Web authentication” on
page 1484 for more information.

SPNEGO is a standard specification defined in The Simple and Protected GSS-API Negotiation
Mechanism (IETF RFC 2478).

When WebSphere Application Server administrative security is enabled, the SPNEGO TAI is initialized.
While processing inbound HTTP requests, the web authenticator component interacts with the SPNEGO
TAI, which is defined and enabled in the security configuration repository. One interceptor is selected and
is responsible for authenticating access to the secured resource that is identified in the HTTP request.

Important: The use of TAIs is an optional feature. If no TAI is selected, the authentication process
continues normally.

HTTP users log in and authenticate only once at their desktop and are subsequently authenticated
(internally) with WebSphere Application Server. The SPNEGO TAI is invisible to the end-user of
WebSphere applications. The SPNEGO TAI is only visible to the web administrator who is responsible for
ensuring a proper configuration, capacity, and maintenance of the web environment.

In addition to WebSphere Application Server security runtime services, some external components are
required to completely enable operation of the SPNEGO TAI. The external components include:
v A client application, for example, a browser or Microsoft .NET client, that supports the SPNEGO

authentication mechanism, as defined in IETF RFC 2478. Microsoft Internet Explorer Version 5.5 or later
and Mozilla Firefox Version 1.0 are browser examples. Any browser needs to be configured to use the
SPNEGO mechanism. For more information on performing this configuration, see “Configuring the client
browser to use SPNEGO TAI (deprecated)” on page 1510.

The authentication of HTTP requests is triggered by the requestor (the client-side), which generates a
SPNEGO token. WebSphere Application Server receives this token and validates trust between the
requester and WebSphere Application Server. Specifically, the SPNEGO TAI decodes and retrieves the
requester's identity from the SPNEGO token. The identity is used to establish a secure context between
the requester and the application server.

Remember: The SPNEGO TAI is a server-side solution in WebSphere Application Server. Client-side
applications are responsible for generating the SPNEGO token for use by the SPNEGO TAI.
The requester's identity in WebSphere Application Server security registry must be identical
to that identity the SPNEGO TAI retrieves. An identical match does occur when Microsoft
Windows Active Directory server is the Lightweight Directory Access Protocol (LDAP) server
that is used in WebSphere Application Server. A custom login module is available as a
plug-in to support custom mapping of the identity from the Active Directory to the WebSphere
Application Server security registry. See “Mapping Kerberos client principal name to
WebSphere user registry ID for SPNEGO TAI (deprecated)” on page 1517 for details on
using this custom login module.

Chapter 19. Administering application security 1489

ftp://ftp.isi.edu/in-notes/rfc2478.txt
ftp://ftp.isi.edu/in-notes/rfc2478.txt


WebSphere Application Server validates the identity against its security registry and, if the validation is
successful, produces a Lightweight Third Party Authentication (LTPA) security token and places and
returns a cookie to the requester in the HTTP response. Subsequent HTTP requests from this same
requester to access additional secured resources in WebSphere Application Server use the LTPA security
token previously created, to avoid repeated login challenges.

The challenge-response handshake process is illustrated in the following graphic:

The SPNEGO TAI can be enabled for all or for selected WebSphere Application Servers in a WebSphere
Application Server cell configuration. Also, the behavior of each SPNEGO TAI instance is controlled by
custom configuration properties that are used to identify, for example, the criteria used to filter HTTP
requests, such as the host name and security realm name used to construct the Kerberos Service
Principal Name (SPN). For more information regarding establishing and setting the SPNEGO TAI custom
configuration properties, see the following topics:

v Setting up the Kerberos configuration properties. See The Kerberos configuration file.

v Setting or adjusting the SPNEGO TAI custom properties. See “SPNEGO TAI custom properties
configuration (deprecated)” on page 1506.

v Adjusting the SPNEGO TAI filter settings. See “Configuring JVM custom properties, filtering HTTP
requests, and enabling SPNEGO TAI in WebSphere Application Server (deprecated)” on page 1511

v Using the custom login module to map the identity from the Active Directory to the WebSphere
Application Server registry. See Mapping user Ids from client to server for SPNEGO.

v Setting the major and additional Java virtual machine (JVM) custom properties. See “SPNEGO TAI JVM
configuration custom properties (deprecated)” on page 1514

The web administrator has access to the following SPNEGO TAI security components and associated
configuration data, as illustrated in the following graphic.

Figure 19. HTTP request processing, WebSphere Application Server - SPNEGO TAI

1490 Administering WebSphere applications



v The web authentication module and the Lightweight Third Party Authentication (LTPA) mechanism
provide the plug-in runtime framework for trust association interceptors. See Configuring the Lightweight
Third Party Authentication mechanism for more detail is configuring the LTPA mechanism for use with
the SPNEGO TAI.

v The Java Generic Security Service (JGSS) provider is included in the Java SDK (app_server_root/
java/endorsed/ibmjgssprovider.jar) and used to obtain the Kerberos security context and credentials
that are used for authentication. IBM JGSS 1.0 is a Java Generic Security Service Application
Programming Interface (GSSAPI) framework with Kerberos V5 as the underlying default security
mechanism. GSSAPI is a standardized abstract interface under which can be plugged different security
mechanisms based on private-key, public-key and other security technologies. GSSAPI shields secure
applications from the complexities and peculiarities of the different underlying security mechanisms.
GSSAPI provides identity and message origin authentication, message integrity, and message
confidentiality. For more information, see JGSS.

v The Kerberos configuration properties (krb5.conf or krb5.ini ) and Kerberos encryption keys (stored in
a Kerberos keytab file) are used to establish secure mutual authentication.

The Kerberos key table manager (Ktab), which is part of JGSS, allows you to manage the principal
names and service keys stored in a local Kerberos keytab file. Principal name and key pairs listed in the
Kerberos keytab file allow services running on a host to authenticate themselves to the Kerberos Key
Distribution Center (KDC). Before a server can use Kerberos, a Kerberos keytab file must be initialized
on the host that runs the server.

“Using the ktab command to manage the Kerberos keytab file” on page 1496 highlights the Kerberos
configuration requirements for the SPNEGO TAI as well as the use of Ktab.

v The SPNEGO provider supplies the implementation of the SPNEGO authentication mechanism, located
at app_server_root/java/ext/ibmspnego.jar.

v The custom configuration properties control the runtime behavior of the SPNEGO TAI. Configuration
operations are performed with the administrative console or scripting facilities. Refer to “SPNEGO TAI
custom properties configuration (deprecated)” on page 1506 for more information about these custom
configuration properties.

v Java virtual machine (JVM) custom properties control diagnostic trace information for problem
determination of the JGSS security provider and use of the property reload feature.“SPNEGO TAI JVM
configuration custom properties (deprecated)” on page 1514 describes these JVM custom properties

The benefits of having WebSphere Application Server use the SPNEGO TAI include:

v The cost of administering a large number of ids and passwords is reduced.

v A secure and mutually authenticated transmission of security credentials from the web browser or
Microsoft .NET clients is established.

v Interoperability with web services and Microsoft .NET applications that use SPNEGO authentication at
the transport level is achieved.

Figure 20. SPNEGO TAI security and configuration elements

Chapter 19. Administering application security 1491

http://www-128.ibm.com/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html


Using the SPNEGO TAI in your WebSphere Application Server environment requires planning then
implementation. See “Single sign-on capability with SPNEGO TAI - checklist (deprecated)” on page 1522
in planning for SPNEGO TAI. Implementing the use of the SPNEGO TAI is divided into the following areas
of responsibility:

End browser user
The end user must configure the web browser or Microsoft .NET application to issue HTTP
requests that are processed by the SPNEGO TAI.

Web administrator
The web administrator is responsible for configuring the SPNEGO TAI of WebSphere Application
Server to respond to HTTP requests of the client.

WebSphere Application Server administrator
The WebSphere Application Server administrator is responsible for configuring WebSphere
Application Server and the SPNEGO TAI for optimum installation performance.

See “Creating a single sign-on for HTTP requests using the SPNEGO TAI (deprecated)” on page 1486 for
an explanation of the tasks required to use the SPNEGO TAI and how the responsible party performs
these tasks.

Creating a Kerberos service principal and keytab file that is used by the WebSphere Application
Server SPNEGO TAI (deprecated):

You perform this configuration task on the Microsoft Active Directory domain controller machine. This task
is a necessary part of preparing to process single sign on browser requests to WebSphere Application
Server and thee SPNEGO trust association interceptor (TAI).

Before you begin

You need to have a running domain controller and at least one client machine in that domain.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

About this task

This task is performed on the active directory domain controller machine. Complete the following
steps to ensure that the Microsoft Windows Server that is running the active directory domain controller is
configured properly to the associated key distribution center (KDC). For information on the supported
Microsoft Windows Servers, see the System Requirements for WebSphere Application Server Version 8.5
on Windows.

Procedure

1. Create a user account in the Microsoft Active Directory for the WebSphere Application Server.

Click Start->Programs->Administrative Tools->Active Directory Users and Computers

Use the name for the WebSphere Application Server. For example, if the Application Server you are
running on the WebSphere Application Server machine is called myappserver.austin.ibm.com, create a
new user in Active Directory called myappserver.

Important: Do not select "User must change password at next logon."

1492 Administering WebSphere applications



Important: Make sure that you do not have the computer name myappserver under Computers and
Domain Controllers (You check for this condition as illustrated below.). If you already have
a computer name myappserver, then you need to create a different user account name.

v Goto Start -> Programs -> Administrative Tools -> Active Directory Users and
Computers->Computers

v Goto Start -> Programs -> Administrative Tools -> Active Directory Users and
Computers->Domain Controllers

2. Use the setspn command to map the Kerberos service principal name, HTTP/<host name>, to a
Microsoft user account. An example of setspn usage is as follows:
C:\Program Files\Support Tools>
setspn -A HTTP/myappserver.austin.ibm.com myappserver

Note: There may already be some SPNs related to the Microsoft Windows hosts that have been
added to the domain. You can display those that exist by using the setspn -L command, but
you still have to add an HTTP SPN for WebSphere Application Server. For example, setspn -L
myappserver would list the SPNs.

Important: Make sure that you do not have the same SPNs mapping to more than one Microsoft user
account. If you map the same SPN to more than one user account, the web browser client
can send a NTLM instead of SPNEGO token to WebSphere Application Server.

More information about the setspn command can be found here, Windows 2003 Technical Reference
(setspn command)

3. Create the Kerberos keytab file and make it available to WebSphere Application Server. Use the
ktpass command to create the Kerberos keytab file (krb5.keytab).

Use the ktpass tool from the Windows Server toolkit to create the Kerberos keytab file for the service
principal name (SPN). Use the latest version of the ktpass tool that matches the Windows server level
that you are using. For example, use the Windows 2003 version of the tool for a Windows 2003 server.

To determine the appropriate parameter values for the ktpass tool, run the ktpass -? command from
the command line. This command lists whether the ktpass tool, which corresponds to the particular
operating system, uses the -crypto RC4-HMAC or -crypto RC4-HMAC-NT parameter value. To avoid
warning messages from the toolkit, you must specify the -ptype KRB5_NT_PRINCIPAL parameter value.

The Windows 2003 server version of the ktpass tool supports the encryption type, RC4-HMAC, and
Single data encryption standard (DES). For more information about the ktpass tool, see Windows
2003 Technical Reference (Kerberos keytab file and ktpass command).

The following code shows the functions that are available when you enter ktpass -? command on the
command line. This information might be different depending on the version of the toolkit that you are
using.
C:\Program Files\Support Tools>ktpass -?
Command line options:

---------------------most useful args
[- /] out : Keytab to produce
[- /] princ : Principal name (user@REALM)
[- /] pass : password to use

use "*" to prompt for password.
[- +] rndPass : ... or use +rndPass to generate a random password
[- /] minPass : minimum length for random password (def:15)
[- /] maxPass : maximum length for random password (def:256)
---------------------less useful stuff
[- /] mapuser : map princ (above) to this user account (default:
don’t)
[- /] mapOp : how to set the mapping attribute (default: add it)
[- /] mapOp : is one of:
[- /] mapOp : add : add value (default)
[- /] mapOp : set : set value
[- +] DesOnly : Set account for des-only encryption (default:don’t)
[- /] in : Keytab to read/digest
---------------------options for key generation
[- /] crypto : Cryptosystem to use

Chapter 19. Administering application security 1493

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/b3a029a1-7ff0-4f6f-87d2-f2e70294a576.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/b3a029a1-7ff0-4f6f-87d2-f2e70294a576.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/64042138-9a5a-4981-84e9-d576a8db0d05.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/64042138-9a5a-4981-84e9-d576a8db0d05.mspx


[- /] crypto : is one of:
[- /] crypto : DES-CBC-CRC : for compatibility
[- /] crypto : DES-CBC-MD5 : for compatibliity
[- /] crypto : RC4-HMAC-NT : default 128-bit encryption
[- /] ptype : principal type in question
[- /] ptype : is one of:
[- /] ptype : KRB5_NT_PRINCIPAL : The general ptype-- recommended
[- /] ptype : KRB5_NT_SRV_INST : user service instance
[- /] ptype : KRB5_NT_SRV_HST : host service instance
[- /] kvno : Override Key Version Number

Default: query DC for kvno. Use /kvno 1 for Win2K
compat.
[- +] Answer : +Answer answers YES to prompts. -Answer answers
NO.
[- /] Target : Which DC to use. Default:detect
---------------------options for trust attributes (Windows Server 2003
Sp1 Only
[- /] MitRealmName : MIT Realm which we want to enable RC4 trust on.
[- /] TrustEncryp : Trust Encryption to use; DES is default
[- /] TrustEncryp : is one of:
[- /] TrustEncryp : RC4 : RC4 Realm Trusts (default)
[- /] TrustEncryp : DES : go back to DES

Important: Do not use the -pass switch on the ktpass command to reset a password for a Microsoft
Windows server account.

See Windows 2003 Technical Reference (Kerberos keytab file and ktpass command) for more
information. You must use the -mapUser option with ktpass command to enable the KDC to create an
encryption key. Otherwise, when the SPENGO token is received, it fails the validation process and the
application server challenges the user for a user name and password.

Depending on the encryption type, you use the ktpass tool in one of the following ways to create the
Kerberos keytab file. The following section shows the different types of encryption that are used by the
ktpass tool. It is important that you run the ktpass -? command to determine which -crypto parameter
value is expected by the particular toolkit in your Microsoft Windows environment.

v For a single DES encryption type

From a command prompt, run the ktpass command:
ktpass -out c:\temp\myappserver.keytab
-princ HTTP/myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM
-mapUser myappserv
-mapOp set
-pass was1edu
-crypto DES-CBC-MD5
-pType KRB5_NT_PRINCIPAL
+DesOnly

Table 81. Using ktpass for a single DES encryption type.

This table describes how to use ktpass for a single DES encryption type.
Option Explanation

-out c:\temp\myappserver.keytab The key is written to this output file.

-princ HTTP/
myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

The concatenation of the user logon name, and the realm must be in uppercase.

-mapUser The key is mapped to the user, myappserver.

-mapOp This option sets the mapping.

-pass was1edu This option is the password for the user ID.

-crypto DES-CBC-MD5 This option uses the single DES encryption type.

-pType KRB5_NT_PRINCIPAL This option specifies the KRB5_NT_PRINCIPAL principal value. Specify this option to
avoid toolkit warning messages.

+DesOnly This option generates only DES encryptions.

v For the RC4-HMAC encryption type

Important: RC4-HMAC encryption is only supported when using a Windows 2003 Server as KDC.
From a command prompt, run the ktpass command.

1494 Administering WebSphere applications

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/64042138-9a5a-4981-84e9-d576a8db0d05.mspx


ktpass -out c:\temp\myappserver.keytab
-princ HTTP/myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM
-mapUser myappserver
-mapOp set
–pass was1edu
-crypto RC4-HMAC
-pType KRB5_NT_PRINCIPAL

Table 82. Using ktpass for the RC4-HMAC encryption type.

This table identifies and describes the ktpass options for RC4-HMAC encryption
Option Explanation

-out c:\temp\myappserver.keytab The key is written to this output file.

-princ HTTP/
myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

The concatenation of the user logon name, and the realm must be in uppercase.

-mapUser The key is mapped to the user, myappserver.

-mapOp This option sets the mapping.

-pass was1edu This option is the password for the user ID.

-crypto RC4-HMAC This option chooses the RC4-HMAC encryption type.

-pType KRB5_NT_PRINCIPAL This option specifies the KRB5_NT_PRINCIPAL principal value. Specify this option to
avoid toolkit warning messages.

v For the RC4-HMAC-NT encryption type

From a command prompt, run the ktpass command.
ktpass -out c:\temp\myappserver.keytab
-princ HTTP/myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM
-mapUser myappserver
-mapOp set
-pass was1edu
-crypto RC4-HMAC-NT
-pType KRB5_NT_PRINCIPAL

Table 83. Using ktpass for the RC4-HMAC encryption type. This table describes the use of ktpass for RC4-HMAC
encryption types.
Option Explanation

-out c:\temp\myappserver.keytab The key is written to this output file.

-princ HTTP/
myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

The concatenation of the user logon name, and the realm must be in uppercase.

-mapUser The key is mapped to the user, myappserver.

-mapOp This option sets the mapping.

-pass was1edu This option is the password for the user ID.

-crypto RC4-HMAC-NT This option chooses the RC4-HMAC-NT encryption type.

-pType KRB5_NT_PRINCIPAL This option specifies the KRB5_NT_PRINCIPAL principal value. Specify this option to
avoid toolkit warning messages.

The Kerberos keytab file is created for use with the SPNEGO TAI.

Note: A Kerberos keytab configuration file contains a list of keys that are analogous to user
passwords. It is important for hosts to protect their Kerberos keytab files by storing them on the
local disk, which makes them readable only be authorized users.

You make the keytab file available to WebSphere Application Server by copying the krb5.keytab file
from the Domain Controller (LDAP machine) to the WebSphere Application Server machine.
ftp> bin
ftp> put c:\temp\KRB5_NT_SEV_HST\krb5.keytab

Results

Your active directory domain controller is properly configured to process single sign on requests to
WebSphere Application Server and the SPNEGO TAI

Chapter 19. Administering application security 1495



Using the ktab command to manage the Kerberos keytab file:

The Kerberos key table manager command (Ktab) allows the product administrator to manage the
Kerberos service principal names and keys stored in a local Kerberos keytab file. With the IBM Software
Development Kit (SDK) or Sun Java Development Kit (JDK) 1.6 or later, you can use the ktab command to
merge two Kerberos keytab files.

Kerberos service principal (SPN) name and keys listed in the Kerberos keytab file allow services running
on the host to validate the incoming Kerberos or SPNEGO token request. Prior to configuring Kerberos or
SPNEGO web authentication, the WebSphere Application Server administrator must setup a Kerberos
keytab file on the host that is running WebSphere Application Server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server Version 7.0, this function is now deprecated.

SPNEGO web authentication has taken its place to provide the following enhancements:

v Configure and enable SPNEGO Web Authentication and filters on the WebSphere Application
Server side by using the administrative console.

v Provide dynamic reload of SPNEGO without having to stop and restart the WebSphere
Application Server.

v Provide fallback to an application login method if the SPNEGO web authentication fails.

Important:

v It is important to protect the keytab files and make them readable only by authorized
product users.

v Any updates to the Kerberos keytab file using Ktab do not affect the Kerberos database. If
you change the keys in the Kerberos keytab file, you must also make the corresponding
changes to the Kerberos database.

The syntax of Ktab is illustrated later in this section by using Ktab with the -help operand.
$ ktab -help

Usage: java com.ibm.security.krb5.internal.tools.Ktab [options]
Available options:
-l list the keytab name and entries
-a <principal_name> [password] add an entry to the keytab
-d <principal_name> delete an entry from the keytab
-k <keytab_name> specify keytab name and path with FILE: prefix
-m <source_keytab_name> <destination_keytab_name> specify merging source keytab file name and destination keytab file name

Following is an example of how Ktab is used to merge the krb5Host1.keytab file to the krb5.keytab file:
[root@wssecjibe bin]# ./ktab -m /etc/krb5Host1.keytab /etc/krb5.keytab
Merging keytab files: source=krb5Host1.keytab destination=krb5.keytab
Done!
[root@wssecjibe bin]# ls /etc/krb5.*
/etc/krb5Host1.keytab/etc/krb5.keytab
/etc/krb5.keytab

Following is an example of how Ktab is used on a LINUX platform to add new principal names to the
Kerberos keytab file, where ot56prod is the password for the Kerberos principal name:
[root@wssecjibe bin]# ./ktab -a
HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM ot56prod -k /etc/krb5.keytab
Done!
Service key for principal HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM saved

1496 Administering WebSphere applications



Following is an example of how Ktab is used on a Linux platform to list Kerberos keytab file content.
[root@wssecjibe bin]# ./ktab

KVNO Principal
---- ---------

1 HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

[root@wssecjibe bin]# ls /etc/krb5.*
/etc/krb5.conf
/etc/krb5.keytab

Configuring WebSphere Application Server and enabling the SPNEGO TAI (deprecated):

Performing this task helps you, as web administrator, to ensure that WebSphere Application Server is
properly configured to enable the operation of the Simple and Protected GSS-API Negotiation (SPNEGO)
trust association interceptor (TAI).

Before you begin

You need to know how to use the WebSphere Application Server administrative console to manage the
security configuration and have the proper authority to modify the security configuration of the application
server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

About this task

Complete the following steps to enable the operation of the SPNEGO TAI.

Procedure

1. Log on to the WebSphere Application Server administrative console.

2. Click Security > Global security.

3. Expand Web security and click Trust association.

4. Under the General Properties heading, select the Enable trust association check box, then click
Interceptors.

5. Select the SPNEGO TAI in the list of interceptors.

6. Then click Custom properties.

7. Click New and then fill in the Name and Value fields. Click OK. Repeat this step for each custom
property that you want to apply to the SPNEGO TAI. See “SPNEGO TAI custom properties
configuration (deprecated)” on page 1506 for a complete list of SPNEGO TAI custom properties.

Note: It is recommended that you use the wsadmin utility to manage the SPNEGO TAI properties.
You can add, modify, and delete SPNEGO TAI properties as well as display them using
wsadmin. See “Adding SPNEGO TAI properties using the wsadmin utility (deprecated)” on page
1499 to add, “Modifying SPNEGO TAI properties using the wsadmin utility (deprecated)” on
page 1501 to modify, and “Deleting SPNEGO TAI properties using the wsadmin utility
(deprecated)” on page 1504 to delete SPNEGO TAI properties.

Chapter 19. Administering application security 1497



8. After you finish defining your custom properties, click Save to store the updated SPNEGO TAI
configuration.

9. Optional: If an alias for a connecting host name is added dynamically after the application server is
started, you need to configure the alias. Refer to the “Using an alias host name for SPNEGO TAI or
SPENGO web authentication using the administrative console (deprecated)” topic.

Results

Your SPNEGO TAI configuration is now configured for WebSphere Application Server.

Using an alias host name for SPNEGO TAI or SPENGO web authentication using the administrative
console (deprecated):

When you use the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) trust association
interceptor (TAI) for authentication, and you would like to use alias host name as the host name for the
application server, you must configure a custom property to resolve the alias host name to the actual
hostname for SPNEGO single sign-on. Then, you can dynamically add or modify an alias name in the
DNS without changing the application server&apos;s configuration. If you enable this custom property you
will no longer need to set alias host names through the SPNEGO configuration.

Before you begin

You must have completed the steps as described in “Creating a single sign-on for HTTP requests using
the SPNEGO TAI (deprecated)” on page 1486 and “Configuring WebSphere Application Server and
enabling the SPNEGO TAI (deprecated)” on page 1497 before these settings will have an effect. This
configuration requires a working SPNEGO-TAI single sign-on environment.

About this task

The application server will perform a DNS lookup as an HTTP request comes in, and if the alias host
name is resolved as a host name that is already configured for SPNEGO single sign-on, the application
server will continue to process it. It is usually not required to add alias hostname to a SPNEGO account.

Procedure

1. Define the actual host name for the com.ibm.ws.security.spnego.SPNx.hostName variable.

a. From administration console, click Global security > Web and SIP security > Trust association
> Interceptors > com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl > Custom
Properties

b. Add or modify the com.ibm.ws.security.spnego.SPNx.hostName variable. For example:

Name com.ibm.ws.security.spnego.SPNx.hostName

Value real_host_name

This custom property specifies the actual host name to which the application server can resolve an
alias host name for SPNEGO single sign-on. You can then dynamically add or modify an alias
name in the DNS without changing the configuration for the application server.

You can optionally define the alias host name, but you are only required to define the real host
name. The application server resolves the alias host name to real host name as the HTTP request
is received.

2. Turn on the Canonical support flag.

a. From administration console, click Global security > Custom properties

b. Add or modify the com.ibm.websphere.security.krb.canonical_host variable and set it to "true".

Name com.ibm.websphere.security.krb.canonical_host

Value true

1498 Administering WebSphere applications



This custom property specifies whether the application server uses the canonical form of the
URL/HTTP host name in authenticating a client. If you set this custom property to false, a
Kerberos ticket can contain a host name that differs from the HTTP host name header and the
application server might issue the following message:

CWSPN0011E: An invalid SPNEGO token has been encountered while authenticating a HttpServletRequest

If you set this custom property to true, you can avoid this error message and allow the application
server to authenticate using the canonical form of the URL/HTTP host name.

3. Configure the browser. On the browser for the client machine, the alias host name needs to be
configured as a trusted host.

v For Internet Explorer:

a. Select Tools > Internet options.

b. Select the Security tab.

c. Click Local intranet > Sites > Advanced

d. Add the alias host name in this panel.

v For Mozilla Firefox:

a. Type About:config in the address bar and press ENTER to access configuration options.

b. Locate the network.negotiate-auth.trusted-uris preference name, right-click on the preference,
and select Modify. If you do not have this preference, right-click within the panel, and select
New > string.

c. Add alias host names in the text box, separating host names with a comma.

4. Ensure that the real host name is added to the keytab file.

config: You can configure the keytab file in two ways:

v If com.ibm.websphere.security.krb.canonical_host is set to "true", the application server
expects the real host name to be in the keytab files. Aliases are not necessary.

v If com.ibm.websphere.security.krb.canonical_host is set to false and aliases are defined,
aliases need to be present in the keytab file.

Adding SPNEGO TAI properties using the wsadmin utility (deprecated):

You use the wsadmin utility to add properties for the Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) trust association interceptor (TAI) in the security configuration for WebSphere
Application Server.

About this task

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

Procedure

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the
app_server_root/bin directory from the Qshell command line.

3. At the wsadmin prompt, enter the following command:

Chapter 19. Administering application security 1499



$AdminTask addSpnegoTAIProperties

You can use the following parameters with this command:

Option Description

<spnId> This parameter is optional. It is the SPN identifier for the
group of custom properties that are to be defined with this
command. If you do not specify this parameter, an
unused SPN identifier is assigned.

<host> This parameter is required. It specifies the host name
portion in the SPN used by the SPNEGO TAI to establish
a Kerberos secure context.

<filter> This parameter is optional. It defines the filtering criteria
used by the class specified with the above attribute. If
you do not specify this parameter, all HTTP requests are
subject to SPNEGO authentication.

<filterClass> This parameter is optional. It specifies the name of the
Java class used by the SPNEGO TAI to select which
HTTP requests will be subject to SPNEGO authentication.
If you do not specify this paramter, the default filter class,
com.ibm.ws.security.spnego.HTTPHeaderFilter, is used.

<noSpnegoPage> This parameter is optional. It specifies the URL of a
resource that contains the content the SPNEGO TAI will
include in the HTTP response to be displayed by the
(browser) client application if it does not support
SPNEGO authentication.

If you do not specify the noSpnegoPage paramter then
the default is used:

"<html><head><title>SPNEGO
authentication is not supported.
</title></head>" +
"<body>SPNEGO authentication is
not supported on this client.
</body></html>";

<ntlmTokenPage> This parameter is optional. It specifies the URL of a
resource that contains the content the SPNEGO TAI will
include in the HTTP response that is to be displayed by
the (browser) client application when the SPNEGO token
received by the interceptor (after the challenge-response
handshake) contains a NT LAN manager (NTLM) token
instead of the expected SPNEGO token.

If you do not specify the ntlmTokenPage parameter then
the default is used:

"<html><head><title>An NTLM
Token was received.</title></head>"
+ "<body>Your browser configuration
is correct, but you have not
logged into a supported Windows
Domain."
+ "<p>Please login to the application
using the normal login page.</html>";

1500 Administering WebSphere applications



Option Description

<trimUserName> This parameter is optional. It specifies whetheror not the
SPNEGO TAI is to remove the suffix of the principal user
name, starting from the “@” that precedes the Kerberos
realm name. If this parameter is set to true, the suffix of
the principal user name is removed. If this paramter is set
to false, the suffix of the principal name is retained. The
default value used is true.

Results

SPNEGO TAI properties have been added for this WebSphere Application Server.

Example

Example 1
The following example configures the SPNEGO TAI to intercept HTTP requests that contain IE 6 in
the user agent request header. The SPNEGO TAI uses the SPN of HTTP/
myhost.ibm.com@<default_realm> to authenticate the request originator.
$AdminTask addSpnegoTAIProperties -host myhost.ibm.com -filter user-agent%=IE 6

Example 2

The following is an example of adding SPNEGOTAIProperties for SPN1 to use the default filterClass
and to intercept all requests for the host, central01.austin.ibm.com.
wsadmin>$AdminTask addSpnegoTAIProperties -interactive
Add SPNEGO TAI properties

Add SPNEGO TAI configuration properties.

*Host name in Service Principal Name (host): central01.austin.ibm.com
Service Principal Name identifier (spnId): 1
HTTP header filter rule (filter):
Name of class used to filter HTTP requests (filterClass):
SPNEGO not supported browser response (noSpnegoPage):
NTLM Token received browser response (ntlmTokenPage):
Trim User Name browser response (trimUserName):

Add SPNEGO TAI properties

F (Finish)
C (Cancel)

Select [F, C]: [F] f
WASX7278I: Generated command line: $AdminTask addSpnegoTAIProperties {-host central01.austin.ibm.com}
com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com
wsadmin>

Modifying SPNEGO TAI properties using the wsadmin utility (deprecated):

You use the wsadmin utility to modify the properties in the configuration of the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application
Server.

About this task

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

Chapter 19. Administering application security 1501



authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

Procedure

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the
app_server_root/bin directory from the Qshell command line.

3. At the wsadmin prompt, enter the following command:
$AdminTask modifySpnegoTAIProperties

You can use the following parameters with this command:

Option Description

<spnId> This parameter is required. It is the SPN identifier for the
group of custom properties that are to be defined with this
command.

<host> This parameter is optional. It specifies the host name
portion in the SPN used by the SPNEGO TAI to establish
a Kerberos secure context.

<filter> This parameter is optional. It defines the filtering criteria
used by the class specified with the above attribute.

<filterClass> This parameter is optional. It specifies the name of the
Java class used by the SPNEGO TAI to select which
HTTP requests will be subject to SPNEGO authentication.
If no class is specified, all HTTP requests will be subject
to SPNEGO authentication.

<noSpnegoPage> This parameter is optional. It specifies the URL of a
resource that contains the content the SPNEGO TAI will
include in the HTTP response to be displayed by the
(browser) client application if it does not support
SPNEGO authentication.

If you do not specify the noSpnegoPage attribute then the
default is used:

"<html><head><title>SPNEGO
authentication is not supported.
</title></head>" +
"<body>SPNEGO authentication is
not supported on this client.
</body></html>";

1502 Administering WebSphere applications



Option Description

<ntlmTokenPage> This parameter is optional. The ntlmTokenPage
parameter specifies the URL of a resource that contains
the content the SPNEGO TAI will include in the HTTP
response, which will be displayed by the (browser) client
application. The (browser) client application displays this
HTTP response when the browser client sends a NT LAN
manager (NTLM) token instead of the expected SPNEGO
token during the challange-response handshake.

If you do not specify the ntlmTokenPage attribute then the
default is used:

"<html><head><title>An NTLM Token
was received.</title></head>"
+ "<body>Your browser configuration
is correct, but you have not
logged into a supported Windows
Domain."
+ "<p>Please login to the application
using the normal login page.</html>";

<trimUserName> This parameter is optional. It specifies whether (true) or
not (false) the SPNEGO TAI is to remove the suffix of
the principal user name, starting from the "@" that
precedes the Kerberos realm name. If this attribute is set
to true, the suffix of the principal user name is removed.
If this attribute is set to false, the suffix of the principal
name is retained. The default value used is true.

Results

SPNEGO TAI properties are modified for this WebSphere Application Server.

Example

Example 1
The following example configures the SPNEGO TAI to intercept HTTP requests that contain IE 6 in
the user agent request header. The SPNEGO TAI uses the SPN of HTTP/
myhost.ibm.com@<default_realm> to authenticate the request originator. Then the example modifies
the value of the filter custom property that was defined and changes it from user-agent%=IE 6 to
host==myhost.company.com.
$AdminTask addSpnegoTAIProperties -host myhost.ibm.com -filter user-agent%=IE 6
$AdminTask modifySpnegoTAIProperties -spnId 1 -filter host==myhost.company.com

Example 2
This is an example of modifying the SPNEGO TAI for SPN1 properties to add a filter for host
central01.austin.ibm.com.

wsadmin>$AdminTask modifySpnegoTAIProperties -interactive
Modify SPNEGO TAI properties

Modify SPNEGO TAI configuration properties

*Service Principal Name identifier (spnId): 1
Host name in Service Principal Name (host): central01.austin.ibm.com
HTTP header filter rule (filter): request-url!=noSPNEGO;request-url%=snoop
Name of class used to filter HTTP requests (filterClass):
SPNEGO not supported browser response (noSpnegoPage):
NTLM Token received browser response (ntlmTokenPage):

Chapter 19. Administering application security 1503



Trim User Name browser response (trimUserName):

Modify SPNEGO TAI properties

F (Finish)
C (Cancel)

Select [F, C]: [F] f
WASX7278I: Generated command line: $AdminTask modifySpnegoTAIProperties {-spnId
1 -host w2003secdev.austin.ibm.com -filter request-url!=noSPNEGO;request-url%=sn
oop}
com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop
com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com
wsadmin>

Deleting SPNEGO TAI properties using the wsadmin utility (deprecated):

You use the wsadmin utility to delete properties in the configuration of the Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application Server.

About this task

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

Procedure

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the
app_server_root/bin directory from the Qshell command line.

3. At the wsadmin prompt, enter the following command:
$AdminTask deleteSpnegoTAIProperties

You can use the following parameters with this command:

Option Description

<spnId> This is an optional parameter. It is the SPN identifier for
the group of custom properties that are to be deleted with
this command. If you do not specify this parameter, all
SPNEGO TAI custom properties are deleted.

Results

SPNEGO TAI properties are deleted for this WebSphere Application Server.

Example

Example 1
The following example deletes all the SPNEGO TAI properties for SPN2

1504 Administering WebSphere applications



wsadmin>$AdminTask deleteSpnegoTAIProperties {-spnId 2}

Example 2
The following example deletes all SPNEGO TAI properties
wsadmin>$AdminTask deleteSpnegoTAIProperties
com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop
com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com
com.ibm.ws.security.spnego.SPN2.hostName=wssecpd.austin.ibm.com
wsadmin>

Displaying SPNEGO TAI properties using the wsadmin utility (deprecated):

You use the wsadmin utility to display the properties in the configuration of the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application
Server.

About this task

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

Procedure

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the
app_server_root/bin directory from the Qshell command line.

3. At the wsadmin prompt, enter the following command:
$AdminTask showSpnegoTAIProperties

You can use the following parameters with this command:

Option Description

<spnId> This is an optional parameter. It is the service principal
name (SPN) identifier for the group of custom properties
that are to be displayed with this command. If you do not
specify this parameter, all SPNEGO TAI custom
properties are displayed.

Results

SPNEGO TAI properties are displayed for this WebSphere Application Server.

Example

Example 1
The following example displays all SPNEGO TAI properties.

Chapter 19. Administering application security 1505



wsadmin>$AdminTask showSpnegoTAIProperties
com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop
com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com
com.ibm.ws.security.spnego.SPN2.hostName=wssecpd.austin.ibm.com
wsadmin>

Example 2
The following example displays SPNEGO TAI properties for SPN1 and host, central01.austin.ibm.com.

wsadmin>$AdminTask showSpnegoTAIProperties -interactive
Show SPNEGO TAI configuration properties.

Display SPNEGO TAI configuration properties.

Service Principal Name identifier (spnId): 1

Show SPNEGO TAI configuration properties.

F (Finish)
C (Cancel)

Select [F, C]: [F]
WASX7278I: Generated command line: $AdminTask showSpnegoTAIProperties {-spnId 1}

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop
com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com
com.ibm.ws.security.spnego.SPN1.trimUserName=true
wsadmin>

SPNEGO TAI custom properties configuration (deprecated):

The Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI)
custom configuration properties control different operational aspects of the SPNEGO TAI. You can specify
different property values for each application server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Each of the properties defined in the following table is specified in the Custom Properties panel for the
SPNEGO TAI using the administrative console facility. For convenience, you can optionally place these
properties in a properties file. In this case, the SPNEGO TAI loads the configuration properties from the file
instead of the Custom Properties panel definition. Refer to com.ibm.ws.security.spnego.propertyReloadFile
property as defined in “SPNEGO TAI JVM configuration custom properties (deprecated)” on page 1514.

To assign unique property names that identify each possible SPN, an SPN<id> is embedded in the
property name and used to group the properties that are associated with each SPN. The SPN<id>s are
numbered sequentially for each property group.

Table 84. SPNEGO TAI custom properties.

This table lists the SPNEGO TAI custom properties.

Property Name Required Default Value

“com.ibm.ws.security.spnego.SPN<id>.enableCredDelegate” on page 1507 No false

1506 Administering WebSphere applications



Table 84. SPNEGO TAI custom properties (continued).

This table lists the SPNEGO TAI custom properties.

Property Name Required Default Value

“com.ibm.ws.security.spnego.SPN<id>.filter” No See the description that
follows.

“com.ibm.ws.security.spnego.SPN<id>.filterClass” on page 1508 No See the description that
follows.

“com.ibm.ws.security.spnego.SPN<id>.hostName” on page 1509 Yes None

“com.ibm.ws.security.spnego.SPN<id>.NTLMTokenReceivedPage” on page
1509

No See the description that
follows.

“com.ibm.ws.security.spnego.SPN<id>.spnegoNotSupportedPage” on page
1509

No See the description that
follows.

“com.ibm.ws.security.spnego.SPN<id>.trimUserName” on page 1509 No true

Note: The following commands tasks can be used to operate on these SPNEGO TAI properties:

v “Adding SPNEGO TAI properties using the wsadmin utility (deprecated)” on page 1499

v “Deleting SPNEGO TAI properties using the wsadmin utility (deprecated)” on page 1504

v “Modifying SPNEGO TAI properties using the wsadmin utility (deprecated)” on page 1501

v “Displaying SPNEGO TAI properties using the wsadmin utility (deprecated)” on page 1505

com.ibm.ws.security.spnego.SPN<id>.enableCredDelegate:

This property is optional. It indicates whether or not the Kerberos delegated credentials are stored by the
SPNEGO TAI. This property enables the capability for an application to retrieve the stored credentials and
propagate them to other applications downstream for additional SPNEGO authentication.

This property requires use of the advanced Kerberos credential delegation feature and requires
development of custom logic by the application developer. The developer must interact directly with the
Kerberos Ticket Granting Service (TGS) to obtain a Ticket Granting Ticket (TGT) using the delegated
Kerberos credentials on behalf of the end-user who originated the request. The developer must also
construct the appropriate Kerberos SPNEGO token and include it in the HTTP request to continue the
downstream SPNEGO authentication process, including handling additional SPNEGO challenge-response
exchange, if necessary.

com.ibm.ws.security.spnego.SPN<id>.filter:

This property is optional. It defines the filtering criteria that is used by the specified class with the
com.ibm.ws.security.spnego.SPN<id>.filterClass property. It defines arbitrary criteria that is meaningful to
the implementation class used.

The com.ibm.ws.security.spnego.HTTPHeaderFilter default implementation class uses this property to
define a list of selection rules that represent conditions that are matched against the HTTP request
headers to determine whether or not the HTTP request is selected for SPNEGO authentication.

Each condition is specified with a key-value pair, separated from each other by a semicolon. The
conditions are evaluated from left to right, as they display in the specified property. If all conditions are
met, the HTTP request is selected for SPNEGO authentication.

The key and value in the key-value pair are separated by an operator that defines which condition is
checked. The key identifies an HTTP request header to extract from the request and its value is compared

Chapter 19. Administering application security 1507



with the value that is specified in the key-value pair according to the operator specification. If the header
that is identified by the key is not present in the HTTP request, the condition is treated as not being met.

Any of the standard HTTP request headers can be used as the key in the key-value pairs. Refer to the
HTTP specification for the list of valid headers. In addition, two keys are defined to extract information
from the request, also useful as a selection criterion, which is not available through standard HTTP
request headers. The remote-address key is used as a pseudo header to retrieve the remote TCP/IP
address of the client application that sent the HTTP request. The request-URL key is used as a pseudo
header to retrieve the URL that is used by the client application to make the request. The interceptor uses
the result of the getRequestURL operation in the javax.servlet.http.HttpServletRequest interface to
construct the web address. If a query string is present, the result of the getQueryString operation in the
same interface is also used. In this case, the complete URL is constructed as follows:
String url = request.getRequestURL() + '?’ + request.getQueryString();

The following operators and conditions are defined:

Table 85. Filter conditions and operations.

This table defines the conditions and operators used in filtering and gives examples.

Condition Operator Example

Match exactly = =

Arguments are compared as
equal.

host=host.my.company.com

Match partially (includes) %=

Arguments are compared with a
partial match being valid.

user-agent%=IE 6

Match partially (includes one of
many)

^=

Arguments are compared with a
partial match being valid for one
of many arguments specified.

request-url^=webApp1|webApp2|webApp3

Does not match !=

Arguments are compared as not
equal.

request-url!=noSPNEGO

Greater than >

Arguments are compared
lexogaphically as greater than.

remote-address>192.168.255.130

Less than <

Arguments are compared
lexographically as less than.

remote-address<192.168.255.135

com.ibm.ws.security.spnego.SPN<id>.filterClass:

This property is optional. It specifies the name of the Java class that is used by the SPNEGO TAI to select
which HTTP requests are subject to SPNEGO authentication.

If no class is specified, the default com.ibm.ws.security.spnego.HTTPHeaderFilter implementation class is
used. The Java class that is specified must implement the com.ibm.wsspi.security.spnego.SpnegoFilter
interface. A default implementation of this interface is provided. Specify the
com.ibm.ws.security.spnego.HTTPHeaderFilter class to use the default implementation. This class uses
the selection rules specified with the com.ibm.ws.security.spnego.SPN<id>.filter property.

1508 Administering WebSphere applications



com.ibm.ws.security.spnego.SPN<id>.hostName:

This property is required. It specifies the hostname in the SPN used by the SPNEGO TAI to establish a
Kerberos secure context. It has no default value.

Note: The hostname is the long form of hostname. For example, myHostName.austin.ibm.com.
The Kerberos SPN is a string of the form HTTP/hostname@realm. The complete SPN is used with the Java
Generic Security Service (JGSS) by the SPNEGO provider to obtain the security credential and security
context that are used in the authentication process.

com.ibm.ws.security.spnego.SPN<id>.NTLMTokenReceivedPage:

This property is optional. It specifies the web address of a resource that contains the content that the
SPNEGO TAI includes in the HTTP response that the (browser) client application displays when the
SPNEGO token is received by the interceptor when the challenge-response handshake contains a NT LAN
Manager (NTLM) token instead of the expected SPNEGO token.

It can specify a web (http://) or a file (file://) resource. If this property is not specified or the interceptor
cannot find the specified resource, the following content is used:
<html><head><title>An NTLM Token was received.</title></head>
<body>Your browser configuration is correct, but you have not logged into a supported
Microsoft(R) Windows(R) Domain.
<p>Please login to the application using the normal login page.</html>

com.ibm.ws.security.spnego.SPN<id>.spnegoNotSupportedPage:

This property is optional. It specifies the web address of a resource that contains the content that the
SPNEGO TAI includes in the HTTP response that the (browser) client application displays if it does not
support SPNEGO authentication. It can specify a Web (http://) or a file (file://) resource.

If this property is not specified or the interceptor cannot find the specified resource, the following content is
used:
<html><head><title>SPNEGO authentication is not supported</title></head>
<body>SPNEGO authentication is not supported on this client</body></html>;

com.ibm.ws.security.spnego.SPN<id>.trimUserName:

This property is optional. It specifies whether (true) or not (false) the SPNEGO TAI is to remove the suffix
of the principal user name, starting from the "@" that precedes the Kerberos realm name.

If this property is set to true, the suffix of the principal user name is removed. If this property is set to
false, the suffix of the principal name is retained. The default value used is true. For example,

When com.ibm.ws.security.spnego.SPN<id>.trimUserName = true
bobsmith@myKerberosRealm becomes bobsmith

When com.ibm.ws.security.spnego.SPN<id>.trimUserName = false
bobsmith@myKerberosRealm remains bobsmith@myKerberosRealm

SPNEGO TAI configuration requirements (deprecated):

The configuration that is used by the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)
trust association interceptor (TAI) on each selected application server is governed by various system
requirements.

Note:

Chapter 19. Administering application security 1509



In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, the SPNEGO TAI was deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

The following list of configuration requirements highlights those attributes, properties, qualities, restrictions,
exclusions, inclusions, and dependencies that you need to be aware of when planning a WebSphere
Application Server configuration that incorporates the use of the SPNEGO TAI.

Table 86. SPNEGO TAI requirements.

This table lists the SPNEGO TAI configuration requirements.

Function item Description

SPNEGO TAI The SPNEGO TAI is a server side solution in WebSphere Application Server.
Client-side applications are responsible for generating the SPNEGO token for
use by the SPNEGO TAI.

Microsoft Windows Microsoft Windows Servers with Active Directory domain and its associated
Kerberos key distribution center (KDC) is required. For information on the
supported Microsoft Windows Servers, see the System Requirements for
WebSphere Application Server Version 8.5 on Windows.

Client application (browser or .NET
client)

A browser (client application) or .NET client that supports the SPNEGO
authentication mechanism, as defined in IETF RFC 2478 is required.

Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO)

SPNEGO authentication, as defined in IETF RFC 2478 is used.

Internet browsers v Use Microsoft Internet Explorer version 5.5 or higher

v Use Mozilla Firefox version 1.0

Kerberos Level Kerberos version 5 is required.

WebSphere Application Server Version 7.0 is required.

Java SDK level Java 6.0 SDK is required.

Encryption Types RC4-HMAC encryption is only supported when using a Windows 2003 Server
as Kerberos key distribution center (KDC).

J2EE client Client application (browser or .NET client) A browser (client application) or .NET
client that supports the SPNEGO authentication mechanism, as defined in IETF
RFC 2478 is required.

Configuring the client browser to use SPNEGO TAI (deprecated):

You can configure your browser to utilize the Simple and Protected GSS-API Negotiation (SPNEGO)
mechanism. Authentication of your browser requests are processed by the SPNEGO trust association
interceptor (TAI) in the WebSphere Application Server.

Before you begin

You need to know how to display and set options in the Microsoft Internet Explorer browser or any other
browser (such as Firefox). You must have a browser installed that supports SPNEGO authentication.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

1510 Administering WebSphere applications



authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

About this task

Complete the following steps to ensure that your Microsoft Internet Explorer browser is enabled to perform
SPNEGO authentication.

Procedure

1. At the desktop, log in to the windows active directory domain.

2. Activate Internet Explorer.

3. In the Internet Explorer window, click Tools > Internet Options > Security tab.

4. Select the Local intranet icon and click Sites.

5. In the Local intranet window, ensure that the "check box" to include all local (intranet) not listed in
other zones is selected, then click Advanced.

6. In the Local intranet window, fill in the Add this web site to the zone field with the web address of the
host name so that the single sign-on (SSO) can be enabled for the list of websites shown in the
websites field. Your site information technology staff provides this information. Click OK to complete
this step and close the Local intranet window.

7. On the Internet Options window, click the Advanced tab and scroll to Security settings. Ensure that
the Enable Integrated Windows Authentication (requires restart) box is selected.

8. Click OK. Restart your Microsoft Internet Explorer to activate this configuration.

Results

Complete the following steps to ensure that your Firefox browser is enabled to perform SPNEGO
authentication.

1. At the desktop, log in to the windows active directory domain.

2. Activate Firefox.

3. At the address field, type about:config.

4. In the Filter, type network.n

5. Double click on network.negotiate-auth.trusted-uris. This preference lists the sites that are permitted
to engage in SPNEGO Authentication with the browser. Enter a comma-delimited list of trusted
domains or URLs.

Note: You must set the value for network.negotiate-auth.trusted-uris.

6. If the deployed SPNEGO solution is using the advanced Kerberos feature of Credential Delegation
double click on network.negotiate-auth.delegation-uris. This preference lists the sites for which the
browser may delegate user authorization to the server. Enter a comma-delimited list of trusted domains
or URLs.

7. Click OK. The configuration appears as updated.

8. Restart your Firefox browser to activate this configuration.

Your Internet browser is properly configured for SPNEGO authentication. You can use applications that are
deployed in WebSphere Application Server that use secured resources without being repeatedly requested
for an ID and password.

Configuring JVM custom properties, filtering HTTP requests, and enabling SPNEGO TAI in
WebSphere Application Server (deprecated):

Chapter 19. Administering application security 1511



Performing this task helps you, as web administrator, to ensure that WebSphere Application Server is
configured to enable the operation of the Simple and Protected GSS-API Negotiation mechanism
(SPNEGO) trust association interceptor (TAI) with the required Java virtual machine (JVM) property and
with the appropriate filtering of HTTP requests.

Before you begin

You need to know how to use the WebSphere Application Server administrative console to manage the
security configuration and have the proper authority to modify the security configuration of the application
server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

About this task

Verify the configuration of your SPNEGO TAI. The deployment of the SPNEGO TAI can vary from a single
WebSphere Application Server system on which a single application is running to a large multinode
WebSphere Application Server, Network Deployment (ND) cell, with dozens of application servers, hosting
many applications. Every SPNEGO TAI is installed at the cell level. You must be aware of your particular
SPNEGO TAI configuration.

The default behavior of the SPNEGO TAI is to not intercept HTTP requests. This default behavior ensures
that the SPNEGO TAI can be installed into an existing cell, configured for a single application server and
not change any other application servers in the cell. Other WebSphere Application Servers can run exactly
as before within a given configuration.

Decide whether or not to use the sample SPN<id>.filterClass and determine the exact filter properties to
use.

Note: The default behavior of the SPNEGO TAI is to use the
com.ibm.ws.security.spnego.SPN<id>.filterClass and intercept all requests.

If the default behavior is not appropriate, you can use a customer provided class, or extend or modify the
sample class as required. The system programmer interface, com.ibm.ws.security.spnego.SpnegoFilter
allows you to implement a custom filter to determine whether or not to intercept a particular HTTP request.
With the default implementation, you can set filter rules for coarse as well as fine-grained criteria in
selecting which HTTP requests to intercept.

Note: For an alternative to the steps below for enabling the SPNEGO TAI, you can use scripting to
perform the operation. See “Enabling the SPNEGO TAI as JVM custom property using scripting
(deprecated)” on page 1513 for the details.

Complete the following steps to enable the operation of the SPNEGO TAI with your selected filtering and
with the JVM required property.

Procedure

1. Log on to WebSphere Application Server administrative console.

2. Click Servers > Application servers.

1512 Administering WebSphere applications



3. Select the appropriate server. Under Server Infrastructure, expand Java and process
management > Process Definition.

4. Click Java virtual machine. Under Additional Properties, click Custom Properties. Create a new
custom property, if required, by clicking New, then code com.ibm.ws.security.spnego.isEnabled in the
name field and true in the value field.

5. Click Apply > OK to save the configuration

6. Identify when the SPNEGO TAI intercepts a given request. A set of filter properties is provided, but you
must determine what is appropriate and modify the com.ibm.ws.security.spnego.SPN<id>.filterClass
accordingly.

Results

The application server is configured and ready to provide a single sign-on environment for end users who
have successfully authenticated in a Microsoft Active Directory domain. You must restart each application
server that is configured for SPNEGO web authentication. Then your SPNEGO TAI is set to filter HTTP
request when it is operating.

Enabling the SPNEGO TAI as JVM custom property using scripting (deprecated):

You use the wsadmin utility to enable the Simple and Protected GSS-API Negotiation Mechanism
(SPNEGO) trust association interceptor (TAI) for WebSphere Application Server.

Before you begin

Before starting this task, the wsadmin tool must be running. See the information about starting the
wsadmin scripting client using wsadmin scripting.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

About this task

Perform the following steps to enable the SPNEGO TAI:

Procedure

1. Identify the server and assign it to the server1 variable:

v Using Jacl:
set server1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:
server1 = AdminConfig.getid("/Cell:mycell/Node:mynode/Server:server1/")
print server1

Example output:
server1(cells/mycell/nodes/mynode|servers/seerver1|server.xml#Server_1)

2. Identify the Java virtual machine (JVM) belonging to this server and assign it to the jvm variable:

v Using Jacl:
set jvm [$AdminConfig list JavaVirtualMachine $server1]

v Using Jython:

Chapter 19. Administering application security 1513



jvm = AdminConfig.list(’JavaVirtualMachine’,server1)

Example output:
(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaVirtualMachine_1)
(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaVirtualMachine_2)

3. Identify the controller JVM of the server:

v Using Jacl:
set cjvm [lindex $jvm 0]

v Using Jython:
# get line separator
import java
lineSeparator = java.lang.System.getProperty(’line.separator’)
arrayJVMs = jvm.split(lineSeparator)
cjvm = arrayJVMs[0]

4. Modify the generic JVM arguments to enable SPNEGO TAI:

v Using Jacl:
set attr_name [list name com.ibm.ws.security.spnego.isEnabled]
set attr_value [list value true]
set attr_required [list required false]
set attr_description [list description "Enabled SPNEGO TAI"]

set attrs [list $attr_name $attr_value $attr_required $attr_description]

$AdminConfig create Property $cjvm $attrs

v Using Jython:
attr_name = [’name’, "com.ibm.ws.security.spnego.isEnabled"]
attr_value = [’value’, "true"]
attr_required = [’required’, "false"]
attr_description = [’description’, "Enabled SPNEGO TAI"]
attr_list = [attr_name, attr_value, attr_required, attr_description]
property=[’systemProperties’,[attr_list]]
AdminConfig.modify(cjvm, [property])

5. Save the configuration changes.

SPNEGO TAI JVM configuration custom properties (deprecated):

Java virtual machine (JVM) custom properties control the operation of the Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO) trust association interceptor (TAI).

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

The following JVM custom properties control operation of the SPNEGO TAI. Different custom property
values can be specified for each application server.

Table 87. JVM configuration custom properties.

This table lists the SPNEGO JVM configuration custom properties.

Custom Property Name Required
Value
Type

Default
Value Recommended Value

com.ibm.ws.security.spnego.isEnabled No Boolean False True

1514 Administering WebSphere applications



Table 87. JVM configuration custom properties (continued).

This table lists the SPNEGO JVM configuration custom properties.

Custom Property Name Required
Value
Type

Default
Value Recommended Value

com.ibm.ws.security.spnego.propertyReloadFile No String None For Windows

C:\temp\TAI.props

For UNIX

/tmp/TestTAI.Properties

com.ibm.ws.security.spnego.propertyReloadTimeout No Integer None 120

com.ibm.ws.security.spnego.useHttpFilterClass2 No Boolean False True

com.ibm.ws.security.spnego.isEnabled
Use this custom property to enable or disable operation of the SPNEGO TAI in a given application
server. When set to false, the SPNEGO TAI is disabled and not used by the web authentication
module for authenticating any web requests. When set to true, the SPNEGO TAI is enabled and used
by the web authentication module for authenticating any web requests.

com.ibm.ws.security.spnego.propertyReloadFile
Use this custom property to identify the file that contains configuration properties for the SPNEGO TAI,
when it is not convenient to stop and restart the application server. The properties contained in this file
can be reloaded to configure the SPNEGO TAI.

Important: The properties that are defined in the specified file override any properties defined using
the administrative console.

A sample of this reload file follows:
##########################################################
# Template properties files for SPNEGO TAI
#
# Where possible defaults have been provided.
#
##########################################################

#---------------------------------------------------------
# Hostname
#---------------------------------------------------------
#com.ibm.ws.spnego.SPN1.HostName=wsecurity.austin.ibm.com

#---------------------------------------------------------
# (Optional) SpnegoNotSupportedPage
#---------------------------------------------------------
#com.ibm.ws.spnego.SPN1.SpnegoNotSupportedPage=

#---------------------------------------------------------
# (Optional) NTLMTokenReceivedPage
#---------------------------------------------------------
#com.ibm.ws.spnego.SPN1.NTLMTokenReceivedPage=

#---------------------------------------------------------
# (Optional) FilterClass
#---------------------------------------------------------
#com.ibm.ws.spnego.SPN1.FilterClass=com.ibm.ws.spnego.HTTPHeaderFilter

#---------------------------------------------------------
# (Optional) Filter
#---------------------------------------------------------
#com.ibm.ws.spnego.SPN1.Filter=

Chapter 19. Administering application security 1515



Important: If com.ibm.ws.security.spnego.propertyReloadFile custom property is set, but the
com.ibm.ws.security.spnego.propertyReloadTimeout custom property is not, then the
SPNEGO TAI is not initialized.

com.ibm.ws.security.spnego.propertyReloadTimeout
Use this custom property to specify a time interval in seconds that elapses after which the SPNEGO
TAI reloads the configuration properties. Also, the SPNEGO TAI reloads the configuration properties if
the file that is identified by the com.ibm.ws.security.spnego.propertyReloadFile custom property
changed since the last time the configuration custom properties were retrieved. This time interval in
seconds must be specified as a positive integer.

com.ibm.ws.security.spnego.useHttpFilterClass2
Use this custom property to specify that the HttpHeaderFilter classes should be used. The
HttpHeaderFilter classes enable:

v The != operator to be used for SPNEGO TAI filters.

v A space to exist in a SPNEGO TAI filter.

When this property is set to true the following filter specification works properly.
user-agent!=IBM Web Services Explorer;request-url!=noSPNEGO

If this property is set to false, or is not specified, the preceding filter does not work properly.

Important:

v If the com.ibm.ws.security.spnego.propertyReloadFile custom property and the
com.ibm.ws.security.spnego.propertyReloadTimeout custom property are not set, then the
SPNEGO TAI properties are only loaded once from the SPNEGO TAI custom properties
defined in the WebSphere Application Server configuration data. This one time loading
occurs when the JVM is initialized.

v If com.ibm.ws.security.spnego.propertyReloadTimeout custom property is set, but the
com.ibm.ws.security.spnego.propertyReloadFile custom property is not, then the SPNEGO
TAI is not initialized. “Configuring JVM custom properties, filtering HTTP requests, and
enabling SPNEGO TAI in WebSphere Application Server (deprecated)” on page 1511 or
how to configure the JVM custom properties for SPNEGO TAI.

Remember: You can also use the wsadmin command for the AdminConfig scripting object to interactively
set the com.ibm.ws.security.spnego.isEnabled custom property. See “Enabling the SPNEGO
TAI as JVM custom property using scripting (deprecated)” on page 1513 for more
information.

The following custom properties are not used directly by the SPNEGO TAI; however, they affect the
operation of the core security runtime and can also be used for problem determination.

Table 88. JVM configuration custom properties.

This table describes the JVM configuration custom properties

Custom Property Name Required Value Type Default Value Recommended Value

com.ibm.security.jgss.debug No String None "off" or "all"

com.ibm.security.krb5.Krb5Debug No String None "off" or "all"

java.security.properties No String None

javax.security.auth.useSubjectCredsOnly Yes Boolean True False

com.ibm.security.jgss.debug
This custom property is optional. It can be used to collect diagnostic trace information for problem
determination in the Java Generic Security Service (JGSS) application programmer interface (API)

1516 Administering WebSphere applications



implementation. The value can be set to all or off to enable or disable tracing, respectively. See Java
Generic Security Service User's Guide for specific JGSS API information.

com.ibm.security.krb5.Krb5Debug
This custom property is optional. It can be used to collect additional diagnostic trace information for
problem determination in the JGSS implementation. The value can be set to all or off to enable or
disable tracing, respectively.

java.security.properties
This property is optional. It can be used when different application servers in a cell have different
security requirements and it is not convenient to modify the global java.security file for the entire cell.
In such situations, the java.security.properties custom property is used to specify the location of the
java.security file used by the JVM for each application server.

javax.security.auth.useSubjectCredsOnly
JGSS includes an optional Java Authentication and Authorization Service (JAAS) login facility that
saves Principal credentials and secret keys in the Subject of the application's JAAS login context.
JGSS retrieves credentials and secret keys from the Subject by default. This feature can be disabled
by setting the Java property javax.security.auth.useSubjectCredsOnly to false.

Attention: The SPNEGO TAI does not use the optional JAAS login module. The
javax.security.auth.useSubjectCredsOnly property must be set to false.

Mapping Kerberos client principal name to WebSphere user registry ID for SPNEGO TAI
(deprecated):

You can use a system programming interface to customize the behavior of the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) by implementing arbitrary
mappings of the end-user's identity, which is retrieved from Microsoft Active Directory to the identity that is
used in the WebSphere Application Server security registry.

Before you begin

You need to perform some administrative tasks in the WebSphere Application Server environment to use
SPNEGO TAI and to ensure that the requester's identity matches the identity in the WebSphere
Application Server user registry.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Note: Make sure the following tasks have been performed successfully:

1. Configuring the web browser to use SPNEGO. See “Configuring the client browser to use
SPNEGO TAI (deprecated)” on page 1510

2. Configuring Java virtual machine (JVM) properties, custom SPNEGO TAI properties, and
enabling the SPNEGO TAI. See “Configuring JVM custom properties, filtering HTTP requests,
and enabling SPNEGO TAI in WebSphere Application Server (deprecated)” on page 1511

About this task

In the simplest deployment of the SPNEGO TAI, it is assumed that the requester's identity in the
WebSphere Application Server user registry is identical to the identity retrieved. This is the case when

Chapter 19. Administering application security 1517

http://dwmaster.raleigh.ibm.com/dwcontent/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html
http://dwmaster.raleigh.ibm.com/dwcontent/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html


Microsoft Windows Active Directory server is the lightweight directory access protocol (LDAP) server used
in WebSphere Application Server. This is default behavior of the SPNEGO TAI.

You do not need to use this simple deployment of the SPNEGO TAI. WebSphere Application Server can
use a different registry, such as a local OS, LDAP, or custom registry instead of the Microsoft Active
Directory. If WebSphere Application Server uses a different registry than the Microsoft Active Directory,
then a mapping from the Microsoft Windows user Id to a WebSphere Application Server user Id is
necessary.

Procedure

Use the JAAS custom login module to perform any custom mapping of a client Kerberos principal name
from the Microsoft Active Directory to the WebSphere user registry identity. The JAAS custom login module
is a plug-in mechanism that is defined for authenticating incoming and outgoing requests in WebSphere
Application Server and is inserted before the ltpaLoginModule. The JAAS custom login module retrieves a
client Kerberos principal name in the javax.security.auth.Subject using
subject.getPrincipals(KerberosPrincipal.class) method, maps the client Kerberos principal name to
the WebSphere user registry identity, and inserts the mapping identity in the hash table property
com.ibm.wsspi.security.cred.userId. The ltpaLoginModule then uses the mapped identity to create a
WSCredential.

Note: The custom login module can also supply the full set of security properties in
the javax.security.auth.Subject in the com.ibm.wsspi.security.tai.TAIResult to fully assert
the mapped identity. When the identity is fully asserted, the wsMapDefaultInboundLoginModule maps
those security properties to a WSCredential.

A sample of the custom login module follows:
package com.ibm.ws.security.server.lm;

import java.util.Map;
import java.lang.reflect.Array;
import javax.security.auth.Subject;
import javax.security.auth.callback.*;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;
import javax.security.auth.kerberos.*;
import com.ibm.websphere.security.auth.WSLoginFailedException;
import com.ibm.wsspi.security.token.AttributeNameConstants;

/**
*
* @author IBM Corporation
* @version 1.0
* @since 1.0
*
*/

public class sampleSpnegoMappingLoginModule implements LoginModule {
/*
*
* Constant that represents the name of this mapping module. Whenever this sample
* code is used to create a class with a different name, this value should be changed.
*
*/
private final static String MAPPING_MODULE_NAME = "com.ibm.websphere.security.sampleSpnegoMappingLoginModule";

private String mapUid = null;
/**
* Construct an uninitialized WSLoginModuleImpl object.
*/
public sampleSpnegoMappingLoginModule() {

debugOut("sampleSpnegoMappingLoginModule() entry");
debugOut("sampleSpnegoMappingLoginModule() exit");

1518 Administering WebSphere applications



}

/**
* Initialize this login module.
*
*
* This is called by the LoginContext after this login module is
* instantiated. The relevant information is passed from the LoginContext
* to this login module. If the login module does not understands any of the data
* stored in the sharedState and options parameters,
* they can be ignored.
*
*
* @param subject The subject to be authenticated.
* @param callbackHandler
* A CallbackHandler for communicating with the end user to gather

login information (e.g., username and password).
* @param sharedState
* The state shared with other configured login modules.
* @param options The options specified in the login configuration for this particular login module.
*/
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options) {
debugOut("initialize(subject = \"" + subject.toString() +

"\", callbackHandler = \"" + callbackHandler.toString() +
"\", sharedState = \"" + sharedState.toString() +
"\", options = \"" + options.toString() + "\")");

this.subject = subject;
this.callbackHandler = callbackHandler;
this.sharedState = sharedState;
this.options = options;

debug = "true".equalsIgnoreCase((String)this.options.get("debug"));

debugOut("initialize() exit");
}

/**
*
* Method to authenticate a Subject (phase 1).
*
*
*
* This method authenticates a Subject. It uses CallbackHandler to gather
* the Subject information, like username and password for example, and verify these
* information. The result of the authentication is saved in the private state within
* this login module.
*
*
* @return true if the authentication succeeded, or false
* if this login module should be ignored.
* @exception LoginException
* If the authentication fails.
*/
public boolean login() throws LoginException
{

debugOut("sampleSpnegoMappingLoginModule.login() entry");

boolean succeeded = false;
java.util.Set krb5Principals= subject.getPrincipals(KerberosPrincipal.class);
java.util.Iterator krb5PrincIter = krb5Principals.iterator();

while (krb5PrincIter.hasNext()) {
Object princObj = krb5PrincIter.next();
debugOut("Kerberos principal name: "+ princObj.toString());

Chapter 19. Administering application security 1519



if (princObj != null && princObj.toString().equals("utle@WSSEC.AUSTIN.IBM.COM")){
mapUid = "user1";
debugOut("mapUid: "+mapUid);

java.util.Hashtable customProperties = (java.util.Hashtable)
sharedState.get(AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY);
if (customProperties == null) {

customProperties = new java.util.Hashtable();
}
succeeded = true;
customProperties.put(AttributeNameConstants.WSCREDENTIAL_USERID, mapUid);

Map<String,java.util.Hashtable)>
mySharedState=(Map<String,java.util.Hashtable>)sharedState;
mySharedState.put((AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY.customProperties);

debugOut("Add a mapping user ID to Hashtable, mapping ID = "+mapUid);

}
debugOut("login() custom properties = " + customProperties);

}
}

succeeded = true;
debugOut("sampleSpnegoMappingLoginModule.login() exit");

return succeeded;
}

/**
*
* Method to commit the authentication result (phase 2).
*
*
*
* This method is called if the LoginContext’s overall authentication
* succeeded (the revelant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL login module
* succeeded).
*
*
* @return true if the commit succeeded, or false
* if this login module should be ignored.
* @exception LoginException
* If the commit fails.
*/
public boolean commit() throws LoginException
{

debugOut("commit()");

debugOut("commit()");

return true;
}

/**
* Method to abort the authentication process (phase 2).
*
*
* This method is called if the LoginContext’s overall authentication
* failed (the revelant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL login module
* did not succeed).
*
*
*
* If this login module’s authentication attempt succeeded, then this method cleans
* up the previous state saved in phase 1.
*

1520 Administering WebSphere applications



*
* @return true if the abort succeeded, or false
* if this login module should be ignored.
* @exception LoginException
* If the abort fails.
*/
public boolean abort() throws LoginException {

debugOut("abort() entry");
debugOut("abort() exit");
return true;

}

/**
* Method which logs out a Subject.
*
* @return true if the logout succeeded, or false
* if this login module should be ignored.
* @exception LoginException
* If the logout fails.
*/
public boolean logout() throws LoginException
{

debugOut("logout() entry");
debugOut("logout() exit");

return true;
}

private void cleanup()
{

debugOut("cleanup() entry");
debugOut("cleanup() exit");

}

/*
*
* Private method to print trace information. This implementation uses System.out
* to print trace information to standard output, but a custom tracing system can
* be implemented here as well.
*
*/
private void debugOut(Object o)
{

System.out.println("Debug: " + MAPPING_MODULE_NAME);
if (o != null) {

if (o.getClass().isArray()) {
int length = Array.getLength(o);
for (int i = 0; i < length; i++) {

System.out.println("\t" + Array.get(o, i));
}

} else {
System.out.println("\t" + o);

}
}

}
private Subject subject;
private CallbackHandler callbackHandler;
private Map sharedState;
private Map options;

protected boolean debug = false;
}

Chapter 19. Administering application security 1521



Results

Using the custom login module, Microsoft Active Directory identities are mapped to the WebSphere
Application Server's security registry and the behavior of the SPNEGO TAI is customized.

Single sign-on capability with SPNEGO TAI - checklist (deprecated):

WebSphere Application Server provides a trust association interceptor (TAI) that uses the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP
requests for secured resources in WebSphere Application Server. To deploy and use the SPNEGO TAI you
need to examine your installation and decide on how best to configure the SPNEGO TAI.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application
Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

Lightweight Third Party Authentication (LTPA) is the default authentication mechanism for WebSphere
Application Server. However, you may need to configure LTPA prior to configuring the SPNEGO TAI. LTPA
is the required authentication mechanism for all trust association interceptors. You can configure LTPA by
clicking Security > Global security > Authentication mechanisms and expiration.

Note: Enabling web security single sign-on (SSO) is optional when you configure the SPNEGO TAI. For
more information, see “Implementing single sign-on to minimize web user authentications” on page
1477.

Answer the following questions to establish how the SPNEGO TAI is deployed.

1. What is your criteria for intercepting HTTP requests?

You must decide if the SPNEGO TAI deployment will use the HTTPHeaderFilter class as the default. If
you do use this class, then you must specify the exact filter properties for this class. The default
behavior of the SPNEGO TAI is to use the com.ibm.ws.spnego.HTTPHeaderFilter class to intercept all
requests.

If you do not use the sample com.ibm.ws.spnego.HTTPHeaderFilter class, then you must define a new
class that implements the com.ibm.wsspi.security.spnego.SpnegoTAIFilter interface.

You can decide to further control what HTTP requests are intercepted using the Service Provider
Programming Interface (SPI), “Filtering HTTP requests for SPNEGO TAI (deprecated)” on page 1523

See “SPNEGO TAI custom properties configuration (deprecated)” on page 1506 for descriptions of

v com.ibm.ws.security.spnego.SPN<id>.filterClass

v com.ibm.ws.security.spnego.SPN<id>.filter

2. Is user Id mapping to be used? If not, why not?

WebSphere Application Server enables you to define or develop a custom login module to map user
IDs. See “Mapping Kerberos client principal name to WebSphere user registry ID for SPNEGO TAI
(deprecated)” on page 1517 for more detail about performing this mapping.

You must decide, before deploying the TAI, whether or not to use this custom login module to perform
the SPNEGO TAI identity mapping

3. What type of encryption is to be used to process the SPNEGO tokens?

Microsoft Windows Active Directory supports two different Kerberos encryption types: RC4-HMAC and
DES-CBC-MD5. The IBM Java Generic Security Service (JGSS) library (and SPNEGO library) support
both of these encryption types.

1522 Administering WebSphere applications



Restriction: RC4-HMAC encryption is only supported with a Windows 2003 Server key distribution
center (KDC).

4. How will you handle credential delegation?

Kerberos supports the delegation of credentials. A server that receives Kerberos credentials from a
client can impersonate that client to other servers by using delegated credentials. Since SPNEGO TAI
tokens are a wrapping of a Kerberos credential, a server that receives Kerberos credentials within an
SPNEGO token can use those Kerberos credentials to impersonate the original user. That server can
interact using SPNEGO over HTTP as a SPNEGO client to other SPNEGO servers by composing an
appropriate HTTP Authorization header.

5. Will the SPNEGO TAI be deployed in a single or multiple domain name service (DNS) domain
environment?

Web browsers running on Windows are sensitive to DNS domains. They only send a SPNEGO token
when the target host name identifies a host name defined in the DNS domain of the client machine.
You can use HTTP redirection to support this configuration with the creation of a pseudo Kerberos
service principal name (SPN) in each DNS domain. All SPNs that WebSphere Application Server
supports must have their secret keys available in Kerberos keytab files. To enable single sign-on
across multiple DNS domains, a separate Kerberos keytab file is generated for each SPN per domain.
These individual Kerberos keytab files must be merged before they can be used by WebSphere
Application Server.

6. How frequently will application servers reload the SPNEGO TAI properties?

The SPNEGO TAI has an optional property reload feature that allows the reloading of the TAI
properties without restarting the Java virtual machine (JVM). This reload feature is controlled by the
system properties com.ibm.ws.security.spnego.propertyReloadFile and
com.ibm.ws.security.spnego.propertyReloadTimeout. These properties taken together enable the
SPNEGO TAI internal properties to be reloaded from a file on the file system after a certain time
period. If the com.ibm.ws.security.spnego.propertyReloadTimeout attribute is set to a valid integer
value, and the com.ibm.ws.security.spnego.propertyReloadFile attribute points to a file on the file
system, then each JVM reloads the SPNEGO TAI properties from the file after the timeout period
expires. Also, the SPNEGO TAI properties are reloaded only if the date on the file has changed. If
these reload properties are not set, then the SPNEGO TAI properties are only loaded once, at JVM
initialization, from the SPNEGO TAI custom properties that are defined in WebSphere Application
Server configuration data. See “SPNEGO TAI JVM configuration custom properties (deprecated)” on
page 1514 for more information about these reload properties.

The Windows Active Directory (Web) administrator, the WebSphere Application Server administrator, and
the application team review and answer these questions to determine the best deployment and
configuration settings for the SPNEGO TAI.

Filtering HTTP requests for SPNEGO TAI (deprecated):

You can use a system programming interface to customize the behavior of the Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) by specifying whether or
not a particular HTTP request should be intercepted.

Before you begin

Before you begin, you need to understand the deployment of the SPNEGO TAI in your installation.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the
Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and
authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Chapter 19. Administering application security 1523



Server 7.0, this function is now deprecated. SPNEGO web authentication has taken its place to
provide dynamic reload of the SPNEGO filters and to enable fallback to the application login
method.

About this task

Verify the configuration of your SPNEGO TAI. The deployment of the SPNEGO TAI can vary from a single
WebSphere Application Server system on which a single application is running to a large multinode
WebSphere Application Server, Network Deployment (ND) cell, with dozens of application servers, hosting
many applications. Every SPNEGO TAI is installed at the cell level. You must be aware of your particular
SPNEGO TAI configuration.

The default behavior of the SPNEGO TAI is to not intercept HTTP requests. This default behavior ensures
that the SPNEGO TAI can be installed into an existing cell, configured for a single application server and
not change any other application servers in the cell. Other WebSphere Application Servers can run exactly
as before within a given configuration.

Then decide whether or not to use the sample SPN<id>.filter class and determine the exact filter
properties to use.

Note: The default behavior of the SPNEGO TAI is to use the com.ibm.ws.security.spnego.SPN<id>.filter
class and intercept all requests.

If the default behavior is not appropriate, you can use a customer provided class, or extend or modify the
sample class as required. The system programmer interface, com.ibm.ws.security.spnego.SpnegoFilter
allows you to implement a custom filter to determine whether or not to intercept a particular HTTP request.
With the default implementation, you can set filter rules for coarse as well as fine-grained criteria in
selecting which HTTP requests to intercept.

Procedure

1. Set the com.ibm.ws.security.spnego.isEnabled Java virtual machine (JVM) custom property to true to
enable the SPNEGO TAI on any JVM.

2. Identify when the SPNEGO TAI intercepts a given request. A set of filter properties is provided, but you
must determine what is appropriate and modify the com.ibm.ws.security.spnego.SPN<id>.filter
class accordingly.

Results

Your SPNEGO TAI is set to filter HTTP requests when it is operating.

Configuring single sign-on capability with Enterprise Identity Mapping
The Enterprise Identity Mapping (EIM) identity token connection factory is a type of Java 2 Connector
(J2C) connection factory. Using EIM identity token connection factories along with EIM identity
token-enabled products, such as IBM Toolbox for Java, provides a single sign-on capability for WebSphere
Application Server applications that need to access server data and resources through your user ID.

Before you begin

The EIM identity token connection factory is supported on the following WebSphere Application Server
products.

Attention: Either Lightweight Third Party Authentication (LTPA) or Simple WebSphere
Authentication Mechanism (SWAM) may be used with the EIM identity token connection
factory. Enabling web security single sign-on (SSO) is optional when LTPA is used with the
EIM identity token connection factory. See the information about implementing single sign-on to
minimize web user authentications.

1524 Administering WebSphere applications



Table 89. Supported editions per product.

This table lists the supported edition names per product.
Edition name Supported products

Version 8.0 WebSphere Application Server, Express for IBM iWebSphere Application Server (base)

Version 6.1 WebSphere Application Server, Express for IBM iWebSphere Application Server (base)

Version 6.0.x WebSphere Application Server, Express for OS/400WebSphere Application Server (base)

This topic describes how to configure EIM identity token connection factories for Version 8.5 only and
provides information about a sample application that might be helpful to you when you develop your own
applications.

Attention: Configuration tasks can vary slightly for other WebSphere Application Server products and
editions.

About this task

The sample application uses an EIM identity token connection factory to provide EIM identity tokens for
use with IBM Toolbox for Java com.ibm.as400.access.AS400 objects. For example, if the sample
application is deployed on SERVER A, you can log in once to WebSphere Application Server and use the
sample application to perform IBM i server commands under your IBM i user profiles on SERVER B,
SERVER C, or SERVER D.

When you make a request to the sample application, you must log in with your WebSphere Application
Server user ID and password. Each request contains the server command and the target server name
where the command runs. When the request is received, the application calls the connection factory to
generate an identity token. The connection factory extracts your user ID from a Java Authentication and
Authorization Service (JAAS) subject object provided by WebSphere Application Server security, and it
collaborates with the EIM domain controller to create the identity token that is returned to the application.
The application then creates a com.ibm.as400.access.AS400 object for SERVER B and provides it with
the identity token (instead of your IBM i user profile) before it passes the server command to run.

Attention: A new identity token and com.ibm.as400.access.AS400 object are created each time you
send a request that contains a new target server. All com.ibm.as400.access.AS400 objects are stored in
an HTTP Session for use with subsequent requests.

Procedure
1. Verify that you have all of the necessary prerequisites installed to use the EIM token connection

factory. You must verify that you have installed the necessary program temporary fixes (PTF) to your
server and applications. For more information, see “Verifying Enterprise Identity Mapping identity token
connection factory prerequisite applications” on page 1526.

2. Configure EIM work with the identity token connection factory. These instructions explain how to
complete the following tasks:

a. Create a domain in EIM.

b. Add the domain to domain management.

c. Create a source user registry definition.

d. Create a user identifier.

e. Create a target association.

f. Create a source association.

g. Test the connection to the EIM domain controller

For more information, see “Configuring Enterprise Identity Mapping” on page 1526.

Chapter 19. Administering application security 1525



3. Configure the EIM identity token connection factory. This step involves configuring two Java Archive
(JAR) files and a shared library. For more information, see “Configuring the Enterprise Identity Mapping
identity token connection factory” on page 1529.

4. Configure the connection factory. For more information, see “Automatically configuring the connection
factory” on page 1534.

Results

After completing the previous steps, you have configured single sign-on for Enterprise Identity Mapping.

Verifying Enterprise Identity Mapping identity token connection factory prerequisite applications:

Use the following procedure to verify that the necessary prerequisites have been installed before using the
Enterprise Identity Mapping (EIM) identity token connection factory.

Before you begin

Before you can use the EIM identity token connection factory, you must have the required cumulative
program temporary fix (PTF) applied to your server. You might also need to apply PTFs to run the sample
application.

About this task

Perform the following steps to verify that you have the necessary prerequisites installed to use the EIM
identity token connection factory:

Procedure

1. Verify that OS/400 - Extended Base Directory Support (5761–SS1 or 5770-SS1 option 3) is installed on
the IBM i system that hosts WebSphere Application Server. This product is a requirement for the EIM
Identity Token Connection Factory.

2. Verify that the latest operating system PTFs are applied to your IBM i system for the EIM Identity
Token Connection Factory. For information about the latest operating system PTFs, search the
Technotes for "EIM Identity Token Connection Factory" on the WebSphere Application Server support
page at: http://www.ibm.com/software/webservers/appserv/support.html.

3. Install the required PTFs for the sample application.

To run the sample application, verify that the latest IBM Toolbox for Java service packs and the
required operating system PTFs are installed on all of your iSeries servers. For information on
obtaining the latest service packs and required operating system PTFs, see Toolbox for Java and
JTOpen Service Packs.

Results

After verifying that you have the necessary prerequisite applications installed, you can configure EIM for
use with the identity token connection factory.

What to do next

Configure EIM. See “Configuring Enterprise Identity Mapping.”

Configuring Enterprise Identity Mapping:

Use the iSeries Navigator to configure Enterprise Identity Mapping (EIM) for use with the identity token
connection factory.

1526 Administering WebSphere applications

http://www.ibm.com/software/webservers/appserv/support.html
http://www.ibm.com/servers/eserver/iseries/toolbox/servicepacks.htm
http://www.ibm.com/servers/eserver/iseries/toolbox/servicepacks.htm


Before you begin

For these steps, assume that your EIM controller, which is your Lightweight Directory Access Protocol
(LDAP) directory server, is your local directory server and that it resides on the iSeries server that is being
configured for EIM. For detailed information about EIM, see “Enterprise Identity Mapping” on page 1475.

You need the LDAP server administrator distinguished name (DN) and password to perform this task.

Tip: A server can participate only in one EIM domain at a time. If your server is already joined to an EIM
domain and the domain is added to domain management, use that domain, and skip to Create a
source user registry definition in EIM.

Procedure

1. The identity token connection factory requires you to configure an EIM domain.

Create a domain in EIM:

Note: Depending on the setup of the machine, these steps might appear in a slightly different order.
This assumes that LDAP is already configured and the network authentication service has not
been configured.

a. Make sure that the LDAP server started. You can verify the LDAP server administrator
distinguished name (DN) and password. However, be aware that the LDAP server is stopped by
the wizard later on.

b. In iSeries Navigator, expand server_name > Network > Enterprise Identity Mapping, where
server_name is the name of your iSeries server.

c. Click Enterprise Identity Mapping.

d. Right-click Configuration and select Configure to start the EIM Configuration wizard.

Note: This option is labeled Reconfigure if EIM has been previously configured on the system.

e. On the Welcome page of the wizard, select Create and join a new domain.

f. Click Next.

g. On the Specify EIM Domain Location page, select On the local Directory server and then click
Next.

h. If the network authentication service has not been configured on the system to set up a single
sign-on environment, the Configure Network Authentication Service page is displayed. Network
Authentication Service is not required for the EIM identity token connection factory. Select No and
then click Next.

i. On the Specify User for Connection page, specify the distinguished name and password for the
LDAP administrator to ensure that the wizard has enough authority to administer the EIM domain
and the objects in it. Click Next.

Note: If you have not configured the local directory server before you use the EIM Configuration
wizard, the Configure Directory Server page displays instead. Use this page to specify the
distinguished name and password for the LDAP administrator and continue with the next
step in this procedure. The LDAP distinguished name (DN) identifies the LDAP administrator
for the directory server. The EIM Configuration wizard creates this LDAP administrator DN
and uses it to configure the directory server as the domain controller for the new domain that
you are creating.

j. On the Specify Domain page, provide the name of the EIM domain, and click Next.

k. On the Specify Parent DN for Domain page, select Yes to specify a parent DN for the domain that
you are creating, or specify No to have EIM data stored in a directory location with a suffix whose
name is derived from the EIM domain name. Click Next.

l. A message is displayed that indicates that you must stop the LDAP server. Click Yes to continue.

Chapter 19. Administering application security 1527



m. On the Registry Information page, select Local OS/400 and then click Next.

n. On the Specify EIM System User page, select Distinguished name and password as the user
type, provide the DN and password for the directory server administrator, and optionally, verify the
DN and password. Click Next.

o. In the Summary panel, review the configuration information that you have provided. If all
information is correct, click Finish.

2. Add the domain to domain management:

a. In the iSeries Navigator, expand system_name> Network > Enterprise Identity Mapping >
Domain Management.

b. Right-click Domain Management and then select Add Domain.

c. In the Add Domain dialog, specify the domain you created earlier and click OK.

3. Create a source user registry definition in EIM.

The identity token connection factory requires a source user registry definition entry in EIM. The source
user registry definition represents the registry that WebSphere Application Server uses for
authentication. This registry can be a local OS registry or an LDAP registry.

a. In iSeries Navigator, expand system_name > Network > Enterprise Identity Mapping > Domain
Management > domain_name> User Registries.

b. If you are prompted for the LDAP server password, provide the password and click OK.

c. Right-click User Registries and select Add Registry > System to start the configuration wizard
that adds the registry to your domain.

Provide the registry name and type. If your application server is hosted on an iSeries server and
configured to use the local OS user registry, select OS/400 as the EIM user registry type. If your
application server is configured to use the LDAP user registry, enter LDAP - short name as the EIM
registry type.

Note: Prior to IBM i V5R4, instead of LDAP - short name use 1.3.18.02.33.14-caseIgnore. The
value 1.3.18.02.33.14-caseIgnore is the ObjectIdentifier-normalization form of the user
registry type and principals are identified by the LDAP short name attribute. The wizard does
not handle the descriptive name for this registry type.

d. Click OK.

4. Create user identifier in EIM

The identity token connection factory requires a user identifier entry, which is equivalent to an EIM
identifier; in EIM, the user identifier entry represents the user of the application.

a. In iSeries Navigator, expand system > Network > Enterprise Identity Mapping > Domain
Management > domain > Identifiers.

b. Right-click Identifiers, and select New Identifier.

c. Enter an identifier name, such as your full name, and click OK.

5. Create a target association in EIM for the user identifier.

A target association represents the user profile on the target iSeries server for the identifier created
earlier.

a. In iSeries Navigator, expand system > Network > Enterprise Identity Mapping > Domain
Management > domain > Identifiers.

b. Double-click the Application Identifier for the user created previously.

c. Click the Associations tab.

d. Click Add.

e. Provide the IBM i user profile for the EIM identifier in the User field and click OK.

f. Click OK to save the association.

6. Create a source association in EIM for the user identifier.

A source association is used to authenticate to WebSphere Application Server.

1528 Administering WebSphere applications



a. In iSeries Navigator, expand system > Network > Enterprise Identity Mapping > Domain
Management > domain > Identifiers.

b. Double-click the Application Identifier for the user created previously.

c. Click the Associations tab.

d. Click Add.

e. Click Browse and select the WebSphere Application Server user registry.

f. Specify your WebSphere Application Server user ID, such as my_id.

g. Select Source.

h. Click OK to add the new association.

i. Click OK to save the association.

7. Optional: Test the connection to the EIM domain controller.

Use the idsldapsearch command to test the connection to the EIM domain controller. For example, if
the LDAP server is located on the my_server host, the EIM domain name is My_EIM_Domain, and the
source user registry is WAS Registry, the steps to test the connection are as follows:

a. Log on to the iSeries server that hosts your WebSphere Application Server profile.

b. From a CL command line, specify QSH and press Enter.

c. Specify the following command and press Enter:
idsldapsearch -h my_server -p 389 -D cn=administrator
-w secret -b "ibm-eimDomainName=My_EIM_Domain"
"ibm-eimRegistryName=WAS_Registry"

where:

v my_server is the name of the host server of the LDAP server.

v 389 is the port that is used by the LDAP server.

v cn=administrator is the LDAP DN of the LDAP administrator.

v secret is the LDAP administrator password.

v ibm-eimDomainName=My_EIM_Domain is the LDAP DN of the EIM domain name entry.

The previous lines display as multiple lines for illustrative purposes only. Specify the command as
one continuous line.

In this example, no EIM domain parent name exists. If an EIM domain parent name did exist, such
as dc=myserver,dc=ibm,dc=com, the LDAP DN is ibm-
eimDomainName=My_EIM_Domain,dc=myserver,dc=ibm,dc=com.

Results

The expected output looks similar to the following example:
ibm-eimRegistryName=WAS Registry,cn=Registries,ibm-eimdomainname=My_EIM_Domain

objectclass=top
objectclass=ibm-eimRegistry
objectclass=ibm-eimSystemRegistry
ibm-eimRegistryName=WAS_Registry
ibm-eimRegistryType=1.3.18.0.2.33.9-caseIgnore
description=Example Registry for WebSphere Application Server

What to do next

Configure the EIM identity token connection factory. See “Configuring the Enterprise Identity Mapping
identity token connection factory.”

Configuring the Enterprise Identity Mapping identity token connection factory:

The Enterprise Identity Mapping (EIM) identity token connection factory requires the eim.jar file to be
located in the class path for the connection factory. The jt400.jar file must be in the class path for the
sample application.

Chapter 19. Administering application security 1529



About this task

Perform the following steps to configure the eim.jar and jt400.jar files:

Procedure

1. “Configuring the eim.jar and jt400.jar files” on page 1531

2. “Configuring a shared library for the jt400.jar file” on page 1532

Enterprise Identity Mapping identity token connection factory parameters:

The following table is a summary of the parameters or custom properties that are referenced by the
Enterprise Identity Mapping (EIM) identity token connection factory. These parameters are necessary when
you configure the EIM identity token connection factory.

Table 90. Parameters and custom properties referenced by EIMidentity token connection factory.

This table lists the parameters and custom properties referenced by EIMidentity token connection factory.

Parameter description Parameter example Required Initially set by Referenced by

LDAP administrator ID
and password

cn=administrator Yes LDAP administrator
using the iSeries
Navigator when
configuring LDAP

J2C Authentication Data
entry

LDAP host name and
port

mysystem.com and 389 Yes LDAP administrator
using the iSeries
Navigator

LdapHostName and
LdapHostPort identity token
resource adaptor properties

EIM domain name and
parent domain

EIM and
dc=mysystem,dc=com

Yes EIM administrator
using the iSeries
Navigator when
configuring EIM

EimDomainName and
ParentDomain identity token
resource adaptor properties

sourceRegistryName LDAP Yes EIM administrator
using the iSeries
Navigator when
configuring EIM
user registries that
are used by
applications

sourceRegistryName
identity token resource
adaptor property

Key time out and size 1200 and 512 No WebSphere
Application Server
administrator using
the administrative
console

KeyTimeoutSeconds and
KeySize identity token
resource adaptor properties

UseSSL false No WebSphere
Application Server
administrator using
the administrative
console

UseSSL identity token
resource adaptor property

TrustStoreName profile_root/etc/
idtokTrustFile.jks

No WebSphere
Application Server
administrator using
the administrative
console

TrustStoreName identity
token resource adaptor
property

1530 Administering WebSphere applications



Table 90. Parameters and custom properties referenced by EIMidentity token connection factory (continued).

This table lists the parameters and custom properties referenced by EIMidentity token connection factory.

Parameter description Parameter example Required Initially set by Referenced by

TrustStorePassword tspwd No WebSphere
Application Server
administrator using
the administrative
console

TrustStorePassword identity
token resource adaptor
property

KeyStoreName profile_root/etc/
idtokKeyFile.jks

No WebSphere
Application Server
administrator using
the administrative
console

KeyStoreName identity
token resource adaptor
property

KeyStorePassword kspwd No WebSphere
Application Server
administrator using
the administrative
console

KeyStorePassword identity
token resource adaptor
property

Identity token files

After applying the required PTFs, all of the files in the table below can be found on the server where you
have WebSphere Application Server installed.

Table 91. Files found after required PTFs are applied.. This table lists the files found after required PTFs are applied.

File Name Directory

idTokenRA.rar /QIBM/ProdData/OS400/security/eim

testIdentityToken.ear /QIBM/ProdData/OS400/security/eim

cfgIdToken.jacl /QIBM/ProdData/OS400/security/eim

eim.jar /QIBM/ProdData/OS400/security/eim

jt400.jar /QIBM/ProdData/HTTP/public/jt400/lib

idTokenRA.JCA15.rar /QIBM/ProdData/OS400/security/eim

Configuring the eim.jar and jt400.jar files:

You can configure the EIM identity token factory by using the following procedure.

About this task

Completing the steps in this topic is the first part of configuring the EIM identity token connection factory.

Procedure

The eim.jar file is already configured on your iSeries server and no additional action is required.

Results

The eim.jar and the jt400.jar files are configured.

Chapter 19. Administering application security 1531



What to do next

If you copy the jt400.jar file to a different directory, you must configure a shared library for the file. For
OS/400 or IBM i, JTOpen Version 4.3 or later of the jt400.jar file is already on your server. However, you
still must configure a shared library for the jt400.jar file. See the “Configuring a shared library for the
jt400.jar file” topic for more information.

Configuring a shared library for the jt400.jar file:

Use the WebSphere Application Server administrative console to create a shared library for the jt400.jar
file.

About this task

If you copied the jt400.jar file to a different directory, completing the steps in this topic is part of configuring
the Enterprise Identity Mapping (EIM) token connection factory.

Procedure

1. Create a shared library:

a. In the WebSphere Application Server administrative console, expand Environment.

b. Click Shared Libraries.

c. Click to expand the Scope field.

d. Select the node where you want to create the shared library.

e. Click Apply.

f. Click New.

g. Specify the name of the shared library in the Name field.

h. Specify the full path name of the jt400.jar file in the Classpath field. The default path name is
/QIBM/ProdData/HTTP/public/jt400/lib/jt400.jar.

i. Click OK.

2. Create an application class loader for the shared library. This step makes the jt400.jar file available
to all applications that are deployed on the application server.

a. In the WebSphere Application Server administrative console, click Servers > Application servers
> server_name.

b. Under the Server Infrastructure heading, click Java and Process Management > Class loader >
New.

c. Keep the Class loader order default as Classes loaded with parent class loader first and click
OK.

d. Click the Class loader ID for the class loader that was created.

e. Under Additional properties, click Shared library references.

f. Click Add.

g. Select the name of the shared library you created earlier.

h. Click OK.

3. Grant the java.security.AllPermission permission to the jt400.jar file in the server.policy file.

To grant the required permission to the jt400.jar file, edit the server.policy file for your WebSphere
Application Server profile and add the following statement. The server.policy file is in the
profile_root/properties directory.
grant codeBase "file:path_name/jt400.jar" {

permission java.security.AllPermission;
};

where path_name is the fully qualified path name of the directory that contains the jt400.jar file. The
default path name is /QIBM/ProdData/HTTP/public/jt400/lib/jt400.jar.

1532 Administering WebSphere applications



4. Save your configuration changes.

a. Expand System administration and click Save Changes to Master Repository.

b. Click Save.

Results

The shared library for the jt400.jar file is configured.

What to do next

After completing these steps, continue with configuring the connection factory. See “Manually configuring
the connection factory” to configure the connection factory manually, or see “Automatically configuring the
connection factory” on page 1534 to use a Jacl script to automatically configure the connection factory.

Manually configuring the connection factory:

The following steps help you manually configure the connection factory.

Before you begin

Configure the eim.jar and jt400.jar files.

About this task

After you configure the eim.jar and jt400.jar files, you can choose to manually or automatically
configure the connection factory. If you choose to automatically configure the connection factory, see
“Automatically configuring the connection factory” on page 1534 for more information. Perform the
following steps to manually configure the Java 2 Connector (J2C) authentication data, the resource
adapter, and the connection factory.

Procedure

1. Configure the Java 2 Connector (J2C) authentication data.

a. In the WebSphere Application Server administrative console, click Security >Global security.

b. Under Java Authentication and Authorization Service, click J2C Authentication data > New

c. Specify the values for each of the required fields. The User ID (cn=administrator for example) and
Password values are those that are used by the connection factory to bind to the Lightweight
Directory Access Protocol (LDAP) server that contains your Enterprise Identity Mapping (EIM) data.

d. Click OK.

2. Configure the resource adapter.

a. In the WebSphere Application Server administrative console, click Resources > Resource
adapters > Resource adapters.

b. Select the node where you want to install the resource adapter.

c. Click Apply.

d. Click Install RAR.

e. Select Local path if you have a drive that is mapped to your iSeries server. Otherwise, select
Server path.

f. Specify the path name or browse to the path name for the idTokenRA.JCA15.rar RAR file.

g. Click Next.

h. Specify the name of your adapter in the Name field. For example, specify identitytoken.

i. Click OK.

3. Configure the connection factory.

Chapter 19. Administering application security 1533



a. On the Resource Adapters panel, click the name of your newly created resource adapter.

b. Under Additional Properties, click J2C connection factories > New.

c. Specify the name of your connection factory in the Name field. For example, specify
idtokenconnection.

d. Specify eis/IdentityToken in the Java Naming and Directory Interface (JNDI) name field. This
name must match the JNDI name used during the deployment of the sample application. The
name is used for reference binding.

e. In the Component-managed authentication alias and Container-managed authentication alias fields,
select the authentication data alias that you created earlier.

f. In the Mapping-configuration alias field, select DefaultPrincipalMapping.

g. Click Apply.

h. Under Additional Properties, click Custom properties. The custom properties are used by the
connection factory to communicate with the EIM controller. View the custom property descriptions,
and determine whether the properties are required or optional. For more information, see
“Enterprise Identity Mapping identity token connection factory parameters” on page 1530.

To set a property value, complete the following steps:

1) Click the name of the custom property.

2) Type the value of the property in the Value field.

3) Click OK.

4. Save your configuration changes.

a. Expand System administration and click Save Changes to Master Repository.

b. Click Save.

Results

You have manually configured the connection factory.

What to do next

After saving your configuration changes, you can deploy the EIM sample application into the WebSphere
Application Server environment. The source code files that are used in the sample application can be used
as a model for creating your own applications. See “Deploying the Enterprise Identity Mapping sample
application” on page 1535 for more information.

Automatically configuring the connection factory:

You can use the cfgIdToken.jacl script to automatically configure the Java 2 Connector (J2C)
authentication data, the resource adapter, and the connection factory.

Before you begin

Configure the eim.jar and jt400.jar files.

About this task

After you configure the eim.jar and the jt400.jar files, you can choose to manually or automatically
configure the connection factory. If you choose to manually configure the connection factory, see “Manually
configuring the connection factory” on page 1533 for more information.

Perform the following steps to create a connection factory named CF1 in the my_profile WebSphere
Application Server profile:

1534 Administering WebSphere applications



Procedure

1. Verify that your application server is started.

2. On the CL command line, enter QSH. This command starts the Qshell environment.

3. Change to the app_server_root/bin directory and specify the following command:
wsadmin -profileName my_profile -f /QIBM/ProdData/OS400/security/eim/cfgIdToken.jacl

CF1 sys1.ibm.com 389 "Eim Domain 1" "Registry For my_profile"
-rarFile /QIBM/ProdData/OS400/security/eim/idTokenRA.JCA15.rar -authAlias myAlias1
-authUserName cn=administrator -authPassword pwd1

Note: The /QIBM/ProdData/OS400/security/eim directory contains two resource adapter archive files,
idTokenRA.rar and idTokenRA.JCA15.rar. The resource adapter contained in idTokenRA.rar is
implemented to the Java EE Connector Architecture (JCA) 1.0 specification, while the adapter in
idTokenRA.JCA15.rar is implemented to the JCA 1.5 specification. The JCA 1.5 specification is
included in the Java EE 1.4 specification.

where:

v my_profile is the name of the WebSphere Application Server profile.

v /QIBM/ProdData/OS400/security/eim/cfgIdToken.jacl is the path name to the cfgIdToken.jacl
script.

v CF1 is the name of the connection factory.

v sys1.ibm.com is the Lightweight Directory Access Protocol (LDAP) server host name for the
Enterprise Identity Mapping (EIM) domain controller.

v 389 is the LDAP server port.

v Eim Domain 1 is the EIM domain name.

v Registry For my_profile is the EIM source user registry.

v /QIBM/ProdData/OS400/security/eim/idTokenRA.JCA15.rar is the path name to the
idTokenRA.JCA15.rar file.

v myAlias1 is the authentication alias name that is referenced by the connection factory when it
authenticates to the EIM domain controller (LDAP server).

v cn=administrator is the distinguished name that is associated with the authentication alias.

v pwd1 is the password that is associated with the authentication alias.

Notes®:

v The previous sample displays on multiple lines for illustrative purposes only. Type the command on
one continuous line.

v Quote all argument values that contain embedded blanks.

Results

You have automatically configured the connection factory.

What to do next

After performing the previous steps, you can deploy the EIM sample application into the WebSphere
Application Server environment. The source code files that are used in the sample application can be used
as a model for creating your own applications. See “Deploying the Enterprise Identity Mapping sample
application” for more information.

Deploying the Enterprise Identity Mapping sample application:

You can deploy the sample application into the WebSphere Application Server environment.

Chapter 19. Administering application security 1535



Before you begin

Using Enterprise Identity Mapping (EIM) identity token connection factories requires that WebSphere
Application Server administrative security be enabled. However, no restrictions or limitations exist on how
you choose to configure administrative security.

Before you deploy the sample application, you must enable WebSphere Application Server administrative
security. This step is not required if you already have administrative security enabled for your WebSphere
Application Server profile. For more information on how to configure security, see “Enabling security” on
page 1180.

About this task

The source code files that are used to implement the sample application are contained in the
testIdentityToken.ear file and can be used as a model for creating your own applications.

The com.ibm.identitytoken.IdentityTokenTest class is a servlet in the sample application. After the
application is deployed, the source code file for the IdentityTokenTest servlet is in this directory:
profile_root/installedApps/testIdentityToken.ear/testIdentityTokenWeb.war
/WEB-INF/source/com/ibm/identityToken/IdentityTokenTest.java

Note the IdentityTokenTest servlet design features when you implement your own application.

v A profile variable with a String type and the name, sourceApplicationID, is set in the init method of the
IdentityTokenTest servlet. This variable is later used with the setSourceApplicationID method of a
ConnectionSpecImpl object to uniquely identify the application to Enterprise Identity Mapping (EIM).
When you implement your own applications, use a similar convention to assign a unique
SourceApplicationID ID.

v After an identity token is generated, it is used to create a com.ibm.as400.access.AS400 object, which is
stored in an HTTPSession object immediately after the AS400 object is used to run the OS/400 server
command on the selected host server. Only the AS400 object persists across requests to the server (not
the IdentityToken object), which provides improved performance for subsequent requests, and the
identity token does not expire.

The following steps help you deploy the sample application into the WebSphere Application Server
environment.

Procedure

1. Restart your application server.

2. Deploy the sample application.

a. In the WebSphere Application Server administrative console, click Applications > Install
applications.

b. Select Local path if you have a drive mapped to your iSeries server. Otherwise, select Server
path.

c. Specify the path name or browse to the path name for the testidentitytoken.ear enterprise
archive (EAR) file. This file is found in the /QIBM/ProdData/OS400/security/eim/ directory on your
server.

d. Click Next.

e. Optional: Change the virtual host values.

f. Click Next.

g. Select your installation options, and click Next.

h. Decide whether to map modules to servers and click Next.

i. Select your module in the Map resource references to resources panel and click Next.

1536 Administering WebSphere applications



j. Optional: Change the Java Naming and Directory Interface (JNDI) name for the
eis/IdentityToken_Shared_Reference reference binding . Do this step if you configured your
connection factory with a JNDI name other than eis/IdentityToken.

k. Accept the default values for the remainder of the panels and click Next.

l. On the Summary panel, click Finish.

m. Expand System administration and click Save Changes to Master Repository.

n. Click Save.

3. Run the sample application.

a. In the WebSphere Application Server administrative console, click Applications > Enterprise
applications.

b. Select the testIdentityToken application.

c. Click Start.

d. Open a new session of your web browser.

e. If you mapped the sample application web module to an external web server, refresh your
WebSphere Application Server web server plug-in.

To refresh the web server plug-in, perform the following steps:

1) Click Servers > Web servers > Web_server_name.

2) Click Generate Plug-in.

f. Specify the application welcome page from your web browser. Use the following web address:
http://your.server.name:port/testIdentityTokenWeb/IDTknTest.jsp

The your.server.name and port variables are the values for your external web server or internal
HTTP transport (WebSphere Application Server container).

g. Specify a value for OS/400 host system name and for OS/400 command. For example, if you have
EIM configured for the my_server server, specify my_server in the OS/400 host system name
field. Specify crtlib my_library in the OS/400 command field.

h. Click Submit.

i. Specify a user ID and password at the login prompt.

After you click Submit, the request is sent to the IdentityTokenTest servlet, which is protected by
the allUsers role. The allUsers role is bound to the AllAuthenticated special subject so any user in
the WebSphere Application Server user registry is authorized to access the IdentityTokenTest
servlet.

j. Click OK. If you specified my_library, the response is similar to the following example:
Library my_library created.

k. Verify that the library is created under the user profile that is mapped by EIM:

1) From a CL command line, enter wrklnk '/QSYS.LIB/my_library.lib'.

2) On the Work with Object Links screen, enter 8 in the option field to the left of my_library.lib.

3) Verify that the value of the Owner attribute for the my_library library is the user profile that is
mapped by EIM.

Configuring single sign-on capability with Tivoli Access Manager or WebSEAL
Use the following information to enable single sign-on to WebSphere Application Server using either
WebSEAL or the plug-in for web servers.

About this task

Either Tivoli Access Manager WebSEAL or Tivoli Access Manager plug-in for web servers can be used as
reverse proxy servers to provide access management and single sign-on (SSO) capability to WebSphere
Application Server resources. With such an architecture, either WebSEAL or the plug-in authenticates
users and forwards the collected credentials to WebSphere Application Server in the form of an IV Header.
Two types of single sign-on are available, the TAI interface and the TAI++ interface, so named as both use

Chapter 19. Administering application security 1537



WebSphere Application Server trust association interceptors (TAI). With the TAI, the end-user name is
extracted from the HTTP header and forwarded to embedded Tivoli Access Manager where the end-user
name is used to construct the client credential information and authorize the user. With the TAI++, all of
the user credential information is available in the HTTP header and not just the user name. The TAI++ is
the more efficient of the two solutions because a Lightweight Directory Access Protocol (LDAP) call is not
required. TAI functionality is retained for backwards compatibility.

Complete the following tasks to enable single sign-on to WebSphere Application Server using either
WebSEAL or the plug-in for web servers. These tasks assume that embedded Tivoli Access Manager is
configured for use.

Procedure
1. Create a trusted user account for Tivoli Access Manager in the shared Lightweight Directory Access

Protocol (LDAP) user registry. For more information, see “Creating a trusted user account in Tivoli
Access Manager” on page 1544.

2. Configure either WebSEAL or the Tivoli Access Manager plug-in for Web servers to work with
WebSphere Application Server. For more information, see either of the following articles:

v “Configuring WebSEAL for use with WebSphere Application Server” on page 1545

v “Configuring Tivoli Access Manager plug-in for web servers for use with WebSphere Application
Server” on page 1546

3. Configure single sign-on using either the TAI or TAI++ interface. For more information, see either of the
following articles:

v “Configuring single sign-on using trust association” on page 1546

v “Configuring single sign-on using trust association interceptor ++” on page 1547

Single sign-on settings:

Use this page to set the configuration values for single sign-on (SSO).

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Web and SIP security > Single sign-on (SSO).

The Set security cookies as HTTPOnly to resist cross-site scripting attacks check box has been added to
the Single sign-on settings page for this release. The HttpOnly attribute is a browser attribute created to
prevent client side applications (such as Java scripts) from accessing cookies to prevent some cross-site
scripting vulnerabilities. The attribute specifies that LTPA and WASReqURL cookies include the HTTPOnly
field.

Enabled:

Specifies that the single sign-on function is enabled.

Web applications that use J2EE FormLogin style login pages, such as the administrative console, require
single sign-on (SSO) enablement. Only disable SSO for certain advanced configurations where LTPA
SSO-type cookies are not required.

Information Value
Data type: Boolean
Default: Enabled
Range: Enabled or Disabled

Requires SSL:

1538 Administering WebSphere applications



Specifies that the single sign-on function is enabled only when requests are made over HTTPS Secure
Sockets Layer (SSL) connections. When this property is enabled, security is automatically enabled.

Information Value
Data type: Boolean
Default: Disable
Range: Enable or Disable

Domain name:

Specifies the domain name (.ibm.com, for example) for all single sign-on hosts.

The application server uses all the information after the first period, from left to right, for the domain
names. If this field is not defined, the web browser defaults the domain name to the host name where the
web application is running. Also, single sign-on is then restricted to the application server host name and
does not work with other application server host names in the domain.

You can specify multiple domains separated by a semicolon (;), a space ( ), a comma (,), or a pipe (|).
Each domain is compared with the host name of the HTTP request until the first match is located. For
example, if you specify ibm.com;austin.ibm.com and a match is found in the ibm.com domain first, the
application server does not match the austin.ibm.com domain. However, if a match is not found in either
ibm.com or austin.ibm.com, then the application server does not set a domain for the LtpaToken cookie.

gotcha: The session manager uses a secure random generator to generate session ID. The session ID is
written to the cookie when the cookie is created in the setCookie method. The session manager
does not set the LtpaToken to cookies.

If you specify the UseDomainFromURL value, the application server sets the SSO domain name value to the
domain of the host that is used in the web address. For example, if an HTTP request comes from
server1.raleigh.ibm.com, the application server sets the SSO domain name value to raleigh.ibm.com.

Tip: The UseDomainFromURL value is case insensitive. You can type usedomainfromurl to use this value.

Information Value
Data type: String

Interoperability mode:

Specifies that an interoperable cookie is sent to the browser to support back-level servers.

In WebSphere Application Server, Version 6 and later, a new cookie format is needed by the security
attribute propagation functionality. When the interoperability mode flag is enabled, the server can send a
maximum of two single sign-on (SSO) cookies back to the browser. In some cases, the server just sends
the interoperable SSO cookie.

Web inbound security attribute propagation:

When web inbound security attribute propagation is enabled, security attributes are propagated to
front-end application servers. When this option is disabled, the single sign-on (SSO) token is used to log in
and recreate the Subject from the user registry.

With this information, the receiving server can contact the originating server using an MBean call to get the
original serialized security attributes.

Set security cookies as HTTPOnly to resist cross-site scripting attacks:

Chapter 19. Administering application security 1539

|
|

|
|
|



The HttpOnly attribute is a browser attribute created to prevent client side applications (such as Java
scripts) from accessing cookies to prevent some cross-site scripting vulnerabilities. The attribute specifies
that LTPA and WASReqURL cookies include the HTTPOnly field.

For session cookies, see the session settings for servers, applications, and web modules.

Information Value
Data type: boolean
Default: enabled
Range: enabled or disabled

com.tivoli.pd.jcfg.PDJrteCfg utility for Tivoli Access Manager single sign-on:

The com.tivoli.pd.jcfg.PDJrteCfg utility configures the Java Runtime Environment component for Tivoli
Access Manager. This utility enables Java applications to use the Tivoli Access Manager policy and
authorization servers.

Purpose

Steps

To run the pdjrtecfg script, perform the following steps:

1. Log into your system with a user profile and the all object (*ALLOBJ) authority.

2. On the command line, enter the Start Qshell (STRQSH) command.

3. Change to the /bin subdirectory of WebSphere Application Server. For example:
cd app_server_rootBase/bin

4. Run the script. For example:
pdjrtecfg -action config -profileName myprofile
-host mypolicy.mycompany.com -config_type full

The previous example was split onto multiple lines for illustrative purposes only.

Syntax

The following syntax diagram shows the usage of the pdjrtecfg script:
pdjrtecfg

-action config
-profileName profile_name
-host policy_server_name
-config_type { full | standalone }
-cfgfiles_path configuration_file_path

-action unconfig
-profileName profile_name

Parameters

-action {config|unconfig}
Specifies the action to be performed. Actions include:

config Use to configure the Access Manager Java Runtime Environment component.

unconfig
Use to reconfigure the Access Manager Java Runtime Environment component.

-cfgfiles_path
Specifies where the generated configuration files will be placed.

Note: This parameter is required.

1540 Administering WebSphere applications



-config_type {full|standalone}
Specifies the configuration type of Java Runtime Environment for Tivoli Access Manager. Specify full
or standalone with this argument. This option is required.

-host policy_server_host
Specifies the policy server host name.

Valid values for policy_server_host include any valid IP host name.

Examples include:

host = libra
host = libra.dallas.ibm.com

Notifies Tivoli Access Manager Runtime for Java that the WebSphere Application Server version is
being configured so it is not necessary to perform certain steps such as copying the Java security jar
files and PD.jar file since they were already placed in the appropriate directory by the WebSphere
Application Server installer.

-profileName
Specifies the name of the WebSphere Application Server profile. If not specified, the default profile is
used.

Specifies the fully qualified path to the Java runtime (such as the directory ending in jre). If this
parameter is not specified, the home directory for the jre in the PATH statement is used. If the home
directory for the jre is not in the PATH statement, this utility can create an incorrect parameter in the
output files.

Comments

This command copies Tivoli Access Manager Java libraries to a library extensions directory that exists for
a Java runtime that has already been installed on the system.

You can install more than one Java Runtime Environment (JRE) on a given machine. The pdjrtecfg
command can be used to configure the Tivoli Access Manager Java Runtime Environment component
independently for each of the JRE configurations.

com.tivoli.pd.jcfg.SvrSslCfg utility for Tivoli Access Manager single sign-on:

The utility is used to configure and remove the configuration information associated with WebSphere
Application Server and the Tivoli Access Manager server.

Purpose

The svrsslcfg script creates a user account and server entries that represent your WebSphere
Application Server profile in the Tivoli Access Manager user registry. In addition, a configuration file and a
Java keystore file, which securely stores a client certificate, are created in the application server profile.
This client certificate permits callers to use Tivoli Access Manager authentication services. You can also
choose to remove the user and server entries from the user registry and clean up the local configuration
and keystore files.

The svrsslcfg script wraps the SvrSslCfg class and provides support for multiple WebSphere
Application Server profiles. The use of multiple profiles allows you to create multiple WebSphere
Application Server environments that are completely isolated from one another.

Chapter 19. Administering application security 1541



Steps

To run the svrsslcfg script, perform the following steps:

1. Log on with a user profile and all object (*ALLOBJ) authority.

2. On the CL command line, enter the Start Qshell (STRQSH) command.

3. Change directories to the app_server_root/bin directory.

4. Enter the svrsslcfg command with the options that you want.

For example:
svrsslcfg -profileName myprofile -action config -admin_id sec_master
-admin_pwd pwd123 -appsvr_id ibm9 -appsvr_pwd ibm9pwd -mode remote
-port 8888 -policysvr ourserv.rochester.ibm.com:7135:1
-authzsvr ourserv.rochester.ibm.com:7136:1
-key_file profile_root/myprofile/etc/ibm9.kdb
-cfg_action create

The previous example displays on multiple lines for illustrative purposes only.

Syntax

The configuration syntax is:
svrsslcfg -action config

[ -profileName profile_name ]
-admin_id admin_user_id
-admin_pwd admin_password
-appsvr_id application_server_name
-port port_number
-mode { local | remote }
-policysvr policy_server_name
-authzsvr authorization_server_name
-key_file fully_qualified_name_of_key_file
-appsvr_pwd application_server_password
-cfg_action { create | replace }

[ -domain Tivoli_Access_Manager_domain ]

The unconfigure syntax is:
svrsslcfg -action unconfig

[ -profileName profile_name ]
-admin_id admin_user_id
-admin_pwd admin_password
-appsvr_id application_server_name
-policysvr policy_server_name

[ -domain Tivoli_Access_Manager_domain ]

You can enter the previous syntax as one continuous line.

Parameters

-action {config | unconfig}
Specifies the configuration action that is performed by the script. The following options apply:

-action config
Configuring a server creates user and server information in the user registry and creates local
configuration and key store files on the application server. Use the -action unconfig option to
reverse this operation.

If this action is specified, the following options are required: -admin_id, -admin_pwd,
-appsvr_id, -port, -mode, -policysvr, -authzsvr, and -key_file.

-action unconfig
Reconfigures an application server to complete the following actions:

v Remove the user and server information from the user registry

v Delete the local key store file

v Remove information for this application from the configuration file without deleting the file

1542 Administering WebSphere applications



The reconfiguration operation fails only if the caller is unauthorized or the policy server cannot
be contacted.

This action can succeed when a configuration file does not exist. When the configuration file
does not exist, it is created and used as a temporary file to hold configuration information
during the operation, and then the file is deleted completely.

If this action is specified, the following options are required: -admin_id, -admin_pwd,
-appsvr_id, and -policysvr.

-admin_id admin_user_ID
Specifies the Tivoli Access Manager administrator name. If this option is not specified, sec_master is
the default.

A valid administrative ID is an alphanumeric, case-sensitive string. String values are expected to be
characters that are part of the local code set. You cannot use a space in the administrative ID.

For example, for U.S. English the valid characters are the letters a-Z, the numbers 0-9, a period (.),
an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&), and an asterisk (*).
The minimum and maximum lengths of the administrative ID, if there are limits, are imposed by the
underlying registry.

-admin_password admin_password

Specifies the password of the Tivoli Access Manager administrator user that is associated with the
-admin_id parameter. The password restrictions depend upon the password policy for your Tivoli
Access Manager configuration.

-appsvr_id application_server_name
Specifies the name of the application server. The name is combined with the host name to create
unique names for Tivoli Access Manager objects created for your application. The following names are
reserved for Tivoli Access Manager applications: ivacld, secmgrd, ivnet, and ivweb.

-appsvr_pwd application_server_password
Specifies the password of the application server. This option is required. A password is created by the
system and the configuration file is updated with the password created by the system.

If this option is not specified, the server password will be read from standard input.

-authzsvr authorization_server_name
Specifies the name of the Tivoli Access Manager authorization server with which the application server
communicates. The server is specified by fully qualified host name, the SSL port number, and the
rank. The default SSL port number is 7136. For example: myauth.mycompany.com:7136:1. You can
specify multiple servers if the entries are separated by a comma (,).

-cfg_action {create | replace}
Specifies the action to take when creating the configuration and key files. Valid values are create or
replace. Use the create option to initially create the configuration and keystore files. Use the replace
option if these files already exist. If you use the create option and the configuration or keystore files
already exist, an exception is created.

Options are as follows:

create Specifies to create the configuration and key store files during server configuration.
Configuration fails if either of these files already exists.

replace
Specifies to replace the configuration and key store files during server configuration.
Configuration deletes any existing files and replaces them with new ones.

-domain Tivoli_Access_Manager_domain
Specifies the Tivoli Access Manager domain name to which the administrator is authenticated. This
domain must exist and an the administrator ID and password must be valid for this domain. The
application server is specified in this domain.

Chapter 19. Administering application security 1543



If not specified, the local domain that was specified during Tivoli Access Manager runtime configuration
will be used. The local domain value will be retrieved from the configuration file.

A valid domain name is an alphanumeric, case-sensitive string. String values are expected to be
characters that are part of the local code set. You cannot use a space in the domain name.

For example, for U.S. English the valid characters for domain names are the letters a-Z, the numbers
0-9, a period ( . ), an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&),
and an asterisk (*). The minimum and maximum lengths of the domain name, if there are limits, are
imposed by the underlying registry.

-key_file fully_qualified_name_of_keystore_file
Specifies the directory that is to contain the key files for the server. A valid directory name is
determined by the operating system. Use a fully qualified file name that contains the application server
certificate and key file.

Make sure that server user (for example, ivmgr) or all users have permission to access the .kdb file
and the folder that contains the .kdb file.

This option is required.

-mode server_mode
Specifies the mode in which the application server processes requests. Only the remote

mode is supported.

-policysvr policy_server_name
Specifies the names of servers that run the Tivoli Access Manager policy server (ivmgrd)

with which the application server communicates. A server is specified by a fully qualified host name,
the SSL port number, and the rank. The default SSL port number is 7135. For example:
mypolicy.mycompany.com:7135:1. You can specify multiple servers if the entries are separated by a
comma (,).

-port port_number
Specifies the TCP/IP communications port on which the application server listens for communications
from the policy servers.

-profileName profile_name
Specifies the name of your WebSphere Application Server profile. If this option is not specified, the
default server1 profile is used.

Creating a trusted user account in Tivoli Access Manager:

Tivoli Access Manager trust association interceptors require the creation of a trusted user account in the
shared LDAP user registry.

About this task

This account includes the ID and password that WebSEAL uses to identify itself to WebSphere Application
Server. To prevent potential vulnerabilities, do not use the sec_master ID as the trusted user account and
ensure that the password you use is unique and generated randomly. Use the trusted user account for the
TAI or TAI++ only.

Procedure

1. Use either the Tivoli Access Manager pdadmin command-line utility or Web Portal Manager to create
the trusted user. For example, from the pdadmin command line.

2. Reference the code listed below as an example for creating a trusted user account.

3. Reference the following additional resources for more information:

a. “Configuring WebSEAL for use with WebSphere Application Server” on page 1545

1544 Administering WebSphere applications



b. “Configuring Tivoli Access Manager plug-in for web servers for use with WebSphere Application
Server” on page 1546

Example
pdadmin> user create webseal_userid webseal_userid_DN firstname

surname password

pdadmin> user modify webseal_userid account-valid yes

Configuring WebSEAL for use with WebSphere Application Server:

Use this topic to set the SSO password in WebSEAL for single sign-on to WebSphere Application Server.

About this task

A junction must be created between WebSEAL and WebSphere Application Server. This junction carries
the iv-credentials (for TAI++) or iv-user (for TAI) and the HTTP basic authentication headers with the
request. You can configure WebSEAL to pass the end user identity in other ways, the iv-credentials header
is the only one supported by the TAI++ and the iv-user is the only one supported by TAI.

Communications over the junction should use Secure Sockets Layer (SSL) for increased security. Setting
up SSL across this junction requires that you configure the HTTP Server used by WebSphere Application
Server, and WebSphere Application Server itself, to accept inbound SSL traffic and route it correctly to
WebSphere Application Server. This activity requires importing the necessary signing certificates into the
WebSEAL certificate keystore, and possibly also the HTTP Server certificate keystore.

Create the junction between WebSEAL and WebSphere Application Server using the -c iv_creds option
for TAI++ and -c iv_user for TAI. Enter either of the following commands as one line using the variables
that are appropriate for your environment:

TAI++
server task webseald-server create -t ssl -b supply -c iv_creds
-h host_name -p websphere_app_port_number junction_name

TAI
server task webseald-server create -t ssl -b supply -c iv_user
-h host_name -p websphere_app_port_number junction_name

Notes:

1. If warning messages are displayed about the incorrect setup of certificates and key databases,
delete the junction, correct problems with the key databases, and recreate the junction.

2. The junction can be created as -t tcp or -t ssl, depending on your requirements.

For single sign-on ( SSO) to WebSphere Application Server the SS) password must be set in WebSEAL.
To set the password, complete the following steps:

Procedure

1. Edit the WebSEAL configuration file webseal_install_directory/etc/webseald-default.conf Set the
following parameter: basicauth-dummy-passwd=webseal_userid_passwd

where webseal_userid_passwd is the SSO password for the trusted user account set in “Creating a
trusted user account in Tivoli Access Manager” on page 1544.

2. Restart WebSEAL.

Chapter 19. Administering application security 1545



What to do next

For more details and options about how to configure junctions between WebSEAL and WebSphere
Application Server, including other options for specifying the WebSEAL server identity, refer to the Tivoli
Access Manager WebSEAL Administration Guide as well as to the documentation for the HTTP Server
you are using with your WebSphere Application Server. Tivoli Access Manager documentation is available
at http://publib.boulder.ibm.com/tividd/td/tdprodlist.html.

Configuring Tivoli Access Manager plug-in for web servers for use with WebSphere Application
Server:

Tivoli Access Manager plug-in for web servers can be used as a security gateway for your protected
WebSphere Application Server resources.

About this task

With such an arrangement the plug-in authorizes all user requests before passing the credentials of the
authorized user to WebSphere Application Server in the form of an iv-creds header. Trust between the
plug-in and WebSphere Application Server is established through use of basic authentication headers
containing the single sign-on (SSO) user password.

Procedure

1. The Tivoli Access Manager plug-in for web servers configuration shows IV headers configured for
post-authorization processing, and basic authentication that is configured as the authentication
mechanism and for post-authorization processing, as shown in the example below.

2. After a request is authorized, the basic authentication header is removed from the request
(strip-hdr=always) and a new one is added (add-hdr=supply).

3. Included in this new header is the password that is set when the SSO user is created in “Creating a
trusted user account in Tivoli Access Manager” on page 1544.

4. Specify this password in the supply-password parameter and it is passed in the newly created
header. This basic authentication header enables trust between WebSphere Application Server and the
plug-in.

5. An iv-creds header is also added (generate=iv-creds), which contains the credential information of the
user passed onto WebSphere Application Server. Session cookies are used to maintain session state.

Example
[common-modules]
authentication = BA
session = session-cookie
post-authzn = BA
post-authzn = iv-headers

[iv-headers]
accept = all
generate = iv-creds

[BA]
strip-hdr = always
add-hdr = supply
supply-password = sso_user_password

What to do next

“Configuring single sign-on using trust association” or “Configuring single sign-on using trust association
interceptor ++” on page 1547

Configuring single sign-on using trust association:

This task is performed to enable single sign-on using trust association. Trust association is used to
connect reversed proxy servers to the application server.

1546 Administering WebSphere applications

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html


Before you begin

Note: Use of TAIs for Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) authentication is
deprecated in this release. The SPNEGO web authentication panels provide a much easier and
less error-prone way to configure SPNEGO.

To establish the trust association for the single sign-on, perform the following steps:

Procedure

1. From the administrative console for WebSphere Application Server, click Security > Global security.

2. From Authentication mechanisms, click Web and SIP security > Trust association.

3. Select the Enable trust association option.

4. Under Additional properties, click the Interceptors link.

5. Click com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus to use a WebSEAL
interceptor, or com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl to use a SPNEGO
interceptor.

6. Under Custom properties, select a custom property to edit or click New to create a new one. Enter the
property name and value pairs.

7. Click OK.

8. Save the configuration and log out.

9. Restart WebSphere Application Server.

Configuring single sign-on using trust association interceptor ++:

Perform this task to enable single sign-on using trust association interceptor ++. The steps involve setting
up trust association and creating the interceptor properties.

Before you begin

Lightweight Third Party Authentication (LTPA) is the default authentication mechanism for WebSphere
Application Server. However, you may need to configure LTPA prior to configuring the
TAMTrustAssociationInterceptorPlus. LTPA is the required authentication mechanism for all trust
association interceptors. You can configure LTPA by clicking Security > Global security > Authentication
mechanisms and expiration.

Note: Enabling web security single sign-on (SSO) is optional when you configure the
TAMTrustAssociationInterceptorPlus. For more information, see “Implementing single sign-on to
minimize web user authentications” on page 1477.

Although you can use Simple WebSphere Authentication Mechanism (SWAM) by selecting the Use
SWAM-no authenticated communication between servers option on the Authentication mechanisms
and expiration panel, single sign-on (SSO) requires LTPA as the configured authentication mechanism.

To establish the trust association for the single sign-on, perform the following steps:

Procedure

1. From the administrative console for WebSphere Application Server, click Security Global security .

2. Under Web security, click Trust association.

3. Click Enable Trust Association.

4. Click Interceptors.

5. Click com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus to use a WebSEAL
interceptor. This interceptor is one of two WebSEAL interceptors that are supplied for your use. You
choose to use this interceptor by supplying properties as described in the next step.

Chapter 19. Administering application security 1547



Attention: WebSphere Application Server attempts to initialize both of these interceptors even if
you only supplied properties for the
com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus interceptor. As a result, messages
AWXRB0008E and SECJ0384E can appear during initialization to indicate that the interceptor you did
not choose has failed to initialize. This is normal processing and does not affect the initialization of
the interceptor you did select. To inhibit the display of messages AWXRB0008E and SECJ0384E, you
can delete the interceptor you do not want to use prior to beginning the initialization. You can add that
interceptor back later if your environment changes.

6. Click Custom Properties.

7. Click New to enter the property name and value pairs. Ensure that the following parameters are set:

Table 92. Custom properties.

This table describes the TAI custom properties.
Option Description

com.ibm.websphere.security.
webseal.checkViaHeader

You can configure TAI so that the via header can be ignored when validating trust for a request. Set this
property to false if none of the hosts in the via header need to be trusted. When set to false you do not
need to set the trusted host names and host ports properties. The only mandatory property to check
when via header is false is com.ibm.websphere.security.webseal.loginId.

The default value of the check via header property is false. When using Tivoli Access Manager plug-in
for web servers, set this property to false.
Note: The via header is part of the standard HTTP header that records the server names the request
that passed through.

com.ibm.websphere.security.
webseal.loginId

The WebSEAL trusted user as created in “Creating a trusted user account in Tivoli Access Manager” on
page 1544 The format of the username is the short name representation. This property is mandatory. If it
is not set in WebSphere Application Server, the TAI initialization fails.

com.ibm.websphere.security.
webseal.id

A comma-separated list of headers that exists in the request. If all of the configured headers do not exist
in the request, trust cannot be established. The default value for the ID property is iv-creds. Any other
values set in WebSphere Application Server are added to the list along with iv-creds, separated by
commas.

com.ibm.websphere.security.
webseal.hostnames

Do not set this property if using Tivoli Access Manager Plug-in for Web Servers. The property specifies
the host names (case sensitive) that are trusted and expected in the request header. Requests arriving
from un-listed hosts might not be trusted. If the checkViaHeader property is not set or is set to false then
the trusted host names property has no influence. If the checkViaHeader property is set to true, and the
trusted host names property is not set, TAI initialization fails.

com.ibm.websphere.security.
webseal.ports

Do not set this property if using Tivoli Access Manager plug-in for web servers. This property is a
comma-separated list of trusted host ports. Requests that arrive from unlisted ports might not be trusted.
If the checkViaHeader property is not set, or is set to false this property has no influence. If the
checkViaHeader property is set to true, and the trusted host ports property is not set in WebSphere
Application Server, the TAI initialization fails.

com.ibm.websphere.security.
webseal.viaDepth

A positive integer that specifies the number of source hosts in the via header to check for trust. By
default, every host in the via header is checked, and if any host is not trusted, trust cannot be
established. The via depth property is used when only some of the hosts in the via header have to be
trusted. The setting indicates the number of hosts that are required to be trusted.

As an example, consider the following header:

Via: HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

If the viaDepth property is not set, is set to 2 or is set to 0, and a request with the previous via header is
received then both webseal1:7002 and webseal2:7001 need to be trusted. The following configuration
applies:

com.ibm.websphere.security.webseal.hostnames = webseal1,webseal2
com.ibm.websphere.security.webseal.ports = 7002,7001

If the via depth property is set to 1, and the previous request is received, then only the last host in the
via header needs to be trusted. The following configuration applies:

com.ibm.websphere.security.webseal.hostnames = webseal2
com.ibm.websphere.security.webseal.ports = 7001

The viaDepth property is set to 0 by default, which means all of the hosts in the via header are checked
for trust.

com.ibm.websphere.security.
webseal.ssoPwdExpiry

After trust is established for a request, the single sign-on user password is cached, eliminating the need
to have the TAI re-authenticate the single sign-on user with Tivoli Access Manager for every request. You
can modify the cache timeout period by setting the single sign-on password expiry property to the
required time in seconds. If the password expiry property is set to 0, the cached password never expires.
The default value for the password expiry property is 600.

1548 Administering WebSphere applications



Table 92. Custom properties (continued).

This table describes the TAI custom properties.
Option Description

com.ibm.websphere.security.
webseal.ignoreProxy

This property can be used to tell the TAI to ignore proxies as trusted hosts. If set to true the comments
field of the hosts entry in the via header is checked to determine if a host is a proxy. Remember that not
all proxies insert comments in the via header indicating that they are proxies. The default value of the
ignoreProxy property is false. If the checkViaHeader property is set to false then the ignoreProxy
property has no influence in establishing trust.

com.ibm.websphere.security.
webseal.configURL Set this property to profile_root/etc/pd/PolicyDirector/PDPerm.properties. For the

TAI to establish trust for a request, it requires that a PDPerm.properties file exists in each node within
the cell. Also, the correct URL of the properties file must be set in the config URL property. If this
property is not set or the PDPerm.properties file is not in the specified location, the TAI initialization fails.
The PDPerm.properties file is part of the Tivoli Access Manager configuration for a node. To create the
Tivoli Access Manager configuration, run the pdjrtecfg script and then the svrsslcfg script for each node
in the cell. The PDPerm.properties file is created in theprofile_root/etc/pd/PolicyDirector/ directory.

8. Click OK.

9. Save the configuration and log out.

10. Restart WebSphere Application Server.

Configuring global sign-on principal mapping:

You can create a new application login that uses the Tivoli Access Manager GSO database to store the
login credentials.

Procedure

1. Click Security > Global security.

2. Under Authentication, click Java Authentication and Authorization Service > Application logins.

3. Click New to create a new Java Authentication and Authorization Service (JAAS) login configuration.

4. Enter the alias name of the new application login. Click Apply.

5. Under Additional properties, click JAAS login modules to define the JAAS Login Modules.

6. Click New and enter the following information:

Module class name: com.tivoli.pdwas.gso.AMPrincipalMapper
Use Login Module Proxy: enable
Authentication strategy: REQUIRED

7. Click Apply

8. Under Additional Properties section, click Custom Properties to define login module-specific values
that are passed directly to the underlying login modules.

9. Click New.

The Tivoli Access Manager principal mapping module uses the authDataAlias configuration string to
retrieve the correct user name and password from the security configuration.

The authDataAlias attribute that is passed to the module is configured for the J2C connection factory.
Because the authDataAlias attribute is an arbitrary string that is entered at configuration time, the
following scenarios are possible:

v The authDataAlias attribute contains both the global sign-on (GSO) resource name and the user
name. The format of this string is "Resource/User".

v The authDataAlias attribute contains the GSO Resource name only. The user name is determined
by using the Subject of the current session.

The scenario to use is determined by a JAAS configuration option, as shown here:

Name: com.tivoli.pd.as.gso.AliasContainsUserName

Value: True, if the alias contains the user name; false, if the user name must be retrieved from the
security context

Chapter 19. Administering application security 1549



When entering authDataAlias attributes through the WebSphere Application Server administrative
console, the node name is automatically pre-pended to the alias. The JAAS configuration entry
determines whether this node name is removed or included as part of the resource name, as shown
here:

Name: com.tivoli.pd.as.gso.AliasContainsNodeName

Value: True, if the alias contains the node name

Note: If the PdPerm.properties configuration file is not located in the JAVA_HOME/PdPerm.properties
default location, then you also need to add the following property:

Name: com.tivoli.pd.as.gso.AMCfgURL

Value: file:///path to PdPerm.properties

Enter each new parameter using the following scenario information as a guide, then click Apply.

Scenario 1
Auth Data Alias - BackendEIS/eisUser
Resource - BackEndEIS
User - eisUser
Principal Mapping Parameters

Table 93. Principal Mapping Parameters.

This table lists the principal mapping parameters.
Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 2
Auth Data Alias - BackendEIS
Resource - BackEndEIS
User - Currently authenticated WebSphere Application Server user
Principal Mapping Parameters

Table 94. Principal Mapping Parameters.

This table lists the principal mapping parameters.
Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 3
Auth Data Alias - nodename/BackendEIS/eisUser
Resource - BackEndEIS
User - eisUser
Principal Mapping Parameters

1550 Administering WebSphere applications



Table 95. Principal Mapping Parameters.

This table lists the principal mapping parameters.
Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 4
Auth Data Alias - nodename/BackendEIS/eisUser
Resource - nodename/BackEndEIS (notice that node name is not removed)
User - eisUser
Principal Mapping Parameters

Table 96. Principal Mapping Parameters.

This table lists the principal mapping parameters.
Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 5
Auth Data Alias - BackendEIS/eisUser
Resource - BackEndEIS
User - eisUser
Principal Mapping Parameters

Table 97. Principal Mapping Parameters.

This table lists the principal mapping parameters.
Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 6
Auth Data Alias - nodename/BackendEIS/eisUser
Resource - nodename/BackendEIS/eisUser

(notice that the resource is the same as Auth Data Alias).
User - Currently authenticated WebSphere Application Server user
Principal Mapping Parameters

Table 98. Principal Mapping Parameters.

This table lists the principal mapping parameters.
Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

Chapter 19. Administering application security 1551



Table 98. Principal Mapping Parameters (continued).

This table lists the principal mapping parameters.
Name Value

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

10. Create the Java 2 Connector (J2C) authentication aliases. The user name and password that are
assigned to these alias entries are irrelevant because Tivoli Access Manager is responsible for
providing user names and passwords. However, the user name and password that are assigned to
the J2C authentication aliases need to exist so that they can be selected for the J2C connection
factory in the administrative console.

To create the J2C authentication aliases, from the WebSphere Application Server administrative
console, click Security Global security. Under Authentication, click Java Authentication and
Authorization Service J2C authentication data, and then click New for each new entry. Refer to
the previous table for scenario inputs.

The connection factories for each resource adapter that need to use the GSO database must be
configured to use the Tivoli Access Manager Principal mapping module:

a. From the WebSphere Application Server administrative console, click Applications Enterprise
Applications application_nameResourcer references. Note that J2C connection factories must
be already configured for the selected application. To configure a new J2C connection factory, see
the Configuring Java EE Connector connection factories in the administrative console article.

b. Under Additional properties, click Resource Adapter.

The resource adapter can be stand-alone and does not need to be packaged with the application.
The resource adapter is configured from Resources Resource Adapters for stand-alone
scenarios.

c. Under Additional properties, click J2C Connection Factories.

d. Click New and enter the connection factory properties.

e. When finished, click Apply Save.

Attention:
Custom mapping configuration for the connection factory is deprecated in WebSphere Application
Server Version 6. To configure the GSO credential mapping, use the Map Resource References to
Resources panel on the administrative console. For more information, see the J2EE connector
security article.

Configuring administrative authentication
An authentication mechanism defines rules about security information, such as whether a credential is
forwardable to another Java process, and the format of how security information is stored in both
credentials and tokens. The Rivest Shamir Adleman (RSA) token authentication mechanism simplifies the
security environment for flexible management topology, that is, the topology where you can locally or
remotely submit and manage administrative jobs through a job manager that manages applications,
perform product maintenance, modify configurations, and control the application server runtime. You use
the administrative console to configure administrative authentication, which involves the configuring of the
Rivest Shamir Adleman (RSA) token authentication mechanism.

Before you begin

The following keystore, truststore, and rootstore descriptions give you an idea of where certificates are
stored and how trust is configured between processes.

1552 Administering WebSphere applications



The NodeRSATokenKeyStore contains the Rivest Shamir Adleman (RSA) token personal certificate used
for this process. Not only is the public/private key from this certificate used to create RSA tokens, but the
public key is used by other processes to create tokens. The RSA personal certificate is signed by an RSA
root certificate.

The NodeRSATokenTrustStore contains all RSA signer certificates from other processes that are trusted
to send RSA tokens to this process. The signers in this trust store are placed there automatically during
the registration process. However, this task allows an administrator to configure trust between to
processes not normally involved in the same administrative domain. There may be requirements where
two base servers are communicating administratively. When using the RSA token authentication
mechanism, the base servers need to share RSA signers if administrative communications is operating in
both directions.

The NodeRSATokenRootStore contains the root personal certificate that is used to create new RSA
personal certificates. Do not use the root certificate to create RSA tokens because this usage
compromises the long-lived keys. Only use the root certificate to sign other certificates.

No manual steps are required with these keystores, and this allows uncommon trust establishment among
processes not in the same administrative domain. You can also replace the RSA personal certificate with a
personal certificate obtained from a certificate authority (CA) if desired. In this case, make sure the CA root
certificate is placed in all RSA trust stores in the same administrative domain.

Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. Under Keystore usages, select RSA token keystores.

4. Select the RSA token key store you want to administer.

5. Modify the description if required.

6. Modify the path if required.

7. Select read only, initialize at setup, or both if required.

8. Enter the correct password to make these modifications

9. Click Apply and Save.

Results

You configured administrative authentication.

What to do next

In cases where the process is back-level or a target RSA certificate cannot be obtained, the fallback
mechanism is Lightweight Third-Party Authentication (LTPA) which is supported in all previous releases for
administrative communications. The fallback occurs automatically. If the LTPA keys are not shared and a
fallback occurs, LTPA will fail as well. However, this situation is typically an error case in the RSA
mechanism and should occur infrequently.

Java Authentication and Authorization Service
The standard Java 2 security application programming interface (API) helps enforce access control based
on the location of the code source or the author or packager of the code that signed the jar file. The
current principal of the running thread is not considered in the Java 2 security authorization. Instances
where authorization is based on the principal, as opposed to the code base, and the user exist. The Java
Authentication and Authorization Service is a standard Java API that supports the Java 2 security
authorization to extend the code base on the principal as well as the code base and users.

Chapter 19. Administering application security 1553



The Java Authentication and Authorization Service (JAAS) Version 1.0 extends the Java 2 security
architecture of the Java 2 platform with additional support to authenticate and enforce access control with
principals and users. JAAS implements a Java version of the standard Pluggable Authentication Module
(PAM) framework, and extends the access control architecture of the Java 2 platform in a compatible
fashion to support user-based authorization or principal-based authorization. WebSphere Application
Server fully supports the JAAS architecture. JAAS extends the access control architecture to support
role-based authorization for Java Platform, Enterprise Edition (Java EE) resources including servlets,
JavaServer Pages (JSP) files, and Enterprise JavaBeans (EJB) components.

Refer to “Java 2 security” on page 1184 for more information.

The following sections cover the JAAS implementation and programming model:
v Login configuration for Java Authentication and Authorization Service
v Programmatic login for JAAS
v “Java Authentication and Authorization Service authorization”

The JAAS documentation can be found at http://www.ibm.com/developerworks/java/jdk/security. Scroll
down to find the JAAS documentation for your platform.

Java Authentication and Authorization Service authorization
Java 2 security architecture uses a security policy to specify which access rights are granted to running
code. This architecture is code-centric. The permissions are granted based on code characteristics
including where the code is coming from, whether it is digitally signed, and by whom. Authorization of the
Java Authentication and Authorization Service (JAAS) augments the existing code-centric access controls
with new user-centric access controls. Permissions are granted based on what code is running and who is
running it.

When using JAAS authentication to authenticate a user, a subject is created to represent the authenticated
user. A subject is comprised of a set of principals, where each principal represents an identity for that user.
You can grant permissions in the policy to specific principals. After the user is authenticated, the
application can associate the subject with the current access control context. For each subsequent
security-checked operation, the Java runtime automatically determines whether the policy grants the
required permission to a specific principal only. If so, the operation is supported if the subject that is
associated with the access control context contains the designated principal only.

Associate a subject with the current access control context by calling the static doAs method from the
subject class, passing it an authenticated subject and the java.security.PrivilegedAction or
java.security.PrivilegedExceptionAction method. The doAs method associates the provided subject with the
current access control context and then invokes the run method from the action. The run method
implementation contains all the code that ran as the specified subject. The action runs as the specified
subject.

In the Java 2 Platform, Enterprise Edition (J2EE) programming model, when invoking the Enterprise
JavaBeans (EJB) method from an enterprise bean or servlet, the method runs under the user identity that
is determined by the run-as setting. The J2EE Version 1.4 Specification does not indicate which user
identity to use when invoking an enterprise bean from a Subject.doAs action block within either the EJB
code or the servlet code. A logical extension is to use the proper identity that is specified in the subject
when invoking the EJB method within the Subject doAs action block.

Letting the Subject.doAs action overwrite the run-as identity setting is an ideal way to integrate the JAAS
programming model with the J2EE run-time environment. However, JAAS introduced an issue into the
Software Development Kit (SDK), Java Technology Edition Versions 1.3 or later when integrating the JAAS
Version 1.0 or later implementation with the Java 2 security architecture. A subject, which is associated
with the access control context is cut off by a doPrivileged call when a doPrivileged call occurs within the
Subject.doAs action block. Until this problem is corrected, no reliable and run-time efficient way is
available to guarantee the correct behavior of Subject.doAs action in a J2EE run-time environment.

1554 Administering WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security


The problem can be explained better with the following example:

Subject.doAs(subject, new java.security.PrivilegedAction() {
Public Object run() {

// Subject is associated with the current thread context
java.security.AccessController.doPrivileged( new

java.security.PrivilegedAction() {
public Object run() {
// Subject was cut off from the current
// thread context

return null;
}

});
// Subject is associated with the current thread context
return null;

}
});

In the previous code example, the Subject object is associated with the context of the current thread.
Within the run method of a doPrivileged action block, the Subject object is removed from the thread
context. After leaving the doPrivileged block, the Subject object is restored to the current thread context.
Because doPrivileged blocks can be placed anywhere along the running path and instrumented quite often
in a server environment, the run-time behavior of a doAs action block becomes difficult to manage.

To resolve this difficulty, WebSphere Application Server provides a WSSubject helper class to extend the
JAAS authorization to a J2EE EJB method invocation, as described previously. The WSSubject class
provides static doAs and doAsPrivileged methods that have identical signatures to the subject class. The
WSSubject.doAs method associates the Subject to the currently running thread. The WSSubject.doAs and
WSSubject.doAsPrivileged methods then invoke the corresponding Subject.doAs and
Subject.doAsPrivileged methods. The original credential is restored and associated with the running thread
upon leaving the WSSubject.doAs and WSSubject.doAsPrivileged methods.

The WSSubject class is not a replacement of the subject object, but rather a helper class to ensure
consistent run-time behavior as long as an EJB method invocation is a concern.

The following example illustrates the run-time behavior of the WSSubject.doAs method:

WSSubject.doAs(subject, new java.security.PrivilegedAction() {
Public Object run() {

// Subject is associated with the current thread context
java.security.AccessController.doPrivileged( new

java.security.PrivilegedAction() {
public Object run() {

// Subject was cut off from the current thread
// context.

return null;
}

});
// Subject is associated with the current thread context

return null;
}

});

The Subject.doAs and Subject.doAsPrivileged methods are not integrated with the J2EE run-time
environment. EJB methods that are invoked within the Subject.doAs and Subject.doAsPrivileged action
blocks run under the identity that is specified by the run-as setting and not by the subject identity.

Chapter 19. Administering application security 1555



v The Subject object that is generated by the WSLoginModuleImpl instance and the
WSClientLoginModuleImpl instance contains a principal that implements the WSPrincipal interface.
Using the getCredential method for a WSPrincipal object returns an object that implements the
WSCredential interface. You can also find the WSCredential object instance in the PublicCredentials list
of the subject instance. Retrieve the WSCredential object from the PublicCredentials list instead of using
the getCredential method.

v The getCallerPrincipal method for the WSSubject class returns a string that represents the caller
security identity. The return type differs from the getCallerPrincipal method of the java.security.Principal
EJBContext interface.

v The Subject object that is generated by the Java 2 Connector (J2C) DefaultPrincipalMapping module
contains a resource principal and a PasswordCredentials list. The resource principal represents the
RunAs identity.

For more information, see J2EE connector security.

Using the Java Authentication and Authorization Service programming
model for web authentication
WebSphere Application Server supports the Java Platform, Enterprise Edition (Java EE) declarative
security model. You can define the authentication and access control policy using the Java EE deployment
descriptor. You can further stack custom login modules to customize the WebSphere Application Server
authentication mechanism.

Before you begin

A custom login module can perform principal and credential mapping, custom security token and custom
credential-processing, and error-handling among other possibilities. Typically, you do not need to use
application code to perform authentication function. Use the programming techniques that are described in
this section if you have to perform authentication function in application code. Use declarative security as a
rule; use the techniques that are described in this section as a last resort.

About this task

When the Lightweight Third-Party Authentication (LTPA) mechanism single sign-on (SSO) option is
enabled, the web client login session is tracked by an LTPA SSO token cookie after successful login. At
logout, this token is deleted to terminate the login session, but the server-side subject is not deleted. When
you use the declarative security model, the WebSphere Application Server web container performs client
authentication and login session management automatically. You can perform authentication in application
code by setting a login page without a Java EE security constraint and by directing client requests to your
login page first. Your login page can use the Java Authentication and Authorization Service (JAAS)
programming model to perform authentication. To enable WebSphere Application Server web login
modules to generate SSO cookies, use the following steps.

Procedure
1. Create a new system login JAAS configuration. To access the panel, click Security > Global security.

Under Java Authentication and Authorization Service, click System logins.

2. Manually clone the WEB_INBOUND login configuration, and give it a new alias. To clone the login
configuration, click New, enter a name for the configuration, click Apply, then click JAAS login
modules under Additional properties. Click New and configure the JAAS login module. For more
information, see Login module settings for Java Authentication and Authorization Service. WebSphere
Application Server web container uses the WEB_INBOUND login configuration to authenticate web
clients. Changing the WEB_INBOUND login configuration affects all web applications in the cell. You
should create your own login configuration by cloning the contents of the WEB_INBOUND login
configuration.

1556 Administering WebSphere applications



3. Select the wsMapDefaultInboundLoginModule login module and click Custom properties. There are two
login modules defined in your login configuration: ltpaLoginModule and
wsMapDefaultInboundLoginModule.

4. Add a login property name cookie with a value of true. The two login modules are enabled to generate
LTPA SSO cookies. Do not add the cookie login option to the original WEB_INBOUND login
configuration.

5. Stack your custom LoginModule(s) in the new login configuration (optional).

6. Use your login page for programmatic login by perform a JAAS LoginContext.login using your newly
defined login configuration. After a successful login, either the ltpaLoginModule or the
wsMapDefaultInboundLoginModule generates an LTPA SSO cookie upon a successful authentication.
Exactly which LoginModule generates the SSO cookie depends on many factors, including system
authentication configuration and runtime condition (which is beyond the scope of this section).

7. Call the modified WSSubject.setRunAsSubject method to add the subject to the authentication cache.
The subject must be a WebSphere Application Server JAAS subject created by LoginModule. Adding
the subject to the authentication cache recreates a subject from SSO token.

8. Use your programmatic logout page to revoke SSO cookies by invoking the revokeSSOCookies method
from the WSSecurityHelper class.

The term "cookies" is used because WebSphere Application Server Version 5.1.1 and later support a
new LTPA SSO token with a different encryption algorithm but can be configured to generate the
original LTPA SSO token for backward compatibility. Note that the subject is still in the authentication
cache and only the SSO cookies are revoked.

Note: The revokeSSOCookies(HttpServletRequest, HttpServletResponse) method from the
WSSecurityHelper class is deprecated. Use the functionality provided by the Java Servlet-3.0
logout() method. Read Servlet security methods.

Example

Use the following code sample to perform authentication.

gotcha: If you set the password for the WSCallbackHandlerFactoryset factory class for getting handlers to
null, as is done in the following example, you allow identity assertion without a password.

Suppose you wrote a LoginServlet.java:

Import com.ibm.wsspi.security.auth.callback.WSCallbackHandlerFactory;
Import com.ibm.websphere.security.auth.WSSubject;

public Object login(HttpServletRequest req, HttpServletResponse res)
throws ServletException {

PrintWriter out = null;
try {
out = res.getWriter();

res.setContentType("text/html");
} catch (java.io.IOException e){
// Error handling
}

Subject subject = null;
try {
LoginContext lc = new LoginContext("system.Your_login_configuration",
WSCallbackHandlerFactory.getInstance().getCallbackHandler(
userid, null, password, req, res, null));
lc.login();
subject = lc.getSubject();

WSSubject.setRunAsSubject(subject);
} catch(Exception e) {
// catch all possible exceptions if you want or handle them separately
out.println("Exception in LoginContext login + Exception = " +
e.getMessage());
throw new ServletException(e.getMessage());
}

The following is sample code to revoke the SSO cookies upon a programming logout:

The LogoutServlet.java:

Chapter 19. Administering application security 1557



public void logout(HttpServletRequest req, HttpServletResponse res,
Object retCreds) throws ServletException {
PrintWriter out =null;
try {
out = res.getWriter();

res.setContentType("text/html");
} catch (java.io.IOException e){
// Error Handling
}
try {
WSSecurityHelper.revokeSSOCookies(req, res);

} catch(Exception e) {
// catch all possible exceptions if you want or handle them separately
out.println("JAASLogoutServlet: logout Exception = " + e.getMessage());
throw new ServletException(e);
}
}

What to do next

For more information on JAAS authentication, refer to Developing programmatic logins with the Java
Authentication and Authorization Service. For more information on the AuthenLoginModule login module,
refer to Example: Customizing a server-side Java Authentication and Authorization Service authentication
and login configuration.

Developing custom login modules for a system login configuration for JAAS
For WebSphere Application Server, multiple Java Authentication and Authorization Service (JAAS) plug-in
points exist for configuring system logins. WebSphere Application Server uses system login configurations
to authenticate incoming requests, outgoing requests, and internal server logins.

About this task

Application login configurations are called by Java Platform, Enterprise Edition (Java EE) applications for
obtaining a Subject that is based on specific authentication information. This login configuration enables
the application to associate the Subject with a specific protected remote action. The Subject is picked up
on the outbound request processing. The following list identifies the main system plug-in points. If you
write a login module that adds information to the Subject of a system login, these are the main login
configurations to plug in:

v WEB_INBOUND

v RMI_OUTBOUND

v RMI_INBOUND

v DEFAULT

Procedure
v Authenticate web requests with the WEB_INBOUND login configuration.

The WEB_INBOUND login configuration authenticates web requests.

For more detailed information on the WEB_INBOUND configuration including its associated callbacks,
see “RMI_INBOUND, WEB_INBOUND, DEFAULT” inSystem login configuration entry settings for Java
Authentication and Authorization Service. Figure 1 shows an example of a configuration using a trust
association interceptor (TAI) that creates a Subject with the initial information that is passed into the
WEB_INBOUND login configuration. If the trust association interceptor is not configured, the
authentication process goes directly to the WEB_INBOUND system login configuration, which consists
of all the login modules combined in Figure 1. Figure 1 shows where you can plug in custom login
modules and where the ltpaLoginModule and the wsMapDefaultInboundLoginModule login modules are
required.

1558 Administering WebSphere applications



v Handle outbound requests with the RMI_OUTBOUND login configuration.

The RMI_OUTBOUND login configuration is a plug point for handling outbound requests. WebSphere
Application Server uses this plug point to create the serialized information that is sent downstream
based on the invocation Subject passed in and other security context information such as propagation
tokens. A custom login module can use this plug point to change the identity. For more information, see
“Configuring outbound identity mapping to a different target realm” on page 1580. Figure 2 shows where
you can plug in custom login modules and shows where the wsMapCSIv2OutboundLoginModule login
module is required.

Figure 21. WEB_INBOUND login configuration

Chapter 19. Administering application security 1559



For more information on the RMI_OUTBOUND login configuration, including its associated callbacks,
see “RMI_OUTBOUND” in System login configuration entry settings for Java Authentication and
Authorization Service.

v Handle inbound authentication for enterprise bean requests with the RMI_INBOUND login configuration.

The RMI_INBOUND login configuration is a plug point that handles inbound authentication for enterprise
bean requests. WebSphere Application Server uses this plug point for either an initial login or a
propagation login. For more information about these two login types, see “Security attribute propagation”
on page 1584. During a propagation login, this plug point is used to deserialize the information that is
received from an upstream server. A custom login module can use this plug point to change the identity,
handle custom tokens, add custom objects into the Subject, and so on. For more information on
changing the identity using a Hashtable object, which is referenced in figure 3, see “Configuring inbound
identity mapping” on page 1573. Figure 3 shows where you can plug in custom login modules and
shows that the ltpaLoginModule and the wsMapDefaultInboundLoginModule login modules are required.

Figure 22. RMI_OUTBOUND login configuration

1560 Administering WebSphere applications



For more information on the RMI_INBOUND login configuration, including its associated callbacks, see
“RMI_INBOUND, WEB_INBOUND, DEFAULT” in System login configuration entry settings for Java
Authentication and Authorization Service.

v Handle all other types of authentication requests with the DEFAULT login configuration. DEFAULT login
configuration

The DEFAULT login configuration is a plug point that handles all of the other types of authentication
requests, including administrative SOAP requests and internal authentication of the server ID.
Propagation logins typically do not occur at this plug point.

For more information on the DEFAULT login configuration including its associated callbacks, see
“RMI_INBOUND, WEB_INBOUND, DEFAULT” in System login configuration entry settings for Java
Authentication and Authorization Service.

v Develop login configuration logic to know when specific information is present and how to use the
information. Writing a login module

When you write a login module that plugs into a WebSphere Application Server application login or
system login configuration, read the JAAS programming model, which is located at:
http://java.sun.com/products/jaas. The JAAS programming model provides basic information about
JAAS. However, before writing a login module for the WebSphere Application Server environment, read
the following sections in this article:

– Useable callbacks

– Shared state variables

– Initial versus propagation logins

– Sample custom login module

Usable Callbacks

Figure 23. RMI_INBOUND login configuration

Chapter 19. Administering application security 1561

http://java.sun.com/products/jaas


Each login configuration must document the callbacks that are recognized by the login configuration.
However, the callbacks are not always passed data. The login configuration must contain logic to know
when specific information is present and how to use the information. For example, if you write a custom
login module that can plug into all four of the pre-configured system login configurations mentioned
previously, three sets of callbacks might be presented to authenticate a request. Other callbacks might
be present for other reasons, including propagation and making other information available to the login
configuration.

Login information can be presented in the following combinations:

User name (NameCallback) and password (PasswordCallback)
This information is a typical authentication combination.

User name only (NameCallback)
This information is used for identity assertion, trust association interceptor (TAI) logins, and
certificate logins.

Token (WSCredTokenCallbackImpl)
This information is for Lightweight Third Party Authentication (LTPA) token validation.

Propagation token list (WSTokenHolderCallback)
This information is used for a propagation login.

The first three combinations are used for typical authentication. However, when the
WSTokenHolderCallback callback is present in addition to one of the first three information
combinations, the login is called a propagation login. A propagation login means that some security
attributes are propagated to this server from another server. The servers can reuse these security
attributes if the authentication information validates successfully. In some cases, a
WSTokenHolderCallback callback might not have sufficient attributes for a full login. Check the
requiresLogin method on the WSTokenHolderCallback callback to determine if a new login is required.
You can always ignore the information returned by the requiresLogin method, but, as a result, you might
duplicate information. The following list contains the callbacks that might be present in the system login
configurations. The list includes the callback name and a description of their responsibility.

callbacks[0] = new javax.security.auth.callback.NameCallback(“Username: ”);
This callback handler collects the user name for the login. The result can be the user name for
a basic authentication login (user name and password) or a user name for an identity assertion
login.

callbacks[1] = new javax.security.auth.callback.PasswordCallback(“Password: ”, false);
This callback handler collects the password for the login.

callbacks[2] = new
com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl(“Credential Token:”);

This callback handler collects the Lightweight Third Party Authentication (LTPA) token or other
token type for the login. This callback handler is typically present when a user name and
password are not present.

callbacks[3] = new com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback(“Authz Token
List:”);

This callback handler collects the ArrayList of TokenHolder objects that are returned from a call
to the WSOpaqueTokenHelper.createTokenHolderListFromOpaqueToken API using the Common
Secure Interoperability Version 2 (CSIv2) authorization token as input.

callbacks[4] = new
com.ibm.websphere.security.auth.callback.WSServletRequestCallback(“HttpServletRequest:” );

This callback handler collects the HTTP servlet request object, if present. This callback handler
enables login modules to get information from the HTTP request for use in the login, and is
presented from the WEB_INBOUND login configuration only.

callbacks[5] = new
com.ibm.websphere.security.auth.callback.WSServletResponseCallback(“HttpServletResponse:”);

1562 Administering WebSphere applications



This callback handler collects the HTTP servlet response object, if present. This callback
handler enables login modules to put information into the HTTP response as a result of the
login. An example of this situation might be adding the SingleSignonCookie cookie to the
response.This callback handler is presented from the WEB_INBOUND login configuration only.

callbacks[6] = new
com.ibm.websphere.security.auth.callback.WSAppContextCallback(“ApplicationContextCallback:”);

This callback handler collects the web application context that is used during the login. This
callback handler consists of a HashMap object, which contains the application name and the
redirect web address, if present. The callback handler is presented from the WEB_INBOUND
login configuration only.

callbacks[7] = new WSRealmNameCallbackImpl(“Realm Name:”, default_realm);
This callback handler collects the realm name for the login information. The realm information
might not always be provided. If the realm information is not provided, assume that it is the
current realm.

callbacks[8] = new WSX509CertificateChainCallback(“X509Certificate[]: ”);
This callback handler contains the certificate that was validated by Secure Sockets Layer (SSL)
if the login source is an X509Certificate from SSL client authentication. The ltpaLoginModule
calls the same mapping functions as WebSphere Application Server releases prior to version
6.1. However, having it passed into the login gives a custom login module the opportunity to
map the certificate in a custom way. Then, it performs a Hashtable login. See “Configuring
inbound identity mapping” on page 1573 for more information on a Hashtable login.

v Use shared state variables to share information between login modules during the login phase.

If you want to access the objects that WebSphere Application Server creates during a login, refer to the
following shared state variables. The variables are set in the following login modules: ltpaLoginModule,
swamLoginModule, and wsMapDefaultInboundLoginModule.

Shared state variable
com.ibm.wsspi.security.auth.callback.Constants.WSPRINCIPAL_KEY

Purpose
Specifies the com.ibm.websphere.security.auth.WSPrincipal object. See the WebSphere
Application Server API documentation for application programming interface (API) usage. This
shared state variable is for read-only purposes. Do not set this variable in the shared state for
custom login modules.

The login module in which variables are set
ltpaLoginModule, swamLoginModule, and wsMapDefaultInboundLoginModule

Shared state variable
com.ibm.wsspi.security.auth.callback.Constants.WSCREDENTIAL_KEY

Purpose
Specifies the com.ibm.websphere.security.cred.WSCredential object. See the WebSphere
Application Server API documentation for API usage. This shared state variable is for read-only
purposes. Do not set this variable in the shared state for custom login modules.

Login module in which variables are set
wsMapDefaultInboundLoginModule

Shared state variable
com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY

Purpose
Specifies the default com.ibm.wsspi.security.token.AuthorizationToken object. Login modules
can use this object to set custom attributes plugged in after the
wsMapDefaultInboundLoginModule login module. The information set here is propagated
downstream and is available to the application. See the WebSphere Application Server API
documentation for API usage.

Chapter 19. Administering application security 1563



Initial versus propagation logins

As mentioned previously, some logins are considered initial logins because of the following reasons:

– It is the first time authentication information is presented to WebSphere Application Server.

– The login information is received from a server that does not propagate security attributes so this
information must be gathered from a user registry.

Other logins are considered propagation logins when a WSTokenHolderCallback callback is present and
contains sufficient information from a sending server to recreate all the required objects needed by
WebSphere Application Server runtime. In cases where there is sufficient information for the WebSphere
Application Server runtime, the information you might add to the Subject is likely to exist from the
previous login. To verify if your object is present, you can get access to the ArrayList object that is
present in the WSTokenHolderCallback callback, and search through this list looking at each
TokenHolder getName method. This search is used to determine if WebSphere Application Server is
deserializing your custom object during this login. Check the class name returned from the getName
method using the String startsWith method because the runtime might add additional information at the
end of the name to know which Subject is set to add the custom object after deserialization.

v Code your login() method to determine when sufficient information is present.

The following code snippet can be used in your login() method to determine when sufficient information
is present. For another example, see “Configuring inbound identity mapping” on page 1573.

// This is a hint provided by WebSphere Application Server that
// sufficient propagation information does not exist and, therefore,
// a login is required to provide the sufficient information. In this
// situation, a Hashtable login might be used.
boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.
WSTokenHolderCallback) callbacks[1]).requiresLogin();

if (requiresLogin)
{
// Check to see if your object exists in the TokenHolder list,
if not, add it.
java.util.ArrayList authzTokenList = ((WSTokenHolderCallback) callbacks[6]).
getTokenHolderList();boolean found = false;

if (authzTokenList != null)
{
Iterator tokenListIterator = authzTokenList.iterator();

while (tokenListIterator.hasNext())
{
com.ibm.wsspi.security.token.TokenHolder th = (com.ibm.wsspi.security.token.
TokenHolder) tokenListIterator.next();

if (th != null && th.getName().startsWith("com.acme.myCustomClass"))
{
found=true;
break;
}
}
if (!found)
{
// go ahead and add your custom object.
}
}
}
else
{
// This code indicates that sufficient propagation information is present.
// User registry calls are not needed by WebSphere Application Server to
// create a valid Subject. This code might be a no-op in your login module.
}

Sample custom login module

You can use the following sample to get ideas on how to use some of the callbacks and shared state
variables.

{
// Defines your login module variables
com.ibm.wsspi.security.token.AuthenticationToken customAuthzToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthzToken = null;
com.ibm.websphere.security.cred.WSCredential credential = null;
com.ibm.websphere.security.auth.WSPrincipal principal = null;
private javax.security.auth.Subject _subject;
private javax.security.auth.callback.CallbackHandler _callbackHandler;
private java.util.Map _sharedState;
private java.util.Map _options;

1564 Administering WebSphere applications



public void initialize(Subject subject, CallbackHandler callbackHandler,
Map sharedState, Map options)

{
_subject = subject;
_callbackHandler = callbackHandler;
_sharedState = sharedState;
_options = options;
}

public boolean login() throws LoginException
{
boolean succeeded = true;

// Gets the CALLBACK information
javax.security.auth.callback.Callback callbacks[] = new javax.security.

auth.callback.Callback[7];
callbacks[0] = new javax.security.auth.callback.NameCallback(

"Username: ");
callbacks[1] = new javax.security.auth.callback.PasswordCallback(

"Password: ", false);
callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl ("Credential Token: ");
callbacks[3] = new com.ibm.wsspi.security.auth.callback.

WSServletRequestCallback ("HttpServletRequest: ");
callbacks[4] = new com.ibm.wsspi.security.auth.callback.

WSServletResponseCallback ("HttpServletResponse: ");
callbacks[5] = new com.ibm.wsspi.security.auth.callback.

WSAppContextCallback ("ApplicationContextCallback: ");
callbacks[6] = new com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback ("Authz Token List: ");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);
}

// Sees which callbacks contain information
uid = ((NameCallback) callbacks[0]).getName();
char password[] = ((PasswordCallback) callbacks[1]).getPassword();
byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();
javax.servlet.http.HttpServletRequest request = ((WSServletRequestCallback)

callbacks[3]).getHttpServletRequest();
javax.servlet.http.HttpServletResponse response = ((WSServletResponseCallback)

callbacks[4]).getHttpServletResponse();
java.util.Map appContext = ((WSAppContextCallback)

callbacks[5]).getContext();
java.util.List authzTokenList = ((WSTokenHolderCallback)

callbacks[6]).getTokenHolderList();

// Gets the SHARED STATE information
principal = (WSPrincipal) _sharedState.get(com.ibm.wsspi.security.

auth.callback.Constants.WSPRINCIPAL_KEY);
credential = (WSCredential) _sharedState.get(com.ibm.wsspi.security.

auth.callback.Constants.WSCREDENTIAL_KEY);
defaultAuthzToken = (AuthorizationToken) _sharedState.get(com.ibm.

wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY);

// What you tend to do with this information depends upon the scenario
// that you are trying to accomplish. This example demonstrates how to
// access various different information:
// - Determine if a login is initial versus propagation
// - Deserialize a custom authorization token (For more information, see
// “Security attribute propagation” on page 1584
// - Add a new custom authorization token (For more information, see
// “Security attribute propagation” on page 1584
// - Look for a WSCredential and read attributes, if found.
// - Look for a WSPrincipal and read attributes, if found.
// - Look for a default AuthorizationToken and add attributes, if found.
// - Read the header attributes from the HttpServletRequest, if found.
// - Add an attribute to the HttpServletResponse, if found.
// - Get the web application name from the appContext, if found.

// - Determines if a login is initial versus propagation. This is most
// useful when login module is first.

boolean requiresLogin = ((WSTokenHolderCallback) callbacks[6]).requiresLogin();

// initial login - asserts privilege attributes based on user identity
if (requiresLogin)
{

// If you are validating a token from another server, there is an
// application programming interface (API) to get the uniqueID from it.

if (credToken != null && uid == null)
{
try

Chapter 19. Administering application security 1565



{
String uniqueID = WSSecurityPropagationHelper.

validateLTPAToken(credToken);
String realm = WSSecurityPropagationHelper.getRealmFromUniqueID

(uniqueID);
// Now set it to the UID so you can use that to either map or
// login with.

uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);
}
catch (Exception e)
{
// handle exception
}
}

// Adds a Hashtable to shared state.
// Note: You can perform custom mapping on the NameCallback value returned
// to change the identity based upon your own mapping rules.

uid = mapUser (uid);

// Gets the default InitialContext for this server.
javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Gets the local UserRegistry object.
com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.security.

UserRegistry) ctx.lookup("UserRegistry");

// Gets the user registry uniqueID based on the uid specified in the
// NameCallback.

String uniqueid = reg.getUniqueUserId(uid);
uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

// Gets the display name from the user registry based on the uniqueID.
String securityName = reg.getUserSecurityName(uid);

// Gets the groups associated with this uniqueID.
java.util.List groupList = reg.getUniqueGroupIds(uid);

// Creates the java.util.Hashtable with the information you gathered from
// the UserRegistry.

java.util.Hashtable hashtable = new java.util.Hashtable();
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_UNIQUEID, uniqueid);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_SECURITYNAME, securityName);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_GROUPS, groupList);

// Adds a cache key that is used as part of the lookup mechanism for
// the created Subject. The cache key can be an Object, but should
// implement the toString() method. Make sure the cacheKey contains
// enough information to scope it to the user and any additional
// attributes that you use. If you do not specify this property the
// Subject is scoped to the WSCREDENTIAL_UNIQUEID returned, by default.

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL_CACHE_KEY,

"myCustomAttribute" + uniqueid);

// Adds the hashtable to the sharedState of the Subject.
_sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_PROPERTIES_KEY,hashtable);
}
// propagation login - process propagated tokens
else
{
// - Deserializes a custom authorization token. For more information, see

// “Security attribute propagation” on page 1584.
// This can be done at any login module plug in point (first,
// middle, or last).

if (authzTokenList != null)
{
// Iterates through the list looking for your custom token
for (int i=0; i<authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Looks for the name and version of your custom AuthorizationToken
// implementation

if (tokenHolder.getName().equals("com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl") && tokenHolder.getVersion() == 1)

{
// Passes the bytes into your custom AuthorizationToken constructor

// to deserialize
customAuthzToken = new
com.ibm.websphere.security.token.

CustomAuthorizationTokenImpl(tokenHolder.getBytes());

}
}
}

// - Adds a new custom authorization token (For more information,

1566 Administering WebSphere applications



// see “Security attribute propagation” on page 1584)
// This can be done at any login module plug in point (first, middle,
// or last).

else
{
// Gets the PRINCIPAL from the default AuthenticationToken. This must

// match all of the tokens.
defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)
sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.

WSAUTHTOKEN_KEY);
String principal = defaultAuthToken.getPrincipal();

// Adds a new custom authorization token. This is an initial login.
// Pass the principal into the constructor

customAuthzToken = new com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl(principal);

// Adds any initial attributes
if (customAuthzToken != null)
{
customAuthzToken.addAttribute("key1", "value1");
customAuthzToken.addAttribute("key1", "value2");
customAuthzToken.addAttribute("key2", "value1");
customAuthzToken.addAttribute("key3", "something different");
}
}
}

// - Looks for a WSCredential and read attributes, if found.
// This is most useful when plugged in as the last login module.
if (credential != null)
{
try
{
// Reads some data from the credential
String securityName = credential.getSecurityName();
java.util.ArrayList = credential.getGroupIds();
}
catch (Exception e)
{
// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);
}
}

// - Looks for a WSPrincipal and read attributes, if found.
// This is most useful when plugged as the last login module.
if (principal != null)
{
try
{
// Reads some data from the principal
String principalName = principal.getName();
}
catch (Exception e)
{
// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);
}
}

// - Looks for a default AuthorizationToken and add attributes, if found.
// This is most useful when plugged in as the last login module.
if (defaultAuthzToken != null)
{
try
{
// Reads some data from the defaultAuthzToken
String[] myCustomValue = defaultAuthzToken.getAttributes ("myKey");
// Adds some data if not present in the defaultAuthzToken
if (myCustomValue == null)
defaultAuthzToken.addAttribute ("myKey", "myCustomData");

}
catch (Exception e)
{
// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);
}
}

// - Reads the header attributes from the HttpServletRequest, if found.
// This can be done at any login module plug in point (first, middle,

// or last).
if (request != null)
{
java.util.Enumeration headerEnum = request.getHeaders();
while (headerEnum.hasMoreElements())
{
System.out.println ("Header element: " + (String)headerEnum.nextElement());
}

Chapter 19. Administering application security 1567



}

// - Adds an attribute to the HttpServletResponse, if found
// This can be done at any login module plug in point (first, middle,
// or last).

if (response != null)
{
response.addHeader ("myKey", "myValue");
}

// - Gets the web application name from the appContext, if found
// This can be done at any login module plug in point (first, middle,

// or last).
if (appContext != null)
{
String appName = (String) appContext.get(com.ibm.wsspi.security.auth.

callback.Constants.WEB_APP_NAME);
}

return succeeded;
}

public boolean commit() throws LoginException
{
boolean succeeded = true;

// Add any objects here that you have created and belong in the
// Subject. Make sure the objects are not already added. If you added
// any sharedState variables, remove them before you exit. If the abort()

// method gets called, make sure you cleanup anything added to the
// Subject here.

if (customAuthzToken != null)
{
// Sets the customAuthzToken token into the Subject
try
{
// Do this in a doPrivileged code block so that application code

// does not need to add additional permissions
java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()
{
public Object run()
{
try
{
// Adds the custom authorization token if it is not

// null and not already in the Subject
if ((customAuthzTokenPriv != null) &&

(!_subject.getPrivateCredentials().contains(customAuthzTokenPriv)))
{
_subject.getPrivateCredentials().add(customAuthzTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}

return succeeded;
}

public boolean abort() throws LoginException
{
boolean succeeded = true;

// Makes sure to remove all objects that have already been added (both into the
// Subject and shared state).

if (customAuthzToken != null)
{
// remove the customAuthzToken token from the Subject
try
{
final AuthorizationToken customAuthzTokenPriv = customAuthzToken;
// Do this in a doPrivileged block so that application code does not need

// to add additional permissions
java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()
{
public Object run()
{

1568 Administering WebSphere applications



try
{
// Removes the custom authorization token if it is not

// null and not already in the Subject
if ((customAuthzTokenPriv != null) &&
(_subject.getPrivateCredentials().
contains(customAuthzTokenPriv)))

{
_subject.getPrivateCredentials().

remove(customAuthzTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}

return succeeded;
}

public boolean logout() throws LoginException
{
boolean succeeded = true;

// Makes sure to remove all objects that have already been added
// (both into the Subject and shared state).

if (customAuthzToken != null)
{
// Removes the customAuthzToken token from the Subject
try
{
final AuthorizationToken customAuthzTokenPriv = customAuthzToken;
// Do this in a doPrivileged code block so that application code does

// not need to add additional permissions
java.security.AccessController.doPrivileged(new java.security.

PrivilegedAction()
{
public Object run()
{
try
{
// Removes the custom authorization token if it is not null and not

// already in the Subject
if ((customAuthzTokenPriv != null) && (_subject.
getPrivateCredentials().
contains(customAuthzTokenPriv)))

{
_subject.getPrivateCredentials().remove(customAuthzTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}

return succeeded;

}

}

v Configure the system login for your custom login module.

After developing your custom login module for a system login configuration, you can configure the
system login using either the administrative console or using the wsadmin utility. To configure the
system login using the administrative console, click Security > Global security. Under Java

Chapter 19. Administering application security 1569



Authentication and Authorization Service, click System logins. For more information on using the
wsadmin utility for system login configuration, see Customizing a server-side Java Authentication and
Authorization Service authentication and login configuration. Also refer to that article for information on
system login modules and to determine whether to add additional login modules.

Customizing application login with Java Authentication and Authorization Service:

Using Java Authentication and Authorization Service (JAAS), you can customize your application login.

About this task

Java Authentication and Authorization Service (JAAS) is an API that enables applications to access
authentication and access control services without being tied to those services. The following topics
explaining customizing your application with JAAS are covered in this section:

Procedure

1. Develop programmatic logins with JAAS.

You can develop programmatic logins with JAAS, which represents the strategic application
programming interfaces (API) for authentication.

2. Configure programmatic logins with JAAS.

A new JAAS login configuration can be added and modified using the administrative console. The
changes are saved in the cell-level security document and are available to all managed application
servers.

3. Customize an application login to perform an identity assertion using JAAS.

Using the JAAS login framework, you can create a JAAS login configuration that can be used to
perform login to an identity assertion.

4. Configure a server-side JAAS authentication and login configuration.

WebSphere Application Server supports plugging in a custom JAAS login module before or after the
WebSphere Application Server system login module. However, WebSphere Application Server does not
support the replacement of the WebSphere Application Server system login modules, which are used
to create the WSCredential credential and WSPrincipal principal in the Subject. By using a custom
login module, you can either make additional authentication decisions or add information to the Subject
to make additional, potentially finer-grained, authorization decisions inside a Java Platform, Enterprise
Edition (Java EE) application.

Enabling identity assertion with trust validation using JAAS:

By enabling identity assertion with trust validation, an application can use the JAAS login configuration to
perform a programmatic identity assertion.

About this task

To enable an identity assertion with trust validation, follow these steps:

Procedure

1. Create a custom login module to perform a trust validation. The login module must set trust and
identity information in the shared state, which is then passed on to the IdentityAssertionLoginModule.
The trust and identity information is stored in a map in the shared state under the key,
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state. If this key is missing
from the shared state, a WSLoginFailedException error is thrown by the IdentityAssertionLoginModule
module. The custom login module should include the following:

v A trust key named com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trust.
If the trust key is set to true, trust is established. If the trust key is set to false, the
IdentityAssertionLoginModule module creates a WSLoginFailedException error.

1570 Administering WebSphere applications



v The identity of the java.security.Principal type set in the
com.ibm.wsspi.security.common.auth.module.IdenityAssertionLoginModule.principal key.

v The identity in the form of a java,security.cert.X509Certificate[] certificate set in the
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates key.

Note: If both a principal and a certificate are supplied, the principal is used, and a warning is issued.

2. Create a new Java Authentication and Authorization Service (JAAS) configuration for application logins.
It contains the user-implemented trust validation custom login module and the
IdentityAssertionLoginModule module. To configure an application login configuration from the
administrative console, complete the following steps:

a. Click Security > Global security.

b. Under Java Authentication and Authorization Service, click Application logins > New.

c. Supply the JAAS configuration with an alias, and then click Apply.

d. Under Additional properties, click JAAS Login Modules > New.

e. Enter the module class name of the user-implemented trust validation custom login module, and
then click Apply.

f. Enter the com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule module class
name.

g. Make sure that the module class name classes are in the correct order. The user-implemented
trust validation login module must be the first class in the list, and the IdentityAssertionLoginModule
module must be the second class.

h. Click Save. The new JAAS configuration is used by the application to perform an identity assertion.

What to do next

An application can now use the JAAS login configuration to perform a programmatic identity assertion. The
application can create a login context for the JAAS configuration created in step 2, then login to that login
context with the identity it asserts to. If the login is successful, that identity can be set in the current
running process, as in the following example:
MyCallbackHandler handler = new MyCallbackHandler(new MyPrincipal(“Joe”));
LoginContext lc = new LoginContext(“MyAppLoginConfig”, handler);
lc.login(); //assume successful
Subject s = lc.getSubject();
WSSubject.setRunAsSubject(s);
// From here on, the runas identity is “Joe”

Performing identity mapping for authorization across servers in
different realms
Identity mapping is a one-to-one mapping of a user identity between two servers so that the proper
authorization decisions are made by downstream servers. Identity mapping is necessary when the
integration of servers is needed, but the user registries are different and not shared between the systems.

About this task

In most cases, requests flow downstream between two servers that are part of the same security domain.
In WebSphere Application Server, two servers that are members of the same cell are also members of the
same security domain. In the same cell, the two servers have the same user registry and the same
Lightweight Third Party Authentication (LTPA) keys for token encryption. These two commonalities ensure
that the LTPA token, among other user attributes, which flows between the two servers, not only can be
decrypted and validated, but also the user identity in the token can be mapped to attributes that are
recognized by the authorization engine.

Chapter 19. Administering application security 1571



The most reliable and recommended configuration involves two servers within the same cell. However,
sometimes you need to integrate multiple systems that cannot use the same user registry. When the user
registries are different between two servers, the security domain or realm of the target server does not
match the security domain of the sending server.

WebSphere Application Server enables mapping to occur either before sending the request outbound or
before enabling the existing security credentials to flow to the target server. The credentials are mapped
inbound with the specification that the target realm is trusted.

An alternative to mapping is to send the user identity without the token or the password to a target server
without actually mapping the identity. The use of the user identity is based on trust between the two
servers. Use Common Secure Interoperability Version 2 (CSIv2) identity assertion. When enabled, the
server sends just the X.509 certificate, principal name, or distinguished name (DN) based upon what was
used by the original client to perform the initial authentication. During CSIv2 identity assertion, trust is
established between WebSphere Application Servers.

The user identity must exist in the target user registry for identity assertion to work. This process can also
enable interoperability between other Java 2 Platform, Enterprise Edition (J2EE) Version 1.4 and higher
compliant application servers. If both the sending server and target servers have identity assertion
configured, WebSphere Application Server always uses this method of authentication, even when both
servers are in the same security domain. For more information on CSIv2 identity assertion, see “Identity
assertion to the downstream server” on page 1639.

When the user identity is not present in the user registry of the target server, identity mapping must occur
either before the request is sent outbound or when the request comes inbound. This decision depends
upon your environment and requirements. However, it is typically easier to map the user identity before the
request is sent outbound for the following reasons:

v You know the user identity of the existing credential as it comes from the user registry of the sending
server.

v You do not have to worry about sharing Lightweight Third Party Authentication (LTPA) keys with the
other target realm because you are not mapping the identity to LTPA credentials. Typically, you are
mapping the identity to a user ID and password that are present in the user registry of the target realm.

When you do perform outbound mapping, in most cases, it is recommended that you use Secure Sockets
Layer (SSL) to protect the integrity and confidentiality of the security information sent across the network.
If LTPA keys are not shared between servers, an LTPA token cannot be validated at the inbound server. In
this case, outbound mapping is necessary because the user identity cannot be determined at the inbound
server to do inbound mapping. For more information, see “Configuring outbound identity mapping to a
different target realm” on page 1580.

When you need inbound mapping, potentially due to the mapping capabilities of the inbound server, you
must ensure that both servers have the same LTPA keys so that you can get access to the user identity.
Typically, in secure communications between servers, an LTPA token is passed into the
WSCredTokenCallback callback of the inbound JAAS login configuration for the purposes of client
authentication. A method is available that enables you to open the LTPA token, if valid, and get access to
the user unique ID so that mapping can be performed. For more information, see “Configuring inbound
identity mapping” on page 1573. In other cases, such as identity assertion, you might receive a user name
in the NameCallback callback of the inbound login configuration that enables you to map the identity.

The following topics are covered in this section:

Procedure
v Configuring inbound identity mapping For inbound identity mapping, you can write a custom login

module and configure WebSphere Application Server to run the login module first within the system
login configurations. Consider the following steps when you write your custom login module:
“Configuring inbound identity mapping” on page 1573.

1572 Administering WebSphere applications



v Configuring outbound identity mapping to a different target realm By default, when WebSphere
Application Server makes an outbound request from one server to another server in a different security
realm, the request is rejected. This topic details alternatives for enabling one server to send outbound
requests to a target server in a different realm. For more information, see “Configuring outbound identity
mapping to a different target realm” on page 1580

Configuring inbound identity mapping
For inbound identity mapping, write a custom login module and configure WebSphere Application Server to
run the login module first within the system login configurations. Consider the following steps when you
write your custom login module.

Procedure
1. Get the inbound user identity from the callbacks and map the identity, if necessary This step occurs in

the login method of the login module. A valid authentication has either or both NameCallback and the
WSCredTokenCallback callbacks present. The following code sample shows you how to determine the
user identity:
javax.security.auth.callback.Callback callbacks[] =

new javax.security.auth.callback.Callback[3];
callbacks[0] = new javax.security.auth.callback.NameCallback("");
callbacks[1] = new javax.security.auth.callback.PasswordCallback

("Password: ", false);
callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl("");
callbacks[3] = new com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback("");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);
}

// Shows which callbacks contain information
boolean identitySwitched = false;
String uid = ((NameCallback) callbacks[0]).getName();
char password[] = ((PasswordCallback) callbacks[1]).getPassword();
byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();
java.util.List authzTokenList = ((WSTokenHolderCallback)

callbacks[3]).getTokenHolderList();

if (credToken != null)
{
try
{
String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);
String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

// Now set the string to the UID so that you can use the result for either
// mapping or logging in.

uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);
}
catch (Exception e)
{
// Handles the exception
}
}
else if (uid == null)
{

// Throws an exception if authentication data is not valid.
// You must have either UID or CredToken

Chapter 19. Administering application security 1573



throw new WSLoginFailedException("invalid authentication data.");
}
else if (uid != null && password != null)
{

// This is a typical authentication. You can choose to map this ID to
// another ID or you can skip it and allow WebSphere Application Server
// to log in for you. When passwords are presented, be very careful to not
// validate the password because this is the initial authentication.

return true;
}

// If desired, map this uid to something else and set the identitySwitched
// boolean. If the identity was changed, clear the propagated attributes
// below so they are not used incorrectly.

uid = myCustomMappingRoutine (uid);

// Clear the propagated attributes because they are no longer applicable
// to the new identity

if (identitySwitched)
{
((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);
}

2. Check to see if attribute propagation occurred and if the attributes for the user are already present
when the identity remains the same. Check to see if the user attributes are already present from the
sending server to avoid duplicate calls to the user registry lookup. To check for the user attributes, use
a method on the WSTokenHolderCallback callback that analyzes the information present in the
callback to determine if the information is sufficient for WebSphere Application Server to create a
Subject. The following code sample checks for the user attributes:
boolean requiresLogin =
((com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback)
callbacks[2]).getrequiresLogin();

If sufficient attributes are not present to form the WSCredential and the WSPrincipal objects that are
needed to perform authorization, the previous code sample returns a true result. When the result is
false, you can choose to discontinue processing as the necessary information exists to create the
Subject without performing additional remote user registry calls.

3. Optional: Look up the required attributes from the user registry, put the attributes in a hashtable, and
add the hashtable to the shared state. If the identity is switched in this login module, you must
complete the following steps:

a. Create the hashtable of attributes, as shown in the following example.

b. Add the hashtable to the shared state.

If the identity is not switched, but the value of the requiresLogin code sample shown previously is true,
you can create the hashtable of attributes. However, you are not required to create a hashtable in this
situation as WebSphere Application Server handles the login for you. However, you might consider
creating a hashtable to gather attributes in special cases where you are using your own special user
registry. Creating a UserRegistry implementation, using a hashtable, and letting WebSphere Application
Server gather the user attributes for you might be the easiest solution. The following table shows how
to create a hashtable of user attributes:
if (requiresLogin || identitySwitched)
{
// Retrieves the default InitialContext for this server.
javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Retrieves the local UserRegistry implementation.
com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.

security.UserRegistry)
ctx.lookup("UserRegistry");

// Retrieves the user registry uniqueID based on the uid specified

1574 Administering WebSphere applications



// in the NameCallback.
String uniqueid = reg.getUniqueUserId(uid);
uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueid);

// Retrieves the display name from the user registry based on the uniqueID.
String securityName = reg.getUserSecurityName(uid);

// Retrieves the groups associated with the uniqueID.
java.util.List groupList = reg.getUniqueGroupIds(uid);

// Creates the java.util.Hashtable with the information that you gathered
// from the UserRegistry implementation.

java.util.Hashtable hashtable = new java.util.Hashtable();
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_UNIQUEID, uniqueid);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_SECURITYNAME, securityName);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_GROUPS, groupList);

// Adds a cache key that is used as part of the lookup mechanism for
// the created Subject. The cache key can be an object, but should have
// an implemented toString method. Make sure that the cacheKey contains
// enough information to scope it to the user and any additional attributes
// that you are using. If you do not specify this property the Subject is
// scoped to the returned WSCREDENTIAL_UNIQUEID, by default.

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL_CACHE_KEY, "myCustomAttribute" + uniqueid);

// Adds the hashtable to the sharedState of the Subject.
_sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_PROPERTIES_KEY, hashtable);
}

The following rules define in more detail how a hashtable login is performed. You must use a
java.util.Hashtable object in either the Subject (public or private credential set) or the shared-state
HashMap. The com.ibm.wsspi.security.token.AttributeNameConstants class defines the keys that
contain the user information. If the Hashtable object is put into the shared state of the login context
using a custom login module that is listed prior to the Lightweight Third Party Authentication (LTPA)
login module, the value of the java.util.Hashtable object is searched using the following key within the
shared-state hashMap:

Property
com.ibm.wsspi.security.cred.propertiesObject

Reference to the property
AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY

Explanation
This key searches for the Hashtable object that contains the required properties in the shared
state of the login context.

Expected result
A java.util.Hashtable object.

If a java.util.Hashtable object is found either inside the Subject or within the shared state area, verify
that the following properties are present in the hashtable:

Property
com.ibm.wsspi.security.cred.uniqueId

Reference to the property
AttributeNameConstants.WSCREDENTIAL_UNIQUEID

Returns
java.util.String

Chapter 19. Administering application security 1575



Explanation
The value of the property must be a unique representation of the user. For the WebSphere
Application Server default implementation, this property represents the information that is
stored in the application authorization table. The information is located in the application
deployment descriptor after it is deployed and user-to-role mapping is performed. See the
expected format examples if the user to role mapping is performed using a lookup to a
WebSphere Application Server user registry implementation.

If a third-party authorization provider overrides the user-to-role mapping, then the third-party
authorization provider defines the format. To ensure compatibility with the WebSphere
Application Server default implementation for the unique ID value, call the WebSphere
Application Server public String getUniqueUserId(String userSecurityName) UserRegistry
method.

Expected format examples

Table 99. Format examples.

This table gives some format examples when configuring inbound identity mapping.
Realm Format (uniqueUserId)

Lightweight Directory Access Protocol
(LDAP)

ldaphost.austin.ibm.com:389/cn=user,o=ibm,c=us

Windows MYWINHOST/S-1-5-21-963918322-163748893-4247568029-500

UNIX MYUNIXHOST/32

The com.ibm.wsspi.security.cred.uniqueId property is required.

Property
com.ibm.wsspi.security.cred.securityName

Reference to the property
AttributeNameConstants. WSCREDENTIAL_ SECURITYNAME

Returns
java.util.String

Explanation
This property searches for the securityName of the authentication user. This name is
commonly called the display name or short name. WebSphere Application Server uses the
securityName attribute for the getRemoteUser, getUserPrincipal and getCallerPrincipal
application programming interfaces (APIs). To ensure compatibility with the WebSphere
Application Server default implementation for the securityName value, call the WebSphere
Application Server public String getUserSecurityName(String uniqueUserId) UserRegistry
method.

Expected format examples

Table 100. Format examples. This table gives expected format examples.
Realm Format (uniqueUserId)

LDAP user (LDAP UID)

Windows user (Windows username)

UNIX user (UNIX username)

The com.ibm.wsspi.security.cred.securityName property is required.

Property
com.ibm.wsspi.security.cred.groups

Reference to the property
AttributeNameConstants. WSCREDENTIAL_GROUPS

1576 Administering WebSphere applications



Returns
java.util.ArrayList

Explanation
This key searches for the array list of groups to which the user belongs. The groups are
specified in the realm_name/user_name format. The format of these groups is important as the
groups are used by the WebSphere Application Server authorization engine for group-to-role
mappings in the deployment descriptor. The format that is provided must match the format
expected by the WebSphere Application Server default implementation. When you use a
third-party authorization provider, you must use the format that is expected by the third-party
provider. To ensure compatibility with the WebSphere Application Server default
implementation for the unique group IDs value, call the WebSphere Application Server public
List getUniqueGroupIds(String uniqueUserId) UserRegistry method.

Expected format examples for each group in the array list

Table 101. Format examples. This table gives expected format examples for each group in the array list.
Realm Format

LDAP ldap1.austin.ibm.com:389/cn=group1,o=ibm,c=us

Windows MYWINREALM/S-1-5-32-544

UNIX MY/S-1-5-32-544

The com.ibm.wsspi.security.cred.groups property is not required. A user is not required to have
associated groups.

Property
com.ibm.wsspi.security.cred.cacheKey

Reference to the property
AttributeNameConstants. WSCREDENTIAL_CACHE_KEY

Returns
java.lang.Object

Explanation
This key property can specify an object that represents the unique properties of the login,
including the user-specific information and the user dynamic attributes that might affect
uniqueness. For example, when the user logs in from location A, which might affect their
access control, the cache key needs to include location A so that the Subject that is received is
the correct Subject for the current location.

This com.ibm.wsspi.security.cred.cacheKey property is not required. When this property is not
specified, the cache lookup is the value that is specified for WSCREDENTIAL_UNIQUEID. When this
information is found in the java.util.Hashtable object, WebSphere Application Server creates a Subject
similar to the Subject that goes through the normal login process at least for LTPA. The new Subject
contains a WSCredential object and a WSPrincipal object that is fully populated with the information
found in the Hashtable object.

4. Add your custom login module into the RMI_INBOUND, WEB_INBOUND, and DEFAULT Java
Authentication and Authorization Service (JAAS) system login configurations. Configure the
RMI_INBOUND login configuration so that WebSphere Application Server loads your new custom login
module first.

a. Click Security > Global security > Java Authentication and Authorization Service > System
logins > RMI_INBOUND

b. Under Additional Properties, click JAAS login modules > New to add your login module to the
RMI_INBOUND configuration.

c. Return to the JAAS login modules panel for RMI_INBOUND.

d. Click Set order to change the order that the login modules are loaded so that WebSphere
Application Server loads your custom login module first. Use the Move Up or Move Down buttons
to arrange the order of the login modules.

Chapter 19. Administering application security 1577



e. Repeat the previous three steps for the WEB_INBOUND and DEFAULT login configurations.

Results

This process configures identity mapping for an inbound request.

Example

The “Example: Custom login module for inbound mapping” topic shows a custom login module that creates
a java.util.Hashtable hashtable that is based on the specified NameCallback callback. The
java.util.Hashtable hashtable is added to the sharedState java.util.Map map so that the WebSphere
Application Server login modules can locate the information in the hashtable.

Example: Custom login module for inbound mapping:

This sample shows a custom login module that creates a java.util.Hashtable hashtable that is based on
the specified NameCallback callback. The java.util.Hashtable hashtable is added to the sharedState
java.util.Map map so that the WebSphere Application Server login modules can locate the information in
the Hashtable.
public customLoginModule()
{

public void initialize(Subject subject, CallbackHandler callbackHandler,
Map sharedState, Map options)

{
// (For more information on initialization, see
// “Developing custom login modules for a system login configuration for JAAS” on page 1558.)
_sharedState = sharedState;
}

public boolean login() throws LoginException
{
// (For more information on what to do during login, see
// “Developing custom login modules for a system login configuration for JAAS” on page 1558.)

// Handles the WSTokenHolderCallback to see if this is an initial or
// propagation login.

javax.security.auth.callback.Callback callbacks[] =
new javax.security.auth.callback.Callback[3];

callbacks[0] = new javax.security.auth.callback.NameCallback("");
callbacks[1] = new javax.security.auth.callback.PasswordCallback(

"Password: ", false);
callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl("");
callbacks[3] = new com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback("");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{
// Handles the exception
}

// Determines which callbacks contain information
boolean identitySwitched = false;
String uid = ((NameCallback) callbacks[0]).getName();
char password[] = ((PasswordCallback) callbacks[1]).getPassword();
byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();
java.util.List authzTokenList = ((WSTokenHolderCallback) callbacks[3]).

getTokenHolderList();

if (credToken != null)
{
try
{
String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);
String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

// Set the string to the UID so you can use the information to either
// map or login.

uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueid);
}
catch (Exception e)
{
// handle exception
}

1578 Administering WebSphere applications



}
else if (uid == null)
{
// The authentication data is not valid. You must have either UID
// or CredToken

throw new WSLoginFailedException("invalid authentication data.");
}
else if (uid != null && password != null)
{

// This is a typical authentication. You can choose to map this ID to
// another ID or you can skip it and allow WebSphere Application Server
// to log in for you. When passwords are presented, be very careful not
// to validate the password because this is the initial authentication.

return true;
}

// You can map this uid to something else and set the identitySwitched
// boolean. If the identity is changed, clear the following propagated
// attributes so they are not used incorrectly.
uid = myCustomMappingRoutine (uid);

// Clear the propagated attributes because they no longer apply to the new identity
if (identitySwitched)
{
((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);
}
boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback) callbacks[2]).getRequiresLogin();

if (requiresLogin || identitySwitched)
{
// Retrieves the default InitialContext for this server.
javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Retrieves the local UserRegistry object.
com.ibm.websphere.security.UserRegistry reg =

(com.ibm.websphere.security.UserRegistry) ctx.lookup("UserRegistry");

// Retrieves the registry uniqueID based on the uid that is specified
// in the NameCallback.

String uniqueid = reg.getUniqueUserId(uid);
uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueid);

// Retrieves the display name from the user registry based on the uniqueID.
String securityName = reg.getUserSecurityName(uid);

// Retrieves the groups associated with this uniqueID.
java.util.List groupList = reg.getUniqueGroupIds(uid);

// Creates the java.util.Hashtable with the information that you gathered
// from the UserRegistry.

java.util.Hashtable hashtable = new java.util.Hashtable();
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_UNIQUEID, uniqueid);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL_SECURITYNAME, securityName);

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL_GROUPS, groupList);

// Adds a cache key that is used as part of the lookup mechanism for
// the created Subject. The cache key can be an object, but has
// an implemented toString method. Make sure the cacheKey contains enough
// information to scope it to the user and any additional attributes you are

// using. If you do not specify this property, the Subject is scoped to the
// WSCREDENTIAL_UNIQUEID returned, by default.
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_CACHE_KEY, "myCustomAttribute" + uniqueid);
// Adds the hashtable to the shared state of the Subject.
_sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_PROPERTIES_KEY, hashtable);
}
else if (requiresLogin == false)
{
// For more information on this section, see

// “Security attribute propagation” on page 1584.
// If you added a custom Token implementation, you can search through the

// token holder list for it to deserialize.
// Note: Any Java objects are automatically deserialized by

// wsMapDefaultInboundLoginModule

for (int i=0; i<authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder) authzTokenList.get(i);
if (tokenHolder.getName().equals("com.acme.MyCustomTokenImpl"))
{

byte[] myTokenBytes = tokenHolder.getBytes();

// Passes these bytes into the constructor of your implementation
// class for deserialization.

Chapter 19. Administering application security 1579



com.acme.MyCustomTokenImpl myTokenImpl = new com.acme.MyCustomTokenImpl(myTokenBytes);
}
}
}
}

public boolean commit() throws LoginException
{
// (For more information on what to do during a commit, see
// “Developing custom login modules for a system login configuration for JAAS” on page 1558.)

}

// Defines your login module variables
com.ibm.wsspi.security.token.AuthorizationToken customAuthzToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;
java.util.Map _sharedState = null;
}

Configuring outbound identity mapping to a different target realm
By default, when WebSphere Application Server makes an outbound request from one server to another
server in a different security realm, the request is rejected. This topic details alternatives for enabling one
server to send outbound requests to a target server in a different realm.

About this task

This outbound request is rejected to protect against a rogue server reading potentially sensitive information
if successfully impersonating the home of the object. Select one of the following alternative procedures so
that one server can send outbound requests to a target server in a different realm. When you are finished
with a procedure on the administrative console, click Apply.

Procedure
v Do not perform mapping. Instead, allow the existing security information to flow to a trusted target

server, even if the target server resides in a different realm. Complete the following steps in the
administrative console:

1. Click Security > Global security.

2. Under RMI/IIOP security, click CSIv2 outbound authentication.

3. Specify the target realms in the Trusted target realms field. You can specify each trusted target
realm that is separated by a pipe (|) character. For example, specify
server_name.domain:port_number for a Lightweight Directory Access Protocol (LDAP) server or the
machine name for local operating system. If you want to propagate security attributes to a different
target realm, you must specify that target realm in the Trusted target realms field.

v Use the Java Authentication and Authorization Service (JAAS) WSLogin application login configuration
to create a basic authentication Subject that contains the credentials of the new target realm. This
configuration enables you to log in with a realm, user ID, and password that are specific to the user
registry of the target realm. You can provide the login information from within the Java Platform,
Enterprise Edition (Java EE) application that is making the outbound request or from within the
RMI_OUTBOUND system login configuration. These two login options are described in the following
information:

1. Use the WSLogin application login configuration from within the Java EE application to log in and
get a Subject that contains the user ID and the password of the target realm. The application can
wrap the remote call with a WSSubject.doAs call. For an example, see “Example: Using the
WSLogin configuration to create a basic authentication subject” on page 1581.

2. Use the code sample in “Example: Using the WSLogin configuration to create a basic authentication
subject” on page 1581 from this plug point within the RMI_OUTBOUND login configuration. Every
outbound Remote Method Invocation (RMI) request passes through this login configuration when it
is enabled. Complete the following steps to enable and plug in this login configuration:

a. Click Security > Global security.

b. Under RMI/IIOP security, click CSIv2 outbound authentication.

1580 Administering WebSphere applications



c. Select the Custom outbound mapping option. If the Security Attribute Propagation option is
selected, then WebSphere Application Server is already using this login configuration and you do
not need to enable custom outbound mapping.

d. Write a custom login module. For more information, see “Developing custom login modules for a
system login configuration for JAAS” on page 1558.

The “Example: Sample login configuration for RMI_OUTBOUND” on page 1582 shows a custom
login module that determines whether the realm names match. In this example, the realm names
do not match so the WSLoginmodule is used to create a basic authentication Subject based on
custom mapping rules. The custom mapping rules are specific to the customer environment and
must be implemented using a realm to user ID and password mapping utility.

e. Configure the RMI_OUTBOUND login configuration so that your new custom login module is first
in the list.

1) Click Security > Global security.

2) Under Java Authentication and Authorization Service, click System logins >
RMI_OUTBOUND

3) Under Additional Properties, click JAAS login modules > New to add your login module to
the RMI_OUTBOUND configuration.

4) Return to the JAAS login modules panel for RMI_OUTBOUND.

5) Click Set order to change the order that the login modules are loaded so that your custom
login is loaded first.

v Add the use_realm_callback and use_appcontext_callback options to the outbound mapping module for
WSLogin. To add these options, complete the following steps:

1. Click Security > Global security.

2. Under Java Authentication and Authorization Service, click Application logins > WSLogin.

3. Under Additional properties, click JAAS login modules >
com.ibm.ws.security.common.auth.module.WSLoginModuleImpl.

4. Under Additional properties, click Custom Properties > New.

5. On the Custom properties panel, enter use_realm_callback in the Name field and true in the Value
field.

6. Click OK.

7. Click New to enter the second custom property.

8. On the Custom properties panel, enter use_appcontext_callback in the Name field and true in the
Value field.

The following changes are made to the security.xml file:
<entries xmi:id="JAASConfigurationEntry_2" alias="WSLogin">
<loginModules xmi:id="JAASLoginModule_2"
moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"
authenticationStrategy="REQUIRED">
<options xmi:id="Property_2" name="delegate"
value="com.ibm.ws.security.common.auth.module.WSLoginModuleImpl"/>
<options xmi:id="Property_3" name="use_realm_callback" value="true"/>
<options xmi:id="Property_4" name="use_appcontext_callback" value="true"/>
</loginModules>
</entries>

Example: Using the WSLogin configuration to create a basic authentication subject:

This example shows how to use the WSLogin application login configuration from within a Java 2 Platform,
Enterprise Edition (J2EE) application to log in and get a Subject that contains the user ID and the
password of the target realm.
javax.security.auth.Subject subject = null;

try
{
// Create a login context using the WSLogin login configuration and specify a
// user ID, target realm, and password. Note: If the target_realm_name is the
// same as the current realm, an authenticated Subject is created. However, if

Chapter 19. Administering application security 1581



// the target_realm_name is different from the current realm, a basic
// authentication Subject is created that is not validated. This unvalidated
// Subject is created so that you can send a request to the different target
// realm with valid security credentials for that realm.
javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",
new WSCallbackHandlerImpl("userid", "target_realm_name", "password"));

// Note: The following code is an alternative that validates the user ID and
// password specified against the target realm. The code performs a remote call
// to the target server and will return true if the user ID and password are
// valid and false if the user ID and password are not valid. If false is
// returned, a WSLoginFailedException exception is created. You can catch
// that exception and perform a retry or stop the request from flowing by
// allowing that exception to surface out of this login.

// ALTERNATIVE LOGIN CONTEXT THAT VALIDATES THE USER ID AND PASSWORD TO THE
// TARGET REALM

/**** currently remarked out ****
java.util.Map appContext = new java.util.HashMap();

appContext.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");

appContext.put(javax.naming.Context.PROVIDER_URL,
"corbaloc:iiop:target_host:2809");

javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",
new WSCallbackHandlerImpl("userid", "target_realm_name", "password", appContext));
**** currently remarked out ****/

// Starts the login
ctx.login();

// Gets the Subject from the context
subject = ctx.getSubject();
}
catch (javax.security.auth.login.LoginException e)
{
throw new com.ibm.websphere.security.auth.WSLoginFailedException (e.getMessage(), e);
}

if (subject != null)
{
// Defines a privileged action that encapsulates your remote request.

java.security.PrivilegedAction myAction = java.security.PrivilegedAction()
{
public Object run()
{
// Assumes a proxy is already defined. This example method returns a String
return proxy.remoteRequest();
}
});

// Starts this action using the basic authentication Subject needed for
// the target realm security requirements.

String myResult = (String) com.ibm.websphere.security.auth.WSSubject.doAs
(subject, myAction);

}

Example: Sample login configuration for RMI_OUTBOUND:

This example shows a sample login configuration for RMI_OUTBOUND that determines whether the realm
names match between two servers.
public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{

// (For more information on what to do during initialization, see
// “Developing custom login modules for a system login configuration for JAAS” on page 1558.)

}

public boolean login() throws LoginException
{

// (For more information on what to do during login, see
// “Developing custom login modules for a system login configuration for JAAS” on page 1558.)

// Gets the WSProtocolPolicyCallback object
Callback callbacks[] = new Callback[1];
callbacks[0] = new com.ibm.wsspi.security.auth.callback.

WSProtocolPolicyCallback("Protocol Policy Callback: ");

try
{
callbackHandler.handle(callbacks);
}
catch (Exception e)
{

1582 Administering WebSphere applications



// Handles the exception
}

// Receives the RMI (CSIv2) policy object for checking the target realm
// based upon information from the IOR.
// Note: This object can be used to perform additional security checks.
// See the application programming interface (API) documentation for
// more information.

csiv2PerformPolicy = (CSIv2PerformPolicy) ((WSProtocolPolicyCallback)callbacks[0]).
getProtocolPolicy();

// Checks if the realms do not match. If they do not match, then log in to
// perform a mapping

if (!csiv2PerformPolicy.getTargetSecurityName().equalsIgnoreCase(csiv2PerformPolicy.
getCurrentSecurityName()))

{
try
{
// Do some custom realm -> user ID and password mapping
MyBasicAuthDataObject myBasicAuthData = MyMappingLogin.lookup

(csiv2PerformPolicy.getTargetSecurityName());

// Creates the login context with basic authentication data gathered from
// custom mapping

javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",
new WSCallbackHandlerImpl(myBasicAuthData.userid,
csiv2PerformPolicy.getTargetSecurityName(),

myBasicAuthData.password));

// Starts the login
ctx.login();

// Gets the Subject from the context. This subject is used to replace
// the passed-in Subject during the commit phase.

basic_auth_subject = ctx.getSubject();
}
catch (javax.security.auth.login.LoginException e)
{
throw new com.ibm.websphere.security.auth.

WSLoginFailedException (e.getMessage(), e);
}

}
}

public boolean commit() throws LoginException
{

// (For more information on what to do during commit, see
// “Developing custom login modules for a system login configuration for JAAS” on page 1558.)

if (basic_auth_subject != null)
{

// Removes everything from the current Subject and adds everything from the
// basic_auth_subject

try
{
public final Subject basic_auth_subject_priv = basic_auth_subject;

// Do this in a doPrivileged code block so that application code
// does not need to add additional permissions

java.security.AccessController.doPrivileged(new java.security.
PrivilegedExceptionAction()

{
public Object run() throws WSLoginFailedException
{

// Removes everything user-specific from the current outbound
// Subject. This a temporary Subject for this specific invocation
// so you are not affecting the Subject set on the thread. You may
// keep any custom objects that you want to propagate in the Subject.
// This example removes everything and adds just the new information
// back in.

try
{
subject.getPublicCredentials().clear();
subject.getPrivateCredentials().clear();
subject.getPrincipals().clear();
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

// Adds everything from basic_auth_subject into the login subject.
// This completes the mapping to the new user.

try
{
subject.getPublicCredentials().addAll(basic_auth_subject.

getPublicCredentials());
subject.getPrivateCredentials().addAll(basic_auth_subject.

getPrivateCredentials());
subject.getPrincipals().addAll(basic_auth_subject.

getPrincipals());

Chapter 19. Administering application security 1583



}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;
}
});
}
catch (PrivilegedActionException e)
{
throw new WSLoginFailedException (e.getException().getMessage(),

e.getException());
}
}
}

// Defines your login module variables
com.ibm.wsspi.security.csiv2.CSIv2PerformPolicy csiv2PerformPolicy = null;
javax.security.auth.Subject basic_auth_subject = null;
}

Security attribute propagation
With Security attribute propagation, WebSphere Application Server can transport security attributes
(authenticated Subject contents and security context information) from one server to another in your
configuration. WebSphere Application Server might obtain these security attributes from either an
enterprise user registry, which queries static attributes, or a custom login module, which can query static or
dynamic attributes. Dynamic security attributes, which are custom in nature, might include the
authentication strength that is used for the connection, the identity of the original caller, the location of the
original caller, the IP address of the original caller, and so on.

Security attribute propagation provides propagation services using Java serialization for any objects that
are contained in the Subject. However, Java code must be able to serialize and deserialize these objects.
The Java programming language specifies the rules for how Java code can serialize an object. Because
problems can occur when dealing with different platforms and versions of software, WebSphere Application
Server also offers a token framework that enables custom serialization functionality. The token framework
has other benefits that include the ability to identify the uniqueness of the token. This uniqueness
determines how the Subject gets cached and the purpose of the token. The token framework defines four
marker token interfaces that enable the WebSphere Application Server runtime to determine how to
propagate the token.

Important: Any custom tokens that are used in this framework are not used by WebSphere Application
Server for authorization or authentication. The framework serves as a way to notify
WebSphere Application Server that you want these tokens propagated in a particular way.
WebSphere Application Server handles the propagation details, but does not handle
serialization or deserialization of custom tokens. Serialization and deserialization of these
custom tokens are carried out by the implementation and handled by a custom login module.

With WebSphere Application Server Version 6.0 and later, a custom Java Authorization
Contract for Container (JACC) provider can be configured to enforce access control for Java
Platform, Enterprise Edition (Java EE) applications. A custom JACC provider can explore the
custom security attributes in the caller JAAS subject in making access control decisions.

When a request is being authenticated, a determination is made by the login modules whether this request
is an initial login or a propagation login. An initial login is the process of authenticating the user
information, typically a user ID and password, and then calling the application programming interfaces
(APIs) for the remote user registry to look up secure attributes that represent the user access rights. A
propagation login is the process of validating the user information, typically a Lightweight Third Party
Authentication (LTPA) token, and then deserializing a series of tokens that constitute both custom objects
and token framework objects known to WebSphere Application Server.

The following marker tokens are introduced in the framework:

1584 Administering WebSphere applications



Authorization token
The authorization token contains most of the authorization-related security attributes that are
propagated. The default authorization token is used by the WebSphere Application Server
authorization engine to make Java Platform, Enterprise Edition (Java EE) authorization decisions.
Service providers can use custom authorization token implementations to isolate their data in a
different token, perform custom serialization and de-serialization, and make custom authorization
decisions using the information in their token at the appropriate time. For information on how to
use and implement this token type, see “Using the default propagation token to propagate security
attributes” on page 1595 and Implementing a custom propagation token for security attribute
propagation.

Single sign-on (SSO) token
A custom SingleSignonToken token that is added to the Subject is automatically added to the
response as an HTTP cookie and contains the attributes sent back to web browsers. The token
interface getName method with the getVersion method defines the cookie name. WebSphere
Application Server defines a default SingleSignonToken token with the LtpaToken name and
Version 2. The cookie name added is LtpaToken2. Do not add sensitive information, confidential
information, or unencrypted data to the response cookie.

It is also recommended that any time that you use cookies, use the Secure Sockets Layer (SSL)
protocol to protect the request. Using an SSO token, web users can authenticate once when
accessing web resources across multiple WebSphere Application Servers. A custom SSO token
extends this functionality by adding custom processing to the single sign-on scenario. For more
information on SSO tokens, see “Implementing single sign-on to minimize web user
authentications” on page 1477. For information on how to use and implement this token type, see
“Using the default single sign-on token with default or custom token factory to propagate security
attributes” on page 1600 and Implementing a custom single sign-on token for security attribute
propagation.

Propagation token
The propagation token is not associated with the authenticated user so it is not stored in the
Subject. Instead, the propagation token is stored on the thread and follows the invocation
wherever it goes. When a request is sent outbound to another server, the propagation tokens on
that thread are sent with the request and the tokens are run by the target server. The attributes
that are stored on the thread are propagated regardless of the Java Platform, Enterprise Edition
(Java EE) RunAs user switches.

The default propagation token monitors and logs all user switches and host switches. You can add
additional information to the default propagation token using the WSSecurityHelper application
programming interfaces (APIs). To retrieve and set custom implementations of a propagation
token, you can use the WSSecurityPropagationHelper class. For information on how to use and
implement this token type, see “Using the default propagation token to propagate security
attributes” on page 1595 and Implementing a custom propagation token for security attribute
propagation.

Authentication token
The authentication token flows to downstream servers and contains the identity of the user. This
token type serves the same function as the Lightweight Third Party Authentication (LTPA) token in
previous versions. Although this token type is typically reserved for internal WebSphere Application
Server purposes, you can add this token to the Subject and the token is propagated using the
getBytes method of the token interface.

A custom authentication token is used solely for the purpose of the service provider that adds it to
the Subject. WebSphere Application Server does not use it for authentication purposes because a
default authentication token exists that is used for WebSphere Application Server authentication.
This token type is available for the service provider to identify how the custom data uses the token
to perform custom authentication decisions. For information on how to use and implement this
token type, see “Default authentication token” on page 1588 and Implementing a custom
authentication token for security attribute propagation .

Chapter 19. Administering application security 1585



Kerberos authentication token
The Kerberos authentication token contains Kerberos credentials such as the Kerberos principal
name, GSSCredential and Kerberos delegation credential. This token is propagated to the
downstream server. Although this token type is typically reserved for internal WebSphere
Application Server purposes, if it contains the GSSCredential you can use the getGSSCredential
method to extract the GSSCredential. You can then place it in the subject and it can be used for
your application. This token is created when you authenticate to WebSphere Application Server
with either SPNEGO web or Kerberos authentication.

Horizontal propagation versus downstream propagation

In WebSphere Application Server, both horizontal propagation, which uses single sign-on for web requests,
and downstream propagation, which uses Remote Method Invocation over the Internet Inter-ORB Protocol
(RMI/IIOP) to access enterprise beans, are available.

Horizontal propagation

In horizontal propagation, security attributes are propagated among front-end servers. The serialized
security attributes, which are the Subject contents and the propagation tokens, can contain both static and
dynamic attributes. The single sign-on (SSO) token stores additional system-specific information that is
needed for horizontal propagation. The information contained in the SSO token tells the receiving server
where the originating server is located and how to communicate with that server. Additionally, the SSO
token also contains the key to look up the serialized attributes. To enable horizontal propagation, you must
configure the single sign-on token and the web inbound security attribute propagation features. You can
configure both of these features using the administrative console.

1586 Administering WebSphere applications



Performance implications for horizontal propagation

The performance implications of the JMX remote call depends upon your environment. The JMX remote
call is used for obtaining the original login attributes. Horizontal propagation reduces many of the remote
user registry calls in cases where these calls cause the most performance problems for an application.
However, the deserialization of these objects also might cause performance degradation, but this
degradation might be less than the remote user registry calls. It is recommended that you test your
environment with horizontal propagation enabled and disabled. In cases where you must use horizontal
propagation for preserving original login attributes, test whether JMX provides better performance in your
environment.

Downstream propagation

In downstream propagation, a Subject is generated at the web front-end server, either by a propagation
login or a user registry login. WebSphere Application Server propagates the security information
downstream for enterprise bean invocations when both Remote Method Invocation (RMI) outbound and
inbound propagation are enabled.

Benefits of propagating security attributes

The security attribute propagation feature of WebSphere Application Server has the following benefits:

v Enables WebSphere Application Server to use the security attribute information for authentication and
authorization purposes. The propagation of security attributes can eliminate the need for user registry

Figure 24. Horizontal propagation

Chapter 19. Administering application security 1587



calls at each remote hop along an invocation. Previous versions of WebSphere Application Server
propagated only the user name of the authenticated user, but ignored other security attribute information
that needed to be regenerated downstream using remote user registry calls. To accentuate the benefits
of this new functionality, consider the following example:

In previous releases, you might use a reverse proxy server (RPSS), such as WebSEAL, to authenticate
the user, gather group information, and gather other security attributes. As stated previously,
WebSphere Application Server accepted the identity of the authenticated user, but disregarded the
additional security attribute information. To create a Java Authentication and Authorization Service
(JAAS) Subject containing the needed WSCredential and WSPrincipal objects, WebSphere Application
Server made 5 to 6 calls to the user registry. The WSCredential object contains various security
information that is required to authorize a Java EE resource. The WSPrincipal object contains the realm
name and the user that represents the principal for the Subject.

In the current release of the Application Server, information that is obtained from the reverse proxy
server can be used by WebSphere Application Server and propagated downstream to other server
resources without additional calls to the user registry. The retaining of the security attribute information
enables you to protect server resources properly by making appropriate authorization and trust-based
decisions User switches that occur because of Java EE RunAs configurations do not cause the
application server to lose the original caller information. This information is stored in the
PropagationToken located on the running thread.

v Enables third-party providers to plug in custom tokens. The token interface contains a getBytes method
that enables the token implementation to define custom serialization, encryption methods, or both.

v Provides the ability to have multiple tokens of the same type within a Subject created by different
providers. WebSphere Application Server can handle multiple tokens for the same purpose. For
example, you might have multiple authorization tokens in the Subject and each token might have
distinct authorization attributes that are generated by different providers.

v Provides the ability to have a unique ID for each token type that is used to formulate a more unique
subject identifier than just the user name in cases where dynamic attributes might change the context of
a user login. The token type has a getUniqueId() method that is used for returning a unique string for
caching purposes. For example, you might need to propagate a location ID, which indicates the location
from which the user logs into the system. This location ID can be generated during the original login
using either an reverse proxy server or the WEB_INBOUND login configuration and added to the
Subject prior to serialization. Other attributes might be added to the Subject as well and use a unique
ID. All of the unique IDs must be considered for the uniqueness of the entire Subject. WebSphere
Application Server has the ability to specify what is unique about the information in the Subject, which
might affect how the user accesses the Subject later.

Default authentication token
Do not use the default authentication token in service provider code. This default token is used by the
WebSphere Application Server run-time code only and is authentication mechanism specific.

Any modifications to this token by service provider code can potentially cause interoperability problems. If
you need to create an authentication token for custom usage, see Implementing a custom authentication
token for security attribute propagation for more information.

Changing the token factory that is associated with the default authentication token

When WebSphere Application Server generates a default authentication token, the application server
utilizes the TokenFactory class that is specified using the
com.ibm.wsspi.security.token.authenticationTokenFactory property. To modify this property using the
administrative console, complete the following steps:

1. Click Security > Global security.

2. Under Additional properties, click Custom properties.

1588 Administering WebSphere applications



The com.ibm.ws.security.ltpa.LTPATokenFactory token factory is the default for this property. The
LTPATokenFactory token factory uses the DESede/ECB/PKCS5Padding cipher. This token factory creates
an interoperable Lightweight Third Party Authentication (LTPA) token.

If you associate the com.ibm.ws.security.ltpa.LTPAToken2Factory token factory with the
com.ibm.wsspi.security.token.authenticationTokenFactory property, the token is Advanced Encryption
Standard (AES) encrypted. However, you need to weigh the performance against your security needs. You
might add additional attributes to the authentication token in the Subject during a login that are available
downstream.

If you need to perform your own signing and encryption of the default authentication token, you must
implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates (createToken) and validates (validateTokenBytes) your
token implementation. You can use the LTPA keys that are passed into the initialize method of the token
factory or you can use your own keys. If you use your own keys, they must be the same everywhere to
validate the tokens that are generated using those keys. See the API documentation, available through a
link on the front page of the information center, for more information on implementing your own custom
token factory. To associate your token factory with the default authentication token using the administrative
console, complete the following steps:

1. Click Security > Global security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authenticationTokenFactory property and verify that the value
of this property matches your custom token factory implementation.

4. Verify that your implementation classes are put into the install_dir/classes directory so that the
WebSphere Application Server class loader can load the classes.

5. Verify that the QEJBSVR user profile has read, write, and execute (*RWX) authority to the
classes directory. You can use the Work with Authority (WRKAUT) command to view the authority
permissions for that directory.

Propagating security attributes among application servers
Use the security attribute propagation feature of WebSphere Application Server to send security attribute
information regarding the original login to other servers using a token. This topic will help to configure
WebSphere Application Server to propagate security attributes to other servers.

About this task

To fully enable security attribute propagation, you must configure the single sign-on (SSO), Common
Secure Interoperability Version 2 (CSIv2) inbound, and CSIv2 outbound panels in the WebSphere
Application Server administrative console. You can enable just the portions of security attribute propagation
relevant to your configuration. For example, you can enable web propagation, which is propagation
amongst front-end application servers, using either the push technique (DynaCache) or the pull technique
(remote method to originating server).

You also can choose whether to enable Remote Method Invocation (RMI) outbound and inbound
propagation, which is commonly called downstream propagation. Typically both types of propagation are
enabled for any given cell. In some cases, you might want to choose a different option for a specific
application server using the server security panel within the specific application server settings.

Restriction: To prevent propagating the same security attributes among application servers multiple
times, WebSphere Application Server verifies that a Lightweight Third Party Authentication
(LTPA) token does not exist. Two cases can occur. Absence of the LTPA token tells the

Chapter 19. Administering application security 1589



Application Server that propagation can proceed. Presence of the LTPA token indicates that
propagation has occurred if the LTPA token has been generated within the cluster. However,
in the second case, if the LTPA token is present, but has been generated by a server outside
the cluster, such as by Tivoli Access Manager, Lotus Domino or a different Application Server
cluster, security attributes are not propagated.

To access the server security panel in the administrative console, click Servers > Application Servers >
server_name. Under Security, click Server security.

Complete the following steps to configure WebSphere Application Server for security attribute propagation:

Procedure
1. Access the WebSphere Application Server administrative console by typing http://

server_name:port_number/ibm/console. The administrative console address might differ if you have
previously changed the port number.

2. Click Security > Global security.

3. Under Web security, click Single sign-on (SSO).

4. Optional: Select the Interoperability Mode option if you need to interoperate with servers that do not
support security attribute propagation. Servers that do not support security attribute propagation
receive the Lightweight Third Party Authentication (LTPA) token and the Propagation token, but ignore
the security attribute information that they do not understand.

5. Select the Web inbound security attribute propagation option. The Web inbound security attribute
propagation option enables horizontal propagation, which allows the receiving SSO token to retrieve
the login information from the original login server. If you do not enable this option, downstream
propagation can occur if you enable the Security Attribute Propagation option on both the CSIv2
Inbound authentication and CSIv2 outbound authentication panels.

Typically, you enable the web inbound security attribute propagation option if you need to gather
dynamic security attributes set at the original login server that cannot be regenerated at the new
front-end server. These attributes include any custom attributes that might be set in the
PropagationToken token using the com.ibm.websphere.security.WSSecurityHelper application
programming interfaces (APIs). You must determine whether enabling this option improves or
degrades the performance of your system. While the option prevents some remote user registry calls,
the deserialization and decryption of some tokens might impact performance. In some cases
propagation is faster, especially if your user registry is the bottleneck of your topology. It is
recommended that you measure the performance of your environment both using and not using this
option. When you test the performance, it is recommended that you test in the operating environment
of the typical production environment with the typical number of unique users accessing the system
simultaneously.

6. Click Security > Global security. Under RMI/IIOP security, click CSIv2 inbound authentication.
The Login configuration field specifies RMI_INBOUND as the system login configuration that is used for
inbound requests. To add custom Java Authentication and Authorization Service (JAAS) login
modules, complete the following steps:

a. Click Security > Global security. Under Java Authentication and Authorization Service, click
System logins. A list of the system login configurations is displayed. WebSphere Application
Server provides the following pre-configured system login configurations: DEFAULT, LTPA,
LTPA_WEB, RMI_INBOUND, RMI_OUTBOUND, SWAM, WEB_INBOUND,
wssecurity.IDAssertion, and wssecurity.Signature. Do not delete these predefined configurations.

Note: SWAM is deprecated in WebSphere Application Server Version 8.5 and will be removed in
a future release.

b. Click the name of the login configuration that you want to modify.

c. Under Additional Properties, click JAAS Login Modules. The JAAS Login Modules panel is
displayed, which lists all of the login modules that are processed in the login configuration. Do not

1590 Administering WebSphere applications



delete the required JAAS login modules. Instead, you can add custom login modules before or
after the required login modules. If you add custom login modules, do not begin their names with
com.ibm.ws.security.server.

You can specify the order in which the login modules are processed by clicking Set Order.

7. Select the Security attribute propagation option on the CSIv2 inbound authentication panel. When
you select Security Attribute Propagation, the server advertises to other application servers that it
can receive propagated security attributes from another server in the same realm over the Common
Secure Interoperability version 2 (CSIv2) protocol.

8. Click Security > Global security. Under RMI/IIOP security, click CSIv2 Outbound authentication.
The CSIv2 outbound authentication panel is displayed. The Login configuration field specifies
RMI_OUTBOUND as the JAAS login configuration that is used for outbound configuration. You cannot
change this login configuration. Instead, you can customize this login configuration by completing the
substeps that are listed previously for CSIv2 Inbound authentication.

9. Optional: Verify that the Security Attribute Propagation option is selected if you want to enable
outbound Subject and security context token propagation for the Remote Method Invocation (RMI)
protocol. When you select this option, WebSphere Application Server serializes the Subject contents
and the PropagationToken contents. After the contents are serialized, the server uses the CSIv2
protocol to send the Subject and PropagationToken token to the target servers that support security
attribute propagation. If the receiving server does not support security attribute tokens, WebSphere
Application Server sends the Lightweight Third Party Authentication (LTPA) token only.

Important: WebSphere Application Server propagates only the objects within the Subject that it can
serialize. The server propagates custom objects on a best-effort basis.

When Security Attribute Propagation is enabled, WebSphere Application Server adds marker
tokens to the Subject to enable the target server to add additional attributes during the inbound login.
During the commit phase of the login, the marker tokens and the Subject are marked as read-only
and cannot be modified thereafter.

10. Optional: Select the Custom Outbound Mapping option if you clear the Security Attribute
Propagation option and you want to use the RMI_OUTBOUND login configuration. If neither the
Custom Outbound Mapping option nor the Security Attribute Propagation option is selected,
WebSphere Application Server does not call the RMI_OUTBOUND login configuration. If you need to
plug in a credential mapping login module, you must select the Custom Outbound Mapping option.

11. Optional: Specify trusted target realm names in the Trusted Target Realms field. By specifying these
realm names, information can be sent to servers that reside outside the realm of the sending server
to support inbound mapping that is at these downstream servers. To perform outbound mapping to a
realm different from the current realm, you must specify the realm in this field so that you can get to
this point without having the request rejected because of a realm mismatch. If you need WebSphere
Application Server to propagate security attributes to another realm when a request is sent, you must
specify the realm name in the Trusted Target Realms field. Otherwise, the security attributes are not
propagated to the unspecified realm. You can add multiple target realms by adding a pipe (|) delimiter
between each entry.

12. Optional: Enable propagation for a pure client. For a pure client to propagate attributes added to the
invocation Subject, you must add the following property to the sas.client.props file:
com.ibm.CSI.rmiOutboundPropagationEnabled=true

Note: The sas.client.props file is located at <WAS-HOME>/profiles/<ProfileName>/properties>.

Results

After completing these steps, you have configured WebSphere Application Server to propagate security
attributes to other servers.

Chapter 19. Administering application security 1591



What to do next

If you need to disable security attribute propagation, determine whether you need to disable it for either
the server level or the cell level.

Attention: Changes to the server-level settings override the cell settings.

To disable security attribute propagation on the server level, complete the following steps:

1. Click Server > Application Servers > server_name.

2. Under Security, click Server security.

3. Select the RMI/IIOP security for this server overrides cell settings option.

4. Disable security attribute propagation for inbound requests by clicking CSI inbound authentication
under Additional Properties and clearing the Security attribute propagation option.

5. Disable security attribute propagation for outbound requests by clicking CSI outbound authentication
under Additional Properties and clearing the Security attribute propagation option.

To disable security attribute propagation on the cell level, undo each of the steps that you completed to
enable security attribute propagation in this task.

Using the default authorization token to propagate security attributes
This topic explains how WebSphere Application Server uses the default authorization token. Consider
using the default authorization token when you are looking for a place to add string attributes that get
propagated downstream.

About this task

However, make sure that the attributes you add to the authorization token are specific to the user that is
associated with the authenticated Subject. If they are not specific to a user, the attributes probably belong
in the propagation token, which is also propagated with the request. For more information on the
propagation token, see “Using the default propagation token to propagate security attributes” on page
1595. To add attributes into the authorization token, you must plug in a custom login module into the
various system login modules that are configured. Any login module configuration that has the
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule implementation configured can receive
propagated information and can generate propagation information that can be sent outbound to another
server.

If propagated attributes are not presented to the login configuration during an initial login, a default
authorization token is created in the wsMapDefaultInboundLoginModule login module after the login occurs
in the ltpaLoginModule login module. You can obtain a reference to the default authorization token from
the login method using the sharedState hashmap. You must plug in the custom login module after the
wsMapDefaultInboundLoginModule implementation for WebSphere Application Server to see the default
authorization token.

For more information on the Java Authentication and Authorization Service (JAAS) programming model,
see the Security: Resources for learning article.

Procedure
v Obtain a reference to the default authorization token from the login method.

v Add attributes to the token.

v Read existing attributes used for authorization.

v Add your custom login module to the profile_root/classes directory. For more information,
see Creating a classes subdirectory in your profile for custom classes.

v Modify the authorization token factory to use a token factory other than the default token factory.

1592 Administering WebSphere applications



When WebSphere Application Server generates a default authorization token, the application server
utilizes the TokenFactory class that is specified using the
com.ibm.wsspi.security.token.authorizationTokenFactory property.

The com.ibm.ws.security.ltpa.AuthzPropTokenFactory token factory is the default. This token factory
encodes the data, but does not encrypt the data in the authorization token. Because the authorization
token typically flows over Common Secure Interoperability Version 2 (CSIv2) using Secure Sockets
Layer (SSL), encrypting the token is not necessary. However, if you need additional security for the
authorization token, you can associate a different token factory implementation with this property to get
encryption. For example, if you associate the com.ibm.ws.security.ltpa.LTPAToken2Factory token factory
with this property, the token uses Advanced Encryption Standard (AES) encryption. However, you need
to weigh the performance impacts against your security needs. Adding sensitive information to the
authorization token is one reason to change the token factory implementation to something that
encrypts rather than just encodes.

1. Open the administrative console.

2. Click Security > Global security.

3. Under Additional properties, click Custom properties.

v Perform your own signing and encryption of the default authorization token.

If you want to perform your own signing and encryption of the default authorization token, you must
implement the following classes:

– com.ibm.wsspi.security.ltpa.Token

– com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates and validates your token implementation. You can use
the Lightweight Third Party Authentication (LTPA) keys that are passed into the initialize method of the
token factory or you can use your own keys. If you use your own keys, they must be the same
everywhere to validate the tokens that are generated using those keys. See the API documentation, that
is available through a link on the front page of the information center, for more information on
implementing your own custom token factory.

v Associate your token factory with the default authorization token.

To associate your token factory with the default authorization token, using the administrative console,
complete the following steps:

1. Click Security > Global security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authorizationTokenFactory property and verify that the value
of this property matches your custom token factory implementation.

4. Verify that your implementation classes are put into the app_server_root/classes directory so that
the WebSphere Application Server class loader can load the classes.

5. Verify that the QEJBSVR user profile has read, write, and execute (*RWX) authority to
the classes directory. You can use the Work with Authority (WRKAUT) command to view the
authority permissions for the directory.

Example

The following example shows the complete task of obtaining a reference to the default authorization token
from the login method, adding attributes to the token, and reading from the existing attributes that are used
for authorization.
public customLoginModule()
{
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{

// (For more information on initialization, see
// “Developing custom login modules for a system login configuration for JAAS” on page 1558.)

// Get a reference to the sharedState map that is passed in during initialization.
_sharedState = sharedState;

Chapter 19. Administering application security 1593



}

public boolean login() throws LoginException
{

// (For more information on what to do during login, see
// “Developing custom login modules for a system login configuration for JAAS” on page 1558.)

// Look for the default AuthorizationToken in the shared state
defaultAuthzToken = (com.ibm.wsspi.security.token.AuthorizationToken)

sharedState.get
(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY);

// Might not always have one of these generated. It depends on the login
// configuration setup.

if (defaultAuthzToken != null)
{
try
{
// Add a custom attribute
defaultAuthzToken.addAttribute("key1", "value1");

// Determine all of the attributes and values that exist in the token.
java.util.Enumeration listOfAttributes = defaultAuthorizationToken.

getAttributeNames();

while (listOfAttributes.hasMoreElements())
{
String key = (String) listOfAttributes.nextElement();

String[] values = (String[]) defaultAuthorizationToken.getAttributes (key);

for (int i=0; i<values.length; i++)
{
System.out.println ("Key: " + key + ", Value[" + i + "]: "

+ values[i]);
}
}

// Read the existing uniqueID attribute.
String[] uniqueID = defaultAuthzToken.getAttributes
(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_UNIQUEID);

// Getthe uniqueID from the String[]
String unique_id = (uniqueID != null &&

uniqueID[0] != null) ? uniqueID[0] : "";

// Read the existing expiration attribute.
String[] expiration = defaultAuthzToken.getAttributes
(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_EXPIRATION);

// An example of getting a long expiration value from the string array.
long expire_time = 0;
if (expiration != null && expiration[0] != null)
expire_time = Long.parseLong(expiration[0]);

// Read the existing display name attribute.
String[] securityName = defaultAuthzToken.getAttributes
(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_SECURITYNAME);

// Get the display name from the String[]
String display_name = (securityName != null &&

securityName[0] != null) ? securityName[0] : "";

// Read the existing long securityName attribute.
String[] longSecurityName = defaultAuthzToken.getAttributes
(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_LONGSECURITYNAME);

// Get the long security name from the String[]
String long_security_name = (longSecurityName != null &&

longSecurityName[0] != null) ? longSecurityName[0] : "";

// Read the existing group attribute.
String[] groupList = defaultAuthzToken.getAttributes
(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_GROUPS);

// Get the groups from the String[]
ArrayList groups = new ArrayList();
if (groupList != null)
{
for (int i=0; i<groupList.length; i++)
{
System.out.println ("group[" + i + "] = " + groupList[i]);
groups.add(groupList[i]);

1594 Administering WebSphere applications



}
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}
}

}

public boolean commit() throws LoginException
{
// (For more information on what to do during commit, see

// “Developing custom login modules for a system login configuration for JAAS” on page 1558.)

}

private java.util.Map _sharedState = null;
private com.ibm.wsspi.security.token.AuthorizationToken defaultAuthzToken = null;
}

.

Using the default propagation token to propagate security attributes
A default propagation token is located on the running thread for applications and the security infrastructure
to use. The product propagates this default propagation token downstream and the token stays on the
thread where the invocation lands at each hop.

About this task

The data is available from within the container of any resource where the propagation token lands.
Remember that you must enable the propagation feature at each server where a request is sent for
propagation to work. Make sure that you enable security attribute propagation for all of the cells in your
environment where you want propagation

There is a WSSecurityHelper class that has application programming interfaces (APIs) for accessing the
PropagationToken attributes. This topic documents the usage scenarios and includes examples. A close
relationship exists between the propagation token and the work area feature. The main difference between
these features is that after you add attributes to the propagation token, you cannot change the attributes.
You cannot change these attributes so that the security runtime can add auditable information and have
that information remain there for the life of the invocation. Any time that you add an attribute to a specific
key, an ArrayList object is stored to hold that attribute. Any new attribute that is added with the same key
is added to the ArrayList object. When you call getAttributes, the ArrayList object is converted to a String
array and the order is preserved. The first element in the String array is the first attribute added for that
specific key.

In the default propagation token, a change flag is kept that logs any data changes to the token. These
changes are tracked to enable WebSphere Application Server to know when to send the authentication
information downstream again so that the downstream server has those changes. Normally, Common
Secure Interoperability Version 2 (CSIv2) maintains a session between servers for an authenticated client.
If the propagation token changes, a new session is generated and subsequently a new authentication
occurs. Frequent changes to the propagation token during a method cause frequent downstream calls. If
you change the token prior to making many downstream calls or you change the token between each
downstream call, you might impact security performance.

Procedure
v Obtain the server list from the default propagation token.

Every time the propagation token is propagated and used to create the authenticated Subject, either
horizontally or downstream, the name of the receiving application server is logged into the propagation
token. The format of the host is "Cell:Node:Server", which provides you access to the cell name, node
name, and server name of each application server that receives the invocation.

Chapter 19. Administering application security 1595



The following code provides you with this list of names and can be called from a Java 2 Platform,
Enterprise Edition (J2EE) application.

The format of each server in the list is: cell:node_name:server_name. The output, for example, is:
myManager:node1:server1

String[] server_list = null;

// If security is disabled on this application server, do not bother checking
if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())
{
try
{
// Gets the server_list string array
server_list = com.ibm.websphere.security.WSSecurityHelper.getServerList();
}
catch (Exception e)
{
// Performs normal exception handling for your application
}

if (server_list != null)
{
// print out each server in the list, server_list[0] is the first server
for (int i=0; i<server_list.length; i++)
{
System.out.println("Server[" + i + "] = " + server_list[i]);
}
}
}

v Obtain the list of callers, using the getCallerList API.

A default propagation token is generated any time an authenticated user is set on the running thread or
anyone tries to add attributes to the propagation token. Whenever an authenticated user is set on the
thread, the user is logged in the default propagation token. At times, the same user might be logged in
multiple times if the RunAs user is different from the caller. The following list provides the rules that are
used to determine if a user that is added to the thread gets logged into the propagation token:

– The current Subject must be authenticated. For example, an unauthenticated Subject is not logged.

– The current authenticated Subject is logged if a Subject is not previously logged.

– The current authenticated Subject is logged if the last authenticated Subject that is logged does not
contain the same user.

– The current authenticated Subject is logged on each unique application server that is involved in the
propagation process.

The following code sample shows how to use the getCallerList API.

The format of each caller in the list is: cell:node_name:server_name:realm:port_number/securityName.
The output, for example, is: myManager:node1:server1:ldap.austin.ibm.com:389/jsmith.

String[] caller_list = null;

// If security is disabled on this application server, do not check the caller list
if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())
{
try
{
// Gets the caller_list string array
caller_list = com.ibm.websphere.security.WSSecurityHelper.getCallerList();

1596 Administering WebSphere applications



}
catch (Exception e)
{
// Performs normal exception handling for your application
}

if (caller_list != null)
{
// Prints out each caller in the list, caller_list[0] is the first caller
for (int i=0; i<caller_list.length;i++)
{
System.out.println("Caller[" + i + "] = " + caller_list[i]);

}
}
}

v Obtain the security name of the first authenticated user, using the getFirst Caller API.

Whenever you want to know which authenticated caller started the request, you can call the
getFirstCaller method and the caller list is parsed. However, this method returns the security name of
the caller only. If you need to know more than the security name, call the getCallerList method and
retrieve the first entry in the String array. This entry provides all the caller information.

The following code sample retrieves the security name of the first authenticated caller using the
getFirstCaller API.

The output, for example, is: jsmith.

String first_caller = null;

// If security is disabled on this application server, do not bother checking
if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())
{
try
{
// Gets the first caller
first_caller = com.ibm.websphere.security.WSSecurityHelper.getFirstCaller();

// Prints out the caller name
System.out.println("First caller: " + first_caller);

}
catch (Exception e)
{
// Performs normal exception handling for your application
}
}

v Obtain the name of the first application server for a request, using the getFirstServer method.

Whenever you want to know what the first application server is for this request, call the getFirstServer
method directly.

The following code sample retrieves the name of the first application server using the getFirstServer
API.

The output, for example, is: myManager:node1:server1.

String first_server = null;

// If security is disabled on this application server, do not bother checking
if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())
{

Chapter 19. Administering application security 1597



try
{
// Gets the first server
first_server = com.ibm.websphere.security.WSSecurityHelper.getFirstServer();

// Prints out the server name
System.out.println("First server: " + first_server);
}
catch (Exception e)
{
// Performs normal exception handling for your application
}
}

v Add custom attributes to the default propagation token, using the addPropagationAttribute API.

You can add custom attributes to the default propagation token for application usage. This token follows
the request downstream so that the attributes are available when needed. When you use the default
propagation token to add attributes, you must understand the following issues:

– Adding information to the propagation token affects CSIv2 session caching. Add information sparingly
between remote requests.

– After you add information with a specific key, the information cannot be removed.

– You can add as many values to a specific key as you need. However, all of the values must be
available from a returned String array in the order that they were added.

– The propagation token is available only on servers where propagation and security are enabled.

– The Java 2 Security javax.security.auth.AuthPermission wssecurity.addPropagationAttribute attribute
is needed to add attributes to the default propagation token.

– An application cannot use keys that begin with either com.ibm.websphere.security or
com.ibm.wsspi.security. These prefixes are reserved for system usage.

The following code sample shows how to use the addPropagationAttribute API.

// If security is disabled on this application server,
// do not check the status of server security

if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())
{
try
{
// Specifies the key and values
String key = "mykey";
String value1 = "value1";
String value2 = "value2";

// Sets key, value1
com.ibm.websphere.security.WSSecurityHelper.
addPropagationAttribute (key, value1);

// Sets key, value2
String[] previous_values = com.ibm.websphere.security.WSSecurityHelper.

addPropagationAttribute (key, value2);

// Note: previous_values should contain value1
}
catch (Exception e)
{

1598 Administering WebSphere applications



// Performs normal exception handling for your application
}
}

v Obtain your custom attributes with the get PropagationAttributes API.

Custom attributes are added to the default propagation token using the addPropagationAttribute API.
Retrieve these attributes using the getPropagationAttributes API. This token follows the request
downstream so the attributes are available when needed. When you use the default propagation token
to retrieve attributes, you must understand the following issues:

– The propagation token is available only on servers where propagation and security are enabled.

– The Java 2 Security javax.security.auth.AuthPermission "wssecurity.getPropagationAttributes"
permission is needed to retrieve attributes from the default propagation token.

See Adding custom attributes to the default PropagationToken to add attributes using the
addPropagationAttributes API.

The following code sample shows how to use the getPropagationAttributes API.

// If security is disabled on this application server, do not bother checking
if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())
{
try
{
String key = "mykey";
String[] values = null;

// Sets key, value1
values = com.ibm.websphere.security.WSSecurityHelper.
getPropagationAttributes (key);

// Prints the values
for (int i=0; i<values.length; i++)
{
System.out.println("Value[" + i + "] = " + values[i]);

}
}
catch (Exception e)
{
// Performs normal exception handling for your application
}
}

The output, for example, is:

Value[0] = value1
Value[1] = value2

v Modify the propagation token factory configuration to use a token factory other than the default token
factory.

When WebSphere Application Server generates a default propagation token, the Application Server
utilizes the TokenFactory class that is specified using the
com.ibm.wsspi.security.token.propagationTokenFactory property.

The default token factory that is specified for this property is called
com.ibm.ws.security.ltpa.AuthzPropTokenFactory. This token factory encodes the data in the propagation
token and does not encrypt the data. Because the propagation token typically flows over CSIv2 using
Secure Sockets Layer (SSL), encrypting the token is not required. However, if you need additional
security for the propagation token, you can associate a different token factory implementation with this
property to get encryption. For example, if you choose to associate the

Chapter 19. Administering application security 1599



com.ibm.ws.security.ltpa.LTPAToken2Factory token factory with this property, the token is AES
encrypted. However, you need to weigh the performance impacts against your security needs. Adding
sensitive information to the propagation token is a good reason to change the token factory
implementation to something that encrypts rather than just encodes.

1. Open the administrative console.

2. Click Security > Global security.

3. Click Custom properties.

v Perform your own signing and encryption of the default propagation token.

If you want to perform your own signing and encryption of the default propagation token, you must
implement the following classes:

– com.ibm.wsspi.security.ltpa.Token

– com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates and validates your token implementation. You can
choose to use the Lightweight Third Party Authentication (LTPA) keys and have them pass into the
initialize method of the token factory, or you can use your own keys. If you use your own keys, they
must be the same everywhere to validate the tokens that are generated using those keys. See the API
documentation, available through a link on the front page of the information center, for more information
on implementing your own custom token factory.

v Associate your token factory with the default propagation token.

1. Open the administrative console.

2. Click Security > Global security.

3. Click Custom properties.

4. Locate the com.ibm.wsspi.security.token.propagationTokenFactory property and verify that the value
of this property matches your custom token factory implementation.

5. Verify that your implementation classes are put into the app_server_root/classes directory so that
the WebSphere Application Server class loader can load the classes.

6. Verify that the QEJBSVR user profile has read, write, and execute (*RWX) authority to
the classes directory. You can use the Work with Authority (WRKAUT) command to view the
authority permissions for the directory.

Example

Using the default single sign-on token with default or custom token factory to
propagate security attributes
Do not use the default single sign-on token in service provider code. This default token is used by the
WebSphere Application Server run-time code only.

Before you begin

Size limitations exist for this token when it is added as an HTTP cookie. If you need to create an HTTP
cookie using this token framework, you can implement a custom single sign-on token. To implement a
custom single sign-on token see Implementing a custom single sign-on token for security attribute
propagation for more information.

Procedure
v Modify the single sign-on token factory configuration to use a token factory other than the default token

factory.

When the default single sign-on token is generated, the application server utilizes the TokenFactory
class that is specified using the com.ibm.wsspi.security.token.singleSignonTokenFactory property. Use
the administrative console to modify the property.

1600 Administering WebSphere applications



The com.ibm.ws.security.ltpa.LTPAToken2Factory token factory is the default that is specified for this
property. This token factory creates a single sign-on (SSO) token called LtpaToken2, which WebSphere
Application Server uses for propagation. This token factory uses the AES/CBC/PKCS5Padding cipher.

1. Open the administrative console.

2. Click Security > Global security.

3. Under Authentication, click Custom properties.

v Perform your own signing and encryption of the default single sign-on token.

If you need to perform your own signing and encryption of the default single sign-on token, you must
implement the following classes:

– com.ibm.wsspi.security.ltpa.Token

– com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates (createToken) and validates (validateTokenBytes) your
token implementation. You can use the Lightweight Third-Party Authentication (LTPA) keys passed into
the initialize method of the token factory or you can use your own keys. If you use your own keys, they
must be the same everywhere to validate the tokens that are generated using those keys. See the API
reference information for more information on implementing your own custom token factory.

v Associate your own token factory with the default single sign-on token.

1. Open the administrative console.

2. Click Security > Global security.

3. Under Authentication, click Custom properties.

4. Locate the com.ibm.wsspi.security.token.singleSignonTokenFactory property and verify that the value
of this property matches your custom TokenFactory implementation.

5. Verify that your implementation classes are put into the app_server_root/classes directory so that
the WebSphere Application Server class loader can load the classes.

6. Verify that the QEJBSVR user profile has read, write, and execute (*RWX) authority to
the classes directory. You can use the Work with Authority (WRKAUT) command to view the
authority permissions for the directory.

Configuring the authentication cache
The security authentication cache affects the frequency of rehashing and the distribution of the hash
algorithms.

About this task

To configure the authentication cache properties, complete the following steps:

Procedure
1. Click Servers > Application Servers > server_name .

2. Under Server infrastructure, click Java and Process Management > Process definition.

3. Under Additional properties, click Java Virtual Machine > Custom Properties.

4. Click New to specify a new custom property.

What to do next

For information on the supported authentication cache properties, see “Authentication cache settings” on
page 1263.

Chapter 19. Administering application security 1601



Configuring Common Secure Interoperability Version 2 (CSIV2)
inbound and outbound communication settings
WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for
both inbound and outbound authentication requests. For inbound requests, you can specify the type of
accepted authentication, such as basic authentication. For outbound requests, you can specify properties
such as type of authentication, identity assertion or login configurations that are used for requests to
downstream servers.

About this task

Complete the following steps to configure Common Secure Interoperability Version 2 (CSIV2) and Security
Authentication Service (SAS).

Important: SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

Procedure
1. Determine how to configure security inbound and outbound at each point in your infrastructure.

For example, you might have a Java client communicating with an Enterprise JavaBeans (EJB)
application server, which in turn communicates to a downstream EJB application server.

The Java client utilizes the sas.client.props file to configure outbound security. Pure
clients must configure outbound security only.

The upstream EJB application server configures inbound security to handle the correct type of
authentication from the Java client. The upstream EJB application server utilizes the outbound security
configuration when going to the downstream EJB application server.

This type of authentication might be different than what you expect from the Java client into the
upstream EJB application server. Security might be tighter between the pure client and the first EJB
server, depending on your infrastructure. The downstream EJB server utilizes the inbound security
configuration to accept requests from the upstream EJB server. These two servers require similar
configuration options as well. If the downstream EJB application server communicates to other
downstream servers, the outbound security might require a special configuration.

2. Specify the type of authentication.

By default, authentication by a user ID and password is performed.

Both Java client certificate authentication and identity assertion are disabled by default. If you want this
type of authentication performed at every tier, use the CSIv2 authentication protocol configuration as is.
However, if you have any special requirements where some servers authenticate differently from other
servers, consider how to configure CSIv2 to its best advantage.

3. Configure clients and servers.

Configuring a pure Java client is done through the sas.client.props file, where properties
are modified.

Configuring servers is always done from the administrative console or scripting, either from the security
navigation for cell-level configurations or from the server security of the application server for
server-level configurations. If you want some servers to authenticate differently from others, modify
some of the server-level configurations. When you modify the server-level configurations, you are
overriding the cell-level configurations.

What to do next

Use CSIV2 inbound communications settings for configuring the type of authentication information that is
contained in an incoming request or transport.

1602 Administering WebSphere applications



Use CSIV2 outbound communications settings to specify the features that a server supports when acting
as a client to another downstream server.

Configuring Common Secure Interoperability Version 2 inbound communications
Inbound communications refers to the configuration that determines the type of accepted authentication for
inbound requests. This authentication is advertised in the interoperable object reference (IOR) that the
client retrieves from the name server.

Procedure
1. Start the administrative console.

2. Click Security > Global security.

3. Under RMI/IIOP security, click CSIv2 inbound communications.

4. Consider the following layers of security:
v Identity assertion (attribute layer).

When selected, this server accepts identity tokens from upstream servers. If the server receives an
identity token, the identity is taken from an originating client. For example, the identity is in the same
form that the originating client presented to the first server. An upstream server sends the identity of
the originating client. The format of the identity can be either a principal name, a distinguished
name, or a certificate chain. In some cases, the identity is anonymous. It is important to trust the
upstream server that sends the identity token because the identity authenticates on this server. Trust
of the upstream server is established either using Secure Sockets Layer (SSL) client certificate
authentication or basic authentication. You must select one of the two layers of authentication in
both inbound and outbound authentication when you choose identity assertion.

The server ID is sent in the client authentication token with the identity token. The server
ID is checked against the trusted server ID list. If the server ID is on the trusted server list, the
server ID is authenticated. If the server ID is valid, the identity token is put into a credential and
used for authorization of the request.

Note: When identity assertion is enabled, message layer or transport layer should be enabled also.
For server-to-server communication, besides enabling transport layer/client authentication,
identity assertion or message layer should be enabled also.

For more information, refer to Identity assertion.
v Message layer:

Basic authentication (GSSUP):

This type of authentication is the most typical. The user ID and password or authenticated token is
sent from a pure client or from an upstream server. When a user ID and password are received at
the server, they are authenticated with the user registry of the downstream server.

Lightweight Third Party Authentication (LTPA):

In this case, an LTPA token is sent from the upstream server. Note that if you choose LTPA, then
both servers must share the same LTPA keys

Kerberos (KRB5):

To select Kerberos, the active authentication mechanism must be Kerberos. In this case, a Kerberos
token is sent from the upstream server.

For more information, read about Message layer authentication.
v Secure Sockets Layer client certificate authentication (transport layer).

The SSL client certificate is used to authenticate instead of using user ID and Password. If a server
delegates an identity to a downstream server, the identity comes from either the message layer (a
client authentication token) or the attribute layer (an identity token), and not from the transport layer
through the client certificate authentication.

A client has an SSL client certificate that is stored in the keystore file of the client
configuration. When SSL client authentication is enabled on this server, the server requests that the
client send the SSL client certificate when the connection is established. The certificate chain is

Chapter 19. Administering application security 1603



available on the socket whenever a request is sent to the server. The server request interceptor gets
the certificate chain from the socket and maps this certificate chain to a user in the user registry.
This type of authentication is optimal for communicating directly from a client to a server. However,
when you have to go downstream, the identity typically flows over the message layer or through
identity assertion.

5. Consider the following points when deciding what type of authentication to accept:
v A server can receive multiple layers simultaneously, so an order of precedence rule decides which

identity to use. The identity assertion layer has the highest priority, the message layer follows, and
the transport layer has the lowest priority. The SSL client certificate authentication is used when it is
the only layer provided. If the message layer and the transport layer are provided, the message
layer is used to establish the identity for authorization. The identity assertion layer is used to
establish precedence when provided.

v Does this server usually receive requests from a client, from a server, or both? If the server always
receives requests from a client, identity assertion is not needed. You can choose either the message
layer, the transport layer, or both. You also can decide when authentication is required or just
supported. To select a layer as required, the sending client must supply this layer, or the request is
rejected. However, if the layer is only supported, the layer might not be supplied.

v What kind of client identity is supplied? If the client identity is client certificates authentication and
you want the certificate chain to flow downstream so that it maps to the downstream server user
registries, identity assertion is the appropriate choice. Identity assertion preserves the format of the
originating client. If the originating client authenticated with a user ID and password, a principal
identity is sent. If authentication is done with a certificate, the certificate chain is sent.

In some cases, if the client authenticated with a token and a Lightweight Directory
Access Protocol (LDAP) server is the user registry, then a distinguished name (DN) is sent.

6. Configure a trusted server list. When identity assertion is selected for inbound requests, insert a
pipe-separated (|) list of server administrator IDs to which this server can support identity token
submission. For backwards compatibility, you can still use a comma-delimited list. However, if the
server ID is a distinguished name (DN), then you must use a pipe-delimited (|) list because a comma
delimiter does not work. If you choose to support any server sending an identity token, you can enter
an asterisk (*) in this field. This action is called presumed trust. In this case, use SSL client certificate
authentication between servers to establish the trust.

7. Configure session management. You can choose either stateful or stateless security. Performance is
optimum when choosing stateful sessions. The first method request between a client and server is
authenticated. All subsequent requests (or until the credential token expires) reuse the session
information, including the credential. A client sends a context ID for subsequent requests. The context
ID is scoped to the connection for uniqueness.

Results

When you finish configuring this panel, you have configured most of the information that a client gathers
when determining what to send to this server. A client or server outbound configuration with this server
inbound configuration, determines the security that is applied. When you know what clients send, the
configuration is simple. However, if you have a diverse set of clients with differing security requirements,
your server considers various layers of authentication.

For a J2EE application server, the authentication choice is usually either identity assertion or message
layer because you want the identity of the originating client delegated downstream. You cannot easily
delegate a client certificate using an SSL connection. It is acceptable to enable the transport layer
because additional server security, as the additional client certificate portion of the SSL handshake, adds
some overhead to the overall SSL connection establishment.

1604 Administering WebSphere applications



What to do next

After you determine which type of authentication data this server might receive, you can determine what to
select for outbound security. For more information, see Configuring Common Secure Interoperability
Version 2 outbound authentication.

Common Secure Interoperability Version 2 inbound communications settings:

Use this page to specify the features that a server supports for a client accessing its resources.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. From Authentication, click RMI/IIOP security > CSIv2 inbound communications.

Use common secure interoperability (CSI) inbound communications settings for configuring the type of
authentication information that is contained in an incoming request or transport.

Authentication features include three layers of authentication that you can use simultaneously:
v CSIv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the
message layer, and then the transport layer. If a client sends all three, only the identity layer is used.
The only way to use the SSL client certificate as the identity is if it is the only information that is
presented during the request. The client picks up the interoperable object reference (IOR) from the
namespace and reads the values from the tagged component to determine what the server needs for
security.

v CSIv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets
Layer (SSL) client certificate as the identity.

v CSIv2 message layer. The message layer might contain a user ID and password or an
authenticated token with an expiration.

Propagate security attributes:

Specifies support for security attribute propagation during login requests. When you select this option, the
application server retains additional information about the login request, such as the authentication
strength used, and retains the identity and location of the request originator.

If you do not select this option, the application server does not accept any additional login information to
propagate to downstream servers.

Information Value
Default: Enabled

Important: When you use the replication services, ensure that the Propagate security attributes option
is enabled.

Use identity assertion:

Specifies that identity assertion is a way to assert identities from one server to another during a
downstream Enterprise JavaBeans (EJB) invocation.

This server does not authenticate the asserted identity again because it trusts the upstream server. Identity
assertion takes precedence over all other types of authentication.

Identity assertion is performed in the attribute layer and is only applicable on servers. The principal
determined at the server is based on precedence rules. If identity assertion is used, the identity is always

Chapter 19. Administering application security 1605



derived from the attribute layer. If basic authentication is used without identity assertion, the identity is
always derived from the message layer. Finally, if SSL client certificate authentication is performed without
either basic authentication, or identity assertion, then the identity is derived from the transport layer.

The identity asserted is the invocation credential that is determined by the RunAs mode for the enterprise
bean. If the RunAs mode is Client, the identity is the client identity. If the RunAs mode is System, the
identity is the server identity. If the RunAs mode is Specified, the identity is the one specified. The
receiving server receives the identity in an identity token and also receives the sending server identity in a
client authentication token. The receiving server validates the sending server identity as a trusted identity
through the Trusted Server IDs entry box. Enter a list of pipe-separated (|) principal names, for example,
serverid1|serverid2|serverid3.

All identity token types map to the user ID field of the active user registry. For an ITTPrincipal identity
token, this token maps one-to-one with the user ID fields. For an ITTDistinguishedName identity token, the
value from the first equal sign is mapped to the user ID field. For an ITTCertChain identity token, the value
from the first equal sign of the distinguished name is mapped to the user ID field.

When authenticating to an LDAP user registry, the LDAP filters determine how an identity of type
ITTCertChain and ITTDistinguishedName get mapped to the registry. If the token type is ITTPrincipal, then
the principal gets mapped to the UID field in the LDAP registry.

Information Value
Default: Disabled

Trusted identities:

Specifies the trusted identity that is sent from the sending server to the receiving server.

Specifies a pipe-separated (|) list of trusted server administrator user IDs, which are trusted to perform
identity assertion to this server. For example, serverid1|serverid2|serverid3. The application server
supports the comma (,) character as the list delimiter for backwards compatibility. The application server
checks the comma character when the pipe character (|) fails to find a valid trusted server ID.

Use this list to decide whether a server is trusted. Even if the server is on the list, the sending server must
still authenticate with the receiving server to accept the identity token of the sending server.

Information Value
Data type: String

Client certificate authentication:

Specifies that authentication occurs when the initial connection is made between the client and the server
during a method request.

In the transport layer, Secure Sockets Layer (SSL) client certificate authentication occurs. In the message
layer, basic authentication (user ID and password) is used. Client certificate authentication typically
performs better than message layer authentication, but requires some additional setup. These additional
steps involve verifying that the server trusts the signer certificate of each client to which it is connected. If
the client uses a certificate authority (CA) to create its personal certificate, you only need the CA root
certificate in the server signer section of the SSL trust file.

When the certificate is authenticated to a Lightweight Directory Access Protocol (LDAP) user
registry, the distinguished name (DN) is mapped based on the filter that is specified when configuring

1606 Administering WebSphere applications



LDAP. When the certificate is authenticated to a local OS user registry, the first attribute of the
distinguished name (DN) in the certificate, which is typically the common name, is mapped to the user ID
in the registry.

The identity from client certificates is used only if no other layer of authentication is presented to the
server.

Never Specifies that clients cannot attempt Secure Sockets Layer (SSL) client certificate authentication
with this server.

Supported
Specifies that clients connecting to this server can authenticate using SSL client certificates.
However, the server can invoke a method without this type of authentication. For example,
anonymous or basic authentication can be used instead.

Required
Specifies that clients connecting to this server must authenticate using SSL client certificates
before invoking the method.

Transport:

Specifies whether client processes connect to the server using one of its connected transports.

You can choose either Secure Sockets Layer (SSL), TCP/IP or both as the inbound transport that a server
supports. If you specify TCP/IP, the server only supports TCP/IP and cannot accept SSL connections. If
you specify SSL-supported, this server can support either TCP/IP or SSL connections. If you specify
SSL-required, then any server communicating with this one must use SSL.

Note: This option is not available on the z/OS platform unless both Version 6.1 and earlier nodes exist in
the cell.

TCP/IP
If you select TCP/IP, then the server opens a TCP/IP listener port only and all inbound requests
do not have SSL protection.

SSL-required
If you select SSL-required, then the server opens an SSL listener port only and all inbound
requests are received using SSL.

SSL-supported
If you select SSL-supported, then the server opens both a TCP/IP and an SSL listener port and
most inbound requests are received using SSL.

Provide a fixed port number for the following ports. A zero port number indicates that a dynamic
assignment is made at run time.

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS
CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS
SAS_SSL_SERVERAUTH_LISTENER_ADDRESS

Information Value
Default: SSL-required
Range: TCP/IP, SSL Required, SSL-Supported

SSL settings:

Specifies a list of predefined SSL settings to choose from for inbound connection.

Chapter 19. Administering application security 1607



Information Value
Data type: String

Default: DefaultSSLSettings

DefaultIIOPSSL
Range: Any SSL settings configured in the SSL Configuration

Repertoire

Message layer authentication:

The following options are available for message layer authentication:

Never Specifies that this server cannot accept authentication using any of the following mechanisms
selected.

Supported
Specifies that a client communicating with this server can authenticate using any of the following
mechanisms selected. However, a method might be invoked without this type of authentication.
For example, an anonymous or client certificate might be used instead.

Required
Specifies that clients communicating with this server must specify authentication information using
of the following mechanisms selected for any method request.

Allow client to server authentication with::

Specifies client-to-server authentication using Kerberos, LTPA or Basic authentication.

The following options are available for client to server authentication:

Kerberos (KRB5)
Select to specify Kerberos as the authentication mechanism. You must first configure the Kerberos
authentication mechanism. Read about Configuring Kerberos as the authentication mechanism
using the administrative console for more information.

LTPA Select to specify the LTPA token authentication

Basic authentication
Basic authentication is Generic Security Services Username Password (GSSUP). This type of
authentication typically involves sending a user ID and a password from the client to the server for
authentication.

If you select Basic Authentication and LTPA, and the active authentication mechanism is LTPA, a user
name, password, and LTPA tokens are accepted.

If you select Basic Authentication and KRB5 and the active authentication mechanism is KRB5, a user
name, password, Kerberos token and LTPA tokens are accepted.

If you do not select Basic Authentication, a user name and password are not accepted by the server.

Login configuration:

Specifies the type of system login configuration to use for inbound authentication.

You can add custom login modules by clicking Security > Global security. From Authentication, click
Java Authentication and Authorization Service > System logins.

Stateful sessions:

1608 Administering WebSphere applications



Select this option to enable stateful sessions, which are used mostly for performance improvements.

The first contact between a client and server must fully authenticate. However, all subsequent contacts
with valid sessions reuse the security information. The client passes a context ID to the server, and the ID
is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.
Whenever the security session is not valid and the authentication retry is enabled, which is the default, the
client-side security interceptor invalidates the client-side session and submits the request again without
user awareness. This situation might occur if the session does not exist on the server; for example, the
server failed and resumed operation. When this value is disabled, each method invocation must
authenticate again.

Information Value
Default: Enabled

Trusted authentication realms - inbound:

Select this link to establish inbound trust for realms. Inbound authentication realm settings are not specific
to CSIv2; you can also configure which realms to grant inbound trust to for multiple security domains.

Inbound authentication refers to the configuration that determines the type of accepted authentication for
inbound requests. This authentication is advertised in the interoperable object reference (IOR) that the
client retrieves from the name server.

Configuring Common Secure Interoperability Version 2 outbound communications
The following choices are available when configuring the Common Secure Interoperability Version 2
(CSIv2) outbound communications panel.

Before you begin

Outbound communications refers to the configuration that determines the type of authentication that is
performed for outbound requests to downstream servers. Several layers or methods of authentication can
occur. The downstream server inbound authentication configuration must support at least one choice made
in this server outbound authentication configuration. If nothing is supported, the request might go outbound
as unauthenticated. This situation does not create a security problem because the authorization runtime is
responsible for preventing access to protected resources. However, if you choose to prevent an
unauthenticated credential from going outbound, you might want to designate one of the authentication
layers as required, rather than supported. If a downstream server does not support authentication, then
when authentication is required, the method request fails to go outbound.

About this task

The following choices are available in the Common Secure Interoperability Version 2 (CSIv2) outbound
communications panel. Remember that you are not required to complete these steps in the displayed
order. Rather, these steps are provided to help you understand your choices for configuring outbound
communications.

Procedure
v Select Identity Assertion (attribute layer). When selected, this server sends an identity token to a

downstream server if the downstream server supports identity assertion. When an originating client
authenticates to this server, the authentication information supplied is preserved in the outbound identity
token. If the client authenticating to this server uses client certificate authentication, then the identity
token format is a certificate chain, containing the exact client certificate chain from the inbound socket.
The same scenario is true for other mechanisms of authentication. Read theIdentity Assertion topic for
more information.

Chapter 19. Administering application security 1609



v Select User ID and Password (message layer). This type of authentication is the most
typical. The user ID and password (if BasicAuth credential) or authenticated token (if authenticated
credential) are sent outbound to the downstream server if the downstream server supports message
layer authentication in the inbound authentication panel. Refer to the Message Layer Authentication
article for more information.

v Select SSL Client certificate authentication (transport layer). The main reason to enable outbound
Secure Sockets Layer (SSL) client authentication from one server to a downstream server is to create a
trusted environment between those servers. For delegating client credentials, use one of the two layers
mentioned previously. However, you might want to create SSL personal certificates for all the servers in
your domain, and only trust those servers in your SSL truststore file. No other servers or clients can
connect to the servers in your domain, except at the tiers where you want them. This process can
protect your enterprise bean servers from access by anything other than your servlet servers.

Example

Typically, the outbound authentication configuration is for an upstream server to communicate with a
downstream server. Most likely, the upstream server is a servlet server and the downstream server is an
Enterprise JavaBeans (EJB) server. On a servlet server, the client authentication that is performed to
access the servlet can be one of many different types of authentication, including client certificate and
basic authentication. When receiving basic authentication data, whether through a prompt login or a
form-based login, the basic authentication information is typically authenticated to from a credential of the
mechanism type that is supported by the server, such as the Lightweight Third Party Authentication
(LTPA). When LTPA is the mechanism, a forwardable token exists in the credential. Choose the message
layer (BasicAuth) authentication to propagate the client credentials. If the credential is created using a
certificate login and you want to preserve sending the certificate downstream, you might decide to go
outbound with identity assertion.

Common Secure Interoperability Version 2 outbound communications settings:

Use this page to specify the features that a server supports when acting as a client to another downstream
server.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. From Authentication, click RMI/IIOP security > CSIv2 outbound communications.

Authentication features include three layers of authentication that you can use simultaneously:
v CSIv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the
message layer, and then the transport layer. If a client sends all three, only the identity layer is used.
The only way to use the SSL client certificate as the identity is if it is the only information that is
presented during the request. The client picks up the interoperable object reference (IOR) from the
namespace and reads the values from the tagged component to determine what the server needs for
security.

v CSIv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets
Layer (SSL) client certificate as the identity.

v CSIv2 message layer. The message layer might contain a user ID and password or an
authenticated token with an expiration.

Propagate security attributes:

Specifies to support security attribute propagation during login requests. When you select this option, the
application server retains additional information about the login request, such as the authentication
strength used, and retains the identity and location of the request originator.

1610 Administering WebSphere applications



If you do not select this option, the application server does not accept any additional login information to
propagate to downstream servers.

Information Value
Default: Enabled

Important: When you use the replication services, ensure that the Propagate security attributes option
is enabled.

Use identity assertion:

Specifies that identity assertion is a way to assert identities from one server to another during a
downstream Enterprise JavaBeans (EJB) invocation.

This server does not authenticate the asserted identity again because it trusts the upstream server. Identity
assertion takes precedence over all other types of authentication.

Identity assertion is performed in the attribute layer and is only applicable on servers. The principal
determined at the server is based on precedence rules. If identity assertion is performed, the identity is
always derived from the attribute layer. If basic authentication is used without identity assertion, the identity
is always derived from the message layer. Finally, if SSL client certificate authentication is performed
without either basic authentication, or identity assertion, then the identity is derived from the transport
layer.

The identity asserted is the invocation credential that is determined by the RunAs mode for the enterprise
bean. If the RunAs mode is Client, the identity is the client identity. If the RunAs mode is System, the
identity is the server identity. If the RunAs mode is Specified, the identity is the one specified. The
receiving server receives the identity in an identity token and also receives the sending server identity in a
client authentication token. The receiving server validates the sending server identity as a trusted identity
through the Trusted Server IDs entry box. Enter a list of pipe-separated (|) principal names, for example,
serverid1|serverid2|serverid3.

All identity token types map to the user ID field of the active user registry. For an ITTPrincipal identity
token, this token maps one-to-one with the user ID fields. For an ITTDistinguishedName identity token, the
value from the first equal sign is mapped to the user ID field. For an ITTCertChain identity token, the value
from the first equal sign of the distinguished name is mapped to the user ID field.

When authenticating to an LDAP user registry, the LDAP filters determine how an identity of type
ITTCertChain and ITTDistinguishedName get mapped to the registry. If the token type is ITTPrincipal, then
the principal gets mapped to the UID field in the LDAP registry.

Information Value
Default: Disabled

Use server-trusted identity:

Specifies the server identity that the application server uses to establish trust with the target server. The
server identity can be sent using one of the following methods:

v A server ID and password when the server password is specified in the registry configuration.

v A server ID in a Lightweight Third Party Authentication (LTPA) token when the internal server ID is used.

For interoperability with application servers other than WebSphere Application Server, use one of the
following methods:

v Configure the server ID and password in the registry.

Chapter 19. Administering application security 1611



v Select the Server-trusted identity option and specify the trusted identity and password so that an
interoperable Generic Security Services Username Password (GSSUP) token is sent instead of an
LTPA token.

Information Value
Default: Disabled

Specify an alternative trusted identity:

Specifies an alternative user as the trusted identity that is sent to the target servers instead of sending the
server identity.

This option is recommended for identity assertion. The identity is automatically trusted when it is sent
within the same cell and does not need to be in the trusted identities list within the same cell. However,
this identity must be in the registry of the target servers in an external cell, and the user ID must be on the
trusted identities list or the identity is rejected during trust evaluation.

Note: You must select Basic Authentication under the Message Layer authentication section to send an
alternative trusted identity. If you do not select Basic Authentication, then choose the Server Identity
instead.

Information Value
Default: Disabled

Trusted identity:

Specifies the trusted identity that is sent from the sending server to the receiving server.

If you specify an identity in this field, it can be selected on the panel for your configured user account
repository. If you do not specify an identity, a Lightweight Third Party Authentication (LTPA) token is sent
between the servers.

Specifies a pipe-separated (|) list of trusted server administrator user IDs, which are trusted to
perform identity assertion to this server. For example, serverid1|serverid2|serverid3. The application
server supports the comma (,) character as the list delimiter for backwards compatibility. The application
server checks the comma character when the pipe character (|) fails to find a valid trusted server ID.

Use this list to decide whether a server is trusted. Even if the server is on the list, the sending server must
still authenticate with the receiving server to accept the identity token of the sending server.

Password:

Specifies the password that is associated with the trusted identity.

Information Value
Data type: Text

Confirm password:

Confirms the password that is associated with the trusted identity.

Information Value
Data type: Text

1612 Administering WebSphere applications



Message layer authentication:

The following options are available for message layer authentication:

Never Specifies that this server cannot accept authentication using any of the mechanisms selected
below.

Supported
Specifies that a client communicating with this server can authenticate using any of the
mechanisms selected below. However, a method might be invoked without this type of
authentication. For example, an anonymous or client certificate might be used instead.

Required
Specifies that clients communicating with this server must specify authentication information using
of the mechanisms selected below for any method request.

Allow client to server authentication with::

Specifies client-to-server authentication using Kerberos, LTPA or Basic authentication.

The following options are available for client to server authentication:

Kerberos (KRB5)
Select to specify Kerberos as the authentication mechanism. You must first configure the Kerberos
authentication mechanism. Read about Configuring Kerberos as the authentication mechanism
using the administrative console for more information.

LTPA Select to configure and enable Lightweight Third-Party Authentication (LTPA) token authentication.

Basic authentication
Basic authentication is Generic Security Services Username Password (GSSUP). This type of
authentication typically involves sending a user ID and a password from the client to the server for
authentication.

If you select Basic Authentication and LTPA, and the active authentication mechanism is LTPA, the
server goes with a downstream server with a user name, password or LTPA token.

If you select Basic Authentication and KRB5, and the active authentication mechanism is KRB5, the
server goes with a downstream server with a user name, password, Kerberos token or LTPA token.

If you do not select Basic Authentication, the server does not go with a downstream server with a user
name and password.

Transport:

Specifies whether client processes connect to the server using one of its connected transports.

You can choose to use either Secure Sockets Layer (SSL), TCP/IP or both as the inbound transport that a
server supports. If you specify TCP/IP, the server only supports TCP/IP and cannot accept SSL
connections. If you specify SSL-supported, this server can support either TCP/IP or SSL connections. If
you specify SSL-required, then any server communicating with this one must use SSL.

For server-to-server communication, it is not enough to enable only the Transport layer. You must also
enable either the Message layer or the Attribute layer.

TCP/IP
If you select TCP/IP, then the server opens a TCP/IP listener port only and all inbound requests
do not have SSL protection.

Chapter 19. Administering application security 1613



SSL-required
If you select SSL-required, then the server opens an SSL listener port only and all inbound
requests are received using SSL.

SSL-supported
If you select SSL-supported, then the server opens both a TCP/IP and an SSL listener port and
most inbound requests are received using SSL.

Provide a fixed port number for the following ports. A zero port number indicates that a dynamic
assignment is made at run time.

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS
CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS
SAS_SSL_SERVERAUTH_LISTENER_ADDRESS

Information Value
Default: SSL-Required
Range: TCP/IP, SSL Required, SSL-Supported

SSL settings:

Specifies a list of predefined SSL settings to choose from for inbound connection.

Information Value
Data type: String

Default: DefaultSSLSettings

DefaultIIOPSSL
Range: Any SSL settings configured in the SSL Configuration

Repertoire

Client certificate authentication:

Specifies whether a client certificate from the configured keystore is used to authenticate to the server
when the SSL connection is made between this server and a downstream server, provided that the
downstream server supports client certificate authentication.

Typically, client certificate authentication has a higher performance than message layer authentication, but
requires some additional setup. These additional steps include verifying that this server has a personal
certificate and that the downstream server has the signer certificate of this server.

If you select client certificate authentication, the following options are available:

Never Specifies that this server does not attempt Secure Sockets Layer (SSL) client certificate
authentication with downstream servers.

Supported
Specifies that this server can use SSL client certificates to authenticate to downstream servers.
However, a method can be invoked without this type of authentication. For example, the server
can use anonymous or basic authentication instead.

Required
Specifies that this server must use SSL client certificates to authenticate to downstream servers.

Information Value
Default: Enabled

1614 Administering WebSphere applications



Login configuration:

Specifies the type of system login configuration to use for inbound authentication.

You can add custom login modules by clicking Security > Global security. From Authentication, click
Java Authentication and Authorization Service > System logins.

Stateful sessions:

Select this option to enable stateful sessions, which are used mostly for performance improvements.

The first contact between a client and server must fully authenticate. However, all subsequent contacts
with valid sessions reuse the security information. The client passes a context ID to the server, and the ID
is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.
Whenever the security session is not valid and the authentication retry is enabled, which is the default, the
client-side security interceptor invalidates the client-side session and submits the request again without
user awareness. This situation might occur if the session does not exist on the server, for example, the
server failed and resumed operation. When this value is disabled, every method invocation must
authenticate again.

Enable CSIv2 session cache limit:

Specifies whether to limit the size of the CSIv2 session cache.

When you enable this option, you must set values for the Maximum cache size and Idle session
timeout options. When you do not enable this option, the CSIv2 session cache is not limited.

In previous versions of the application server, you might have set this value as the
com.ibm.websphere.security.util.csiv2SessionCacheLimitEnabled custom property. In this product version,
it is advisable to set this value using this administrative console panel and not as a custom property.

Information Value
Default: false

Maximum cache size:

Specify the maximum size of the session cache after which expired sessions are deleted from the cache.

Expired sessions are defined as sessions that are idle longer than the time that is specified in the Idle
session timeout field. When you specify a value for the Maximum cache size field, consider setting its
value between 100 and 1000 entries.

Consider specifying a value for this field if your environment uses Kerberos authentication and has a short
clock skew for the configured key distribution center (KDC). In this scenario, a short clock skew is defined
as less than 20 minutes. Consider increasing the value of this field if the small cache size causes the
garbage collection to run so frequently that it impacts the performance of the application server.

In previous versions of the application server, you might have set this value as the
com.ibm.websphere.security.util.csiv2SessionCacheMaxSize custom property. In this product version, it is
advisable to set this value using this administrative console panel and not as a custom property.

This field only applies if you enable both the Stateful sessions and the Enable CSIv2 session cache
limit options.

Information Value
Default: By default, a value is not set.

Chapter 19. Administering application security 1615



Information Value
Range: 100 to 1000 entries

Idle session timeout:

This property specifies the time in milliseconds that a CSIv2 session can remain idle before being deleted.
The session is deleted if you select the Enable CSIv2 session cache limit option and the value of the
Maximum cache size field is exceeded.

This timeout value only applies if you enable both the Stateful sessions and the Enable CSIv2 session
cache limit options. Consider decreasing the value for this field if your environment uses Kerberos
authentication and has a short clock skew for the configured key distribution center (KDC). In this
scenario, a short clock skew is defined as less than 20 minutes. A small clock skew can result in a larger
number of rejected CSIv2 sessions. However, with a smaller value for the Idle session timeout field, the
application server can clean out these rejected sessions more frequently and potentially reduce the
resource shortages.

In previous versions of WebSphere Application Server, you might have set this value as the
com.ibm.websphere.security.util.csiv2SessionCacheIdleTime custom property. In this product version, it is
advisable to set this value using this administrative console panel and not as a custom property. If you
previously set it as a custom property, the value was set in milliseconds and converted on this
administrative console panel to seconds. On this administrative console panel, you must specify the value
in seconds.

Information Value
Default: By default, a value is not set.
Range: 60 to 86,400 seconds

Custom outbound mapping:

Enables the use of custom Remote Method Invocation (RMI) outbound login modules.

The custom login module maps or completes other functions before the predefined RMI outbound call.

To declare a custom outbound mapping, complete the following steps:

1. Click Security > Global security.

2. From Authentication, click Java Authentication and Authorization Service > System logins > New.

Trusted authentication realms - outbound:

If the RMI/IIOP communication is across different realms, use this link to add outbound trusted realms.

The credential tokens are only sent to the realms that are trusted. In addition, the receiving server should
trust this realm using the inbound trusted realms configuration to validate the LTPA token.

Configuring inbound transports
By using this configuration, you can configure a different transport for inbound security versus outbound
security.

Before you begin

Inbound transports refer to the types of listener ports and their attributes that are opened to
receive requests for this server. Both Common Secure Interoperability Specification, Version 2 (CSIv2) and
Secure Authentication Service (SAS) have the ability to configure the transport.

1616 Administering WebSphere applications



Important: SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

However, the following differences between the two protocols exist:
v CSIv2 is much more flexible than SAS, which requires Secure Sockets Layer (SSL); CSIv2 does not

require SSL.
v SAS does not support SSL client certificate authentication, while CSIv2 does.
v CSIv2 can require SSL connections, while SAS only supports SSL connections.
v SAS always has two listener ports open: TCP/IP and SSL.
v CSIv2 can have as few as one listener port and as many as three listener ports. You can open one port

for just TCP/IP or when SSL is required. You can open two ports when SSL is supported, and open
three ports when SSL and SSL client certificate authentication is supported.

About this task

Complete the following steps to configure the Inbound transport panels in the administrative console:

Procedure
1. Click Security > Global security.

2. Under RMI/IIOP security, click CSIv2 inbound communications.

3. Under Transport, select SSL-required. You can choose to use either Secure Sockets Layer (SSL),
TCP/IP or both as the inbound transport that a server supports. If you specify TCP/IP, the server only
supports TCP/IP and cannot accept SSL connections. If you specify SSL-supported, this server can
support either TCP/IP or SSL connections. If you specify SSL-required, then any server communicating
with this one must use SSL.

4. Click Apply.

5. Consider fixing the listener ports that you configured.

You complete this action in a different panel, but think about this action now. Most endpoints are
managed at a single location, which is why they do not display in the Inbound transport panels.
Managing end points at a single location helps you decrease the number of conflicts in your
configuration when you assign the endpoints. The location for SSL end points is at each server. The
following port names are defined in the End points panel and are used for Object Request Broker
(ORB) security:
v CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS - CSIv2 Client Authentication SSL

Port
v CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS - CSIv2 SSL Port
v SAS_SSL_SERVERAUTH_LISTENER_ADDRESS - SAS SSL Port
v ORB_LISTENER_PORT - TCP/IP Port

For an application server, click Servers > Application servers > server_name. Under
Communications, click Ports. The Ports panel is displayed for the specified server.

The Object Request Broker (ORB) on WebSphere Application Server uses a listener port for Remote
Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) communications, and is statically
specified using configuration dialogs or during migration. If you are working with a firewall, you must
specify a static port for the ORB listener and open that port on the firewall so that communication can
pass through the specified port. The endPoint property for setting the ORB listener port is:
ORB_LISTENER_ADDRESS.

a. Click Servers > Application Servers > server_name. Under Communications, click Ports > New.

b. Select ORB_LISTENER_ADDRESS from the Port name field in the Configuration panel.

c. Enter the IP address, the fully qualified Domain Name System (DNS) host name, or the
DNS host name by itself in the Host field. For example, if the host name is myhost, the fully
qualified DNS name can be myhost.myco.com and the IP address can be 155.123.88.201.

Chapter 19. Administering application security 1617



d. Enter the port number in the Port field. The port number specifies the port for which the service is
configured to accept client requests. The port value is used with the host name. Using the previous
example, the port number might be 9000.

6. Click Security > Global security. Under RMI/IIOP security, click CSIv2 inbound
communications. Select the SSL settings that are used for inbound requests from CSIv2 clients, and
then click Apply. Remember that the CSIv2 protocol is used to inter-operate with previous releases.
When configuring the keystore and truststore files in the SSL configuration, these files need the right
information for inter-operating with previous releases of WebSphere Application Server.

Results

The inbound transport configuration is complete. With this configuration, you can configure a different
transport for inbound security versus outbound security. For example, if the application server is the first
server that is used by users, the security configuration might be more secure. When requests go to
back-end enterprise bean servers, you might lessen the security for performance reasons when you go
outbound. With this flexibility you can design the right transport infrastructure to meet your needs.

What to do next

When you finish configuring security, perform the following steps to save, synchronize, and restart the
servers:
1. Click Save in the administrative console to save any modifications to the configuration.
2. Stop and restart all servers, when synchronized.

Common Secure Interoperability Version 2 transport inbound settings:

Use this page to specify which listener ports to open and which Secure Sockets Layer (SSL) settings to
use. These specifications determine which transport a client or upstream server uses to communicate with
this server for incoming requests.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click RMI/IIOP security > CSIv2 inbound transport.

Transport:

Specifies whether client processes connect to the server using one of its connected transports.

You can choose to use either Secure Sockets Layer (SSL), TCP/IP or both as the inbound transport that a
server supports. If you specify TCP/IP, the server only supports TCP/IP and cannot accept SSL
connections. If you specify SSL-supported, this server can support either TCP/IP or SSL connections. If
you specify SSL-required, then any server communicating with this one must use SSL.

If you specify SSL-supported or SSL-required, decide which set of SSL configuration settings you want to
use for the inbound configuration. This decision determines which key file and trust file are used for
inbound connections to this server.

TCP/IP
If you select TCP/IP, then the server opens a TCP/IP listener port only and all inbound requests
do not have SSL protection.

SSL-required
If you select SSL-required, then the server opens an SSL listener port only and all inbound
requests are received using SSL.

1618 Administering WebSphere applications



Important: SAS is supported only between Version 6.0.x and previous version servers that have
been federated in a Version 6.1 cell.

SSL-supported
If you select SSL-supported, then the server opens both a TCP/IP and an SSL listener port and
most inbound requests are received using SSL.

Provide a fixed port number for the following ports. A zero port number indicates that a dynamic
assignment is made at runtime.

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS
CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS
SAS_SSL_SERVERAUTH_LISTENER_ADDRESS

Information Value
Default: SSL Required
Range: TCP/IP, SSL Required, SSL-Supported

SSL settings:

Specifies a list of predefined SSL settings to choose from for inbound connections.

These settings are configured at the SSL Repertoire panel. To access the SSL Repertoire panel, complete
the following steps:

1. Clicking Security > SSL certificate and key management.

2. Under configuration settings, click Manage endpoint security configurations and trust zones.

3. Expand Inbound and click inbound_configuration.

4. Under Related items, click SSL configurations.

Information Value
Data type: String

Default: DefaultSSLSettings

DefaultIIOPSSL
Range: Any SSL settings configured in the SSL Configuration

Repertoire

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java
Naming and Directory Interface (JNDI) platform.

Centrally managed configurations support one location to maintain SSL configurations rather than
spreading them across the configuration documents.

Information Value
Default: Enabled

Use specific SSL alias:

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

This option overrides the centrally managed configuration for the JNDI platform.

z/OS SSL settings:

Chapter 19. Administering application security 1619



Specifies a list of predefined Secure Sockets Layer (SSL) settings for inbound connections. Configure
these settings on the SSL panel by clicking Secure communications on the administrative console.

Secure Authentication Service inbound transport settings:

Use this page to specify transport settings for connections that are accepted by this server using the
Secure Authentication Service (SAS) authentication protocol. The SAS protocol is used to communicate
securely to enterprise beans with previous releases of the application server.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand RMI/IIOP security and click SAS inbound transport.

Attention: The panel associated with this article displays only when you have a Version 6.1 server in your
environment. SAS is supported only between Version 6.0.x and previous version servers that
have been federated in a Version 6.1 cell.

SSL Settings:

Specifies a list of predefined SSL settings to choose from for inbound connections.

These settings are configured on the Secure Sockets Layer (SSL) configuration panel. To access the SSL
configuration panel, complete the following steps:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations
and trust zones.

2. Expand Inbound > configuration_name.

3. Under Related Items, click SSL configurations.

Information Value
Data type: String
Default: DefaultSSLSettings

Configuring outbound transports
By using this configuration, you can configure a different transport for inbound security versus outbound
security.

Before you begin

Outbound transports refers to the transport that is used to connect to a downstream server. When you
configure the outbound transport, consider the transports that the downstream servers support. If you are
considering Secure Sockets Layer (SSL), also consider including the signers of the downstream servers in
this server truststore file for the handshake to succeed.

When you select an SSL configuration, that configuration points to keystore and truststore files
that contain the necessary signers.

If you configured client certificate authentication for this server by completing the following steps, then the
downstream servers contain the signer certificate belonging to the server personal certificate:

1. Click Security > Global security.

2. Under RMI/IIOP security, click CSIv2 outbound communications.

About this task

Complete the following steps to configure the outbound transport panels.

1620 Administering WebSphere applications



Procedure
1. Select the type of transport and the SSL settings by clicking Security > Global security. Under

RMI/IIOP security, click CSIv2 outbound communications. By selecting the type of transport, you
choose the transport to use when connecting to downstream servers. The downstream servers support
the transport that you choose. If you choose SSL-Supported, the transport that is used is negotiated
during the connection. If both the client and server support SSL, always select the SSL-Supported
option unless the request is considered a special request that does not require SSL, such as if an
object request broker (ORB) is a request.

2. Select the SSL required option if you want to use Secure Sockets Layer communications with the
outbound transport.

If you select the SSL required option or the SSL supported option, you can select either the
Centrally managed or Use specific SSL alias option.

Centrally managed
Enables you to specify an SSL configuration for particular scope such as the cell, node, server,
or cluster in one location. To use the Centrally managed option, you must specify the SSL
configuration for the particular set of endpoints. The Manage endpoint security configurations
and trust zones panel displays all of the inbound and outbound endpoints that use the SSL
protocol. If you expand the Inbound or Outbound section of the panel and click the name of a
node, you can specify an SSL configuration that is used for every endpoint on that node. For
an outbound transport, you can override the inherited SSL configuration by specifying an SSL
configuration for a particular endpoint. To specify an SSL configuration for an outbound
transport, click Security > SSL certificate and key management > Manage endpoint
security configurations and trust zones and expand Outbound.

Use specific SSL alias
Select the Use specific SSL alias option if you intend to select one of the SSL configurations
in the menu below the option.

The default is DefaultSSLSettings. To modify or create a new SSL configuration, complete the
steps described in “Creating a Secure Sockets Layer configuration” on page 1818.

3. Click Apply.

Results

The outbound transport configuration is complete. With this configuration, you can configure a different
transport for inbound security versus outbound security. For example, if the application server is the first
server used by end users, the security configuration might be more secure. When requests go to back-end
enterprise beans servers, you might consider less security for performance reasons when you go
outbound. With this flexibility you can design a transport infrastructure that meets your needs.

What to do next

When you finish configuring security, perform the following steps to save, synchronize, and restart the
servers.
v Click Save in the administrative console to save any modifications to the configuration.
v Stop and restart all servers, after synchronization.

Common Secure Interoperability Version 2 outbound transport settings:

Use this page to specify which transports and Secure Sockets Layer (SSL) settings this server uses when
communicating with downstream servers for outbound requests.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click RMI/IIOP security > CSIv2 outbound transport.

Chapter 19. Administering application security 1621



You also can view this administrative console by completing the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click Security Domain, and then expand the RMI/IIOP security section under
Authentication.

3. Click CSIv2 outbound communications.

Transport:

Specifies whether the client processes connect to the server using one of the server-connected transports.

You can choose to use either SSL, TCP/IP, or Both as the outbound transport that a server supports. If
you specify TCP/IP, the server supports only TCP/IP and cannot initiate SSL connections with downstream
servers. If you specify SSL-supported, this server can initiate either TCP/IP or SSL connections. If you
specify SSL-required, this server must use SSL to initiate connections to downstream servers. When you
do specify SSL, decide which set of SSL configuration settings you want to use for the outbound
configuration.

This decision determines which keyfile and trustfile to use for outbound connections to
downstream servers.

Consider the following options:
TCP/IP

If you select this option, the server opens TCP/IP connections with downstream servers only.
SSL-required

If you select this option, the server opens SSL connections with downstream servers.
SSL-supported

If you select this option, the server opens SSL connections with any downstream server that
supports them and opens TCP/IP connections with any downstream servers that do not support
SSL.

Information Value
Default: SSL-supported
Range: TCP/IP, SSL-required, SSL-supported

SSL settings:

Specifies a list of predefined SSL settings for outbound connections. These settings are configured at the
SSL Configuration Repertoires panel.

To access the panel, complete the following steps:

1. Click Security > SSL certificate and key management.

2. Under Configuration settings, click Manage endpoint security configurations and trust zones.

3. Expand Outbound > outbound_configuration_name.

4. Under Related items, click SSL configurations.

Information Value
Data type: String
Range: Any SSL settings that are configured in the SSL

Configuration Repertoires panel

Note: This field is available only if a Version 6.1 server exists in your environment.

SSL enabled:

1622 Administering WebSphere applications



Specifies whether secure socket communication is enabled to the server.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java
Naming and Directory Interface (JNDI) platform.

Centrally managed configurations support one location to maintain SSL configurations rather than
spreading them across the configuration documents.

Information Value
Default: Enabled

Use specific SSL alias:

Specifies the SSL configuration alias that you want to use for outbound SSL communications.

This option overrides the centrally managed configuration for the JNDI (LDAP) protocol.

Secure Authentication Service outbound transport settings:

Use this page to specify transport settings for connections that are accepted by this server using the
Secure Authentication Service (SAS) authentication protocol.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand RMI/IIOP security and click SAS outbound transport.

Attention: The panel associated with this article displays only when you have a Version 6.1 server in your
environment.

SSL settings:

Specifies a list of predefined Secure Sockets Layer (SSL) settings to choose from for outbound
connections.

These settings are configured on the SSL configuration panel. To access the SSL configuration panel,
complete the following steps:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations
and trust zones.

2. Expand Outbound > configuration_name.

3. Under Related Items, click SSL configurations.

Information Value
Data type: String
Default: DefaultSSLSettings

Configuring inbound messages
You can use the administrative console to configure inbound messages for CSIv2.

Procedure
1. In the administrative console, click Security > Global security.

2. Under Authentication, expand RMI/HOP security.

Chapter 19. Administering application security 1623



3. Click CSIv2 inbound communication.

4. Optional: Click Propagate security attributes or Use identity assertion. The Propagate security
attributes option enables support for security attribute propagation during login requests. When you
select this option, the application server retains additional information about the login request, such as
the authentication strength used, and retains the identity and location of the request originator.

The Use identity assertion option specifies that identity assertion is a way to assert identities from
one server to another during a downstream Enterprise JavaBeans (EJB) invocation.

5. Under CSIv2 Message layer authentication, select Supported, Never or Required.

Never Specifies that this server cannot accept an authentication mechanism that you select under
Allow client to server authentication with:.

Supported
Specifies that clients communicating with this server can specify an authentication mechanism
that you select under Allow client to server authentication with:. However, a method might
be invoked without this type of authentication. For example, an anonymous or client certificate
might be used instead.

Required
Specifies that clients communicating with this server must specify an authentication
mechanism that you select under Allow client to server authentication with:.

6. Under Allow client to server authentication with:, select Kerberos, LTPA and or Basic
authentication. You can optionally select:

Kerberos
Select to enable authentication using the Kerberos token.

LTPA Select to enable authentication using the Lightweight Third-Party Authentication (LTPA) token.

Basic authentication
This type of authentication typically involves sending a user ID and a password from the client
to the server for authentication. This is also know as Generic Security Services Username
Password (GSSUP).

This authentication also involves delegating a credential token from an already authenticated
credential, provided the credential type is forwardable; for example, LTPA.

If you select supported under CSIv2 Message layer authentication, and check KRB5 and
LTPA under Allow client to server authentication with:, then the server does not accept the
user name and password.

7. Click OK.

Results

You have now configured messages for CSIv2 inbound.

Configuring outbound messages
You can use the administrative console to configure outbound messages for CSIv2.

Procedure
1. In the administrative console, click Security > Global security.

2. Under Authentication, expand RMI/HOP security.

3. Click CSIv2 outbound communication.

4. Optional: Click Propagate security attributes or Use identity assertion. The Propagate security
attributes option enables support for security attribute propagation during login requests. When you
select this option, the application server retains additional information about the login request, such as
the authentication strength used, and retains the identity and location of the request originator.

1624 Administering WebSphere applications



The Use identity assertion option specifies that identity assertion is a way to assert identities from
one server to another during a downstream Enterprise JavaBeans (EJB) invocation.

The Use server trusted identity option specifies the server identity that the application server uses to
establish trust with the target server.

The Specify an alternative trusted identity option enables you to specify an alternative user as the
trusted identity that is sent to the target servers instead of sending the server identity. If you select this
option you must provide the name of the trusted identity and the password that is associated with the
trusted identity.

Note: You must select Basic Authentication under the Message Layer authentication section to send
an alternative trusted identity. If you do not select Basic Authentication, then choose the Server
Identity instead.

5. Under CSIv2 Message layer authentication, select Supported, Never or Required.

Never Specifies that this server cannot accept an authentication mechanism that you select under
Allow client to server authentication with:.

Supported
Specifies that clients communicating with this server can specify an authentication mechanism
that you select under Allow client to server authentication with:. However, a method might
be invoked without this type of authentication. For example, an anonymous or client certificate
might be used instead.

Required
Specifies that clients communicating with this server must specify an authentication
mechanism that you select under Allow client to server authentication with:.

6. Under Allow client to server authentication with:, select Kerberos, LTPA and or Basic
authentication. You can optionally select:.

Kerberos
Select to enable authentication using the Kerberos token.

LTPA Select to enable authentication using the Lightweight Third-Party Authentication (LTPA) token.

Basic authentication
This type of authentication typically involves sending a user ID and a password from the client
to the server for authentication. This is also know as Generic Security Services Username
Password (GSSUP).

This authentication also involves delegating a credential token from an already authenticated
credential, provided the credential type is forwardable; for example, LTPA.

If you select supported under CSIv2 Message layer authentication, and check KRB5 and
LTPA under Allow client to server authentication with:, then the server does not accept the
user name and password.

7. Optional: Select Custom outbound mapping. This option enables the use of custom Remote Method
Invocation (RMI) outbound login modules.

Results

You have now configured messages for CSIv2 outbound.

Common Secure Interoperability Version 2 and Security Authentication Service
(SAS) client configuration
A secure Java client requires configuration properties to determine how to perform security with a server.

These configuration properties are typically put into a properties file somewhere on the client system and
referenced by specifying the following system property on the command line of the Java client. For
example, this property accepts any valid web address.

Chapter 19. Administering application security 1625



-Dcom.ibm.CORBA.ConfigURL=file:profile_root/properties/sas.client.props

When you use thin or thick clients, com.ibm.CORBA.ConfigURL is automatically set to the
following file:
profile_root/properties/sas.client.props

When this file is processed by the Object Request Broker (ORB), security can be enabled
between the Java client and the target server.

If any syntax problems exist with the ConfigURL property and the sas.client.props file is not
found, the Java client proceeds to connect insecurely. Errors display indicating the failure to read the
ConfigURL property. Typically the problem is related to having two slashes after file, which is not valid.

Use the following properties to configure the Secure Authentication Service (SAS) and CSIv2
authentication protocols:
v “Security Authentication Service authentication protocol client settings” on page 1630

Important: SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

Authentication protocol settings for a client configuration:

You can use settings in the sas.client.props file to configure Security Authentication Service (SAS) and
Common Secure Interoperability Version 2 (CSIv2) clients.

Use the following settings in the sas.client.props file to configure SAS and CSIv2 clients. By
default, the sas.client.props file is located in the profile_root/properties directory of your WebSphere
Application Server - Express installation.

Important: SAS is supported only between Version 6.0.x and previous version servers that
have been federated in a Version 6.1 cell.

Note: The sas.client.props file for WebSphere Application Server Version 8.5 contains some new
properties that support BasicAuth and Kerberos, such as:

com.ibm.IPC.authenticationTarget=BasicAuthcom.ibm.IPC.loginUserid=
com.ibm.IPC.loginPassword=com.ibm.IPC.loginSource=promptcom.ibm.IPC.krb5Service=WAScom.ibm.IPC.krb5CcacheFile=com.ibm.IPC.krb5ConfigFile=

com.ibm.CORBA.securityEnabled:

Use to determine if security is enabled for the client process.

Table 102. com.ibm.CORBA.securityEnabled. This table describes the com.ibm.CORBA.securityEnabled setting.
Setting Value

Data Type Boolean

Default True

Valid values True or false

com.ibm.CSI.protocol:

Use to determine which authentication protocols are active.

1626 Administering WebSphere applications



The client can configure protocols of ibm, csiv2 or both as active. The only possible values for an
authentication protocol are ibm, csiv2 and both. Do not use sas for the value of an authentication protocol.
This restriction applies to both client and server configurations. The following list provides information
about using each of these protocol options:

ibm Use this authentication protocol option when you are communicating with WebSphere Application
Server Version 4.x or earlier servers.

csiv2 Use this authentication protocol option when you are communicating with WebSphere Application
Server Version 5 or later servers because the SAS interceptors are not loaded and running for
each method request.

both Use this authentication protocol option for interoperability between WebSphere Application Server
Version 4.x or earlier servers and WebSphere Application Server Version 5 or later servers.
Typically, specifying both provides greater interoperability with other servers.

Table 103. com.ibm.CSI.protocol. This table describes the com.ibm.CSI.protocol setting.
Setting Value

Data type String

Default Both

Valid values ibm, csiv2, both

com.ibm.CORBA.authenticationTarget:

Use to determine the type of authentication mechanism for sending security information from the client to
the server.

If basic authentication is specified, the user ID and password are sent to the server. Using the Secure
Sockets Layer (SSL) transport with this type of authentication is recommended; otherwise, the password is
not encrypted. The target server must support the specified authentication target.

Table 104. com.ibm.CORBA.authenticationTarget. This table describes the com.ibm.CORBA.authenticationTarget
setting.
Setting Value

Data type String

Default BasicAuth

Valid values BasicAuth, KRB5

com.ibm.CORBA.validateBasicAuth:

Use to determine if the user ID and password get validated immediately after the login data is entered
when the authenticationTarget property is set to BasicAuth.

In previous releases, BasicAuth logins validated only with the initial method request. During the first
request, the user ID and password are sent to the server. This request is the first time that the client can
notice an error, if the user ID or password is incorrect. The validateBasicAuth method is specified and the
validation of the user ID and password occurs immediately to the security server.

For performance reasons, you might want to disable this property if you do not want to verify the user ID
and password immediately. If the client program can wait, it is better to have the initial method request
flow to the user ID and password. However, program logic might not be this simple because of error
handling considerations.

Table 105. com.ibm.CORBA.validateBasicAuth. This table describes the com.ibm.CORBA.validateBasicAuth setting.
Setting Value

Data type Boolean

Chapter 19. Administering application security 1627



Table 105. com.ibm.CORBA.validateBasicAuth (continued). This table describes the
com.ibm.CORBA.validateBasicAuth setting.
Setting Value

Default True

Valid values True, False

com.ibm.CORBA.authenticationRetryEnabled:

Use to specify that a failed login attempt is retried. This property determines if a retry occurs for other
errors, such as stateful sessions that are not found on a server or validation failures at the server because
of an expiring credential.

The minor code in the exception that is returned to a client determines which errors are retried. The
number of retry attempts is dependent upon the com.ibm.CORBA.authenticationRetryCount property.

Table 106. com.ibm.CORBA.authenticationRetryEnabled. This table describes the
com.ibm.CORBA.authenticationRetryEnabled setting.
Setting Value

Data type Boolean

Default True

Valid values True, False

com.ibm.CORBA.authenticationRetryCount:

Use to specify the number of retries that occur until either a successful authentication occurs or the
maximum retry value is reached.

When the maximum retry value is reached, the authentication exception is returned to the client.

Table 107. com.ibm.CORBA.authenticationRetryCount. This table describes the
com.ibm.CORBA.authenticationRetryCount setting.
Setting Value

Data type Integer

Default 3

Range 1-10

com.ibm.CORBA.loginSource:

Use to specify how the request interceptor attempts to log in if it does not find an invocation credential
already set.

This property is valid only if message layer authentication occurs. If only transport layer authentication
occurs, this property is ignored. When specifying properties, the following two additional properties must
be defined:

v com.ibm.CORBA.loginUserid

v com.ibm.CORBA.loginPassword

When performing a programmatic login, it is not necessary to specify none as the login source. The
request fails if a credential is set as the invocation credential during a method request.

Table 108. com.ibm.CORBA.loginSource. This table describes the com.ibm.CORBA.loginSource setting.
Setting Value

Data type String

Default Prompt

1628 Administering WebSphere applications



Table 108. com.ibm.CORBA.loginSource (continued). This table describes the com.ibm.CORBA.loginSource setting.
Setting Value

Valid values Prompt, key file, stdin, none, properties

com.ibm.CORBA.loginUserid:

Use to specify the user ID when a properties login is configured and message layer authentication occurs.

This property is valid only when com.ibm.CORBA.loginSource=properties. Also set the
com.ibm.CORBA.loginPassword property.

Table 109. com.ibm.CORBA.loginUserid. This table describes the com.ibm.CORBA.loginUserid setting.
Setting Value

Data type String

Range Any string that is appropriate for a user ID in the configured user registry
of the server.

com.ibm.CORBA.loginPassword:

Use to specify the password when a properties login is configured and message layer authentication
occurs.

This property is valid only when com.ibm.CORBA.loginSource=properties. Also set the
com.ibm.CORBA.loginUserid property.

Table 110. com.ibm.CORBA.loginPassword. This table describes the com.ibm.CORBA.loginPassword setting.
Setting Value

Data type String

Range Any string that is appropriate for a password in the configured user
registry of the server.

com.ibm.CORBA.keyFileName:

Use to specify the key file that is used to log in.

A key file is a file that contains a list of realm, user ID, and password combinations that a client uses to log
into multiple realms. The realm that is used is the one found in the interoperable object reference (IOR) for
the current method request. The value of this property is used when the com.ibm.CORBA.loginSource=key
file is used.

Table 111. com.ibm.CORBA.keyFileName. This table describes the com.ibm.CORBA.keyFileName setting.
Setting Value

Data type String

Default C;/WebSphere/AppServer/properties/wsserver.key

Range Any fully qualified path and file name of a WebSphere Application Server
key file.

com.ibm.CORBA.loginTimeout:

Use to specify the length of time that the login prompt stays available before it is considered a failed login.

Table 112. com.ibm.CORBA.loginTimeout. This table describes the com.ibm.CORBA.loginTimeout setting.
Setting Value

Data type Integer

Units Seconds

Chapter 19. Administering application security 1629



Table 112. com.ibm.CORBA.loginTimeout (continued). This table describes the com.ibm.CORBA.loginTimeout
setting.
Setting Value

Default 300 (5 minute intervals)

Range 0 - 600 (10 minute intervals)

com.ibm.CORBA.securityEnabled:

Use to determine if security is enabled for the client process.

Table 113. com.ibm.CORBA.securityEnabled. This table describes the com.ibm.CORBA.securityEnabled setting.
Setting Value

Data type Boolean

Default True

Range True, False

Security Authentication Service authentication protocol client settings:

In addition to those properties which are valid for both Security Authentication Service (SAS) and Common
Secure Interoperability Version 2 (CSIv2), this article documents properties which are valid only for the
SAS authentication protocol.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

com.ibm.CORBA.standardPerformQOPModels:

Specifies the strength of the ciphers when making a Secure Sockets Layer (SSL) connection.

Information Value
Data type: String
Default: High
Range Low, Medium, High

Example 1: Configuring basic authentication and identity assertion
This example presents a pure Java client, C, that accesses a secure enterprise bean on server, S1,
through user bob. The following steps take you through the configuration of C, S1, and S2.

About this task

The enterprise bean code on S1 accesses another enterprise bean on server, S2. This configuration uses
identity assertion to propagate the identity of bob to the downstream server, S2. S2 trusts that bob already
is authenticated by S1 because it trusts S1. To gain this trust, the identity of S1 also flows to S2
simultaneously and S2 validates the identity by checking the trustedPrincipalList list to verify that it is a
valid server principal. S2 also authenticates S1.

Procedure
1. Configure the client C for message layer authentication with a Secure Sockets Layer (SSL) transport.

a. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/profile_root /properties/sas.client.props
property. The profile_root variable is the specific profile that you are working with. All further
configuration involves setting properties within this file.

1630 Administering WebSphere applications



b. Enable SSL.

In this case, SSL is supported but not required:
com.ibm.CSI.performTransportAssocSSLTLSSupported=true,
com.ibm.CSI.performTransportAssocSSLTLSRequired=false

c. Enable client authentication at the message layer.

In this case, client authentication is supported but not required:
com.ibm.CSI.performClientAuthenticationRequired=false,
com.ibm.CSI.performClientAuthenticationSupported=true

d. Use all of the remaining defaults in the sas.client.props file.

2. Configure the server, S1.

In the administrative console, server S1 is configured for incoming requests to support message-layer
client authentication and incoming connections to support SSL without client certificate authentication.
Server S1 is configured for outgoing requests to support identity assertion.

a. Configure S1 for incoming connections.

1) Disable identity assertion.

2) Enable user ID and password authentication.

3) Enable SSL.

4) Disable SSL client certificate authentication.

b. Configure S1 for outgoing connections.

1) Enable identity assertion.

2) Disable user ID and password authentication.

3) Enable SSL.

4) Disable SSL client certificate authentication.

3. Configure the server, S2.

In the administrative console, server S2 is configured for incoming requests to support identity
assertion and to accept SSL connections. Complete the following steps to configure incoming
connections. Configuration for outgoing requests and connections are not relevant for this example.

a. Enable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client authentication.

Example 2: Configuring basic authentication, identity assertion, and client
certificates
This example is the same as example 1, except for the interaction from client C2 to server S2. Therefore,
the configuration of example 1 still is valid, but you have to modify server S2 slightly and add a
configuration for client C2. The configuration is not modified for C1 or S1.

About this task

Procedure
1. Configure client C2 for transport layer authentication (Secure Sockets Layer (SSL) client certificates).

a. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/profile_root /properties/sas.client.props
property. The profile_root variable is the specific profile that you are working with. All further
configuration involves setting properties within this file.

b. Enable SSL.

Chapter 19. Administering application security 1631



In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,
com.ibm.CSI.performTransportAssocSSLTLSRequired=false

c. Disable client authentication at the message layer.

com.ibm.CSI.performClientAuthenticationRequired=false,
com.ibm.CSI.performClientAuthenticationSupported=false

d. Enable client authentication at the transport layer where it is supported, but not required.

com.ibm.CSI.performTLClientAuthenticationRequired=false,
com.ibm.CSI.performTLClientAuthenticationSupported=true

2. Configure the server, S2.

In the administrative console, server S2 is configured for incoming requests to SSL client
authentication and identity assertion. Configuration for outgoing requests is not relevant for this
example.

You can mix and match these configuration options. However, a precedence exists as to which
authentication features become the identity in the received credential:
a. Identity assertion
b. Message-layer client authentication (basic authentication or token)
c. Transport-layer client authentication (SSL certificates)

a. Enable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Enable SSL client authentication.

Example 3: Configuring client certificate authentication and RunAs system
This example presents a pure Java client, C, accessing a secure enterprise bean on S1.

About this task

C authenticates to S1 using Secure Sockets Layer (SSL) client certificates. S1 maps the common name of
the distinguished name (DN) in the certificate to a user in the local registry. The user in this case is bob.
The enterprise bean code on S1 accesses another enterprise bean on S2. Because the RunAs mode is
system, the invocation credential is set as server1 for any outbound requests.

Procedure
1. Configure client C for transport layer authentication (SSL client certificates).

a. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/profile_root /properties/sas.client.props
property. The profile_root variable is the specific profile that you are working with. All further
configuration involves setting properties within this file.

b. Enable SSL.

In this case, SSL is supported but not required:
com.ibm.CSI.performTransportAssocSSLTLSSupported=true,
com.ibm.CSI.performTransportAssocSSLTLSRequired=false

c. Disable client authentication at the message layer.
com.ibm.CSI.performClientAuthenticationRequired=false,
com.ibm.CSI.performClientAuthenticationSupported=false

1632 Administering WebSphere applications



d. Enable client authentication at the transport layer. It is supported, but not required.
com.ibm.CSI.performTLClientAuthenticationRequired=false,
com.ibm.CSI.performTLClientAuthenticationSupported=true

2. Configure the S1 server. In the administrative console, S1 is configured for incoming connections to
support SSL with client certificate authentication. The S1 server is configured for outgoing requests to
support message layer client authentication.

a. Configure S1 for incoming connections.

1) Disable identity assertion.

2) Disable user ID and password authentication.

3) Enable SSL.

4) Enable SSL client certificate authentication.

b. Configure S1 for outgoing connections.

1) Disable identity assertion.

2) Disable user ID and password authentication.

3) Enable SSL.

4) Enable SSL client certificate authentication.

3. Configure the S2 server.

In the administrative console, the S2 server is configured for incoming requests to support message
layer authentication over SSL. Configuration for outgoing requests is not relevant for this scenario.

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client authentication.

Example 4: Configuring TCP/IP transport using a virtual private network
This scenario illustrates the ability to choose TCP/IP as the transport when it is appropriate. In some
cases, when two servers are on the same virtual private network (VPN), it can be appropriate to select
TCP/IP as the transport for performance reasons because the VPN already encrypts the message.

About this task

Procedure
1. Configure client C for message layer authentication with an Secure Sockets Layer (SSL) transport.

a. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/profile_root/properties/sas.client.props
property. The profile_root variable is to the specific profile you are working with. All further
configuration involves setting properties within this file.

b. Enable SSL.

In this case, SSL is supported but not
required.com.ibm.CSI.performTransportAssocSSLTLSSupported=true,
com.ibm.CSI.performTransportAssocSSLTLSRequired=false

c. Enable client authentication at the message layer. In this case, client authentication is supported
but not required. com.ibm.CSI.performClientAuthenticationRequired=false,
com.ibm.CSI.performClientAuthenticationSupported=true

d. Use the remaining defaults in the sas.client.props file.

Chapter 19. Administering application security 1633



2. Configure the S1 server. In the administrative console, the S1 server is configured for incoming
requests to support message-layer client authentication and incoming connections to support SSL
without client certificate authentication. The S1 server is configured for outgoing requests to support
identity assertion.

It is possible to enable SSL for inbound connections and disable SSL for outbound connections. The
same is true in reverse.

a. Configure S1 for incoming connections.

1) Disable identity assertion.

2) Enable user ID and password authentication.

3) Enable SSL.

4) Disable SSL client certificate authentication.

b. Configure S1 for outgoing connections.

1) Disable identity assertion.

2) Enable user ID and password authentication.

3) Disable SSL.

3. Configure the S2 server.

In the administrative console, the S2 server is configured for incoming requests to support identity
assertion and to accept SSL connections. Configuration for outgoing requests and connections are not
relevant for this scenario.

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Disable SSL.

Authentication protocol for EJB security
WebSphere Application Server Version 8.5 servers support the CSIv2 authentication protocol only. SAS is
only supported between Version 6.0.x and earlier version servers that have been federated in a Version
8.5 cell. The option to select between SAS, CSIv2, or both is only available in the administration console
when a Version 6.0.x or earlier release has been federated in a Version 8.5 cell.

SAS is the authentication protocol used by all previous releases of WebSphere Application
Server and is maintained for backwards compatibility. The Object Management Group (OMG) has defined
the authentication protocol called CSIv2 so that vendors can interoperate securely. CSIv2 is implemented
in WebSphere Application Server with more features than SAS and is considered the strategic protocol.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been
federated in a Version 6.1 cell.

Invoking Enterprise Java Beans (EJB) methods in a secure WebSphere Application Server environment
requires an authentication protocol to determine the level of security and the type of authentication that
occur between any given client and server for each request. It is the job of the authentication protocol
during a method invocation to merge the server authentication requirements that are determined by the
object Interoperable Object Reference (IOR) with the client authentication requirements that are
determined by the client configuration and come up with an authentication policy specific to that client and
server pair.

The authentication policy makes the following decisions, among others, which are all based on the client
and server configurations:
v What kind of connection can you make to this server--Secure Sockets Layer (SSL) or TCP/IP?
v If SSL is chosen, how strong is the encryption of the data?
v If SSL is chosen, do you authenticate the client using client certificates?
v Do you authenticate the client with a user ID and password? Does an existing credential exist?
v Do you assert the client identity to downstream servers?

1634 Administering WebSphere applications



v Given the configuration of the client and server, can a secure request proceed?

You can configure both protocols (SAS and CSIv2) to work simultaneously. If a server supports
both protocols, it exports an IOR containing tagged components describing the configuration for SAS and
CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and SAS. If the
client supports both and the server supports both, CSIv2 is used. However, if the server supports SAS (for
example, it is a previous WebSphere Application Server release) and the client supports both, the client
chooses SAS for this request because the SAS protocol is what both have in common.

Choose a protocol by specifying the com.ibm.CSI.protocol property on the client side and
configuring through the administrative console on the server side. More details are included in the SAS
and CSIv2 properties articles.

Common Secure Interoperability Specification, Version 2

The Common Secure Interoperability Specification, Version 2 (CSIv2) defines the Security
Attribute Service (SAS) that enables interoperable authentication, delegation, and privileges. The CSIv2
SAS and SAS protocols are entirely different. The CSIv2 SAS is a subcomponent of CSIv2 that supports
SSL and interoperability with the EJB Specification, Version 2.1.

Security Attribute Service

The Common Secure Interoperability Specification, Version 2 Security Attribute Service (CSIv2 SAS)
protocol is designed to exchange its protocol elements in the service context of a General Inter-ORB
Protocol (GIOP) request and reply messages that are communicated over a connection-based transport.
The protocol is intended for use in environments where transport layer security, such as that available
through Secure Sockets Layer (SSL) and Transport Layer Security (TLS), is used to provide message
protection (that is, integrity and or confidentiality) and server-to-client authentication. The protocol provides
client authentication, delegation, and privilege functionality that might be applied to overcome
corresponding deficiencies in an underlying transport. The CSIv2 SAS protocol facilitates interoperability by
serving as the higher-level protocol under which secure transports can be unified.

Connection and request interceptors

The authentication protocols that are used by WebSphere Application Server are add-on Interoperable
Inter-ORB Protocol (IIOP) services. IIOP is a request-and-reply communications protocol that is used to
send messages between two Object Request Brokers (ORBs). For each request made by a client ORB to
a server ORB, an associated reply is made by the server ORB back to the client ORB. Prior to any
request flowing, a connection between the client ORB and the server ORB must be established over the
TCP/IP transport (SSL is a secure version of TCP/IP). The client ORB invokes the authentication protocol
client connection interceptor, which is used to read the tagged components in the IOR of the object that is
located on the server. As mentioned previously, the authentication policy is established here for the
request. Given the authentication policy (a coalescing of the server configuration with the client
configuration), the strength of the connection is returned to the ORB. The ORB makes the appropriate
connection, usually over SSL.

After the connection is established, the client ORB invokes the authentication protocol client request
interceptor, which is used to send security information other than what is established by the transport. The
security information includes the user ID and password token that are authenticated by the server, an
authentication mechanism-specific token that is validated by the server, or an identity assertion token.
Identity assertion is a way for one server to trust another server without the need to re-authenticate or
re-validate the originating client. However, some work is required for the server to trust the upstream
server. This additional security information is sent with the message in a service context. A service context
has a registered identifier so that the server ORB can identify which protocol is sending the information.

Chapter 19. Administering application security 1635



The fact that a service context contains a unique identity is another way for WebSphere
Application Server to support both SAS and CSIv2 simultaneously because both protocols have different
service context IDs. After the client request interceptor finishes adding the service context to the message,
the message is sent to the server ORB.

When the message is received by the server ORB, the ORB invokes the authentication
protocol server request interceptor. This interceptor looks for the service context ID known by the protocol.
When both SAS and CSIv2 are supported by a server, two different server request interceptors are
invoked and both interceptors look for different service context IDs.

However, only one finds a service context for any given request. When the server request interceptor finds
a service context, it reads the information in the service context. A method is invoked to the security server
to authenticate or validate client identity. The security server either rejects the information or returns a
credential. A credential contains additional information about the client that is retrieved from the user
registry so that authorization can make the appropriate decision. Authorization is the process of
determining if the user can invoke the request based on the roles that are applied to the method and the
roles given to the user.

If a service context is not found by the CSIv2 server request interceptor, the interceptor process looks at
the transport connection to see if a client certificate chain is sent. This process is done when SSL client
authentication is configured between the client and server.

If a client certificate chain is found, the distinguished name (DN) is extracted from the
certificate and is used to map to an identity in the user registry. If the user registry is Lightweight Directory
Access Protocol (LDAP), the search filters defined in the LDAP registry configuration determine how the
certificate maps to an entry in the registry. If the user registry is local OS, the first attribute of the
distinguished name (DN) maps to the user ID of the registry. This attribute is typically the common name.

If the certificate does not map, no credential is created and the request is rejected. When valid security
information is not presented, the method request is rejected and a NO_PERMISSION exception is sent
back with the reply. However, when no security information is presented, an unauthenticated credential is
created for the request and the authorization engine determines if the method gets invoked. For an
unauthenticated credential to invoke an Enterprise JavaBeans (EJB) method, either no security roles are
defined for the method or a special Everyone role is defined for the method.

When the method invocation is completed in the EJB container, the server request interceptor is invoked
again to complete server authentication and a new reply service context is created to inform the client
request interceptor of the outcome. This process is typically for making the request stateful. When a
stateful request is made, only the first request between a client and server requires that security
information is sent. All subsequent method requests need to send a unique context ID only so that the
server can look up the credential that is stored in a session table. The context ID is unique within the
connection between a client and server.

Finally, the method request cycle is completed by the client request interceptor receiving a reply from the
server with a reply service context providing information so that the client-side stateful context ID can be
confirmed and reused.

Specifying a stateful client is done through the property com.ibm.CSI.performStateful
(true/false). Specifying a stateful server is done through the administrative console configuration.

1636 Administering WebSphere applications



Authentication policy for each request

The authentication policy of a given request determines the security protection between a client and a
server. A client or server authentication protocol configuration can describe required features, supported
features, and non-supported features. When a client requires a feature, it can talk only to servers that
either require or support that feature. When a server requires a feature, it can talk only to clients that
either require or support that feature. When a client supports a feature, it can talk to a server that supports
or requires that feature, but can also talk to servers that do not support the feature. When a server
supports a feature, it can talk to a client that supports or requires the feature, but can also talk to clients
that do not support the feature or chose not to support the feature.

For example, for a client to support client certificate authentication, some setup is required to either
generate a self-signed certificate or to get one from a certificate authority (CA). Some clients might not
need to complete these actions, therefore, you can configure this feature as not supported. By making this
decision, the client cannot communicate with a secure server that requires client certificate authentication.
Instead, this client can choose to use the user ID and password as the method of authenticating itself to
the server.

Typically, supporting a feature is the most common way of configuring features. It is also the most
successful during runtime because it is more forgiving than requiring a feature. Knowing how secure
servers are configured in your domain, you can choose the right combination for the client to ensure
successful method invocations and still get the most security. If you know that all of your servers support
both client certificate and user ID and password authentication for the client, you might want to require one

. Authentication protocol flow

Chapter 19. Administering application security 1637



and not support the other. If both the user ID and password and the client certificate are supported on the
client and server, both are performed, but user ID and password take precedence at the server. This
action is based on the CSIv2 specification requirements.

Authentication protocol support
Use this page to reference information regarding supported authentication protocols.

Authentication protocol support

Beginning with WebSphere Application Server Version 8.5, the WebSphere Application Server Version 8.5
servers only support the Common Secure Interoperability Version 2 (CSIv2) authentication protocol.
Secure Authentication Service (SAS) is only supported between Version 6.0.x and previous version servers
that have been federated in a Version 8.5 cell. The option to select between SAS, CSIv2, or both will only
be made available in the administration console when a Version 6.0.x or previous release has been
federated in a Version 8.5 cell.

In future releases, IBM will no longer ship or support the Secure Authentication Service (SAS) IIOP
security protocol. It is recommended that you use the Common Secure Interoperability version 2 (CSIv2)
protocol.

You can configure both protocols to work simultaneously between Version 6.0.x and previous version
servers that have been federated in a Version 8.5 cell. If a server supports both protocols, it exports an
interoperable object reference (IOR) that contains tagged components describing the configuration for SAS
and CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and SAS. If the
client and server support both protocols, CSIv2 is used. However, if the server supports SAS (for example,
the server is a previous WebSphere Application Server release) and the client supports both protocols, the
client chooses SAS for this request.

Choose a protocol using the com.ibm.CSI.protocol property on the client side and configure this protocol
through the administrative console on the server side.

You can configure both protocols to work simultaneously. If a server supports both protocols, it exports an
interoperable object reference (IOR) that contains tagged components describing the configuration for SAS
and CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and SAS. If the
client and the server support both protocols, CSIv2 is used. However, if the server supports SAS (for
example, it is a previous WebSphere Application Server release) and the client supports both protocols,
the client chooses SAS for this request.

Common Secure Interoperability Version 2 features
The following Common Secure Interoperability Version 2 (CSIv2) features are available in IBM WebSphere
Application Server: message layer authentication, identity assertion, and security attribute propagation.
v Identity Assertion

Supports a downstream server in accepting the client identity that is established on an upstream server,
without having to authenticate again. The downstream server trusts the upstream server.

v Message Layer Authentication

Authenticates credential information and sends that information across the network so that a receiving
server can interpret it.

v Security attribute propagation

Supports the use of the authorization token to propagate serialized Subject contents and
PropagationToken contents with the request. You can propagate these objects using a pure client or a
server login that adds custom objects to the Subject. Propagating security attributes prevents
downstream logins from having to make user registry calls to look up these attributes.

1638 Administering WebSphere applications



Propagating security attributes is also useful when the security attributes contain information that is only
available at the time of authentication. This information cannot be located using the user registry on
downstream servers.

Identity assertion to the downstream server
When a client authenticates to a server, the received credential is set. When the authorization engine
checks the credential to determine whether access is permitted, it also sets the invocation credential .
Identity assertion is the invocation credential that is asserted to the downstream server.

When a client authenticates to a server, the received credential is set. When the authorization engine
checks the credential to determine whether access is permitted, it also sets the invocation credential so
that if the Enterprise JavaBeans (EJB) method calls another EJB method that is located on other servers,
the invocation credential can be the identity used to invoke the downstream method. Depending on the
RunAs mode for the enterprise beans, the invocation credential is set as the originating client identity, the
server identity, or a specified different identity. Regardless of the identity that is set, when identity assertion
is enabled, it is the invocation credential that is asserted to the downstream server.

The invocation credential identity is sent to the downstream server in an identity token. In
addition, the sending server identity, including the password or token, is sent in the client authentication
token when basic authentication is enabled. The sending server identity is sent through a Secure Sockets
Layer (SSL) client certification authentication when client certificate authentication is enabled. Basic
authentication takes precedence over client certificate authentication.

Both identity tokens are needed by the receiving server to accept the asserted identity. The receiving
server completes the following actions to accept the asserted identity:
v The server determines whether the sending server identity, sent with a basic authentication token or

with an SSL client certificate, is on the trusted principal list of the receiving server. The server
determines whether the sending server can send an identity token to the receiving server.

v After it is determined that the sending server is on the trusted list, the server authenticates the sending
server to verify its identity.

v The server is authenticated by comparing the user ID and password from the sending server to the
receiving server. If the credentials of the sending server are authenticated and on the trusted principal
list, then the server proceeds to evaluate the identity token.

v The downstream server checks its defined user registry for the presence of the asserted user ID to
gather additional credential information for authorization purposes (for example, group memberships).
Thus, the downstream user registry must contain all of the asserted user IDs. Otherwise, identity
assertion is not possible. In a stateful server, this action occurs once for the sending server and the
receiving server pair where the identity tokens are the same. Subsequent requests are made through a
session ID.

Note: When the downstream server does not have a user registry with access to the asserted user IDs
in its repository, do not use identity assertion because authorization checks will fail. By disabling
identity assertion, the authorization checks on the downstream server are not needed.

Evaluation of the identity token consists of the following four identity formats that exist in an identity token:
v Principal name
v Distinguished name
v Certificate chain
v Anonymous identity

The product servers that receive authentication information typically support all four identity types. The
sending server decides which one is chosen, based on how the original client authenticated. The existing
type depends on how the client originally authenticates to the sending server. For example, if the client
uses Secure Sockets Layer (SSL) client authentication to authenticate to the sending server, then the
identity token sent to the downstream server contains the certificate chain. With this information, the
receiving server can perform its own certificate chain mapping and interoperability is increased with other
vendors and platforms.

Chapter 19. Administering application security 1639



After the identity format is understood and parsed, the identity maps to a credential. For an ITTPrincipal
identity token, this identity maps one-to-one with the user ID fields.

For an ITTDistinguishedName identity token, the mapping depends on the user registry. For
Lightweight Directory Access Protocol (LDAP), the configured search filter determines how the mapping
occurs. For LocalOS, the first attribute of the distinguished name (DN), which is typically the same as the
common name, maps to the user ID of the registry.

Identity assertion is only available using the Common Secure Interoperability Version 2 (CSIv2)
protocol.

Note: There is a restriction for using identity assertion with KRB token to downstream. If you use identity
assertion with Kerberos enabled, the identity assertion does not have the Kerberos authentication
token (KRBAuthnToken) when going to downstream servers. It uses LTPA for authentication
instead.

Identity assertions with trust validation
If you want an application or system provider to perform an identity assertion with trust validation, it can be
accomplished by use of the Java Authentication and Authorization Service (JAAS) login framework, where
trust validation is performed in one login module and credential creation in another. These two custom
login modules are used to create a JAAS login configuration that performs a login to an identity assertion.

Two custom login module are required:

v A user-implemented trust association login module. This login module performs whatever trust
verification the user requires. When trust is verified, the trust verification status and the login identity
must be placed in a map in the share state of the login module to enable the credential creation login
module to use that information. The map must be stored in the
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state property. State maps
contain the following information:

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted – set to true, if
trusted, and false, if not trusted.

– com.ibm.wsspi.security.common.auth.module.IdenityAssertionLoginModule.principal – contains the
principal of the identity.

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates – contains the
certificate of the identity

v The com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule module performs the
credential creation. It requires that the trust state information be in the login context's shared state. This
login module is protected by the Java 2 security runtime permissions for the following:

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.initialize

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.login

IdentityAssertionLoginModule searches for the trust information in the shared state property,
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state. This is a map that
contains the trust status and the identity used to login. The map includes the following:

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted – if set to true it is
trusted, false if not trusted.

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.principal – if a principal is
used, it contains the principal of the identity necessary to login.

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates – if a certificate is
used, it contains an array of a certificate chain that includes the identity necessary to login.

A WSLoginFailedException is returned if the state, trust, or identity information is missing. The login
module then performs a login of the identity. The subject now contains the new identity.

1640 Administering WebSphere applications



Message layer authentication
Defines the credential information and sends that information across the network so that a receiving server
can interpret it.

When you send authentication information across the network using a token the transmission is
considered message layer authentication because the data is sent with the message inside a service
context.

A pure Java client uses Kerberos (KRB5) or basic authentication, or Generic Security Services Username
Password (GSSUP), as the authentication mechanism to establish client identity.

However, a servlet can use either basic authentication (GSSUP) or the authentication
mechanism of the server, Kerberos (KRB5) or Lightweight Third Party Authentication (LTPA), to send
security information in the message layer. Use KRB5 or LTPA by authenticating or by mapping the basic
authentication credentials to the security mechanism of the server.

The security token that is contained in a token-based credential is authentication mechanism-specific. The
way that the token is interpreted is only known by the authentication mechanism. Therefore, each
authentication mechanism has an object ID (OID) representing it. The OID and the client token are sent to
the server, so that the server knows which mechanism to use when reading and validating the token. The
following list contains the OIDs for each mechanism:

BasicAuth (GSSUP): oid:2.23.130.1.1.1
KRB5: OID: 1.2.840.113554.1.2.2
LTPA: oid:1.3.18.0.2.30.2
SWAM: No OID because it is not forwardable

Note: SWAM is deprecated in WebSphere Application Server Version 8.5 and will be removed in a future
release.

On the server, the authentication mechanisms can interpret the token and create a credential, or they can
authenticate basic authentication data from the client, and create a credential. Either way, the created
credential is the received credential that the authorization check uses to determine if the user has access
to invoke the method. You can specify the authentication mechanism by using the following property on
the client side:

v com.ibm.CORBA.authenticationTarget

Basic authentication (BasicAuth) and KRB5 are currently the only valid values. You can configure the
server through the administrative console.

Note: When perform basic authentication is enabled, if the client is not similarly configured (and does not
pass a credential such as a user ID and password).

Configuring authentication retries

Situations occur where you want a prompt to display again if you entered your user ID and password
incorrectly or you want a method to retry when a particular error occurs back at the client. If you can
correct the error by information at the client side, the system automatically performs a retry without the
client seeing the failure, if the system is configured appropriately.

Some of these errors include:
v Entering a user ID and password that are not valid
v Having an expired credential on the server

Chapter 19. Administering application security 1641



v Failing to find the stateful session on the server

By default, authentication retries are enabled and perform three retries before returning the error to the
client. Use the com.ibm.CORBA.authenticationRetryEnabled property (True or False) to enable or disable
authentication retries. Use the com.ibm.CORBA.authenticationRetryCount property to specify the number
of retry attempts.

Using Microsoft Active Directory for authentication
WebSphere Application Server supports the Microsoft Active Directory. Many installations use the Microsoft
Active Directory as their primary component for managing user authentication and user data.
Authenticating a user across multiple repositories or across a distributed Lightweight Directory Access
Protocol (LDAP), such as a Microsoft Active Directory forest can be challenging. In any search of the
whole registry, if there is more than one match at run time, authentication fails because ambiguous
matches result.

About this task

User IDs are guaranteed to be unique within a single domain, but there is no automatic guarantee that a
given user ID is unique across a tree or a forest. The following figure exemplifies the condition of a given
user ID not being unique across a tree or forest.

Authenticating users across trees or forests can be a difficult task and the following steps should be
performed.

Procedure
1. Analyze the Microsoft Active Directory construct that defines your installation. Your analysis can

conclude with the following forms:

v Single LDAP registry - Simple configuration.

v Federated repository (a forest )- Typical configuration.

v Merger of federated repositories (a merger of trees into a forest )- Less typical configuration

v Combination of user and group forests - Rare configuration

Search

Search DN:

Filter:

Attributes:

DC=acme,DC=net

(&(objectclass=")(sMAccountName=smith))

userPrincipalName

Search scope: One level Sub-tree level

Matched 3 entries.

dn userPrincipalName

Search Export Cancel

CN= ,CN=Users,DC= ,DC=net

DC=eu,

na

Howard Smith acme

CN=Howard Smith,CN=Users, DC=acme,DC=net

CN=Howard Smith,CN=Users,DC= ,DC=acme,DC=net

smith@acme.net

smith@ acme.net

smith@ acme.net

eu.

na.

Figure 25. Forest search strategy.. Search illustration of a non-unique sAMAccountName across the entire forest.

1642 Administering WebSphere applications



2. Develop strategies for user look up that match your Microsoft Active Directory installation. Remember
that user IDs are guaranteed to be unique within a single domain, but there is no automatic guarantee
that a given user ID is unique across a tree or a forest.

3. Evaluate with testing to ensure that your authentication search strategies successfully authenticate
users in your Microsoft Active Directory installation.

Results

You will be in the position to authenticate users with LDAP registries in a Microsoft Active Directory forest.

What to do next

gotcha: When you select any of these scenarios, consult appropriate Microsoft Active Directory
information to completely understand any implications the scenarios might have on your
configuation planning.

Authentication using Microsoft Active Directory
Many installations use the Microsoft Active Directory as their primary component for managing user
authentication and user data. One portion of the Microsoft Active Directory provides a Lightweight Directory
Access Protocol (LDAP) service. WebSphere Application Server supports LDAP and, therefore,
WebSphere Application Server supports the Microsoft Active Directory.

While the Microsoft Active Directory is fully LDAP-compliant, it exposes LDAP information in ways that can
make it difficult to obtain directory information for WebSphere Application Server.

WebSphere Application Server operates in a way that assumes that a single LDAP directory contains all
the information necessary to operate. With complex Microsoft Active Directory configurations, this is not
the case. WebSphere Application Server - Microsoft Active Directory installations must handle unique
challenges because of the way data is spread throughout the domain controllers in a forest.

Microsoft Active Directory installations frequently incorporate the use of a forest. As such, security
questions pertaining to user ID uniqueness, reliably obtaining user group information, and group
membership spread across forests become important.

The following figure highlights a typical Microsoft Active Directory installation environment.

Domain A
DC=acme,DC=net

Domain B
DC=na,DC= ,DC=netacme

Domain D
DC=us,DC=na,DC= ,DC=netacme

Domain C
DC=eu,DC= ,DC=netacme

Domain E
DC=acme2,DC=net

Domain F
DC=na,DC=acme2,DC=net

Domain G
DC= ,DC=comacme

Domain H
DC=na,DC= ,DC=comacme

Forest1 Forest2

Figure 26. Microsoft Active Directory forests. An illustration of Microsoft Active Directory forests.

Chapter 19. Administering application security 1643



This figure illustrates two forests of one or more trees. A tree can contain one or more domains where the
domain is the single atomic unit that forms the basis for the constructed environment. Each domain is
made up of the primary domain components of the distinguished name (DN), for example, dc=acme,
dc=com. A forest can extend trust to other forests (This trust is based on Kerberos.).

Microsoft Active Directory configurations with WebSphere Application Server

There can be a variety of Microsoft Active Directory configurations for WebSphere Application Server,
which include:

v Simple configuration

v Typical configuration

v Less typical configurations

v Rare configurations

The simplest configuration consists of a stand-alone LDAP registry representing a single domain. This
configuration represents the closest fit between WebSphere Application Server and the Microsoft Active
Directory. In this configuration, Microsoft Active Directory is supported through the WebSphere Application
Server stand-alone LDAP user registry implementation. Alternatively, you can access this single Microsoft
Active Directory domain through a federated repositories registry, which contains a single LDAP repository.

Beyond the simple single domain Microsoft Active Directory configuration, a typical Microsoft Active
Directory configuration consists of a single tree in a forest where each branch of the tree is a domain. An
example of this configuration, which consists of a single tree of four domains (A, B, C, D), is shown in the
following example:

Configurations, such as this configuration, frequently have domains that are organized by geography or
organizational unit. The WebSphere Application Server registry configuration that is necessary to use this
“single tree”Microsoft Active Directory implementation needs to use the federated repositories. This
configuration contains an LDAP registry to map entries from multiple individual user repositories into a
single virtual repository. These configurations create a federated user repository with a single named realm
and an LDAP subtree within the single repository. The root of the repository is mapped to a base entry

Domain A
DC=acme,DC=net

Domain B
DC=na,DC=acme,DC=net

Domain D
DC=us,DC=na,DC=acme,DC=net

Domain C
DC=eu,DC=acme,DC=net

Forest1

WebSphere Application Server
federated LDAP repository

Figure 27. Typical forest configuration. Typical forest configuration.

1644 Administering WebSphere applications



within the federated repository, which is the starting point within the hierarchical namespace of the virtual
realm. LDAP searches in this configuration proceed with binding to the top domain object and following
LDAP referrals.

gotcha: The stand-alone LDAP registry in WebSphere Application Server does not support LDAP referrals
and cannot be used in a WebSphere Application Server - Microsoft Active Directory configuration.

Less typical WebSphere Application Server - Microsoft Active Directory configurations evolve from mergers
of organizations units in a larger enterprise. Where a single forest of domains once served the enterprise,
the merger of several new organizational units can add trees to the forest or even add more than a single
forest to the environment. In this environment, the WebSphere Application Server LDAP configuration
requires more careful design. You must use the federated repositories registry in such an environment with
separate LDAP repositories mapped to the top of each tree in the forest. Again, if a Microsoft Active
Directory tree exists under the top-level domain, LDAP referrals must be enabled for the LDAP registry.
The forest resulting from a merger can look like the following figure:

Rare configurations consist of Microsoft Active Directory domains that are configured where there is a
combination of a user forest and a group forest. Users are imported as ForeignSecurityPrincipals objects
in the group forest. The groups contain the distinguished names (DN) of the ForeignSecurityPrincipals
objects as members.

In this form of configuration, direct group lookups do not occur. Lookups are relegated to a static group
query across multiple registries. This configuration requires a custom user registry. However, WebSphere
Application Server registries do not support this type of configuration. See the following figure.

Domain A
DC=acme,DC=net

Domain B
DC=na,DC=acme,DC=net

Domain D
DC=us,DC=na,DC=acme,DC=net

Domain C
DC=eu,DC=acme,DC=net

Forest1

WebSphere Application Server
federated LDAP repository

WebSphere Application Server
federated LDAP repository

Federated Realm/Custom User Registry

Domain E
DC=acme2,DC=net

Domain F
DC=na,DC=acme2,DC=net

Figure 28. Less typical configurations. Less typical configurations that depict the merger of trees

Chapter 19. Administering application security 1645



Using a Microsoft Active Directory forest as LDAP - user filter

Authenticating a user across multiple repositories, or across a distributed LDAP, such as a Microsoft Active
Directory forest configuration can be challenging. In any search of the whole registry, authentication fails if
there is more than one match at run time because ambiguous matches result. In multiple Microsoft Active
Directory domain environment, the WebSphere Application Server administrator must consider that the
default unique ID in the Microsoft Active Directory is the sAMAccountName attribute of a user. User IDs
are guaranteed to be unique within a single domain, but it is not possible to guarantee that a given user ID
is unique across a tree or a forest. See the topic, “Authenticating users with LDAP registries in a Microsoft
Active Directory forest”to understand how to search for user IDs within a Microsoft Active Directory forest
using the sAMAccountName attribute of a user.

gotcha: Before selecting any of these scenarios, consult appropriate Microsoft Active Directory
information to completely understand any implications the scenarios might have on your
configuration planning.

Groups spanning domains with Microsoft Active Directory
The domains and forests functional levels of the Microsoft Active Directory control which configurations are
available for use. How you configure Microsoft Active Directory affects how group membership is
determined within WebSphere Application Server. Using groups to configure your Microsoft Active
Directory installation with the product allows flexible management.

A breakdown follows of applicable functional levels that apply to a Microsoft Active Directory installation
with the product.

v Domain Functional Levels

– Native

- Supported by Windows Server 2008 and Windows Server 2008 R2

- Default in Windows 2008

You must use native domain functional levels to support group nesting, and universal groups. Forest
functional levels do not directly affect group membership. The Windows 2008 operating system is the
exception.

v Forest Functional Levels

– Windows Server 2008 or Windows Server 2008 R2

- All domains operate at the Windows Server 2008 domain functional level.

Custom
LDAP registry

Custom
LDAP registry

Custom User Registry

DC=acme, DC=net
- ou=Groups, DC=acme, DC=net
- cn=WebSphere Security Experts, ou=Groups, DC= , DC=net
- Member:

CN=S-1-5-11,CN=ForeignSecurityPrincipals, DC= , DC=net
- CN=ForeignSecurityPrincipals, DC= , DC=net

- CN=S-1-5-11,CN=ForeignSecurityPrincipals, DC= , DC=net
- CN=S-1-5-99,CN=ForeignSecurityPrincipals, DC= , DC=net

acme

acme
acme

acme
acme

Group Forest

DC= , DC=com
- ou=Users, DC= , DC=com
- cn= , ou=Users, DC= , DC=com

- memberOf: <None>
- objectID=S-1-5-11

- cn= , ou=Users, DC= , DC=com
- memberOf: <None>
- objectID=S-1-5-99

acme
acme

Howard Smith acme

Robert Jones acme

User Forest

Figure 29. Resource model forest. An illustration of a resource model forest.

1646 Administering WebSphere applications



If the forest functional level is set to Windows Server 2008, then that also makes the domain
functional level for all domains to be Windows Server 2008 Native level, which adds to the group
nesting and Universal groups features to Microsoft Active Directory.

Microsoft Active Directory groups

In a domain, Microsoft Active Directory provides support for different types of groups and group scopes.
Groups in Microsoft Active Directory are containers with other objects within them as members. Those
objects can be user objects, other group objects, which is group nesting, and other objects types, such as
computers. The group type determines the type of task that you manage with the group. The group scope
determines whether the group can have members from multiple domains or a single domain. In summary:

v Groups are typically a collection of user accounts.

v Members receive permission given to groups.

v Users can be members of multiple groups.

v Groups can be members of other groups, which are nested groups.

gotcha: In WebSphere Application Server, security roles of the individual, which map to application
permissions or authorizations, must be bound to either users or groups at application deployment
time. From an administrative point of view, it is preferable to assign permissions once for a group
instead of assigning permissions repeatedly for each user account. Then the ability to act in a
given role is under the control of the directory administrator, instead of the WebSphere
administrator. Because the job of the directory administrator is to create and delete users, change
group memberships for users, and other tasks, this approach is generally the correct division of
responsibilities.

Group types determine how the group is used. The Microsoft Active Directory group types are:

v Security groups: Microsoft Active Directory uses security groups for granting permissions to gain
access to resources.

v Distribution groups: Distribution groups are used by Windows-based applications as lists for
nonsecurity-related functions. Distribution groups are used for sending email messages to groups of
users. You cannot grant Windows permissions to distribution groups.

Although WebSphere Application Server can use either type of group, security groups are typically bound
to WebSphere Application Server security roles.

Group scopes describe which type of objects can be arranged together within a group. Group nesting
describes when one group is a member of other groups. The Microsoft Active Directory group scopes are:

v Domain local group:

– Windows usage: Members of this group can come from any domain, but can access Windows
resources only in the local domain. Use this scope to grant permissions to domain resources that are
located in the same domain in which you created the domain local group. Domain local groups can
exist in all mixed, native, and interim functional level of domains and forests.

– Restriction: You cannot define group nesting in a domain local group. A domain local group cannot
be a member of another domain local group or any other group in the same domain.

– WebSphere usage: Users are not typically placed in domain - local groups due to these restrictions.
WebSphere Application Server security roles are not typically bound to domain local groups.

v Global Group:

– Windows usage: Members of this group originate from a local domain, but can access Windows
resources in any domain. The global group is used to organize users who share similar Windows
network access requirements. You can add members only from the domain in which the global group
is created. You can use this group to assign permissions to gain access to Windows resources that
are located in any domain in the domain, tree, or forest.

Chapter 19. Administering application security 1647



You can group users with similar function under global scope and give permission to access a
Windows resource, such as a printer or shared folder and files, that is available in local or another
domain in the same forest. You can use global groups to grant permission to gain access to
Windows resources that are located in any domain in a single forest as their memberships are
limited. You can add user accounts and global groups only from the domain in which global group is
created.

Nesting is possible for global groups within other groups as you can add a global group into another
global group from any domain. Members of a global group can be members of a domain - local
group. Global groups exist in all mixed, native, and interim functional levels of domains and forests.

WebSphere Application Server usage: Global groups are visible on every domain controller, but
memberships are only visible for local users. That is, you can see your group memberships only if you
query your home domain controller. A global group should contain groups of users. Global groups are
intended to be included in universal groups.

v Universal Group:

– Windows usage: Members in this group can come from any domain and access Windows
resources in multiple domains. Universal group memberships are not limited like global groups. All
domain user accounts and groups can be members of a universal group.

– Restrictions:

- Universal groups are available when the domain is at a Windows mixed functional level.

- It can be expensive to replicate this data across the forest. Group definitions and deletions are
relatively rare compared to the equivalent user actions, and nested group membership changes
are typically rare compared to memberships of users within groups,

gotcha: Consult appropriate Microsoft Active Directory information concerning any implications of
replicating data across forests.

– WebSphere usage:

- Universal Groups and their memberships are visible on every domain controller in the forest.

- Universal groups are also visible when using the Global Catalog. To be useful, all user objects
must be directly in the universal group,

Universal group guidelines

1. Assign permissions to universal groups for Windows resources in any domain in the network.

2. Use universal groups only when their membership is static. Changes in membership can cause
excessive network traffic between domain controllers. Membership of universal groups can be
replicated to many domain controllers.

3. Add global groups from several domains to a universal group.

4. Assign permissions for access to a Windows resource to the universal group and for use by
WebSphere Application Server group membership resolution across multiple domains.

5. Use a universal group in the same way as a domain local group to assign resource permissions.

gotcha: When you select any of these scenarios, consult the appropriate Microsoft Active Directory
information to completely understand any implications the scenarios might have on your
configuation planning.

Microsoft Active Directory Global Catalog
A Global Catalog is a Global Catalog Server. A Global Catalog holds a full set of attributes for the domain
in which it resides and a subset of attributes for all objects in the Microsoft Active Directory Forest. The
primary two functions of a Global Catalog within the Microsoft Active Directory are logon capability and
Microsoft Active Directory queries.

1648 Administering WebSphere applications



A Global Catalog in a Microsoft Active Directory installation with the product is a single Lightweight
Directory Access Protocol (LDAP) repository that contains a subset of user information from all the
domains in the forest. This information includes user IDs, authentication information, and groups, but not
all the group information.

You can use the Global Catalog on any domain controller in the forest, even in subdomains. The Global
Catalog is a solution to the WebSphere Application Server limitation of a "single registry". There are
limitations to the Global Catalog. Users from the local domain controller contain group "memberOf"
information. Users from a foreign domain controller contain limited "memberOf" information because the
global group information is not replicated to every domain controller.

Nested global groups in universal groups

This is a typical structure of group membership and consists of the following characteristics:

v Users are distributed across domain controllers in a forest containing multiple domain controllers.

v Users are defined in global groups within their own local domain controller.

v A universal group contains the global groups, which reflects a Java Platform Enterprise Edition (Java
EE) role that maps to a set of users spread across multiple domain controllers.

The following figure illustrates nested global groups in universal groups.

It is a challenge to develop methods of configuring WebSphere Application Server to be able to find users
and their group memberships when the information is spread across multiple domain controllers. One
method requires that WebSphere Application Server follow LDAP referrals to find the home domain
controller for each user and that WebSphere Application Server perform nested group queries.

gotcha: This approach does not use the Global Catalog.

Another method and the simplest approach has universal groups that contain users and uses a Global
Catalog, which requires using referrals. The figure that follows illustrates this method.

Employees - Universal

Members

EU Employees Global
NA Employees Global

NA Employees - Global

Members

kagan@na.acme.net
wang@na. .netacme

memberOf

EU Employees - Global

Members

martin@eu. .net
Smolko@eu. .net

acme
acme

memberOf

MemberOf

kagan@na. .netacme

MemberOf

wang@na. .netacme

MemberOf

Smolko@eu. .netacme

MemberOf

martin@eu. .netacme

Figure 30. Nested global groups in universal groups. This figure illustrates nested global groups in universal groups.

Chapter 19. Administering application security 1649



A variation on this method is to not use universal groups. You can use this approach when universal
groups are not available.

gotcha: This approach does not use the Global Catalog.

You might consider using the Microsoft Active Directory Global Catalog as the WebSphere Application
Server registry. There are three scenarios; however, the first two scenarios demonstrate how failures
occur.

1. If you configure WebSphere Application Server to use Global Catalog as its LDAP registry and follow
referrals, then individual users are visible in each domain controller. Because a user must exist only
once in the registry, all logins fail.

2. If you configure WebSphere Application Server to use Global Catalog as its LDAP registry and do not
follow referrals and the individual users are within global groups, then group membership is
incomplete. See the following figure, which illustrates this limitation.

Employees - Universal

Members

EU Employees Global
NA Employees Global

acme.net

eu.acme.net

EU Employees - Global
Members:
martin@eu. .net
Smolko@eu. .net

acme
acme

memberOf

memberOf

Smolko@eu. .netacme martin@eu. .netacme

na.acme.net

NA Employees - Global
Members:
kagan@na. .net
wang@na. .net

acme
acme

memberOf

memberOf

kagan@na. .netacme wang@na. .netacme

Group Lookup

referral

ldapbind uid=kagan/pw

ldapbind uid=kagan/pw

Figure 31. Locating group memberships. This figure illustrates the process of locating group memberships.

1650 Administering WebSphere applications



3. When you configure WebSphere Application Server to use Global Catalog as its LDAP registry, do not
follow referrals, and users are directly contained within universal global groups, then group
membership is complete.

gotcha: When you select any of these scenarios, consult appropriate Microsoft Active Directory
information to completely understand any implications the scenarios might have on your
configuation planning.

Options for finding group membership within a Microsoft Active Directory forest
Locating and finding group membership with the Microsoft Active Directory forest is necessary for
authenticating users. There are several ways to approach finding group membership within the Microsoft
Active Directory forest.

The following figure depicts an example of group membership with the Microsoft Active Directory forest.
This figure is used to explain ways to find group membership.

Employees - Universal

Members:
EU Employees Global
NA Employees Global

acme.net

eu.acme.net

EU Employees - Global
Members:

martin@eu. .net
Smolko@eu. .net

acme
acme

memberOf

Smolko@eu. .netacme

martin@eu. .netacme

kagan@na. .netacme

wang@na. .netacme

Smolko@eu. .netacme

martin@eu. .netacme

Employees - Universal
Members:

EU Employees Global
NA Employees Global

memberOfkagan@na. .netacme

wang@na. .netacme

na.acme.net

EU Employees - Global
Members:

kagan@na. .net
wang@na. .net

acme
acme

memberOf

kagan@na. .netacme

wang@na. .netacme

Employees - Universal
Members:

EU Employees Global
NA Employees Global

memberOf martin@eu. .netacme

Smolko@eu. .netacme

Figure 32. Global catalog (without using referrals). An illustration of a Global Catalog without using referrals

Chapter 19. Administering application security 1651



v Option 1 does not use nested groups, and the following steps describe the process of locating group
membership using a hypothetical organizational structure.

– Create a global group of NA employees.

– Create a global group of EU employees.

– Map the Java Platform Enterprise Edition (Java EE) role to NA employees + EU employees. This
mapping can become unmanageable if there are too many sub domains

– Enable referrals.

In WebSphere Application Server Version 6.1, use federated repositories, specifically:

- Use a federated realm.

- Add the Microsoft Active Directory top-level domain controller to the repository. Do not add
sub-domain controllers. Doing this results in multiple matches when searches for user IDs occur.
The multiple matches cause user logins to fail.

- Select "Support referrals to other LDAP servers" = "follow".

v Option 2 uses universal groups.

– Put individual users into the universal group, Employees.

Requirements:

- The Windows 2003 Native domain functional levels is required.

- Userids must be directly contained within universal groups.

– Map Java EE role to Employees.

– Connect to any global catalog in the forest.

Employees - Universal

Members

EU Employees Global
NA Employees Global

acme.net

eu.acme.net

EU Employees - Global
Members:
martin@eu. .net
Smolko@eu. .net

acme
acme

memberOf

memberOf

Smolko@eu. .netacme martin@eu. .netacme

na.acme.net

NA Employees - Global
Members:
kagan@na. .net
wang@na. .net

acme
acme

memberOf

memberOf

kagan@na. .netacme wang@na. .netacme

Group Lookup

referral

ldapbind uid=kagan/pw

ldapbind uid=kagan/pw

Figure 33. Finding group membership.. An illustration of ways to find group membership.

1652 Administering WebSphere applications



Tip: This option reduces the amount of directory lookup traffic. WebSphere Application Server does
not have to follow all the referrals across the directory tree. That is, each domain controller can
fully resolve the group information locally.

v Option 3 uses nested groups.

– Create the universal group, Employees.

– Create NA Employees and EU Employees as global groups and make them members in the
Employees universal group.

Requirements: Windows Native Domain functional levels.

– Map Java JEE role to "Employees".

– Enable referrals.

For WebSphere Application Server Version 6.1, use federated repositories, specifically:

- Use a federated realm.

- Add the Active Directory top-level domain controller to the repository. Do not add sub-domain
controllers, as this will result in multiple matches when searches for userids occur, and logins will
fail.

- Select "Support referrals to other LDAP servers" = "follow".

– Enable nested groups.

Tip: This option offers the optimal approach when using WebSphere Application Server Versions 6.1 or
later. Before WebSphere Application Server version 6.1, referrals were not officially supported.

Summary

The following table summarizes how to find group membership within a Microsoft Active Directory forest.

Table 114. Finding group membership.. The following table identifies group membership levels supported in a
Microsoft Active Directory forest.

Group
Membership

Map Java EE
Roles To

Bind to Which
LDAP Enable

Supported in
WebSphere
Application
Server Version Comments

Global Groups Collection of
global groups

Top domain
controller using
port 389/636

Referrals v Federated
repositories in
WebSphere
Application
Server

Universal groups Universal groups Any Global
catalog, using
port 3268

All

Global groups in
universal groups

Universal groups Top domain
controller using
port 389/636

referrals, nesting v Federated
repositories in
WebSphere
Application
Server

Cannot use
Windows mixed
domain functional
level

Configuring to use objectCategory attribute

A federated repository uses the objectCategory attribute by default for Active Directory user search filters.
You can ensure that the federated repository is configured to use the objectCategory attribute. For
example, the federated repositories configuration file, wimconfig.xml, should be as shown in the following
example:

Chapter 19. Administering application security 1653



<supportedLDAPEntryType name="user" searchFilter="(objectCategory=user)"...>
<supportedLDAPEntryType name="Group" searchFilter="(objectCategory=Group)"...>

Configure the user filter and group filter (advanced properties) like the following example:
User Filter: (&(sAMAccountName=%v)(objectCategory=user))
Group Filter: (&cn=%v)(objectCategory=group)

Follow the following instructions from the administrative console to complete the search filter with the
objectCategory attribute.

1. Click Security > Global Security.

2. Under Available realm definitions, select Federated repositories, and then Configure. In a multiple
security domain environment, click Security domains > domain_name. Under Security Attributes,
expand User Realm, and click Customize for this domain. Select the Realm type as Federated
repositories and then click Configure.

3. Under Related items, click Manage repositories.

4. Select Forest > LDAP entity types > PersonAccount. Under General Properties, find the Search
filter box.

5. Fill in the search filter.
(objectCategory=user)

gotcha: When you select any of these scenarios to use, consult the appropriate Microsoft Active Directory
information to completely understand any implications the scenarios might have on your
configuation planning.

Authenticating users with LDAP registries in a Microsoft Active Directory forest
Authenticating a user across multiple repositories, or across a distributed Lightweight Directory Access
Protocol (LDAP) repository, such as a Microsoft Active Directory forest can be challenging. In any search
of the whole user registry, if there is more than one match at run time, authentication fails because of
ambiguous match results.

Before you begin

In any multiple Microsoft Active Directory domain environment, the WebSphere Application Server
administrator must consider that the default unique ID in the Microsoft Active Directory is the
sAMAccountName attribute of a user.

About this task

User IDs are guaranteed to be unique within a single domain. However they are not guaranteed across a
tree or a forest. For example, suppose the user ID, smith, is added in the forest and in each subdomain.
The search for sAMAccountName=smith returns three matches. WebSphere Application Server does not
authenticate this user when there is more than one possible match in the registry.

1654 Administering WebSphere applications



You can mitigate this condition by changing the user filter to be based on the userPrincipalName attribute
of the user, which is unique across the forest, instead of being based on their sAMAccountName attribute.
However, users must then know to log in using their userPrincipalName, which they might not know.

The specific procedure to establish a user filter on a LDAP user registry depends on the type of LDAP
registry. The following examples illustrate a procedure for a stand-alone LDAP registry and a procedure for
a federated repository registry.

Procedure
1. Establish a user filter on a stand-alone LDAP registry: You can set the user filter on the Advance

Lightweight Access Protocol (LDAP) user registry settings page to search for userPrincipalName
instead of sAMAccountName value.

For example:
(&(objectClass=user)(userPrincipalName=%w))

2. Establish a user filter on a federated repositories registry: You can change the log-in property in
the LDAP repository to uid;cn, for example, by using the administrative console.

a. Click Security > Global security.

b. Under Available realm definitions, select Federated repositories, and then Configure. In a
multiple security domain environment, click Security domains > domain_name. Under Security
Attributes, expand User Realm, and click Customize for this domain. Select the Realm type as
Federated repositories and then click Configure.

c. Under Related items, click Manage repositories.

d. Click Add > LDAP repository.

e. Under General Properties, add the following information:

Repository identifier
forest

Directory type
Microsoft WIndows Server 2003 Active Directory

Primary host name
forest.acme.net

Port 389

Search

Search DN:

Filter:

Attributes:

DC=acme,DC=net

(&(objectclass=")(sMAccountName=smith))

userPrincipalName

Search scope: One level Sub-tree level

Matched 3 entries.

dn userPrincipalName

Search Export Cancel

CN= ,CN=Users,DC= ,DC=net

DC=eu,

na

Howard Smith acme

CN=Howard Smith,CN=Users, DC=acme,DC=net

CN=Howard Smith,CN=Users,DC= ,DC=acme,DC=net

smith@acme.net

smith@ acme.net

smith@ acme.net

eu.

na.

Figure 34. Forest search strategy.. Search illustration of a non-unique sAMAccountName across the entire forest.

Chapter 19. Administering application security 1655



Failover server used when primary is not available
None

Bind distinguished name
cn=wasbind, CN=Users, DC=ib

Bind password
********

Login properties
uid;cn

3. Click OK and Save to save the changes to the master configuration.

4. On the LDAP repository configuration page, under Additional properties, click LDAP attributes.

5. Click Add > Supported.

6. In the Name field, enter userPrincipalName.

7. In the Property name filed, enter cn.

8. In the Entity types field, enter PersonAccount.

9. Click OK and Save to save the changes to the master configuration.

10. Locate the {WAS_HOME}\profiles\{profileName}\config\cells\{cellName}\wim\config\
wimconfig.xml or profile_root/conf/cells/<cell>/wim/config/wimconfig.xml file in the deployment
manager configuration.

11. Edit the wimconfig.xml file.

a. Find the <config:attributeConfiguration> attribute in the file.

b. Add the following lines:
<config:attributes name="userPrincipalName" propertyName="cn">
<config:entityTypes>PersonAccount</config:entityTypes>
</config:attributes>

12. Save the wimconfig.xml file.

13. Run the profile_root/bin/syncNode.bat or profile_root/syncNode.bar/sh script on all of the nodes
in the configuration.

Results

gotcha: When you select any of these scenarios, consult appropriate Microsoft Active Directory
information to completely understand any implications the scenarios might have on your
configuation planning.

SAML web single sign-on
Security Assertion Markup Language (SAML) is an OASIS open standard for representing and exchanging
user identity, authentication, and attribute information. SAML is fast becoming the technology of choice to
provide cross-vendor single sign-on (SSO) interoperability.

A SAML assertion is an XML-formatted token that is used to transfer user identity and attribute information
from the identity provider of a user to a trusted service provider as part of the completion of a single
sign-on request. A SAML assertion provides a vendor-neutral means of transferring information between
federation business partners.

WebSphere Application Server supports Assertion Markup Language (SAML) web single sign-on, and acts
as a SAML service provider. A web user authenticates to a SAML identity provider, which produces an
SAML assertion, and WebSphere SAML service provider consumes the SAML assertion to establish a
security context for the web user.

As a protocol, SAML has three versions: SAML 1.0, SAML 1.1, and SAML 2.0. SAML 2.0 is an
enhancement to the previous SAML 1.x specifications, but is not backwards compatible.

1656 Administering WebSphere applications



SAML 2.0 defines several request-response protocols, which all correspond to the action being
communicated in the message. These protocols are HTTP-redirect based and involve the user's browser.
SAML 2.0 has defined several binding options, HTTP redirect, HTTP POST, HTTP artifact, and SOAP.
These options specify the way in which messages can be transported. SAML 2.0 HTTP POST enables
SAML protocol messages to be transmitted within an HTML form using base64-encoded content. SAML
2.0 HTTP POST enables the SAML provider and consumer to communicate using an HTTP user agent as
an intermediary. HTTP POST is sometimes called Browser POST, particularly when used in single sign-on
operations. SAML 2.0 Web Browser SSO Profile is defined to support web single sign-on. A web user
either accesses a resource at a service provider, or accesses an identity provider such that the service
provider and desired resource are understood or implicit. The web user authenticates to the identity
provider, which then produces an authentication assertion, and the service provider consumes the
assertion to establish a security context for the web user.

The following image shows the SAML SSO overview:

Refer to the specifications and standards for more information.

SAML single sign-on scenarios, features, and limitations
Security Assertion Markup Language (SAML) is an OASIS open standard for representing and exchanging
user identity, authentication, and attribute information. SAML is fast becoming the technology of choice to
provide cross-vendor single sign-on (SSO) interoperability.

The WebSphere Application Server SAML service provider (SP) supports SAML 2.0 Identity Provider (IdP)
initiated single sign-on (SSO). WebSphere IdP initiated SSO service is implemented as a Trust Association
Interceptor, and can be described as follows:

1. User accesses a front end web application that can reside on the IdP, SP, or elsewhere.

2. Front end web application redirects user to IdP and user authenticates to IdP.

3. IdP redirects user to Assertion Consumer Service (ACS) in SP by sending SAML response over HTTP
POST inside a hidden form.

4. SP processes SAML response and creates WebSphere security context.

5. SP adds LTPA cookie to HTTP response and redirects request to web resource or business
application.

6. WebSphere Application Server intercepts request, and maps LTPA cookie to security context and
authorizes user access to the requested web resource.

7. WebSphere Application Server sends HTTP response back to user.

The following images shows the SAML SSO flow:

Chapter 19. Administering application security 1657



The SAML SSO features include the following:

v The WebSphere SAML service provider supports single sign-on with multiple identity providers.

v The WebSphere SAML service provider supports options for identity assertion and mapping the
assertion identity to the user registry of the service provider.

v The WebSphere SAML service provider can map or assert SAML token attributes to the realm,
principal, unique Id, and group into the service provider security context.

v The WebSphere SAML service provider provides a plug point to allow for customized identity mapping.

v The WebSphere SAML service provider has an option to retrieve the group membership of the identity
from the registry of the service provider and populate the security context.

v The WebSphere SAML service provider provides an IdP selection filter to route the request back to the
proper IdP if the request did not come from the IdP.

v The WebSphere SAML service provider supports both RSA-SHA1 and RSA-SHA256 signature
algorithms.

v The WebSphere SAML service provider preserves the SAML token in the subject of the service provider
for access by the application, and makes it available for a downstream authenticated Enterprise
JavaBean (EJB) or Web Service call.

v The WebSphere SAML service provider allows a business application URL to act as an
AssertionConsumerService URL, so the IdP can send a SAMLResponse directly to the business
application URL.

v The WebSphere SAML trust association interceptor (TAI) allows auditing of key SAML assertions,
including Issuer and NameID.

The following feature highlights and best practices apply to the SAML SSO features:

v Assertion consumer service (ACS) in WebSphere SAML service provider:

ACS is a secured servlet that accepts a SAML protocol message and establishes the security context.
An ACS URL has a predefined ContextRoot as samlsps, and a URL has the following format:

https://<host name>:<port>/samlsps/<any uri pattern>

The SAMLResponse received by the ACS will be intercepted by TAI, and upon successful validation,
the request is redirected to the target application service.

Any business service that implements the POST method can act as an ACS. Using a target business
servlet as an ACS is preferred, as it reduces one round trip between the browser and the service
provider server.

v Multiple security domain support:

1658 Administering WebSphere applications



An ACS is deployed in an application security domain, and it is expected that the ACS reside in the
same security domain as the business application. If the ACS and target business application
(RelayState) are in different security domains, the following are some recommended options:

– Process the SAMLResponse in the security domain of the ACS.

– Reconfigure the ACS to have the same domain as the business application.

– Use the target business service as the ACS.

v Multiple single sign-on partners:

The WebSphere SAML TAI supports multiple ACS and IdP single sign-on (SingleSignOnService)
partners. One SSO partner is defined as one ACS URL, and multiple SingleSignOnServices. With the
existence of multiple SSO partners, each SSO partnership is uniquely identified by an ACS URL.

Each SSO partner can have its own validation rules, mapping rule from assertion to subject, or a rule to
start the SSO with its own IdP. For example, one SSO partner can handle ID assertion, which consists
of generating a WebSphere platform subject without calling into the user registry. Another SSO partner
can perform a local user registry lookup. Another example is that one SSO partner handles SSO with
one IdP, and another SSO partner handles SSO with a different IdP.

v Bookmark style SSO and TAI filter:

Consider a bookmark style SSO which traditionally fits into an SP-initiated SSO. The user accesses the
business application without authenticating to the IdP first. The WebSphere SAML TAI can be
configured to initiate an SSO. Each SSO partner configuration contains an IdP login application and a
routing filter. Each filter defines a list of selection rules that represent conditions that are matched
against the HTTP request to determine whether or not the HTTP request is selected for an SSO
partner. The filter rule is a combination of HTTP request header, referrer data, and target application
name. The WebSphere SAML TAI runtime environment checks the user request against all filter rules to
uniquely identify the SSO partner, and redirects the request to the selected IdP login application. The
TAI filter allows an IdP-initiated SSO to provide similar functionality as the combination of an SP-initiated
SSO and an IdP discovery service.

v Identity mapping and security context management:

The WebSphere SAML TAI provides a rich and flexible identity mapping, and can be classified as
follows:

– Identity assertion: Map the SAML assertion to the WebSphere platform subject without a local
registry. Typical ID assertion scenarios include:

- Default: use NameID as principal, issuer as realm, selected attribute as group members.

- Customized: configure SAML attribute as principal, realm, accessID, and group members.

– Map NameID from the IdP against the user registry of the service provider, and build the subject
from the registry. The following scenarios are supported:

- Directly map the SAML NameId to the local registry.

- Plugin point for custom mapping, followed by using a new user to build the subject.

- Map NameID to the user registry, and fall back to ID assertion.

– Combination of ID assertion and local registry:

In addition to ID assertion, TAI searches parent groups of the asserted groups in the user registry of
the service provider, and includes the parent groups into the subject. For example, authorization is
granted to parent groups, but the identity provider does not know the parent group names.

WebSphere Application Server supports IdP initiated SAML web SSO only.

The following specifications or scenarios are out of scope:

v Enhanced Client or Proxy (ECP) Profile

v Identity Provider Discovery Profile

v Single Logout Profile

v Name Identifier Management Profile

Chapter 19. Administering application security 1659



v Artifact Resolution Profile

v Assertion Query/Request Profile

v Name Identifier Mapping Profile

v SAML Attribute Profiles

Enabling your system to use the SAML web single sign-on (SSO) feature
Before you begin

This task assumes that you are familiar with the SAML SSO feature.

About this task

Before you can use the SAML Web SSO feature, you must install the SAML Assertion Consumer Service
(ACS) and enable SAML TAI. If you are planning to use your business application as the SAML ACS
application, you do not need to install the SAML ACS application in the first step. You should instead
specify the URL of the business application for the acsUrl value.

Procedure
1. Install the SAML ACS application.

a. Navigate to the app_server_root/bin directory.

b. Run the installSamlACS.py script. For example:
wsadmin -f installSamlACS.py install <nodeName> <serverName>

or
wsadmin -f installSamlACS.py install <clusterName>

where nodeName is the node name of the target application server, serverName is the server name of
the target application server, and clusterName is the name of the application server cluster.

2. Enable SAML TAI. You can enable SAML TAI by using either the wsadmin command utility or the
administrative console.

v Enable SAML TAI using the wsadmin command utility.

a. Start the WebSphere Application Server.

b. Start the wsadmin command utility from the app_server_root/bin directory by entering the
command: wsadmin -lang jython.

c. At the wsadmin prompt, enter the following command: AdminTask.addSAMLTAISSO(’-enable true
-acsUrl https://<hostname>:<sslport>/samlsps/<any URI pattern string>’) where hostname is
the host name of the system where WebSphere Application is installed and sslport is the Web
server SSL port number (WC_defaulthost_secure).

d. Save the configuration by entering the following command: AdminConfig.save().

e. Exit the wsadmin command utility by entering the following command: quit.

f. Restart the WebSphere Application Server.

v Enable SAML TAI using the administrative console.

a. Log on to the WebSphere Application Server administrative console.

b. Click SecurityGlobal security.

c. Expand Web and SIP security and click Trust association.

d. Under the General Properties heading, select the Enable trust association check box and click
Interceptors.

e. Click New and enter com.ibm.ws.security.web.saml.ACSTrustAssociationInterceptor in the
Interceptor class name field.

1660 Administering WebSphere applications



f. Under Custom properties, fill in the following custom property information: Name: sso_1.sp.acsUrl
and Value: https://<hostname>:<sslport>/samlsps/<any URI pattern string> where hostname is
the host name of the system where WebSphere Application is installed and sslport is the Web
server SSL port number (WC_defaulthost_secure).

g. Click New and enter the following custom property information: Name: sso_1.sp.idMap and Value:
idAssertion.

h. Click OK.

i. Go back to SecurityGlobal security and click Custom properties.

j. Click New and define the following custom property information under General properties: Name:
com.ibm.websphere.security.DeferTAItoSSO and Value:
com.ibm.ws.security.web.saml.ACSTrustAssociationInterceptor.

Note: If this custom property already exists, edit its value to add
com.ibm.ws.security.web.saml.ACSTrustAssociationInterceptor.

k. Click New and define the following custom property information under General properties: Name:
com.ibm.websphere.security.InvokeTAIbeforeSSO and Value:
com.ibm.ws.security.web.saml.ACSTrustAssociationInterceptor.

l. Click OK.

m. Restart WebSphere Application Server.

Results

The SAML TAI is now enabled for WebSphere Application Server.

What to do next

After enabling the SAML Web SSO feature, you must configure WebSphere Application Server as a
service provider (SP) partner to participate in the IdP-initiated single sign-on scenarios with other identity
providers.

Configuring single sign-on (SSO) partners
Before you begin

This task assumes that you have enabled the SAML Web SSO feature.

About this task

Before you can use the WebSphere Application Server as a service provider partner to identity providers
for IdP-initiated single sign-on, you need to establish partnerships between the WebSphere Application
Server SAML service provider and external SAML identity providers.

Procedure
1. Add an identity provider to the WebSphere Application Server SAML service provider for single

sign-on. To use the WebSphere Application Server SAML service provider for single sign-on with an
identity provider, you need to add the identity provider as a partner. You can add an identity provider
as a partner either by importing the metadata of the identity provider, or by using manual steps.

v Add an identity provider using metadata of the identity provider.

a. Start the WebSphere Application Server.

b. Start the wsadmin command-line utility from the app_server_root/bin directory by entering the
command: wsadmin -lang jython.

Chapter 19. Administering application security 1661



c. At the wsadmin prompt, enter the following command: AdminTask.importSAMLIdpMetadata(’-
idpMetadataFileName <IdPMetaDataFile> -ssold 1 -ipdld 1 -signingCertAlias <idpAlias>’)
where IdpMetaDataFile is the full path name of the IdP metadata file, and IdpAlias is any alias
name that you specify for the imported certificate.

d. Save the configuration by entering the following command: AdminConfig.save().

e. Exit the wsadmin command utility by entering the following command: quit.

f. Restart the WebSphere Application Server.

v Manually add an identity provider to the WebSphere Application Server SAML service provider.

The minimum requirement to configure the WebSphere Application Server SAML service provider as
an SSO partner to an identity provider is to import the SAML token signer certificate from the
identity provider to the trust store of the service provider. The service provider can be configured to
work with multiple identity providers. For each identity provider, you must import the SAML token
signer certificate.

You can import the certificate used by an IdP to sign the SAML token by using either the
administrative console or the wsadmin command-line utility.

v Import the SAML token signer certificate using the administrative console.

a. Log on to the WebSphere Application Server administrative console.

b. Click Security > SSL certificate and key management > Key stores and certificates >
NodeDefaultTrustStore > Signer certificates. Use CellDefaultTrustStore instead of
NodeDefaultTrustStore for a deployment manager.

c. Click Add.

d. Fill in the certificate information.

e. Click Apply.

v Import the SAML token signer certificate using the wsadmin command-line utility.

a. Start the WebSphere Application Server.

b. Start the wsadmin command-line utility from the app_server_root/bin directory by entering the
command: wsadmin -lang jython.

c. At the wsadmin prompt, enter the following command: AdminTask.addSignerCertificate(’[-
keyStoreName NodeDefaultTrustStore -certificateFilePath <certFile> -base64Encoded true
-certificateAlias <certAlias>]’) where certFile is the full path name of the certificate file and
certAlias is the alias of the certificate. Use CellDefaultTrustStore instead of
NodeDefaultTrustStore for a deployment manager.

d. Save the configuration by entering the following command: AdminConfig.save().

e. Exit the wsadmin command utility by entering the following command: quit.

2. Add IdP realms to the list of inbound trusted realms. For each Identity provider that is used with your
WebSphere Application Server service provider, you must grant inbound trust to all the realms that are
used by the identity provider.

You can grant inbound trust to the identity providers using either the administrative console or the
wsadmin command utility.

v Add inbound trust using the administrative console.

a. Click Global security.

b. Under user account repository, click Configure.

c. Click Trusted authentication realms - inbound.

d. Click Add External Realm.

e. Fill in the external realm name.

f. Click OK and Save changes to the master configuration.

v Add inbound trust using the wsadmin command-line utility.

1662 Administering WebSphere applications



a. To add a single identity provider to the inbound trust, use the following command:
AdminTask.addTrustedRealms(’[-communicationType inbound -realmList <realmName>]’) where
realmName is the name of the realm that needs to be granted inbound trust.

b. To add a list of realms to the inbound trust, use the following command:
AdminTask.addTrustedRealms(’[-communicationType inbound -realmList
<realm1|realm2|realm3>]’) where realm1, realm2, and realm3 are the realms that need to be
added as trusted realms.

3. Add the WebSphere Application Server SAML service provider to the identity providers for SSO.

Each identity provider that is used with your WebSphere Application Server service provider needs to
be configured to add the service provider as an SSO partner. The procedure for adding the service
provider partner to an identity provider depends on the specific identity provider. Refer to the
documentation of the identity provider for instructions on how to add a service provider partner for
SSO.

You can either export the WebSphere Application Server service provider metadata, and import it to
the identity provider, or manually configure the identity provider to add the service provider.

To add the service provider as a federation partner to an identity provider, you must provide the URL of
the Assertion Consumer Service (ACS) of the service provider, which is the -acsUrl parameter used
when enabling the SAML trust association interceptor (TAI).

If an identity provider can use a metadata file to add the service provider as a federation partner, you
can use the following wsadmin command-line utility command to export the service provider metadata:

wsadmin -lang jython
AdminTask.exportSAMLSpMetadata(-spMetadataFileName /tmp/spdata.xml -ssoId 1’)

This command creates the /tmp/spdata.xml metadata file.

If the SAML token is encrypted, you must provide the public key certificate that you want the identity
provider to use for encrypting the SAML token, and the certificate must exist in the WebSphere
Application Server default KeyStore before performing an export.

4. Configure the WebSphere Application Server security context. The WebSphere Application Server
service provider intercepts a SAML protocol message from the identity provider and establishes the
security context. The security context is created by mapping the SAML assertion. The security context
mapping in the service provider is very flexible and configurable. The following is a list of available
mapping options:

v ID assertion

You can map the SAML assertion to the WebSphere Application Server platform Subject without
using a local registry and this is the default behavior. In this default implementation, the SAML
NameID is mapped to the principal, the issuer is mapped to the realm, and selected attributes can be
mapped to group members. ID assertion can be further customized. For example, you can configure
a SAML attribute as a principal, realm, accessId, or a list of group members. You can also configure
NameQualifier from NameID as a realm, or use a predefined realm name.

v localRealm

You can configure the WebSphere Application Server service provider to map the NameID from a
SAML assertion to the local registry of the service provider, and build the subject from the registry.
With this option, you can directly search the SAML NameID against the registry, or use a plugin point
for custom mapping of the assertion, and then use the new mapped ID to build the subject from the
registry.

v localRealmThenAssertion

This option allows you to map the NameID to the registry, and fall back to ID assertion if the NameID
cannot be mapped to the registry.

v ID assertion using groups

This option combines ID assertion and local registry and allows you to reevaluate group
membership while doing ID assertion. Consider a SAML assertion from a partner lab, containing
user Joe with a group attribute of X-ray Techs. At the service provider, the group X-ray Techs is a

Chapter 19. Administering application security 1663



subgroup of group Technicians, but Joe is not necessarily in the user registry of the service
provider. The authorization policy of the service provider application allows access to the
Technicians group. To achieve this, the SAML TAI needs to look up the asserted groups X-ray
Techs in the registry and then include the parent groups Technicians in the Subject.

When doing ID assertion to create a security context, a custom security realm is chosen. You must
explicitly add the custom realm as a trusted realm. In a default ID assertion implementation, the
SAML issuer name is used as the security realm. You must explicitly add the issuer name to the list
of inbound trusted authentication realms in current user registry. After adding the custom realm to
the inbound trusted realms, you are ready to do role mapping with this custom realm.

To add a custom realm as a trusted realm, see the Add IdP realms to the list of inbound trusted
realms step.

Results

Your WebSphere Application Server is now configured as a service provider partner for IdP-initiated SSO.

What to do next

For additional configuration options for your service provider, see the SAML web SSO TAI custom
properties topics for a complete list of SAML TAI custom properties.

SAML web single sign-on (SSO) trust association interceptor (TAI) custom
properties
The following tables list the custom properties for the Security Assertion Markup Language (SAML) trust
association interceptor (TAI). You can define these properties in the custom properties panel for the SAML
TAI using the administrative console.

To assign unique property names that identify each possible single sign-on (SSO) service provider (SP)
partner, an sso_<id> is embedded in the property name and used to group the properties that are
associated with each SSO partner. The sso_<id>s are numbered sequentially for each SSO service
provider partner.

The SAML TAI custom properties can be grouped into three categories:

1. Global properties - these properties are applicable to all SSO partners that are configured for the
SAML TAI.

2. IdP properties - these properties are applicable to identity providers that are configured for the SAML
TAI. To assign unique property names that identify each identity provider partner, an idp_<id> is
embedded in the property name and used to group the properties that are associated with each SSO
IdP partner.

3. Service provider properties - these properties are applicable to a service provider and are grouped
together for each SSO service provider partner under a unique sso_<id>.

The following table describes the global SAML TAI custom properties:

Table 115. Global SAML TAI custom properties

Property name Values Description

targetUrl You can specify any URL value. This property is overridden by
sso_<id>.sp.targetUrl. This is the
default target URL after successful
validation of the SAMLResponse when
there is no RelayState received from
the IdP.

1664 Administering WebSphere applications



Table 115. Global SAML TAI custom properties (continued)

Property name Values Description

useRelayStateForTarget You can specify one of the following
values:

v true (Default)

v false

This property is overridden by
sso_<id>.sp.
useRelayStateForTarget. This is used
to indicate if the RelayState should
be used as the target URL.

allowedClockSkew You can specify any positive number.
The default is five minutes.

This property is overridden by
sso_<id>.sp. allowedClockSkew. This
is used to specify the allowed clock
skew in minutes when validating the
SAML token.

enforceTaiCookie You can specify one of the following
values:

v true (Default)

v false

This property is overridden by
sso_<id>.sp. enforceTaiCookie. This
is used to indicate if the SAML TAI
should check if an LTPA cookie is
mapped to a subject created for the
SSO partner.

replayAttackTimeWindow You can specify any integer value.
The default value is 30.

This property specifies the time, in
minutes, within which the second
request is rejected if two identical
SAML tokens are received by the TAI.
See also sso_<id>.sp.
preventReplayAttack.

The following table describes the IdP SAML TAI custom properties:

Table 116. IdP SAML TAI custom properties

Property Name Values Description

sso_<id>.idp_<id>.SingleSignOnUrl You can specify any URL value. This custom property specifies the
URL of the SSO service of the IdP.

sso_<id>.idp_<id>.allowedIssuerDN This custom property does not have a
default value.

This custom property specifies the
name of the Issuer who is allowed to
sign the SAML token sent by the IdP.
If the SAML token is not signed by
this issuer, the token is rejected.

sso_<id>.idp_<id>.allowedIssuerName This custom property does not have a
default value.

This custom property specifies the
value of the <saml:Issuer> Issuer
element in the SAML token. The
SAML token received from the IdP is
rejected if the Issuer in the token
does not match this value.

The following table describes the service provider SAML TAI custom properties:

Chapter 19. Administering application security 1665



Table 117. Service provider SAML TAI custom properties

Property Name Values Description

sso_<id>.sp.acsUrl This property does not have a default
value. You can specify one of the
following values:

v URL of the assertion consumer
service (ACS):
https://<hostname>:<sslport>/
samlsps/<any URI pattern
String>

v URL of the business application

This is the only required property for
each sso_<id>. It specifies the URL of
the ACS or business application.

sso_<id>.sp.EntityID By default, this property is set to the
value of sso_<id>.sp.aclUrl.

This property is used to verify
AudienceRestriction in the SAML
assertion.

sso_<id>.sp.targetUrl This property does not have a default
value.

This property specifies the URL of the
target application. It is used when
RelayState is not present in the client
request.

sso_<id>.sp.useRelayStateForTarget You can specify one of the following
values:

v true (Default) - specify this value is
you want to use the value of
RelayState in the client request as
the URL of the target application.

v false - specify this value if you
want to use the value of
sso_<id>.sp.targetUrl as the URL
of the target application.

This property specifies whether the
RelayState value received in the
client request should be used as the
URL of the target application or not. If
this property is set to false, the
sso_<id>.sp.targetUrl property is
used as the URL of the target
application.

sso_<id>.sp.login.error.page This property does not have a default
value.

This property specifies the error page,
IdP login page, or custom mapping
class to which an unauthenticated
client request is redirected to.

sso_<id>.sp.acsErrorPage This property does not have a default
value.

This property is used to override
sso_<id>.sp.login.error. page.

sso_<id>.sp.allowedClockSkew This property does not have a default
value.

This property specifies, in minutes,
the time that is added to the token
expiration time of the SAML token
sent by the IdP.

sso_<id>.sp.trustStore This property does not have a default
value.

This property specifies the truststore
for validating the SAML signature. It
specifies the name of a managed
keystore.

sso_<id>.sp.trustAnySigner You can specify one of the following
values:

v false (Default) - the signer
certificate is verified for trust
validation

v true - any signer certificate is
trusted without trust validation

This property specifies how the signer
certificate of the SAML token is
verified for trust validation. If this
property is set to true, any signer
certificate is trusted.

sso_<id>.sp.keyStore This property does not have a default
value.

This property specifies the keystore
that contains the private key for
decrypting the encrypted SAML
assertion.

1666 Administering WebSphere applications



Table 117. Service provider SAML TAI custom properties (continued)

Property Name Values Description

sso_<id>.sp.keyName This property does not have a default
value.

This property specifies the key name
for decrypting the SAML assertion.

sso_<id>.sp.keyPassword This property does not have a default
value.

This property specifies the key
password for decrypting the SAML
assertion.

sso_<id>.sp.keyAlias This property does not have a default
value.

This property specifies the key alias
for decrypting the SAML assertion.

sso_<id>.sp.wantAssertionsSigned You can specify one of the following
values:

v true (Default) - the service provider
requires the IdP to sign the SAML
assertion

v false - the SAML assertion is not
required to be signed by the IdP

If this property is set to false, the
SAML assertion is not required to be
signed and the signature is not
validated.

sso_<id>.sp.preserveRequestState You can specify one of the following
values:

v true (Default) - the client state is
saved and restored when it is
redirected to the IdP login

v false - the client state is not saved

When the service provider redirects
the client request to the IdP login, this
property specifies whether the client
state needs to be saved and restored
after the client request is completed.

sso_<id>.sp.enforceTaiCookie You can specify one of the following
values:

v true (Default)

v false

This property is used to indicate if the
SAML TAI should check if an LTPA
cookie is mapped to a subject created
for the SSO partner.

sso_<id>.sp.realmName This can be any string value. By
default, this property is set to the
SAML Issuer name.

This property specifies any SAML
attribute and is used in conjunction
with realmNameRange. The value of
this attribute is used as the subject
realm. If this realm does not exist in
the list of realms specified by
realmNameRange, the realm is rejected.

sso_<id>.sp.realmNameRange This property has no default value. This property specifies a list of
allowed realm names and is used in
conjunction with realmName. See the
description of sso_<id>.sp.realmName.

sso_<id>.sp.principalName This can be any string value. By
default, this property is set to the
Subject NameID.

This property specifies any SAML
attribute. The value of this attribute is
used as the subject principal.

sso_<id>.sp.uniqueId This can be any string value. By
default, this property is set to the
Subject NameID.

This property specifies any SAML
attribute. The value of this attribute is
used as the subject uniqueId.

sso_<id>.sp.groupName This property does not have a default
value.

This property specifies any SAML
attribute. The value of this attribute is
used as groups in the subject.

Chapter 19. Administering application security 1667



Table 117. Service provider SAML TAI custom properties (continued)

Property Name Values Description

sso_<id>.sp.defaultRealm You can specify one of the following
values:

v IssuerName (Default) - use the
SAML token Issuer as the default
realm

v NameQualifier - use the SAML
token NameQualifier as the default
realm

This custom property specifies
whether the Issuer or the
NameQualifier from the SAML
assertion is used as the default
realm.

sso_<id>.sp.useRealm This property does not have a default
value.

This property specifies a realm name
and is used to override the default
realm. This property also overrides
the realmName property.

sso_<id>.sp.idMap You can specify one of the following
values:

v idAssertion (Default) - the user
specified in the SAML assertion is
not checked in the local registry

v LocalRealm - the SAML token user
is verified in the local user registry

v localRealm - is the user is found in
the local registry, IDAssertion is
used

This property specifies how the SAML
token is mapped to the subject.

sso_<id>.sp.groupMap You can specify one of the following
values:

v localRealm - specify this value to
map the SAML token groups to
groups and parent groups found in
the local user registry

v AddGroupsFromLocalRealm -
specify this value to map the SAML
token groups to groups, even if the
groups do not exist in the local
user registry

This property is used with IDAssertion
and specifies how the SAML token is
mapped to the groups.

sso_<id>.sp.userMapImpl This property does not have a default
value.

This property specifies the name of a
custom user mapping module class. It
is used to map a user ID in the SAML
token to another user ID that exists in
the local user registry.

sso_<id>.sp.X509PATH This property does not have a default
value.

This property specifies the certificate
store that is used for the intermediary
certificates used in validating the
SAML signature.

sso_<id>.sp.CRLPATH This property does not have a default
value.

This property specifies the certificate
store that is used for certificate
revocation lists (CRLs) used in
validating the SAML signature.

1668 Administering WebSphere applications



Table 117. Service provider SAML TAI custom properties (continued)

Property Name Values Description

sso_<id>.sp.filter This property does not have a default
value.

This property is used to specify a
condition that is checked against the
HTTP request, to determine whether
or not the HTTP request is selected
for a SAML web SSO partner. See
the SAML TAI filter property section
for more information on this property.

sso_<id>.sp.preventReplayAttack You can specify one of the following
values:

v true (Default)

v false

This property is used to specify
whether the SAML TAI should prevent
two identical SAML tokens sent in
client requests. This property is used
in conjunction with the global property
replayAttackTimeWindow.

sso_<id>.sp.trustedAlias This property does not have a default
value.

If this property is specified, only the
key specified by this alias is used to
validate the signature in the SAML
assertion. If the signature in the
incoming SAML assertion of the
SAMLResponse does not include the
KeyInfo element, specify this property
to resolve the KeyInfo element.

SAML TAI filter property

The sp.filter SAML TAI filter property is used when a client invokes a protected service provider
application directly, without authenticating to the IdP. The filter property is usually used in conjunction with
the sp.login.error.page property to redirect an unauthenticated client request to the URL address
specified by the sp.login.error.page property.

The filter property specifies a set of conditions that are compared against the HTTP request of the client to
select a SAML web SSO service provider partner for processing the HTTP request. Each condition is
specified by three elements:

v input required - the input element usually specifies an HTTP header name, but request-url and
remote-address can also be used as special elements

v operator - the operator element specifies one of the following values: ==, !=, %=, ^=, <, and >

v comparison value - this element usually specifies a string, but IP address ranges are also allowed

The conditions are evaluated from left to right, as specified by the comparison value. If all the filter
conditions specified by an SSO service provider partner are met in an HTTP request, the SSO service
provider partner is selected for the HTTP request.

The input element identifies an HTTP request header field to extract from the request and its value is
compared with the value that is specified in the filter property according to the operator specification. If the
header field that is identified by the input element is not present in the HTTP request, the condition is
treated as not being met. Any of the standard HTTP request header fields can be used as the input
element in the filter condition. Refer to the HTTP specification for the list of valid headers.

In addition to the standard HTTP header fields, the following two special input elements can be used in the
filter property:

v request-url - the comparison value of this input is compared against the URL address that is used by
the client application to make the request

Chapter 19. Administering application security 1669



v remote-address - the comparison value of this input is compared against the TCP/IP address of the
client application that sent the HTTP request

Examples

In the following example, the filter property specifies an HTTP header field From as the input with
samluser@xyz.com as the comparison value and == as the operator:

sso_1.sp.filter=From==samluser@xyz.com

In this case, if a client request contains an HTTP header field From with a value of samluser@xyz.com, the
SAML TAI selects the SSO service provider partner of this sso_1 filter for processing the client request.

In the following example, the filter property specifies a URL with ivtlanding.jsp as the comparison value
and %= as the operator:

sso_2.sp.filter=request-url%=ivtlanding.jsp

In this case, if the URL of the target application invoked by the client contains the string ivtlanding.jsp,
the SAML TAI selects the SSO partner of this sso_2 filter for processing the client request.

In the following example, the filter property specifies an application name with DefaultApplication as the
comparison value and == as the operator:

sso_3.sp.filter=applicationNames==DefaultApplication

In this case, if the name of the target application invoked by the client application is DefaultApplication,
the SAML TAI selects the SSO partner of this sso_3 filter for processing the client request.

The following table lists the different operators used in the filter property:

Table 118. Filter property operators

Operator Condition Example

== This operator specifies an exact
match. The input element must be
equal to the comparison value.

From==jones@my.company.com

%= This operator specifies a partial
match. The input element contains
the comparison value.

user-agent%=IE 6

^= The input element contains one of the
comparison values.

request-url^=urlApp1|urlApp2|
urlApp3

!= The input element does not contain
the comparison value.

request-url!=SPNEGO

> The input element is greater than the
comparison value.

remote-address>192.168.255.130

< The input element is less than the
comparison value.

remote-address<192.168.255.135

Adding SAML web single sign-on (SSO) trust association interceptor (TAI) using
the wsadmin command-line utility
About this task

The addSAMLTAISSO command adds the Security Assertion Markup Language (SAML) trust association
interceptor (TAI) in the security configuration of the WebSphere Application Server.

1670 Administering WebSphere applications



Procedure
1. Start the WebSphere Application Server.

2. Start the wsadmin command utility from the app_server_root/bin directory by entering the command:
wsadmin -lang jython.

3. At the wsadmin prompt, enter the following command:

AdminTask.addSAMLTAISSO(’-enable true -acsUrl https://<hostname>:<sslport>/samlsps/<any URI pattern String>’)

where hostname is the host name of the system on which WebSphere Application Server is installed,
and sslport is the Web server SSL port number (WC_defaulthost_secure).

You can use the following parameters with this command:

Table 119. addSAMLTAISSO parameters

Parameter Description

-acsUrl This parameter is required. It specifies the assertion
consumer service (ACS) URL.

-enable This parameter specifies whether to enable or disable
trust association. You can specify either true or false.

-ssoId This parameter is optional and is specified as an integer.
It is the identifier for the group of custom properties that
are defined for the SSO service provider partner. If this
parameter is not specified, the next available identifier is
used.

-securityDomainName This parameter specifies the name of the security domain
of interest and is specified as a String. If a value for this
parameter is not specified, the command uses the global
security configuration.

-trustStoreName This parameter specifies the truststore name if not using
the system default truststore.

-keyStoreName This parameter specifies the keystore name if not using
the system default keystore.

-keyName This parameter specifies the key name used to decrypt
the encrypted SAML assertion.

-keyAlias This parameter specifies the key alias used to decrypt the
encrypted SAML assertion.

-keyPassword This parameter specifies the key password used to
decrypt the encrypted SAML assertion.

-idMap This parameter specifies how the SAML token is mapped
to the subject. You can specify one of the following
values:

v idAssertion - the user specifies in the SAML assertion
is not checked in the local registry

v localRealm - the SAML token user is verified in the
local user registry

v localRealmThenAssertion - if the user is not found in
the local registry, IDAssertion is used

There are additional SAML web SSO TAI custom properties that are not supported by the
addSAMLTAISSO command, but you can add these custom properties using the wsadmin command
configureInterceptor. For a complete list of the supported SAML TAI properties, see the SAML web
SSO TAI custom properties topic.

Chapter 19. Administering application security 1671



Results

The SAML web SSO TAI is now added for this WebSphere Application Server.

Example

The following example adds the SAML TAI to the global security configuration:

AdminTask.addSAMLTAISSO(’-enable true -acsUrl https://test1.abc.com:9443/samlsps/acs’)

The following example adds the SAML TAI SSO service provider partner to the security domain myDomain1:

AdminTask.addSAMLTAISSO(’-securityDomainName myDomain1 -enable true -acsUrl https://test2.xyz.com:9444/samlsps/acs2’)

Deleting SAML web single sign-on (SSO) identity provider (IdP) partner using the
wsadmin command-line utility
About this task

You can use the wsadmin command-line utility to delete an identity provider (IdP) partner in the Security
Assertion Markup Language (SAML) web single sign-on (SSO) trust association interceptor (TAI)
configuration for WebSphere Application Server.

Procedure
1. Start the WebSphere Application Server.

2. Start the wsadmin command utility from the app_server_root/bin directory by entering the command:
wsadmin -lang jython.

3. At the wsadmin prompt, enter the following command:

AdminTask.deleteSAMLIdpPartner(’-ssoID 1 -idpId 1’)

You can use the following parameters with this command:

Table 120. deleteSAMLIdpPartner parameters

Parameter Description

-ssoId This parameter is optional if you have only one SSO
service provider partner. If you have more than one SSO
service provider partner, this parameter is required. It is
the identifier for the group of custom properties that are
associated with the SSO service provider partner. This
parameter is specified as an integer.

-idpId This parameter is required. It specifies the identifier of the
IdP that needs to be deleted from the specified SSO
service provider partner. This parameter is specified as
an integer.

-securityDomainName This parameter specifies the name of the security domain
of interest. If a value for this parameter is not specified,
the command uses the global security configuration. This
parameter is specified as a String.

-deleteSigningCert This parameter is optional. Specify true if you want to
delete the signing certificate from the trust store. If this
alias is referenced by another IdP or service provider, it is
not deleted from the trust store. This parameter is
specified as a Boolean.

Results

The SAML TAI IdP partner properties have been deleted for this WebSphere Application Server.

1672 Administering WebSphere applications



Example

The following example deletes the SAML IdP partner 1 of SSO service provider partner 1 from the global
security SAML TAI configuration:

AdminTask.deleteSAMLIdpPartner(’-ssoId 1 -idpId 1’)

The following example deletes the SAML IdP partner 1 of SSO service provider partner 1 from the security
domain myDomain1:

AdminTask.deleteSAMLIdpPartner(’-ssoId 1 -idpId 1 -securityDomainName myDomain1’)

Deleting SAML web single sign-on (SSO) trust association interceptor (TAI) using
the wsadmin command-line utility
About this task

You can use the wsadmin command-line utility to delete the Security Assertion Markup Language (SAML)
trust association interceptor (TAI) in the security configuration of the WebSphere Application Server.

Procedure
1. Start the WebSphere Application Server.

2. Start the wsadmin command utility from the app_server_root/bin directory by entering the command:
wsadmin -lang jython.

3. At the wsadmin prompt, enter the following command:

AdminTask.deleteSAMLTAISSO()

You can use the following parameters with this command:

Table 121. deleteSAMLTAISSO parameters

Parameter Description

-ssoId This parameter is optional if you have only one SSO
service provider partner. If you have more than one SSO
service provider partner, this parameter is required. It is
the identifier for the group of custom properties that are
associated with the SSO service provider partner. This
parameter is specified as an integer.

-securityDomainName This parameter specifies the name of the security domain
of interest. If a value for this parameter is not specified,
the command uses the global security configuration. This
parameter is specified as a String.

-deleteSigningCert This parameter is optional. Specify true if you want to
delete the signing certificate from the trust store. If this
alias is referenced by another IdP or service provider, it is
not deleted from the trust store. This parameter is
specified as a Boolean.

Results

The SAML TAI SSO service provider partner properties have been deleted for this WebSphere Application
Server.

Example

The following example deletes the SAML TAI SSO service provider partner 1 from the global security
SAML TAI configuration:

AdminTask.deleteSAMLTAISSO(’-ssoId 1’)

Chapter 19. Administering application security 1673



The following example deletes the SAML TAI SSO service provider partner 1 from the security domain
myDomain1:

AdminTask.deleteSAMLTAISSO(’-ssoId 1 -securityDomainName myDomain1’)

Exporting SAML web service provider metadata using the wsadmin command-line
utility
About this task

You can use the wsadmin command-line utility to export the Security Assertion Markup Language (SAML)
trust association interceptor (TAI) service provider metadata to a file.

Procedure
1. Start the WebSphere Application Server.

2. Start the wsadmin command utility from the app_server_root/bin directory by entering the command:
wsadmin -lang jython.

3. At the wsadmin prompt, enter the following command:

AdminTask.exportSAMLSpMetadata(’-spMetadataFileName /tmp/spdata.xml -ssoId 1’)

You can use the following parameters with this command:

Table 122. exportSAMLSpMetaData parameters

Parameter Description

-ssoId This parameter is optional if you have only one SSO
service provider partner. If you have more than one SSO
service provider partner, this parameter is required. It is
the identifier for the group of custom properties that are
associated with the SSO service provider partner. This
parameter is specified as an integer.

-securityDomainName This parameter specifies the name of the security domain
of interest. If a value for this parameter is not specified,
the command uses the global security configuration. This
parameter is specified as a String.

-spMetadataFileName This parameter is required. Specify the fully-qualified file
name for the SAML service provider metadata. This
parameter is specified as a String.

-wantAssertionsSigned This parameter is optional. Specify true if you want
SAML assertions to be signed. This parameter is
specified as a Boolean.

-encryptionMethod This parameter is optional. It specifies the encryption
method. The default value is http://www.w3.org/2001/
04/xmlenc#rsa-1_5. This parameter is specified as a
String.

Results

The SAML TAI service provider metadata is now exported to the specified file.

Example

The following example exports the SAML service provider metadata of SSO partner 1 from the global
security SAML TAI configuration:

AdminTask.exportSAMLSpMetadata(’-spMetadataFileName /tmp/mySPmetadata.xml -ssoId 1’)

1674 Administering WebSphere applications



The following example exports the SAML service provider metadata of SSO service provider partner 1
from the security domain myDomain1:

AdminTask.exportSAMLSpMetadata(’-spMetadataFileName /tmp/mySPmetadata.xml -ssoId 1 -securityDomainName myDomain1’)

Importing SAML identity provider (IdP) partner metadata using the wsadmin
command-line utility
Before you begin

Before you can use this command, you must configure the Security Assertion Markup Language (SAML)
trust association interceptor (TAI) with at least one single sign-on (SSO) partner using the addSAMLTAISSO
command. If you create your own trust store, then it must be specified in the sso_<ID>.sp.trustStore
entry. If you do not specify the sp.trustStore property, the default truststore is used. All the certificates of
the identity provider (IdP) and service provider are saved in the same truststore.

About this task

You can use the wsadmin command-line utility to import the SAML IdP partner to the SAML TAI in the
security configuration for WebSphere Application Server. This command will import the following IdP
partner data:

v Entity ID

v Signing Certificate

v SingleSignOnService HTTP-POST binding

Note: If any of the above properties are missing, the command logs a warning message.

Procedure
1. Start the WebSphere Application Server.

2. Start the wsadmin command utility from the app_server_root/bin directory by entering the command:
wsadmin -lang jython.

3. At the wsadmin prompt, enter the following command:

AdminTask.importSAMLIdpMetadata(’-idpMetadataFileName /tmp/idpdata.xml
-idpId 1 -ssoId 1 -signingCertAlias idpcert’)

You can use the following parameters with this command:

Table 123. importSAMLIdpMetaData parameters

Parameter Description

-ssoId This parameter is optional if you have only one SSO
service provider partner. If you have more than one SSO
service provider partner, this parameter is required. It is
the identifier for the group of custom properties that are
associated with the SSO service provider partner. This
parameter is specified as an integer.

-idpId This parameter is optional. It is the IdP identifier for the
group of custom properties that are to be defined with this
command. If the parameter is not specified, an unused
identifier is assigned. This parameter is specified as an
integer.

-signingCertAlias This parameter is optional if you do not have a signing
certificate. If you have a signing certificate, this parameter
is required. This parameter specifies the alias that you
want the certificate to be named in the current keystore.
This parameter is specified as a Boolean.

Chapter 19. Administering application security 1675



Table 123. importSAMLIdpMetaData parameters (continued)

Parameter Description

-idpMetadataFileName This parameter is required. Specify the fully-qualified file
name for the SAML IdP partner metadata. This parameter
is specified as a String.

-securityDomainName This parameter specifies the name of the security domain
of interest. If a value for this parameter is not specified,
the command uses the global security configuration. This
parameter is specified as a String.

Results

The IdP partner properties are now added to the SAML TAI for this WebSphere Application Server.

Example

The following example imports the SAML IdP partner 1 metadata to the global security SAML TAI SSO
service provider partner 1 with a signing certificate alias name idp1CertAlias:

AdminTask.importSAMLIdpMetadata(’-idpMetadataFileName /tmp/myIdPmetadata.xml
-ssoId 1 -idpId 1 -signingCertAlias idp1CertAlias’)

The following example imports the SAML IdP partner 1 metadata to the security domain myDomain1 SAML
TAI SSO service provider partner 1 with a signing certificate alias name idp1CertAlias:

AdminTask.iportSAMLIdpMetadata(’-idpMetadataFileName /tmp/myIdPmetadata.xml
-ssoId 1 -idpId 1 -signingCertAlias idp1CertAlias -securityDomainName myDomain1’)

Displaying SAML identity provider (IdP) partner configuration using the wsadmin
command-line utility
About this task

You can use the wsadmin command-line utility to display the Security Assertion Markup Language (SAML)
trust association interceptor (TAI) identity provider (IdP) partner configuration in the security configuration
for WebSphere Application Server.

Procedure
1. Start the WebSphere Application Server.

2. Start the wsadmin command utility from the app_server_root/bin directory by entering the command:
wsadmin -lang jython.

3. At the wsadmin prompt, enter the following command:

AdminTask.showSAMLIdpPartner(’-ssoId 1’)

You can use the following parameters with this command:

Table 124. showSAMLIdpPartner parameters

Parameter Description

-ssoId This parameter is optional if you have only one SSO
service provider partner. If you have more than one SSO
service provider partner, this parameter is required. It is
the identifier for the group of custom properties that are
associated with the SSO service provider partner. This
parameter is specified as an integer.

1676 Administering WebSphere applications



Table 124. showSAMLIdpPartner parameters (continued)

Parameter Description

-idpId This parameter specifies the identifier of the IdP whose
properties you want to display. If a value for this
parameter is not specified, the command shows all IdP
partners for the specified SSO service provider partner.
This parameter is specified as an integer.

-securityDomainName This parameter specifies the name of the security domain
of interest. If a value for this parameter is not specified,
the command uses the global security configuration. This
parameter is specified as a String.

Results

The custom properties for the specified SAML web SSO IdP partner are displayed.

Example

The following example displays the SAML Idp partner 1 of the SSO service provider partner 1 from the
global security SAML TAI configuration:

AdminTask.showSAMLIdpPartner(’-ssoId 1 -idpId 1’)

The following example displays the SAML IdP partner 2 of the SSO service provider partner 1 from the
security domain myDomain1:

AdminTask.showSAMLIdpPartner(’-ssoId 1 -idpId 2 -securityDomainName myDomain1’)

Displaying SAML web single sign-on (SSO) trust association interceptor (TAI)
configuration using the wsadmin command-line utility
About this task

You can use the wsadmin command-line utility to display the Security Assertion Markup Language (SAML)
web single sign-in (SSO) trust association interceptor (TAI) in the security configuration for WebSphere
Application Server.

Procedure
1. Start the WebSphere Application Server.

2. Start the wsadmin command utility from the app_server_root/bin directory by entering the command:
wsadmin -lang jython.

3. At the wsadmin prompt, enter the following command:

AdminTask.showSAMLTAISSO()

You can use the following parameters with this command:

Table 125. showSAMLTAISSO parameters

Parameter Description

-ssoId This parameter specifies an SSO service provider partner
identifier for which the TAI properties need to be
displayed. If this parameter is not specified, all SSO
partners are displayed. This parameter is specified as an
integer.

-securityDomainName This parameter specifies the name of the security domain
of interest. If a value for this parameter is not specified,
the command uses the global security configuration. This
parameter is specified as a String.

Chapter 19. Administering application security 1677



Results

The SAML TAI custom properties for this WebSphere Application Server are displayed.

Example

The following example displays the SAML TAI custom properties of the SSO service provider partner 1
from the global security configuration:

AdminTask.showSAMLTAISSO(’-ssoId 1)

The following example displays the SAML TAI custom properties of the SSO service provider partner 1
from the security domain myDomain1:

AdminTask.showSAMLTAISSO(’-ssoId 1 -securityDomainName myDomain1’)

Authorizing access to resources
WebSphere Application Server provides many different methods for authorizing accessing resources. For
example, you can assign roles to users and configure a built-in or external authorization provider.

About this task

You can create an application, an Enterprise JavaBeans (EJB) module, or a web module and secure them
using assembly tools.

To authorize user or group access to resources, read the following articles:

Procedure
1. Secure you application during assembly and deployment. For more information on how to create a

secure application using an assembly tool, such as the IBM Rational Application Developer, see the
information about securing applications during assembly and deployment.

2. Authorize access to Java Platform, Enterprise Edition (Java EE) resources. WebSphere Application
Server supports authorization that is based on the Java Authorization Contract for Containers (JACC)
specification in addition to the default authorization. When security is enabled in WebSphere
Application Server, the default authorization is used unless a JACC provider is specified. For more
information, see “Authorization providers” on page 1691.

3. Authorize access to administrative resources. You can assign users and groups to predefined
administrative roles such as the monitor, configurator, operator, administrator, auditor and iscadmins
roles. These roles determine which tasks a user can perform in the administrative console. For more
information, see “Authorizing access to administrative roles” on page 1745.

What to do next

After authorizing access to resources, configure the Application Server for secure communication. For
more information, see “Securing communications” on page 1773.

Authorization technology
Authorization information determines whether a user or group has the necessary privileges to access
resources.

WebSphere Application Server supports many authorization technologies including the following:

v Authorization involving the web container and Java Platform, Enterprise Edition (Java EE) technology

v Authorization involving an enterprise bean application and Java EE technology

1678 Administering WebSphere applications



v Authorization involving web services and Java EE technology

v Java Message Service (JMS)

v Java Authorization Contract for Containers (JACC)

WebSphere Application Server supports both a default authorization provider and an authorization
provider that is based on the Java Authorization Contract for Containers (JACC) specification. The
JACC-based authorization provider enables third-party security providers to handle the Java EE
authorization. For more information, see “JACC support in WebSphere Application Server” on page
1692.

v Java Authentication and Authorization Service (JAAS)

For more information, see “Java Authentication and Authorization Service” on page 1553.

v Java 2 security

For more information, see “Java 2 security” on page 1184.

v Naming and administrative authorization

v Pluggable authorization

WebSphere Application Server supports an authorization infrastructure that enables you to plug in an
external authorization provider. For more information, see “Enabling an external JACC provider” on page
1715.

Administrative roles and naming service authorization
WebSphere Application Server extends the Java Platform, Enterprise Edition (Java EE) security role-based
access control to protect the product administrative and naming subsystems.

Administrative roles

A number of administrative roles are defined to provide the degrees of authority that are needed to
perform certain WebSphere Application Server administrative functions from either the administrative
console or the system management scripting interface called wsadmin. The authorization policy is only
enforced when administrative security is enabled. The following table describes the administrative roles:

Table 126. Administrative roles that are available through the administrative console and wsadmin.

This table lists administrative roles that are available through the administrative console and wsadmin.

Role Description

Monitor An individual or group that uses the monitor role has the least amount of privileges. A
monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

Configurator An individual or group that uses the configurator role has the monitor privilege plus the
ability to change the WebSphere Application Server configuration. The configurator can
perform all the day-to-day configuration tasks. For example, a configurator can complete
the following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Secure
Authentication Service (SAS), and Secure Sockets Layer (SSL) configurations.
Important: SAS is supported only between Version 6.0.x and previous version servers
that have been federated in a Version 6.1 cell.

Chapter 19. Administering application security 1679



Table 126. Administrative roles that are available through the administrative console and wsadmin (continued).

This table lists administrative roles that are available through the administrative console and wsadmin.

Role Description

Operator An individual or group that uses the operator role has monitor privileges plus ability to
change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

Administrator An individual or group that uses the administrator role has the operator and configurator
privileges plus additional privileges that are granted solely to the administrator role. For
example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.
Note: In previous releases of WebSphere Application Server, the Enable
administrative security option is known as the Enable global security option.

v Enforce Java 2 security using the Use Java 2 security to restrict application access
to local resources option.

v Change the Lightweight Third Party Authentication (LTPA) password and generate
keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Note:

An administrator cannot map users and groups to the administrator roles.

For information on how to assign federated repository management rights to users who
are not assigned the WebSphere Application Server Administrator role, see the topic,
Mapping users and groups to roles for assigning federated repository management rights
in the topic, Providing security.

Adminsecuritymanager Only users who are granted this role can map users to administrative roles. Also, when
fine-grained administrative security is used, only users who are granted this role can
manage authorization groups. See “Administrative roles” on page 1687 for more
information.

Deployer Users who are granted this role can perform both configuration actions and runtime
operations on applications.

Auditor Users granted this role can view and modify the configuration settings for the security
auditing subsystem. For example, a user with the auditor role can complete the following
tasks:

v Enable and disable the security auditing subsystem.

v Select the event factory implementation to be used with the event factory plug-in point.

v Select and configure the service provide, or emitter. or both to be used with the service
provider plug-in point.

v Set the audit policy that describes the behavior of the application server in the event of
an error with the security auditing subsystem.

v Define which security events are to be audited.

The auditor role includes the monitor role. This allows the auditor to view but not change
the rest of the security configuration.

1680 Administering WebSphere applications



Table 127. Additional administrative role that is available through the administrative console.

This table lists an additional administrative role that is available through the administrative console.
Role Description

iscadmins This role is only available for administrative console users and not for wsadmin users. Users who are granted this
role have administrator privileges for managing users and groups in the federated respositories. For example, a
user of the iscadmins role can complete the following tasks:

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Table 128. Additional administrative role that is available through wsadmin.

This table lists an additional administrative role that is available through the administrative console.
Role Description

Deployer This role is only available for wsadmin users and not for administrative console users. Users who are granted this
role can perform both configuration actions and run-time operations on applications.

When administrative security is enabled, the administrative subsystem role-based access control is
enforced. The administrative subsystem includes the security server, the administrative console, the
wsadmin scripting tool, and all the Java Management Extensions (JMX) MBeans. When administrative
security is enabled, both the administrative console and the administrative scripting tool require users to
provide the required authentication data. Moreover, the administrative console is designed so the control
functions that display on the pages are adjusted, according to the security roles that a user has. For
example, a user who has only the monitor role can see only the non-sensitive configuration data. A user
with the operator role can change the system state.

When you are changing registries (for example, from a federated repository to LDAP), make sure you
remove the information that pertains to the previously configured registry for console users and console
groups.

When administrative security is enabled, WebSphere Application Servers run under the server
identity that is defined under the active user registry configuration. Although it is not shown on the
administrative console and in other tools, a special Server subject is mapped to the administrator role. The
WebSphere Application Server runtime code, which runs under the server identity, requires authorization to
runtime operations. If no other user is assigned administrative roles, you can log into the administrative
console or to the wsadmin scripting tool using the server identity to perform administrative operations and
to assign other users or groups to administrative roles. Because the server identity is assigned to the
administrative role by default, the administrative security policy requires the administrative role to perform
the following operations:

v Change server ID and server password
v Enable or disable WebSphere Application Serveradministrative security
v Enforce Java 2 security using the Use Java 2 security to restrict application access to local

resources option.
v Change the LTPA password or generate keys
v Assign users and groups to administrative roles

Version 6.1 release of WebSphere Application Server and subsequent releases require the following:

v An administrative user, distinguished from the server user identity, to improve auditability of
administrative actions. The user name specifies a user with administrative privileges that is defined in
the local operating system.

v Distinguish the server identity from the administrative user identity to improve auditability. The server
user identity is used for authenticating server-to-server communications.

Chapter 19. Administering application security 1681



v The internal server ID enables the automatic generation of the user identity for server-to-server
authentication. Automatic generation of the server identity supports improved auditability for cells only
for Version 6.1 or later nodes. In the Version 6.1 release of WebSphere Application Server, you can
save the internally-generated server ID because the Security WebSphere Common Configuration Model
(WCCM) model contains a new tag, internalServerId. You do not need to specify a server user ID and a
password during security configuration except in a mixed-cell environment. An internally-generated
server ID adds a further level of protection to the server environment because the server password is
not exposed as it is in releases prior to Version 6.1. However, to maintain backwards compatibility, you
must specify the server user ID if you use earlier versions of WebSphere Application Server.

When enabling security, you can assign one or more users and groups to naming roles. For more
information, see Assigning users to naming roles. However, before assigning users to naming roles,
configure the active user registry. User and group validation depends on the active user registry. For
more information, see Configuring user registries.

v Ability to map a special-subject to the administrative roles. A special-subject is a generalization of a
particular class of users. The AllAuthenticated or the AllAuhenticatedInTrustedRealms (when cross realm
is involved) special subjects mean that the access check of the administrative role ensures that the user
making the request is at least authenticated. The Everyone special subject means that anyone,
authenticated or not, can perform the action as if security is not enabled.

Naming service authorization

CosNaming security offers increased granularity of security control over CosNaming functions. CosNaming
functions are available on CosNaming servers such as the WebSphere Application Server. These functions
affect the content of the WebSphere Application Server name space. Generally, you have two ways in
which client programs result in CosNaming calls. The first is through the Java Naming and Directory
Interface (JNDI) call. The second is with common object request broker architecture (CORBA) clients
invoking CosNaming methods directly.

Four security roles are introduced :

v CosNamingRead

v CosNamingWrite

v CosNamingCreate

v CosNamingDelete

The roles have authority levels from low to high:
CosNamingRead

You can query the WebSphere Application Server name space, using, for example, the JNDI
lookup method. The special-subject, Everyone, is the default policy for this role.

CosNamingWrite
You can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead
operations. As a default policy, Subjects are not assigned this role.

CosNamingCreate
You can create new objects in the name space through such operations as JNDI createSubcontext
and CosNamingWrite operations. As a default policy, Subjects are not assigned this role.

CosNamingDelete
You can destroy objects in the name space, for example using the JNDI destroySubcontext
method and CosNamingCreate operations. As a default policy, Subjects are not assigned this role.

A Server special-subject is assigned to all of the four CosNaming roles by default. The Server
special-subject provides a WebSphere Application Server process, which runs under the server identity, to
access all the CosNaming operations. The Server special-subject does not display and cannot be modified
through the administrative console or other administrative tools.

1682 Administering WebSphere applications



Special configuration is not required to enable the server identity as specified when enabling administrative
security for administrative use because the server identity is automatically mapped to the administrator
role.

Users, groups, or the special subjects AllAuthenticated and Everyone can be added or
removed to or from the naming roles from the WebSphere Application Server administrative console at any
time. However, a server restart is required for the changes to take effect.

A best practice is to map groups or one of the special-subjects, rather than specific users, to naming roles
because it is more flexible and easier to administer in the long run. By mapping a group to a naming role,
adding or removing users to or from the group occurs outside of WebSphere Application Server and does
not require a server restart for the change to take effect.

The CosNaming authorization policy is only enforced when administrative security is enabled. When
administrative security is enabled, attempts to do CosNaming operations without the proper role
assignment result in an org.omg.CORBA.NO_PERMISSION exception from the CosNaming server.

Each CosNaming function is assigned to only one role. Therefore, users who are assigned the
CosNamingCreate role cannot query the name space unless they have also been assigned
CosNamingRead. And in most cases a creator needs to be assigned three roles: CosNamingRead,
CosNamingWrite, and CosNamingCreate. The CosNamingRead and CosNamingWrite roles assignment for
the creator example are included in the CosNamingCreate role. In most of the cases, WebSphere
Application Server administrators do not have to change the roles assignment for every user or group
when they move to this release from a previous one.

Although the ability exists to greatly restrict access to the name space by changing the default policy,
unexpected org.omg.CORBA.NO_PERMISSION exceptions can occur at runtime. Typically, Java EE
applications access the name space and the identity they use is that of the user that authenticated to
WebSphere Application Server when accessing the Java EE application. Unless the Java EE application
provider clearly communicates the expected naming roles, use caution when changing the default naming
authorization policy.

Administrative roles for business level applications:

The Java 2 Platform, Enterprise Edition (J2EE) role-based authorization concept is extended to protect the
WebSphere Application Server administrative subsystem. This protection applies to those administrative
roles associated with business level applications.

Deploying business level applications on a server configured to hold business level applications requires a
number of administrative roles that are defined to provide degrees of authority when performing certain
administrative functions from either the Web-based administrative console or the system management
scripting interface. The authorization policy is only enforced when administrative security is enabled. The
following table describes the system management scripting command used for business level applications
and the corresponding administrative role that is required in using the command:

Table 129. Business level application - administrative roles. Business level application - administrative roles

Command Role Required

startBLA Cell deployer, Cell operator, BLA deployer, BLA operator, Target deployer,
Target operator

stopBLA Cell deployer, Cell operator, BLA deployer, BLA operator, Target deployer,
Target operator

createEmptyBLA Cell configurator, Cell deployer

editBLA Cell configurator, Cell deployer, BLA deployer

viewBLA Cell monitor, BLA monitor

Chapter 19. Administering application security 1683



Table 129. Business level application - administrative roles (continued). Business level application - administrative
roles

Command Role Required

listBLAs Cell monitor, BLA monitor(s)

deleteBLA Cell configurator, Cell deployer, BLA developer

importAsset Cell configurator, Cell deployer

editAsset Cell configurator, Cell deployer, Asset deployer

viewAsset Cell monitor, Asset monitor(s)

listAssets Cell monitor, Asset monitor

exportAsset Cell monitor, Asset monitor

deleteAsset Cell configurator, Cell deployer, Asset deployer

updateAsset Cell configurator, Cell deployer, Asset deployer

addCompUnit Cell configurator, Cell deployer, BLA deployer (for the BLA to add the
composition unit)

+ Asset-deployer (for the asset to create the composition unit from)

+ Target-deployer (for each target the composition unit is deployed to)

+ Relationship-deployer (for each relationship the composition unit depends
on that will result in creating a composition unit from the dependency asset)

editCompUnit Cell configurator, Cell deployer, BLA deployer (for the BLA this composition
unit belongs to)

+ Target deployer (for each target that this composition unit is deployed to)

viewCompUnit Cell monitor, BLA monitor

listCompUnit Cell monitor, BLA monitor

deleteCompUnit Cell configurator, Cell deployer, BLA deployer (for the BLA this composition
unit belongs to)

+ Target deployer (for each target that this composition unit is deployed to)

setCompUnitTargetAutoStart Cell configurator, Cell deployer

listControlOps Cell monitor, BLA monitor

getBLAStatus Cell monitor, BLA monitor

Where:

v BLA deployer specifies the deployer role for the BLA that is being
managed.

v BLA monitor specifies the monitor role for the BLA that is being
managed.

v BLA operator specifies the operator role for the BLA that is being
managed.

v Asset deployer specifies the deployer role for the asset that is being
managed.

v Asset monitor specifies the monitor role for the asset that is being
managed.

v Target deployer specifies the deployer for the target that the composition
unit is being deployed to.

v Target operator specifies the operator role for the target that the
composition unit is being deployed to.

1684 Administering WebSphere applications



Role-based authorization
Use authorization information to determine whether a caller has the necessary privileges to request a
service.

The following figure illustrates the process that is used during authorization.

Web resource access from a web client is handled by a web collaborator. The Enterprise JavaBeans (EJB)
resource access from a Java client, whether an enterprise bean or a servlet, is handled by an EJB
collaborator. The EJB collaborator and the web collaborator extract the client credentials from the object
request broker (ORB) current object. The client credentials are set during the authentication process as
received credentials in the ORB current object. The resource and the received credentials are presented to
the WSAccessManager access manager to check whether access is permitted to the client for accessing
the requested resource.

The access manager module contains two main modules:
v The resource permission module helps determine the required roles for a given resource. This module

uses a resource-to-roles mapping table that is built by the security runtime during application startup. To
build the resource-to-role mapping table, the security runtime reads the deployment descriptor of the
enterprise beans or the Web module (ejb-jar.xml file or web.xml file)

v The authorization table module consults a role-to-user or group table to determine whether a client is
granted one of the required roles. The role-to-user or group mapping table, also known as the
authorization table, is created by the security runtime during application startup.

To build the authorization table, the security run time reads the application binding file, the
ibm-application-bnd.xmi file, or the ibm-application-bnd.xml file, as appropriate.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending
on whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later
application or module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi
where * is the type of extension or binding file such as app, application, ejb-jar, or web. The
following conditions apply:

– For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

Chapter 19. Administering application security 1685



– For an application or module that uses Java EE 5 or later, the file extension must be .xml. If
.xmi files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Use authorization information to determine whether a caller has the necessary privilege to request a
service. You can store authorization information many ways. For example, with each resource, you can
store an access-control list, which contains a list of users and user privileges. Another way to store the
information is to associate a list of resources and the corresponding privileges with each user. This list is
called a capability list.

WebSphere Application Server uses the Java 2 Platform, Enterprise Edition (J2EE) authorization model. In
this model, authorization information is organized as follows:

During the assembly of an application, permission to invoke methods is granted to one or more roles. A
role is a set of permissions; for example, in a banking application, roles can include teller, supervisor,
clerk, and other industry-related positions. The teller role is associated with permissions to run methods
that are related to managing the money in an account, such as the withdraw and deposit methods. The
teller role is not granted permission to close accounts; this permission is given to the supervisor role. The
application assembler defines a list of method permissions for each role. This list is stored in the
deployment descriptor for the application.

Three special subjects are not defined by the J2EE model: AllAuthenticatedUsers,
AllAuthenticatedInTrustedRealms, and Everyone. A special subject is a product-defined entity that is
defined outside of the user registry. This entity is used to generically represent a class of users or groups
in the registry.
v The AllAuthenticatedUsers subject permits all authenticated users to access protected methods. As long

as the user can authenticate successfully, the user is permitted access to the protected resource.
v The AllAuthenticatedInTrustedRealms subject permits all authenticated foreign users (those that are

bound to other realms) to access protected methods. As long as the user can authenticate successfully,
the user is permitted access to the protected resource.

v The Everyone subject permits unrestricted access to a protected resource. Users do not have to
authenticate to get access; this special subject provides access to protected methods as if the
resources are unprotected.

During the deployment of an application, real users or groups of users are assigned to the roles. When a
user is assigned to a role, the user gets all the method permissions that are granted to that role.

The application deployer does not need to understand the individual methods. By assigning
roles to methods, the application assembler simplifies the job of the application deployer. Instead of
working with a set of methods, the deployer works with the roles, which represent semantic groupings of
the methods.

Users can be assigned to more than one role; the permissions that are granted to the user are the union
of the permissions granted to each role. Additionally, if the authentication mechanism supports the
grouping of users, these groups can be assigned to roles. Assigning a group to a role has the same effect
as assigning each individual user to the role.

A best practice during deployment is to assign groups instead of individual users to roles for
the following reasons:
v Improves performance during the authorization check. Typically far fewer groups exist than users.

1686 Administering WebSphere applications



v Provides greater flexibility, by using group membership to control resource access.
v Supports the addition and deletion of users from groups outside of the product environment. This action

is preferred to adding and removing them to WebSphere Application Server roles. Stop and restart the
enterprise application for these changes to take effect. This action can be very disruptive in a production
environment.

At runtime, WebSphere Application Server authorizes incoming requests based on the user's identification
information and the mapping of the user to roles. If the user belongs to any role that has permission to run
a method, the request is authorized. If the user does not belong to any role that has permission, the
request is denied.

The J2EE approach represents a declarative approach to authorization, but it also recognizes that you
cannot deal with all situations declaratively. For these situations, methods are provided for determining
user and role information programmatically. For enterprise beans, the following two methods are supported
by WebSphere Application Server:
v getCallerPrincipal: This method retrieves the user identification information.
v isCallerInRole: This method checks the user identification information against a specific role.

For servlets, the following methods are supported by WebSphere Application Server:
v getRemoteUser
v isUserInRole
v getUserPrincipal

These methods correspond in purpose to the enterprise bean methods.

For more information on the J2EE security authorization model, see the following website:
http://java.sun.com

Administrative roles
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect
the WebSphere Application Server administrative subsystem.

A number of administrative roles are defined to provide degrees of authority that are needed to perform
certain administrative functions from either the Web-based administrative console or the system
management scripting interface. The authorization policy is only enforced when administrative security is
enabled. The following table describes the administrative roles:

Table 130. Administrative roles. Administrative roles

Role Description

Monitor An individual or group that uses the monitor role has the least amount of privileges. A
monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

Chapter 19. Administering application security 1687

http://java.sun.com


Table 130. Administrative roles (continued). Administrative roles

Role Description

Configurator An individual or group that uses the configurator role has the monitor privilege plus the
ability to change the WebSphere Application Server configuration. The configurator can
perform all the daily configuration tasks. For example, a configurator can complete the
following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Security
Authentication Service (SAS), and Secure Sockets Layer (SSL) configurations.
Important: SAS is supported only between Version 6.0.x and previous version
servers that have been federated in a Version 6.1 cell.

Operator An individual or group that uses the operator role has monitor privileges plus ability to
change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

Administrator An individual or group that uses the administrator role has the operator and
configurator privileges, plus additional privileges that are granted solely to the
administrator role. For example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

v Enable or disable Java 2 security.

v Change the Lightweight Third Party Authentication (LTPA) password and generate
keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Important: An administrator cannot map users and groups to the administrator roles
without also having the adminsecuritymanager role.

iscadmins This role is only available for administrative console users, not for wsadmin users.
Users who are granted this role have administrator privileges for managing users and
groups in the federated repositories. For example, a user of the iscadmins role can
complete the following tasks:

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Deployer Users granted this role can complete both configuration actions and runtime operations
on applications. See the “Deployer role” on page 1689 section for more details.

Admin Security Manager You can assign users and groups to the Admin Security Manager role on the cell level
through wsadmin scripts and the administrative console. Using the Admin Security
Manager role, you can assign users and groups to the administrative user roles and
administrative group roles. However, an administrator cannot assign users and groups
to the administrative user roles and administrative group roles including the Admin
Security Manager role. See the “Admin Security Manager role” on page 1690 section
for more details.

1688 Administering WebSphere applications



Table 130. Administrative roles (continued). Administrative roles

Role Description

Auditor Users granted this role can view and modify the configuration settings for the security
auditing subsystem. For example, a user with the auditor role can complete the
following tasks:

v Enable and disable the security auditing subsystem.

v Select the event factory implementation to be used with the event factory plug-in
point.

v Select and configure the service provide, or emitter. or both to be used with the
service provider plug-in point.

v Set the audit policy that describes the behavior of the application server in the event
of an error with the security auditing subsystem.

v Define which security events are to be audited.

The auditor role includes the monitor role. This allows the auditor to view but not
change the rest of the security configuration. See the “Auditor role” on page 1691
section for more details.

The server ID that is specified and the administrative ID, if specified, when enabling administrative security
is automatically mapped to the administrator role.

Users and groups can be added or removed from administrative roles using the WebSphere Application
Server administrative console by a user given the appropriate authority. The Primary administrative user
name must be used to log on to the administrative console to change the administrative user and group
roles other than the auditor role. Only a user with the auditor role can change the auditor user and group
roles. When security auditing is initially enabled, the Primary administrative user is also given the auditor
role, and can manage all of the administrative user and group roles including the those in the auditor role.
A best practice is to map a group or groups, rather than specific users, to administrative roles because it is
more flexible and easier to administer.

In addition to mapping user or groups, a special-subject can also be mapped to the administrative roles. A
special-subject subject is a generalization of a particular class of users. The AllAuthenticated special
subject means that the access check of the administrative role ensures that the user making the request is
at least authenticated. The Everyone special subject means that anyone, authenticated or not, can perform
the action, as if security was not enabled.

Deployer role

A user that is granted a deployer role can complete all of the configuration and runtime operations on an
application. A deployer role can be subsets of both configurator and operator roles. However, a user
granted a deployer role cannot configure or operate any other resources, such as a server, node.

When fine-grained administrative security is used, only a user granted a deployer role to an application
can configure and operate that application.

Cell-level configurators can configure applications. Cell-level operators can also operate (start and stop)
applications. However, a user granted a deployer role at cell level can also complete configuration and
operation on all applications.

Table 131. Deployer role capabilities.

This table lists the deployer role capabilities when fine-grained administrative security is used.
Operation Required Roles ( Any one)

Install application Cell-configurator, target-deployer

Uninstall application Cell-configurator, application-deployer, target-deployer

Chapter 19. Administering application security 1689



Table 131. Deployer role capabilities (continued).

This table lists the deployer role capabilities when fine-grained administrative security is used.
Operation Required Roles ( Any one)

List application Cell-monitor, application-monitor

Edit, update and redeploy application Cell-configurator, application-deployer

Export application Cell-monitor, application-monitor

Start or stop application Cell-operator, application-deployer

Where:

Cell-configurator
Specifies the configurator role at cell level.

Application-deployer
Specifies the deployer role for the application that is being managed.

Target-deployer
Specifies the deployer role for all servers or clusters for which an application is targeted. If you
have a target-deployer role, you can install a new application on the target. However, to edit or
update the installed application, you must be included in the authorization group of the installed
application-deployer.

The target-deployer cannot explicitly start or stop a new application. However, when a
target-deployer starts a server on a target, all of the applications that have their auto-start attribute
set to yes are started when the server starts.

It is recommended that the application-deployer set this attribute to true if the application-deployer
does not want the application to be started by the target-deployer.

Admin Security Manager role

The Admin Security Manager role separates administrative security administration from other application
administration.

By default, serverId and adminID, if specified, are assigned to this role in the cell level authorization table.
This role implies a monitor role. However, an administrator role does not imply the Admin Security
Manager role.

When fine-grained admin security is used, only a user granted this role at cell level can manage
administrative authorization groups. However, a user granted this role for each administrative authorization
group can map users to administrative roles for those groups. The following list summarizes the
capabilities of the Admin Security Manager role at different levels, such as the cell and administrative
authorization group levels.

Table 132. Admin Security Manager role capabilities.

This table lists Admin Security Manager role capabilities.
Action Role

Map users to administrative roles for cell level Only the Admin Security Manager of the cell

Map users to administrative roles for an authorization group Only the Admin Security Manager of that authorization group or the Admin
Security Manager of the cell

Manage authorization groups, create, delete, add resource to an
authorization group, or remove resource from an authorization group or list

Only the Admin Security Manager of the cell

1690 Administering WebSphere applications



Auditor role

The auditor role separates security auditing administration from administrative security and other
application administration.

The auditor role was added to allow distinct separation of the authority of an auditor from the authority of
the administrator. The auditor role can be granted to administrators to combine their authority. When
security is first enabled, the auditor role is assigned to the primary administrator. If in your situation the
separation of authority is required, administrators can remove the auditor role from themselves and assign
the auditor role to other users.

A fine grained security for the auditor role is not implemented, which results in the auditor role requiring
the monitor role. This process allows the auditor to read but not modify the panels managed by the
administrator. The auditor has full authority to read and modify the panels associated with the security
auditing subsystem. The administrator will have the monitor role for those panels, however, the
administrator cannot modify those panels.

Authorization providers
WebSphere Application Server supports authorization that is based on the Java Authorization Contract for
Containers (JACC) specification in addition to the default authorization.

JACC is a specification introduced in Java Platform, Enterprise Edition (Java EE)1.4. It enables third-party
security providers to manage authorization in the application server.

Note: In WebSphere Application Server version 7.0, Java Authorization Contract for Containers (JACC)
specification 1.4 was applied. In JACC specification 1.4, we support Java EE5 that includes Servlet
2.5 and EJB 3. The biggest functional change with the introduction of JACC specification 1.4 is the
inclusion of annotations for propagating security policy information.

When security is enabled in WebSphere Application Server, the default authorization is used unless a
JACC provider is specified. The default authorization does not require special setup, and the default
authorization engine makes all of the authorization decisions. However, if a JACC provider is configured
and set up for WebSphere Application Server to use, all of the enterprise beans and web authorization
decisions are delegated to the JACC provider.

WebSphere Application Server supports security for Java EE applications and also for its administrative
components. Java EE applications, such as Web and Enterprise JavaBeans (EJB) components are
protected and authorized per the Java EE specification. The administrative components are internal to
WebSphere Application Server and are protected by the role-based authorizer. The administrative
components include the administrative console, MBeans, and other components such as naming and
security. For more information on administrative security, see “Role-based authorization” on page 1685.

When a JACC provider is used for authorization in WebSphere Application Server, all of the Java EE
application-based authorization decisions are delegated to the provider per the JACC specification.
However, all administrative security authorization decisions are made by the WebSphere Application
Server default authorization engine. The JACC provider is not called to make the authorization decisions
for administrative security.

When a protected Java EE resource is accessed, the authorization decision to give access to the principal
is the same whether using the default authorization engine or a JACC provider. Both of the authorization
models satisfy the J2EE specification, and function the same. Choose a JACC provider only when you
want to work with an external security provider such as Tivoli Access Manager. In this instance, the
security provider must support the JACC specification and be set up to work with WebSphere Application
Server. Setting up and configuring a JACC provider requires additional configuration steps, depending on
the provider. Unless you have an external security provider that you can use with WebSphere Application
Server, use the default authorization.

Chapter 19. Administering application security 1691



JACC support in WebSphere Application Server:

WebSphere Application Server supports the Java Authorization Contract for Containers (JACC)
specification, which enables third-party security providers to handle the Java Platform, Enterprise Edition
(Java EE) authorization.

The JACC specification requires that both the containers in the application server and the provider satisfy
some requirements. Specifically, the containers are required to propagate the security policy information to
the provider during the application deployment and to call the provider for all authorization decisions. The
providers are required to store the policy information in their repository during application deployment. The
providers then use this information to make authorization decisions when called by the container.

JACC access decisions

When security is enabled and an enterprise bean or web resource is accessed, the Enterprise JavaBeans
(EJB) container or web container calls the security runtime to make an authorization decision on whether
to permit access. When using an external provider, the access decision is delegated to that provider.

According to the Java Authorization Contract for Containers (JACC) specification, the appropriate
permission object is created, the appropriate policy context handlers are registered, and the appropriate
policy context identifier (contextID) is set. A call is made to the java.security.Policy object method that is
implemented by the provider to make the access decision.

The following sections describe how the provider is called for both the enterprise bean and the web
resources.

Access decisions for enterprise beans

When security is enabled, and an EJB method is accessed, the EJB container delegates the authorization
check to the security runtime. If JACC is enabled, the security runtime uses the following process to
perform the authorization check:

1. Creates the EJBMethodPermission object using the bean name, method name, interface name, and
the method signature.

2. Creates the context ID and sets it on the thread by using the PolicyContext.setContextID(contextID)
method.

3. Registers the required policy context handlers, including the Subject policy context handler.

4. Creates the ProtectionDomain object with principal in the Subject. If no principal exists, null is passed
for the principal name.

5. The access decision is delegated to the JACC provider by calling the implies method of the Policy
object, which is implemented by the provider. The EJBMethodPermission and the ProtectionDomain
objects are passed to this method.

6. The isCallerInRole access check also follows the same process, except that an EJBRoleRefPermission
object is created instead of an EJBMethodPermission object.

Access decisions for web resources

When security is enabled and configured to use a JACC provider, and when a web resource such as a
servlet or a JavaServer Pages (JSP) file is accessed, the security runtime delegates the authorization
decision to the JACC provider by using the following process:

1. A WebResourcePermission object is created to see if the URI is cleared. If the provider honors the
Everyone subject it is also selected here.

a. The WebResourcePermission object is constructed with the urlPattern and the HTTP method
accessed.

b. A ProtectionDomain object with a null principal name is created.

1692 Administering WebSphere applications



c. The JACC provider Policy.implies method is called with the permission and the protection domain.
If the URI access is cleared or given access to the Everyone subject, the provider permits access
(return true) in the implies method. Access is then granted without further checks.

2. If access is not granted in the previous step, a WebUserDataPermission object is created and used to
see if the Uniform Resource Identifier (URI) is precluded, excluded or must be redirected using the
HTTPS protocol.

a. The WebUserDataPermission object is constructed with the urlPattern accessed, the HTTP method
invoked, and the transport type of the request. If the request is over HTTPS, the transport type is
set to CONFIDENTIAL; otherwise, null is passed.

b. A ProtectionDomain object with a null principal name is created.

c. The JACC provider Policy.implies method is called with the permission and the protection domain.
If the request is using the HTTPS protocol and the implies method returns false, the HTTP 403
error is returned to imply excluded and precluded permission. In this case no further checks are
performed. If the request is not using the HTTPS protocol, and the implies returns false, the
request is redirected over HTTPS.

3. The security runtime attempts to authenticate the user. If the authentication information already exists
(for example, LTPA token), it is used. Otherwise, the user's credentials must be entered.

4. After the user credentials are validated, a final authorization check is performed to see if the user is
granted access privileges to the URI.

a. As in Step 1, the WebResourcePermission object is created. The ProtectionDomain object now
contains the Principal that is attempting to access the URI. The Subject policy context handler also
contains the user's information, which can be used for the access check.

b. The provider implies method is called using the Permission object and the ProtectionDomain object
created previously. If the user is granted permission to access the resource, the implies method
returns true. If the user is not granted access, the implies method returns false.

Even if the order listed previously is changed later (for example, to improve performance) the end result is
the same. For example, if the resource is precluded or excluded, the end result is that the resource cannot
be accessed.

For more information on these access permissions, see the JSR-000115 Java Authorization Contract for
Containers (Final Release).

Using information from the Subject for access decision

If the provider relies on the WebSphere Application Server generated Subject for access decision, the
provider can query the public credentials in the Subject to obtain the WSCredential credential. The
WSCredential API is used to obtain information about the user, including the name and the groups that the
user belongs to. This information is used to make the access decision.

If the provider adds the required information to the Subject, WebSphere Application Server can use the
information to make the access decision. The provider might add the information by using the Trust
Association Interface feature or by plugging login modules into the Application Server.

The security attribute propagation section contains additional documentation on how to add the
WebSphere Application Server required information to the Subject. For more information, see “Propagating
security attributes among application servers” on page 1589.

Dynamic module updates in JACC

WebSphere Application Server supports dynamic updates to web modules under certain conditions. If a
web module is updated, deleted or added to an application, only that module is stopped and started as
appropriate. The other existing modules in the application are not impacted, and the application itself is not
stopped and then restarted.

Chapter 19. Administering application security 1693



When using the default authorization engine, any security policies are modified in the web modules and
the application is stopped and then restarted. When using the Java Authorization Contract for Containers
(JACC) based authorization, the behavior depends on the functionality that a provider supports. If a
provider can handle dynamic changes to the web modules, then only the web modules are impacted.
Otherwise, the entire application is stopped and restarted for the new changes in the web modules to take
effect.

A provider can indicate if it supports the dynamic updates by configuring the Supports dynamic module
updates option in the JACC configuration model (see “Authorizing access to Java EE resources using
Tivoli Access Manager” on page 1710 for more information). This option can be enabled or disabled using
the administrative console or by scripting. It is expected that most providers store the policy information in
their external repository, which makes it possible for them to support these dynamic updates. This option
should be enabled by default for most providers.

When the Supports dynamic module updates option is enabled, if a web module that contains security
roles is dynamically added, modified, or deleted, only the specific web modules are impacted and
restarted. If the option is disabled, the entire application is restarted. When dynamic updates are
performed, the security policy information of the modules impacted are propagated to the provider. For
more information about security policy propagation, see “JACC policy propagation” on page 1696.

Initialization of the JACC provider

If a Java Authorization Contract for Containers (JACC) provider requires initialization during server startup,
for example, to enable the client code to communicate to the server code, the provider can implement the
com.ibm.wsspi.security.authorization.InitializeJACCProvider interface. See “Interfaces that support JACC”
on page 1728 for more information.

When this interface is implemented, it is called during server startup. Any custom properties in the JACC
configuration model are propagated to the initialize method of this implementation. The custom properties
can be entered using either the administrative console or by scripting.

During server shutdown, the cleanup method is called for any clean-up work that a provider requires.
Implementation of this interface is strictly optional, and is used only if the provider requires initialization
during server startup.

Mixed node environment and JACC

Authorization using Java Authorization Contract for Containers (JACC) is a new feature in WebSphere
Application Server Version 6.0.x. Also, the JACC configuration is set up at the cell level and is applicable
for all the nodes and servers in that cell.

If you are planning to use the JACC-based authorization, the cell must contain Version 6.0.x and later
nodes only. This restriction implies that a mixed node environment containing a set of Version 5.x nodes in
a Version 6.0.x or later cell is not supported.

JACC providers:

The Java Authorization Contract for Containers (JACC) is a specification that was first introduced in Java
Platform, Enterprise Edition (Java EE) Version 1.4 through the Java Specifications Request (JSR) 115
process. JACC specification 1.4 is included for WebSphere Application Server version 7.0 for Java EE 5
support.. This specification defines a contract between Java EE 5 containers and authorization providers.

The contract enables third-party authorization providers to plug into Java EE 5 application servers, such as
WebSphere Application Server, to make the authorization decisions when a Java EE 5 resource is
accessed. The access decisions are made through the standard java.security.Policy object.

1694 Administering WebSphere applications



To plug in to WebSphere Application Server, the third-party JACC provider must implement the policy
class, policy configuration factory class, and policy configuration interface, which are all required by the
JACC specification.

The JACC specification does not specify how to handle the authorization table information between the
container and the provider. It is the responsibility of the provider to provide some management facilities to
handle this information. The container is not required to provide the authorization table information in the
binding file to the provider.

WebSphere Application Server provides the RoleConfigurationFactory and the RoleConfiguration role
configuration interfaces to help the provider obtain information from the binding file, as well as an
initialization interface (InitializeJACCProvider). The implementation of these interfaces is optional. See
“Interfaces that support JACC” on page 1728 for more information about these interfaces.

Tivoli Access Manager as the default JACC provider for WebSphere Application Server

The JACC provider in WebSphere Application Server is implemented by both the client and the server
pieces of the Tivoli Access Manager. The client piece of Tivoli Access Manager is embedded in
WebSphere Application Server. The server piece is located on a separate installable CD that is shipped as
part of the WebSphere Application Server, Network Deployment (ND) package.

The JACC provider is not the default authorization. You must configure WebSphere Application Server to
use the JACC provider.

JACC policy context handlers:

WebSphere Application Server supports all of the policy context handlers that are required by the Java
Authorization Contract for Containers (JACC) specification. However, due to performance impacts, the
Enterprise JavaBeans (EJB) arguments policy context handler is not activated unless it is specifically
required by the provider. Performance impacts result if objects must be created for each argument of each
EJB method.

If the provider supports and requires this context handler, select the Requires the EJB arguments policy
context handler for access decisions check box in the External JACC provider link under the
Authorization providers panel or by using scripting. Any changes to this option are effective after the
servers are restarted. By default this option is disabled. Disable this option when using Tivoli Access
Manager as the JACC provider, because the argument values are not required for access decisions.

JACC policy context identifiers (ContextID) format:

A policy context identifier is defined as a unique string that represents a policy context. A policy context
contains all of the security policy statements as defined by the Java Contract for Containers (JACC)
specification that affect access to the resources in a web or Enterprise JavaBeans (EJB) module.

During policy propagation to the JACC provider, a PolicyConfiguration object is created for each policy
context. The object is populated with the policy statements, represented by the JACC permission objects
that correspond to the context. The object is propagated to the JACC provider using the JACC
specification APIs.

Note: The following information is include for planning purposes and is only applicable if you intend to
federate in the future.

WebSphere Application Server makes the contextID unique by using the href:cellName/appName/
moduleName string as the contextID format for the modules. The href part of the string indicates that a
hierarchical name is passed as the context ID. The cellName represents the name of the deployment
manager cell or the base cell where the application is installed.

Chapter 19. Administering application security 1695



The appName part of the string in the context ID represents the application name containing the module.
The moduleName refers to the name of the module.

As an example, the context ID for the module Increment.jar file in an application named
DefaultApplication that is installed in cell1 is the href:cell1/DefaultApplication/Increment.jar file.

JACC policy propagation:

When an application is installed or deployed in WebSphere Application Server, the security policy
information in the application is propagated to the provider when the configuration is saved. The context ID
for the application is saved in its application.xml file, that is used for propagating the policy to the Java
Authorization Contract for Containers (JACC) provider, and also for access decisions for Java Platform,
Enterprise Edition (Java EE) resources.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

When an application is uninstalled, the security policy information in the application is removed from the
provider when the configuration is saved.

If the provider implemented the RoleConfiguration interface, the security policy information that is
propagated to the policy provider also contains the authorization table information. See “Interfaces that
support JACC” on page 1728 for more information about this interface.

If an application does not contain security policy information, the PolicyConfiguration (and the
RoleConfiguration, if implemented) objects do not contain any information. The existence of empty
PolicyConfiguration and RoleConfiguration objects indicates that security policy information for the module
does not exist.

After an application is installed, it can be updated without being uninstalled and reinstalled. For example, a
new module can be added to an existing application, or an existing module can be modified. In this
instance, the information in the impacted modules is propagated to the provider by default. A module is
impacted when the deployment descriptor of the module or annotations within the module are changed as
part of the update. If the provider supports the RoleConfiguration interfaces, the entire authorization table
for that application is propagated to the provider.

If the security information is not propagated to the provider during application updates, you can set the
com.ibm.websphere.security.jacc.propagateonappupdate Java virtual machine (JVM) property to false in
the deployment manager, in a Network Deployment environment, or the unmanaged base application
server. If this property is set to false, any updates to an existing application in the server are not
propagated to the provider. You also can set this property on a per-application basis using the custom
properties of an application. The wsadmin tool can be used to set the custom property of an application. If
this property is set at the application level, any updates to that application are not propagated to the
provider. If the update to an application is a full update, for example, a new application enterprise archive
(EAR) file is used to replace the existing one, and the provider is refreshed with the entire application
security policy information.

As mentioned earlier, the security policy information is propagated to the JACC provider during the save
operation. The SystemOut.log file indicates the success or failure of the propagation to the provider. Check
the log file after the installation to ensure that the propagation had no problems. If the propagation had any
problems, access to the application fails when Tivoli Access Manager is used as the JACC provider.

1696 Administering WebSphere applications



If the security policy information for the application is successfully propagated to the provider, the audit
statements with the message key SECJ0415I appear. However, if there was a problem propagating the
security policy information to the provider (for example: network problems, JACC provider is not available),
the SystemOut.log files contain the error message with the message keys SECJ0396E during install or
SECJ0398E during modification. The installation of the application is not stopped due to a failure to
propagate the security policy to the JACC provider. Also, in the case of failure, no exception or error
messages appear during the save operation. When the problem causing this failure is fixed, run the
propagatePolicyToJaccProvider tool to propagate the security policy information to the provider without
reinstalling the application. For more information, see Propagating security policy of installed applications
to a JACC provider using wsadmin scripting.

JACC registration of the provider implementation classes:

The JACC specification states that providers can plug in their provider using the
javax.security.jacc.policy.provider and the javax.security.jacc.PolicyConfigurationFactory.provider system
properties.

The javax.security.jacc.policy.provider property is used to set the policy object of the provider, while the
javax.security.jacc.PolicyConfigurationFactory.provider property is used to set the provider
PolicyConfigurationFactory implementation.

Although both system properties are supported in WebSphere Application Server, it is highly recommended
that you use the configuration model that is provided. You can set these values using either the JACC
configuration panel (see “Authorizing access to Java EE resources using Tivoli Access Manager” on page
1710 for more information) or by using wsadmin scripting. One of the advantages of using the
configuration model instead of the system properties is that the information is entered in one place at the
cell level, and is propagated to all nodes during synchronization. Also, as part of the configuration model,
additional properties can be entered, as described in the JACC configuration panel.

Role-based security with embedded Tivoli Access Manager:

The Java Platform, Enterprise Edition (Java EE) role-based authorization model uses the concepts of roles
and resources. An example is provided here.

Table 133. Roles.

This table is an example of role-based security with embedded Tivoli Access Manager.
Roles getBalance deposit closeAccount

Teller granted granted

Cashier granted

Supervisor granted

In the example of the banking application that is conceptualized in the previous table, three roles are
defined: teller, cashier, and supervisor. Permission to perform the getBalance, deposit, and closeAccount
application methods are mapped to these roles. From the example, you can see that users assigned the
role, Supervisor, can run the closeAccount method, whereas the other two roles are unable to run this
method.

The term, principal, within WebSphere Application Sever security refers to a person or a process that
performs activities. Groups are logical collections of principals that are configured in WebSphere
Application Server to promote the ease of applying security. Roles can be mapped to principals, groups, or
both.

Chapter 19. Administering application security 1697



Table 134. Roles methods. The entry that is invoked in the following table indicates that the principal or group can
invoke any methods that are granted to that role.
Principal/Group Teller Cashier Supervisor

TellerGroup Invoke

CashierGroup Invoke

SupervisorGroup

Frank: A principal who is not a
member of any of the previous
groups

Invoke Invoke

In the previous example, the principal Frank, can invoke the getBalance and the closeAccount methods,
but cannot invoke the deposit method because this method is not granted either the Cashier or the
Supervisor role.

At the time of application deployment, the Java Authorization Contract for Container (JACC) provider of
Tivoli Access Manager populates the Tivoli Access Manager-protected object space with any security
policy information that is contained in the application deployment descriptor and or annotations. This
security information is used to determine access whenever the WebSphere Application Server resource is
requested.

By default, the Tivoli Access Manager access check is performed using the role name, the cell name, the
application name, and the module name.

Tivoli Access Manager access control lists (ACLs) determine which application roles are assigned to a
principal. ACLs are attached to the applications in the Tivoli Access Manager-protected object space at the
time of application deployment.

Principal-to-role mappings are managed from the WebSphere Application Server administrative console
and are never modified using Tivoli Access Manager. Direct updates to ACLs are performed for
administrative security users only.

The following sequence of events occur:

1. During application deployment, policy information is sent to the JACC provider of Tivoli Access
Manager . This policy information contains permission-to-role mappings and role-to-principal and
role-to-group mapping information.

2. The JACC provider of Tivoli Access Manager converts the information into the required format, and
passes this information to the Tivoli Access Manager policy server.

3. The policy server adds entries to the Tivoli Access Manager-protected object space to represent the
roles that are defined for the application and the permission-to-role mappings. A permission is
represented as a Tivoli Access Manager-protected object and the role that is granted to this object is
attached as an extended attribute.

Tivoli Access Manager integration as the JACC provider:

Tivoli Access Manager uses the Java Authorization Contract for Container (JACC) model in WebSphere
Application Server to perform access checks.

Tivoli Access Manager consists of the following components:

v Run time

v Client configuration

v Authorization table support

v Access check

v Authentication using the PDLoginModule module

1698 Administering WebSphere applications



For the run-time changes, Tivoli Access Manager implements the PolicyConfigurationFactory and the
PolicyConfiguration interfaces, as required by JACC. During the application installation, the security policy
information in the deployment descriptor and the authorization table information in the binding files are
propagated to the Tivoli provider using these interfaces. The Tivoli provider stores the policy and the
authorization table information in the Tivoli Access Manager policy server by calling the respective Tivoli
Access Manager application programming interfaces (API).

Tivoli Access Manager also implements the RoleConfigurationFactory and the RoleConfiguration
interfaces. These interfaces are used to ensure that the authorization table information is passed to the
provider with the policy information. See “Interfaces that support JACC” on page 1728 for more information
about these interfaces.

To configure the Tivoli Access Manager client, you can use either the administrative console or wsadmin
scripting. You can access the administrative console panels for the Tivoli Access Manager client
configuration by clicking Security > Global security > External authorization providers. Under Related
Items, click External JACC provider. The Tivoli client must be set up to use the Tivoli Access Manager
JACC Provider.

For more information about how to configure the Tivoli Access Manager client, see “Tivoli Access Manager
JACC provider configuration” on page 1718.

Tivoli Access Manager uses the RoleConfiguration interface to ensure that the authorization table
information is passed to the Tivoli Access Manager provider when the application is installed or deployed.
When an application is deployed or edited, the set of users and groups for the user or group-to-role
mapping are obtained from the Tivoli Access Manager server, which shares the same Lightweight Directory
Access Protocol (LDAP) server as WebSphere Application Server. This sharing is accomplished by
plugging into the application management users or groups-to-role administrative console panels. The
management APIs are called to obtain users and groups rather than relying on the WebSphere Application
Server-configured LDAP registry.

When WebSphere Application Server is configured to use the JACC provider for Tivoli Access Manager , it
passes the information to Tivoli Access Manager to make the access decision. The Tivoli Access Manager
policy implementation queries the local replica of the access control list (ACL) database for the access
decision.

The custom login module in WebSphere Application Server can do the authentication. This login module is
plugged in before the WebSphere Application Server-provided login modules. The custom login modules
can provide information that can be stored in the Subject. If the required information is stored, no
additional registry calls are made to obtain that information.

As part of the JACC integration, the Tivoli Access Manager-provided PDLoginModule module is also used
to plug into WebSphere Application Server for Lightweight Third Party Authentication (LTPA), Kerberos
(KRB5) and Simple WebSphere Authentication Mechanism (SWAM) authentication. The PDLoginModule
module is modified to authenticate with the user ID or password. The module is also used to fill in the
required attributes in the Subject so that no registry calls are made by the login modules in WebSphere
Application Server. The information that is placed in the Subject is available for the Tivoli Access Manager
policy object to use for access checking.

Note: SWAM is deprecated in WebSphere Application Server Version 8.5 and will be removed in a future
release.

Note: When using Kerberos authentication mechanism and Tivoli Access Manager, TAM loginModule
creates the PDPrincipal without first going through the Tivoli Access Manager authentication
process. Also when using Kerberos authentication mechanism and Tivoli Access Manager, the Tivoli
Access Manager policy is not enforced starting in WebSphere Application Server Version 7.0.

Chapter 19. Administering application security 1699



Tivoli Access Manager security for WebSphere Application Server:

WebSphere Application Server provides embedded IBM Tivoli Access Manager client technology to secure
your WebSphere Application Server-managed resources.

The benefits of using Tivoli Access Manager that are described here are only applicable when Tivoli
Access Manager client code is used with the Tivoli Access Manager server:

v Robust container-based authorization

v Centralized policy management

v Management of common identities, user profiles, and authorization mechanisms

v Single-point security management for Java Platform, Enterprise Edition (Java EE) compliant and
non-compliant Java EE resources using the administrative console for Tivoli Access Manager Web
Portal Manager

v No requirements for coding or deployment changes to applications

v Easy management of users, groups, and roles using the WebSphere Application Server administrative
console

WebSphere Application Server supports the Java Authorization Contract for Containers (JACC)
specification. JACC details the contract requirements for Java EE containers and authorization providers.
With this contract, authorization providers can perform the access decisions for resources in Java EE
application servers such as WebSphere Application Server. The Tivoli Access Manager security utility that
is embedded within WebSphere Application Server is JACC-compliant and is used to:

v Add security policy information when applications are deployed

v Authorize access to WebSphere Application Server-secured resources.

When applications are deployed, the embedded Tivoli Access Manager client takes any policy and or user
and role information that is stored within the application deployment descriptor or using annotations and
stores it within the Tivoli Access Manager Policy Server.

The Tivoli Access Manager JACC provider is also called when a user requests access to a resource that is
managed by WebSphere Application Server.

1700 Administering WebSphere applications



The previous figure illustrates the following sequence of events:

1. Users that access protected resources are authenticated using the Tivoli Access Manager login module
that is configured for use when the embedded Tivoli Access Manager client is enabled.

2. The WebSphere Application Server container uses information from the Java EE application
deployment descriptor and annotations to determine the required role membership.

3. WebSphere Application Server uses the embedded Tivoli Access Manager client to request an
authorization decision from the Tivoli Access Manager authorization server. Additional context
information, when present, is also passed to the authorization server. This context information is
comprised of the cell name, Java EE application name, and Java EE module name. If the Tivoli Access
Manager policy database has policies that are specified for any of the context information, the
authorization server uses this information to make the authorization decision.

4. The authorization server consults the permissions that are defined for the specified user within the
Tivoli Access Manager-protected object space. The protected object space is part of the policy
database.

5. The Tivoli Access Manager authorization server returns the access decision to the embedded Tivoli
Access Manager client.

6. WebSphere Application Server either grants or denies access to the protected method or resource,
based on the decision that is returned from the Tivoli Access Manager authorization server.

At its core, Tivoli Access Manager provides an authentication and authorization framework. You can learn
more about Tivoli Access Manager, including the information that is necessary to make deployment
decisions, by reviewing the product documentation. The following guides are available in the IBM Tivoli
Access Manager for e-business Information Center:

v IBM Tivoli Access Manager for e-business Installation Guide

This guide describes how to plan, install, and configure a Tivoli Access Manager secure domain. Using
a series of easy installation scripts, you can quickly deploy a fully functional secure domain. These
scripts are very useful when prototyping the deployment of a secure domain.

Figure 35. Embedded Tivoli Access Manager client architecture

Chapter 19. Administering application security 1701



To access this guide in the IBM Tivoli Access Manager for e-business information center, click Access
Manager for e-business > Installation and upgrade information > Installation Guide.

v IBM Tivoli Access Manager for e-business Administration Guide

This document presents an overview of the Tivoli Access Manager security model for managing
protected resources. This guide describes how to configure the Tivoli Access Manager servers that
make access control decisions. In addition, detailed instructions describe how to perform important
tasks, such as declaring security policies, defining protected object spaces, and administering user and
group profiles.

To access this guide in the IBM Tivoli Access Manager for e-business information center, click Access
Manager for e-business >Administration Information > Administration Guide.

The previous figure is an example architecture showing WebSphere Application Servers secured by Tivoli
Access Manager.

The participating WebSphere Application Servers use a local replica of the Tivoli Access Manager policy
database to make authorization decisions for incoming requests. The local policy databases are replicas of
the master policy database. The master policy database is installed as part of the Tivoli Access Manager

Figure 36. Tivoli Access Manager provides centralized administration of multiple servers

1702 Administering WebSphere applications



installation. Having policy database replicas on each participating WebSphere Application Server node
optimizes performance when making authorization decisions and provides failover capability.

Although the authorization server can also be installed on the same system as WebSphere Application
Server, this configuration is not illustrated in the diagram.

All instances of Tivoli Access Manager and WebSphere Application Server in the example architecture
share the Lightweight Directory Access Protocol (LDAP) user registry on Machine E.

The LDAP registries that are supported by WebSphere Application Server are also supported by Tivoli
Access Manager.

It is possible to have separate WebSphere Application Server profiles on the same host that is configured
for different Tivoli Access Manager servers. Such an architecture requires that the profiles are configured
for separate Java SE Runtime Environments (JRE 6) and therefore you need multiple JREs installed on
the same host.

Note: Even though all WebSphere Application Server profiles on the same host share a single
JRE 6, you can configure separate WebSphere Application Server profiles on the same host for
different Tivoli Access Manager servers.

Security annotations:

Annotations are a powerful programming mechanism resulting from the JSR-175 recommendation. An
annotation is a standard way to include supported security behaviors while allowing, the source code and
configuration files to be generated automatically.

In Java Platform, Enterprise Edition (Java EE) 5 and later, The security roles and policies can be defined
using annotations as well as within the deployment descriptor. During the installation of the application, the
security policies and roles defined using annotations are merged with the security policies and roles
defined within the deployment descriptor. This merge is performed by the Annotations Metadata Manager
(AMM) facility. When the metadata is merged, the following inheritance rules are followed.

Table 135. Metadata merger inheritance rules.

This table lists the metadata merger inheritance rules.
Scenario Rules

Security metadata in deployment descriptor only No merge is needed, the security metadata from the deployment
descriptor is propagated.

Security metadata in annotations only No merge is needed, the security metadata defined with annotations is
propagated.

Security metadata in deployment descriptor and annotations The metadata from the deployment descriptor and annotations is merged.
The metadata in annotations is overridden by the same type of data from
the deployment descriptor.

Six security annotations are currently supported. For each annotation, a MergeAction implementation is
defined.

v @DeclareRoles (Servlet 2.5 and greater and EJB 3)

The MergeAction implementation finds all the classes annotated with the DeclareRoles annotation.
Within each annotated class for each role name specified, if the security roles listed in the deployment
descriptor does not contain a SecurityRole with the annotated role name, a new SecurityRole is created
and added to this list of security roles.

v @RunAs (Servlet 2.5 and greater and EJB 3)

The MergeAction implementation finds all the classes with the RunAs annotation. For each annotated
class, it finds the Servlet or the Enterprise Java Bean (EJB) associated with the given class. It then
determines if a run-as element is defined in the deployment descriptor for the servlet or EJB. If one is

Chapter 19. Administering application security 1703



not found, a new run-as element is created and added to the deployment descriptor. If a run-as element
is found, this run-as element will be used instead of creating a new one. The role name used in the
RunAs annotation must be defined in the deployment descriptor.

v @DenyAll (EJB 3 only)

The MergeAction implementation finds all the methods annotated with the DenyAll annotation. For each
annotated method, if the method is not included in the deployment descriptor list of excluded methods,
and a MethodPermission does not exist in the deployment descriptor, a new MethodElement is created
and added to this list of excluded methods in the deployment descriptor.

v @PermitAll (EJB 3 only)

The MergeAction implementation finds all the classes and the methods with the PermitAll annotation.
For each annotated class, it finds the Enterprise Java Bean (EJB) associated with the given class. It
then searches the subset of the MethodElements in the list of all the MethodPermissions defined in the
deployment descriptor for this EJB. If a MethodElement with a wildcard method name (“*”) is not found
and a wildcard method does not exist in the list of excluded methods or in the list of MethodElements
with security roles, a new MethodPermission and a new MethodElement are created. The new
MethodPermission is marked unchecked and is added to the MethodPermission list in the deployment
descriptor. The new MethodElement is added to the MethodElement list of the newly created unchecked
MethodPermission. Similar action is done for all annotated methods. Instead of a wildcard
MethodElement, the method signature must match exactly the signature of the annotated method.

v @RolesAllowed (EJB 3 only)

The MergeAction implementation finds all of the classes and methods with the RolesAllowed annotation.
For each annotated class, it finds the EJB associated with the given class. It then finds the subset of
the MethodElements in the list of all the MethodPermissions defined in the deployment descriptor for
this EJB. If a MethodElement with a wildcard method name (“*”) is not found, and a wildcard method
does not exist in the list of excluded methods or in the list of unchecked MethodElements, a new
MethodPermission and MethodElement are created. If a MethodPermission for this EJB exists with
exactly the same roles as those found in the annotation, this MethodPermission will be used instead of
creating a new one. For each role name specified in the annotation, a new SecurityRole is created and
added to the SecurityRole list in the MethodPermission, If the MethodPermission was newly created, it
is added to the MethodPermission list in the deployment descriptor. The new MethodElement created is
added to the MethodElement list of the MethodPermission. Similar processing is done for all annotated
methods. Instead of a wildcard MethodElement, the method signature must exactly match the signature
of the annotated method. Additionally, for each role name specified in the annotation, if the deployment
descriptor list of security roles does not contain a SecurityRole with the annotated role name, a new
SecurityRole is also created and added to this list of security roles.

v @ServletSecurity (Servlet 3.0 only)

Note: Support for ServletSecurity annotation for Servlet 3.0 is new in this release of WebSphere
Application Server.

When an application deploys, the ServletSecurity MergeAction implementation finds all servlets
with the ServletSecurity annotation. For each annotated servlet, it finds the servlet associated
with the given class base on the WebServlet annotation. If RolesAllowed in the ServletSecurity
annotation is not found in the deployment descriptor, it then creates a role-name attribute for the
role in the deployment descriptor.

When an application starts, the WebContainer inspects all servlets with the RunAs, declareRoles,
and ServletSecurity annotations, and sets those annotations on the setServletSecurity() method
of the ServletRegistration annotation. The WebContainer notifies the security component to
inspect all ServletRegistration annotations that have URL patterns and security constraints. The
security component then determines if a URL pattern is defined in the deployment descriptor. If
one is not defined in the deployment descriptor, the security constraints and RunAs role in the
URL pattern are created and then used. If an exact match is already defined in the deployment

1704 Administering WebSphere applications



descriptor, the security constraints and RunAs role in the URL pattern of the deployment
descriptor are used instead of the annotation data.

Note: When the web authentication system property, com.ibm.wsspi.security.web.webAuthReq, is set to
persisting, you can log into an unprotected URL if a valid username and password are
provided.

The Inherited servlet annotation is a metadata annotation. Do not specify the Inherited annotation in the
class. If a subclass does not have security annotation, it automatically inherits security annotation from
the parent class. The subclass can overwrite the parent security annotations by specifying its security
annotations.

The following example is for all HTTP methods with no constraints:
@WebServlet ("/Example")
@ServletSecurity
public class Example extends HttpServlet {

......
}

The following example is for all HTTP methods with no <auth-constraint> element and confidential
TransportGuarantee required:

@WebServlet ("/Example")
@ServletSecurity(@HttpConstraint(transportGuarantee =

TransportGuarantee.CONFIDENTIAL))
public class Example extends HttpServlet {

......
}

The following example is for all HTTP methods with all access denied:
@WebServlet ("/Example")
@ServletSecurity(@HttpConstraint(EmptyRoleSemantic.DENY))
public class Example extends HttpServlet {

......
}

The following example is for all HTTP methods except for the GET and POST values with no
constraints. For GET, the <auth-constraint> element requires membership in ALL ROLE. For POST, all
access is denied.

@WebServlet (name="Example", urlPatterns={"/Example"})
@ServletSecurity((httpMethodConstraints = {
@HttpMethodConstraint(value = "GET", rolesAllowed = “ALL ROLE"),
@HttpMethodConstraint(value="POST“, emptyRoleSemantic =
EmptyRoleSemantic.DENY))
})
public class Example extends HttpServlet {

......
}

The following example is for all HTTP methods except GET, the <auth-constraint> element requires
membership in ALL ROLE, and the GET method has no constraints.

@WebServlet (name="Example", urlPatterns={"/Example"})
@ServletSecurity(value = @HttpConstraint(rolesAllowed = "ALL ROLE"),
httpMethodConstraints = @HttpMethodConstraint("GET"))
public class Example extends HttpServlet {

......
}

The following example is for all HTTP methods except TRACE, the <auth-constraint> element requires
membership in ALL ROLE, and for TRACE, all access is denied.

@WebServlet (name="Example", urlPatterns={"/Example"})
@ServletSecurity(value = @HttpConstraint(rolesAllowed = "ALL ROLE"),
httpMethodConstraints = @HttpMethodConstraint(value="TRACE",
emptyRoleSemantic = EmptyRoleSemantic.DENY))
public class Example extends HttpServlet {

......
}

Java Servlet 3.0 support for security:

This release of WebSphere Application Server supports all security updates as defined in the Java Servlet
3.0 specification.

Chapter 19. Administering application security 1705



This release of WebSphere Application Server supports all security updates as defined in the Java Servlet
3.0 specification (JSR-315), including the new servlet security annotations, use of new programmatic
security APIs and the dynamic updating of the servlet security configuration.

A significant enhancement is the new annotation support for servlets. A developer can declare the security
constraints using annotations as an alternative to declaring them as part of the web.xml file, which is used
prior to Java Servlet 3.0. The web.xml file continues to function and overrides any conflicts defined as
annotations.

The list of supported Java Servlet 3.0 updates for security includes the following:

v Support for the @ServletSecurity annotation

v Support for the dynamic updating of the @RunAs, @declareRoles, and @ServletSecurity servlet
security annotations

v Support for the authenticate, login and logout servlet security methods

v The new com.ibm.websphere.security.displayRealm property specifies whether the HTTP basic
authentication login window displays the realm name that is not defined in the application web.xml file.

The following discusses the Java Servlet 3.0 updates for security in more detail:

Support for the @ServletSecurity annotation:

When an application deploys, the ServletSecurity MergeAction implementation finds all servlets with the
ServletSecurity annotation. For each annotated servlet, it finds the servlet associated with the given class
base on the WebServlet annotation. If RolesAllowed in the ServletSecurity annotation is not found in the
deployment descriptor, it then creates a role-name attribute for the role in the deployment descriptor.

When an application starts, the WebContainer inspects all servlets with the RunAs, declareRoles, and
ServletSecurity annotations, and sets those annotations on the setServletSecurity() method of the
ServletRegistration annotation. The WebContainer notifies the security component to inspect all
ServletRegistration annotations that have URL patterns and security constraints. The security component
then determines if a URL pattern is defined in the deployment descriptor. If one is not defined in the
deployment descriptor, the security constraints and RunAs role in the URL pattern are created and then
used. If an exact match is already defined in the deployment descriptor, the security constraints and
RunAs role in the URL pattern of the deployment descriptor are used instead of the annotation data.

Read the Security annotations topic for more information.

Support for the dynamic updating of the @RunAs, @declareRoles, and @ServletSecurity servlet security
annotations:

When an application starts, the web container inspects all servlets with the RunAs, declareRoles, and
ServletSecurity annotations, and sets those annotations on the setServletSecurity() method of the
ServletRegistration annotation. The web container notifies the security component to inspect all
ServletRegistration annotations that have URL patterns and security constraints. The security component
then determines if a URL pattern is defined in the deployment descriptor. If an exact match is already
defined in the deployment descriptor, the security constraints and RunAs role in the URL pattern of the
deployment descriptor are used instead of the dynamic data.

Read the Servlet security dynamic annotations topic for more information.

Note: WebSphere Application Server supports both a default authorization provider and an authorization
provider that is based on the Java Authorization Contract for Containers (JACC) specification. The
JACC-based authorization provider (for example, the Tivoli Access Manager), enables third-party
security providers to handle the Java EE authorization. The RunAs, declareRoles, and
ServletSecurity annotations are supported for both native authorization and for JACC.

1706 Administering WebSphere applications



Support for the authenticate, login and logout servlet security methods:

The authenticate method authenticates a user by using the WebSphere Application Server container login
mechanism configured for the servlet context.

The login method authenticates a user to the WebSphere Application Server with a user ID and password.
If authentication is successful, it creates a user subject on the thread and Lightweight Third Party
Authentication (LTPA) cookies (if single sign-on (SSO) is enabled).

The logout method logs the user out of the WebSphere Application Server and invalidates the HTTP
session.

Read the Servlet security methods topic for more information.

The new com.ibm.websphere.security.displayRealm property specifies whether the HTTP basic
authentication login window displays the realm name that is defined in the application web.xml file:

If the realm name is not defined in the web.xml file, one of the following occurs:

v If the property is set to false (the default), the WebSphere realm name display is Default Realm.

v If the property is set to true, the WebSphere realm name display is the user registry realm name for the
LTPA authentication mechanism or the Kerberos realm name for the Kerberos authentication
mechanism.

Read the Security custom properties topic for more information.

Servlet security dynamic annotations:

When you use the programmatic APIs to add or to create a servlet, the security annotations, RunAs,
declareRoles and ServletSecurity, can be dynamically updated through the setRunAsRole(), declareRoles()
and setServletSecurity() methods respectively.

Note: Support for the dynamic updating of the RunAs, declareRoles, and ServletSecurity servlet security
annotations is new in this release of WebSphere Application Server.

When an application starts, the web container inspects all servlets with the RunAs, declareRoles, and
ServletSecurity annotations, and sets those annotations on the setServletSecurity() method of the
ServletRegistration annotation. The web container notifies the security component to inspect all
ServletRegistration annotations that have URL patterns and security constraints. The security component
then determines if a URL pattern is defined in the deployment descriptor. If an exact match is already
defined in the deployment descriptor, the security constraints and RunAs role in the URL pattern of the
deployment descriptor are used instead of the dynamic data.

Note: If the dynamic security annotations, declareRoles, setRunAs and rolesAllowed, are used, the role
name must be pre-defined, either through the deployment descriptor or through the declareRoles
and or RunAs annotations in the servlet class. During deployment time, you can use the
administrative console to map a user or group to this role.

If you have an exact URL pattern match for the ServletSecurity annotation in the security dynamic
annotation, the security constraint of the URL pattern in the security dynamic annotation takes precedent.
Also, if you call the setServletSecurity() method multiple times with the same URL pattern, the last one
takes precedent.

v ServletRegistration.Dynamic.setRunAsRole(String roleName) sets the name of the RunAs role for this
servlet registration.

v ServletContext.declareRoles(String roleNames) declares role names that are tested for the
isUserInRole() method.

Chapter 19. Administering application security 1707



v ServletRegistration.Dynmaic.setServletSecurity(ServletSecurityElement constraint) sets the
ServletSecurityElement for this servlet registration.

Note: When the web authentication system property, com.ibm.wsspi.security.web.webAuthReq, is set to
persisting, you can log into an unprotected URL if a valid username and password are provided.

The following two examples can be used to set the security constraints and RunAs role for dynamic
servlets by using the setServletSecurity() method.

In this example, all HTTP elements require membership in the Employee role except for the PUT method.
For the PUT method, the <auth-constraint> element requires membership in the Manager role and
TransportGuarantee is confidential.
HttpConstraintElement constraint = new HttpConstraintElement(TransportGuarantee.NONE,
new String[]{"Employee"});
List<HttpMethodConstraintElement> methodConstraints =
new ArrayList<HttpMethodConstraintElement>();
methodConstraints.add(new HttpMethodConstraintElement("PUT",
new HttpConstraintElement(TransportGuarantee.CONFIDENTIAL, new String[]{"Manager"})));
ServletSecurityElement servletSecurity =
new ServletSecurityElement(constraint, methodConstraints);

In this example, all HTTP methods are allowed except for the CUSTOM and GET methods. For the
CUSTOM method, the <auth-constraint> element requires membership in the Manager role. For the GET
method, the <auth-constraint> element requires membership in the Employee role, and
TransportGuarantee is confidential.
HttpConstraintElement constraint = new HttpConstraintElement();
List<HttpMethodConstraintElement> methodConstraints =
new ArrayList<HttpMethodConstraintElement>();
methodConstraints.add(new HttpMethodConstraintElement("CUSTOM",
new HttpConstraintElement(TransportGuarantee.NONE, new String[]{"Manager"})));
methodConstraints.add(new HttpMethodConstraintElement("GET",
new HttpConstraintElement(TransportGuarantee.CONFIDENTIAL, new String[]{"Employee"})));
ServletSecurityElement servletSecurity = new ServletSecurityElement(constraint,
methodConstraints);

Delegations
Delegation is a process security identity propagation from a caller to a called object. As per the Java
Platform, Enterprise Edition (Java EE) specification, a servlet and enterprise beans can propagate either
the client or remote user identity when invoking enterprise beans, or they can use another specified
identity as indicated in the corresponding deployment descriptor.

The extension supports enterprise bean propagation to the server ID when invoking other entity beans.
Three types of delegations are possible:
v Delegate (RunAs) client identity
v Delegate (RunAs) specified identity
v Delegate (RunAs) system identity

1708 Administering WebSphere applications



Note: The RunAs system identity delegation only works when server ID and password are used. When
the internalServerId feature is used, it does not work because runAs with system identity is not
supported. You must specify RunAs roles. When internalServerID is used, use the RunAsSpecified
with a user ID and password that is mapped to the administrator role. See “Administrative roles and
naming service authorization” on page 1679 for more information about internalServerId.

The EJB specification only supports delegation (RunAs) at the Enterprise JavaBeans (EJB) level. But an
extension allows EJB method-level RunAs specification. With an EJB method level, the RunAs
specification can specify a different RunAs role for different methods within the same enterprise beans.

The RunAs specification is detailed in the deployment descriptor, which is the ejb-jar.xml file in the EJB
module and the web.xml file in the web module. The extension to the RunAs specification is included in the
ibm-ejb-jar-ext.xml file.

An IBM-specific binding file is available for each application that contains a mapping from the RunAs role
to the user. This file is specified in the ibm-application-bnd.xml file.

These specifications are read by the runtime during application startup. The following figure illustrates the
delegation mechanism, as implemented in the WebSphere Application Server security model.

Chapter 19. Administering application security 1709



Delegation Process

Two tables help in the delegation process:
v Resource to RunAs role mapping table
v RunAs role to user ID and password mapping table

Use the Resource to RunAs role mapping table to get the role that is used by a servlet or by enterprise
beans to propagate to the next enterprise beans call.

Use the RunAsRole to user ID and password mapping table to get the user ID that belongs to the RunAs
role and its password.

Delegation is performed after successful authentication and authorization. During this process, the
delegation module consults the Resource to RunAs role mapping table to get the RunAs role (3). The
delegation module consults the RunAs role to user ID and password mapping table to get the user that
belongs to the RunAs role (4). The user ID and password is used to create a new credential using the
authentication module, which is not shown in the figure.

The resulting credential is stored in the Object Request Broker (ORB) Current as an invocation
credential (5). Servlet and enterprise beans when invoking other enterprise beans pick up the invocation
credential from the ORB Current (6) and call the next enterprise beans (7).

Authorizing access to Java EE resources using Tivoli Access Manager
The Java Authorization Contract for Containers (JACC) defines a contract between Java Platform,
Enterprise Edition (Java EE) containers and authorization providers. You can use the default authorization
or an external JACC authorization provider. When security is enabled in WebSphere Application Server,
the default authorization is used unless a JACC provider is specified.

1710 Administering WebSphere applications



Before you begin

JACC enables any third-party authorization providers to plug into a Java EE application server (such as
WebSphere Application Server) to make the authorization decisions when a Java EE resource is
accessed. By default, WebSphere Application Server implements the JACC provider by using Tivoli Access
Manager as the external authorization provider.

Read the following articles for more detailed information about JACC before you attempt to configure
WebSphere Application Server to use a JACC provider:

Procedure
v “JACC support in WebSphere Application Server” on page 1692

v “JACC providers” on page 1694

v “Tivoli Access Manager integration as the JACC provider” on page 1698

Using the built-in authorization provider
You can extend the capabilities of WebSphere Application Server by plugging in your own authorization
provider. You can use the built-in authorization or an external JACC authorization provider.

About this task

For an explanation of the administrative console panels that support these capabilities, see:

Procedure
v Use the built-in authorization provider. It is recommended that you do not modify any settings on the

authorization provider panels if you use the Built-in authorization option. For more information, see
“External authorization provider settings.”

v Use an external authorization provider. If you use the External authorization using a JACC provider
option, the external providers must be based on the Java Authorization Contract for Containers (JACC)
specification to handle the Java Platform, Enterprise Edition (Java EE) authorization. By default,
WebSphere Application Server enables you to configure the Tivoli Access Manager Java Authorization
Contract for Containers (JACC) provider as the default external JACC provider. For more information,
see “External Java Authorization Contract for Containers provider settings” on page 1712 and “Tivoli
Access Manager JACC provider settings” on page 1719.

External authorization provider settings:

Use this page to enable a Java Authorization Contract for Containers (JACC) provider for authorization
decisions.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Click External authorization providers.

The application server provides a default authorization engine that performs all of the authorization
decisions. In addition, the application server also supports an external authorization provider using the
JACC specification to replace the default authorization engine for Java Platform, Enterprise Edition (Java
EE) applications.

JACC is part of the Java EE specification, which enables third-party security providers such as Tivoli
Access Manager to plug into the application server and make authorization decisions.

Chapter 19. Administering application security 1711



Important: Unless you have an external JACC provider or want to use a JACC provider for Tivoli Access
Manager that can handle Java EE authorizations based on JACC, and it is configured and set
up to use with the application server, do not enable External authorization using a JACC
provider.

Built-in authorization:

Use this option all the time unless you want an external security provider such as the Tivoli Access
Manager to perform the authorization decision for Java EE applications that are based on the JACC
specification.

External JACC provider: Use this link to configure the application server to use an external JACC
provider. For example, to configure an external JACC provider, the policy class name and the policy
configuration factory class name are required by the JACC specification.

The default settings that are contained in this link are used by Tivoli Access Manager for authorization
decisions. If you intend to use another provider, modify the settings as appropriate.

External Java Authorization Contract for Containers provider settings:

Use this page to configure the application server to use an external Java Authorization Contract for
Containers (JACC) provider. For example, the policy class name and the policy configuration factory class
name are required by the JACC specification.

Use these settings when you have set up an external security provider that supports the JACC
specification to work with the application server. The configuration process involves installing and
configuring the provider server and configuring the client of the provider in the application server to
communicate with the server. If the JACC provider is not enabled, these settings will be ignored.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Click External authorization providers.

3. Under Authorization provider, click External JACC provider.

Use the default settings when you use Tivoli Access Manager as the JACC provider. Install and configure
the Tivoli Access Manager server prior to using it with the application server. Use the Tivoli Access
Manager properties link under Additional properties, and configure the Tivoli Access Manager client in the
application server to use the Tivoli Access Manager server. If you intend to use another provider, modify
the settings as appropriate.

Name:

Specifies the name that is used to identify the external JACC provider.

This field is required.

Information Value
Data type: String

Description:

Provides an optional description for the provider.

Information Value
Data type: String

1712 Administering WebSphere applications



Policy class name:

Specifies a fully qualified class name that represents the javax.security.jacc.policy.provider property as per
the JACC specification. The class represents the provider-specific implementation of the
java.security.Policy abstract methods.

The class file for the custom JACC provider must reside in the WAS-INSTALL/lib/ext directory. This
enables the application server, node agents, and the deployment manager to operate correctly.

Do not add the Java archive (JAR) file, which contains the class file, to the <WAS_HOME>/lib directory in a
product environment as service releases overwrite files in this directory.

This class is used during authorization decisions. The default class name is for Tivoli Access Manager
implementation of the policy file.

This field is required. For information on enabling the JACC provider using this field, see the “Enabling the
JACC provider for Tivoli Access Manager” article in the information center.

Information Value
Data type: String
Default: com.tivoli.pd.as.jacc.TAMPolicy

Policy configuration factory class name:

Specifies a fully qualified class name that represents the
javax.security.jacc.PolicyConfigurationFactory.provider property as per the JACC specification. The class
represents the provider-specific implementation of the javax.security.jacc.PolicyConfigurationFactory
abstract methods.

The class file must reside in the class path of each application server process. These processes include
the application server, node agents and the deployment manager.

Do not add the Java archive (JAR) file, which contains the class file, to the <WAS_HOME>/lib directory in a
product environment as service releases overwrite files in this directory.

This class represents the provider-specific implementation of the PolicyConfigurationFactory abstract class.
This class is used to propagate the security policy information to the JACC provider during the installation
of the J2EE application. The default class name is for the Tivoli Access Manager implementation of the
policy configuration factory class name.

This field is required.

Information Value
Data type: String
Default: com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name:

Specifies a fully qualified class name that implements the
com.ibm.wsspi.security.authorization.RoleConfigurationFactory interface.

The class file must reside in the class path of each application server process. These processes include
the application server, node agents and the deployment manager.

Chapter 19. Administering application security 1713



Do not add the Java archive (JAR) file, which contains the class file, to the <WAS_HOME>/lib directory in a
product environment as service releases overwrite files in this directory.

When you implement this class, the authorization table information in the binding file is propagated to the
provider during the installation of the J2EE application. The default class name is for the Tivoli Access
Manager implementation of the role configuration factory class name.

This field is optional. For information on enabling the JACC provider using this field, see the “Enabling the
JACC provider for Tivoli Access Manager” article in the information center.

Information Value
Data type: String
Default: com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

Provider initialization class name:

Specifies a fully qualified class name that implements the
com.ibm.wsspi.security.authorization.InitializeJACCProvider interface.

The class file must reside in the class path of each application server process. These processes include
the application server, node agents and the deployment manager.

Do not add the Java archive (JAR) file, which contains the class file, to the <WAS_HOME>/lib directory in a
product environment as service releases overwrite files in this directory.

When implemented, this class is called at the start and the stop of all the application server processes.
You can use this class for any required initialization that is needed by the provider client code to
communicate with the provider server. The properties that are entered in the custom properties link are
passed to the provider when the process starts up. The default class name is for the Tivoli Access
Manager implementation of the provider initialization class name.

This field is optional. For information on enabling the JACC provider using this field, see the “Enabling the
JACC provider for Tivoli Access Manager” article in the information center.

Information Value
Data type: String
Default: com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Requires the EJB arguments policy context handler for access decisions:

Specifies whether the JACC provider requires the EJBArgumentsPolicyContextHandler handler to make
access decisions.

Because this option has an impact on performance, do not set it unless it is required by the provider.
Normally, this handler is required only when the provider supports instance-based authorization. Tivoli
Access Manager does not support this option for J2EE applications.

Information Value
Default: Disabled

Supports dynamic module updates:

Specifies whether you can apply changes made to security policies of web modules in a running
application, dynamically without affecting the rest of the application.

1714 Administering WebSphere applications



If this option is enabled, the security policies of the added or modified web modules are propagated to the
JACC provider and only the affected web modules are started.

If this option is disabled, then the security policies of the entire application are propagated to the JACC
provider for any module-level changes. The entire application is restarted for the changes to take effect.

Typically, this option is enabled for an external JACC provider.

Information Value
Default: Enabled

Custom properties:

Specifies the properties that are required by the provider.

These properties are propagated to the provider during the startup process when the provider initialization
class name is initialized. If the provider does not implement the provider initialization class name as
described previously, the properties are not used.

The Tivoli Access Manager implementation does not require that you enter any properties in this link.

Tivoli Access Manager properties:

Specifies properties that are required by the Tivoli Access Manager implementation.

These properties are used to set up the communication between the application server and the Tivoli
Access Manager server. You must install and configure the Tivoli Access Manager server before entering
these properties.

Enabling an external JACC provider
Use this topic to enable an external JACC provider using the administrative console.

Before you begin

The Java Authorization Contract for Containers (JACC) defines a contract between Java Platform,
Enterprise Edition (Java EE) containers and authorization providers. This contract enables any third-party
authorization providers to plug into a Java EE 5 application server, such as WebSphere Application Server
to make the authorization decisions when a Java EE resource is accessed.

Procedure
1. From the WebSphere Application Server administrative console, click Security > Global security >

External authorization providers.

2. Under Related items, click External JACC provider.

3. The fields are set for Tivoli Access Manager by default. If you do not plan to use Tivoli Access
Manager as the JACC provider, replace these fields with the details for your own external JACC
provider.

4. If any custom properties are required by the JACC provider, click Custom properties under Additional
properties and enter the properties. When using the Tivoli Access Manager, use the Tivoli Access
Manager properties link instead of the Custom properties link. For more information, see “Configuring
the JACC provider for Tivoli Access Manager using the administrative console” on page 1716.

5. On the External authorization providers panel, select the External authorization using a JACC
provider option and click OK.

Chapter 19. Administering application security 1715



6. Complete the remaining steps to enable security. If you are using Tivoli Access Manager, you must
select LDAP as the user registry and use the same LDAP server. For more information on configuring
LDAP registries, see “Configuring Lightweight Directory Access Protocol user registries” on page 1271.

7. Restart all servers to make these changes effective.

Configuring the JACC provider for Tivoli Access Manager using the administrative console:

Use this task to configure Tivoli Access Manager as the Java Authorization Contract for Containers (JACC)
provider using the administrative console.

Before you begin

Prior to completing the following steps, verify that you have previously created a security administrative
user. For more information, see “Creating the security administrative user for Tivoli Access Manager” on
page 1718.

About this task

The following configuration is performed on the management server. When you click either Apply or OK,
configuration information is checked for consistency, saved, and applied if successful.

To configure Tivoli Access Manager as the JACC provider using the administrative console, complete the
following steps:

Procedure

1. Start the WebSphere Application Server administrative console by clicking http://
yourhost.domain:port_number/ibm/console after starting WebSphere Application Server. If security is
currently disabled, log in with any user ID. If security is currently enabled, log in with a predefined
administrative ID and password. This ID is typically the server user ID that is specified when you
configure the user registry.

2. Click Security > Global security > External authorization providers.

3. Under General properties, select External authorization using a JACC provider.

4. Under Related items, click External JACC provider.

5. Under Additional properties, click Tivoli Access Manager Properties. The Tivoli Access Manager
JACC provider configuration screen is displayed.

6. Enter the following information:

Enable embedded Tivoli Access Manager
Select this option to enable Tivoli Access Manager.

Ignore errors during embedded Tivoli Access Manager disablement
Select this option when you want to unconfigure the JACC provider. Do not select this option
during configuration.

Client listening port set
WebSphere Application Server must listen using a TCP/IP port for authorization database
updates from the policy server. More than one process can run on a particular node or
machine. More than one authorization server can be specified by separating the entries with
commas. Specifying more than one authorization server at a time is useful for reasons of
failover and performance. Enter the listening ports used by Tivoli Access Manager clients,
separated by a comma. If a range of ports is specified, separate the lower and higher values
by a colon (:) (for example, 7999, 9990:999).

1716 Administering WebSphere applications



Policy server
Enter the name of the Tivoli Access Manager policy server and the connection port. Use the
policy_server:port form. The policy communication port is set at the time of the Tivoli Access
Manager configuration, and the default is 7135.

Authorization servers
Enter the name of the Tivoli Access Manager authorization server. Use the
auth_server:port:priority form. The authorization server communication port is set at the
time of the Tivoli Access Manager configuration, and the default is 7136. The priority value is
determined by the order of the authorization server use (for example, auth_server1:7136:1
and auth_server2:7137:2). A priority value of 1 is required when configuring against a single
authorization server.

Administrator user name
Enter the Tivoli Access Manager administrator user name that was created when Tivoli Access
Manager was configured; it is usually sec_master.

Administrator user password
Enter the Tivoli Access Manager administrator password.

User registry distinguished name suffix
Enter the distinguished name suffix for the user registry that is shared between Tivoli Access
Manager and WebSphere Application Server, for example, o=ibm, c=us.

Security domain
You can create more than one security domain in Tivoli Access Manager, each with its own
administrative user. Users, groups and other objects are created within a specific domain, and
are not permitted to access resource in another domain. Enter the name of the Tivoli Access
Manager security domain that is used to store WebSphere Application Server users and
groups.

If a security domain is not established at the time of the Tivoli Access Manager configuration,
leave the value as Default.

Administrator user distinguished name
Enter the full distinguished name of the WebSphere Application Server security administrator
ID (for example, cn=wasdmin, o=organization, c=country). The ID name must match the
Server user ID on the Lightweight Directory Access Protocol (LDAP) User Registry panel in the
administrative console. To access the LDAP User Registry panel, click Security > Global
security. Under User account repository, choose Standalone LDAP registry as the
available realm definition. Then click Configure.

7. When all information is entered, click OK to save the configuration properties. The configuration
parameters are checked for validity and the configuration is attempted at the host server or cell
manager.

Results

After you click OK, WebSphere Application Server completes the following actions:

v Validates the configuration parameters.

v Configures the host server or cell manager.

These processes might take some time depending on network traffic or the speed of your machine.

What to do next

If the configuration is successful, the parameters are copied to all subordinate servers, including the node
agents. To complete the embedded Tivoli Access Manager client configuration, you must restart all of the
servers, including the host server, and enable WebSphere Application Server security.

Chapter 19. Administering application security 1717



Creating the security administrative user for Tivoli Access Manager:

Enabling security requires the creation of a WebSphere Application Server administrative user. Use the
Tivoli Access Manager command-line pdadmin utility to create the Tivoli Access Manager administrative
user for WebSphere Application Server. This utility is available on the policy server host machine.

About this task

Follow these steps to use the pdadmin utility.

Procedure

1. From a command line, start the pdadmin utility as the Tivoli Access Manager administrative user,
sec_master:

pdadmin -a sec_master -p sec_master_password

2. Create a WebSphere Application Server security user. For example, the following instructions create a
new user, wasadmin. The command is entered as one continuous line:

pdadmin> user create wasadmin cn=wasadmin,o=organization,
c=country wasadmin wasadmin myPassword

Substitute values for organization and country that are valid for your Lightweight Directory Access
Protocol (LDAP) user registry.

3. Enable the account for the WebSphere Application Server security administrative user by issuing the
following command:

pdadmin> user modify wasadmin account-valid yes

What to do next

Configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access Manager. For
more information, see “Tivoli Access Manager JACC provider configuration.”

Tivoli Access Manager JACC provider configuration:

You can configure the Java Authorization Contract for Containers (JACC) provider for Tivoli Access
Manager to deliver authentication and authorization protection for your applications or for authentication
only. Most deployments that use the JACC provider for Tivoli Access Manager to configure Tivoli Access
Manager provide both authentication and authorization functionality.

If you want Tivoli Access Manager to provide authentication, but leave authorization as part of WebSphere
Application Server's native security, add the
com.tivoli.pd.as.amwas.DisableAddAuthorizationTableEntry=true property to the
amwas.amjacc.template.properties file. The file is located in the profile_root/config/cells/cell_name
directory.

After this property is set, perform the tasks for setting Tivoli Access Manager Security, as documented.

You can configure the JACC provider for Tivoli Access Manager using either the WebSphere Application
Server administrative console or the wsadmin command-line utility.

v For details on configuring the JACC provider for Tivoli Access Manager using the administrative
console, refer to “Configuring the JACC provider for Tivoli Access Manager using the administrative
console” on page 1716.

v For details on configuring the Tivoli Access Manager JACC provider using the wsadmin command line
utility, refer to Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility.

The JACC configuration files are not common across multiple WebSphere Application profiles.
The following property setting is added to the profile_root/config/cells/cell_name/
amwas.amjacc.template.properties file to specify the location of the JACC configuration for each profile.

1718 Administering WebSphere applications



com.tivoli.pd.as.jacc.CommonFileLocation=USER_INSTALL_ROOT/etc/pd

The wsadmin command is available to reconfigure the Java Authorization Contract for Containers (JACC)
Tivoli Access Manager interface:

$AdminTask reconfigureTAM -interactive

This command effectively prompts you through the process of unconfiguring the interface and then
reconfiguring it.

Tivoli Access Manager JACC provider settings:

Use this page to configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access
Manager.

Note: When a third-party authorization such as Tivoli Access Manager or SAF for z/OS is used, the
information in the administrative console panel might not represent the data in the provider. Also,
any changes to the panel might not be reflected in the provider automatically. Follow the provider's
instructions to propagate any changes made to the provider.

To view the JACC provider settings for Tivoli Access Manager, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click External authorization providers.

3. Under Authorization provider, click External JACC provider.

4. Click Configure to configure the properties for Tivoli Access Manager.

Enable embedded Tivoli Access Manager:

Enables or disables the embedded Tivoli Access Manager client configuration.

Information Value
Default: Disabled
Range: Enabled or Disabled

Note: If you want to disable Tivoli Access Manager as the JACC provider, clear this option and also select
Default authorization.

Ignore errors during embedded Tivoli Access Manager disablement:

Specifies whether to ignore error messages during the unconfiguration process.

If you check this check box and click OK or Apply, when you unconfigure the embedded Tivoli Access
Manager, any unconfiguration errors are ignored and the process completes. If you do not check this
check box, unconfiguration errors cause the unconfiguration process to stop.

This option is applicable only when re-configuring an embedded Tivoli Access Manager client or disabling
an embedded Tivoli Access Manager.

Information Value
Default: Disabled
Range: Enabled or Disabled

Client listening port set:

Chapter 19. Administering application security 1719



Enter the ports that are used as listening ports by Tivoli Access Manager clients.

The application server needs to listen on a TCP/IP port for authorization database updates from the policy
server. More than one process can run on a particular node and machine, so a list of ports is required for
use by the processes. If you specify a range of ports, separate the lower and higher values by a colon (:).
The first 20% of the range is reserved for the deployment manager. Single ports and port ranges are
specified on separate lines. An example list might look like the following example:

7999
8900:8999

Policy server:

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager policy server and
the connection port.

Use the form policy_server:port. The policy server communication port was set at the time of the Tivoli
Access Manager configuration. The default is 7135.

Authorization servers:

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager authorization
server. Use the form, auth_server:port:priority.

The authorization server communication port is set at the time of Tivoli Access Manager configuration. The
default is 7136. You can specify more than one authorization server by entering each server on a new line.
Configuring more than one authorization server provides for failover. The priority value is the order of
authorization server use. For example:
auth_server1.mycompany.com:7136:1
auth_server2.mycompany.com:7137:2

A priority of 1 is still required when configuring a single authorization server.

Administrator user name:

Enter the Tivoli Access Manager administration user ID, as created at the time of Tivoli Access Manager
configuration. This ID is usually, sec_master.

Administrator user password:

Enter the Tivoli Access Manager administration password for the user ID that is entered in the
Administrator user name field.

User registry distinguished name suffix:

Enter the distinguished name suffix for the user registry to share between Tivoli Access Manager and the
application server. For example: o=organization,c=country

Security domain:

Enter the name of the Tivoli Access Manager security domain that is used to store application server users
and groups.

Specification of the Tivoli Access Manager domain is required because more than one security domain can
be created in Tivoli Access Manager with its own administrative user. Users, groups, and other objects are
created within a specific domain and are not permitted to access resources in another domain. If a security
domain is not established at the time of Tivoli Access Manager configuration, leave the value as Default.

1720 Administering WebSphere applications



Information Value
Default: Default

Administrator user distinguished name:

Enter the fully distinguished name of the security administrator ID for the application server. For example,
cn=wasadmin,o=organization,c=country

JACC provider configuration properties for Tivoli Access Manager:

The JACC provider configuration properties detailed in the following section may require configuration.

The Java property files are created in the WebSphere Application Server profile_root directory.

Two properties files might require configuration:

v amwas.node_name_server_name.amjacc.properties contains properties that are used by the JACC
provider of Tivoli Access Manager.

v amwas.node_name_server_name.pdjlog.properties contains logging properties that are created from the
amwas.pdjlog.template.properties file for the specific node and server combination at the time of
configuration.

Use amwas.node_name_server_name.amjacc.properties file to configure static role caching, dynamic role
caching, object caching, and role-based policy framework properties.

Static role caching properties:

The static role cache holds role memberships that do not expire.

These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter at profile creation time.

com.tivoli.pd.as.cache.EnableStaticRoleCaching=true:

Enables or disables static role caching. Static role caching is enabled by default.

com.tivoli.pd.as.cache.StaticRoleCache=com.tivoli.pd.as.cache.StaticRoleCacheImpl:

This property holds the implementation class of the static role cache. You do not need to change this
property, although the opportunity exists to implement your own cache, if necessary.

com.tivoli.pd.as.cache.StaticRoleCache.Roles=Administrator,Operator,Monitor,Deployer:

Defines the administration roles for WebSphere Application Server.

Tip: Enhance Application performance by adding the static roles: CosNamingRead, CosNamingWrite,
CosNamingCreate, CosNamingDelete. These roles support for improved lookup performance within
the application naming service.

Dynamic role caching properties:

The dynamic role cache holds role memberships that expire.

These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

Chapter 19. Administering application security 1721



The profile_root directory is the value of the profilePath parameter at profile creation time.

com.tivoli.pd.as.cache.EnableDynamicRoleCaching=true:

Enables or disables dynamic role caching. Dynamic role caching is enabled by default.

com.tivoli.pd.as.cache.DynamicRoleCache=com.tivoli.pd.as.cache.DynamicRoleCacheImpl:

This property holds the implementation class of the dynamic role cache. You do not need to change this
property, although the opportunity exists to implement your own cache, if necessary.

com.tivoli.pd.as.cache.DynamicRoleCache.MaxUsers=100000:

The maximum number of users that the cache supports before a cache cleanup is performed. The default
number of users is 100000.

com.tivoli.pd.as.cache.DynamicRoleCache.NumBuckets=20:

The number of tables that is used internally by the dynamic role cache. The default is 20. When a large
number of threads use the cache, increase the value to tune and optimize cache performance.

com.tivoli.pd.as.cache.DynamicRoleCache.PrincipalLifeTime=10:

The period of time in minutes that a principal entry is stored in the cache. The default time is 10 minutes.
The term, principal, here refers to the Tivoli Access Manager credential that is returned from a unique
Lightweight Directory Access Protocol user.

com.tivoli.pd.as.cache.DynamicRoleCache.RoleLifetime=20:

The period of time in seconds that a role is stored in the role list for a user before it is discarded. The
default is 20 seconds.

Object caching properties:

The object cache is used to cache all Tivoli Access Manager objects, including their extended attributes.
This bypasses the need to query the Tivoli Access Manager authorization server for each resource
request.

These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter when the profile is created.

These object cache properties cannot be changed after configuration. If any require changing, it should be
done before configuration of the nodes in the cell. Changes need to be made in the template properties
file before any configuration actions are performed. Properties changed after configuration might cause
access decisions to fail.

com.tivoli.pd.as.cache.EnableObjectCaching=true:

This property enables or disables object caching. The default value is true.

com.tivoli.pd.as.cache.ObjectCache=com.tivoli.pd.as.cache.ObjectCacheImpl:

This property is the class used to perform object caching. You can implement your own object cache if
required. This can be done by implementing the com.tivoli.pd.as.cache.IObjectCache interface. The default
is com.tivoli.pd.as.cache.ObjectCacheImpl.

1722 Administering WebSphere applications



com.tivoli.pd.as.cache.ObjectCache.NumBuckets=20:

This property specifies the number of buckets used to store object cache entries in the underlying hash
table. The default is 20.

com.tivoli.pd.as.cache.ObjectCache.MaxResources=10000:

This property specifies the total number of entries for all buckets in the cache. This figure, divided by
NumBuckets determines the maximum size of each bucket. The default is 10000.

com.tivoli.pd.as.cache.ObjectCache.ResourceLifeTime=20:

This property specifies the length of time in minutes that objects are kept in the object cache. The default
is 20.

Role-based policy framework properties:

Although it is very unlikely that you will need to change these properties, use this file to reference
supported properties within the role-based policy framework.

The role-based policy framework parameters are located in the Java Authorization Contract for Containers
(JACC) configuration file and in the authorization configuration file. They are set at the time of JACC
provider configuration and authorization server configuration. The role-based policy framework settings for
the authorization table and the JACC provider can be modified separately for each WebSphere Application
Server instance. The amwas.node_server.authztable.properties configuration file is generated from the
authorization table. The amwas.node_name_server_name.amjacc.properties configuration file is generated
from the JACC provider. Both files are stored in the profile_root/etc/tam directory. It is very unlikely that
you might need to change these properties. The properties are described here for reference.

The settings cannot be changed after configuration. Make changes in the template properties file before
any configuration actions are performed. Properties that are changed after configuration will cause access
decisions to fail.

com.tivoli.pd.as.rbpf.AMAction=i:

This property is used to signify that a user is granted access to a role. This value is added to a Tivoli
Access Manager access control list (ACL) and places invoke access on roles for users and groups.

com.tivoli.pd.as.rbpf.AMActionGroup=WebAppServer:

This property sets the Tivoli Access Manager action group that serves as a container for the action that is
specified by the com.tivoli.pd.as.rbpf.AMAction property. The permission set in the
com.tivoli.pd.as.rbpf.AMAction property goes into this action group.

com.tivoli.pd.as.rbpf.PosRoot=WebAppServer:

This property is used to determine where roles are stored in the protected object space.

com.tivoli.pd.as.rbpf.ProductId=deployedResources:

This property specifies the location under the root location that is specified in the posroot property to
separate other products in the protected object space. Embedded Tivoli Access Manager objects are found
in the /WebAppServer/deployedResources directory. The default value is deployedResources.

com.tivoli.pd.as.rbpf.ResourceContainerName=Resources:

Chapter 19. Administering application security 1723



This property specifies the Tivoli Access Manager object space container name for the protected
resources. The default location is the /WebAppServer/deployedResources/Resources directory.

com.tivoli.pd.as.rbpf.RoleContainerName=Roles:

This property specifies the Tivoli Access Manager protected object space container name for the security
roles. The default location is the /WebAppServer/deployedResources/Roles directory.

System-dependent configuration properties:

Do not change these system-dependent configuration properties. These properties are included in this
article for reference only.

These properties are in the profile_root/etc/tam/
amwas.node_name_server_name.amjacc.properties file.

The profile_root variable is the value of the profilePath parameter when the profile is created.

com.tivoli.pd.as.rbpf.AmasSession.CfgURL=file/:$WAS_HOME/profiles/profile_name/etc/tam/
amwas.node_server.pdperm.properties:

This entry is generated by the Java Authorization Contract for Containers (JACC) provider configuration.
This argument specifies the location of the file that contains information about the JACC provider of Tivoli
Access Manager. Do not change this entry or the properties in the amwas.node_server.pdperm.properties
file.

com.tivoli.pd.as.rbpf.AmasSession.CfgURL=file/:user_root/etc/tam/amwas.node_server.pdperm.properties:

This entry is generated by the Java Authorization Contract for Containers (JACC) provider configuration. It
specifies the location of the file that contains information about the Tivoli Access Manager JACC provider.
Do not change this entry or the properties in the amwas.node_server.pdperm.properties file.

com.tivoli.pd.as.rbpf.AmasSession.LoggingURL=file/:$WAS_HOME/profiles/profile_name/etc/tam/
amwas.node_server.pdjlog.properties:

This entry contains the location of the logging configuration file for the JACC provider of Tivoli Access
Manager. The referenced file is generated by the JACC provider of Tivoli Access Manager configuration.
Do not change this entry.

com.tivoli.pd.as.rbpf.AmasSession.LoggingURL=file/:user_root/etc/tam/
amwas.node_server.pdjlog.properties:

This entry contains the location of the logging configuration file for the Tivoli Access Manager JACC
provider. The file referenced is generated by the Tivoli Access Manager JACC provider configuration. Do
not change this entry.

Administering security users and roles with Tivoli Access Manager:

Use these steps to manage user-to-role mappings and user-to-group mappings for applications.

About this task

User-to-role mapping and user-to-group mapping for the JACC provider of Tivoli Access Manager are
performed using the WebSphere Application Server administrative console.

1724 Administering WebSphere applications



Procedure

1. Click Applications > Enterprise applications > application_name.

2. Under Additional properties, click Security role to user/group mapping. The user and groups
management screen is displayed.

3. Select the role that requires user or group management and use Lookup users or Lookup groups to
manage the users or groups for the selected role. The native role mapping uses the MapRolesToUsers
administrative task. If you are using Tivoli Access Manager, use the TAMMapRolesToUsers
administrative task instead. The syntax and options for the Tivoli version are the same as those used
in the native version. For more information, see Role-based security with embedded Tivoli Access
Manager and Configuring Tivoli Access Manager groups.

Configuring Tivoli Access Manager groups:

Use these steps to configure the WebSphere Application Server administrative console to add objects of
the accessGroup class to the list of object classes that represent user registry groups.

About this task

You can use the WebSphere Application Server administrative console to specify security policies for
applications that run in the WebSphere Application Server environment. You can also use the WebSphere
Application Server administrative console to specify security policies for other web resources, based on the
entities that are stored in the user registry.

Tivoli Access Manager adds the accessGroup object class to the registry. Tivoli Access Manager
administrators can use the pdadmin utility, which is available only on the policy server host in the PD.RTE
fileset, to create new groups. These new groups are added to the registry as the accessGroup object
class.

The WebSphere Application Server administrative console is not configured by default to recognize objects
of the accessGroup class as user registry groups. You can configure the WebSphere Application Server
administrative console to add this object class to the list of object classes that represent user registry
groups. To do this configuration, complete the following instructions:

Procedure

1. From the WebSphere Application Server administrative console, access the advanced settings for
configuring security by clicking Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select
Standalone LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

4. Modify the Group Filter field. Add the following entry: (objectclass=accessGroup)

The Group Filter field looks like the following example:

(&(cn=%w)(|(objectclass=groupOfNames)
(objectclass=groupOfUniqueNames)(objectclass=accessGroup)))

5. Modify the Group Member ID Map field. Add the following entry: accessGroup:member. The Group
Member ID Map field looks like the following example:

groupOfNames:member;groupOfUniqueNames:uniqueMember;
accessGroup:member

6. Stop and restart WebSphere Application Server.

Configuring additional authorization servers for Tivoli Access Manager:

Chapter 19. Administering application security 1725



Tivoli Access Manager secure domains can contain more than one authorization server. Having multiple
authorization servers is useful for providing a failover capability as well as improving performance when
the volume of access requests is large.

Procedure

1. Refer to the Tivoli Access Manager Base Administration Guide for details on installing and configuring
authorization servers. This document is available in the IBM Tivoli Access Manager for e-business
information center.

2. Re-configure the Java Authorization Contract for Containers (JACC) provider using the $AdminTask
reconfigureTAM interactive wsadmin command. Enter all new and existing options. The following
table lists the information that you are asked to provide for the reconfigureTAM command. The table
also lists the properties that apply to the configureTAM and unconfigureTAM commands.

Table 136. Commands for configuring, reconfiguring, and unconfiguring Tivoli Access Manager. The following table
lists the information that you are asked to provide for the configureTAM command. The table also lists the properties
that apply to the unconfigureTAM and reconfigureTAM commands.
Property Default Relevant command Description

Websphere Application Server node
name

*
v configureTAM

v reconfigureTAM

v unconfigureTAM

Specify a single node on which to run the configuration task.

Tivoli Access Manager Policy Server Default port:
7135

v configureTAM

v reconfigureTAM

Enter the name of the Tivoli Access Manager policy server and the connection port. Use
the format, policy_server : port. The policy server communication port is set at the time of
Tivoli Access Manager configuration.

Tivoli Access Manager Authorization
Server

Default port:
7136

v configureTAM

v reconfigureTAM

Enter the name, port, and priority of each configured Tivoli Access Manager authorization
server. Use the format auth_server : port : priority. The authorization server
communication port is set at the time of Tivoli Access Manager configuration. You can
specify more than one authorization server by separating the entries with commas. Having
more than one authorization server configured is useful for failover and performance. The
priority value is the order of authorization server use. For example:
auth_server1:7136:1,auth_server2:7137:2. A priority of 1 is still required when you use a
single authorization server.

Websphere Application Server
administrator's distinguished name

v configureTAM

v reconfigureTAM

Enter the full distinguished name of the security primary administrator ID for WebSphere
Application Server as created in the "Creating the security administrative user" topic in the
Securing applications and their environment PDF. For example:
cn=wasadmin,o=organization,c=country

Tivoli Access Manager user registry
distinguished name suffix

v configureTAM

v reconfigureTAM

Enter the suffix that you have set up in the user registry to contain the user and groups
for Tivoli Access Manager. For example: o=organization,c=country

Tivoli Access Manager administrator's
user name

sec_master
v configureTAM

v reconfigureTAM

v unconfigureTAM

Enter the Tivoli Access Manager administration user ID that you created when you
configured Tivoli Access Manager. This ID is usually sec_master.

Tivoli Access Manager administrator's
user password

v configureTAM

v reconfigureTAM

v unconfigureTAM

Enter the password that is associated with the Tivoli Access Manager administration user
ID.

Tivoli Access Manager security domain Default
v configureTAM

v reconfigureTAM

Enter the name of the Tivoli Access Manager security domain that is used to store users
and groups. If a security domain is not already established at the time of Tivoli Access
Manager configuration, click Return to accept the default.

Embedded Tivoli Access Manager
listening port set

8900:8999
v configureTAM

v reconfigureTAM

WebSphere Application Server needs to listen on a TCP/IP port for authorization database
updates from the policy server. More than one process can run on a particular node and
machine so a list of ports is required for the processes. Enter the ports that are used as
listening ports by Tivoli Access Manager clients, separated by a comma. If you specify a
range of ports, separate the lower and higher values by a colon. For example, 7999,
9990:9999.

Defer No
v configureTAM

v reconfigureTAM

v unconfigureTAM

Set this option to yes if you want to defer the configuration of the management server
until the next restart. Set the option to no if you want the configuration of the management
server to occur immediately. Managed servers are configured on their next restart.

Force No
v reconfigureTAM

v unconfigureTAM

Set this value to yes if you want to ignore errors during the unconfiguration process and
allow the entire process to complete. Set the value to no if you want errors to stop the
unconfiguration process. This option is especially useful if the environment needs to be
cleaned up and problems are occurring that do not allow the entire cleanup process to
complete successfully.

Logging Tivoli Access Manager security:

Use this topic to enable the trace specification to indicate tracing at the required level.

1726 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp


About this task

The Java Authorization Contract for Containers (JACC) for Tivoli Access Manager provider messages are
logged to the configured trace output location, and messages are written to standard out SystemOut.log
file. When trace is enabled, all logging, both trace and messaging, is sent to the trace.log file.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Procedure

1. The amwas.node_server.pdjlog.properties file must be updated and the isLogging attribute set to
true for the required component. For example, to enable tracing for the JACC provider for Tivoli Access
Manager, set the following line to true:
amwas.node_server.pdjlog.properties:baseGroup.AMWASWebTraceLogger.isLogging=true

2. Enable tracing for the JACC provider of Tivoli Access Manager components in the WebSphere
Application Server administrative console by completing the following steps:

a. Click Troubleshooting > Logs and Trace > server_name.

b. Under Logs and Trace tasks, click Diagnostic trace.

c. Select the Enable Log option.

d. Click Apply.

e. Click Troubleshooting > Logs and Trace > server_name.

f. Click Change Log Detail Levels.

g. Click Components. Tracing for all components can be enabled using the com.tivoli.pd.as.*
command. Tracing for separate components can be enabled using the following commands:

v com.tivoli.pd.as.rbpf.* for role-based policy framework tracing

v com.tivoli.pd.as.jacc.* for JACC provider tracing

v com.tivoli.pd.as.pdwas.* for the authorization table

v com.tivoli.pd.as.cfg.* for configuration

v com.tivoli.pd.as.cache.* for caching

For more information, see Log level settings.

h. Click Apply.

What to do next

The trace specification now indicates that tracing is enabled at the required level. Save the configuration
and restart the server for the changes to take effect.

Tivoli Access Manager loggers:

The Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager uses the JLog
logging framework as does the Java runtime environment for Tivoli Access Manager. You can enable
tracing and messaging selectively for specific JACC providers for Tivoli Access Manager components.

The JACC for Tivoli Access Manager provider messages are logged to the configured trace output
location, and messages are written to standard out SystemOut.log file. When trace is enabled, all logging,
both trace and messaging, is sent to the trace.log file.

Chapter 19. Administering application security 1727



Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Tracing and message logging for the JACC provider for Tivoli Access Manager are configured in the
amwas.node_server.pdjlog.properties properties file, which is located in the profile_root/etc/tam
directory. This file contains logging properties from the amwas.pdjlog.template.properties template file for
the specific node and server combination at the time of JACC provider for Tivoli Access Manager
configuration.

The contents of this file let the user control:

v Whether tracing is enabled or disabled for the JACC provider of Tivoli Access Manager components.

v Whether message logging is enabled or disabled for the JACC provider of Tivoli Access Manager
components.

The amwas.node_server.pdjlog.properties file defines several loggers, each of which is associated with
one JACC provider of Tivoli Access Manager component. These loggers include:

Table 137. Tivoli Access Manager loggers. This table describes the Tivoli Access Manager loggers.
Logger Name Description

AmasRBPFTraceLogger AmasRBPFMessageLogger Logs messages and trace for the role-based policy framework. This underlying framework is
used by embedded Tivoli Access Manager to make access decisions.

AmasCacheTraceLogger AmasCacheMessageLogger Logs messages and trace for the policy caches that are used by the role-based policy
framework.

AMWASWebTraceLogger AMWASWebMessageLogger Logs messages and trace for the WebSphere Application Server authorization plug-in.

AMWASConfigTraceLogger
AMWASConfigMessageLogger

Logs messages and trace for the configuration actions of the JACC provider for Tivoli
Access Manager .

JACCTraceLogger JACCMessageLogger Logs messages and trace for the JACC provider activity of Tivoli Access Manager .

Note: Tracing can have a significant impact on system performance. Enable tracing only when diagnosing
the cause of a problem.

The implementation of these loggers routes messages to the WebSphere Application Server logging
sub-system. All messages are written to the WebSphere Application Server trace.log file.

For each logger, the amwas.node_server.pdjlog.properties file defines an isLogging attribute which, when
set to true, enables logging for the specific component. A value of false disables logging for that
component.

The amwas.node_server.pdjlog.properties file defines the parent loggers MessageLogger and
TraceLogger that also have an isLogging attribute. If the child loggers do not specify this isLogging
attribute, they inherit the value of their respective parent. When the JACC provider for Tivoli Access
Manager is enabled, the isLogging attribute is set to true for the MessageLogger and set to false for the
TraceLogger logger. Message logging is enabled for all components and tracing is disabled for all
components, by default.

To turn on tracing for a JACC provider component, see Logging Tivoli Access Manager security.

Interfaces that support JACC:

1728 Administering WebSphere applications



WebSphere Application Server provides the RoleConfigurationFactory and the RoleConfiguration
interfaces, which are similar to PolicyConfigurationFactory and PolicyConfiguration interfaces so the
information that is stored in the bindings file can be propagated to the provider during installation. The
implementation of these interfaces is optional.

RoleConfiguration interface:

Use the RoleConfiguration interface to propagate the authorization information to the provider. This
interface is similar to the PolicyConfiguration interface that is found in Java Authorization Contact for
Containers (JACC).
RoleConfiguration

- com.ibm.wsspi.security.authorization.RoleConfiguration

/**
* This interface is used to propagate the authorization table information
* in the binding file during application installation. Implementation of this interface is
* optional. When a JACC provider implements this interface during an application, both
* the policy and the authorization table information are propagated to the provider.
* If this is not implemented, only the policy information is propagated as per
* the JACC specification.
* @ibm-spi
* @ibm-support-class-A1
*/

public interface RoleConfiguration

/**
* Add the users to the role in RoleConfiguration.
* The role is created, if it does not exist in RoleConfiguration.
* @param role the role name.
* @param users the list of the user names.
* @exception RoleConfigurationException if the users cannot be added.
*/
public void addUsersToRole(String role, List users)
throws RoleConfigurationException

/**
* Remove the users to the role in RoleConfiguration.
* @param role the role name.
* @param users the list of the user names.
* @exception RoleConfigurationException if the users cannot be removed.
*/
public void removeUsersFromRole(String role, List users)
throws RoleConfigurationException

/**
* Add the groups to the role in RoleConfiguration.
* The role is created if it does not exist in RoleConfiguration.
* @param role the role name.
* @param groups the list of the group names.
* @exception RoleConfigurationException if the groups cannot be added.
*/
public void addGroupsToRole(String role, List groups)
throws RoleConfigurationException

/**
* Remove the groups to the role in RoleConfiguration.
* @param role the role name.
* @param groups the list of the group names.
* @exception RoleConfigurationException if the groups cannot be removed.
*/
public void removeGroupsFromRole( String role, List groups)
throws RoleConfigurationException

/**
* Add the everyone to the role in RoleConfiguration.
* The role is created if it does not exist in RoleConfiguration.
* @param role the role name.
* @exception RoleConfigurationException if the everyone cannot be added.
*/
public void addEveryoneToRole(String role)
throws RoleConfigurationException

/**
* Remove the everyone to the role in RoleConfiguration.
* @param role the role name.
* @exception RoleConfigurationException if the everyone cannot be removed.
*/
public void removeEveryoneFromRole( String role)
throws RoleConfigurationException

/**
* Add the all authenticated users to the role in RoleConfiguration.
* The role is created if it does not exist in RoleConfiguration.
* @param role the role name.
* @exception RoleConfigurationException if the authentication users cannot

Chapter 19. Administering application security 1729



* be added.
*/
public void addAuthenticatedUsersToRole(String role)
throws RoleConfigurationException

/**
* Remove the all authenticated users to the role in RoleConfiguration.
* @param role the role name.
* @exception RoleConfigurationException if the authentication users cannot
* be removed.
*/
public void removeAuthenticatedUsersFromRole( String role)
throws RoleConfigurationException

/**
* This commits the changes in Roleconfiguration.
* @exception RoleConfigurationException if the changes cannot be
* committed.
*/
public void commit( )
throws RoleConfigurationException

/**
* This deletes the RoleConfiguration from the RoleConfiguration Factory.
* @exception RoleConfigurationException if the RoleConfiguration cannot
* be deleted.
*/
public void delete( )
throws RoleConfigurationException

/**
* This returns the contextID of the RoleConfiguration.
* @exception RoleConfigurationException if the contextID cannot be
* obtained.
*/
public String getContextID( )
throws RoleConfigurationException

RoleConfigurationFactory interface:

The RoleConfigurationFactory interface is similar to the PolicyConfigurationFactory interface that is
introduced by JACC, and is used to obtain RoleConfiguration objects based on the contextID IDs.
RoleConfigurationFactory
- com.ibm.wsspi.security.authorization.RoleConfigurationFactory

/**
* This interface is used to instantiate the com.ibm.wsspi.security.authorization.RoleConfiguration
* objects based on the context identifier similar to the policy context identifier.
* Implementation of this interface is required only if the RoleConfiguration interface is implemented.
*
* @ibm-spi
* @ibm-support-class-A1
*/

public interface RoleConfigurationFactory
/**
* This gets a RoleConfiguration with contextID from the
* RoleConfigurationfactory. If the RoleConfiguration does not exist
* for the contextID in the RoleConfigurationFactory, a new
* RoleConfiguration with contextID is created in the
* RoleConfigurationFactory. The contextID is similar to
* PolicyContextID, but it does not contain the module name.
* If remove is true, the old RoleConfiguration is removed and a new
* RoleConfiguration is created, and returns with the contextID.
* @return the RoleConfiguration object for this contextID
* @param contextID the context ID of RoleConfiguration
* @param remove true or false
* @exception RoleConfigurationException if RoleConfiguration
* cannot be obtained.
**/
public abstract com.ibm.ws.security.policy.RoleConfiguration

getRoleConfiguration(String contextID, boolean remove)
throws RoleConfigurationException

InitializeJACCProvider provider:

When implemented by the provider, this interface is called by every process where the JACC provider can
be used for authorization. All additional properties that are entered during the authorization check are
passed to the provider. For example, the provider can use this information to initialize client code to
communicate with their server or repository. The cleanup method is called during server shutdown to clean
up the configuration.

1730 Administering WebSphere applications



Declaration:

public interface InitializeJACCProvider

Description:

This interface has two methods. The JACC provider can implement the interface, and WebSphere
Application Server calls it to initialize the JACC provider. The name of the implementation class is obtained
from the value of the initializeJACCProviderClassName system property.

This class must reside in a Java archive (JAR) file on the class path of each server that uses this provider.
InitializeJACCProvider

- com.ibm.wsspi.security.authorization.InitializeJACCProvider

/**
* Initializes the JACC provider

* @return 0 for success.
* @param props the custom properties that are included for this provider will
* pass to the implementation class.
* @exception Exception for any problems encountered.
**/
public int initialize(java.util.Properties props)
throws Exception

/**
* This method is for the JACC provider cleanup and will be called during a process stop.
**/
public void cleanup()

Enabling the JACC provider for Tivoli Access Manager:

The Java Authorization Contract for Container (JACC) provider for Tivoli Access Manager is configured by
default. Use this topic to enable the JACC provider for Tivoli Access Manager.

About this task

Restriction: Do not perform this task if you are configuring the JACC provider for Tivoli Access Manager
to supply authentication services only. Only perform this task for installations that require
both Tivoli Access Manager authentication and authorization protection.

The JACC provider for Tivoli Access Manager is configured by default. To enable the JACC provider for
Tivoli Access Manager, complete the following steps:

Procedure

1. Click Security > Global security > External authorization providers.

2. Select the External authorization using a JACC provider option, then click Apply.

3. Under Related Items, click External JACC provider. The JACC provider settings for Tivoli Access
Manager are displayed.

4. Verify that the correct settings are present to work with your Tivoli Access Manager configuration. The
following list shows the JACC provider configuration settings for Tivoli Access Manager.

Table 138. JACC provider configuration settings for Tivoli Access Manager. This table describes the JACC provider
configuration settings for Tivoli Access Manager.
Field Value

Name Tivoli Access Manager

Description This field is optional and used as a reference.

J2EE policy class name com.tivoli.pd.as.jacc.TAMPolicy

Policy configuration factory class name com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

JACC provider initialization class name com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Chapter 19. Administering application security 1731



Table 138. JACC provider configuration settings for Tivoli Access Manager (continued). This table describes the
JACC provider configuration settings for Tivoli Access Manager.
Field Value

Requires the EJB arguments policy context handler
for access decisions

false

Supports dynamic module updates true

For more information, see “External Java Authorization Contract for Containers provider settings” on
page 1712.

5. Under Additional properties, click Tivoli Access Manager properties and set the properties that are
associated with the embedded Tivoli Access Manager. The following table explains the properties that
are needed for the embedded Tivoli Access Manager. Some fields do not have default values.

Table 139. Tivoli Access Manger properties. This table lists the Tivoli Access Manger properties.
Name Default value Description

Enable embedded Tivoli Access
Manager

Unchecked When you select this check box, the embedded Tivoli Access Manager is configured or
reconfigured. When you clear this check box, the embedded Tivoli Access Manager is
unconfigured.

Ignore errors during embedded Tivoli
Access Manager disablement

Unchecked If you check this check box and click OK or Apply, when you unconfigure the embedded
Tivoli Access Manager, any unconfiguration errors are ignored and the process
completes. If you do not check this check box, unconfiguration errors cause the
unconfiguration process to stop.

Client listening port 8900:8999 When the embedded Tivoli Access Manager is configured and running, it requires several
ports to listen for updates to the access control list database for Tivoli Access Manager.
The value in this field is a range of port numbers that Tivoli Access Manager can use for
this purpose. The first 20% of this range is reserved for the deployment manager. You
can enter multiple ranges or individual port numbers in a line separated list. For example:

8900:8999
9100:9200
9999

Policy server This field value specifies the name and port number of the configure and running Tivoli
Access Manager policy server. The format is server:port

For example:snapper.ibm.com:7135

Authorization servers This field contains the names, port numbers, and priorities of all of the configured and
running Tivoli Access Manager authorization servers. This field must contain at least one
authorization server. If multiple authorization servers are listed, those servers are used
for failover. The server with priority 1 is used first with failover to server priority 2 and so
on. The format is server:port:priority with each authorization server listed on a different
line. For example:

snapper.ibm.com:7136:1
turtle.ibm.com:7136:2

Authorization user name sec_master This field value specifies the administrative user name for Tivoli Access Manager.

Administrator user password This field value specifies the password for Tivoli Access Manager.

User registry distinguished name
suffix

This field value is the suffix that is set up in the user registry to contain the users and
groups for Tivoli Access Manager. For example using IBM Tivoli Directory Server:

o=ibm,c=au

Security domain Default This field value specifies the configured security domain to use for the embedded Tivoli
Access Manager.

Administrator user distinguished
name

This field specifies the fully distinguished user name of the primary administrative user
for WebSphere Application Server security. For example using IBM Tivoli Directory
Server:

cn=wasadmin,o=ibm,c=au

For more information, see “Tivoli Access Manager JACC provider settings” on page 1719.

6. Click OK.

7. Save the settings by clicking Save at the top of the page.

8. Log out of the WebSphere Application Server administrative console.

1732 Administering WebSphere applications



9. Restart WebSphere Application Server. The security configuration is now replicated to managed
servers and node agents. These other servers within a cell also require restarting before the security
changes take effect.

Enabling embedded Tivoli Access Manager:

Embedded Tivoli Access Manager is not enabled by default, and you need to configure it for use.

About this task

Enabling Tivoli Access Manager security within WebSphere Application Server requires:

v A supported Lightweight Directory Access Protocol (LDAP) installed somewhere on your network. This
user registry contains the user and group information for both Tivoli Access Manager and WebSphere
Application Server.

v Tivoli Access Manager server exists and is configured to use the user registry. For details on the
installation and configuration of Tivoli Access Manager, refer to the IBM Tivoli Access Manager for
e-business information center.

Note: WebSphere Application Server contains an embedded client for Tivoli Access Manager. To use
Tivoli Access Manager, you must also configure the Tivoli Access Manager server.

However, the server version must be the same version or later as the client version. For
information on the supported version of Tivoli Access Manager, see WebSphere Application
Server - Supported Prerequisites.

v WebSphere Application Server is installed either in a single server model or as WebSphere Application
Server, Network Deployment.

v When administrative security is configured with a Federal Information Processing Standard (FIPS)
provider, the Tivoli Access Manager server must be configured for FIPS as well

Complete the following steps to enable embedded Tivoli Access Manager security:

Procedure

1. Create the security administrative user.

For more information, see the Securing applications and their environment PDF.

2. Configure the Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager .

For more information, see the Securing applications and their environment PDF.

3. Enable WebSphere Application Server security. When you are using Tivoli Access Manager you must
configure LDAP as the user registry.

For more information, see the Securing applications and their environment PDF.

4. Enable the JACC provider for Tivoli Access Manager.

For more information, see the Securing applications and their environment PDF.

TAMConfig command group for the AdminTask object:

You can use the Jython or Jacl scripting languages to configure embedded IBM Tivoli Access Manager
with the wsadmin tool. The commands and parameters in the TAMConfig group can be used to configure
or unconfigure Tivoli Access Manager.

The TAMConfig command group for the AdminTask object includes the following commands:

v “configureTAM” on page 1734

v “listTAMSettings” on page 1734

v “modifyTAM” on page 1735

Chapter 19. Administering application security 1733

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://www-306.ibm.com/software/webservers/appserv/doc/v60/prereqs/was_v602.htm
http://www-306.ibm.com/software/webservers/appserv/doc/v60/prereqs/was_v602.htm


v “reconfigureTAM” on page 1735

v “unconfigureTAM” on page 1736

v “configureTAMTAI” on page 1736

v “unconfigureTAMTAI” on page 1739

v “configureTAMTAIProperties” on page 1739

v “unconfigureTAMTAIProperties” on page 1741

v “configureTAMTAIPdjrte” on page 1742

v “unconfigureTAMTAIPdjrte” on page 1743

configureTAM

Use the configureTAM command to manually configure the Tivoli Access Manager.

Target object

None.

Required parameters

None.

Optional parameters

None.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask configureTAM {-interactive}

v Using Jython:
AdminTask.configureTAM(’-interactive’)

listTAMSettings

The listSSLRepertoires command displays the current embedded Tivoli Access Manager configuration
settings.

Target object

None.

Required parameters

None.

Optional parameters

None.

Examples

Interactive mode example usage:

1734 Administering WebSphere applications



v Using Jacl:
$AdminTask listTAMSettings {-interactive}

v Using Jython:
print AdminTask.listTAMSettings(’-interactive’)

modifyTAM

The modifyTAM command modifies embedded Tivoli Access Manager configuration settings.

Target object

None.

Required parameters

-adminPasswd
Specifies the Tivoli Access Manager administrator password. (String, required)

Optional parameters

-adminUid
Specifies the Tivoli Access Manager user name. (String, optional)

-nodeName
Specifies the target node or nodes. Set the value as the * asterisk character to specify all nodes.
(String, optional)

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask modifyTAM {-adminPasswd my11password}

v Using Jython:
AdminTask.modifyTAM(’-adminPasswd my11password’)

v Using Jython list:
AdminTask.modifyTAM([’-adminPasswd’, ’my11password’])

Interactive mode example usage:

v Using Jacl:
$AdminTask modifyTAM {-interactive}

v Using Jython:
AdminTask.modifyTAM(’-interactive’)

reconfigureTAM

The reconfigureTAM command reconfigures the Java Authorization Contract for Containers (JACC) Tivoli
Access Manager settings.

Target object

None.

Required parameters

None.

Chapter 19. Administering application security 1735



Optional parameters

None.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask reconfigureTAM {-interactive}

v Using Jython:
AdminTask.reconfigureTAM(’-interactive’)

unconfigureTAM

The unconfigureTAM command removes configuration data for the Java Authorization Contract for
Containers (JACC) Tivoli Access Manager.

Required parameters

None.

Optional parameters

None.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask unconfigureTAM {-interactive}

v Using Jython:
AdminTask.unconfigureTAM(’-interactive’)

configureTAMTAI

The configureTAMTAI command configures the embedded Tivoli Access Manager trust association
interceptor (TAI) with classname TAMTrustAsociationInterceptorPlus.

Target object

None.

Required parameters

-policySvr
This property specifies the name of the Tivoli Access Manager policy server with which the application
server communicates. The server is specified by a fully-qualified host name, the SSL port number, and
the rank. The default SSL port number is 7135. For example: myauth.mycompany.com:7135:1.

-authSvrs
This property specifies the name of the Tivoli Access Manager authorization server with which the
application server communicates. The server is specified by a fully-qualified host name, the SSL port
number, and the rank. The default SSL port number is 7136. For example:
myauth.mycompany.com:7136:1. You can specify multiple servers if the entries are separated by a
comma (,).

1736 Administering WebSphere applications



-adminPasswd
This property specifies the password of the Tivoli Access Manager administrator user that is
associated with the -adminUid parameter. The password restrictions depend upon the password policy
for your Tivoli Access Manager configuration.

-loginId
The WebSEAL trusted user as created in “Creating a trusted user account in Tivoli Access Manager”.
See the Configuring single sign-on using trust association interceptor ++ article for more information.
The format of the username is the short name representation.

Optional parameters

-adminUid
This property specifies the Tivoli Access Manager administrator name. If this option is not specified,
sec_master is the default. A valid administrative ID is an alphanumeric, case-sensitive string. String
values are expected to be characters that are part of the local code set. You cannot use a space in
the administrative ID.

For example, for U.S. English, the valid characters are the letters a-Z, the numbers 0-9, a period (.),
an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&), and an asterisk (*).
The minimum and maximum lengths of the administrative ID, if there are limits, are imposed by the
underlying registry.

-secDomain
This property specifies the Tivoli Access Manager domain name to which the administrator is
authenticated. This domain must exist and an administrator ID and password must be valid for this
domain. The application server is specified in this domain. If the application server is not specified, the
default value is Default. The local domain value is retrieved from the configuration file.

A valid domain name is an alphanumeric, case-sensitive string. String values are expected to be
characters that are part of the local code set. You cannot use a space in the domain name.

For example, for U.S. English, the valid characters for domain names are the letters a-Z, the numbers
0-9, a period ( . ), an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&),
and an asterisk (*). The minimum and maximum lengths of the domain name, if there are limits, are
imposed by the underlying registry.

-checkViaHeader
You can configure TAI so that the via header can be ignored when validating trust for a request. Set
this property to false if none of the hosts in the via header need to be trusted. When set to false, you
do not need to set the trusted host names and host ports properties. The only mandatory property to
check when the via header is false is com.ibm.websphere.security.webseal.loginId. The default value
of the check via header property is false. When using Tivoli Access Manager plug-in for web servers,
set this property to false.

Note: The via header is part of the standard HTTP header that records the server names that the
request passed through.

-id
This property specifies a comma-separated list of headers that exists in the request. If all of the
configured headers do not exist in the request, trust cannot be established. The default value for the
ID property is iv-creds. Any other values set in WebSphere Application Server are added to the list
along with iv-creds, separated by commas.

-hostnames
Do not set this property if you are using the Tivoli Access Manager plug-in for web servers. This
property specifies the host names (case-sensitive) that are both trusted and expected in the request
header. Requests arriving from unlisted hosts might not be trusted. If the checkViaHeader property is

Chapter 19. Administering application security 1737



not set, or is set to false, then the trusted host names property has no influence. If the
checkViaHeader property is set to true, and the trusted host names property is not set, the TAI
initialization fails.

-ports
Do not set this property if you are using the Tivoli Access Manager plug-in for web servers. This
property is a comma-separated list of trusted host ports. Requests that arrive from unlisted ports might
not be trusted. If the checkViaHeader property is not set, or is set to false, then this property has no
influence. If the checkViaHeader property is set to true, and the trusted host ports property is not set
in WebSphere Application Server, the TAI initialization fails.

-viaDepth
This property indicates a positive integer that specifies the number of source hosts in the via header to
check for trust. By default, every host in the via header is checked, and if any host is not trusted, trust
cannot be established. The viaDepth property is used when only some of the hosts in the via header
have to be trusted. The setting indicates the number of hosts that are required to be trusted.

For example, consider the following header:

If in via: HTTP/1.1 webseal1:7002, 1.1 webseal2:7001If the viaDepth property is not set, is set to 2 or
is set to 0, and a request with the previous via header is received then both webseal1:7002 and
webseal2:7001 need to be trusted. The following configuration then applies:

com.ibm.websphere.security.webseal.hostnames = webseal1,webseal2

If in com.ibm.websphere.security.webseal.ports = 7002,7001If the viaDepth property is set to 1, and
the previous request is received, then only the last host in the via header needs to be trusted. The
following configuration then applies:

com.ibm.websphere.security.webseal.hostnames = webseal2
com.ibm.websphere.security.webseal.ports = 7001

The viaDepth property is set to 0 by default, which means that all of the hosts in the via header are
checked for trust.

-ssoPwdExpiry
After trust is established for a request, the single sign-on user password is cached, eliminating the
need to have the TAI re-authenticate the single sign-on user with Tivoli Access Manager for every
request. You can modify the cache timeout period by setting the single sign-on password expiry
property to the required time in seconds. If the password expiry property is set to 0, the cached
password never expires. The default value for the password expiry property is 600.

-ignoreProxy
This property can be used to tell the TAI to ignore proxies as trusted hosts. If set to true the
comments field of the hosts entry in the via header is checked to determine if a host is a proxy.
Remember that not all proxies insert comments in the via header indicating that they are proxies. The
default value of the ignoreProxy property is false. If the checkViaHeader property is set to false, then
the ignoreProxy property has no influence in establishing trust.

-configURL
For the TAI to establish trust for a request, it requires that the SvrSslCfg task be run for the Java
Virtual Machine on the Application Server and result in the creation of a properties file. If this
properties file is not at the default URL, which is file://java.home/PdPerm.properties, the correct URL of
the properties file must be set in the configuration URL property. If this property is not set, and the
SvrSslCfg-generated properties file is not in the default location, the TAI initialization fails. The default
value for the config URL property is file://${WAS_INSTALL_ROOT}/java/jre/PdPerm.properties.

-defer
This property indicates whether the Tivoli Access Manager configuration portion of this task should be
run immediately or deferred until the startup of the WebSphere Application Server. The default value is
no.

Note: The TAI properties are updated immediately regardless of this setting.

1738 Administering WebSphere applications



Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask configureTAMTAI {-interactive}

v Using Jython:
AdminTask.configureTAMTAI(’-interactive’)

unconfigureTAMTAI

The unconfigureTAMTAI command unconfigures the embedded Tivoli Access Manager Trust Association
Interceptor with classname TAMTrustAsociationInterceptorPlus. This task does not include removing any
custom properties from the security configuration.

Target object

None.

Required parameters

-adminPasswd
Specifies the password of the Tivoli Access Manager administrator user that is associated with the
-adminUid parameter. The password restrictions depend upon the password policy for your Tivoli
Access Manager configuration.

Optional parameters

-adminUid
Specifies the Tivoli Access Manager administrator name. If this option is not specified, sec_master is
the default. A valid administrative ID is an alphanumeric, case-sensitive string. String values are
expected to be characters that are part of the local code set. You cannot use a space in the
administrative ID.

For example, for U.S. English the valid characters are the letters a-Z, the numbers 0-9, a period (.), an
underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&), and an asterisk (*).
The minimum and maximum lengths of the administrative ID, if there are limits, are imposed by the
underlying registry.

-force
Indicates whether or not this task should stop when an error is encountered. The default value is no.

-defer
Indicates whether this task should be run immediately or deferred until the startup of the WebSphere
Application Server. The default value is no.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask unconfigureTAMTAI {-interactive}

v Using Jython:
AdminTask.unconfigureTAMTAI(’-interactive’)

configureTAMTAIProperties

The configureTAMTAIProperties command adds the custom properties to the security configuration for the
embedded Tivoli Access Manager Trust Association Interceptor with classname
TAMTrustAsociationInterceptorPlus.

Chapter 19. Administering application security 1739



Target object

None.

Required parameters

-loginId
The WebSEAL trusted user is created as discussed in “Creating a trusted user account in Tivoli
Access Manager”. See the Configuring single sign-on using trust association interceptor ++ article for
more information. The format of the username is the short name representation.

Optional parameters

-checkViaHeader
You can configure TAI so that the via header can be ignored when validating trust for a request. Set
this property to false if none of the hosts in the via header need to be trusted. When set to false you
do not need to set the trusted host names and host ports properties. The only mandatory property to
check when via header is false is com.ibm.websphere.security.webseal.loginId. The default value of
the check via header property is false. When using Tivoli Access Manager plug-in for web servers, set
this property to false.

Note: The via header is part of the standard HTTP header that records the server names that the
request passed through.

-id
This property indicates a comma-separated list of headers that exists in the request. If all of the
configured headers do not exist in the request, trust cannot be established. The default value for the
ID property is iv-creds. Any other values set in WebSphere Application Server are added to the list
along with iv-creds, separated by commas.

-hostnames
Do not set this property if using Tivoli Access Manager plug-in for web servers. The property specifies
the host names (case-sensitive) that are both trusted and expected in the request header. Requests
arriving from unlisted hosts might not be trusted. If the checkViaHeader property is not set, or is set to
false, then the trusted host names property has no influence. If the checkViaHeader property is set to
true, and the trusted host names property is not set, the TAI initialization fails.

-ports
Do not set this property if you are using the Tivoli Access Manager plug-in for web servers. This
property is a comma-separated list of trusted host ports. Requests that arrive from unlisted ports might
not be trusted. If the checkViaHeader property is not set, or is set to false, then this property has no
influence. If the checkViaHeader property is set to true, and the trusted host ports property is not set
in WebSphere Application Server, the TAI initialization fails.

-viaDepth
This property indicates a positive integer that specifies the number of source hosts in the via header to
check for trust. By default, every host in the via header is checked, and if any host is not trusted, trust
cannot be established. The viaDepth property is used only when some of the hosts in the via header
have to be trusted. The setting indicates the number of hosts that are required to be trusted.

As an example, consider the following header:

If in via: HTTP/1.1 webseal1:7002, 1.1 webseal2:7001If the viaDepth property is not set, is set to 2 or
is set to 0, and a request with the previous via header is received then both webseal1:7002 and
webseal2:7001 need to be trusted. The following configuration then applies:

com.ibm.websphere.security.webseal.hostnames = webseal1,webseal2

If in com.ibm.websphere.security.webseal.ports = 7002,7001If the viaDepth property is set to 1, and
the previous request is received, then only the last host in the via header needs to be trusted. The
following configuration then applies:

1740 Administering WebSphere applications



com.ibm.websphere.security.webseal.hostnames = webseal2
com.ibm.websphere.security.webseal.ports = 7001

The viaDepth property is set to 0 by default, which means that all of the hosts in the via header are
checked for trust.

-ssoPwdExpiry
This property can be used to tell the TAI to ignore proxies as trusted hosts. If set to true, the
comments field of the hosts entry in the via header is checked to determine if a host is a proxy.
Remember that not all proxies insert comments in the via header indicating that they are proxies. The
default value of the ignoreProxy property is false. If the checkViaHeader property is set to false, then
the ignoreProxy property has no influence in establishing trust.

-viaDepth
This property indicates a positive integer that specifies the number of source hosts in the via header to
check for trust. By default, every host in the via header is checked, and if any host is not trusted, trust
cannot be established. The viaDepth property is used only when some of the hosts in the via header
have to be trusted. The setting indicates the number of hosts that are required to be trusted.

-ssoPwdExpiry
After trust is established for a request, the single sign-on user password is cached, eliminating the
need to have the TAI re-authenticate the single sign-on user with Tivoli Access Manager for every
request. You can modify the cache timeout period by setting the single sign-on password expiry
property to the required time in seconds. If the password expiry property is set to 0, the cached
password never expires. The default value for the password expiry property is 600.

-ignoreProxy
This property can be used to tell the TAI to ignore proxies as trusted hosts. If set to true, the
comments field of the hosts entry in the via header is checked to determine if a host is a proxy.
Remember that not all proxies insert comments in the via header indicating that they are proxies. The
default value of the ignoreProxy property is false. If the checkViaHeader property is set to false, then
the ignoreProxy property has no influence in establishing trust.

-configURL
For the TAI to establish trust for a request, it requires that the SvrSslCfg task be run for the Java
Virtual Machine on the Application Server and result in the creation of a properties file. If this
properties file is not at the default URL, which is file://java.home/PdPerm.properties, the correct URL of
the properties file must be set in the configuration URL property. If this property is not set, and the
SvrSslCfg-generated properties file is not in the default location, the TAI initialization fails. The default
value for the config URL property is file://${WAS_INSTALL_ROOT}/java/jre/PdPerm.properties.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask configureTAMTAIProperties {-interactive}

v Using Jython:
AdminTask.configureTAMTAIProperties(’-interactive’)

unconfigureTAMTAIProperties

The unconfigureTAMTAIProperties command removes the custom properties from the security
configuration for the embedded Tivoli Access Manager Trust Association Interceptor with classname
TAMTrustAsociationInterceptorPlus.

Target object

None.

Chapter 19. Administering application security 1741



Required parameters

None.

Optional parameters

None.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask unconfigureTAMTAIProperties {-interactive}

v Using Jython:
AdminTask.unconfigureTAMTAIProperties(’-interactive’)

configureTAMTAIPdjrte

The configureTAMTAIPdjrte command performs the tasks necessary to fully configure the Tivoli Access
Manager Runtime for Java. The specific tasks run are PDJrteCfg and SvrSslCfg.

Target object

None.

Required parameters

-policySvr
This property specifies the name of the Tivoli Access Manager policy server with which the application
server communicates. The server is specified by fully qualified host name, the SSL port number, and
the rank. The default SSL port number is 7135. For example: myauth.mycompany.com:7135:1.

-authSvrs
This property specifies the name of the Tivoli Access Manager authorization server with which the
application server communicates. The server is specified by fully-qualified host name, the SSL port
number, and the rank. The default SSL port number is 7136. For example:
myauth.mycompany.com:7136:1. You can specify multiple servers if the entries are separated by a
comma (,).

-adminPasswd
This property specifies the password of the Tivoli Access Manager administrator user that is
associated with the -adminUid parameter. The password restrictions depend upon the password policy
for your Tivoli Access Manager configuration.

Optional parameters

-adminUid
This property specifies the Tivoli Access Manager administrator name. If this option is not specified,
sec_master is the default. A valid administrative ID is an alphanumeric, case-sensitive string. String
values are expected to be characters that are part of the local code set. You cannot use a space in
the administrative ID.

For example, for U.S. English. the valid characters are the letters a-Z, the numbers 0-9, a period (.),
an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&), and an asterisk (*).
The minimum and maximum lengths of the administrative ID, if there are limits, are imposed by the
underlying registry.

1742 Administering WebSphere applications



-secDomain
This property specifies the Tivoli Access Manager domain name to which the administrator is
authenticated. This domain must exist and an administrator ID and password must be valid for this
domain. The application server is specified in this domain.

If this property is not specified, the default value is Default. The local domain value is retrieved from
the configuration file.

A valid domain name is an alphanumeric, case-sensitive string. String values are expected to be
characters that are part of the local code set. You cannot use a space in the domain name.

For example, for U.S. English, the valid characters for domain names are the letters a-Z, the numbers
0-9, a period ( . ), an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&),
and an asterisk (*). The minimum and maximum lengths of the domain name, if there are limits, are
imposed by the underlying registry.

-defer
This property indicates whether this task should be run immediately or deferred until the startup of the
WebSphere Application Server. The default value is no.

Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask configureTAMTAIPdjrte {-interactive}

v Using Jython:
AdminTask.configureTAMTAIPdjrte(’-interactive’)

unconfigureTAMTAIPdjrte

The unconfigureTAMTAIPdjrte command performs the tasks necessary to unconfigure the Tivoli Access
Manager Runtime for Java. The specific tasks run are PDJrteCfg and SvrSslCfg.

Target object

None.

Required parameters

-adminPasswd
This property specifies the password of the Tivoli Access Manager administrator user that is
associated with the -adminUid parameter. The password restrictions depend upon the password policy
for your Tivoli Access Manager configuration.

Optional parameters

-adminUid
This property specifies the Tivoli Access Manager administrator name. If this option is not specified,
sec_master is the default. A valid administrative ID is an alphanumeric, case-sensitive string. String
values are expected to be characters that are part of the local code set. You cannot use a space in
the administrative ID.

-force
This property indicates whether or not this task should stop when an error is encountered. The default
value is no.

-defer
This property indicates whether this task should be run immediately or deferred until the startup of the
WebSphere Application Server. The default value is no.

Chapter 19. Administering application security 1743



Examples

Interactive mode example usage:

v Using Jacl:
$AdminTask unconfigureTAMTAIPdjrte {-interactive}

v Using Jython:
AdminTask.unconfigureTAMTAIPdjrte(’-interactive’)

Disabling embedded Tivoli Access Manager client using the administrative console:

To unconfigure the JACC provider for Tivoli Access Manager, you can use the WebSphere Application
Server administrative console.

Procedure

1. Click Security > Global security > External authorization providers.

2. Make sure that the default option, Default authorization, is checked, then click OK.

3. On the Global security panel, click External authorization > External JACC provider.

4. Under Additional properties, click Tivoli Access Manager Properties. The configuration screen for the
JACC provider for Tivoli Access Manager is displayed.

5. Clear the Enable embedded Tivoli Access Manager option. If you want to ignore errors when
unconfiguring, select the Ignore errors during embedded Tivoli Access Manager disablement
option. Select this option only when the Tivoli Access Manager domain is in an irreparable state.

6. Click OK.

7. Optional: If you want security enabled without Tivoli Access Manager re-enable administrative security.

8. Restart all WebSphere Application Server instances for the changes to take effect.

Forcing the unconfiguration of the Tivoli Access Manager JACC provider:

If you find you cannot restart WebSphere Application Server after configuring the JACC provider for Tivoli
Access Manager a utility is available to clear the security configuration and return WebSphere Application
Server to an operable state.

About this task

The utility removes all of the PDLoginModuleWrapper entries as well as the Tivoli Access Manager
authorization table from security.xml and wsjaas.conf files. This utility effectively removes the JACC
provider for Tivoli Access Manager.

Procedure

1. Back up the security.xml and wsjaas.conf files.

2. Enter the following command as one continuous line.

java -classpath
"app_server_root/$WAS_HOME/plug-ins/com.tivoli.pd.amwas.core_6.1.0.jar"
com.tivoli.pd.as.jacc.cfg.CleanSecXML fully_qualified_path/security.xml
fully_qualified_path/wsjaas.conf

Propagating security policies and roles for previously deployed applications:

Use this task to propagate security policies and roles to the external Java Authorization Contract for
Containers (JACC) provider.

1744 Administering WebSphere applications



Before you begin

The external JACC provider must be configured before following these steps.

About this task

After switching to use the external JACC provider you can follow these steps to avoid having to redeploy
your existing applications. Updating using these steps retrieves the security policy and roles from the
deployed applications and propagates it to the external JACC provider removing the need for the
applications to be redeployed.

Procedure

1. From the WebSphere Application Server administrative console, click Security > Global security >
External authorization providers.

2. Select the appropriate security policy and role updating option.

v Select Don't update provider to not propagate any security policies or roles

v Select Update with all applications to propagate security policies and roles for all applications

v Select Update with application names listed to propagate security policies and roles for the
selected applications. If multiple applications should be updated, separate the application names
with commas.

3. Click Apply.

Results

After completing this task your security policies and roles have been successfully propagated to the
external JACC provider.

Authorizing access to administrative roles
You can assign users and groups to administrative roles to identify users who can perform WebSphere
Application Server administrative functions.

Before you begin

Administrative roles enable you to control access to WebSphere Application Server administrative
functions. Refer to the descriptions of these roles in Administrative roles.

v Before you assign users to administrative roles, you must set up your user registry. For information on
the supported registry types, see “Selecting a registry or repository” on page 1265.

v The following steps are needed to assign users to administrative roles.

About this task

You use the administrative console to assign users and groups to administrative roles and to identify users
who can perform WebSphere Application Server administrative functions. In the administrative console,

Procedure
1. Click Users and Groups. Click either Administrative User Roles or Administrative Group Roles.

2. To add a user or a group, click Add on the Console users or Console groups panel.

3. To add a new administrator user, follow the instructions on the page to specify a user, and select the
Administrator role. Once the user is added to the Mapped to role list, click OK. The specified user is
mapped to the security role.

Chapter 19. Administering application security 1745



4. To add a new administrative group, follow the instructions on the page to specify either a group name
or a Special subject, highlight the Administrator role, and click OK. The specified group or special
subject is mapped to the security role.

5. To remove a user or group assignment, click Remove on the Console Users or the Console Groups
panel. On the Console Users or the Console Groups panel, select the check box of the user or group
to remove and click OK.

6. To manage the set of users or groups to display, click Show filter function on the User Roles or
Group Roles panel. In the Search term(s) box, type a value, then click Go. For example, user*
displays only users with the user prefix.

7. After the modifications are complete, click Save to save the mappings.

8. Restart the application server for changes to take effect.

Administrative user roles settings and CORBA naming service user settings
Use the Administrative User Roles page to give users specific authority to administer application servers
through tools such as the administrative console or wsadmin scripting. The authority requirements are only
effective when global security is enabled. Use the Common Object Request Broker Architecture (CORBA)
naming service users settings page to manage CORBA naming service users settings.

To view the Console Users administrative console page, complete either of the following steps:

v Click Security > Global security > Administrative User Roles.

v Click Users and Groups > Administrative User Roles.

Note: If you are using local OS, the SIB administrative security panel's searches can use both the "?" and
"*" search characters. However. if you switch to federated repositories, the searches will not work
with the "?" character but will with the "*" character.

To view the CORBA naming service groups administrative console page, click Environment > Naming >
CORBA Naming Service Groups.

Click Refresh All to automatically update the node agent and all of the nodes when a new user is created
with the Administrator or Admin Security Manager role. When you click Refresh All, you do not need to
manually restart the node agent under an existing Administrator before the new user is recognized with
one of these roles. This button automatically invokes the AuthorizationManager refreshAll MBean method.
To invoke this method manually, read about Fine-grained administrative security in heterogeneous and
single-server environments.

User (Administrative user roles):

Specifies users.

The users that are entered must exist in the configured active user registry.

Information Value
Data type: String

User (CORBA naming service users):

Specifies CORBA naming service users.

The users that are entered must exist in the configured active user registry.

Information Value
Data type: String

1746 Administering WebSphere applications



Role (Administrative user roles):

Specifies user roles.

The following administrative roles provide different degrees of authority that are needed to perform certain
application server administrative functions:
Administrator

The administrator role has operator permissions, configurator permissions, and the permission that
is required to access sensitive data including server password, Lightweight Third Party
Authentication (LTPA) password and keys, and so on.

Operator
The operator role has monitor permissions and can change the run-time state. For example, the
operator can start or stop services.

Configurator
The configurator role has monitor permissions and can change the WebSphere Application Server
configuration.

Deployer
The deployer role can complete both configuration actions and run-time operations on applications.

Monitor
The monitor role has the least permissions. This role primarily confines the user to viewing the
application server configuration and current state.

adminsecuritymanager
The adminsecuritymanager role has privileges for managing users and groups from within the
administrative console and determines who has access to modify users and groups using
administrative role mapping. Only the adminsecuritymanager role can map users and groups to
administrative roles, and by default, AdminId is granted to the adminsecuritymanager.

iscadmins
The iscadmins role has administrator privileges for managing users and groups from within the
administrative console only.

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click
either Manage Users or Manage Groups.

Information Value
Data type: String
Range: Administrator, Operator, Configurator, Deployer, Monitor,

and iscadmins

Note: Other arbitrary administrative roles might also be visible in the administrative console collection
table. Other contributors to the console might create these additional roles, which can be used for
applications that are deployed to the console.

Role (CORBA naming service users):

Specifies naming service user roles.

A number of naming roles are defined to provide degrees of authority that are needed to perform certain
application server naming service functions. The authorization policy is only enforced when global security
is enabled. The following roles are valid: CosNamingRead, CosNamingWrite, CosNamingCreate, and
CosNamingDelete.

The roles now have authority levels from low to high:

Chapter 19. Administering application security 1747



CosNamingRead
You can query the application server name space by using, for example, the Java Naming and
Directory Interface (JNDI) lookup method. The EVERYONE special-subject is the default policy for
this role.

CosNamingWrite
You can perform write operations such as JNDI bind, rebind, or unbind, plus CosNamingRead
operations.

CosNamingCreate
You can create new objects in the name space through operations such as JNDI createSubcontext
and CosNamingWrite operations.

CosNamingDelete
You can destroy objects in the name space, for example using the JNDI destroySubcontext
method and CosNamingCreate operations.

Information Value
Data type: String
Range: CosNamingRead, CosNamingWrite, CosNamingCreate

and CosNamingDelete

Login status (Administrative user roles):

Specifies whether the user is active or inactive.

Administrative group roles and CORBA naming service groups
Use the Administrative Group Roles page to give groups specific authority to administer application servers
through tools such as the administrative console or wsadmin scripting. The authority requirements are only
effective when administrative security is enabled. Use the Common Object Request Broker Architecture
(CORBA) naming service groups page to manage CORBA Naming Service groups settings.

To view the Console Groups administrative console page, complete either of the following steps:

v Click Security > Global security > Administrative Group Roles.

v Click Users and Groups > Administrative Group Roles.

To view the CORBA naming service groups administrative console page, click Environment > Naming >
CORBA Naming Service Groups.

Click Refresh All to automatically update the node agent and all of the nodes when a new user is created
with the Administrator or Admin Security Manager role. When you click Refresh All, you do not need to
manually restart the node agent under an existing Administrator before the new user is recognized with
one of these roles. This button automatically invokes the AuthorizationManager refreshAll MBean method.
To invoke this method manually, read about Fine-grained administrative security in heterogeneous and
single-server environments.

Group (CORBA naming service groups):

Identifies CORBA naming service groups.

In previous releases of WebSphere Application Server, there were two default groups: ALL
AUTHENTICATED and EVERYONE. However, EVERYONE is now the only default group, and it provides
CosNamingRead privileges only.

Information Value
Data type: String
Range: EVERYONE

1748 Administering WebSphere applications



Role (CORBA naming service groups):

Identifies naming service group roles.

A number of naming roles are defined to provide the degrees of authority that are needed to perform
certain application server naming service functions. The authorization policy is only enforced when global
security is enabled.

Four name space security roles are available: CosNamingRead, CosNamingWrite, CosNamingCreate, and
CosNamingDelete. The roles have authority levels from low to high:

Cos Naming Read
You can query the application server name space using, for example, the Java Naming and
Directory Interface (JNDI) lookup method. The EVERYONE special-subject is the default policy for
this role.

Cos Naming Write
You can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead
operations. The ALL_AUTHENTICATED special-subject is the default policy for this role.

Cos Naming Create
You can create new objects in the name space through operations such as JNDI createSubcontext
and CosNamingWrite operations. The ALL_AUTHENTICATED special-subject is the default policy
for this role.

Cos Naming Delete
You can destroy objects in the name space, for example using the JNDI destroySubcontext
method and CosNamingCreate operations. The ALL_AUTHENTICATED special-subject is the
default policy for this role.

Information Value
Data type: String
Range: CosNamingRead, CosNamingWrite, CosNamingCreate,

and CosNamingDelete

Group (Administrative group roles):

Specifies groups.

The ALL_AUTHENTICATED and the EVERYONE groups can have the following role privileges:
Administrator, Configurator, Operator, and Monitor.

Information Value
Data type: String
Range: ALL_AUTHENTICATED, EVERYONE

Role (Administrative group roles):

Specifies user roles.

The following administrative roles provide different degrees of authority needed to perform certain
application server administrative functions:
Administrator

The administrator role has operator permissions, configurator permissions, and the permission that

Chapter 19. Administering application security 1749



is required to access sensitive data, including server password, Lightweight Third Party
Authentication (LTPA) password and keys, and so on.

Operator
The operator role has monitor permissions and can change the run-time state. For example, the
operator can start or stop services.

Configurator
The configurator role has monitor permissions and can change the application server
configuration.

Deployer
The deployer role can perform both configuration actions and runtime operations on applications.

Monitor
The monitor role has the least permissions. This role primarily confines the user to viewing the
application server configuration and current state.

iscadmins
The iscadmins role has administrator privileges for managing users and groups from within the
administrative console only.

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click
either Manage Users or Manage Groups.

Auditor
The auditor can view and modify the configuration settings for the security auditing subsystem.
The auditor role includes the monitor role.

Information Value
Data type: String
Range: Administrator, Operator, Configurator, Monitor, Deployer

and iscadmins

Note: Other arbitrary administrative roles might also be visible in the administrative console collection
table. Other contributors to the console might create these additional roles, which can be used for
applications that are deployed to the console.

Assigning users to naming roles
Use this task to assign users to naming roles by using the administrative console.

About this task

The following steps are needed to assign users to naming roles. In the administrative console, click
Environment > Naming, and click CORBA Naming Service Users or CORBA Naming Service Groups.

Procedure
1. Click Add on the CORBA Naming Service Users or the CORBA Naming Service Groups panel.

2. To add a new naming service user, follow the instructions on the page to specify a user, and select
one or more roles. Once the user is added to the "Mapped to role" list, click OK. The specified user is
mapped to one or more security roles.

3. To add a new naming service group, follow the instructions on the page to specify either a group name
or a Special subject, highlight one or more roles, and click OK. The specified group or special subject
are mapped to one or more the security roles

4. To remove a user or group assignment, go to the CORBA Naming Service Users or CORBA Naming
Service Groups panel. Select the check box next to the user or group that you want to remove and
click Remove.

5. To manage the set of users or groups to display, expand the Filter folder on the right panel, and
modify the filter text box. For example, setting the filter to user* displays only users with the user
prefix.

1750 Administering WebSphere applications



6. After modifications are complete, click Save to save the mappings. Restart the server for the changes
to take effect.

Example

The default naming security policy is to grant all users read access to the CosNaming space and to grant
any valid user the privilege to modify the contents of the CosNaming space. You can perform the
previously mentioned steps to restrict user access to the CosNaming space. However, use caution when
changing the naming security policy. Unless a Java Platform, Enterprise Edition (Java EE) application has
clearly specified its naming space access requirements, changing the default policy can result in
unexpected org.omg.CORBA.NO_PERMISSION exceptions at runtime.

Propagating administrative role changes to Tivoli Access Manager
These steps provide an example of how to migrate the admin-authz.xml file.

About this task

Additions and changes to console users and groups are not automatically added to the Tivoli Access
Manager object space after the Java Authorization Contract for Containers (JACC) provider for Tivoli
Access Manager is configured. Changes to console users and groups are saved in the admin-authz.xml
file and this file must be migrated before any changes take effect. The JACC provider for Tivoli Access
Manager includes the migrateEAR migration utility for incorporating console user and group changes into
the Tivoli Access Manager object space.

Note: The migrateEAR utility is used to migrate the changes made to console users and groups after the
JACC provider for Tivoli Access Manager is configured. The utility does not need to run for changes
and additions to console users and groups made prior to the configuration of the JACC provider for
Tivoli Access Manager because the changes made to the admin-authz.xml and naming-authz.xml
files are automatically migrated at configuration time. Furthermore, the migration tool does not need
to run before deploying standard Java Platform, Enterprise Edition (Java EE) applications; Java EE
application policy deployment is also performed automatically.

For example, if you wanted to migrate the admin-authz.xml file, perform the following steps:

Procedure
1. Change to the app_server_root/bin directory where the migrateEAR utility is located.

2. Run the migrateEAR utility to migrate the data contained in the admin-authz.xml file. Use the
parameter descriptions that are listed in “migrateEAR utility for Tivoli Access Manager” on page 1752.

For example:
migrateEAR -profileName default
-j profile_root/config/cells/cell_name/xml_filename
-a sec_master
-p password
-w wsadmin
-d o=ibm,c=us
-c file:profile_root/etc/pd/PdPerm.properties
-z Roles

where xml_filename might be admin-authz.xml or naming-authz.xml.

v The -j parameter defaults to the file: profile_root/config/cells/cell_name/admin-authz.html

v The -c parameter defaults to the file: profile_root/etc/pd/PdPerm.properties. The output of the
utility is logged in the pdwas_migrate.log file. The pdwas_migrate.log file is created in the
profile_root/logs directory.

v The -profile_name parameter is optional and defaults to the default profile name.

v The -z Roles parameter is optional and when specified adds a subdirectory under the current
directory structure in which to store the role mapping. For example,

/WebAppServer/deployedResouces/Roles

Chapter 19. Administering application security 1751



If -z Roles is not specified, the role mapping is stored in the current directory structure. For
example,

/WebAppServer/deployedResouces

A status message is displayed when the migration completes. Output of the utility is logged to the
pdwas_migrate.log file, which is created in the directory where the utility is run. Check the log file after
each migration. If the log file displays errors, check the last recorded transaction, correct the source of
the error, and rerun the migration utility. If the migration is unsuccessful, verify that you supplied the
correct values for the -c and -j options.

3. WebSphere Application Server does not require a restart for the changes to take effect.

migrateEAR utility for Tivoli Access Manager
The migrateEAR utility migrates changes made to console users and groups in the admin-authz.xml and
naming-authz.xml files into the Tivoli Access Manager object space.

Syntax
migrateEAR -profile_name default
-j fully_qualified_filename
-a Tivoli_Access_Manager_administrator_ID
-p Tivoli_Access_Manager_administrator_password
-w WebSphere_Application_Server_administrator_user_name
-d user_registry_domain_suffix
-c PdPerm.properties_file_location
[-z role_mapping_location]

Attention:

v The -j parameter defaults to the file: profile_root/config/cells/cell_name/admin-
authz.html

v The -c parameter defaults to: file:profile_root/etc/pd/PdPerm.properties. The output of
the utility is logged in the pdwas_migrate.log file. The pdwas_migrate.log file is created in
the profile_root/logs directory.

v The -profile_name parameter is optional and defaults to the default profile name.

Parameters

-aTivoli_Access_Manager_administrator_ID
The administrative user identifier. The administrative user must have the privileges required to create
users, objects, and access control lists (ACLs). For example, -a sec_master.

This parameter is optional. When the parameter is not specified, you are prompted to supply it at run
time.

-c PdPerm.properties_file_location
The Uniform Resource Indicator (URI) location of the PdPerm.properties file that is configured by the
pdwascfg utility. When WebSphere Application Server is installed in the default location, the URI is:

file:profile_root/etc/pd/PdPerm.properties

-d user_registry_domain_suffix
The domain suffix for the user registry to use. For example, for Lightweight Directory Access Protocol
(LDAP) user registries, this value is the domain suffix, such as: "o=ibm,c=us"

You can use the pdadmin user show command to display the distinguished name (DN) for a user.

-j fully_qualified_pathname
The fully qualified path and file name of the Java 2 Platform, Enterprise Edition application archive file
,admin-authz.xml or the roles definitions file naming-authz.xml that is used for a naming operation
authorization. Optionally, this path can also be a directory of an expanded enterprise application. For
example, when WebSphere Application Server is installed in the default location, the path to the data
files to migrate includes:

1752 Administering WebSphere applications



profile_root/config/cells/cell_name

-p Tivoli_Access_Manager_administrator_password
The password for the Tivoli Access Manager administrative user. The administrative user must have
the privileges that are required to create users, objects, and access control lists (ACLs). For example,
you can specify the password for the -a sec_master administrative user as -p myPassword.

When this parameter is not specified, the user is prompted to supply the password for the
administrative user name.

-w WebSphere_Application_Server_administrator_user_name
The user name that is configured in the WebSphere Application Server security user registry field as
the administrator. This value matches the account that you created or imported in “Creating the
security administrative user for Tivoli Access Manager” on page 1718. Access permission for this user
is needed to create or update the Tivoli Access Manager protected object space.

When the WebSphere Application Server administrative user does not already exist in the protected
object space, it is created or imported. In this case, a random password is generated for the user and
the account is set to not valid. Change this password to a known value and set the account to valid.

A protected object and access control list (ACL) are created. The administrative user is added to the
pdwas-admin group with the following ACL attributes:

T Traverse permission

i Invoke permission

WebAppServer
You can overwrite the action group name. The default name is WebAppServer. This action
group name and the matching root object space can be overwritten when the migration utility
is run with the -r option.

-z role_mapping_location
The location where the role mapping is to be stored when migrating administration applications. The
default location is to place the role mapping in the current directory structure, such as:

/WebAppServer/deployedResouces

Specifying the -z option adds another directory level in which to store the role mapping. For example,
if you specify -z Roles in the migrateEAR utility, the role mapping is stored in the directory structure
as follows:

/WebAppServer/deployedResouces/Roles

Comments

This utility migrates security policy information from deployment descriptors or enterprise archive files to
Tivoli Access Manager for WebSphere Application Server. The script calls com.tivoli.pdwas.migrate.Migrate
the Java class.

Before you invoke the script, you must run the setupCmdLine script from the Qshell command
line. You can find this file in the profile_root/bin directory, where profile_root is your installation path. In
a default installation, profile_root is app_server_rootBase.

The script is dependent on finding the correct environment variables for the location of
prerequisite software.

To enable a new user access to the administrative group in WebSphere Application Server, it is
recommended that the user be added to the pdwas-admin group after JACC has been enabled. You can
enter the administrative primary ID (adminID) in the group. This is required when the serverID is not the
same as the adminID.

Chapter 19. Administering application security 1753



The following is an example of this command:
pdadmin> group modify pdwas-admin add adminID

Return codes

The utility can return the following exit status codes:

0 The command completed successfully.

1 The command failed.

Assigning users from a foreign realm to the admin-authz.xml
Operating with the administrative agent and job manager topology allows more situations where you might
need to add an administrative user from a different registry into your administrative authorization table
(admin-authz.xml). Each administrative user that needs to be added requires the "accessID" format of the
user from the remote registry. When that user finally is active in the local cell, the authorization table will
already have that accessID that is required. This task demonstrates how this assignment of users is
performed.

Procedure
1. You need to determine the accessId for a user on the remote registry. To do this, you call the following

wsadmin task and query based on a user filter. The following example illustrates a query from the
registry realm "BIRKT60" with a userFilter of "localuser*". This query returns any user from this realm
that begins with "localuser". The resulting accessId is the one you need to specify in the target
administrative authorization table in the following step. Connect to the sending administrative process:
wsadmin> $AdminTask listRegistryUsers {-securityRealmName BIRKT60 -displayAccessIds true -userFilter localuser*}
{name BIRKT60\localuser@BIRKT60}
{accessId user:BIRKT60/S-1-5-21-3033296400-14683092-2821094880-1007}

2. Add "localuser" to the target admin-authz.xml using the following wsadmin task. Connected to the
receiving administrative process:
wsadmin> $AdminTask mapUsersToAdminRole {-roleName administrator -userids {localuser }
-accessids {user:BIRKT60/S-1-5-21-3033296400-14683092-2821094880-1007 }}

3. Save the changes.

Results

This task updates the admin-authz.xml in the receiving administrative process to allow a "cross-realm
authorization" to succeed. The example illustrated here was for a LocalOS registry user. Performing the
same task for an LDAP accessId produces results that look more like a realm and distinguished name
(DN).

Note: If you change your realm you must repeat this process with the new realm name.

Fine-grained administrative security
In releases prior to WebSphere Application Server version 6.1, users granted administrative roles could
administer all of the resources under the cell. WebSphere Application Server is now more fine-grained,
meaning that access can be granted to each user per resource.

For example, users can be granted configurator access to a specific instance of a resource only (an
application, an application server or a node). Users cannot access any other resources outside of the
resources assigned to them. The administrative roles are now per resource rather than to the entire cell.
However, there is a cell-wide authorization group for backward compatibility. Users assigned to
administrative roles in the cell-wide authorization group can still access all of the resources within the cell.

Note: Nodes prior to WebSphere Application Server Version 6.1 in a mixed cell environment are filtered
out of resource mapping.

1754 Administering WebSphere applications



To achieve this instance-based security or fine-grained security, resources that require the same privileges
are placed in a group called the administrative authorization group or authorization group. Users can be
granted access to the authorization group by assigning to them the required administrative role.

Fine-grained administrative security can also be used in single-server environments. Various applications
in the single server can be grouped and placed in different authorization groups. Therefore, there are
different authorization constraints for different applications. Note that the server itself cannot be part of any
authorization group in a single-server environment.

You can assign users and groups to the adminsecuritymanager role on the cell level through wsadmin
scripts and the administrative console. Using the adminsecuritymanager role, you can assign users and
groups to the administrative user roles and administrative group roles.

When fine grained administrative security is used, users granted the adminsecuritymanager role can
manage authorization groups. See “Administrative roles and naming service authorization” on page 1679
for detailed explanations of all administrative roles.

An administrator cannot assign users and groups to the administrative user roles and administrative group
roles, including the adminsecuritymanager role. See “Administrative roles” on page 1687 for more details.

There are several administrative security commands that can be used to create authorization groups, map
resources to authorization groups, and to assign users to administrative roles within the authorization
groups. Following are some examples using wsadmin:

v Create a new authorization group:
$AdminTask createAuthorizationGroup {-authorizationGroupName authGroup1}

v Deleting an authorization group:
$AdminTask deleteAuthorizationGroup {-authorizationGroupName groupName}

v Add resources to an authorization group:
$AdminTask addResourceToAuthorizationGroup
{-authorizationGroupName groupName -resourceName Application=app1}

v Remove resources from an authorization group:
$AdminTask removeResourceFromAuthorizationGroup
{-authorizationGroupName groupName -resourceName Application=app1}

v Add user IDs to roles in an authorization group:
$AdminTask mapUsersToAdminRole {-authorizationGroupName groupName
-roleName administrator -userids user1}

v Add group IDs to roles in an authorization group:
$AdminTask mapGroupsToAdminRole {-authorizationGroupName groupName
-roleName administrator -groupids group1}

v Remove user IDs from roles in an authorization group:
AdminTask removeUsersFromAdminRole {-authorizationGroupName
groupName -roleName administrator -userids user1}

v Remove group IDs from roles in an authorization group:
$AdminTask removeGroupsFromAdminRole {-authorizationGroupName
groupName -roleName administrator -groupids group1}

Resources that can be added to an authorization group

You can add only resources of the following types to an authorization group:

v Cell

v Node

v ServerCluster

v Server

v Application

v NodeGroup

Chapter 19. Administering application security 1755



If a resource is not one of the types previously listed, its parent resource will be used.

A resource can only belong to one authorization group. However, there is a containment relationship
among resources. If a parent resource belongs to a different authorization group than that of its child
resource, the child resource implicitly will belong to multiple authorization groups. You cannot add the
same resource to more than one authorization group.

The following diagram shows the containment relationship among resources:

The privileges required for actions on resources depends on two factors:

v The authorization group of the administrative resource. If a user is granted access to an authorization
group, all of the resources in that group will be included.

v The containment relationship of the resource. If a user is granted access to a parent resource, all of the
children resources will be included.

Keystore management requires a user to have cell-level administrative privileges because they are created
and managed at the cell level. Fine-grained security access to a specific resource does not allow
management of the associated keystores.

Table 140. Privileges required to access various administrative resources. The privileges required to access various
administrative resources are shown in the following table:

Resource Action Required roles

Server Start, stop, runtime operations Server-operator, node-operator,
cell-operator

Server New, delete Node-configurator, cell-configurator

Server Edit configuration Server-configurator, node-configurator,
cell-configurator

Server View configuration, runtime status Server-monitor, node-monitor, cell-monitor

Node Restart, stop, sync Node-operator, Cell-operator

Node Add, delete Cell-configurator

Node Edit configuration Node-configurator, cell-configurator

Node View configuration, runtime status Node-monitor, cell-monitor

Cluster Start, stop, runtime operations Cluster-operator, cell-operator

Cluster New, delete Cell-configurator

1756 Administering WebSphere applications



Table 140. Privileges required to access various administrative resources (continued). The privileges required to
access various administrative resources are shown in the following table:

Resource Action Required roles

Cluster Edit configuration Cluster-configurator, cell-configurator

Cluster View configuration, runtime status Cluster-monitor, cell-monitor

Cluster member Start, stop, runtime operations Server-operator, cluster-operator,
node-operator, cell-operator

Cluster member New, delete Node-configurator, cell-configurator

Cluster member Edit configuration Server-configurator, cluster-configurator,
node-configurator, cell-configurator

Cluster member View configuration, runtime status Server-monitor, cluster-monitor,
node-monitor, cell-monitor

Application All operations Refer to the section "Deployer roles" in
“Administrative roles” on page 1687.

Node, cluster Add, delete Cell-configurator

The server-operator role is the operator role of the authorization group to which the server instance is part
of. Similarly, the node-operator role is in the operator role of the authorization group to which the node
instance is part of.

To use fine-grained administrative security in the administrative console, a user should be granted a
monitor role at the cell level at minimum. However, to login using wsadmin, a user should be granted a
monitor role for any authorization group.

Example: Using fine-grained security.

The following scenarios describe the use of fine-grained administrative security, particularly the new
deployment role.

Deployment role scenario 1.

In the following scenario, there are four applications configured on server S1, as shown in the following
table. Each application must be isolated so that the administrator of one application cannot modify another
application. Assume that only user1 can manage application A1, user2 can manage applications A2 and
A3, and only user3 can manage application A4.

Note: It is not recommended to have an application in one group and its target server in another group.
However, that is not always possible. It is common to have many applications on one server. It is
still sometimes necessary to isolate the administration of applications running on the same server.

One example is an Application Service Provider (ASP), where a single application server can have
multiple vendor applications. In this instance the server administrator is responsible for installing all
of the vendor applications. Once applications are installed, each vendor can manage their own
application without interfering with other vendor's applications.

Table 141. Deployment role scenario 1 applications.

This table lists the Deployment role scenario 1 applications.
Application Server Node

A1 S1 N1

A2 S1 N1

A3 S1 N1

Chapter 19. Administering application security 1757



Table 141. Deployment role scenario 1 applications (continued).

This table lists the Deployment role scenario 1 applications.
Application Server Node

A4 S1 N1

We can configure authorization groups as shown in the following diagram:

In the diagram, application A1 is in authorization group G1, applications A2 and A3 are in authorization
group G2, and application A4 is in authorization group G3.

A deployer role is assigned from authorization group G1 to user1, from authorization group G2 to user2,
and from authorization group G3 to user3.

Consequently, user1 can perform all of the operations on application A1, user2 on applications A2 and A3,
and user3 on application A4. Since all applications share the same server, we cannot put the same server
on all authorization groups. Only a cell-level administrator can install an application. After the installation of
an application is complete, the deployer of each application can modify their own. To start and stop the
server, cell-level administrative authority is required. This type of scenario is useful in an ASP environment.

Deployment role scenario 2.

In the following scenario, a group of applications require the same administrative roles to one server. In
this example, applications A1 and A2 are related applications, and can be administrated by one set of
administrators. They are running on the same server (S1). Applications A3 and A4 require a different set of
administrators, and are running on servers S2 and S3 respectively.

1758 Administering WebSphere applications



Table 142. Deployment role scenario 2 applications.

This table lists the Deployment role scenario 2 applications.
Application Server Node

A1 S1 N1

A2 S1 N1

A3 S2 N2

A4 S3 N3

Scenarios that can be applied directly in customer environments.

Each developer must be able to modify the configuration for their server, and they must be able to install
their application onto that server. They also must be able to start and stop the server as well as the
application on the server.

Developers also must be able to configure the server so that they can debug any problems they run into.
They must have the ability to update or modify the application being developed. The administrative
authorization group for this developer includes at least one server and any applications that the developer
installs on that server.

Chapter 19. Administering application security 1759



In the following example, developers of authorization group G1 have a new application (A11). They can
install and target that new application only on servers within authorization group G1. Also, they can place
that new application in their authorization group (G1).

1760 Administering WebSphere applications



ASP environment scenario.

In this scenario, the customer is an ASP. They have their own customers to whom they provide application
serving function. They want to enable their customers to administer and monitor their applications, but not
to see or administer applications for different customers. In this example, however, the ASP has internal
staff administrators whose job it is to maintain the servers.

This internal ASP staff administrator might need to move an application from one server to another to
ensure that an application remains available. The internal ASP staff administrator should be able to stop
and start the servers and to change their configuration.

In contrast, the ASP customer administrator should not be able to stop or start servers. However, the ASP
customer administrator should be able to update their applications running on those servers. The
administrative authorization group for the internal ASP administrator can be the whole cell or can include a
subset of servers, nodes, clusters and applications. The administrative authorization group for the
customer administrator only includes those applications that the customer has paid to have served by this
ASP.

When updating the configuration repository, run the admin scripts from the deployment manager so that
the fine grain admin security rules will be in effect when admin scripts are run from the deployment
manager side.

The following diagram contains a scenario where two different customers have two different types of
applications, and can manage their own applications. However, the servers and nodes on which the
applications are running are isolated from their customers. The servers and nodes can only be maintained
by the internal administrators. In addition, the customers cannot target their applications on a different
server. This can only be performed by the internal administrator or internal deployers.

Chapter 19. Administering application security 1761



Regional organization scenario.

In this scenario, the customer is a large global company. The company's nodes and servers are organized
so as to provide application serving for different regions (or alternatively, different lines of business). They
want representatives from the different regional areas to be able to monitor and administer the nodes and
servers associated with that region. However, they do not want the regional administer to be able to effect
any node and server associated with a different region.

The administrative authorization group for each regional representative includes the nodes, servers,
clusters and applications associated with that region.

For example, consider a company that provides multiple services, such as a financial institution that
provides services like credit card accounts, brokerage accounts, banking accounts, or travel accounts.
Each of these services can be separate applications, and the administrator for each of these applications
must also be different. The following figure shows one way to configure such a system:

1762 Administering WebSphere applications



The following figure shows how the resources in such a system can be grouped to isolate administrators
from each other:

Chapter 19. Administering application security 1763



Note that the nodes are not part of any authorization group. Therefore, a trade application administrator
cannot stop a server on any of the nodes, and is prevented from stopping a travel application.

The same system can be configured in another way as follows:

1764 Administering WebSphere applications



The following figure shows how the resources in such a system can be grouped to isolate administrators
from each other:

Chapter 19. Administering application security 1765



New Administrative Authorization Group
Use this page to create a new administrative authorization group and to specify the associated
administrative resources.

To view this administrative console page, click Security > Administrative Authorization Groups > New.

You must be logged into the administrative console with cell-level AdminSecurityManager authority, or
the primary administrative ID can make these changes as well.

Name:

Use to identify the new administrative authorization group. The name should be descriptive of the group's
role, or purpose, and should be unique in the cell structure. Using a non-unique name results in an error
and a failure to create the new administrative authorization group. This is a required field.

Resources:

Select the resources from the Resource section to which you want the new administrative authorization
group to control access.

Resources that are displayed in black text are available for selection.

Resources that are displayed in grey are already members of a different administrative authorization
group. Therefore, these resources are not available for inclusion in the new administrative authorization
group. When a resource is a member of a different authorization group, the name of the group displays
next to the resource name. For example: server_1 (group_1)

1766 Administering WebSphere applications



The available filtering options are the following. Each option includes all the resources that are associated
with that specific filtering option.

All scopes
The default view that displays the authorization group tree.

Clusters
All of the resources associated with the clusters.

Web Servers
All of the resources associated with the web servers.

Business-level applications
All of the resources associated with the business-level applications.

Servers
All of the resources associated with the servers.

Nodes
All of the resources associated with the nodes.

Applications
All of the resources associated with the applications.

Assets
All of the resources associated with the assets.

Node Groups
All of the resources associated with the node groups.

Assigned scopes
Displays all of the scopes explicitly assigned to the current authorization group.

Administrative Authorization Group collection
Use this page to create, delete or to edit an existing administrative authorization group.

To view this administrative console page, click Security > Administrative Authorization Groups.

You must be logged into the administrative console with cell-level AdminSecurityManager authority, or
the primary administrative ID can make these changes as well.

Name:

The name field specifies the current name of the administrative authorization group. You can edit the name
of the administrative authorization group during the creation process only. After the authorization group is
created, you cannot modify the name. The specified name must be unique within the cell structure.
Otherwise, a non-unique name results in an error.

New:

Select to create a new administrative authorization group.

Delete:

Select to remove an existing administrative authorization group.

Note: You must select an administrative authorization group before selecting Delete.

Chapter 19. Administering application security 1767



Creating a fine-grained administrative authorization group using the
administrative console
You can create a fine-grained administrative authorization group by selecting administrative resources to
be part of the authorization group. You can assign users or groups to this new administrative authorization
group and also give them access to the administrative resources contained within.

Before you begin

You must be logged into the administrative console with cell-level Admin Security Manager authority, or
the primary administrative ID can make these changes as well.

Procedure
1. Navigate to Security > Administrative Authorization Groups > New.

2. Type a name for the administrative authorization group into the Name field. This is a required field.
The name must be unique within the cell structure. If the name is not unique then the new
administrative authorization group is not created at the end of this procedure.

3. Select the resources from the Resource section to which you want the new administrative authorization
group to control access.

Resources that are displayed in black text are available for selection.

Resources that are displayed in grey are already members of a different administrative authorization
group. Therefore, these resources are not available for inclusion in the new administrative authorization
group. When a resource is a member of a different authorization group, the name of the group displays
next to the resource name. For example: server_1 (group_1)

Your filtering options include the following:

v Nodes. (All of the resources associated with the nodes.)

v Servers. (All of the resources associated with the servers.)

v Web servers. (All of the resources associated with the web servers.)

v Clusters. (All of the resources associated with the clusters.)

v Applications. (All of the resources associated with the applications.)

v Node groups. (All of the resources associated with the Node Groups.)

v All scopes. (The default view that displays the authorization group tree.)

v Assigned scopes. (Displays all of the scopes explicitly assigned to the current authorization group.)

4. Click OK or Apply.

5. If you want to associate a user role to this new administrative authorization group, do the following:

a. Click Administrative user roles located under the Additional Properties section. The available
user roles are the following:

Administrator
An individual or group that uses the administrator role has the operator and configurator
privileges plus additional privileges that are granted solely to the administrator role. For
example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

v Enable or disable Java 2 security.

v Change the Lightweight Third Party Authentication (LTPA) password and generate keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

1768 Administering WebSphere applications



Note: An administrator cannot map users and groups to the administrator roles.
.

Configurator
An individual or group that uses the configurator role has the monitor privilege plus the
ability to change the WebSphere Application Server configuration. The configurator can
perform all the day-to-day configuration tasks. For example, a configurator can complete
the following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Secure Authentication
Service (SAS), and Secure Sockets Layer (SSL) configurations.

Important: SAS is supported only between Version 6.0.x and previous version servers
that have been federated in a Version 6.1 cell.

Deployer
Users granted this role can perform both configuration actions and runtime operations on
applications..

Operator
An individual or group that uses the operator role has monitor privileges plus ability to
change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

Monitor
An individual or group that uses the monitor role has the least amount of privileges. A
monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

Admin Security Manager
Using the Admin Security Manager role, you can assign users and groups to the
administrative user roles and administrative group roles. However, an administrator cannot
assign users and groups to the administrative user roles and administrative group roles
including the Admin Security Manager roles.

b. Click Add.... The New User page is displayed.

c. Select the appropriate role(s) from the Role(s) list box.

d. Select a user or users by entering text in the Search string field, and then click Search.. Click the
arrow to add the available user or users to the Mapped to role field. You can select multiple users
and roles by clicking Select All.

e. Click OK. You are returned to the Administrative User Roles page. The new users are displayed in
the Administrative User Roles table along with their appropriate roles.

f. Repeat steps B through E for each new user to whom you want to map a role.

6. If you want to associate a group to this new user role, do the following:

a. Click Administrative group roles located under the Additional Properties section.

b. Click Add.... The New Group page is displayed.

c. Select the appropriate role or roles from the Role(s) list box.

Chapter 19. Administering application security 1769



d. Select a user or users by entering text in the Search string field, and then click Search.. Click the
arrow to add the available user or users to the Mapped to role field. You can select multiple users
and roles by clicking Select All.

e. Select either the Select from special subjects or Map Groups As Specified Below option.

If you select the Select from special subjects option, you can select the EVERYONE, ALL
AUTHENTICATED, or ALL AUTHENTICATED IN TRUSTED REALMS values.

A list of user groups and roles are displayed in the Available and Mapped to role fields. Select
the user groups from the Available field and then select the roles from the Mapped to role field to
which you want the group or groups associated. You can select multiple groups and roles.

f. Click OK. You are returned to the Administrative Group Roles page. The new group is displayed in
the Administrative Group Roles table along with the role of the new group.

g. Repeat steps B through E for each new group to whom you want to map a role.

7. If you want to create another administrative authorization group, click Apply. The current administrative
authorization group is created. Repeat steps 2 through 6 to create another administrative authorization
group.

8. If you do not want to create another administrative authorization group, click OK.

Editing a fine-grained administrative authorization group using the
administrative console
You can add or remove administrative resources to an administrative authorization group or edit an
existing one.

Before you begin

You must be logged into the administrative console with the cell-level AdminSecurityManager authority or
as the primary administrative user.

Procedure
1. Navigate to Security > Administrative Authorization Groups. The Administrative Authorization

Groups page displays a table that lists all of the current administrative authorization groups available in
the cell.

2. Click on the administrative authorization group in the table that you want to edit.

3. To add or remove resources from the administrative authorization group, select or clear them in the
Resource section of the edit page. Resources displayed in black text are available for selection or
clearing. Resources displayed in grey text are members of a different administrative authorization
group and therefore cannot be edited for the current administrative authorization group.

The available filtering options are the following. Each option includes all the resources that are
associated with that specific filtering option.

v All scopes. (The default view that displays the authorization group tree.)

v Clusters. (All of the resources associated with the clusters.)

v Web servers. (All of the resources associated with the Web servers.)

v Business-level applications. (All of the resources associated with the business-level applications.)

v Servers. (All of the resources associated with the servers.)

v Nodes. (All of the resources associated with the nodes.)

v Applications. (All of the resources associated with the applications.)

v Assets. (All of the resources associated with the assets.)

v Node groups. (All of the resources associated with the node groups.)

v Assigned scopes. (Displays all of the scopes explicitly assigned to the current authorization group).

1770 Administering WebSphere applications



Nodes prior to WebSphere Application Server Version 6.1 in a mixed cell environment are filtered out
of resource mapping.

4. To remove a user or a group, do the following:

a. To delete users, click Administrative user roles under the Additional Properties section. To delete
groups, click Administrative group roles under the Additional Properties section. The appropriate
edit page displays a table that lists all of the current users or groups and their associated roles,
along with the user's login status.

b. Click the check box beside the name of the current user or group and then click Remove. The
current user or group is no longer associated with the role and the role is no longer listed in the
table. It is now ready to have a new user or group assigned to it.

5. If you want to add or to reassign a user or group role to this administrative authorization group, do the
following:

a. To add a user, click Administrative user roles under the Additional Properties section. To add a
group, click Administrative group roles located under the Additional Properties section. The
appropriate edit page displays a table that lists all of the current users or groups and their
associated roles. The available roles are:

Administrator
An individual or group that uses the administrator role has the operator and configurator
privileges plus additional privileges that are granted solely to the administrator role. For
example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

v Enable or disable Java 2 security.

v Change the Lightweight Third Party Authentication (LTPA) password and generate keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Note: An administrator cannot map users and groups to the administrator roles.

Configurator
An individual or group that uses the configurator role has the monitor privilege plus the
ability to change the WebSphere Application Server configuration. The configurator can
perform all the day-to-day configuration tasks. For example, a configurator can complete
the following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Security
Authentication Service (SAS), and Secure Sockets Layer (SSL) configurations.

Important: SAS is supported only between Version 6.0.x and previous version servers
that have been federated in a Version 6.1 cell.

Deployer
Users granted this role can perform both configuration actions and runtime operations on
applications.

Chapter 19. Administering application security 1771



Operator
An individual or group that uses the operator role has monitor privileges plus ability to
change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

.

Monitor
An individual or group that uses the monitor role has the least amount of privileges. A
monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

Admin Security Manager
Using the Admin Security Manager role, you can assign users and groups to the
administrative user roles and administrative group roles. However, an administrator cannot
assign users and groups to the administrative user roles and administrative group roles
including the Admin Security Manager role.

b. Click Add....

c. To add a new user or group, follow the instructions on the page to specify either a user name,
group name, or Special subject. Highlight the desired role(s), and click OK. The specified users,
groups, or Special subject are mapped to the security roles.

Fine-grained administrative security in heterogeneous and
single-server environments
You can use fine-grained administrative security in heterogeneous or single-server environments. This
capability enables you to use fine-grained administrative security for nodes that were created on different
versions of the product, and applications that are grouped and placed in different authorization groups.

Fine-grained administrative security in a heterogeneous environment

Fine-grained administrative security in a heterogeneous environment has the following requirements:

v Only nodes that are running WebSphere Application Server Version 8.5 can be part of an administrative
authorization group.

v Only servers that are running in a WebSphere Application Server Version 8.5 node can be part of an
administrative authorization group.

v Only applications that are targeted on servers running on WebSphere Application Server Version 8.5
can be part of an administrative authorization group.

v If a cluster spans nodes of multiple releases, it cannot be part of an administrative authorization group.

v If a cluster spans nodes of multiple releases, none of its members can be part of an administrative
authorization group.

v If an application is targeted on a cluster that spans multiple releases, that application cannot be part of
an administrative authorization group.

Fine-grained administrative security in a single-server environment

You can also use fine-grained administrative security in a single-server environment. This capability means
that you can group various applications in the single server, and place them in different authorization
groups. Therefore, different authorization constraints might exist for different applications.

1772 Administering WebSphere applications



Life cycle of fine-grained administrative resource

An administrative resource that was once part of an authorization group continues to be part of that
authorization group until one of the following events occurs:

v The administrative resource is removed from the authorization group. In this instance, the administrative
resource belongs to the cell-level authorization group.

v The administrative resource is removed from the configuration. In this instance, the administrative
resource does not exist in the configuration, but still exists in the authorization group. Remove this
administrative resource from the authorization group.

After the administrative resource is removed from the authorization group, the administrative authorizer
runtime must be notified by using the AuthorizationManager refreshAll MBean method.

The refreshAll command must be invoked after AdminConfig.save() and sync nodes. For example:

JACL:
// get AuthorizationGroup Mbean
wsadmin> set agBean [$AdminControl queryNames
type=AuthorizationGroupManager,process=dmgr,*]

wsadmin> $AdminControl invoke &agBean refreshAll

JYTHON:
// get AuthorizationGroup Mbean
wsadmin> set agBean
AdminControl.queryNames(’type=AuthorizationGroupManager,process=dmgr,*’)

wsadmin> AdminControl.invoke(agBean, ’refreshAll’)

The server restart is no longer needed.

Securing communications
WebSphere Application Server provides several methods to secure communication between a server and
a client.

About this task

Note: WebSphere Application Server provides several methods for securing communication between a
server and a client. New in this release are functions that ensure secure communication between a
server and a client. These functions focus on certificate management, authentication, and ensuring
trust among the application server, administrative agent, and job manager. The new functions
include:

v Creating and using a certificate authority (CA) clients to enable a CA to request, query, and
revoke certificates.

v Creating and using chained personal certificates to allow a certificate to be signed with a longer
life span.

v Creating and revoking certificate authority (CA) certificates to ensure secure communication
between the CA client and the CA server.

The following topics are covered in this section:

Procedure
v Secure communications using Secure Sockets Layer

v Creating an SSL configuration

v Creating a keystore configuration

v Creating a certificate authority (CA) client

Chapter 19. Administering application security 1773



v Deleting a certificate authority (CA) client

v Viewing or Modifying a certificate authority (CA) client

v Creating a keystore configuration for a preexisting keystore file

v Creating a self-signed certificate

v Creating a certificate authority request

v Extracting a signer certificate from a personal certificate

v Retrieving signers from a remote SSL port

v Adding a signer certificate to a keystore

v Adding a signer certificate to the default signers keystore

v Exchanging signer certificates in a keystore

v Configuring certificate expiration monitoring

v Key management for cryptographic uses

v Creating a key set configuration

v Creating a key set group configuration

Secure communications using Secure Sockets Layer (SSL)
The Secure Sockets Layer (SSL) protocol provides transport layer security including authenticity, data
signing, and data encryption to ensure a secure connection between a client and server that uses
WebSphere Application Server. The foundation technology for SSL is public key cryptography, which
guarantees that when an entity encrypts data using its public key, only entities with the corresponding
private key can decrypt that data.

WebSphere Application Server uses Java Secure Sockets Extension (JSSE) as the SSL implementation
for secure connections. JSSE is part of the Java 2 Standard Edition (J2SE) specification and is included in
the IBM implementation of the Java Runtime Extension (JRE). JSSE handles the handshake negotiation
and protection capabilities that are provided by SSL to ensure secure connectivity exists across most
protocols. JSSE relies on X.509 certificate-based asymmetric key pairs for secure connection protection
and some data encryption. Key pairs effectively encrypt session-based secret keys that encrypt larger
blocks of data. The SSL implementation manages the X.509 certificates.

Managing X.509 certificates

Secure communications for WebSphere Application Server require digitally-signed X.509 certificates. The
contents of an X.509 certificate, such as its distinguished name and expiration, are either signed by a
certificate authority (CA), signed by a root certificate in NodeDefaultRootStore or DmgrDefaultRootStore, or
are self-signed. When a trusted CA signs an X.509 certificate, WebSphere Application Server identifies the
certificate and freely distributes it. A certificate must be signed by a CA because the certificate represents
the identity of an entity to the general public. Server-side ports that accept connections from the general
public must use CA-signed certificates. Most clients or browsers already have the signer certificate that
can validate the X.509 certificate so signer exchange is not necessary for a successful connection.

You can trust the identity of a self-signed X.509 certificate only within a peer in a controlled environment,
such as internal network communications, accepts the signer certificate. To complete a trusted handshake,
you must first send a copy of the entity certificate to every peer that connects to the entity.

CA, chained, and self-signed X.509 certificates reside in Java keystores. JSSE provides a reference to the
keystore in which a certificate resides. You can select from many types of keystores, including Java
Cryptographic Extension (JCE)-based and hardware-based keystores. Typically, each JSSE configuration
has two Java keystore references: a keystore and a truststore. The keystore reference represents a Java
keystore object that holds personal certificates. The truststore reference represents a Java keystore object
that holds signer certificates.

1774 Administering WebSphere applications



A personal certificate without a private key is an X.509 certificate that represents the entity that owns it
during a handshake. Personal certificates contain both public and private keys. A signer certificate is an
X.509 certificate that represents a peer entity or itself. Signer certificates contain just the public key and
verify the signature of the identity that is received during a peer-to-peer handshake.

For more information, see “Extracting a signer certificate from a personal certificate” on page 1898

For more information about keystores, see Keystore configurations for SSL.

Signer exchange

When you configure an SSL connection, you can exchange signers to establish trust in a personal
certificate for a specific entity. Signer exchange enables you to extract the X.509 certificate from the
peer keystore and add it into the truststore of another entity so that the two peer entities can connect. The
signer certificate also can originate from a CA as a root signer certificate or a chained certificate's root
signer certificate or an intermediate signer certificate. You can also extract a signer certificate directly
from a self-signed certificate, which is the X.509 certificate with the public key.

Figure 1 illustrates a hypothetical keystore and truststore configuration. An SSL configuration determines
which entities can connect to other entities, and the peer connections that are trusted by an SSL
handshake. If you do not have the necessary signer certificate, the handshake fails because the peer
cannot be trusted.

Figure 37. Signer exchange

Chapter 19. Administering application security 1775



In this example, the truststore for Entity A contains three signers. Entity A can connect to any peer as long
as one of the three signers validates its personal certificate. For example, Entity A can connect to Entity B
or Entity C because the signers can trust both signed personal certificates. The truststore for Entity-B
contains one signer. Entity B is able to connect to Entity C only, and only when the peer endpoint is using
certificate Entity-C Cert 1 as its identity. The ports that use the other personal certificate for Entity C are
not trusted by Entity B. Entity C can connect to Entity A only.

In the example, the self-signed configuration seems to represent a one-to-one relationship between the
signer and the certificate. However, when a CA signs a certificate, it typically signs many at a time. The
advantage of using a single CA signer is that it can validate personal certificates that are generated by the
CA for use by peers. However, if the signer is a public CA, you must be aware that the signed certificates
might have been generated for another company other than your target entity. For your internal
communications, private CAs and self-signed certificates are preferable to public CAs because they enable
you to isolate the connections that you want to occur and prevent those that you do not want to occur.

SSL configurations

An SSL configuration comprises a set of configuration attributes that you can associate with an endpoint or
set of endpoints in the WebSphere Application Server topology. The SSL configuration enables you to
create an SSLContext object, which is the fundamental JSSE object that the server uses to obtain SSL
socket factories. You can manage the following configuration attributes:

v An alias for the SSLContext object

v A handshake protocol version

v A keystore reference

v A truststore reference

v A key manager

v One or more trust managers

v A security level selection of a cipher suite grouping or a specific cipher suite list

v A certificate alias choice for client and server connections

To understand the specifics of each SSL configuration attribute, see “SSL configurations” on page 1780.

Selecting SSL configurations

In previous releases of WebSphere Application Server, you can reference an SSL configuration only by
selecting the SSL configuration alias directly. Each secure endpoint was denoted by an alias attribute that
references a valid SSL configuration within a repertoire of SSL configurations. When you made a single
configuration change, you had to re-configure many alias references across the various processes.
Although the current release still supports direct selection, this approach is no longer recommended.

The current release provides improved capabilities for managing SSL configurations and more flexibility
when you select SSL configurations. In this release, you can select from the following approaches:

Programmatic selection
You can set an SSL configuration on the running thread prior to an outbound connection.
WebSphere Application Server ensures that most system protocols, including Internet Inter-ORB
Protocol (IIOP), Java Message Service (JMS), Hyper Text Transfer Protocol (HTTP), and
Lightweight Directory Access Protocol (LDAP), accept the configuration. See “Programmatically
specifying an outbound SSL configuration using JSSEHelper API” on page 1850

Dynamic selection
You can associate an SSL configuration dynamically with a specific target host, port, or outbound
protocol by using a predefined selection criteria. When it establishes the connection, WebSphere
Application Server checks to see if the target host and port match a predefined criteria that
includes the domain portion of the host. Additionally, you can predefine the protocol for a specific

1776 Administering WebSphere applications



outbound SSL configuration and certificate alias selection. See “Dynamic outbound selection of
Secure Sockets Layer configurations” on page 1792 for more information.

Dynamic outbound selection of Secure Sockets Layer configurations is based on connection
information being available for the server so that the server can match up the outbound protocol,
host, or port when the creation of the client socket takes place in
com.ibm.websphere.ssl.protocol.SSLSocketFactory. For WebSphere admin connectors like SOAP
and Remote Method Invocation (RMI), connection information is placed on the thread and is
available for dynamic outbound selection to take place. The dynamic outbound selection process
replies on connection information being setup when SSL properties are retrieved similar to what is
described in “Programmatically specifying an outbound SSL configuration using JSSEHelper API”
on page 1850.

When the outbound connection is being made from customer written applications, parts of the
connection information may not be available. Some of these applications make API calls to a
protocol to make the connection. The API ultimately then calls one of the createSocket() methods
in com.ibm.websphere.ssl.protocol.SSLSocketFactory to complete the process. gotcha: All of the
connection information for dynamic outbound selection might not be available, and you may have
to adjust the dynamic outbound selection connection filter and fill in an asterisk (*) for the missing
part of the connection information. As an example, the openConnection() call on a URL object
ultimately calls createSocket(java.net.Socket socket, String host, int port, boolean
autoClose). The connection information can be built with the host and port provided, but there is
no protocol provided. In this case, a wild card, asterisk (*), should be used for the protocol part of
the dynamic selection connection information.

Most of the createSocket() methods take a host or IP address and a port as parameters. The
dynamic outbound selection connection filter can be built with the host and port. The default
method, createSocket(), without any parameters does not contain any information to build the
outbound selection connection filter unless the socket factory was instantiated with connection
information, If no connection information is available, then you should consider using one of the
other methods of selecting a SSL configuration describes in this topic, "Programmatic selection"
can be good choice.

Direct selection
You can select an SSL configuration by using a specific alias, as in past releases. This method of
selection is maintained for backwards compatibility because many applications and processes rely
on alias references.

Scope selection
You can associate an SSL configuration and its certificate alias, which is located in the keystore
associated with that SSL configuration, with a WebSphere Application Server management scope.
This approach is recommended to manage SSL configurations centrally. You can manage
endpoints more efficiently because they are located in one topology view of the cell. The
inheritance relationship between scopes reduces the number of SSL configuration assignments
that you must set.

Each time you associate an SSL configuration with a cell scope, the node scope within the cell
automatically inherits the configuration properties. However, when you assign an SSL configuration
to a node, the node configuration overrides the configuration that the node inherits from the cell.
Similarly, all of the application servers for a node automatically inherit the SSL configuration for
that node unless you override these assignments. Unless you override a specific configuration, the
topology relies on the rules of inheritance from the cell level down to the endpoint level for each
application server.

Note: If your applications are relying on SSL configurations that were set as individual settings for
each SSL configuration in the topology, but your application servers have inherited the SSL
configuration as deployed from the cell level down to the endpoint level, then there is the

Chapter 19. Administering application security 1777



possibility of communication errors occurring among servers (for example, handshake
errors). You need to ensure that your applications are operating consistent with the central
management of SSL configurations.

The topology view displays an inbound tree and outbound tree. You can make different SSL
configuration selections for each side of the SSL connection based on what that server connects
to as an outbound connection and what the server connects to as an inbound connection. See
“Central management of SSL configurations” on page 1793 for more information.

The runtime uses an order of precedence for determining which SSL configuration to choose because you
have many ways to select SSL configurations. Consider the following order of precedence when you select
a configuration approach:

1. Programmatic selection. If an application sets an SSL configuration on the running thread using the
com.ibm.websphere.ssl.JSSEHelper application programming interface (API), the SSL configuration is
guaranteed the highest precedence.

2. Dynamic selection criteria for outbound host and port or protocol.

3. Direct selection.

4. Scope selection. Scope inheritance guarantees that the endpoint that you select is associated with an
SSL configuration and is inherited by every scope beneath it that does not override this selection.

Default chained certificate configuration

By default, WebSphere Application Server creates a unique chained certificate for each node. The chained
certificate is signed with a root, a self-signed certificate stored in the DmgrDefaultRootStore or
NodeDefaultRootStore. WebSphere Application Server no longer relies on a self-signed certificate or the
default or dummy certificate that is shipped with the product. The key.p12 default keystore and the
trust.p12 truststore are stored in the configuration repository within the node directory. The default root
certificate is stored in the root-key.p12 in the configuration repository under the node directory.

All of the nodes put their signer certificates from the default root certificate in this common truststore
(trust.p12). Additionally, after you federate a node, the default SSL configuration is automatically modified
to point to the common truststore, which is located in the cell directory. The node can now communicate
with all other servers in the cell.

All default SSL configurations contain a keystore with the name suffix DefaultKeyStore, a truststore with
the name suffix DefaultTrustStore and a rootstore with the name suffix DefaultRootStore. These default
suffixes instruct the WebSphere Application Server runtime to add the root signer of the personal
certificate to the common truststore. If a truststore name does not end with DefaultKeyStore, the keystores
root signer certificates are not added to the common truststore when you federate the server. You can
change the default SSL configuration, but you must ensure that the correct trust is established for
administrative connections, among others.

For more information, see “Default chained certificate configuration in SSL” on page 1801.

Certificate expiration monitoring

Certificate monitoring ensures that the default chained certificate for each node is not allowed to expire.
The certificate expiration monitoring function issues a warning before certificates and signers are set to
expire. Those certificates and signers that are located in keystores managed by the WebSphere
Application Server configuration can be monitored. You can configure the expiration monitor to
automatically replace a certificate. A chained certificate will be recreated based on the same data used for
the initial creation and sign it with the same root certificate that signed the original certificate. A self-signed
certificate or chained certificate is also recreated based upon the same data that is used for the initial
creation.

1778 Administering WebSphere applications



The monitor also can automatically replace old signers with the signers from the new chained or
self-signed certificates in keystores that are managed by WebSphere Application Server. The existing
signer exchanges that occurred by the runtime during federation and by administration are preserved. For
more information, see “Certificate expiration monitoring in SSL” on page 1809.

The expiration monitor is configured to replace chained personal certificates that are signed by a root
certificate in DmgrDefaultRootStore or NodeDefaultRootStore. The certificate is renewed using the same
root certificate that was used to sign the original certificate.

The monitor also can automatically replace old signers with the signers from the new self-signed
certificates in keystores that are managed by WebSphere Application Server. The existing signer
exchanges that occurred by the runtime during federation and by administration are preserved. For more
information, see “Certificate expiration monitoring in SSL” on page 1809.

WebSphere Application Server clients: signer-exchange requirements

A new chained certificate is generated for each node during its initial startup. To ensure trust, clients must
be given the root signers to establish a connection. The introduction of chained certificates in the current
release makes this process simpler. Rather than exchanging the signer of a short lived self-signed
certificate, you can exchange the long lived root signer which will allow for preserved trust across personal
certificate renewals. In addition, you can gain access to the signer certificates of various nodes to which
the client must connect with any one of the following options (for more information, see “Secure installation
for client signer retrieval in SSL” on page 1804):

v A signer exchange prompt enables you to import signer certificates that are not yet present in the
truststores during a connection to a server. By default, this prompt is enabled for administrative
connections and can be enabled for any client SSL configuration. When this prompt is enabled, any
connection that is made to a server where the signer is not already present offers the signer of the
server along with the certificate information and a Secure Hash Algorithm (SHA) digest of the certificate
for verification. The user is given a choice whether to accept these credentials. If the credentials are
accepted, the signer is added to the truststore of the client until the signer is explicitly removed. The
signer exchange prompt does not occur again when connecting to the same server unless the personal
certificate changes.

Attention: It is unsafe to trust a signer exchange prompt without verifying the SHA digest. An
unverified prompt can originate from a browser when a certificate is not trusted.

v You can run a retrieveSigners administrative script from a client prior to making connections to servers.
To download signers, no administrative authority is required. To upload signers, you must have
Administrator role authority. The script downloads all of the signers from a specified server truststore
into the specified client truststore and can be called to download only a specific alias from a truststore.
You can also call the script to upload signers to server truststores. When you select the
CellDefaultTrustStore truststore as the specified server truststore and common truststore for a cell, all of
the signers for that cell are downloaded to the specified client truststore, which is typically
ClientDefaultTrustStore. For more information, see “retrieveSigners command” on page 1807.

v You can physically distribute to clients the trust.p12 common truststore that is located in the cell
directory of the configuration repository. When doing this distribution, however, you must ensure that the
correct password has been specified in the ssl.client.props client SSL configuration file. The default
password for this truststore is WebAS. Change the default password prior to distribution. Physical
distribution is not as effective as the previous options. When changes are made to the personal
certificates on the server, automated exchange can fail.

Dynamic SSL configuration changes

The SSL runtime for WebSphere Application Server maintains listeners for most SSL connections. A
change to the SSL configuration causes the inbound connection listeners to create a new SSLContext
object. Existing connections continue to use the current SSLContext object. Outbound connections
automatically use the new configuration properties when they are attempted.

Chapter 19. Administering application security 1779



Make dynamic changes to the SSL configuration during off-peak hours to reduce the possibility of
timing-related problems and to prevent the possibility of the server starting again. If you enable the runtime
to accept dynamic changes, then change the SSL configuration and save the security.xml file. Your
changes take effect when the new security.xml file reaches each node.

Note: If configuration changes cause SSL handshake failures, administrative connectivity failures also can
occur, which can lead to outages. In this case, you must re-configure the SSL connections then
perform manual node synchronization to correct the problem. You must carefully complete any
dynamic changes. It is highly recommended that you perform changes to SSL configurations on a
test environment prior to making the same changes to a production system. For more information,
see “Dynamic configuration updates in SSL” on page 1812.

Built-in certificate management

Certificate management that is comparable to iKeyMan functionality is now integrated into the keystore
management panels of the administrative console. Use built-in certificate management to manage personal
certificates, certificate requests, and signer certificates that are located in keystores. Additionally, you can
remotely manage keystores. For example, you can manage a file-based keystore that is located outside
the configuration repository on any node from the deployment manager. You also can remotely manage
hardware cryptographic keystores from the deployment manager.

With built-in certificate management, you can replace a chained or self-signed certificate along with all of
the signer certificates scattered across many truststores and retrieve a signer from a remote port by
connecting to the remote SSL host and port and intercepting the signer during the handshake. The
certificate is first validated according to the certificate SHA digest, then the administrator must accept the
validated certificate before it can be placed into a truststore.

When you make a certificate request, you can send it to a certificate authority (CA). When the certificate is
returned, you can accept it within the administrative console. For more information, see “Certificate
management in SSL” on page 1813.

Tip: Although iKeyMan functionality still ships with WebSphere Application Server, configure keystores
from the administrative console using the built-in certificate management functionality. iKeyMan is still
an option when it is not convenient to use the administrative console. For more information, see
Certificate management using iKeyman prior to SSL.

AdminTask configuration management

The SSL configuration management panels in the administrative console rely primarily on administrative
tasks, which are maintained and enhanced to support the administrative console function. You can use
wsadmin commands from a Java console prompt to automate the management of keystores, SSL
configurations, certificates, and so on.

SSL configurations
Secure Sockets Layer (SSL) configurations contain attributes that enable you to control the behavior of
both the client and the server SSL endpoints. You can assign SSL configurations to have specific
management scopes. The scope that an SSL configuration inherits depends upon whether you create it
using a cell, node, server, or endpoint link in the configuration topology.

When you create an SSL configuration, you can set the following SSL connection attributes:

v Keystore

v Default client certificate for outbound connections

v Default server certificate for inbound connections

v Truststore

v Key manager for selecting a certificate

1780 Administering WebSphere applications



v Trust manager or managers for establishing trust during the handshake

v Handshaking protocol

v Ciphers for negotiating the handshake

v Client authentication support and requirements

You can manage an SSL configuration using any of the following methods:

v Central management selection

v Direct reference selection

v Dynamic outbound connection selection

v Programmatic selection

Using the administrative console, you can manage all of the SSL configurations for WebSphere Application
Server. From the administrative console, click Security

SSL certificates and key management > Manage endpoint security configurations > Inbound |
Outbound > SSL_configuration. You can view an SSL configuration at the level it was created and in the
inherited scope below that point in the topology. If you want the entire cell to view an SSL configuration,
you must create the configuration at the cell level in the topology.

SSL configuration in the security.xml file

The attributes defining an SSL configuration repertoire entry for a specific management scope are stored
in the security.xml file. The scope determines the point at which other levels in the cell topology can see
the configuration, as shown in the following example:
<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"
managementScope="ManagementScope_1" type="JSSE">
<setting xmi:id="SecureSocketLayer_1" clientAuthentication="false"
clientAuthenticationSupported="false" securityLevel="HIGH" enabledCiphers=""
jsseProvider="IBMJSSE2" sslProtocol="SSL_TLS" keyStore="KeyStore_1"
trustStore="KeyStore_2" trustManager="TrustManager_1" keyManager="KeyManager_1"
clientKeyAlias="default" serverKeyAlias="default"/>
</repertoire>

The SSL configuration attributes from the previous code sample are described in Table 1.

Table 143. security.xml Attributes. This table lists the security.xml Attributes.

security.xml attribute Description Default Associated SSL property

xmi:id The xml:id attribute represents
the unique identifier for this XML
entry and determines how the
SSL configuration is linked to
other XML objects, such as
SSLConfigGroup. This
system-defined value must be
unique.

The administrative
configuration service
defines the default
value.

None. This value is used only for XML
associations.

alias The alias attribute defines the
name of the SSL configuration.
Direct selection uses the alias
attribute and the node is not
prefixed to the alias. Rather, the
management scope takes care
of ensuring that the name is
unique within the scope.

com.ibm.ssl.alias

managementScope The managementScope attribute
defines the management scope
for the SSL configuration and
determines the visibility of the
SSL configuration at runtime.

The managementScope attribute is not
mapped to an SSL property. However, it
confirms whether or not the SSL configuration
is associated with a process.

Chapter 19. Administering application security 1781



Table 143. security.xml Attributes (continued). This table lists the security.xml Attributes.

security.xml attribute Description Default Associated SSL property

type The type attribute defines the
Java Secure Socket Extension
(JSSE) or System Secure
Sockets Layer (SSSL)
configuration option. JSSE is the
SSL configuration type for most
secure communications within
WebSphere Application Server.

The default is JSSE. com.ibm.ssl.sslType

clientAuthentication The clientAuthentication attribute
determines whether SSL client
authentication is required.

The default is false. com.ibm.ssl.clientAuthentication

clientAuthenticationSupportedThe
clientAuthenticationSupported
attribute determines whether
SSL client authentication is
supported. The client does not
have to supply a client
certificate if it does not have a
client certificate.

Attention:
When you set the
clientAuthentication attribute to
true, you override the value that
is set for the
clientAuthenticationSupported
attribute.

The default is false. com.ibm.ssl.client.AuthenticationSupported

securityLevel The securityLevel attribute
determines the cipher suite
group. Valid values include
STRONG (128-bit ciphers),
MEDIUM (40-bit ciphers), WEAK
(for all ciphers without
encryption), and CUSTOM (if
the cipher suite group is
customized. When you set the
enabledCiphers attribute with a
specific list of ciphers, the
system ignores this attribute.

The default is
STRONG.

com.ibm.ssl.securityLevel

enabledCiphers You can set the enabledCiphers
attribute to specify a unique list
of cipher suites. Separate each
cipher suite in the list with a
space.

The default is the
securityLevel
attribute for cipher
suite selection.

com.ibm.ssl.enabledCipherSuites

jsseProvider The jsseProvider attribute
defines a specific JSSE
provider.

The default is
IBMJSSE2.

com.ibm.ssl.contextProvider

1782 Administering WebSphere applications



Table 143. security.xml Attributes (continued). This table lists the security.xml Attributes.

security.xml attribute Description Default Associated SSL property

sslProtocol The sslProtocol attribute defines
the SSL handshake protocol.
Valid options include:

SSL_TLS - which is SSLv3
and TLSv1

SSL - which is SSLv3

SSLv2

SSLv3

TLS - which is TLSv1

TLSv1

SSL_TLSv2 - which is
SSLv3 and TLSv1, TLSv1.1,
TLSv1.2

TLSv1.1

TLSv1.2

The listSSLProtocols command
provides more information about
which protocol are valid in
particular configurations, such
as FIPS 140-2 or SP800-131.

The default is
SSL_TLS.

com.ibm.ssl.protocol

keyStore The keyStore attribute defines
the keystore and attributes of
the keyStore instance that the
SSL configuration uses for key
selection.

For more information, see Keystore
configurations.

trustStore The trustStore attribute defines
the key store that the SSL
configuration uses for certificate
signing verification.

A trustStore is a logical JSSE term. It
signifies a key store that contains signer
certificates. Signer certificates validate
certificates that are sent to WebSphere
Application Server during an SSL handshake.

keyManager The keyManager attribute
defines the key manager that
WebSphere Application Server
uses to select keys from a key
store. A JSSE key manager
controls the
javax.net.ssl.X509KeyManager
interface. A custom key
manager controls the
javax.net.ssl.X509KeyManager
and the
com.ibm.wsspi.ssl.KeyManagerExtendedInfo
interfaces. The
com.ibm.wsspi.ssl.KeyManagerExtendedInfo
interface provides more
information from WebSphere
Application Server.

The default is
IbmX509.

com.ibm.ssl.keyManager defines a
well-known key manager and accepts the
algorithm and algorithm|provider formats, for
example IbmX509 and IbmX509|IBMJSSE2.
com.ibm.ssl.customKeyManager defines a
custom key manager and takes precedence
over the other keyManager properties. This
class must implement
javax.net.ssl.X509KeyManager and can
implement
com.ibm.wsspi.ssl.KeyManagerExtendedInfo.
For more information, see “Key manager
control of X.509 certificate identities” on page
1786

Chapter 19. Administering application security 1783



Table 143. security.xml Attributes (continued). This table lists the security.xml Attributes.

security.xml attribute Description Default Associated SSL property

trustManager The trustManager determines
which trust manager or list of
trust managers to use for
determining whether to trust the
peer side of the connection. A
JSSE trust manager implements
the
javax.net.ssl.X509TrustManager
interface. A custom trust
manager might also implement
com.ibm.wsspi.ssl.TrustManagerExtendedInfo
interface to get more information
from the WebSphere Application
Server environment.

The default is
IbmPKIX, which can
be configured for
certificate revocation
list (CRL) verification
when the certificate
contains a CRL
distribution point.
The other option is
IbmX509.

com.ibm.ssl.trustManager defines a
well-known trust manager, which is required
for most handshake situations.
com.ibm.ssl.trustManager performs certificate
expiration checking and signature validation.
You can define
com.ibm.ssl.customTrustManagers with
additional custom trust managers that are
called during an SSL handshake. Separate
additional trust managers with the vertical bar
(|) character. For more information, see
“Trust manager control of X.509 certificate
trust decisions”

Client SSL configurations are managed using the ssl.client.props properties file. The
ssl.client.props file is located in the ${USER_INSTALL_ROOT}/properties directory for each profile. For
more information about configuring this file, see the “ssl.client.props client configuration file” on page 1861.
Specifying any javax.net.ssl system properties will override the corresponding property in the
ssl.client.props file.

Trust manager control of X.509 certificate trust decisions:

The role of the trust manager is to validate the Secure Sockets Layer (SSL) certificate that is sent by the
peer, which includes verifying the signature and checking the expiration date of the certificate. A Java
Secure Socket Extension (JSSE) trust manager determines if the remote peer can be trusted during an
SSL handshake.

WebSphere Application Server has the ability to call multiple trust managers during an SSL connection.
The default trust manager does the standard certificate validation; custom trust manager plug-ins run
customized validation such as host name verification. For more information, see “Example: Developing a
custom trust manager for custom SSL trust decisions” on page 1842

When a trust manager is configured in a server-side SSL configuration, the server calls the isClientTrusted
method. When a trust manager is configured in a client-side SSL configuration, the client calls the
isServerTrusted method. The peer certificate chain is passed to these methods. If the trust manager
chooses not to trust the peer information, it might produce an exception to force a handshake failure.

Optionally, WebSphere Application Server provides the com.ibm.wsspi.ssl.TrustManagerExtendedInfo
interface so that additional information can be passed to the trust manager. For more information, see the
com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface.

Default IbmX509 trust manager

The default IbmX509 trust manager, which is used in the following code sample, establishes trust by
performing standard certificate validation.
<trustManagers xmi:id="TrustManager_1132357815717" name="IbmX509" provider="IBMJSSE2"
algorithm="IbmX509" managementScope="ManagementScope_1132357815717"/>

The trust manager provides a signer certificate to verify the peer certificate that is sent during the
handshake. The signers who are added to the truststore for the SSL configuration must be trustworthy. If
you do not trust the signers or do not want to allow others to connect to your servers, consider removing
default root certificates from certificate authorities (CA). You might also remove any certificates if you
cannot verify their origination.

1784 Administering WebSphere applications



Default IbmPKIX trust manager

You can use the default IbmPKIX trust manager to replace the IbmX509 trust manager, which is shown in
the following code sample:
<trustManagers xmi:id="TrustManager_1132357815719" name="IbmPKIX" provider="IBMJSSE2"
algorithm="IbmPKIX" trustManagerClass="" managementScope="ManagementScope_1132357815717">
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1132357815717"
name="com.ibm.security.enableCRLDP" value="true" type="boolean"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1132357815718"
name="com.ibm.jsse2.checkRevocation" value="true" type="boolean"/>
</trustManagers>

<trustManagers xmi:id="TrustManager_managementNode_2" name="IbmPKIX" provider=
"IBMJSSE2" algorithm="IbmPKIX" trustManagerClass=""
managementScope="ManagementScope_managementNode_1">
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1" name="com.ibm.se
curity.enableCRLDP" value="false" type="boolean" displayNameKey="" nlsRangeKey="
" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_2" name="com.ibm.js
se2.checkRevocation" value="false" type="boolean" displayNameKey="" nlsRangeKey=
"" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_3" name="ocsp.enabl
e" value="false" type="String" displayNameKey="" nlsRangeKey="" hoverHelpKey=""
range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_4" name="ocsp.respo
nderURL" value="http://ocsp.example.net:80" type="String" displayNameKey=""
nlsRangeKey="" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_5" name="ocsp.respo
nderCertSubjectName" value="" type="String" displayNameKey="" nlsRangeKey="" hov
erHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_6" name="ocsp.respo
nderCertIssuerName" value="" type="String" displayNameKey="" nlsRangeKey="" hove
rHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_7" name="ocsp.respo
nderCertSerialNumber" value="" type="String" displayNameKey="" nlsRangeKey="" ho
verHelpKey="" range="" inclusive="false" firstClass="false"/>
</trustManagers>

See “Example: Enabling certificate revocation checking with the default IbmPKIX trust manager” on page
1787 for additional information in using the default IbmPKIX trust manager.

In addition to its role of standard certificate verification, the IbmPKIX trust manager checks for OCSP
properties and for certificates that contain certificate revocation list (CRL) distribution points. This process
is known as extended CRL checking. When you select a trust manager, its associated properties are
automatically set as Java System properties so that the IBMCertPath and IBMJSSE2 providers are aware
that CRL checking is enabled.

Differences between the Ibmx509 and the IbmPKIX trust managers

x.509 certificate validation requirements are more stringent in the IbmX509 trustmanager than in the
IbmPKIX trustmanager. For example:

v The IbmX509 trustmanager validates the entire certificate chain regardless of which certificates the
client/server trusts. However, the IbmPKIX trustmanager does not validate a certificate even if you tell
the IbmPKIX trustmanager that you want to trust that certificate. The IbmPKIX trustmanager only
validates the certificates from the one signed by the certificate you trust, to the leaf certificate. Also,

v The IbmX509 requires that any root CA certificate must possess the BASIC CONSTRAINTS extension.
Otherwise the certificate cannot be used as a root CA certificate. IbmPKIX does not have this BASIC
CONSTRAINTS requirement for root CA certificates.

v The IbmX509 trust manager performs signature validation and certificate expiration checks to validates
certificates. . The IbmPKIX trust manager performs these same validations, plus more advanced
Certificate Revocation List checking (CRL), which determines if the certificate authority (CA) has
revoked the certificate.

v The IbmPKIX trust manager automatically obtains a CRL when a certificate is received if CRL
distribution point (DP) extensions exist.

Additionally, the Online Certificate Status Protocol (OCSP) can be used to perform an online check of
certificate validity. However this capability requires you to set additional system properties, as documented

Chapter 19. Administering application security 1785



in the Java Certification Path API Programmer's Guide, which is available on the IBM developerWorks web
site.

Custom trust manager

You can define a custom trust manager to perform additional trust checking, which is based upon the
needs of the environment. For example, in one environment, you might enable connections from the same
Transmission Control Protocol (TCP) subnet only. The com.ibm.wsspi.ssl.TrustManagerExtendedInfo
interface provides extended information about the connection that is not provided by the standard Java
Secure Sockets Extension (JSSE) javax.net.ssl.X509TrustManager interface. The configured
trustManagerClass attribute determines which class is instantiated by the runtime, as shown in the
following code sample:
<trustManagers xmi:id="TrustManager_1132357815718" name="CustomTrustManager"
trustManagerClass="com.ibm.ws.ssl.core.CustomTrustManager"
managementScope="ManagementScope_1132357815717"/>

The trustManagerClass attribute must implement the javax.net.ssl.X509TrustManager interface and,
optionally, can implement the com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface.

Disabling the default trust manager

In some cases, you might not want to perform the standard certificate verification that is provided by the
IbmX509 and IbmPKIX default trust managers. For example, you might be working with an internal
automated test infrastructure that is not concerned with SSL client or server authentication, integrity, or
confidentiality. The following sample code shows a basic custom trust manager such as
com.ibm.ws.ssl.core.CustomTrustManager whose property is set to true.
com.ibm.ssl.skipDefaultTrustManagerWhenCustomDefined=true

You can set this property in the global properties at the top of the ssl.client.props file for clients or in the
security.xml custom properties file for servers. You must configure a custom trust manager when you
disable the default trust manager to prevent the server from calling the default trust manager even though
it is configured. Disabling the default trust manager is not a common practice. Be sure to test the system
with the disabled default trust manager in a test environment first. For more information on setting up a
custom trust manager, see “Creating a custom trust manager configuration for SSL” on page 1838

Key manager control of X.509 certificate identities:

The role of a Java Secure Socket Extension (JSSE) key manager is to retrieve the certificate that is used
to identify the client or server during a Secure Sockets Layer (SSL) handshake.

WebSphere Application Server provides a default key manager that can select a certificate from a keystore
when you define the following SSL configuration properties:

com.ibm.ssl.keyStoreClientAlias
Defines the alias that is chosen from the keystore for the client side of a connection. This alias
must be present in the keystore.

com.ibm.ssl.keyStoreServerAlias
Defines the alias that is chosen from the keystore for the server side of a connection. This alias
must be present in the keystore.

These two properties are set automatically when you use the administrative console because the default
key manager is already configured.

With WebSphere Application Server, you can configure only one key manager at a time for a given SSL
configuration. If you want custom certificate selection logic on the client side, you must write a new custom
key manager. The custom key manager could provide function that prompts the user to choose a
certificate dynamically. Also, you can implement an extended interface so that a key manager can provide

1786 Administering WebSphere applications



information during connection time. For more information on the extended interface, see the
com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface. For more information on custom key manager
development, see Creating a custom key manager for SSL.

Default IbmX509 key manager

The default IbmX509 key manager chooses a certificate to serve as the identity for an SSL handshake.
The key manager is called to enable client authentication on either side of the SSL handshake; frequently
on the server-side, and less frequently on the client side according to client and server requirements. If a
keystore is not configured on the client-side and SSL client authentication is enabled, the key manager
cannot select a certificate to send to the server. Therefore, the handshake fails.

The following sample code shows the key manager configuration in the security.xml file for an IbmX509
key manager.
<keyManagers xmi:id="KeyManager_1" name="IbmX509"
provider="IBMJSSE2" algorithm="IbmX509" keyManagerClass=""
managementScope="ManagementScope_1"/>

You do not specify the keyManagerClass class because the key manager is provided by the IBMJSSE2
provider. However, you can specify whether the key manager is a custom class implementation, in which
case you must specify the keyManager class, or an algorithm name that WebSphere Application Server
can start from the Java security provider framework.

Custom key manager

The following sample code shows the key manager configuration in the security.xml file for a custom
class.
<keyManagers xmi:id="KeyManager_2" name="CustomKeyManager"
keyManagerClass="com.ibm.ws.ssl.core.CustomKeyManager"
managementScope="ManagementScope_1"/>

The custom class must implement the javax.net.ssl.X509KeyManager interface and, optionally, implement
the com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface to retrieve additional WebSphere Application
Server information. This interface replaces the function of the default key manager because you can
configure only one key manager at a time. Therefore, the custom key manager has sole responsibility for
selecting the alias to use from the configured keystore. The benefit of a custom key manager is its ability,
on the client side, to prompt for an alias. This process enables the user to decide which certificate to use
in situations where the user knows the client certificate identity. For more information, see Creating a
custom key manager for SSL.

Example: Enabling certificate revocation checking with the default IbmPKIX trust manager:

The IbmPKIX trust manager is enabled in the WebSphere Application Server by default. The IbmPKIX trust
manager allows certificate revocation checking to occur. You enable certificate revocation checking by
using the administrative console or by manually updating the ssl.client.props file.

The default IbmPKIX trust manager

The IbmPKIX trust manager is enabled by default, but revocation checking is not enabled by default. The
following trust manager definition for IbmPKIX reflects the default condition:
<trustManagers xmi:id="TrustManager_managementNode_2" name="IbmPKIX" provider=
"IBMJSSE2" algorithm="IbmPKIX" trustManagerClass=""
managementScope="ManagementScope_managementNode_1">
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1" name="com.ibm.se
curity.enableCRLDP" value="false" type="boolean" displayNameKey="" nlsRangeKey="
" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_2" name="com.ibm.js
se2.checkRevocation" value="false" type="boolean" displayNameKey="" nlsRangeKey=
"" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>

Chapter 19. Administering application security 1787



<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_3" name="ocsp.enable
e" value="false" type="String" displayNameKey="" nlsRangeKey="" hoverHelpKey=""
range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_4" name="ocsp.respo
nderURL" value="http://ocsp.example.net:80" type="String" displayNameKey=""
nlsRangeKey="" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_5" name="ocsp.respo
nderCertSubjectName" value="" type="String" displayNameKey="" nlsRangeKey="" hov
erHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_6" name="ocsp.respo
nderCertIssuerName" value="" type="String" displayNameKey="" nlsRangeKey="" hove
rHelpKey="" range="" inclusive="false" firstClass="false"/>
<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_7" name="ocsp.respo
nderCertSerialNumber" value="" type="String" displayNameKey="" nlsRangeKey="" ho
verHelpKey="" range="" inclusive="false" firstClass="false"/>
</trustManagers>

Enabling certificate revocation checking with the default IbmPKIX trust manager

You can view and change IbmPKIX Trust Manager Custom Properties using the administrative console.

To do this,

v Click Security > SSL certificate and key management.

v Under Related Items, click Trust managers.

v Click IbmPKIX.

v Under Additional Properties, click Custom properties.

IbmPKIX custom properties

com.ibm.jsse2.checkRevocation
This property configures revocation checking for the Java Virtual Machine (JVM). This property is
set to false by default because the default WebSphere certificates used for SSL communication do
not contain certificate revocation list (CRL) distribution points or Online Certificate Status Protocol
(OCSP) information.

Note: Since this property is a JVM property, this value is in effect for the entire application server.
If the property is defined in trust managers at different scopes, the value in effect is used
from the most specifically scoped IbmPKIX trust manager. For example, the property for an
IbmPKIX trust manager defined at the node level overrides the property for an IbmPKIX
trust manager defined at the cell level. This property is ignored for the IbmX509 trust
manager.

default
false

com.ibm.security.enableCRLDP
This property configures CRL distribution point checking for the PKIX trust manager.

Note: If you enable CRL distribution point revocation checking, the certificates used for secure
sockets layer (SSL) must contain a valid distribution point and the distribution point must be
accessible or else SSL communication will fail and the server will not function correctly.

default
false

For certificates that do not contain an internal CRL distribution point, the following properties can used so
the revocation status will be checked against a remote LDAP server containing the CRL.

com.ibm.security.ldap.certstore.host
This property specifies the LDAP server host name containing trusted certificates or certificate

1788 Administering WebSphere applications



revocation lists. The target LDAP server host is used to obtain CA certificates or certificate
revocation lists when validating a certificate and the local truststore does not contain the required
certificate. The local truststore must contain the required certificates if an LDAP server is not
specified. In cases when an LDAP server is used, the root CA certificates must also be located in
the local truststore as the LDAP server is not a trusted certificate store.

Note: Enabling this property in addition to the com.ibm.jsse2.checkRevocation property enables
revocation checking. The remote LDAP server must contain a valid certificate revocation list
and the server must be accessible. If the revocation status cannot be determined then the
check will fail and SSL communication will fail and the server will not function correctly.

default
none

com.ibm.security.ldap.certstore.port
This property specifies the LDAP server port. A port value of 389 will be used by default if no
LDAP server port is specified.

default
389

The following Java Development Kit (JDK) properties apply to enabling certificate revocation checking with
the default IbmPKIX trust manager:

v ocsp.enable

v ocsp.responder

v ocsp.responderCertSubjectName

v ocsp.responderCertIssuerName

v ocsp.responderCertSerialNumber

These JDK properties can be set using the administrative console. You should reference Java(TM)
Certification Path API Programmer's Guide - SDK 6.0 for descriptions of these properties and their
allowable settings.

Note: In addition to its role of standard certificate verification, the IbmPKIX trust manager checks for
certificates that contain CRL distribution points. This process is known as extended CRL checking.
By default, CRL distribution point revocation checking is disabled. To enable CRL distribution point
revocation checking, you must set the following properties to true using the administrative console:

v com.ibm.security.enableCRLDP

v com.ibm.jsse2.checkRevocation

OCSP properties and CRL properties affect certificate revocation checking. By default OCSP
properties are checked first. If there is an error validating the certificate with OCSP, then validation
uses a CRL distribution point instead.

When you select a trust manager, its associated properties are automatically set as Java system
properties so that the IBMCertPath and IBMJSSE2 providers are aware that CRL checking is
enabled or disabled. Similarly, the same applies for OCSP properties, which are
java.security.Security properties.

Client considerations

You can also enable revocation checking for WebSphere application and administrative clients by directly
setting the properties in the ssl.client.props file. An example of the ssl.client.props file follows:
#-------------------------------------------------------------------------
# Default Revocation Checking Properties
# These properties are used for certificate revocation checking with the IBM

Chapter 19. Administering application security 1789

http://www.ibm.com/developerworks/java/jdk/security/60/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/certpathDocs/API_users_guide.html


# PKIX TrustManager.
#
# To enable CRL Distribution Points extension checking, use the system property
# com.ibm.security.enableCRLDP.
#
# OCSP checking is not enabled by default. It is enabled by setting the
# ocsp.enable property to "true". Use of the other ocsp properties is optional.
#
# Note: Both OCSP and CRLDP checking is only effective if revocation checking
# has also been enabled by setting com.ibm.jsse2.checkRevocation to "true".
#
#-------------------------------------------------------------------------
com.ibm.jsse2.checkRevocation=false
com.ibm.security.enableCRLDP=false
#ocsp.enable=true
#ocsp.responderURL=http://ocsp.example.net
#ocsp.responderCertSubjectName=CN=OCSP Responder, O=XYZ Corp
#ocsp.responderCertIssuerName=CN=Enterprise CA, O=XYZ Corp
#ocsp.responderCertSerialNumber=2A:FF:00

Note: In order for these properties to be effective, you must ensure that the IbmPKIX trust manager is
initialized by setting com.ibm.ssl.trustManager=IbmPKIX.

In addition, for revocation checking to be processed successfully on the client, you are required to turn off
the signer exchange prompt. To do this, change the value of the
com.ibm.ssl.enableSignerExchangePrompt property to false, in the ssl.client.props file.

For more information on these properties, see Java(TM) Certification Path API Programmer's Guide - SDK
6.0.

Keystore configurations for SSL
Use keystore configurations to define how the runtime for WebSphere Application Server loads and
manages keystore types for Secure Sockets Layer (SSL) configurations.

By default, the java.security.Security.getAlgorithms("KeyStore") attribute does not display a predefined list
of keystore types in the administrative console. Instead, WebSphere Application Server retrieves all of the
KeyStore types that can be referenced by the java.security.KeyStore object, including hardware
cryptographic, z/OS platform, IBM i platform, IBM Java Cryptography Extension (IBMJCE), and Java-based
content management system (CMS)-provider keystores. If you specify a keystore provider in the
java.security file or add it to the provider list programmatically, WebSphere Application Sever also
retrieves custom keystores. The retrieval list depends upon the java.security configuration for that platform
and process.

IBMJCE file-based keystores (JCEKS, JKS, and PKCS12)

A typical IBMJCE file-based keystore configuration is shown in the following sample code:
<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"
password="{xor}349dkckdd=" provider="IBMJCE"
location="${USER_INSTALL_ROOT}/config/cells/myhostNode01Cell
/nodes/myhostNode01/key.p12" type="PKCS12" fileBased="true"
hostList="" initializeAtStartup="true" readOnly="false"
description="Default key store for myhostNode01" usage="SSLKeys"
managementScope="ManagementScope_1"/>

For more information about default keystore configurations, see Default chained certificate configuration in
SSL.

Table 1 describes the attributes that are used in the sample code.

1790 Administering WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/60/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/certpathDocs/API_users_guide.html


Table 144. keystore configurations. This table describes the keystore configurations.
Attribute name Default Description

xmi:id Varies A value that issued to reference the keystore from another area in the
configuration, for example, from an SSL configuration. Make this
value unique within the security.xml file.

name For Java Secure Socket Extension (JSSE)
keystore: NodeDefaultKeyStore. For JSSE
truststore: NodeDefaultTrustStore.

A name that is used to identify the keystore by sight. The name can
determine if the keystore is a default keystore based upon whether
the name ends with DefaultKeyStore or DefaultTrustStore.

password The default keystore password is WebAS. It is
recommended that this be changed as soon as
possible. See Updating default key store
passwords using scripting for more information.

The password that is used to access the keystore name is also the
default that is used to store keys within the keystore.

description No default A description of the keystore.

usage An attribute specifying what the keystore is used
for.

Valid values are: SSLKeys, KeySetKeys, RootKeys, DeletedKeys,
DefaultSigners, RSATokenKeys.

provider The default provider is IBMJCE. The Java provider that implements the type attribute (for example,
PKCS12 type). The provider can be unspecified and the first provider
that implements the keystore type specified is used.

location The default varies, but typically references a
key.p12 file or a trust.p12 file in the node or cell
directories of the configuration repository. These
files are PKCS12 type keystores.

The keystore location reference. If the keystore is file-based, the
location can reference any path in the file system of the node where
the keystore is located. However, if the location is outside of the
configuration repository, and you want to manage the keystore
remotely from the administrative console or from the wsadamin utility,
then specify the hostList attribute that contains the host name of the
node where it resides.

type The default Java crypto device keystore type is
PKCS12.

This type specifies the keystore. Valid types can be those returned by
the java.security.Security.getAlgorithms("KeyStore") attribute. These
types include the following keystore types, and availability depends
on the process and platform java.security configuration:

v JKS

v JCEKS

v PKCS12

v PKCS11 (Java crypto device)

v CMSKS

v IBMi5OSKeyStore

v JCERACFKS

v JCECCAKS keystores (replacing JCE4758KS) - (z/OS crypto
device)

fileBased The default is true. This option is required for default keystores. It indicates a file-system
keystore so you can use a FileInputStream or FileOutputStream for
loading and storing the keystore.

hostList The hostList attribute is used to specify a remote
hostname so that the keystore can be remotely
managed. There are no remotely managed
keystores by default. All default keystores are
managed locally in the configuration repository
and synchronized out to each of the nodes.

The option manages a keystore remotely. You can set the host name
of a valid node for a keystore. When you use either the administrative
console or the wsadmin utility to manage certificates for this keystore,
an MBean call is made to the node where the keystore exists for the
approved operation. You can specify multiple hosts, although
synchronization of the keystore operations are not guaranteed. For
example, one of the hosts that is listed might be down when a
specific operation is performed. Therefore, use multiple hosts in this
list.

initializeAtStartup The default is true. This option informs the runtime to initialize the keystore during
startup. This option can be important for hardware cryptographic
device acceleration.

readOnly The default is false. This option informs the configuration that you cannot write to this
keystore. That is, certain update operations on the keystore cannot
be attempted and are not allowed. An example of a read-only
keystore type is JCERACFKS on the z/OS platform. This type is
read-only from the WebSphere certificate management standpoint,
but you can also update it using the keystore management facility for
RACF.

Chapter 19. Administering application security 1791



Table 144. keystore configurations (continued). This table describes the keystore configurations.
Attribute name Default Description

managementScope The default scope is the node scope for a base
Application Server environment and the cell
scope for a Network Deployment environment.

This option references a particular management scope in which you
can see this keystore. For example, if a hardware cryptographic
device is physically located on a specific node, then create the
keystore from a link to that node in the topology view under Security
> Security Communications > SSL configurations. You can also
use management scope to isolate a keystore reference. In some
cases, you might need to allow only a specific application server to
reference the keystore; the management scope is for that specific
server.

CMS keystores

You can set some provider-specific attributes in CMS keystores.

When you create a CMS keystore, the CMS provider is IBMi5OSJSSEProvider, and the CMS type is
IBMi5OSKeyStore, as shown in the following sample code:
<keyStores xmi:id="KeyStore_1132071489571" name="CMSKeyStore"
password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMi5OSJSSEProvider"
location="${USER_INSTALL_ROOT}\profiles\AppSrv01/config/cells/myhostCell01
/nodes/myhostNode01/servers/webserver1/plugin-key.kdb" type="IBMi5OSKeyStore"
fileBased="true" createStashFileForCMS="true"
managementScope="ManagementScope_1132071489569"/>

Note: The IBM i keystore type IBMi5OSKeyStore does not recognize or generate .sth
password stash files. Instead it keeps an internal record of the password for the .kdb keystore file
where it is created. If the .kdb file is moved, the password is no longer associated with the
keystore. In that case, the Digital Certificate Manager (DCM) must be used to recreate the internal
record of the password for the .kdb key store file. For more information, see “Recreating the .kdb
keystore internal password record” on page 1871.

Attention: When you create chained personal certificates or use the requestCACertificate
task with the IBMi5OSKeyStore, the IBMi5OSJSSEProvider requires that the signer for each part of the
chain be present in the keystore prior to creation of the new certificate. Therefore, you must import the
signer into the IBMi5OSKeyStore keystore before creating the new certificate.

Hardware cryptographic keystores

For cryptographic device configuration, see “Key management for cryptographic uses” on page 1915.

You can add a slot either as the custom property, com.ibm.ssl.keyStoreSlot, or as the configuration
attribute, slot="0". The custom property is read before the attribute for backwards compatibility.

Dynamic outbound selection of Secure Sockets Layer configurations
WebSphere Application Server provides dynamic outbound selection that enables you to choose a specific
Secure Sockets Layer (SSL) configuration and certificate alias for each outbound protocol, target host,
target port, or any combination of these attributes. You can specify the dynamic selection information for
outbound connections from a pure client or from a server that is acting as a client.

Before the SSL runtime for WebSphere Application Server starts an outbound connection, the runtime
attempts to match the outbound protocol, target host, and target port attributes with the dynamic outbound
selection information that is associated with an SSL configuration and certificate alias in the configuration.

The runtime caches both selection misses and selection hits, so the impact on performance can be
minimal. However, a relationship exists between the amount of dynamic outbound selection information
and its impact on the initial connection performance.

1792 Administering WebSphere applications



Target information during outbound connections

The dynamic outbound selection configurations are only effective when the outbound protocol uses the
JSSEHelper application programming interface (API) when you select an SSL configuration with a
specified connectionInfo hash map. This hash map must contain the following properties:

com.ibm.ssl.direction
The value for outbound connections is OUTBOUND.

com.ibm.ssl.remoteHost
The format should match what the protocol provides. Typically this is the canonical Domain Name
Space (DNS), but it also could be the IP address.

gotcha: The name comparison is performed as a case-insensitive comparison. There is no name
resolution processing performed during the string comparison.

com.ibm.ssl.remotePort
The port is target port.

com.ibm.ssl.endPointName
The value for an outbound connection must be one of the following protocol strings:

v IIOP

v HTTP

v SIP

v LDAP

v ADMIN_IPC

v ADMIN_SOAP

v BUS_TO_BUS

v BUS_CLIENT

v BUS_TO_WEBSPHERE_MQ

v WEBSPHERE_MQ_CLIENT

Central management of SSL configurations
By default, Secure Sockets Layer (SSL) configurations for servers are managed from a central location in
the topology view of the administrative console. You can associate an SSL configuration and certificate
alias with a specific management scope. This method is the most efficient method to manipulate and
modify configurations when the server topology changes.

In prior releases, SSL configurations are managed for each process. You have to maintain individual
settings for each SSL configuration in the topology. In this release of WebSphere Application Server,
management control of your SSL configurations offers more options and additional flexibility. You are able
to make coarse-grained changes for the entire topology using the cell-scope and also make fine-grained
changes using a particular endpoint name for a specific application server process. Because the SSL
configuration associations manifest an inheritance behavior, you can simplify the number of associations
by referencing only the highest level management scope that needs a unique configuration.

The topology view provides the scoping mechanism. The SSL configuration inherits its scope, which can
be seen as its display in the topology. The scope encompasses the level where you created the
configuration and all the subsequent levels that point. For example, when you create an SSL configuration
at a specific node, that configuration can be seen by that node agent and by every application server that
is part of that node. Any application server or node that is not part of this particular node can not see this
SSL configuration.

Chapter 19. Administering application security 1793



Your security environment influences issues such as the uniqueness of the SSL configurations, as well as
the SSL configuration and the certificate alias placement in the topology. You are also able to configure
different certificate aliases and different SSL configurations for inbound connections versus outbound
connections.

To configure the inbound and outbound topologies, which must be done separately in the administrative
console, click Security > SSL certificates and key management > Manage endpoint security
configurations > Inbound | Outbound.

Default centrally managed SSL configuration

The default management scope is the node scope. When a node is federated into a cell, the default SSL
configurations for the node are maintained, as shown in the following sample code for the sslConfigGroups
and management scopes attributes:
<sslConfigGroups xmi:id="SSLConfigGroup_1" name="myhostNode01"
direction="inbound" certificateAlias="default" sslConfig="SSLConfig_1"
managementScope="ManagementScope_1"/>
<sslConfigGroups xmi:id="SSLConfigGroup_2" name="myhostNode01"
direction="outbound" certificateAlias="default" sslConfig="SSLConfig_1"
managementScope="ManagementScope_1"/>

<managementScopes xmi:id="ManagementScope_1"
scopeName="(cell):myhostNode01Cell:(node):myhostNode01" scopeType="node"/>

The SSL configuration xmi:id "SSLConfig_1" is also federated and applicable:
<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"
managementScope="ManagementScope_1">
<setting xmi:id="SecureSocketLayer_1" clientAuthentication="true"
securityLevel="HIGH" enabledCiphers="" jsseProvider="IBMJSSE2"
sslProtocol="SSL_TLS" keyStore="KeyStore_1" trustStore="KeyStore_2"
trustManager="TrustManager_1" keyManager="KeyManager_1"/>
</repertoire>

The keystores that are associated with the SSLConfig_1 SSL configuration are also federated, and
key.p12 is located in the node directory of the configuration repository:
<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"
password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMJCE"
location="${USER_INSTALL_ROOT}/config/cells/myhostNode01Cell/nodes
/myhostNode01/key.p12" type="PKCS12" fileBased="true" hostList=""
initializeAtStartup="true" managementScope="ManagementScope_1"/>
<keyStores xmi:id="KeyStore_2" name="NodeDefaultTrustStore"
password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMJCE"
location="${USER_INSTALL_ROOT}/config/cells/myhostNode01Cell
/nodes/myhostNode01/trust.p12" type="PKCS12" fileBased="true"
hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

Secure Sockets Layer node, application server, and cluster isolation
Secure Sockets Layer (SSL) enables you to ensure that any client that attempts to connect to a server
during the handshake first performs server authentication. Using SSL configurations at the node,
application server, and cluster scopes, you can isolate communication between severs that should not be
allowed to communicate with each other over secure ports.

Before you attempt to isolate communications controlled by WebSphere Application Server, you must have
a good understanding of the deployment topology and application environment. To isolate a node,
application server, or cluster, you must be able to control the signers that are contained in the truststores
that are associated with the SSL configuration. When the client does not contain the server signer, it
cannot establish a connection to the server. By default, WebSphere uses chained certificates and each
node has a unique root certificate signer. Because they the node shares the same root signer, all of the
server in that node can connect to each other because they share the same root signer. However, if you

1794 Administering WebSphere applications



use self-signed certificates, the server that created the personal certificate controls the signer, although
you do have to manage the self-signed certificates. If you obtain certificates from a certificate authority
(CA), you must obtain multiple CA signers because all of the servers can connect to each other if they
share the same signer.

Authenticating only the server-side of a connection is not adequate protection when you need to isolate a
server. Any client can obtain a signer certificate for the server and add it to its trust store. SSL client
authentication must also be enabled between servers so that the server can control its connections by
deciding which client certificates it can trust. For more information, see Enabling Secure Sockets Layer
client authentication for a specific inbound endpoint, which applies as well to enabling SSL client
authentication at the cell level.

Isolation also requires that you use centrally managed SSL configurations for all or most endpoints in the
cell. Centrally managed configurations can be scoped, unlike direct or end point configuration selection,
and they enable you to create SSL configurations, key stores, and trust stores at a particular scope.
Because of the inheritance hierarchy of WebSphere Application Server cells, if you select only the
properties that you need for an SSL configuration, only these properties are defined at your selected
scope or lower. For example, if you configure at the node scope, your configuration applies to the
application server and individual end point scopes following the node scope. For more information, see
Associating Secure Sockets Layer configurations centrally with inbound and outbound scopes, Selecting
an SSL configuration alias directly from an endpoint configuration, and Associating a Secure Sockets
Layer configuration dynamically with an outbound protocol and remote secure endpoint

When you configure the key stores, which contain cryptographic keys, you must work at the same scope
at which you define the SSL configuration and not at a higher scope. For example, if you create a key
store that contains a certificate whose host name is part of the distinguished name (DN), then store that
keystore in the node directory of the configuration repository. If you decide to create a certificate for the
application server, then store that keystore on the application server in the application server directory.

When you configure the trust stores, which control trust decisions on the server, you must consider how
much you want to isolate the application servers. You cannot isolate the application servers from the node
agents or the deployment manager. However, you can configure the SOAP connector end points with the
same personal certificate or to share trust. Naming persistence requires IIOP connections when they pass
through the deployment manager. Because application servers always connect to the node agents when
the server starts, the IIOP protocol requires that WebSphere Application Server establish trust between the
application servers and the node agents.

Establishing node SSL isolation

By default, WebSphere Application Server installation uses a single chained certificate for each node so
you can isolate nodes easily. A common trust store, which is located in the cell directory of the
configuration repository, contains all of the signers for each node that is federated into the cell. After
federation, each cell process trusts all of the other cell processes because every SSL configuration
references the common trust store.

You can modify the default configuration so that each node has its own trust store, and every application
server on the node trusts only the node agent that uses the same personal certificate. You must also add
the signer to the node trust store so that WebSphere Application Server can establish trust with the
deployment manager. To isolate the node, ensure that the following conditions are met:

v The deployment manager must initiate connections to any process

v The node agent must initiate connections to the deployment manager and its own application servers

v The application servers must initiate connections to the applications servers on the same node, to its
own node agent, and the deployment manager

Chapter 19. Administering application security 1795



Figure 1 shows Node Agent A contains a key.p12 keystore and a trust.p12 trust store at the node level of
the configuration repository for node A.

When you associate an SSL configuration with this keystore and truststore, you break the link with the
cell-scoped trust store. To isolate the node completely, repeat this process for each node in the cell.
WebSphere Application Server SSL configurations override the cell scope and use the node scope instead
so that each process at this scope uses the SSL configuration and certificate alias that you selected at this
scope. You establish proper administrative trust by ensuring that nodeA signer is in the common trust store
and the cell signer is in the nodeA trust store. The same logic applies to node B as well. For more
information, see Associating Secure Sockets Layer configurations centrally with inbound and outbound
scopes.

Establishing application server SSL isolation

Isolating application server processes from one another is more challenging than isolating nodes. You
must consider the following application design and topology conditions:

v An application server process might need to communicate with the node agent and deployment
manager

v Isolating application server processes from each other might disable single sign-on capabilities for
horizontal propagation

Figure 38.

1796 Administering WebSphere applications



If you configure outbound SSL configurations dynamically, you can accommodate these conditions. When
you define a specific outbound protocol, target host, and port for each different SSL configuration, you can
override the scoped configuration.

Figure 2 shows how you might isolate an application server completely, although in practice this approach
would be more complicated.

The dynamic configuration enables server1 on Node A to communicate with server 1 on Node B only over
IIOP. The dynamic outbound rule is IIOP,nodeBhostname,*. For more information, see Associating a
Secure Sockets Layer configuration dynamically with an outbound protocol and remote secure endpoint

Establishing cluster SSL isolation

You can configure application servers into clusters instead of scoping them centrally at the node or
dynamically at the server to establish cluster SSL isolation. While clustered servers can communicate with
each other, application servers outside of the cluster cannot communicate with the cluster, thus isolating
the clustered servers. For example, you might need to separate applications from different departments
while maintaining a basic level of trust among the clustered servers. Using the dynamic outbound SSL
configuration method previously described for servers, you can easily extend the isolated cluster as
needed.

Figure 39.

Chapter 19. Administering application security 1797



Figure 3 shows a sample cluster configuration where cluster 1 contains a key.p12 with its own self-signed
certificate, and a trust.p12 that is located in the config/cells/<cellname>/clusters/<clustername> directory.

In the example, cluster1 might contain web applications, and cluster2 might contain EJB applications.
Considering the various protocols, you decide to enable IIOP traffic between the two clusters. Your task is
to define a dynamic outbound SSL configuration at the cluster1 scope with the following properties:
IIOP,nodeAhostname,9403|IIOP,nodeAhostname,9404|IIOP,nodeBhostname,9403|IIOP,nodeBhostname,9404

You must create another SSL configuration at the cluster1 scope that contains a new trust.p12 file with the
cluster2 signer. Consequently, outbound IIOP requests go either to nodeAhostname ports 9403 and 9404
or to nodeBhostname ports 9403 and 9404. The IIOP SSL port numbers on these two application server
processes in cluster2 identify the ports.

As you review Figure 3, notice the following features of the cluster isolation configuration:

v The trust.p12 for cluster1 contains signers that allow communications with itself (cluster1 signer),
between both node agents (nodeAsigner and nodeBsigner), and with the deployment manager (cell
signer).

v The trust.p12 for cluster2 contains signers that allow communications with itself (cluster2 signer),
between both node agents (nodeAsigner and nodeBsigner), and with the deployment manager (cell
signer).

v Node agent A and Node agent B can communicate with themselves, the deployment manager, and both
clusters.

Figure 40.

1798 Administering WebSphere applications



For more information, see Associating a Secure Sockets Layer configuration dynamically with an outbound
protocol and remote secure endpoint .

Although this article presents an overview of isolation methods from an SSL perspective, you must also
ensure that non-SSL ports are closed or applications require the confidentiality constraint in the
deployment descriptor. For example, you can set the CSIv2 inbound transport panel to require SSL and
disable the channel ports that are not secure from the server ports configuration.

Also, you must enable SSL client authentication for SSL to enforce the isolation requirements on both
sides of a connection. Without mutual SSL client authentication, a client can easily obtain a signer for the
server programmatically and thus bypass the goal of isolation. With SSL client authentication, the server
would require the client's signer for the connection to succeed. For HTTP/S protocol, the client is typically
a browser, a web service, or a URL connection. For the IIOP/S protocol, the client is typically another
application server or a Java client. WebSphere Application Server must know the clients to determine if
SSL client authentication enablement is possible. Any applications that are available through a public
protocol must not enable SSL client authentication because the client may fail to obtain a certificate to
authenticate to the server.

Note: It is beyond the scope of this article to describe all of the factors you must consider to achieve
complete isolation.

Certificate options during profile creation
Starting in WebSphere Application Server Version 7.0, you have several options available during profile
creation concerning the default certificate and root certificate of the server.

The new certificate options enable you to:

v Import the default certificate of the server

v Import the root certificate of the server

v Customize the default certificate subjectDN and validity period of the server

v Customize the root certificate subjectDN and validity period of the server

Two new panels are available during profile creation that enable you to make decisions about the default
certificate and root certificate of the server.

The first panel, titled Security Certificate (Part 1), enables you to choose to import a certificate or to have
WebSphere Application Server create the default certificate or the default root certificate of the server for
you.

The second panel, titled Security Certificate (Part 2), either displays the information from the certificate
imported from the previous panel, or, if you choose to have WebSphere Application Server create the
certificate, enables you to change the subjectDN and the certificate validity period.

Customization of certificates can also be performed by using the manageprofile command and from a
silent install response file.

Importing the default certificate of the server during profile creation

If the default certificate of the server is imported during profile creation, it is added to NodeDefaultKeyStore
if on a stand-alone application server, or to CellDefaultKeyStore if on a deployment manager. The imported
certificate signer is added to NodeDefaultTrustStore or CellDefaultTrustStore.

To import the default certificate of the server, you must have a personal certificate stored and a keystore
that you have access to. You must know the location, type and password of the keystore. On the Security
Certificate (Part 1) panel, do the following:

1. Select Import an existing default personal certificate.

Chapter 19. Administering application security 1799



2. Type or select the keystore file name.

3. Enter the password of the keystore.

4. Select a keystore type from the pull-down list.

5. If you have correctly filled in all information from the previous 3 steps, you are able to select a
certificate alias from the pull-down list.

The certificate you choose is imported to the default keystore of the server. The next panel, Security
Certificate (Part 2) displays the issuedTo and issuedBy certificate information.

If you use the manageprofiles command to import the default certificate, the options are:

-importPersonalCertKS keystore_path
the keystore file location

-importPersonalCertKSType keystore_type
the type of the keystore

-importPersonalCertKSPassword keystore_password
the password to open the keystore

-importPersonalCertKSAlias keystore_alias
the alias of the certificate used from the keystore

Importing the root certificate of the server during profile creation

If the server root certificate is imported during profile creation, the certificate is added to
NodeDefaultRootStore on a stand-alone application server or to DmgrDefaultRootStore on a deployment
manager. The signer is pulled from the imported root certificate and added to NodeDefaultTrustStore or
CellDefaultTrustStore. The root certificate is used by WebSphere Application Server to sign any chained
certificates it creates. If no default certificate is provided during profile creation, WebSphere Application
Server uses the root certificate to sign the default certificate of the server.

To import the default certificate of the server, you must have a personal certificate stored and a keystore
that you have access to. You must know the location, type and password of the keystore. On the Security
Certificate (Part 1) panel, do the following:

1. Select Import an existing root signing certificate.

2. Type or select the keystore file name.

3. Enter the password of the keystore.

4. Select a keystore type from the pull-down list.

5. If you have correctly filled in all information from the previous 3 steps, you are able to select a
certificate alias from the pull-down list.

The certificate you choose is imported to the root keystore of the server. The next panel, Security
Certificate (Part 2) displays the issuedTo and issuedBy certificate information.

If you use the manageprofiles command to import the root certificate, the options are:

-importSigninglCertKS keystore_path
the keystore file location

-importSigningCertKSType keystore_type
the type of the keystore

-importSigningCertKSPassword keystore_password
the password to open the keystore

-importSigningCertKSAlias keystore_alias
the alias of the certificate used from the keystore

1800 Administering WebSphere applications



Customizing the default certificate created by WebSphere Application Server

If you choose to let WebSphere Application Server create the default certificate of the server, you can
customize the subject distinguished name (DN) and the life span of the certificate.

To customize the default certificate of the server on the Security Certificate (Part 1) panel, do the following:

1. Select Create a new default personal certificate.

2. On the next panel, Security Certificate (Part 2), the Issued to distinguished name field contains the
WebSphere Application Server default DN. Replace this with your customized DN.

3. In Expiration period in years, select the number of years you want the certificate to be valid for.

If you use the manageprofiles command to customize the default certificate, the options are:

-personalCertDN distinguished_name
the DN to give to the certificate

-personalCertValidityPeriod validity_period
the life span to give to the certificate

Customizing the root certificate created by WebSphere Application Server

If you choose to let WebSphere Application Server create the root certificate, you can customize the DN of
the certificate and the life span of the certificate.

To customize the root certificate of the server on the Security Certificate (Part 1) panel, do the following:

1. Select Create a new root signing certificate.

2. On the next panel, Security Certificate (Part 2), the Issued by distinguished name field contains the
WebSphere Application Server default root certificate DN. Replace this with your customized DN.

3. In Expiration period in years, select the number of years you want the root certificate to be valid for.

If you use the manageprofiles command to customize the root certificate, the options are:

-signingCertDN distinguished_name
the DN to give to the root certificate

-signingCertValidityPeriod validity_period
the life span to give to the root certificate

Default chained certificate configuration in SSL
When a WebSphere Application Server process starts for the first time, the Secure Sockets Layer (SSL)
runtime initializes the default keystores and truststores that are specified in the SSL configuration.

The chained certificates created during profile creation have a 1 year life span by default. The default root
certificate used to signer the default chained certificate has a life span of 15 years. The life span of the
default and the root certificates can be customized during profile creation. An advantage in this type of
chained certificate is that only the signer from the root certificate is needed to establish trust. When the
chained certificate is regenerated with the same root certificate, clients using that root signer certificate for
trust do not lose their trust.

Default keystore and truststore properties
WebSphere Application Server creates the key.p12 default keystore file and the trust.p12 default
truststore file during profile creation. A default, chained certificate is also created in the key.p12
file. The root signer, or public key, of the chained certificate is extracted from the key.p12 file and
added to the trust.p12 file. If the files do not exist during process startup, they are recreated
during startup.

Chapter 19. Administering application security 1801



You can identify keystore and truststore defaults because of their suffixes: DefaultKeyStore and
DefaultTrustStore. Also, in the SSL configuration, you must set the fileBased attribute to true so
that the runtime only uses the default keystores and truststore.

On a base application server, default key and truststores are stored in the node directory of the
configuration repository. For example, the default key.p12 and trust.p12 stores are created with
the AppSrv01 profile name, the myhostNode01Cell name, and the myhostNode01 node name. The
keystore and truststore are located in the following directories:

v C:\WebSphere\AppServer\profiles\AppSrv01\config\cells\myhostNode01Cell
\nodes\myhostNode01\key.p12

v C:\WebSphere\AppServer\profiles\AppSrv01\config\cells\myhostNode01Cell
\nodes\myhostNode01\trust.p12

The default password is WebAS for all default keystores generated by WebSphere Application
Server. Change the default password after the initial configuration for a more secure environment.

Default chained certificate
The default chained certificate of the server along with a root self-signed certificate used to sign
the default chained certificate are created during profile creation.

You can recreate the certificates with different information simply by deleting the *.p12 files in
/config and /etc. Change the four properties in the next code example to the values you want the
certificates to contain, then restart the processes. This causes the server certificate in /config and
the client certificate in /etc to differ.

The certificate properties in the next code example exist in the ssl.client.props file, but do not
exist in the server configuration. However, you can use these values in the server configuration by
adding them as custom security properties in the administrative console. Click Security > Global
security > Custom properties to change the following properties:

com.ibm.ssl.defaultCertReqAlias=default_alias
com.ibm.ssl.defaultCertReqSubjectDN=cn=${hostname},ou=myhostNode01,ou=myhostNode01Cell,o=IBM,c=US
com.ibm.ssl.defaultCertReqDays=365
com.ibm.ssl.defaultCertReqKeySize=1024
com.ibm.ssl.rootCertSubjectDN=cn=${hostname},ou=Root Certificate, ou=myhostNode01,
ou=myhostNode01Cell,o=IBM,c=US
com.ibm.ssl.rootCertValidDays=7300
com.ibm.ssl.rootCertAlias=root
com.ibm.ssl.rootCertKeySize=1024

After changing the properties, complete the following actions:

1. Delete the default key.p12 keystore and trust.p12 truststore files for the application server,
which contain the default chained certificate. If the keystore and truststore file do not exist,
WebSphere Application Server automatically generates them and creates new default
certificates using the previously listed property values.

2. Delete the root keystore, which is the root-key.p12 file, to regenerate the root certificate with
the previously listed properties.

3. Restart the application server.

If a default_alias value already exists, the runtime appends _#, where the number sign (#) is a
number that increases until it is unique in the keystore. ${hostname} is a variable that is resolved
to the host name where it was originally created. The default expiration date of chained certificates
is one year from their creation date.

The runtime monitors the expiration dates of chained certificates using the certificate expiration
monitor. These chained certificates are automatically replaced along with any signer certificates
when they are within the expiration threshold, which is typically 30 days before expiration. You can
increase the default key size beyond 1024 bits only when the Java runtime environment policy
files are unrestricted (that is, not exported). For more information, see “Certificate expiration
monitoring in SSL” on page 1809.

1802 Administering WebSphere applications



Default keystore and truststore configurations for new Base Application Server processes
The following sample code shows the default SSL configuration for a base application server.
References to the default keystores and truststores files are highlighted.

<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"
managementScope="ManagementScope_1">
<setting xmi:id="SecureSocketLayer_1" clientAuthentication="false"
securityLevel="HIGH" enabledCiphers="" jsseProvider="IBMJSSE2" sslProtocol="SSL_TLS"
keyStore="KeyStore_1" trustStore="KeyStore_2" trustManager="TrustManager_1"
keyManager="KeyManager_1"/>
</repertoire>

Default keystore
In the following sample code, the keystore object that represents the default keystore is similar to
the XML object.

<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"
password="{xor}349dkckdd=" provider="IBMJCE" location="${WAS_INSTALL_ROOT}/config
/cells/myhostNode01Cell/nodes/myhostNode01/key.p12" type="PKCS12" fileBased="true"
hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

The NodeDefaultKeyStore keystore contains the personal certificate that represents the identity
of the secure endpoint. Any keystore reference can use the ${WAS_INSTALL_ROOT} variable, which
is expanded by the runtime. The PKCS12 default keystore type is in the most interoperable format,
which means that it can be imported into most browsers. The myhostNode01Cell password is
encoded. The management scope determines which server runtime loads the keystore
configuration into memory, as shown in the following code sample:

<managementScopes xmi:id="ManagementScope_1" scopeName="
(cell):myhostNode01Cell:(node):myhostNode01" scopeType="node"/>

Any configuration objects that are stored in the security.xml file whose management scopes are
outside the current process scope are not loaded in the current process. Instead, the management
scope is loaded by servers that are contained within the myhostNode01 node. Any application
server that is on the specific node can view the keystore configuration.

When you list the contents of the key.p12 file to show the chained certificate, note that the
common name (CN) of the distinguished name (DN) is the host name of the resident machine.
This listing enables you to verify the host name by its URL connections. Additionally, you can verify
the host name from a custom trust manager. For more information, see “Trust manager control of
X.509 certificate trust decisions” on page 1784.

Contents of default keystore
The following sample code shows the contents of the default key.p12 file in a keytool list:

keytool -list -v -keystore c:\WebSphere\AppServer\profile\AppSrv01\profiles\config
\cells\myhostNode01Cell\nodes\myhostNode01\key.p12 -storetype PKCS12 -storepass *****

Keystore type: PKCS12
Keystore provider: IBMJCE

Your keystore contains 1 entry

Alias name: default
Creation date: Dec 31, 1969
Entry type: keyEntry
Certificate chain length: 2
Certificate[1]:
Owner: CN=myhost.austin.ibm.com, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US
Issuer: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US
Serial number: 4e48f29aafea6
Valid from: 2/7/08 1:03 PM until: 2/6/09 1:03 PM
Certificate fingerprints:
MD5: DB:FE:65:DB:40:13:F4:48:A4:CE:2F:4F:60:A5:FF:2C
SHA1: A1:D4:DD:4B:DE:7B:45:F7:4D:AA:6A:FC:92:38:78:53:7A:99:F1:DC

Certificate[2]:
Owner: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US
Issuer: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US
Serial number: 4e48e5fd4eae3
Valid from: 2/7/08 1:03 PM until: 2/2/28 1:03 PM
Certificate fingerprints:
MD5: A5:9B:05:78:CF:AB:89:94:C9:2E:F1:87:34:B3:FC:75
SHA1: 43:74:B6:C7:FA:C1:0F:19:F2:51:2B:17:60:0D:34:93:55:BF:D5:D2

*******************************************
*******************************************

Chapter 19. Administering application security 1803



The default alias name and the keyEntry entry type indicate that the private key is stored with the
public key, which represents a complete personal certificate. The certificate is owned
byCN=myhost.austin.ibm.com, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US and it is
issued by the default root certificate, which is owned byCN=myhost.austin.ibm.com, OU=Root
Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US By default, the certificate is
valid for one year from the date of creation.

Additionally, in some signer-exchange situations, the certificate fingerprint ensures that the sent
certificate has not been modified. The fingerprint, which is a hash algorithm output for the
certificate, is displayed by the WebSphere Application Server runtime during an automated signer
exchange on the client side. The client fingerprint must match the fingerprint that is displayed on
the server. The runtime typically uses the SHA1 hash algorithm to generate certificate fingerprints.

Default truststore
In the following sample code, the keystore object represents the default trust.p12 truststore. The
truststore contains signer certificates that are necessary for making trust decisions:

<keyStores xmi:id="KeyStore_2" name="NodeDefaultTrustStore"
password="{xor}349dkckdd=" provider="IBMJCE" location="${WAS_INSTALL_ROOT}
/config/cells/myhostNode01Cell/nodes/myhostNode01/trust.p12" type="PKCS12"
fileBased="true" hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

Contents of default truststore
The following sample code shows the contents of the default trust.p12 truststore in a keytool
listing. By default, for the sample chained certificate, the root certificate signer is included in the
trust store. The root signer alias name and the trustedCertEntry entry type indicate that the
certificate is the public key. The private key is not stored in this truststore. In addition, all
truststores contain the default DataPower certificate.
keytool -list -v -keystore c:\WebSphere\AppServer\profile\AppSrv01\profiles\config\cells\myhostNode01Cell
\nodes\myhostNode01\trust.p12 -storetype PKCS12 -storepass *****

Keystore type: PKCS12
Keystore provider: IBMJCE

Your keystore contains 2 entries

Alias name: root
Creation date: Dec 31, 1969
Entry type: trustedCertEntry

Owner: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US
Issuer: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US
Serial number: 4e48e5fd4eae3
Valid from: 2/7/08 1:03 PM until: 2/2/28 1:03 PM
Certificate fingerprints:

MD5: A5:9B:05:78:CF:AB:89:94:C9:2E:F1:87:34:B3:FC:75
SHA1: 43:74:B6:C7:FA:C1:0F:19:F2:51:2B:17:60:0D:34:93:55:BF:D5:D2

*******************************************
*******************************************

Alias name: datapower
Creation date: Dec 31, 1969
Entry type: trustedCertEntry

Owner: OU=Root CA, O="DataPower Technology, Inc.", C=US
Issuer: OU=Root CA, O="DataPower Technology, Inc.", C=US
Serial number: 0
Valid from: 6/11/03 1:23 PM until: 6/6/23 1:23 PM
Certificate fingerprints:

MD5: 18:AC:86:D1:9A:90:A2:AE:8B:28:F9:A8:75:C8:A9:DB
SHA1: A9:BA:A4:B5:BC:26:2F:5D:2A:80:93:CA:BA:F4:31:05:F2:54:14:17

Secure installation for client signer retrieval in SSL:

Each profile in the WebSphere Application Server environment contains a unique chained certificate
signed by a unique long lived root certificate that was created when the profile was created. This certificate
replaces the default self-signed certificate that ships with WebSphere Application Server Version 6.1 as
well as the default dummy certificate that ships in releases prior to Version 6.1. When a profile is federated
to a deployment manager, the signer for the root signing certificate is added to the common truststore for
the cell, establishing trust for all certificates signed by that root certificate.

1804 Administering WebSphere applications



Note: Do not use the dummy keystore and truststore files, which are referenced in this topic, in a
production environment. These files contain the same certificates and are used everywhere, which
is not secure. Also, change the passwords for the keystore and truststore so that it does not use
the WebAS default password.

By default, clients do not trust servers from different profiles in the WebSphere Application Server
environment. That is, they do not contain the root signer for these servers. There are some things that you
can do to assist in establishing this trust:

1. Enable the signer exchange prompt to accept the signer during the connection attempt.

2. Run the retrieveSigners utility to download the signers from that system prior to making the
connection.

3. Copy the trust.p12 file from the /config/cells/<cell_name>/nodes/<node_name> directory of the
server profile to the /etc directory of the client. Update the SSL configuration to reflect the new file
name and password, if they are different. Copying the file provides the client with a trust.p12 that
contains all signers from servers in that cell. Also, you might need to perform this step for back-level
clients that are still using the DummyClientTrustFile.jks file. In this case, you might need to change
the sas.client.props or soap.client.props file to reflect the new truststore, truststore password, and
truststore type (PKCS12).

For clients to perform an in-band signer exchange, you must specify the ssl.client.props file as a
com.ibm.SSL.ConfigURL property in the SSL configuration. For managed clients, this is done
automatically. Signers are designated either as in-band during the connection or out-of-band during
runtime. You must also set the com.ibm.ssl.enableSignerExchangePrompt attribute to true.

Tip: You can configure a certificate expiration monitor to replace server certificates that are about to
expire. For more information about how clients can retrieve the new signer from the configuration,
see “Certificate expiration monitoring in SSL” on page 1809.

Using the signer exchange prompt to retrieve signers from a client

When the client does not already have a signer to connect to a process, you can enable the signer
exchange prompt. The signer exchange prompt displays once for each unique certificate and for each
node. After the signer for the node is added, the signer remains in the client truststore. The following
sample code shows the signer exchange prompt retrieving a signer from a client:
/QIBM/UserData/WebSphere/AppServer/V85/Express/profiles/default/bin/serverStatus -all ADMU0116I:
Tool information is being logged in file
/QIBM/UserData/WebSphere/AppServer/V85/Express/profiles/default/logs/serverStatus.log ADMU0128I:
Starting tool with the default profile ADMU0503I: Retrieving server status for all servers
ADMU0505I: Servers found in
configuration: ADMU0506I: Server name: server1
*** SSL SIGNER EXCHANGE PROMPT *** SSL signer from target host 192.168.1.5
is not found in truststore
/QIBM/UserData/WebSphere/AppServer/V85/Express/profiles/default/etc/trust.p12.
Here is the signer information
(verify the digest value matches what is displayed at the server):
Subject DN: CN=myhost.austin.ibm.com, OU=myhostNode01Cell, OU=myhostNode01,
O=IBM, C=US Issuer DN:
CN=myhost.austin.ibm.com, O=IBM, C=US
Serial number: 2510775664686266 Expires: Thu Feb 19 15:58:49 CST 2009
SHA-1 Digest: 2F:96:70:23:08:58:6F:66:CD:72:61:E3:46:8B:39:D4:AF:62:98:C3
MD5 Digest: 04:53:F8:20:A2:8A:6D:31:D0:1D:18:90:3D:58:B9:9D

Subject DN: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell,
OU=myhostNode01, O=IBM, C=US Issuer DN: CN=myhost.austin.ibm.com, OU=Root
Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US Serial number:
2510773295548841 Expires: Tue Feb 15 15:58:46 CST 2028 SHA-1 Digest:
2F:96:70:23:08:58:6F:66:CD:72:61:E3:46:8B:39:D4:AF:62:98:C3
MD5 Digest: 04:53:F8:20:A2:8A:6D:31:D0:1D:18:90:3D:58:B9:9D

Chapter 19. Administering application security 1805



Add signer to the truststore now? (y/n) y A retry of the request may need to occur.
ADMU0508I: The Application Manager "server1" is STARTED

To automate this process, see retrieveSigners command.

When a prompt occurs to accept the signer, a socket timeout can occur and the connection might be
broken. For this reason, the message A retry of the request may need to occur. displays after answering
the prompt. The message informs the user to resubmit the request. This problem should not happen
frequently, and it might be more prevalent for some protocols than others.

A retry of the request may need to occur if the socket times out while waiting for a prompt response. If the
retry is required, note that the prompt will not be re-displayed if (y) is entered, which indicates the signer
has already been added to the trust store.

Verify the displayed SHA-1 digest, which is the signature of the certificate that is sent by the server. If you
look at the certificate on the server, verify that the same SHA-1 digest displays.

You can disable the prompt when you do not want it to display by running the retrieveSigners utility to
retrieve all of the signers for a particular cell. You can download or upload the signers from any remote
keystore to any local keystore by referencing a common truststore with this client script. For more
information, see Default chained certificate configuration in SSL.

Using the retrieveSigners utility to download signers for a client

You can run the retrieveSigners utility to retrieve all of the signers from the remote keystore for a
specified client keystore. The truststore contains the signers that enable the client to connect to its
processes. The retrieveSigners utility can point to any keystore in the target configuration, within the
scope of the target process, and can download the signers (certificate entries only) to any client keystore
in the ssl.client.props file.

Obtaining signers for clients and servers from a previous release

Note: When a client from a release prior to version 7.0 connects to the current release, the client must
obtain signers for a successful handshake. Clients using previous releases of WebSphere
Application Server cannot obtain signers as easily as in the current release. You can copy the
deployment manager common truststore to your back-level client or server, and then re-configure
the SSL configuration to directly reference that truststore. This common truststore of type PKCS12 is
located in the /config/cells/<cell_name>/nodes/<node_name> directory in the configuration
repository and has a default password of WebAS.

To collect all of the signers for the cell in a single trust.p12 keystore file, complete following steps:

1. Copy the trust.p12 keystore file on the server and replicate it on the client. The client references the
file directly from the sas.client.props and soap.client.props files that specify the SSL properties for
previous releases.

2. Change the client-side keystore password so that it matches the default cell name that is associated
with the copied keystore.

3. Change the default keystore type for the trust.p12 file to PKCS12 in the client configuration.

The following two code samples show you a before and an after view of the changes to make.

Default SSL configuration of sas.client.props for a previous release
com.ibm.ssl.protocol=SSL com.ibm.ssl.keyStore=/QIBM/UserData/WebSphere/AppServer/V85/Base/
profiles/default/
etc/DummyClientKeyFile.jks

1806 Administering WebSphere applications



com.ibm.ssl.keyStorePassword={xor}CDo9Hgw\= com.ibm.ssl.keyStoreType=JKS com.ibm.ssl.trustStore=
/QIBM/UserData/WebSphere/AppServer/
V85/Base/profiles/default/etc/DummyClientTrustFile.jks com.ibm.ssl.trustStorePassword={xor}CDo9Hgw\=
com.ibm.ssl.trustStoreType=JKS

SSL configuration changes that are required to common truststore file in the /etc directory of the client

com.ibm.ssl.protocol=SSL com.ibm.ssl.keyStore=/QIBM/UserData/WebSphere/AppServer/V85/Base/
profiles/default/etc/
DummyClientKeyFile.jks com.ibm.ssl.keyStorePassword={xor}CDo9Hgw\= com.ibm.ssl.keyStoreType=JKS
com.ibm.ssl.trustStore=/QIBM/UserData/WebSphere/AppServer/V85/Base/profiles/default/etc/trust.p12
com.ibm.ssl.trustStorePassword=myhostNode01Cell com.ibm.ssl.trustStoreType=PKCS12

Tip: You can run the PropsFilePasswordEncoder script, which is located in the /bin directory to encode
the password.

You can also make these changes in the soap.client.props file and specify the key.p12 file in place of
the DummyClientKeyFile.jks file. However, you must also change the keyStorePassword and
keyStoreType values to match those in the default key.p12 file.

In releases of WebSphere Application Server prior to Version 7.0, you must edit the SSL configuration on
the server to replace the common truststore. The trust.p12 file, which is used by the server, also must
contain the default dummy certificate signer for connections among servers at previous release levels. You
might need to manually extract the default certificate from the DummyServerKeyFile.jks file and then import
the certificate into the trust.p12 file that you added to the configuration.

retrieveSigners command:

The retrieveSigners command creates a new client self-signed certificate, keystore, and SSL configuration
in the ssl.client.props file. Using this command you can optionally extract the signer to a file.

For more information about where to run this command, read about Using command tools.

Syntax

Use the following command syntax to create a new client self-signed certificate, keystore, and SSL
configuration in the ssl.client.props file.
retrieveSigners <remoteKeyStoreName> <localKeyStoreName> [options]

The <remoteKeyStoreName> and <localKeyStoreName> parameters are required. The following optional
parameters are available:
[-remoteAlias aliasFromRemoteStore]
[-localAlias storeAsAlias]
[-listRemoteKeyStoreNames][-listLocalKeyStoreNames]
[-autoAcceptBootstrapSigner][-uploadSigners] [-host host]
[-port port][-conntype JSR160RMI|RMI|SOAP|IPC][-user user]
[-password password]
[-trace] [-logfile filename]
[-replacelog] [-quiet] [-help]

Parameters

The following parameters are available for the retrieveSigners command:

-remoteKeyStoreName
The name of a truststore that is located in the server configuration from which to retrieve the signers.
This parameter is typically the CellDefaultTrustStore file for a managed environment or the
NodeDefaultTrustStore file for an unmanaged environment.

Chapter 19. Administering application security 1807



-localKeyStoreName
The name of the truststore that is located in the ssl.client.props file for the profile to which the
retrieved signers is added. This parameter is typically the ClientDefaultTrustStore file for either a
managed or unmanaged environment.

-remoteAlias <aliasFromRemoteStore>
Specifies one alias from the remote truststore that you want to retrieve. Otherwise, all signers from the
remote truststore are retrieved.

-localAlias <storeAsAlias>
Determines the name of the alias stored in the local truststore. This option is only valid if you specify
the –remoteAlias option. If you do not specify the -localAlias option, then the alias name from the
remote truststore is used, if possible. If an alias clash occurs, then the alias name is used and has an
incremented number appended to the end of it until a unique alias is found.

-listRemoteKeyStoreNames
Sends a remote request to the server to list all keystores that you can specify for the
remoteKeyStoreName parameter. Use this command when you are unsure of the name of the remote
truststore from which you want to download the signers.

-listLocalKeyStoreNames
Lists the keystores located in the ssl.client.props file that you can specify for the localKeyStoreName
parameter. This truststore receives the signers from the server. Use this parameter when you are
unsure of the name of the local truststore into which you want to retrieve the signers. The default
name of the truststore is ClientDefaultTrustStore and is located in the ssl.client.props file.

-autoAcceptBootstrapSigner
Automatically adds a signer to make a secure connection to the server. The purpose of the option is to
support automation of the command so that you do not need to accept the signer. After the signer is
added to the local truststore, an SHA hash prints so that you can verify the certificate.

-uploadSigners
Converts the signer download into a signer upload. The signers from the localKeyStoreName
parameter is sent to the remoteKeyStoreName parameter instead.

-host <host>
Specifies the target host from which the signers are retrieved.

-port <port>
Specifies the target administrative port to which you want to connect. You must specify the port based
on the -conntype parameter. If the conntype is SOAP, the default port is 8879. This value can vary for
different servers. If the conntype is RMI, the default port is 2809.

-conntype <JSR160RMI|IPC|RMI|Soap>
Determines the administrative connector type that is used for the MBean call to retrieve the signers.

Note: Eventually switch from the RMI connector to the JSR160RMI connector because support for the
RMI connector is deprecated.

-user <user>
When the -uploadSigners flag is used, you are required to specify this option to supply the user name
that is authenticated for the MBean operation. If you do not specify this parameter when the
-uploadSigners flag is used, then you are prompted for credentials by default.

-password <password>
When the -uploadSigners flag is used, you are required to specify this option to supply the password
that is authenticated for the MBean operation. The password goes along with the –user parameter.

-trace
When specified, this parameter enables tracing of the trace specification necessary to debug this
component. By default, the trace is located in the profiles/profile_name/log/retrieveSigners.log file.

1808 Administering WebSphere applications



-logfile <filename>
Overrides the default trace file. By default, the trace will appear in the profiles/profile_name/log/
retrieveSigners.log file.

-replacelog
Causes the existing trace file to be replaced when the command runs.

-quiet
Suppresses most messages from printing to the console.

-help
Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax for using the retrieveSigners command:

v The following example lists remote and local keystores:
retrieveSigners -listRemoteKeyStoreNames -listLocalKeyStoreNames -conntype RMI -port 2809

Example output
CWPKI0306I: The following remote keystores exist on the specified server:

CMSKeyStore, NodeLTPAKeys, NodeDefaultTrustStore, NodeDefaultKeyStore
CWPKI0307I: The following local keystores exist on the client:

ClientDefaultKeyStore, ClientDefaultTrustStore

v The following example retrieves all signers from NodeDefaultTrustStore:
retrieveSigners NodeDefaultTrustStore ClientDefaultTrustStore -autoAcceptBootstrapSigner
-conntype RMI -port 2809

Example output
CWPKI0308I: Adding signer alias "CN=BIRKT40.austin.ibm.com, O=IBM, C=US" to

local keystore "ClientDefaultTrustStore" with the following SHA
digest: 40:20:CF:BE:B4:B2:9C:F0:96:4D:EE:E5:14:92:9E:37:8D:51:A5:47

Certificate expiration monitoring in SSL:

The certificate expiration monitor administrative task is a scheduled task that cycles through all the
keystores in the security configuration and reports on any certificates that are expired, certificates that fall
within the expiration threshold, and certificates that fall within the pre-notification period.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

The certificate expiration monitor also replaces self-signed and chained certificates that have a root in the
root keystore if configured to do so. If the monitor is configured to replace certificates, then certificates that
are expired or fall in the expiration threshold are replaced. Certificates that are imported from an external
Certificate authority (CA) are reported but not replaced.

Certificate expiration monitoring relies on the following definitions:

Expired certificates
Certificates are created with a finite life span. Self-signed or chained certificates that have reached
the end of their life span are reported and replaced, if possible. Certificate authority signed
certificates cannot be replaced but will be reported. Replacing CA-signed certificates is the
responsibility of the administrator.

Chapter 19. Administering application security 1809



Certificates within the expiration threshold
There is a period of time before a certificate expires. A certificate in this period of time is one
within the expiration threshold. The server replaces certificates within the expiration threshold so
that the certificate does not expire and cause outages. By default the expiration threshold is 60
days, but can be configured as required.

Pre-notification period
Before a certificate falls within the expiration threshold there are warnings issued that indicate that
the certificate will be replaced, when the expiration threshold date is reached. The period of time
prior to the expiration threshold date is called the pre-notification period and is set at 90 days for
the certificate.

The certificate expiration monitor performs the following:

1. Clears out the NodeDefaultDeletedStore or DmgrDefaultDeletedStore. This operation is performed
silently without reporting that the certificates are deleted.

2. Checks the root key stores, DmgrDefaultRootStore or NodeDefaultRootStore and the
DmgrRSATokenRootStore or NodeRSATokenRootStore. If any root certificates are expired, falls in the
threshold period, or the pre-notification period, then the certificate is noted in the report.

3. If there are any root certificates that are expired or fall in the threshold period that root certificate is
recreated using all the information used to create the original one. Any signer certificates from the
original root certificate are replaced with the signers from the new root certificate.

4. If a root certificate is replaced, then all the keystores are checked to see if there are any chained
certificates signed with the original root certificate. If there are, then the chain certificate is renewed
(recreated with the new root certificate). Any signer certificate from the original certificate is replaced
with the signer from the recreated certificate.

5. After all root keystores are processed, the rest of the keystores are checked for expired certificates,
certificates in the expiration threshold, or certificates in the pre-notification period. Any certificate falling
in any one of these categories is noted in the report.

6. If there are any expired certificates or certificates in the expiration threshold period and these
certificates are self-signed certificates or chained certificates created by WebSphere, then they are
replaced. If the chained certificates root is not in the root key store then it will be recreated as a default
root certificate. Any signer certificates from the original certificate are replaced with the signer from the
new certificate."

7. A report is generated and returned, written to a log file, or mailed.

The server default certificate is a chained certificate with a 365 day life span. It is signed with the default
root certificate which has a 15 year life span.

You can configure this monitor task to run according to a particular schedule. The schedule produces the
next start date that persists in the configuration and, when the date is reached, WebSphere Application
Server starts the monitor to check all of the keystores for certificates that meet the expiration threshold.
You can start the task manually to run at any time.

The following security.xml configuration object specifies when the monitor task starts, determines the
certificate expiration threshold, and indicates whether you are notified in an email using Simple Mail
Transfer Protocol (SMTP) or in a message log.
<wsCertificateExpirationMonitor xmi:id="WSCertificateExpirationMonitor_1"
name="Certificate Expiration Monitor" daysBeforeNotification="30"
isEnabled="true" autoReplace="true" deleteOld="true"
wsNotification="WSNotification_1" wsSchedule="WSSchedule_2"
nextStartDate="1134358204849"/>

The expiration monitor replaces self-signed certificates and chained personal certificates that are signed by
a root certificate in DmgrDefaultRootStore or NodeDefaultRootStore. Self-signed certificates are renewed
using all the information that was used to create the original self-signed certificate. A chained certificate is
renewed using the same root certificate that was used to sign the original certificate.

1810 Administering WebSphere applications



The expiration monitor automatically replaces only self-signed certificates and chained certificates that are
expired or that meet the expiration threshold criteria. To replace all of the signers from the old certificate
with the signer that belongs to the new certificate in all the keystores in the configuration for that cell, set
the autoReplace attribute to true. When the deleteOld attribute is true, the old personal certificate and old
signers also are deleted from the keystores. The isEnabled attribute determines whether the expiration
monitor task runs based upon the nextStartDate attribute that is derived from the schedule. The
nextStartDate attribute is derived from the schedule in milliseconds since 1970, and is identical to the
System.currentTimeMillis(). If the nextStartDate has already passed when an expiration monitor process
begins, and the expiration monitor is enabled, the task is started, but a new nextStartDate value is
established based on the schedule.

The following sample the schedule object shows the frequency attribute as the number of days between
each run of the certificate monitor.
<wsSchedules xmi:id="WSSchedule_2" name="ExpirationMonitorSchedule"
frequency="30" dayOfWeek="1" hour="21" minute="30"/>

The dayOfWeek attribute adjusts the schedule to run on a specified day of the week, which is always the
same day regardless of whether the frequency is set to 30 or 31 days. Based on 24-hour clock, the hour
and minute attributes determine when the expiration monitor is started on the specified day.

The following sample code of the notification object shows the notification configuration, which notifies you
after the expiration monitor runs.
<>wsNotifications xmi:id="WSNotification_1" name="MessageLog" logToSystemOut="true" emailList=""/

For expiration monitor notifications, you can select message log, email using SMTP server, or both
methods of notification. When you configure the email option, use the format user@domain@smtpserver. If
you do not specify an SMTP server, WebSphere Application Server defaults to the same domain as the
email address. For example, if you configure joeuser@ibm.com, WebSphere Application Server attempts
to call smtp-server.ibm.com. To specify multiple email addresses using scripting, you must add a pipe (|)
character between entries. When you specify the logToSystemOut attribute, the expiration monitor results
are sent to the message log for the environment, which is typically the SystemOut.log file.

The expiration monitor clears out the deleted certificates keystore. The monitor first clears out the deleted
keystore. Due to the nature of the PKCS12 keystore, there must be at lease one entry in the keystore so
the signer certificates from the dummy key store will remain in the deleted keystore. There is no reporting
on the certificate being deleted from the deleted keystore.

Important: When the expiration monitor replaces certificates, this can dynamically affect the runtime when
the following configuration option is enabled:

Security > SSL certificate and key management. Under configuration settings, check the
checkbox for Dynamically update the run time when SSL configuration changes occur.

When enabled, any certificates that are replaced causes the client SSL runtime to begin using
the new certificates immediately, which in turn, flushes SSL and keystore caches and causes
some ports using SSLServerSockets (RMI/IIOP on distributed and Admin SOAP) to restart.
Restarting ports breaks existing connections. These connections can be reconnected after the
port restart is completed. Endpoints using the channel framework (HTTP, BUS, RMI/IIOP on
z/OS) leave existing connections unaffected but still use the new certificates for new
connections.

When the dynamic change property is disabled and before the new certificates become
effective, the administrator needs to recycle all processes in the entire cell after each node
has the synchronized configuration. Regardless of which method is chosen, you should always
check the health of your cell after the certificate expiration monitor has run (based on the

Chapter 19. Administering application security 1811



schedule specified). The schedule should be set to run the certificate expiration monitor during
a maintenance period so that if a restart is required after the certificate replacement, it will not
cause unexpected outages.

Dynamic configuration updates in SSL
During the Secure Sockets Layer (SSL) runtime, dynamic configuration updates affect both inbound and
outbound SSL endpoints. For inbound SSL endpoints, the changes that are implemented by the SSL
channel are only affected by dynamic changes. For outbound SSL endpoints, all outbound connections
inherit the new configuration changes.

In this release, dynamic update functionality provides you with greater flexibility and efficiency. You can
change SSL configurations without restarting WebSphere Application Server for the changes to take effect.

To make dynamic changes, in the administrative console click Security > SSL certificates and key
management, then select the Dynamically update the runtime when SSL configuration changes occur
check box. You must save your changes and then synchronize the security.xml file with remote systems.
A remote system must be able to confirm that dynamicallyUpdateSSLConfig=true is in the security.xml
file.

The SSL runtime reloads the modified SSL configuration and creates a new SSLEngine for the modified
connections that are associated with inbound endpoints. New outbound connections use the new
configuration while existing connections continue to use the old SSLEngine object and are not affected.

Tip: Make dynamic changes to the SSL configuration during off-peak hours. Synchronization delays can
negatively affect connections when you update SSL configurations during peak hours.

You can turn on and off the dynamicallyUpdateSSLConfig attribute in the security.xml file to ensure
successful updates by doing the following actions:

1. Set dynamicallyUpdateSSLConfig=On.

2. Save the updated configuration.

3. Synchronize the security.xml file with remote systems.

4. Set the dynamicallyUpdateSSLConfig attribute to Off.

You must verify that all of the nodes receive the changes before turning off the
dynamicallyUpdateSSLConfig attribute. Test the changes in a test environment before updating the
production environment.

Tip: Some SSL changes, especially administrative SSL changes, can cause server outages if you fail to
test them first. When a change prevents trust between two endpoints, the endpoints cannot
communicate with each other. Additionally, if administrative SSL connection updates cause system
outages, you might need to disable the nodes after you make corrective changes using the
deployment manager. From the command line, you can manually synchronize the server to retrieve
the new SSL changes, then restart the nodes.

Certificate management using iKeyman prior to SSL
Starting in WebSphere Application Server Version 6.1, you can manage your certificates from the
administrative console. When using versions of WebSphere Application Server prior to Version 6.1, use
iKeyman for certificate management. iKeyman is a key management utility.

WebSphere Application Server certificate management requires that you define the keystores in your
WebSphere Application Server configuration. With iKeyman, you need access to the keystore file only. You
can read a keystore file with personal certificates and signers that is created in iKeyman. A keystore file
can be read into the WebSphere Application Server configuration by using the createKeyStore command.

The majority of certificate management functions are the same between WebSphere Application Server
and iKeyman, especially for personal certificates and signer certificates. However, certificate requests are

1812 Administering WebSphere applications



special. The underlying behavior is different in the two certificate management schemes. Because of the
different behavior, when a certificate request is generated from iKeyman, the process must be completed
in iKeyman. For example, a certificate that is generated by a certificate request that originated in iKeyman
must be received in iKeyman as well.

The same is true for WebSphere Application Server. For example, when a certificate is generated from a
certificate request that originated in WebSphere Application Server, the certificate must be received in
WebSphere Application Server.

You can perform the following certificate operations using iKeyman:

Table 145. Available certificate operations using iKeyman. This table describes the available certificate operations
using iKeyman.

Types of certificates Functions Description

Personal certificates Create a self-signed certificate Creates a self-signed certificate and stores it in a
keystore.

List personal certificates Lists all the personal certificates in a keystore.

Get information about a personal
certificate

Gets information about a personal certificate.

Delete a personal certificate Deletes a personal certificate from a keystore.

Import a certificate Imports a certificate from a keystore to a keystore.

Export a certificate Exports a certificate from a keystore to another
keystore.

Extract a certificate Extracts the signer part of a personal certificate to a
file.

Receive a certificate Reads a certificate that comes from a certificate
authority (CA) into a keystore.

Signer certificates Add a signer certificate Adds a signer certificate from a file to a keystore.

List signer certificates Lists all the signer certificates in a keystore.

Get information about a signer
certificate

Gets information about a signer certificate.

Delete a signer certificate Deletes a signer certificate from a keystore.

Extract a signer certificate Extracts a signer certificate from a keystore, and
stores the certificate in a file.

Certificate requests Create a certificate request Creates a certificate request that can be sent to a
CA.

List certificate requests Lists the certificate requests in a keystore.

Get information about a certificate
request

Gets information about a certificate request.

Delete a certificate request Deletes a certificate request from a keystore.

Extract a certificate request Extracts a certificate request to a file.

Certificate management in SSL
You can manage certificate operations that involve personal certificates, signer certificates, and personal
certificate requests on the administrative console.

Types of certificates

WebSphere Application Server uses the certificates that reside in keystores to establish trust for a Secure
Sockets Layer (SSL) connection. Click Security > SSL certificate and key management > Manage

Chapter 19. Administering application security 1813



endpoint security configurations > Inbound | Outbound > SSL_configuration_name > Key stores
and certificates, then select an existing or create a new keystore. After selecting a keystore, and
depending on the type of certificate you need, choose one of the following types of certificates under
Related Items:

v Personal certificate

v Signer certificate

v Certificate Authority (CA) certificates

v Personal certificate request

Table 146. Certificate operations. The following table describes the certificate operations that you can perform on the
administrative console

Types of certificates Functions Description

Personal certificates Create a self-signed certificate Creates a self-signed certificate and stores it in a
keystore.

List personal certificates Lists all the personal certificates in a keystore.

Get information about a personal
certificate

Gets information about a personal certificate.

Delete a personal certificate Deletes a personal certificate from a keystore.

Import a certificate Imports a certificate from a keystore to a keystore.

Export a certificate Exports a certificate from a keystore to another
keystore.

Extract a certificate Extracts the signer part of a personal certificate to
a file.

Exchange signer certificates Exchange signer part of a personal certificate
between key store.

Receive a certificate Reads a certificate that comes from a certificate
authority (CA) into a keystore.

Replace a certificate Replaces all occurrences of a personal certificate
alias in the WebSphere Application Server
configuration with another certificate. Also, replaces
all occurrences of the personal certificates signer
with the new personal certificate signer.

Create a chained certificate Creates a chained certificate and stores it in a
keystore.

Renew a certificate Renews a certificate with a new public/private key
pair and stores it in a keystore.

Request a CA certificate Makes a request to a CA using a CA client to
obtain a CA certificate.

Certificate authority (CA)
certificates

Create CA certificate Sends a certificate request to an external certificate
authority (CA).

Revoke CA certificate Sends a revocation request to an external
certificate authority (CA).

Signer certificates Add a signer certificate Adds a signer certificate from a file to a keystore.

List signer certificates Lists all the signer certificates in a keystore.

Get information about a signer
certificate

Gets information about a signer certificate.

Delete a signer certificate Deletes a signer certificate from a keystore.

Extract a signer certificate Extracts a signer certificate from a keystore, and
stores the certificate in a file.

1814 Administering WebSphere applications



Table 146. Certificate operations (continued). The following table describes the certificate operations that you can
perform on the administrative console

Types of certificates Functions Description

Retrieve a signer from a port Retrieves a signer certificate from a port, and
stores it in a key store.

Certificate requests Create a certificate request Creates a certificate request that can be sent to a
CA.

List certificate requests Lists the certificate requests in a keystore.

Get information about a certificate
request

Gets information about a certificate request.

Delete a certificate request Deletes a certificate request from a keystore.

Extract a certificate request Extracts a certificate request to a file.

Personal certificates

Table 147. Personal certificate operations. The following table lists the operations that you can perform on personal
certificates, the AdminTask object that you can use to perform that operation, and how to navigate to the certificate on
the console:

Function AdminTask object Administrative console

Create a self-signed
certificate

createSelfSignedCertificate Security > Secure Communications > Key store and
certificates > key store > Create a Self-Signed
Certificate

List personal certificates listPersonalCertificates Security > Secure Communications > Key store and
certificates > key store > personal certificates

Get information about a
personal certificate

getPersonalCertificate Security > Secure Communications > Key store and
certificates > key store > personal certificates > alias

Delete a personal certificate deletePersonalCertificate Security > Secure Communications > Key store and
certificates > key store > personal certificates >
delete

Import a certificate importCertificate Security > Secure Communications > Key store and
certificates > key store > personal certificates >
import

Export a certificate exportCertificate Security > Secure Communications > Key store and
certificates > key store > personal certificates >
export

Extract a certificate extractCertificate Security > Secure Communications > Key store and
certificates > key store > personal certificates >
extract

Exchange signer certificates exchangeSignerCertificates Security > Secure Communications > Key store and
certificates > Exchange signers

Create a chained certificate createChainedCertificate Security > SSL certificate and key management >
Key store and certificates > keystore name >
Personal certificates. Click Create button and select
Chained certificate

Renew a certificate renewChainedCertificate Security > SSL certificate and key management >
Key store and certificates > keystore name >
Personal certificates. Select a certificate. Click Renew
button.

Create a chained Certificate createChainedCertificate Security > Secure communications > Key store and
certificates > keystore > Create a chained
certificate.

Chapter 19. Administering application security 1815



Table 147. Personal certificate operations (continued). The following table lists the operations that you can perform on
personal certificates, the AdminTask object that you can use to perform that operation, and how to navigate to the
certificate on the console:

Function AdminTask object Administrative console

Request a CA certificate requestCACertificate Security > Secure communications > Key store and
certificates > keystore > Request a CA certificate.

Certificate authority (CA) certificates

Table 148. CA certificate operations. The following table lists the operations that you can perform on CA certificates,
the AdminTask object that you can use to perform that operation, and how to navigate to the certificate on the console:

Function AdminTask object Administrative console

Create a CA certificate createCACertificate Security > Secure Communications > Key store and
certificates > key store > Personal certificates >
Create > CA-signed certificate

Revoke a CA certificate revokeCACertificate Security > Secure Communications > Key store and
certificates > key store > Personal certificates
personal certificate > Revoke

Signer certificates

Table 149. Signer certificate operations. The following table lists the operations that you can perform with signer
certificates, the AdminTask object that you can use to perform the operation, and how to navigate to the certificate on
the console:

Function AdminTask object Administrative console

Add a signer certificate addSignerCertificate Security > Secure communications > Key store and
certificates > key store > signer certificates > Add

List signer certificates listSignerCertificates Security > Secure communications > Key store and
certificates > key store > signer certificates

Get information about a
signer certificate

getSignerCertificate Security > Secure communications > Key store and
certificates > key store > signer certificates > alias

Delete a signer certificate deleteSignerCertificate Security > Secure communications > Key store and
certificates > key store > signer certificate >delete

Extract a signer certificate to
a file

extractSignerCertificate Security > Secure communications > Key store and
certificates > key store > signer certificates >
extract

Retrieve a signer certificate
from a port

retrieveSignerFromPort Security > Secure communications > Key store and
certificates > key store > signer certificates >
retrieve from port

Personal certificate requests

Table 150. Personal certificate request operations. The following table lists the operations that you can perform on
personal certificate requests, the AdminTask object that you can use to perform that operation, and how to navigate to
the certificate request on the console:

Function AdminTask object Administrative console

Create a personal certificate
request

createCertificateRequest Security > Secure communications > Key store and
certificates > key store > Personal certificate
Requests > Add

1816 Administering WebSphere applications



Table 150. Personal certificate request operations (continued). The following table lists the operations that you can
perform on personal certificate requests, the AdminTask object that you can use to perform that operation, and how to
navigate to the certificate request on the console:

Function AdminTask object Administrative console

List personal certificate
requests

listCertificateRequests Security > Secure communications > Key store and
certificates > key store > Personal certificate
requests

Get information about a
personal certificate request

getCertificateRequest Security > Secure communications > Key store and
certificates > key store > Personal certificate
requests > alias

Delete a personal certificate
request

deleteCertificateRequest Security > Secure communications > Key store and
certificates > key store > Personal certificate
requests > delete

Extract a personal certificate
request to a file

extractCertificateRequest Security > Secure communications > Key store and
certificates > key store > Personal certificate
requests > Extract

Using the retrieveSigners command in SSL to enable server to server trust
You can add a signer certificate to a server's trust.p12 file, allowing that server to securely communicate
with another server. This can be done using the retrieveSigners command to add a signer to a server's
trust.p12 file after making changes to the ssl.client.props file.

Before you begin

The server that will be communicating as a client must be identified before the server to server trust can
be established. You will make change to the ssl.client.props file and run the retrieveSigners command
on the server communicating as a client. If both servers will be acting as a client , these steps will be
required for both servers.

About this task

The ssl.client.props file is setup by default to configure Secure Socket Layer (SSL) communication for
clients. This makes the default behavior of the retrieveSigners command work on the client's trust.p12
file and key.p12 file in the profile_root/etc directory. You can add a signer certificate to a server's
trust.p12 file, allowing that server to act as a client communicating to another server. Using the
retrieveSigners command to add a signer to a server's trust.p12 file requires some changes to the
ssl.client.props file.

Procedure
1. Open the ssl.client.props file. The ssl.client.props file is located in profile_root/properties

ditrectory.

2. Uncomment the section of ssl.client.props that starts with com.ibm.ssl.alias=AnotherSSLSettings
property.

3. Uncomment the section of ssl.client.props that starts with
com.ibm.ssl.trustStoreName=AnotherTrustStore property.

4. Enter the location of the trust store that the signer should be added. If you are using the server trust
store for a deployment manager then it is located in profile_root/config/cells/cell name/trust.p12.
If using the trust store for an application server, it is located in profile_root/config/cells/cell
name/nodes/node name/trust.p12.

5. Update the remaining properties in this section with the values associated with the trust store being
used. A description of the properties can be found in ssl.client.props client configuration file.

6. Optional: Uncomment and update section that starts with
com.ibm.ssl.trustStoreName=AnotherKeyStore property. Most scenarios only require a signer to be

Chapter 19. Administering application security 1817



added to the trust store. This example only adds a signer to the trust store, but you can also add a
signer to the key store by updating the properties as you did for the trust store in steps 3 through 5.

7. Save the changes made to ssl.client.props.

8. Run the retrieveSigners command. For more information see the page about the retrieveSigners
command.

retrieveSigners NodeDefaultTrustStore AnotherTrustStore -host ademyers.austin.ibm.com -port 8879

Example output:
CWPKI0308I: Adding signer alias "default_1" to local keystore

"AnotherTrustStore" with the following SHA digest:
F4:71:97:79:3E:C1:DC:E7:9F:8F:3D:F0:A0:15:1E:D1:44:73:2C:06

Results

After the steps have been successfully completed. the server acting as a client has the signing certificate
of the other server. This allows that server to establish a SSL connection to the other server.

Example

The example shows the modified section of the ssl.client.props file assuming that the server's
trust.p12 file is being used. Any trust store existing trust store can be used if the properties are provided
for that trust store.
#-------------------------------------------------------------------------
com.ibm.ssl.alias=AnotherSSLSettings
com.ibm.ssl.protocol=SSL_TLS
com.ibm.ssl.securityLevel=HIGH
com.ibm.ssl.trustManager=IbmX509
com.ibm.ssl.keyManager=IbmX509
com.ibm.ssl.contextProvider=IBMJSSE2
com.ibm.ssl.enableSignerExchangePrompt=true
#com.ibm.ssl.keyStoreClientAlias=default
#com.ibm.ssl.customTrustManagers=
#com.ibm.ssl.customKeyManager=
#com.ibm.ssl.dynamicSelectionInfo=
#com.ibm.ssl.enabledCipherSuites=

# KeyStore information
#com.ibm.ssl.keyStoreName=AnotherKeyStore
#com.ibm.ssl.keyStore=${user.root}/etc/key.p12
#com.ibm.ssl.keyStorePassword={xor}CDo9Hgw=
#com.ibm.ssl.keyStoreType=PKCS12
#com.ibm.ssl.keyStoreProvider=IBMJCE
#com.ibm.ssl.keyStoreFileBased=true

# TrustStore information
com.ibm.ssl.trustStoreName=AnotherTrustStore
com.ibm.ssl.trustStore=${user.root}/config/cells/localhostCell01/trust.p12
com.ibm.ssl.trustStorePassword={xor}CDo9Hgw=
com.ibm.ssl.trustStoreType=PKCS12
com.ibm.ssl.trustStoreProvider=IBMJCE
com.ibm.ssl.trustStoreFileBased=true

What to do next

After the signer has been added, edit the ssl.client.props file to comment out the sections that were to
used to add the signer certificate.

Creating a Secure Sockets Layer configuration
Secure Sockets Layer (SSL) configurations contain the attributes that you need to control the behavior of
client and server SSL endpoints. You create SSL configurations with unique names within specific
management scopes on the inbound and outbound tree in the configuration topology. This task shows you
how to define SSL configurations, including quality of protection and trust and key manager settings.

Before you begin

You must decide at which scope you need to define an SSL configuration, for instance, the cell, node
group, node, server, cluster, or endpoint scope, from the least specific to the most specific scope. When

1818 Administering WebSphere applications



you define an SSL configuration at the node scope, for example, only those processes within that node
can load the SSL configuration; however, any processes at the endpoint in the cell can use an SSL
configuration at the cell scope, which is higher in the topology.

You must also decide which scope to associate with the new SSL configuration, according to the
processes that the configuration affects. For example, an SSL configuration for a hardware cryptographic
device might require a keystore that is available only on a specific node, or you might need an SSL
configuration for a connection to a particular SSL host and port. For more information, see “Dynamic
outbound selection of Secure Sockets Layer configurations” on page 1792.

gotcha: The security.xml file is restricted. Therefore, if you need to make changes to the security.xml file,
verify that your user ID has administrator role authorization. If you are using a user ID with
operator role authorization, you can perform a node synchronization, but any changes that you
made to the security.xml file are not synchronized.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security

configurations.

2. Select an SSL configuration link on either the Inbound or Outbound tree, depending on the process
you are configuring.

v If the scope is already associated with a configuration and alias, the SSL configuration alias and
certificate alias are noted in parentheses.

v If the parenthetical information is not included, then the scope is not associated. Instead, the scope
inherits the configuration properties of the first scope above it that is associated with an SSL
configuration and certificate alias.

The cell scope must be associated with an SSL configuration because it is at the top of the topology
and represents the default SSL configuration for the inbound or outbound connection.

3. Click SSL configurations under Related Items. You can view and select any of the SSL
configurations that are configured at this scope. You can also view and select these configuration at
every scope that is lower on the topology.

4. Click New to display the SSL configuration panel. You cannot select links under Additional Properties
until you type a configuration name and click Apply.

5. Type an SSL configuration name. This field is required. The configuration name is the SSL
configuration alias. Make the alias name unique within the list of SSL configuration aliases that are
already created at the selected scope. The new SSL configuration uses this alias for other
configuration tasks.

6. Select a truststore name from the drop-down list. A truststore name refers to a specific truststore that
holds signer certificates that validate the trust of certificates sent by remote connections during an
SSL handshake. If there is no truststore in the list, see “Creating a keystore configuration for a
preexisting keystore file” on page 1870 to create a new truststore, which is a keystore whose role is
to establish trust during the connection.

7. Select a keystore name from the drop-down list. A keystore contains the personal certificates that
represent a signer identity and the private key that WebSphere Application Server uses to encrypt
and sign data.

v If you change the keystore name, click Get certificate aliases to refresh the list of certificates from
which you can choose a default alias. WebSphere Application Server uses a server alias for
inbound connections and a client alias for outbound connections.

v If there is no keystore in the list, see “Creating a keystore configuration for a preexisting keystore
file” on page 1870 to create a new keystore.

Chapter 19. Administering application security 1819



8. Choose a default server certificate alias for inbound connections. Select the default only when you
have not specified an SSL configuration alias elsewhere and have not selected a certificate alias. A
centrally managed SSL configuration tree can override the default alias. For more information, see
“Central management of SSL configurations” on page 1793.

9. Choose a default client certificate alias for outbound connections. Select the default only when the
server SSL configuration specifies an SSL client authentication.

10. Review the identified management scope for the SSL configuration. Make the management scope in
this field identical to the link you selected in Step 2. If you want to change the scope, you must click a
different link in the topology tree and continue at Step 3.

11. Click Apply if you intend to configure Additional Properties. If not, go to Step 24.

12. Click Quality of protection (QoP) settings under Additional Properties. QoP settings define the
strength of the SSL encryption, the integrity of the signer, and the authenticity of the certificate.

13. Select a client authentication setting to establish an SSL configuration for inbound connections and
for clients to send their certificates, if appropriate.

v If you select None, the server does not request that a client send a certificate during the
handshake.

v If you select Supported, the server requests that a client send a certificate. However, if the client
does not have a certificate, the handshake might still succeed.

v If you select Required, the server requests that a client send a certificate. However, if the client
does not have a certificate, the handshake fails.

Important: The signer certificate that represents the client must be in the truststore that you select
for the SSL configuration. By default, servers within the same cell trust each other
because they use the common truststore, trust.p12, that is located in the cell directory
of the configuration repository. However, if you use keystores and truststores that you
create, perform a signer exchange before you select either Supported or Required.

14. Select a protocol for the SSL handshake.

v The default protocol, SSL_TLS, supports client protocols TLSv1 and SSLv3.

v The TLSv1 protocol supports TLS and TLSv1. The SSL server connection must support this
protocol for the handshake to proceed.

v SSLv2

v SSLv3

v The SSLv3 protocol supports SSL and SSLv3. The SSL server connection must support this
protocol for the handshake to proceed.

v TLS is TLSv1

v TLSv1

v SSL_TLSv2 is SSLv3 and TLSv1, TLSv1.1, TLSv1.2

v TLSv1.1

v TLSv1.2

Important: Do not use the SSLv2 protocol for the SSL server connection. Use it only when
necessary on the client side.

15. Select one of the following options:

v A predefined Java Secure Socket Extension (JSSE) provider. The IBMJSSE2 provider is
recommended for use on all platforms which support it. It is required for use by the channel
framework SSL channel. When Federal Information Processing Standard (FIPS) is enabled,
IBMJSSE2 is used in combination with the IBMJCEFIPS crypto provider.

v A custom JSSE provider. Type a provider name in the Custom provider field.

16. Select from among the following cipher suite groups:

1820 Administering WebSphere applications



v Strong: WebSphere Application Server can perform 128-bit confidentiality algorithms for
encryption and support integrity signing algorithms. However, a strong cipher suite can affect the
performance of the connection.

v Medium: WebSphere Application Server can perform 40-bit encryption algorithms for encryption
and support integrity signing algorithms.

v Weak: WebSphere Application Server can support integrity signing algorithms but not to perform
encryption. Select this option with care because passwords and other sensitive information that
cross the network are visible to an Internet Protocol (IP) sniffer.

v Custom: you can select specific ciphers. Any time you change the ciphers that are listed from a
specific cipher suite group, the group name changes to Custom.

17. Click Update selected ciphers to view a list of the available ciphers for each cipher strength.

18. Click OK to return to the new SSL configuration panel.

19. Click Trust and key managers under Additional Properties.

20. Select a default trust manager for the primary SSL handshake trust decision.

v Choose IbmPKIX when you require certificate revocation list (CRL) checking using CRL distribution
points in the certificates or the online certificate status protocol (OCSP).

v Choose IbmX509 when you do not require CRL checking but do need increased performance. You
can configure a custom trust manager to perform CRL checking, if necessary.

21. Define a custom trust manager, if appropriate. You can define a custom trust manager that runs with
the default trust manager you select. The custom trust manager must implement the JSSE
javax.net.ssl.X509TrustManager interface and, optionally, the
com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface to obtain product-specific information.

a. Click Security > SSL certificate and key management > Manage endpoint security
configurations > SSL_configuration > Trust and key managers > Trust managers > New.

b. Type a unique trust manager name.

c. Select the Custom option.

d. Type a class name.

e. Click OK. When you return to the Trust and key managers panel, the new custom trust manager
displays in the Additional ordered trust managers field. Use the left and right list boxes to add
and remove custom trust managers.

22. Select a key manager for the SSL configuration. By default, IbmX509 is the only key manager unless
you create a custom key manager.

Important: If you choose to implement your own key manager, you can affect the alias selection
behavior because the key manager is responsible for selecting the certificate alias from
the keystore. The custom key manager might not interpret the SSL configuration as the
WebSphere Application Server key manager IbmX509 does. To define a custom key
manager, click Security > Secure communications > SSL configurations >
SSL_configuration > Trust and key managers > Key managers > New.

23. Click OK to save the trust and key manager settings and return to the new SSL configuration panel.

24. Click Save to save the new SSL configuration.

Results

Important: You can override the default trust manager when you configure at least one custom trust
manager and set the com.ibm.ssl.skipDefaultTrustManagerWhenCustomDefined property to
true. Click Custom Property on the SSL configuration panel. However, if you change the
default, you leave all the trust decisions to the custom trust manager, which is not
recommended for production environments. In test environments, use a dummy trust manager
to avoid certificate validation. Remember that these environment are not secure.

Chapter 19. Administering application security 1821



What to do next

In this release of WebSphere Application Server, you can associate SSL configurations with protocols
using one of the following methods:

v Set the SSL configuration on the thread programmatically

v Associate the SSL configuration with an outbound protocol, and target host and port. For more
information, see “Associating a Secure Sockets Layer configuration dynamically with an outbound
protocol and remote secure endpoint” on page 1849

v Associate the SSL configuration directly using the alias. For more information, see “Selecting an SSL
configuration alias directly from an endpoint configuration” on page 1853

v Manage the SSL configurations centrally by associating them with SSL configuration groups or zones
that are scoped for endpoints. For more information, see “Associating Secure Sockets Layer
configurations centrally with inbound and outbound scopes” on page 1852.

SSL certificate and key management
Use this page to configure security for Secure Socket Layer (SSL) and key management, certificates, and
notifications. The SSL protocol provides secure communications between remote server processes or
endpoints. SSL security can be used for establishing communications inbound to and outbound from an
endpoint. To establish secure communications, a certificate and an SSL configuration must be specified for
the endpoint.

To view this administrative console page, click Security > SSL certificate and key management.

Configuration settings:

Specifies the following administrative console tasks:

v Manage endpoint security configurations

v Manage certificate expiration

Use Federal Information Processing Standard (FIPS) algorithms:

Specifies the Federal Information Processing Standard (FIPS)-compliant Java cryptography engine is
enabled.

v Does not affect the SSL cryptography that is performed by the application server for z/OS System
Secure Sockets Layer (SSSL).

v Does not change the JSSE provider if this cell includes any Application Server versions before the
application server for z/OS Version 6.0.x.

When you select the Use the Federal Information Processing Standard (FIPS) option, the Lightweight
Third Party Authentication (LTPA) implementation uses IBMJCEFIPS. IBMJCEFIPS supports the Federal
Information Processing Standard (FIPS)-approved cryptographic algorithms for Data Encryption Standard
(DES), Triple DES, and Advanced Encryption Standard (AES). Although the LTPA keys are backwards
compatible with prior releases of the application server, the LTPA token is not compatible with prior
releases. In prior releases, the application server did not generate the LTPA token using a FIPS-approved
algorithm.

The IBMJSSE2 JSSE provider does not perform cryptographic functions directly, and therefore does not
need to be FIPS-approved. Instead, the IBMJSSE2 JSSE provider uses the JCE framework for
cryptographic functions and uses IBMJCEFIPS when FIPS mode is enabled.

Information Value
Default: Disabled

Dynamically update the runtime when SSL configuration changes occur:

1822 Administering WebSphere applications



Specifies that all of the SSL-related attributes and LTPA keys that change must be read from the
configuration dynamically after they have been saved, then reused for new connections. To avoid customer
impact, it is recommended that changes to production servers be made during off-peak periods.

Information Value
Default: Enabled

When this option is selected, the configuration is updated each time you configure an SSL communication.

SSL configurations for selected scopes
Use this page to display Secure Socket Layer (SSL) configurations for selected scopes, such as a cell,
node, server, or cluster. From this page you can navigate to configuration panels for the following: SSL
configurations, dynamic inbound and outbound endpoint SSL configurations, key stores, key sets, key set
groups, key managers, and trust managers.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration.

Name:

Specifies the SSL configuration scope, which is derived from the selected object in the hierarchy.

Information Value
Data type: Text

Direction:

Specifies the direction for which the SSLConfig applies. Inbound refers to any listener port. Outbound
refers to outbound end point connections.

Information Value
Data type: Text

SSL configuration:

Specifies the SSL configuration that is used by requests at this scope.

Information Value
Data type: Text

Update certificate alias list:

Specifies the certificate aliases contained in the key store for this SSL configuration can be selected from
the Certificate alias in key store list. You must update the certificate list after choosing a different SSL
configuration alias. If you do not update the list, you will save a certificate alias that is not contained in the
SSL configuration.

Manage certificates:

Specifies to open the keystore panel for the key store in this SSL configuration, which enables you to
manage personal certificates, signers, and certificate requests.

Certificate alias in key store:

Chapter 19. Administering application security 1823



Specifies the certificate to use in the key store.

If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate
is used. If multiple certificates exist in the key store, the key manager might not consistently select the
same certificate.

Information Value
Data type: Text

SSL configurations collection
Use this page to define a list of Secure Sockets Layer (SSL) configurations.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click SSL configurations.

Table 151. SSL configurations buttons. This table lists the SSL configurations buttons.
Button Resulting action

New
The Java Secure Socket Extension (JSSE) repertoire is for Java-based SSL communications. You
can define a new JSSE configuration that can be used to create an SSLContext, URLStreamHandler,
SSLSocketFactory, SSLServerSocketFactory, and so on, using the
com.ibm.websphere.ssl.JSSEHelper API.

Delete Deletes an existing JSSE configuration (administrator only). Be careful that any references to the
SSL configuration have been removed prior to deleting this SSL configuration.

Name:

Specifies the unique name of the SSL configuration in the management scope.

SSL configuration settings
Use this page to define Secure Sockets Layer (SSL) configuration properties.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
nodes name. Under Related items, click SSL configurations > New.

Name:

Specifies the unique name of the SSL configuration within the management scope in which it resides. For
ways to programmatically access the properties that are configured for this SSL configuration, see the
com.ibm.websphere.ssl.JSSEHelper application programming interface (API).

Information Value
Data type: Text

Trust store name:

Specifies a reference to a specific trust store used by Java Secure Sockets Extension (JSSE). The trust
store holds signer certificates that validate the trust of certificates sent by remote connections during an
SSL handshake.

Information Value
Data type: Text
Default: selected trust store

1824 Administering WebSphere applications



Key store name:

Specifies a reference to a specific key store. The key store holds personal certificates that represent the
identity of one side of a connection. The public key of this personal certificate is sent to the other side of
the connection to establish trust during the handshake. The remote side of the connection needs the root
certificate authority (CA) certificate or self-signed public key (signer) to be in the trust store to validate this
personal certificate.

Information Value
Data type: Text
Default: selected key store

Get certificate aliases:

Queries the keystore for the aliases of all the personal certificates in the keystore from which to choose.

Default server certificate alias:

Specifies the certificate alias used as the identity for this SSL configuration if one has not been specified
elsewhere.

If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate
is used. If multiple certificates exist in the key store, the key manager might not consistently select the
same certificate.

Information Value
Data type: Text

Default client certificate alias:

Specifies the certificate alias to be used if this configuration is to be used as a client.

If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate
is used. If multiple certificates exist in the key store, the key manager might not consistently select the
same certificate.

Information Value
Data type: Text

Management scope:

Specifies the scope where this SSL configuration is visible. For example, if you choose a specific node,
then the configuration is visible only on that node and on any servers that are part of that node.

Information Value
Data type: Text

Secure Sockets Layer client certificate authentication
Client software that wants to establish a secure connect to a server by using Secure Socket Layer (SSL)
protocol initiates by leveraging SSL protocol or the enhanced protocol called Transport Layer Security
(TLS) to perform a SSL handshake with SSL certificates. A personal certificate can represent the server or
it can represent a particular client, and is signed by a Certificate Authority (CA) to ensure that the personal
certificate is correctly identified.

Chapter 19. Administering application security 1825



SSL ensures that the administrator has the CA signer certificate available that is used to sign the personal
certificate, and that it is stored in both the client and or the server trusted store. SSL client certificate
authentication takes place during the connection handshake by using SSL certificates.

The following events must occur during this process:

v The server side must determine if client authentication is going to take place. The client authentication
must be enabled in the SSL configuration of the server and the Common Secure Interoperability version
2 (CSIv2) configuration if Inter-ORB Protocol (IIOP) is used.

v The CSIv2 configuration must take place in global security, not in a security domain.

v The signer certificate of the client must be extracted from the key store of the client and added to the
trust store of the server.

v The signer certificate of the server must to be extracted from the key store of the server and added to
the trust store of the client.

Configuring a WebSphere server for client authentication

Client certificate authentication occurs if the server side requests that the client side send a certificate. A
Websphere server can be configured for client certificate authentication on the SSL configuration.
However, if client authentication is needed for IIOP then it must be configured on the CSIv2 configuration.

To configure client certificate authentication on the SSL configuration using the administrative console:

1. Click Security > SSL certificate and key management > SSL configurations.

2. Select a SSL configuration.

3. Under Additional Properties, select Quality of protection (QoP) settings.

4. Under Client authentication, select Required.

5. Click OK to save the changes.

Note: You can also use the modifySSLConfig command with the -clientAuthentication flag set to true to
enable client authentication. See SSLConfigCommands command group for the AdminTask object
for more information about this command.

.

To configure client certificate authentication on a CSIv2 inbound connection using the administrative
console:

1. ClickSecurity > Global Security.

2. Under RMI/IIOP security, select CSIv2 inbound communications.

3. In the CSIv2 Transport Layer section, and under Client certificate authentication, select Required.

4. Click OK to save the changes

Note: You can also use the configureCSIInbound command with the -clientCertAuth flag set to Required
to enable client authentication on CSIv2. Read SecurityConfigurationCommands command group
for the AdminTask object for more information about this command.

If the client side is set up for client authentication, the signer certificate of the client must be added to the
trust store of the server. When you have a certificate from the client in a certificate file it can be added to
the trust store of the server.

To add a signer to the trust store of the server using the administrative console:

1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Select the trust store that is configured for client authentication.

3. Under Additional Properties, select Signer Certificates.

4. Click Add.

1826 Administering WebSphere applications



5. In the Alias field, type an alias name under which to store the certificate.

6. In the File name box, type the full path to the certificate file.

7. Click OK to save the changes

Note: You can also use the addSignerCertificate command to add a signer to the trust store of the server.
Read SignerCertificateCommands command group for the AdminTask object for more information
about this command.

Note: If you are using client authentication in a cluster environment, client authentication must be
configured for each node that the servers in the cluster are located in.

Setting up the client side for client authentication

Clients:

Administrative clients, thin clients or pure clients must have a personal certificate in their key stores. The
WebSphere client default key store that is created when WebSphere Application Server is installed already
has a personal certificate in it. This key store can be found in the ssl.client.props file in the
com.ibm.ssl.keyStore property. The client key stores are not managed by WebSphere Application Server,
so the Key Management utility (iKeyman) or Java keytool utility can be used to extract the certificate to a
certificate file.

To extract a certificate using iKeyman:

1. Start iKeyman.

2. Select Key Database File > open.

3. Enter the path to the keystore file. You can obtain this from the ssl.client.props file.

4. Click OK.

5. Enter the password to the key store and click OK

6. Under Personal Certificates, select the client default certificate.

7. Enter a path and file name for the certificate file and click OK.

The file that contains the extracted certificate can be used to add the signer to the trust store of the server.
Follow the steps in the “Configuring a WebSphere server for client authentication” section to add that
signer to the server trust store.

If the communication is over IIOP, the following properties must be set in the sas.client.props file.

v Enable SSL:
com.ibm.CSI.performTransportAssocSSLTLSSupported=true
com.ibm.CSI.performTransportAssocSSLTLSRequired=false

v Disable client authentication at the message layer:
com.ibm.CSI.performClientAuthenticationRequired=false
com.ibm.CSI.performClientAuthenticationSupported=false

v Enable client authentication at the transport layer (this is supported, but not required):
com.ibm.CSI.performTLClientAuthenticationRequired=false
com.ibm.CSI.performTLClientAuthenticationSupported=true

Thin clients and pure clients might not use the WebSphere Application Server SSL properties file,
ssl.client.props. They most likely use the Java system properties to set the client key store and trust
store. The signer certificate of the server must be added to the trust store that is specified with the
java.net.ssl.trustStore system property. Keytool or iKeyman can be used to add the signer certificate. The
signer must be extracted from the personal certificate in the key store specified by the
javax.net.ssl.keyStore system property, and added to the trust store of the server.

Chapter 19. Administering application security 1827



For example:
javax.net.ssl.keyStore
javax.net.ssl.keyStorePassword
javax.net.ssl.keyStoreType
javax.net.ssl.trustStore
javax.net.ssl.trustStorePassword
javax.net.ssl.trustStoreType

Server acting as a client:

The client can be a WebSphere server acting as a client. If so, determine which SSL configuration is being
used as the client side of the communication, extract it's certificate's signer and add it to the server side
trust store. It is recommended that the root certificate signer be used.

To extract the root certificate using the administrative console:

1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Under the Keystore usages pull-down, select Root certificate keystore.

3. Select either DmgrDefaultRootStore (for a network deployment server) or NodeDefaultRootStore (for an
application server).

4. Under Additional Properties, select Personal certificates.

5. Select the default root certificate (usually called root), and then click Extract.

6. In the Certificate file name box, type a full path to the file in which to hold the certificate.

7. Click OK to save.

Note: You can also use the extractCertificate command to extract the root certificate. Read
PersonalCertificateCommands command group for the AdminTask object for more information about
this command.

The certificate file that is created can be carried to the server side and added to the trust store of the
server.

When a server acts as a client, the client side server requires the signer from the destination server. The
signer can be retrieved using the signer certificate Retrieve from port option.

To retrieve the signer from the port using the administrative console:

1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Select the trust store of the server from the collection.

3. Under Additional Properties, select Signer certificates.

4. Click Retrieve from port.

5. Enter a destination host name and a destination port name.

6. Enter an alias name for the certificate.

7. Click Retrieve signer information.

8. Click OK to save.

You can also use the retrieveSignerFromPort command to retrieve the signer from the port. Read
SignerCertificateCommands command group for the AdminTask object for more information about this
command.

Setting up a browser for client authentication:

When WebSphere Application Server is configured for client certificate authentication, and an attempt is
made to access the server from a browser, the browser must have a certificate for the client certificate

1828 Administering WebSphere applications



authentication. If the default SSL configuration of the server was modified to enable client certificate
authentication you are unable to login to the administrative console.

You can create a certificate for the browser by using the administrative console. You must first create a
key store and then create a chained certificate. After the certificate is created, use the instructions for your
browser to import a certificate. Browsers require that each part of the chain be added to verify the
certificate, so the root certificate must be extracted and added to the browser. Follow the instructions in the
“Setting up the client side for client authentication” section for information about extracting the root
certificate.

To create a key store using the administrative console:

1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Click New.

3. Enter a name for the key store.

4. Enter the full path to the key store file.

5. Enter a password for the key store and then confirm.

6. Click OK to save.

To create a chained certificate using the administrative console:

1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Select the key store you created previously.

3. Under Additional Properties, click Personal certificates.

4. In the pull-down list under the Create button, select Chained Certificate.

5. Enter an alias name for the certificate.

6. Provide a common name for the certificate. The name is the “CN=” part of the subject DN.

7. You can enter information in any of the remaining fields to build the subject DN of the chained
certificate.

8. Click OK to save.

You can also use the createKeyStore command to create a key store. Read KeyStoreCommands
command group for the AdminTask object for more information about this command.

You can also use the createChainedCertificate command to create a chained certificate. Read
PersonalCertificateCommands command group for the AdminTask object for more information about this
command.

Note: When client certificate authentication is enabled, web certificate authentication can then be
performed as discussed in the next section.

Web certificate authentication

Certificate base authentication can be performed on Java 2 Platform, Enterprise Edition (J2EE) web
modules when the module is configured for client certificate authentication. This enables a user to login to
a web module using a certificate to authenticate, and to map that certificate to a user from the registry.

Enabling web certificate authentication requires that the SSL configuration of the server be configured for
client certificate authentication on the server where the module is installed.

The server side determines that client authentication is to take place. See the “Configuring a WebSphere
server for client authentication” section for information about how to configure client authentication. The
client side must have the signer from the server to add to the client truststore. See the “Setting up the
client side for client authentication” section for more information.

Chapter 19. Administering application security 1829



The web.xml file of the web module must have the authentication method set to CLIENT-AUTH in the
login-config section of the web.xml file:
<login-config>
<auth-method>CLIENT-CERT</auth-method>
</login-config>

The certificate must map to a user in the registry or you are unable to login to that web module.

For localOS user registries, the CN value of the certificate subject DN must map to a user in the local OS
user registry. For example, if the certificate subject DN is CN=tester,o=ibm,c=us, then tester is the user
searched for in the local user registry. If that user does not exist in the local registry then the
authentication fails.

The Lightweight Directory Access Protocol (LDAP) user registry provides more options for mapping a
certificate to a user identity. The default certificate mapping mode in LDAP is used for an exact DN match
between the entry in the LDAP registry and the subject DN in the certificate. For example, if the certificate
DN is CN=user1,o=ibm,c=us, then there must be an entry in the LDAP registry with that exact value. The
LDAP user registry also has a certificate filter option that can provide a match to a particular part of the
certificate subject DN against entries in the LDAP repository. For more detail on LDAP certificate mapping,
read “Lightweight Directory Access Protocol repository configuration settings”.

In a federated repositories configuration, by default, client certificate login is not supported for the
file-based repository. To enable support for certificate mapping in the file-based repository follow the
procedure in the topic, Enabling client certificate login support in a federated repositories file-based
repository.

The federated repository LDAP registry supports certificate mapping. It uses the same mapping rules and
properties that the LDAP user registry uses.

Custom user registry can map certificates to a user if the custom registry implemented the mapCertificate()
method.

Certificate authority (CA) client configuration
Use this page to create, modify, and configure a certificate authority (CA) client.

To view this administrative console page, click Security > SSL Configurations and key management .
Under Related Items, click Certificate Authority (CA) client configurations. Then click either the New
button or select an existing CA client by clicking on its <client_name>.

Name:

Specifies the unique name of the CA client configuration. This is the name to identify the CA client object.
This name needs to be unique to the scope.

Information Value
Data type: String

Implementation class:

Specifies the name of the module that implements the com.ibm.wsspi.ssl.WSKPIClient interface that is
used to act as a client to a CA. This implementation class connects to the CA server and performs a
certificate create, revoke, or replace.

Information Value
Default: String

1830 Administering WebSphere applications



CA server host name:

Specifies the host name of the CA server, if the implementation requires a host name.

Information Value
Data type: String

Port:

Specifies the port where the CA server will communicate, if the implementation requires a port.

Information Value
Data type: String

User name:

Specifies the user Id used to connect to the CA server, if the implementation requires a user to login to the
CA.

Information Value
Data type: String

Password:

Specifies the password for the connection to the CA server.

Information Value
Data type: String

Confirm password:

Confirms the password that is provided in the password field.

Information Value
Data type: String

Number of times to poll:

Specifies the number of times to check the CA server to see if the certificate is complete. This poll number
applies to the CA that does not return certificates right away.

Information Value
Default: 5

Polling interval when requesting certificates:

Specifies the amount of time, in minutes, between checks to the CA server to see if the certificate is
complete.

Information Value
Default: 10

Chapter 19. Administering application security 1831



Custom properties:

Specifies arbitrary name and value pairs of data. The name is a property key, and the value is a string
value that can be used to set internal system configuration properties.

Information Value
Data type: string

Certificate authority (CA) client configuration collections
Use this page to define and manage certificate authority (CA) clients or view and modify existing CA
clients.

This panel allows you to create a certificate authority (CA) client object in the configuration. You can also
view and modify existing CA clients. The information in the CA client object can then be used by the
runtime to connect to a CA server to request, revoke, or query a certificate.

To view this administrative console page, click Security > SSL Configurations and key management.
Under Related Items, click Certificate Authority (CA) client configurations.

Table 152. CA client configuration buttons.

This table describes the CA client configuration buttons.

Button Resulting action

New Adds a new CA client object that can be referenced by Secure Sockets Layer
(SSL) configurations.

Delete Deletes an existing CA client object.

Name:

Identifies the unique name of the CA client configuration.

Implementation class:

Identifies the name of the module that implements the com.ibm.wsspi.ssl.WSKPIClient interface that is
used to act as a client to a CA.

Management Scope:

Identifies the scope where this secure sockets layer (SSL) configuration is visible.

Creating a chained personal certificate in SSL
A chained personal certificate is a personal certificate that is created by using another personal certificate
to sign it. This chaining allows a certificate to be signed with a certificate (a root certificate) that has a long
life span. Root certificates are stored in the DmgrDefaultRootStore or NodeDefaultRootStore. The
server's default personal certificate is a chained certificate created when the profile is created. Chained
certificates can also be created after profile creation

Before you begin

You use the administrative console to create a chained personal certificate.

Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

1832 Administering WebSphere applications



3. Click a <keystore name> to which you want to add the chained personal certificate.

4. Under Additional Properties, click Personal certificates .

5. Click the Create button and select Chained Certificate The listCertificates AdminTask can be used
to generate the list of root certificates available to sign the certificate.

6. Fill in the following information to the General Properties section as follows:

v Supply an alias name.

v Select Root certificate from the pull down list.

v Key size

v Common name

v Validity period

v Organization

v Organization Unit

v Locality

v State/Province

v Zip code

v Country or region

v

7. Click Apply then OK.

Results

The certificate is created, signed by the root certificate specified, and stored in the keystore. Once a
chained personal certificate is created, the certificate can be used by the runtime for SSL communication.

Recovering deleted certificates in SSL
The SSL configuration contains a keystore created to hold personal certificates that were deleted from
other keystores in the configuration. Perform this task to recover deleted certificates.

Before you begin

The SSL configuration contains a keystore created to hold personal certificates that were deleted from
other keystores in the configuration. On a stand alone application server the keystore is called
NodeDefaultDeletedStore and on a deployment manager the keystore is called DmgrDefaultDeletedStore.

When a personal certificate is deleted from a keystore using the administrative console or in a script using
the deleteCertificate AdminTask, a copy of the certificate is stored in the DmgrDeletedKeyStore or
NodeDeletedKeyStore. The personal certificate takes the alias of <keystore>_<alias> > in the deleted
keystore. If the alias name is already used in that deleted keystore a <unique number> is appended to the
alias.

A personal certificate can be recovered from the deleted keystore by importing or exporting the personal
certificate to a keystore in the configuration. To recover a personal certificate using the administrative
console perform the following steps:

Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. From the Keystore usages drop-down list, select Deleted certificates keystore.

4. Click DmgrDefaultDeletedStore or NodeDefaultDeletedStore.

5. Under Additional Properties, click Personal certificates.

6. Select a certificate.

Chapter 19. Administering application security 1833



7. Select Export

8. Click OK.

9. Perform the following:

v v Enter the keystore password of the deleted keystore.

v v Enter The alias to be assigned to the certificate (in the key store that will receive the certificate).

v v Select the ‘Managed key store’ radio button.

v v Select the key store from the drop down list that will receive the certificate.

v Click Apply then OK.

Results

Note: To recover a personal certificate you can also use the exportCertToManagedKS AdminTask
command.

Renewing a certificate in SSL
If a personal certificate has been compromised or is about to expire, then it should be renewed. Renewing
a certificate recreates the certificate with all the information from the original certificate, but with a new
expiration period and public/private key pair. Only self-signed certificates and chained certificates created
by WebSphere can be renewed. If the certificate used to sign the chained certificate is not in the root
keystore then the default root certificate is used to renew the certificate.

Before you begin

You use the administrative console to renew the certificate.

Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. Click the appropriate <keystore name> to which you want to add the new certificate.

Note: Only self-signed certificates and chained certificates signed with root certificates from the root
keystore can be renewed.

4. Under Additional Properties, click Personal certificates to list the personal certificates.

5. Select a personal certificate from the list.

6. Click the Renew button.

7. Click Apply then OK.

Results

The certificate is renewed in the key store selected in the path to this panel . If the certificate is not a
self-signed certificate or a chained certificate signed with a root certificate from the default root store, an
error is returned.

Note: If this command is used with a CA certificate, an error occurs.

Revoking a CA certificate in SSL
If a certificate authority (CA) certificate is compromised and the servers cannot trust it anymore that CA
certificate can be revoked. To revoke a CA certificate, you perform the following task.

Before you begin

You use the administrative console to replace or revoke a CA certificate.

1834 Administering WebSphere applications



Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. Click a <keystore name> to which you want to add the new CA certificate.

4. Under Additional Properties, click Personal certificates to list the personal certificates.

5. Select a certificate to revoke (a CA certificate)

6. Click the Revoke button.

7. Fill in the following information to the CA certificate section.

v Revocation password

v Revocation reason

8. Click Apply then OK.

Results

The certificate is revoked in the key store selected in the path. If the certificate selected was not a CA
certificate, then an error is returned.

What to do next

Using a CA client to create a personal certificate to be used as the default
personal certificate
An external certificate authority (CA) certificate can be used as the server default personal certificate. The
CA certificate can be created using a CA client.

Before you begin

What you need to have before you perform this task is as follows:

v A certificate authority (CA) to make the certificate request to.

v A module that implements the com.ibm.wsspi.ssl.WSPKIClient interface. This module is needed to
connect to the CA server and request a certificate.

You use the administrative console to view or modify a CA client.

Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Certificate Authority (CA) client configurations. A panel displaying the
existing CA clients appears.

3. Click the New button.

4. Enter the CA client information as required.

v Name of the CA client.

v The management scope (selected from the drop-down list.

v Implementation class.

v CA server host name.

v User name.

v Password.

v Confirm of password.

v Number of times to poll.

v Polling interval (in minutes) when requesting certificates.

v Custom properties.

Chapter 19. Administering application security 1835



5. Click Apply then Save.

6. Navigate to the Server default key store personal certificate. Security > SSL configuration and
certificate management > Key stores and certificates > <server_default_keystore> . Under
Additional properties, click Personal certificates

7. Click the Create button and select CA-signed certificate

8. Fill in the following information to the CA certificate section.

v Revocation password

v Confirm password.

v Select the CA client that applies to this CA certificate.

Note: You can create a new CA client to apply to this CA authority by clicking the New button.

v Fill in the following information to the Request Specification section:

– Select the radio button for Predefined request alias if you have a predefined alias.

– If you do not have a predefined alias, fill in the following fields:

- Type an alias name in the Alias field. The alias identifies the certificate request in the
keystore.

- Type a common name (CN) value. This value is the CN value in the certificate distinguished
name (DN).

- Optional: Type an organization value. This value is the O value in the certificate DN.

- Optional: Select a key size value. The valid key size values are 512, 1024, 2048, 4096, and
8192. The default key size value is 2048 bits.

- Locality

- Optional: Type the State or Province value. This value is the ST value in the certificate DN.

- Optional: Type a zip code value. The zip code value is the POSTALCODE value in the
certificate DN.

- Optional: Type a country or region value from the list. This country value is the C= value in
the certificate request DN.

- Validity period

9. Click Apply then Save.

10. Navigate to the Server Default Key store's personal certificates Security > SSL configuration and
certificate management > Key stores and certificates > <server_default_keystore> . Under
Additional properties, click Personal certificates

11. Select the server default personal certificate and click the Replace button.

12. Select the CA certificate alias from the list of aliases.

13. Click Apply then Save.

Results

The CA certificate alias replaces the alias of the default certificate in places where it is referenced in the
configuration. All signer certificates from the default certificate are replaced with the signer certificate from
the CA certificate.

Creating a CA certificate in SSL
Certificates can be created by a certificate authority (CA) when a CAClient object is configured to connect
to the CA to create the certificate. Certificates created by a certificate authority (CA) with a CA client are
tracked in the security configuration in an object called CACertificate. The certificate is stored in a
keystore and a CACertificate object is added to the configuration to reference the certificate. CA
certificates are personal certificates.

1836 Administering WebSphere applications



Before you begin

Before you begin, a CA client must be created to connect to the CA server. You then use the
administrative console to create a CA certificate.

Note: In this release of WebSphere Application Server, the valid key size values are 512, 1024, 2048,
4096, and 8192. The default key size value is 2048 bits.

Procedure
1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. Click a <keystore name> to which you want to add the new CA certificate.

4. Under Additional Properties, click Personal certificates to create a new CA certificate in the
configuration.

Note: You can also create a CA certificate by using the requestCACertificate AdminTask .

5. Click the Create button and select CA-signed Certificate

6. Fill in the following information to the CA certificate section.

v Revocation password

v Confirm password.

v Select the CA client from the pull down list.

Note: You can create a new CA client to apply to this CA authority by clicking the New button.

v Fill in the following information to the Request Specification section:

– Select the radio button for a predefined request alias if a certificate request is already created.

– If you do not have a predefined certificate request alias, fill in the following fields:

a. Type an alias name in the Alias field. The alias identifies the certificate request in the
keystore.

b. Type a common name (CN) value. This value is the CN value in the certificate distinguished
name (DN).

c. Optional: Type an organization value. This value is the O value in the certificate DN.

d. Optional: Select a key size value. The valid key size values are 512, 1024, 2048, 4096, and
8192. The default key size value is 2048 bits.

e. Locality

f. Optional: Type the State or Province value. This value is the ST value in the certificate DN.

g. Optional: Type a zip code value. The zip code value is the POSTALCODE value in the
certificate DN.

h. Optional: Type a country or region value from the list. This country value is the C= value in
the certificate request DN.

7. Click Apply then OK.

Results

The certificate is stored in the keystore selected in the path to this panel and a CACertificate configuration
object is created. Once a CA certificate is created the certificate can be used by the runtime for SSL
communication.

An existing certificate request can be used to create the CA certificate or a new certificate request can be
created. This panel uses the requestCAClient AdminTask to create the CA certificate.

Chapter 19. Administering application security 1837



Developing the WSPKIClient interface for communicating with a certificate
authority
Implementing the WSPKIClient interface enables WebSphere Application Server security to communicate
with a remote certificate authority (CA).

Procedure
1. Initialize the WSPKIClient method, with init(java.util.HashMap).

public void init(java.util.HashMap initAttrs) throws WSPKIException;

This method is called by WebSphere Application Server runtime to set up connection information to a
CA.

2. v Request a certificate with requestCertificate(byte[], X500Principal, byte[], java.util.HashMap).
public X509Certificate[] requestCertificate(byte[] certReq,
X500Principal SubjectDN, byte[] revocationPassword,
java.util.HashMap customAttrs) throws WSPKIException;

This method is called by WebSphere Application Server runtime to connect to a CA and requests a
certificate signed by the authority. A X509Certificate[] is returned if the requested certificate is created.
If a null is returned then queryCertificate() is called to check if the certificate is ready. This method is
used when the CA requires manual intervention to process a certificate request.

You can invoke this operation from the administrative console using the “Creating a CA certificate in
SSL” on page 1836 task and from a client using the requestCertificate script.

3. v Revoke a certificate with revokeCertificate(X509Certiifcate[], byte[], String, java.util.HashMap).
public void revokeCertificate(X509Certificate[] cert, byte[] revocationPassword,
String revocationReason, java.util.HashMap customAttrs) throws WSPKIException;

This method called by WebSphere Application Server runtime to submit a request to a CA to revoke a
certificate.

You can invoke this operation from the administrative console using the revoke CA certificate task,
“Revoking a CA certificate in SSL” on page 1834, or using the revokeCertificate script.

4. v Query a certificate with queryCertificate(X509Certiifcate[], byte[], java.util.HashMap).
public X509Certificate[] queryCertificate(byte[] certReq,
java.util.HashMap customAttrs) throws WSPKIException;

This method is called by WebSphere Application Server runtime to query if certificate creation is
completed on the CA. A X509Certificate[] is returned if certificate request is complete. A null is returned
if the certificate request is pending.

You perform this operation from the administrative console using the Query (link to
usec_sslperscertreqs.html) option, see “Personal certificate requests collection” on page 1890and from
a client using the queryCertificate script.

Results

the WSPKIClient interface for communicating with a certificate authority (CA) is implemented.

Creating a custom trust manager configuration for SSL
You can create a custom trust manager configuration at any management scope and associate the new
trust manager with a Secure Sockets Layer (SSL) configuration.

Before you begin

You must develop, package, and locate a Java Archive JAR file for a custom key manager in the
was.install.root/lib/ext directory on WebSphere Application Server. For more information, see
“Example: Developing a custom trust manager for custom SSL trust decisions” on page 1842.

1838 Administering WebSphere applications



About this task

Complete the following steps in the administrative console:

Procedure
1. Decide whether you want to create the custom trust manager at the cell scope or below the cell

scope at the node, server, or cluster, for example.

Important: When you create a custom trust manager at a level below the cell scope, you can
associate it only with a Secure Sockets Layer (SSL) configuration at the same scope or
higher. An SSL configuration at a scope lower than the trust manager does not see the
trust manager configuration.

v To create a custom trust manager at the cell scope, click Security > SSL certificate and key
management > Trust managers. Every SSL configuration in the cell can select the trust manager
at the cell scope.

v To create a custom trust manager at a scope below the cell level, click Security > SSL certificate
and key management > Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration > Trust managers.

2. Click New to create a new custom trust manager.

3. Type a unique trust manager name.

4. Select the Custom implementation setting. The custom setting enables you to define a Java class
with an implementation of the javax.net.ssl.X509TrustManager Java interface and, optionally, the
com.ibm.wsspi.ssl.TrustManagerExtendedInfo WebSphere Application Server interface.

Note: The standard implementation setting applies only when the trust manager is already defined in
the Java security provider list as a provider and an algorithm, which is not the case for a
custom trust manager.

5. Type a class name, for example, com.ibm.test.CustomTrustManager.

6. Select one of the following actions:

v Click Apply, then click Custom properties under Additional Properties to add custom properties to
the new custom trust manager. When you are finished adding custom properties, click OK and
Save, then go to the next step.

v Click OK and Save, then go to the next step.

7. Click SSL certificate and key management in the page navigation at the top of the panel.

8. Select one of the following actions:

v Click SSL configurations under Related Items for a cell-scoped SSL configuration.

v Click Manage endpoint security configurations to select an SSL configuration at a lower scope.

9. Click the link for the existing SSL configuration that you want to associate with the new custom trust
manager. You can create a new SSL configuration instead of associating the custom trust manager
with an existing configuration. For more information, see “Creating a Secure Sockets Layer
configuration” on page 1818.

10. Click Trust and Key managers under Additional Properties. If the new custom trust manager is not
listed in the Additional ordered trust managers list, verify that you selected an SSL configuration
scope that is at the same level or below the scope that you selected in Step 8.

11. Click Add. This action adds the new trust manager to the list of custom trust managers.

12. Click OK and Save.

Chapter 19. Administering application security 1839



Results

You have created a custom trust manager configuration that references a JAR file in the install directory of
WebSphere Application Server and associates it with an SSL configuration during the connection
handshake.

What to do next

You can create a custom trust manager for a pure client. For more information, see the
TrustManagerCommands command group for the AdminTask object topic.

Trust and key managers settings:

Use this page to specify trust and key managers for the selected SSL configuration.

To view this administrative console page, click Security > SSL certificate and key
management. Under Configuration settings, click Manage endpoint security configurations > {Inbound
| Outbound} > ssl_configuration. Under Related items click SSL configurations >
SSL_configuration_name. Under Additional Properties click Trust and key managers.

Attention: The application server checks the default trust managers first before checking the additional
ordered trust managers in descending order.

Default trust manager:

Specifies the default trust manager. The default trust manager is IbmPKIX, which can be selected when
certificate revocation checks must be made using the X509Certificate CRL distribution list. The other
default trust manager is IbmX509.

Information Value
Data type: Text
Default: ibmPKIX

Additional ordered trust managers:

Specifies additional trust managers that are used in the order shown for this SSL configuration.

Add:

Specifies to add the selection to the Additional ordered trust managers right-hand list.

Remove:

Specifies to remove the selection from the Additional ordered trust managers right-hand list.

Key manager:

Specifies the key manager that runs for this SSL configuration.

Information Value
Data type: Text
Default: IbmX509

Trust managers collection:

1840 Administering WebSphere applications



Use this page to define the implementation settings for the trust manager. A trust manager is a class that
is invoked during a Secure Sockets Layer (SSL) handshake to make trust decisions about the remote end
point. A default trust manager is used to validate the signature and expiration of the certificate. Custom
trust managers can be plugged in to perform an extended certificate and host name check.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Trust managers.

Table 153. Trust managers buttons. This table describes the trust manager buttons.
Button Resulting action

New Adds a new trust manager that can be selected by an SSL configuration. A trust manager is invoked
during an SSL handshake and can decide whether the handshake should be accepted based on the
information it knows about the remote certificate and host.

Delete Deletes an existing trust manager. Make sure the trust manager is not referenced by any SSL
configuration before you delete it.

Name:

Specifies the name of the trust manager. This name is used as a selection in the SSL configuration panel.

Class name:

Specifies a class that implements the javax.net.ssl.X509TrustManager interface. Optionally, the class can
implement the com.ibm.wsspi.ssl.TrustMangerExtendedInfo interface to get extended information about the
connection. The class can use the information to verify the host name and so on.

Algorithm:

Specifies the algorithm name of the trust manager that is implemented by the selected provider.

Trust managers settings:

This page enables you to view and set definitions for trust manager implementation settings. A trust
manager is a class that gets invoked during a Secure Sockets Layer (SSL) handshake to make trust
decisions about the remote end point. A default trust manager is used to validate the signature and
expiration of the certificate. Custom trust managers can be plugged in to perform an extended certificate
and hostname check.

To view this administrative console page, click Security > SSL certificate and key management >
Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under
Related items click Trust managers > New .

Name:

Specifies the name of the trust manager.

Information Value
Data type: Text
Default: ibmX509TrustManager

Management scope:

Specifies the scope where this Secure Sockets Layer (SSL) configuration is visible. For example, if you
choose a specific node, then the configuration is only visible on that node and any servers that are part of
that node.

Chapter 19. Administering application security 1841



This field is not editable and provides information only.

Standard:

Specifies that the trust manager selection is available from a Java provider that is installed in the
java.security file. This provider might be shipped by the Java Secure Sockets Extension (JSSE) or might
be a custom provider that implements the javax.net.ssl.X509TrustManager interface.

Information Value
Default: Enabled

Provider:

Specifies the provider name that has an implementation of the javax.net.ssl.X509TrustManager interface.
This provider is typically set to IBMJSSE2.

Enabled when Standard is selected.

Information Value
Default IBMJCE

Algorithm:

Specifies the algorithm name of the trust manager implemented by the selected provider.

Enabled when Standard is selected.

Information Value
Default ibmX509 or IbmPKIX
Range ibmX509, IbmPKIX

Custom:

Specifies that the trust manager selection is based on a custom implementation class that implements the
javax.net.ssl.X509TrustManager interface and optionally the com.ibm.wsspi.ssl.TrustManagerExctendedInfo
interface to obtain additional connection information that is not otherwise available.

Information Value
Default: Disabled

Class name:

Specifies a class that implements the javax.net.ssl.X509TrustManager interface. Optionally, the class can
implement the com.ibm.wsspi.ssl.TrustMangerExtendedInfo interface to get extended information about the
connection. The class can use the information to verify the host name and so on.

Enabled when Custom is selected.

Information Value
Data type: Text

Example: Developing a custom trust manager for custom SSL trust decisions:

1842 Administering WebSphere applications



The following example is of a sample custom trust manager. The custom trust manager makes no trust
decisions but instead uses the information in the X.509 certificate that it references to make decisions.

After you build and package the custom trust manager, configure it either from the ssl.client.props file
for a pure client or the SSLConfiguration TrustManager link in the administrative console. See “Trust
manager control of X.509 certificate trust decisions” on page 1784 for more information about trust
managers.

Note: This example should only be used as a sample, and is not supported.
import java.security.cert.X509Certificate;
import javax.net.ssl.*;
import com.ibm.wsspi.ssl.TrustManagerExtendedInfo;

public final class CustomTrustManager implements X509TrustManager,
TrustManagerExtendedInfo
{

private static ThreadLocal threadLocStorage = new ThreadLocal();
private java.util.Properties sslConfig = null;
private java.util.Properties props = null;

public CustomTrustManager()
{
}

/**
* Method called by WebSphere Application Server run time to set the target
* host information and potentially other connection info in the future.
* This needs to be set on ThreadLocal since the same trust manager can be
* used by multiple connections.
*
* @param java.util.Map - Contains information about the connection.
*/
public void setExtendedInfo(java.util.Map info)
{

threadLocStorage.set(info);
}

/**
* Method called internally to retrieve information about the connection.
*
* @return java.util.Map - Contains information about the connection.
*/
private java.util.Map getExtendedInfo()
{

return (java.util.Map) threadLocStorage.get();
}

/**
* Method called by WebSphere Application Server run time to set the custom
* properties.
*
* @param java.util.Properties - custom props
*/
public void setCustomProperties(java.util.Properties customProps)
{

props = customProps;
}

/**
* Method called internally to the custom properties set in the Trust Manager
* configuration.
*
* @return java.util.Properties - information set in the configuration.
*/
private java.util.Properties getCustomProperties()
{

return props;
}

/**
* Method called by WebSphere Application Server runtime to set the SSL
* configuration properties being used for this connection.
*
* @param java.util.Properties - contains a property for the SSL configuration.
*/
public void setSSLConfig(java.util.Properties config)
{

sslConfig = config;
}

/**
* Method called by TrustManager to get access to the SSL configuration for
* this connection.
*

Chapter 19. Administering application security 1843



* @return java.util.Properties
*/
public java.util.Properties getSSLConfig ()
{

return sslConfig;
}

/**
* Method called on the server-side for establishing trust with a client.
* See API documentation for javax.net.ssl.X509TrustManager.
*/
public void checkClientTrusted(X509Certificate[] chain, String authType)

throws java.security.cert.CertificateException
{

for (int j=0; j<chain.length; j++)
{

System.out.println("Client certificate information:");
System.out.println( "Subject DN:" + chain[j].getSubjectDN());
System.out.println( "Issuer DN:" + chain[j].getIssuerDN());
System.out.println( "Serial number:" + chain[j].getSerialNumber());
System.out.println("");

}
}

/**
* Method called on the client-side for establishing trust with a server.
* See API documentation for javax.net.ssl.X509TrustManager.
*/
public void checkServerTrusted(X509Certificate[] chain, String authType)

throws java.security.cert.CertificateException
{

for (int j=0; j<chain.length; j++)
{

System.out.println("Server certificate information:");
System.out.println( "Subject DN:" + chain[j].getSubjectDN());
System.out.println( "Issuer DN:" + chain[j].getIssuerDN());
System.out.println( "Serial number:" + chain[j].getSerialNumber());
System.out.println("");

}
}

/**
* Return an array of certificate authority certificates which are trusted
* for authenticating peers. You can return null here since the IbmX509
* or IbmPKIX will provide a default set of issuers.
*
* See API documentation for javax.net.ssl.X509TrustManager.
*/
public X509Certificate[] getAcceptedIssuers()
{

return null;
}

}

Creating a custom key manager for SSL
You can create a custom key manager configuration at any management scope and associate the new
key manager with a Secure Sockets Layer (SSL) configuration.

Before you begin

You must develop, package, and locate a Java Archive (.JAR) file for a custom key manager in the
was.install.root/lib/ext directory on WebSphere Application Server.

About this task

Complete the following steps in the administrative console:

Procedure
1. Decide whether you want to create the custom key manager at the cell scope or below the cell scope

at the node, server, or cluster, for example.

Important: When you create a custom key manager at a level below the cell scope, you can
associate it only with a Secure Sockets Layer (SSL) configuration at the same scope or
higher. An SSL configuration at a scope lower than the key manager does not see the
key manager configuration.

1844 Administering WebSphere applications



v To create a custom key manager at the cell scope, click Security > SSL certificate and key
management > Key managers. Every SSL configuration in the cell can select the key manager at
the cell scope.

v To create a custom key manager at a scope below the cell level, click Security > SSL certificate
and key management > Manage endpoint security configurations > {Inbound | Outbound} >
SSL_configuration > Key managers.

2. Click New to create a new key manager.

3. Type a unique key manager name.

4. Select the Custom implementation setting. With the custom setting, you can define a Java class that
has an implementation on the Java interface javax.net.ssl.X509KeyManager and, optionally, the
com.ibm.wsspi.ssl.KeyManagerExtendedInfo WebSphere Application Server interface. The standard
implementation setting applies only when the key manager is already defined in the Java security
provider list as a provider and an algorithm, which is not the case for a custom key manager. The
typical standard key manager is algorithm = IbmX509, provider = IBMJSSE2.

5. Type a class name. For example, com.ibm.test.CustomKeyManager.

6. Select one of the following actions:

v Click Apply, then click Custom properties under Additional Properties to add custom properties to
the new custom key manager. When you are finished adding custom properties, click OK and
Save, then go to the next step.

v Click OK and Save, then go to the next step.

7. Click SSL certificate and key management in the page navigation at the top of the panel.

8. Select one of the following actions:

v Click SSL configurations under Related Items for a cell-scoped SSL configuration.

v Click Manage endpoint security configurations to select an SSL configuration at a lower scope.

9. Click the link for the existing SSL configuration that you want to associate with the new custom key
manager. You can create a new SSL configuration instead of associating the custom key manager
with an existing configuration. For more information, see example below.

10. Click Trust and Key managers under Additional Properties.

11. Select the new custom key manager in the Key manager drop-down list. If the new custom key
manager is not listed, verify that you selected an SSL configuration scope that is at the same level or
below the scope that you selected in Step 8.

12. Click OK and Save.

Results

You have created a custom key manager configuration that references a JAR file in the installation
directory of WebSphere Application Server and associates the custom configuration with an SSL
configuration during the connection handshake.

Example

Developing a custom key manager for custom Secure Sockets Layer key selection. The following
example is of a sample custom key manager. This simple key manager returns the configured alias if it is
set using the alias properties com.ibm.ssl.keyStoreClientAlias or com.ibm.ssl.keyStoreServerAlias,
depending on which side of the connection the key manager is used. The key manager defers to the JSSE
default IbmX509 key manager to select an alias if these properties are not set.

After you build and package a custom key manager, you can configure it from either the ssl.client.props
file for a pure client or by using the SSLConfiguration KeyManager link in the administrative console. See
“Key manager control of X.509 certificate identities” on page 1786 for more information about key
managers.

Chapter 19. Administering application security 1845



Because only one key manager can be configured at a time for any given Secure Sockets Layer (SSL)
configuration, the certificate selections on the server side might not work as they would when the default
IbmX509 key manager is specified. When a custom key manager is configured, it is up to the owner of
that key manager to ensure that the selection of the alias from the SSL configuration supplied is set
properly when chooseClientAlias or chooseServerAlias are called. Look for the
com.ibm.ssl.keyStoreClientAlias and com.ibm.ssl.keyStoreServerAlias SSL properties.

Note: This example should only be used as a sample, and is not supported.
package com.ibm.test;

import java.security.cert.X509Certificate;
import com.ibm.wsspi.ssl.KeyManagerExtendedInfo;

public final class CustomKeyManager
implements javax.net.ssl.X509KeyManager, com.ibm.wsspi.ssl.KeyManagerExtendedInfo
{

private java.util.Properties props = null;
private java.security.KeyStore ks = null;
private javax.net.ssl.X509KeyManager km = null;
private java.util.Properties sslConfig = null;
private String clientAlias = null;
private String serverAlias = null;
private int clientslotnum = 0;
private int serverslotnum = 0;

public CustomKeyManager()
{
}

/**
* Method called by WebSphere Application Server runtime to set the custom
* properties.
*
* @param java.util.Properties - custom props
*/
public void setCustomProperties(java.util.Properties customProps)
{

props = customProps;
}

private java.util.Properties getCustomProperties()
{

return props;
}

/**
* Method called by WebSphere Application Server runtime to set the SSL
* configuration properties being used for this connection.
*
* @param java.util.Properties - contains a property for the SSL configuration.
*/
public void setSSLConfig(java.util.Properties config)
{

sslConfig = config;
}

private java.util.Properties getSSLConfig()
{

return sslConfig;
}

/**
* Method called by WebSphere Application Server runtime to set the default
* X509KeyManager created by the IbmX509 KeyManagerFactory using the KeyStore
* information present in this SSL configuration. This allows some delegation
* to the default IbmX509 KeyManager to occur.
*
* @param javax.net.ssl.KeyManager defaultX509KeyManager - default key manager for IbmX509
*/
public void setDefaultX509KeyManager(javax.net.ssl.X509KeyManager defaultX509KeyManager)
{

km = defaultX509KeyManager;
}

public javax.net.ssl.X509KeyManager getDefaultX509KeyManager()
{

return km;
}

/**
* Method called by WebSphere Application Server runtime to set the SSL
* KeyStore used for this connection.
*
* @param java.security.KeyStore - the KeyStore currently configured
*/

1846 Administering WebSphere applications



public void setKeyStore(java.security.KeyStore keyStore)
{

ks = keyStore;
}

public java.security.KeyStore getKeyStore()
{

return ks;
}

/**
* Method called by custom code to set the server alias.
*
* @param String - the server alias to use
*/
public void setKeyStoreServerAlias(String alias)
{

serverAlias = alias;
}

private String getKeyStoreServerAlias()
{

return serverAlias;
}

/**
* Method called by custom code to set the client alias.
*
* @param String - the client alias to use
*/
public void setKeyStoreClientAlias(String alias)
{

clientAlias = alias;
}

private String getKeyStoreClientAlias()
{

return clientAlias;
}

/**
* Method called by custom code to set the client alias and slot (if necessary).
*
* @param String - the client alias to use
* @param int - the slot to use (for hardware)
*/
public void setClientAlias(String alias, int slotnum) throws Exception
{

if ( !ks.containsAlias(alias))
{

throw new IllegalArgumentException ( "Client alias " + alias + "
not found in keystore." );

}
this.clientAlias = alias;
this.clientslotnum = slotnum;

}

/**
* Method called by custom code to set the server alias and slot (if necessary).
*
* @param String - the server alias to use
* @param int - the slot to use (for hardware)
*/
public void setServerAlias(String alias, int slotnum) throws Exception
{

if ( ! ks.containsAlias(alias))
{

throw new IllegalArgumentException ( "Server alias " + alias + "
not found in keystore." );

}
this.serverAlias = alias;
this.serverslotnum = slotnum;

}

/**
* Method called by JSSE runtime to when an alias is needed for a client
* connection where a client certificate is required.
*
* @param String keyType
* @param Principal[] issuers
* @param java.net.Socket socket (not always present)
*/
public String chooseClientAlias(String[] keyType, java.security.Principal[]
issuers, java.net.Socket socket)
{

if (clientAlias != null && !clientAlias.equals(""))
{

String[] list = km.getClientAliases(keyType[0], issuers);
String aliases = "";

Chapter 19. Administering application security 1847



if (list != null)
{

boolean found=false;
for (int i=0; i<list.length; i++)
{

aliases += list[i] + " ";
if (clientAlias.equalsIgnoreCase(list[i]))

found=true;
}

if (found)
{

return clientAlias;
}

}
}

// client alias not found, let the default key manager choose.
String[] keyArray = new String [] {keyType[0]};
String alias = km.chooseClientAlias(keyArray, issuers, null);
return alias.toLowerCase();

}

/**
* Method called by JSSE runtime to when an alias is needed for a server
* connection to provide the server identity.
*
* @param String[] keyType
* @param Principal[] issuers
* @param java.net.Socket socket (not always present)
*/
public String chooseServerAlias(String keyType, java.security.Principal[]
issuers, java.net.Socket socket)
{

if (serverAlias != null && !serverAlias.equals(""))
{

// get the list of aliases in the keystore from the default key manager
String[] list = km.getServerAliases(keyType, issuers);
String aliases = "";

if (list != null)
{

boolean found=false;
for (int i=0; i<list.length; i++)
{

aliases += list[i] + " ";
if (serverAlias.equalsIgnoreCase(list[i]))

found = true;
}

if (found)
{

return serverAlias;
}

}
}

// specified alias not found, let the default key manager choose.
String alias = km.chooseServerAlias(keyType, issuers, null);
return alias.toLowerCase();

}

public String[] getClientAliases(String keyType, java.security.Principal[] issuers)
{

return km.getClientAliases(keyType, issuers);
}

public String[] getServerAliases(String keyType, java.security.Principal[] issuers)
{

return km.getServerAliases(keyType, issuers);
}

public java.security.PrivateKey getPrivateKey(String s)
{

return km.getPrivateKey(s);
}

public java.security.cert.X509Certificate[] getCertificateChain(String s)
{

return km.getCertificateChain(s);
}

public javax.net.ssl.X509KeyManager getX509KeyManager()
{

return km;
}

}

1848 Administering WebSphere applications



What to do next

You can create a custom key manager for a pure client. For more information, see the
keyManagerCommands command group for the AdminTask object.

Associating a Secure Sockets Layer configuration dynamically with an outbound
protocol and remote secure endpoint
After you create a Secure Sockets Layer (SSL) configuration, you must associate a secure outbound
management scope with the new configuration. In this release, you can associate one SSL configuration
with one remote secure endpoint and a different SSL configuration to another remote secure endpoint.
Both endpoints can use the same outbound protocol, if appropriate. This task describes how to create the
association dynamically.

Before you begin

Dynamic outbound selection requires that you provide only the outbound protocol name, the target host,
and the target port so that WebSphere Application Server can make a connection between the SSL
configuration and the outbound protocol or remote secure endpoint. The dynamic outbound selection
method takes precedence over other selection methods, such as central management and direct selection,
but is second to the programmatic method, that is, setting an SSL configuration on the running thread. For
more information about the selection types and precedence rules, see “Secure communications using
Secure Sockets Layer (SSL)” on page 1774.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security

configurations > Outbound.

2. Select the management scope that you want to associate with an SSL configuration on the topology
tree.

3. Under Related Items, click Dynamic outbound endpoint SSL configurations. The default dynamic
outbound configuration name, the target protocol, host, and port connection information, and the SSL
configuration name display.

4. Click New to create a new dynamic outbound configuration.

5. Type a dynamic outbound configuration name. Use a name that is descriptive of the purpose of the
dynamic selection configuration.

6. Optionally, type a dynamic selection configuration description.

7. Type the connection information that you want to associate with the configuration that is displayed in
the SSL configuration drop-down list. The connection information must be in the format protocol
name, target host, target port. You can substitute an asterisk (*) for any value, as in the following
examples, where 443 is a port, www.mycompany.com is a host, HTTP is a protocol, and
.hometown.mycompany.com is a target host. You can add multiple connections, but each additional
connection can affect outbound performance.

v *,*,443

v *,www.mycompany.com,443

v HTTP,.hometown.mycompany.com,*

v *,*,*

gotcha: Do not use this configuration because it matches all outbound specifications. Therefore,
no other SSL configuration is used for outbound connections.

Chapter 19. Administering application security 1849



gotcha:

v Unless the intention is to set the protocol property through the JSSEHelper API, the
protocol filter should be set to * (as in the first two examples). See "Dynamic Selection" in
“Secure communications using Secure Sockets Layer (SSL)” on page 1774 for more
information.

v The connection protocols that are used for dynamic outboud SSL configuration selection,
that are illustrated in the preceding examples, which are not corresponding the protocol
name of the URL. To use one of these protocols from a user-written application,
programmatic SSL configuration selection must be implemented.

8. Click Add to add the new connection to the set of SSL configuration connections. To remove a
connection, select it and click Remove.

9. Select an SSL configuration from the list.

10. Click Get certificate aliases to refresh the certificate aliases that are contained in the associated key
store.

11. Choose a certificate alias from the list.

12. Click OK and Save.

Results

WebSphere Application Server is ready to connect one or more SSL configurations to one or more remote
secure endpoints.

What to do next

You can return to the outbound tree and select another management scope to associate with the same or
a new outbound configuration.

Programmatically specifying an outbound SSL configuration using JSSEHelper API:

WebSphere Application Server provides a way to specify programmatically which Secure Sockets Layer
(SSL) configurations to use prior to making an outbound connection. The
com.ibm.websphere.ssl.JSSEHelper interface provides a complete set of application programming
interfaces (APIs) for handling SSL configurations.

About this task

Perform the following steps for your application when using the JSSEHelper API to establish an SSL
properties object on the thread for use by the runtime. Some of these APIs have Java 2 Security
permission requirements. See the JSSEHelper API documentation for more information about the
permissions required by your application.

Select the approach that best fits your connection situation when you specify programmatically which
Secure Sockets Layer (SSL) configurations to use prior to making an outbound connection.

Procedure

1. Obtain an instance of the JSSEHelper API.
com.ibm.websphere.ssl.JSSEHelper jsseHelper = com.ibm.websphere.ssl.JSSEHelper.getInstance();

2. Obtain SSL properties from the WebSphere Application Server configuration or use those provided by
your application. Use one of the following options.

v By direction selection of an alias name, within the same management scope or higher as in the
following example:

1850 Administering WebSphere applications



try
{ String alias = "NodeAServer1SSLSettings";
// As specified in the WebSphere SSL configuration Properties
sslProps = jsseHelper.getProperties(alias); }
catch (com.ibm.websphere.ssl.SSLException e)
{ e.printStackTrace(); // handle exception }

v By using the getProperties API for programmatic, direction, dynamic outbound, or management
scope selection (based on precedence rules and inheritance). The SSL runtime uses the
getProperties API to determine which SSL configuration to use for a particular protocol. This
decision is based on both the input (sslAlias and connectionInfo) and the management scope from
which the property is called. The getProperties API makes decisions in the following order:

a. The API checks the thread to see if properties already exist.

b. The API checks for a dynamic outbound configuration that matches the ENDPOINT_NAME,
REMOTE_HOST, and or REMOTE_PORT.

c. The API checks to see if the optional sslAlias property is specified. You can configure any
protocol as direct or centrally managed. When a protocol is configured as direct, the sslAlias
parameter is null. When a protocol is configured as centrally managed, the sslAlias parameter
is also null.

d. If no selection has been made, the API chooses the dynamic outbound configuration based on
the management scope it was called from. If the dynamic outbound configuration is not defined
in the same scope, it then searches the hierarchy to locate one.

The last choice is the cell-scoped SSL configuration (in WebSphere Application Server, Network
Deployment) or the node-scoped SSL configuration (in Base Application Server). The
com.ibm.websphere.ssl.SSLConfigChangeListener parameter is notified when the SSL configuration
that is chosen by a call to the getProperties API changes. The protocol can then call the API again
to obtain the new properties as in the following example:

try { String sslAlias = null;
// The sslAlias is not specified directly at this time. String host = "myhost.austin.ibm.com";
// the target host String port = "443";
// the target port HashMap connectionInfo = new HashMap();
connectionInfo.put(JSSEHelper.CONNECTION_INFO_DIRECTION, JSSEHelper.DIRECTION_OUTBOUND);
connectionInfo.put(JSSEHelper.CONNECTION_INFO_REMOTE_HOST, host);
connectionInfo.put(JSSEHelper.CONNECTION_INFO_REMOTE_PORT, Integer.toString(port));
connectionInfo.put(JSSEHelper.CONNECTION_INFO_ENDPOINT_NAME, JSSEHelper.ENDPOINT_IIOP);

java.util.Properties props = jsseHelper.getProperties(sslAlias, connectionInfo, null); }
catch (com.ibm.websphere.ssl.SSLException e)
{ e.printStackTrace(); // handle exception }

v By creating your own SSL properties and then passing them to the runtime, as in the following
example:

try {
// This is the recommended "minimum" set of SSL properties. The trustStore can
// be the same as the keyStore. Properties sslProps = new Properties();
sslProps.setProperty("com.ibm.ssl.trustStore", "some value");
sslProps.setProperty("com.ibm.ssl.trustStorePassword", "some value");
sslProps.setProperty("com.ibm.ssl.trustStoreType", "some value");
sslProps.setProperty("com.ibm.ssl.keyStore", "some value");
sslProps.setProperty("com.ibm.ssl.keyStorePassword", "some value");
sslProps.setProperty("com.ibm.ssl.keyStoreType", "some value");
jsseHelper.setSSLPropertiesOnThread(sslProps); }
catch (com.ibm.websphere.ssl.SSLException e)
{ e.printStackTrace(); // handle exception }

3. Use the JSSEHelper.setSSLPropertiesOnThread(props) API to set the Properties object on the thread
so that the runtime picks it up and uses the same JSSEHelper.getProperties API. You can also obtain
properties from the thread after they are set with the jsseHelper.getSSLPropertiesOnThread() API, as
in the following example:

try
{ Properties sslProps = jsseHelper.getProperties(null, connectionInfo, null);
jsseHelper.setSSLPropertiesOnThread(sslProps); }
catch (com.ibm.websphere.ssl.SSLException e)
{ e.printStackTrace(); // handle exception }

4. When the connection is completed, you must clear the SSL properties from the thread by passing the
null value to the setPropertiesOnThread API.

try
{ jsseHelper.setSSLPropertiesOnThread(null); }
catch (com.ibm.websphere.ssl.SSLException e)
{ e.printStackTrace(); // handle exception }

Chapter 19. Administering application security 1851



Associating Secure Sockets Layer configurations centrally with inbound and outbound scopes:

After you create a Secure Sockets Layer (SSL) configuration, you must associate a secure inbound or
outbound management scope with the new configuration. You can manage the association centrally so
that you can easily make changes that affect all the scopes that are lower on the topology and that are
associated with the configuration. Beginning with WebSphere Application Server version 6.1, the
recommended and the default configuration method is centrally managed SSL configurations.

Before you begin

You can simplify the number of associations that you need to make for an SSL configuration by
associating the configuration with the highest level management scope requiring a unique configuration.
SSL configuration associations manifest inheritance behaviors. Because of the inheritance behaviors, all of
the scopes that are lower on the topology inherit this SSL configuration. For example, an association you
make at the cell level affects nodes, servers, clusters, and endpoints. For more information, see “Central
management of SSL configurations” on page 1793.

A precedence rule determines which SSL configuration association is used at a particular scope. The
highest precedence is given to endpoints on the topology. If you establish an association at the endpoint,
this association overrides any prior association that you made higher up on the management scope
topology.

About this task

Complete the following steps in the administrative console:

Procedure

1. Click Security > SSL certificate and key management.

2. Select the Dynamically update the runtime when SSL configuration changes check box if you
want changes that you make to an existing SSL configuration to occur dynamically. All outbound SSL
communications honor the dynamic SSL changes. Protocols that do not use the channel frameworks
SSL channel for inbound communications, including Object Request Broker (ORB) and administrative
SOAP protocols, do not honor dynamic updates. For more information, see “Dynamic configuration
updates in SSL” on page 1812.

3. Click Manage endpoint security configurations.

4. Select either the inbound or the outbound tree. After finishing the selected tree, you can return to this
step to repeat the following steps for the other tree.

5. Click the link for the selected cell, node, node group, server, cluster, or endpoint on the topology tree.
If the scope already has an associated SSL configuration and alias, these objects display in
parentheses immediately following the scope name, for example:
Node01(NodeDefaultSSLSettings,default). If the deployment manager has federated a node, the node
scope SSL configuration overrides the cell scope configuration above it in the topology.

6. Decide whether to override the inherited values that display in the read-only fields. Read-only fields
include the management scope name, the direction, and the inherited SSL configuration name and
certificate alias.

v If you are satisfied with these values, do not override them.

v If you want to override the inherited values, select the Override inherited values check box.

7. Select an SSL configuration from the list.

8. Click Update certificate alias list. The certificate alias list comes from the key store that is
referenced by the new SSL configuration.

9. Click Manage certificates if you want to manage the personal certificates that are contained in the
key store that is referenced in the SSL configuration.

10. Click Update certificate alias list to refresh the list of aliases.

1852 Administering WebSphere applications



11. Select a certificate alias in the key store to represent the identity of the endpoint.

12. Click OK to save your changes.

13. Click Manage endpoint security configurations and trust zones to return to the topology tree.

14. Configure the opposite direction on the topology tree using the steps in this task. You can also select
additional scopes to associate with the SSL configuration, as needed.

Results

Each SSL configuration at the selected scope and at scopes beneath it on the topology tree have the
same SSL configuration properties. The following SSL configuration methods override the centrally
managed configurations that you associate in the tree view:

v Direct selection at the endpoint

v Dynamic outbound SSL configuration associations

v Programmatic specifications

What to do next

At any management scope, you can configure the following objects: dynamic outbound endpoint SSL
configurations, key stores, key sets, key set groups, key managers, and trust managers. Like SSL
configurations, these objects are scoped automatically so that they are not visible higher up in the tree nor
are they loaded during runtime by processes that are higher up in the tree.

Selecting an SSL configuration alias directly from an endpoint configuration:

You can associate a secure outbound endpoint with a new Secure Sockets Layer (SSL) configuration
directly. If you are migrating from a release prior to version 6.1, WebSphere Application Server still
supports configurations that were selected directly at an endpoint. Direct selection always overrides
centrally managed configurations and preserves migrated configurations.

About this task

Select an SSL configuration alias directly at the following endpoints:

v Security > Global security > RMI/IIOP security > CSIv2 outbound transport

v Security > Global security > RMI/IIOP security > CSIv2 inbound transport

v System administration > Deployment manager > Transport Chain > WCInboundAdminSecure >
SSL inbound channel (SSL_1)

v System administration > Deployment manager > Administration Services > JMX connectors >
SOAPConnector > Custom Properties > sslConfig

v System administration > Node agents > nodeagent > Administration Services > JMX connectors
> SOAPConnector > Custom Properties > sslConfig

v Servers > Application servers > server1 > Messaging engine inbound transports >
InboundSecureMessaging > SSL inbound channel (SIB_SSL_JFAP)

v Servers > Application servers > server1 > WebSphere MQ link inbound transports >
InboundSecureMQLink > SSL inbound channel (SIB_SSL_MQFAP)

v Servers > Application servers > server1 > SIP Container Settings > SIP container transport
chains > SIPCInboundDefaultSecure > SSL inbound channel (SSL_5)

v Servers > Application servers > server1 > Web Container Settings > Web container transport
chains > WCInboundAdminSecure > SSL inbound channel (SSL_1)

v Servers > Application servers > server1 > Web Container Settings > Web container transport
chains > WCInboundDefaultSecure > SSL inbound channel (SSL_2)

Chapter 19. Administering application security 1853



Attention: The central management of SSL configurations can be a more efficient strategy because
multiple configurations can be contained within a single SSLConfigGroup. If you need to convert
configuration references that are already directly managed to centrally managed configurations, modify
each endpoint individually. Use the AdminConfig.modify command to set the sslConfigAlias value to an
empty string (""). Below is an example of doing this:

v Using Jacl:
set s1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]
set sslChannel [lindex [$AdminConfig list SSLInboundChannel $s1] 0]
$AdminConfig modify $sslChannel [list[list sslConfigAlias ""]]

For more information on using this command, see the information about configuring processes using
scripting.

For more information on specific wsadmin commands that affect a repertoire as opposed to individual
endpoints, see the SSLConfigGroupCommands group for the AdminTask topic.

Complete the following steps in the administrative console:

Note: These steps provide an example to follow when you directly select any of the endpoints listed
above.

Procedure

1. Click Security > Global security > RMI/IIOP security > CSIv2 outbound transport.

2. Click Use specific SSL alias. When you identify a specific SSL alias, you override the centrally
managed scope associations.

3. Select an SSL configuration alias from the drop-down list.

4. Click OK.

5. Repeat these steps for additional protocols or endpoints, if desired.

Results

By associating the endpoint directly, you have overridden a centrally managed SSL configuration.

What to do next

If you decide to use management scopes instead of endpoints to associate an SSL configuration, follow
the steps above, but click Centrally managed instead of Use specific SSL alias, then click Manage
endpoint security configurations. The console is redirected to Security > SSL certificate and key
management > Manage endpoint security configurations.

Enabling Secure Sockets Layer client authentication for a specific inbound endpoint:

When you establish a Secure Sockets Layer (SSL) configuration, you can enable client authentication for a
specific inbound endpoint.

Before you begin

The endpoint configuration must already exist in the SSL topology.

About this task

Complete the following steps in the administrative console:

Procedure

1. Click Security > SSL certificate and key management > Manage endpoint security configurations
> Inbound > SSL_configuration. If you want to enable SSL client authentication for all processes,

1854 Administering WebSphere applications



define an SSL configuration for the new endpoint at the node or cell level so that it is visible to all
processes on the same node or on the entire cell. For more information, see “Creating a Secure
Sockets Layer configuration” on page 1818.

2. Select Override inherited values. The SSL configuration is used for the current scope and any lower
scopes that have not already designated an SSL configuration. This field displays for server and node
groups within the object hierarchy and does not display for the top-level node or cell.

3. Select an SSL configuration from the drop-down list.

4. Click Update certificate alias list.

5. Select a Certificate alias from the drop-down list.

6. Click OK to save the configuration.

Results

You can repeat the previous steps for each endpoint that uses the same SSL configuration to enable client
authentication for the inbound endpoints.

What to do next

CSIv2 Protocol Exception:

The Common Secure Interoperability Version 2 (CSIv2) secure endpoints, used for Remote Method
Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) security, cannot override inherited values. While
the rest of the SSL properties are effective for CSIv2 when they are selected at the centrally-managed
Secure Communications panel, the client authentication selection is controlled by the CSIv2 protocol
configuration.

To enable SSL client certificate authentication for the CSIv2 protocol, you must use the CSIv2 inbound and
outbound authentication panels. For SSL client authentication to occur between two servers, you must
enable (support or require) SSL client certificate authentication for both the inbound and the outbound
policies.

WebSphere Application Server can either request (support) clients to provide signer certificates for the
SSL handshake, or the server can require clients to provide a valid signer certificate for the SSL
handshake, which is a more secure method. However, when the server requires certificates, the server
must obtain a signer for each client that connects to the server, which involves more server-side
management.

The client certificate should not be used for the identity when it is used from server-to-server. However,
when a pure client sends the client certificate it is used for the identity unless a message level identity is
specified, such as a user ID or a password.

Do the following to enable client certificate authentication for the CSIv2 protocol for server-to-server:

1. Click Security > Global security.

2. Expand the RMI/IIOP security section.

3. Click CSIv2 inbound authentication.

4. Under Client authentication, select either supported or required. When you select required, only one
SSL port is opened (CSV2_SSL_MUTUALAUTH_LISTENER_ADDRESS). When you select supported,
two SSL ports are opened (both CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS and
CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS).

If there are two ports, the client can select either based on the security configuration policy of the port.

5. Click OK to save.

6. If you want server-to-server SSL client authentication, then complete the remaining steps. If you don't
complete the remaining steps, only pure clients are enabled to send client certificates.

Chapter 19. Administering application security 1855



7. Expand the RMI/IIOP security section.

8. Click CSIv2 outbound authentication.

9. Under Client authentication, select either supported or required.

The SSL configuration for the inbound secure endpoints for which you enable SSL client certificate
authentication must have the signer certificate from any client that attempts to open a connection to that
inbound secure endpoint. You must collect those signers and then add them to the trust store associated
with the inbound secure endpoints SSL configuration.

Manage endpoint security configurations:

Use this page to select a Secure Socket Layer (SSL) configuration from the Local Topology hierarchy,
which includes cells, nodes, node groups, servers, and clusters.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations.

Local topology:

The Local topology represents the hierarchy of nodes, node groups, clusters, servers, and end points
within the cell that comprise a centralized SSL configuration.

The topology acts as a hierarchical tree in terms of inheritance. For example, if an SSL configuration has
been associated with a specific node, then all servers within that node will inherit that SSL configuration
selection, provided the servers are not associated with an SSL configuration at the server scope.
Centralized management of SSL is the default configuration; however, it can be overridden at various
locations to directly select a specific SSL alias as in previous releases for backwards compatibility.

Scope Description
Inbound/Outbound Specifies the topology tree in terms of connection

direction. For example, the inbound tree represents all
server endpoints that receive connections at the various
servers within the cell. The outbound tree represents the
client side of connections from the various servers within
the cell.

Nodes Specifies the nodes that are part of the cell. The list of
nodes is updated anytime a node gets federated into the
cell.

Servers Specifies the servers that are part of a specific node. You
can enable a specific server to have an SSL configuration
associated with it so that resources within the same server
can use the associated SSL configuration.

Clusters Specifies the clusters that are part of the cell. When an
SSL configuration is associated with a cluster, all servers
within the cluster will use the same SSL configuration
unless specified at a lower level in the topology.

Nodegroups Specifies the node groups that are part of the cell. When
an SSL configuration is associated with a node group, all
nodes within that node group may use the same SSL
configuration unless one is specified at a lower scope in
the topology or the specific end point has chosen a direct
alias reference.

1856 Administering WebSphere applications



Scope Description
Secure port and transport Specifies an endpoint name to associate with an SSL

configuration when more specific SSL settings are needed
at this level. You could select an alias directly at the
endpoint panel; however, when you use Secure port and
transport, you can maintain more centralized control of
the SSL configuration and make changes more easily.

Dynamic inbound and outbound endpoint SSL configurations collection:

Use this page to manage dynamic endpoint Secure Sockets Layer (SSL) configurations, which represent
associations between Secure Socket Layer (SSL) configurations and their target protocol, host, and port.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Dynamic outbound endpoint SSL configurations.

When an outbound connection is attempted, this association is checked ahead of the SSL configuration
scope association. Based on the target protocol,host,port, the outbound SSL configuration used can be
different from the default specified in the SSL scope configuration.

Table 154. Dynamic inbound and outbound endpoint SSL configurations buttons. This table lists the dynamic
inbound and outbound endpoint SSL configuration buttons.
Button Resulting action

New Adds a new dynamic outbound selection criteria. The outbound connection selects an SSL
configuration based upon connection information, including DNS host name and domain, port, and
protocol type. When an outbound connection is being made, the dynamic outbound selection criteria
are queried for a match, and if found the SSL configuration associated is used.

Delete Deletes an existing dynamic outbound endpoint SSL configuration.

Name:

Specifies the unique name of the dynamic endpoint configuration.

Connection information:

Specifies the set of target protocol, host, port for the outbound request in the form protocol,host,port.

SSL Configuration:

Specifies the SSL configuration that is used by requests at this scope when a match occurs for the given
selection criteria.

Dynamic outbound endpoint SSL configuration settings:

Use this page to set properties for dynamic outbound endpoint SSL configurations, which represent
associations between SSL configurations and their target protocol, host, and port.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Dynamic [inbound | outbound] endpoint SSL
configurations. Then click the New button.

Chapter 19. Administering application security 1857



When an outbound connection is attempted, this association is checked ahead of the Secure Sockets
Layer (SSL) configuration scope association. This means based on the target protocol,host,port, the
outbound SSL configuration used can be different than the default specified in the SSL scope
configuration.

Name:

Specifies the unique name of the dynamic endpoint configuration.

Information Value
Data type: Text

Description:

Specifies text that describes the purpose of this dynamic selection criteria.

Information Value
Data type: Text

Add connection information:

Specifies select information in the form protocol,host,port for the outbound connection. Multiple selection
criteria can be entered. All of the connection information for dynamic outbound selection might not be
available, and you may have to adjust the dynamic outbound selection connection filter and fill in an
asterisk (*) for the missing part of the connection information. An asterisk (*) can be used to mean all
protocols, hosts, or ports. You can use an asterisk(*) for any field.

Information Value
Data type: Text

An example of selection criteria is *,www.ibm.com,*, which means that any time the target host is
www.ibm.com, you must use the SSL configuration specified here. Another example selection criteria is
IIOP,*,*, which means that any outbound IIOP request uses the SSL configuration that is specified in the
SSL configuration field. When there is a conflict between two selection criteria, the application server uses
the first match. The list of valid protocols you can use include: IIOP, HTTP, JMS, LDAP, SIP,
ADMIN_SOAP, ADMIN_IIOP, or WEBSERVICES_HTTP.

When user written applications are expecting to take advantage of dynamic outbound selections, know that
not all connection information may be available. For example, the openConnection() call on an URL object
ultimately calls createSocket(java.net.Socket socket, String host, int port, boolean autoClose).
The connection information can be built with the host and port provided, but there is no protocol provided.
In this case, a wild card, an asterisk (*), should be used for the protocol part of the dynamic selection
connection information.

Add:

Specifies to add the selected information from the Add select information menu to the right-hand list.

Remove:

Specifies to remove the selection from the right-hand list.

SSL Configuration:

1858 Administering WebSphere applications



Specifies the SSL configuration to be used by requests at this scope when a match occurs for the given
selection criteria.

Information Value
Data type: Text

Get certificate alias:

When selected, the keystore within the selected SSL configuration is queried for a list of personal
certificates from which to choose.

Certificate alias:

Specifies the certificate alias that is used as the identity for the connection.

If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate
is used. If multiple certificates exist in the keystore, the key manager might not consistently select the
same certificate.

Information Value
Data type: Text
Default: (none)

Quality of protection (QoP) settings
Use this page to specify security level, ciphers, and mutual authentication settings for the Secure Socket
Layer (SSL) configuration.

To view this administrative console page, click Security > SSL certificate and key
management. Under Configuration settings, click Manage endpoint security configurations > {Inbound
| Outbound} > ssl_configuration. Under Related items, click SSL configurations > . Click on
{SSL_configuration_name }. Under Additional Properties, click Quality of protection (QoP) settings.

Client authentication:

Specifies the whether SSL client authentication should be requested if the SSL connection is used for the
server side of the connection.

If None is selected, the server does not request that a client certificate be sent during the handshake. If
Supported is selected, the server requests that a client certificate be sent. If the client does not have a
certificate, the handshake might still succeed. If Required is selected, the server requests that a client
certificate be sent. If the client does not have a certificate, the handshake fails.

Information Value
Data type: Text
Default: None

Protocol:

Specifies the Secure Sockets Layer (SSL) handshake protocol. This protocol is typically SSL_TLS, which
supports all handshake protocols except for SSLv2 on the server side. When United States Federal
Information Processing standard (FIPS) option is enabled, Transport Layer Security (TLS) is automatically
used regardless of this setting.

Information Value
Data type: text

Chapter 19. Administering application security 1859



Information Value
Default: SSL_TLS

Predefined JSSE provider:

Specifies one of the predefined Java Secure Sockets Extension (JSSE) providers. The IBMJSSE2 provider
is recommended for use on all platforms which support it. It is required for use by the channel framework
SSL channel. When Federal Information Processing Standard (FIPS) is enabled, IBMJSSE2 is used in
combination with the IBMJCEFIPS crypto provider.

Information Value
Default: Enabled

Select provider:

Specifies a package that implements a subset of the cryptography aspects for the Java security application
programming interface (API). This value is a JSSE provider name that is listed in the java.security file.
Note that cipher suites and protocol values depend upon the provider.

Information Value
Data type: Text
Default: IBMJSSE2

Custom JSSE provider:

Specifies that a custom JSSE provider should be used.

Information Value
Default: Disabled

Custom provider:

Specifies a package that implements a subset of the cryptography aspects for the Java security application
programming interface (API). This value is a Java Secure Sockets Extension (JSSE) provider name that is
listed in the java.security file. Note that cipher suites and protocol values depend upon the provider.

Information Value
Data type: Text

Cipher suite groups:

Specifies the various cipher suite groups that can be chosen depending upon your security needs. The
stronger the cipher suite strength, the better the security; however, this can result in performance
consequences.

Information Value
Data type: Text
Default: Strong

Update selected ciphers:

1860 Administering WebSphere applications



When selected, the cipher suites that are contained within the selected Cipher suite group are added to
the list of Selected ciphers. Any change to this list changes the Cipher suite group to custom.

Selected ciphers:

Specifies the ciphers that are effective when the configuration is saved. These ciphers are used to
negotiate with the remote side of the connection during the handshake. A common cipher needs to be
selected or the handshake fails.

Information Value
Data type: Text

Add:

Specifies to add the selected cipher to the Selected ciphers list.

Remove:

Specifies to remove the selected cipher from the Selected ciphers list.

ssl.client.props client configuration file
Use the ssl.client.props file to configure Secure Sockets Layer (SSL) for clients. In previous releases of
WebSphere Application Server, SSL properties were specified in the sas.client.props or
soap.client.props files or as system properties. By consolidating the configurations, WebSphere
Application Server enables you to manage security in a manner that is comparable to server-side
configuration management. You can configure the ssl.client.props file with multiple SSL configurations.

Setting up the SSL configuration for clients

Client runtimes are dependent on the WebSphere Application Server ssl.client.props configurations.

Use the setupCmdLine script on the command line to specify the com.ibm.SSL.ConfigURL
system property. The setupclient script also sets the CLIENTSSL variable.The com.ibm.SSL.ConfigURL
property references a file URL that points to the ssl.client.props file. You can reference the CLIENTSSL
variable on the command line of any script that uses the setupCmdLine file.

When you specify the com.ibm.SSL.ConfigURL system property, the SSL configuration is available to all
protocols that use SSL. SSL configurations, which are referenced in the ssl.client.props file, also have
aliases that you can reference. In the following sample code from the sas.client.props file, all of the SSL
properties are replaced with a property that points to an SSL configuration in the ssl.client.props file:
com.ibm.ssl.alias=DefaultSSLSettings

The following sample code shows a property in the soap.client.props file that is similar to the
com.ibm.SSL.ConfigURL property. This property references a different SSL configuration on the client side:
com.ibm.ssl.alias=DefaultSSLSettings

In the ssl.client.props file, you can change the administrative SSL configuration to avoid modifying the
soap.client.props file.

Tip: Support for SSL properties is still specified in the sas.client.props and soap.client.props files.
However, consider moving the SSL configurations to the ssl.client.props file, because this file is
the new configuration model for client SSL.

When you are configuring a client which does not call setupCmdLine.sh to connect to an
application server using security, you must ensure that the following system property is defined on the
client configuration:

Chapter 19. Administering application security 1861



-Djava.security.properties=profile_root/properties/java.security

Properties of the ssl.client.props file

This section describes the default ssl.client.props file properties in detail, by sections within the file. Be
aware that if you specify javax.net.ssl system properties, these will override the settings in
ssl.client.props file.

Global properties:

Global SSL properties are process-specific properties that include Federal Information
Processing Standard (FIPS) enablement, the default SSL alias, the profile_root of the profile for specifying
the root location of the key and truststore paths, and so on.

Table 155. Properties of the ssl.client.props file. This table describes the properties of the ssl.client.props file.

Property Default Description

com.ibm.ssl.defaultAlias DefaultSSLSettings Specifies the default alias that is used whenever an alias is
not specified by the protocol that calls the JSSEHelper API to
retrieve an SSL configuration. This property is the final arbiter
on the client side for determining which SSL configuration to
use.

com.ibm.ssl.validationEnabled false When set to true, this property validates each SSL
configuration as it is loaded. Use this property for debug
purposes only, to avoid unnecessary performance overhead
during production.

com.ibm.ssl.performURLHostNameVerificationfalse When set to true, this property enforces URL host name
verification. When HTTP URL connections are made to target
servers, the common name (CN) from the server certificate
must match the target host name. Without a match, the host
name verifier rejects the connection. The default value of
false omits this check. As a global property, it sets the default
host name verifier. Any javax.net.ssl.HttpsURLConnection
object can choose to enable host name verification for that
specific instance by calling the setHostnameVerifier method
with its own HostnameVerifier instance.
gotcha: This property does not apply to SSL channels.

com.ibm.security.useFIPS false When set to true, FIPS-compliant algorithms are used for
SSL and other Java Cryptography Extension (JCE)-specific
applications. This property is typically not enabled unless the
property is required by the operating environment.

com.ibm.websphere.security.FIPSLevel false Specifies the level of the security standard to use. Valid
values include 140-2, SP800-131 and transition. The
com.ibm.security.useFIPS property must be set to true to
enable suite B. The property must be entered in the
ssl.client.props file in the global properties section,
preferably after com.ibm.security.useFIPS.

com.ibm.websphere.security.suiteB false Specifies the level of Suite B security standard to enable.
Valid values include 128 and 192. To enable the
com.ibm.security.useFIPS property. it must be set to true. The
property must be entered in the ssl.client.props file in the
global properties section, preferably after
com.ibm.security.useFIPS.

Certificate creation properties:

Use certificate creation properties to specify the default self-signed certificate values for the major
attributes of a certificate. You can define the distinguished name (DN), expiration date, key size, and alias
that are stored in the keystore.

1862 Administering WebSphere applications



Table 156. Certificate creation properties. This table describes the certificate creation properties.

Property Default Description

com.ibm.ssl.defaultCertReqAlias default_alias This property specifies the default alias to use to
reference the self-signed certificate that is created in the
keystore. If the alias already exists with that name, the
default alias is appended with _#, where the number
sign (#) is an integer that starts with 1 and increments
until it finds a unique alias.

com.ibm.ssl.defaultCertReqSubjectDNcn=${hostname},
o=IBM,c=US

This property uses the property distinguished name
(DN) that you set for the certificate when it is created.
The ${hostname} variable is expanded to the host name
on which it resides. You can use correctly formed DNs
as specified by the X.509 certificate.

com.ibm.ssl.defaultCertReqDays 365 This property specifies the validity period for the
certificate and can be as small as 1 day and as large as
the maximum number of days that a certificate can be
set, which is approximately 15 years.

com.ibm.ssl.defaultCertReqKeySize 1024 This property is the default key size. The valid values
depend upon the Java Virtual Machine (JVM) security
policy files that are installed. By default, the product
JVMs ship with the export policy file that limits the key
size to 1024. To get a large key size such as 2048, you
can download the restricted policy files from the
website.

Certificate revocation checking:

To enable certificate revocation checking, you can set a combination of Online Certificate Status Protocol
(OCSP) properties. These properties are not used unless you set the com.ibm.ssl.trustManager property to
IbmPKIX. In addition, to successfully process revocation checking on the client, you must turn off the signer
exchange prompt. To turn off the signer exchange prompt, change the
com.ibm.ssl.enableSignerExchangePrompt property to false. For more information, see the related link to
the "Enabling certificate revocation checking with the default IbmPKIX trust manager" topic.

SSL configuration properties:

Use the SSL configuration properties section to set multiple SSL configurations. For a new SSL
configuration specification, set the com.ibm.ssl.alias property because the parser starts a new SSL
configuration with this alias name. The SSL configuration is referenced by using the alias property from
another file, such as sas.client.props or soap.client.props, through the default alias property. The
properties that are specified in the following table enable you to create a javax.net.ssl.SSLContext, among
other SSL objects.

Table 157. SSL configuration properties. This table lists the SSL configuration properties.

Property Default Description

com.ibm.ssl.alias DefaultSSLSettings This property is the name of this SSL configuration and must be
the first property for an SSL configuration because it references
the SSL configuration. If you change the name of this property
after it is referenced elsewhere in the configuration, the runtime
defaults to the com.ibm.ssl.defaultAlias property whenever the
reference is not found. The error trust file is null or key
file is null might display when you start an application using
an SSL reference that is no longer valid.

Chapter 19. Administering application security 1863



Table 157. SSL configuration properties (continued). This table lists the SSL configuration properties.

Property Default Description

com.ibm.ssl.protocol SSL_TLS This property is the SSL handshake protocol that is used for this
SSL configuration. This property attempts Transport Layer
Security (TLS) first, but accepts any remote handshake
protocol, including SSLv3 and TLSv1. Valid values for this
property include SSL_TLS, SSL, SSLv2 (client side only),
SSLv3, TLS, TLSv1, SSL_TLSv2, TLSv1.1, and TLSv1.2.

com.ibm.ssl.securityLevel STRONG This property specifies the cipher group that is used for the SSL
handshake. The typical selection is STRONG, which specifies
128-bit or higher ciphers. The MEDIUM selection provides 40-bit
ciphers. The WEAK selection provides ciphers that do not
perform encryption, but do perform signing for data integrity. If
you specify your own cipher list selection, uncomment the
property com.ibm.ssl.enabledCipherSuites.
Note: The use of javax.net.ssl system properties causes this
value to always be HIGH.

com.ibm.ssl.trustManager IbmX509 This property specifies the default trust manager that you must
use to validate the certificate sent by the target server. This trust
manager does not perform certificate revocation list (CRL)
checking. You can choose to change this value to IbmPKIX for
CRL checking using CRL distribution lists in the certificate,
which is a standard way to perform CRL checking. When you
want to perform custom CRL checking, you must implement a
custom trust manager and specify the trust manager in the
com.ibm.ssl.customTrustManagers property. The IbmPKIX
option might affect performance because this option requires
IBMCertPath for trust validation. Use IbmX509 unless CRL
checking is necessary. If you are using the Online Certificate
Status Protocol (OCSP) properties, set this property value to
IbmPKIX.

com.ibm.ssl.keyManager IbmX509 This property specifies the default key manager to use for
choosing the client alias from the specified keystore. This key
manager uses the com.ibm.ssl.keyStoreClientAlias property to
specify the keystore alias. If this property is not specified, the
choice is delegated to Java Secure Socket Extension (JSSE).
JSSE typically chooses the first alias that it finds.

com.ibm.ssl.contextProvider IBMJSSE2 This property is used to choose the JSSE provider for the SSL
context creation. It is recommended that you default to
IBMJSSE2 when you use a Java virtual machine (JVM). The
client plug-in can use the SunJSSE provider when using a Sun
JVM.

com.ibm.ssl.enableSignerExchangePrompt true This property determines whether to display the signer
exchange prompt when a signer is not present in the client
truststore. The prompt displays information about the remote
certificate so that WebSphere Application Server can decide
whether or not to trust the signer. It is very important to validate
the certificate signature. This signature is the only reliable
information that can guarantee that the certificate has not been
modified from the original server certificate. For automated
scenarios, disable this property to avoid SSL handshake
exceptions. Run the retrieveSigners script, which sets up the
SSL signer exchange, to download the signers from the server
prior to running the client. If you are using the Online Certificate
Status Protocol (OCSP) properties, set this property value to
false.

com.ibm.ssl.keyStoreClientAlias default This property is used to reference an alias from the specified
keystore when the target does not request client authentication.
When WebSphere Application Server creates a self-signed
certificate for the SSL configuration, this property determines the
alias and overrides the global com.ibm.ssl.defaultCertReqAlias
property.

1864 Administering WebSphere applications



Table 157. SSL configuration properties (continued). This table lists the SSL configuration properties.

Property Default Description

com.ibm.ssl.customTrustManagers Commented out by
default

This property enables you to specify one or more custom trust
managers, which are separated by commas. These trust
managers can be in the form of algorithm|provider or
classname. For example, IbmX509|IBMJSSE2 is in the
algorithm|provider format, and the
com.acme.myCustomTrustManager interface is in the classname
format. The class must implement the
javax.net.ssl.X509TrustManager interface. Optionally, the class
can implement the
com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface. These
trust managers run in addition to the default trust manager that
is specified by the com.ibm.ssl.trustManager interface. These
trust managers do not replace the default trust manager.

com.ibm.ssl.customKeyManager Commented out by
default

This property enables you to have one, and only one, custom
key manager. The key manager replaces the default key
manager that is specified in the com.ibm.ssl.keyManager
property. The form of the key manager is algorithm|provider or
classname. See the format examples for the
com.ibm.ssl.customTrustManagers property. The class must
implement the javax.net.ssl.X509KeyManager interface.
Optionally, the class can implement the
com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface. This key
manager is responsible for alias selection.

com.ibm.ssl.dynamicSelectionInfo Commented out by
default

This property enables dynamic association with the SSL
configuration. The syntax for a dynamic association is
outbound_protocol, target_host, or target_port. For multiple
specifications, use the vertical bar ( | ) as the delimiter. You can
replace any of these values with an asterisk (*) to indicate a
wildcard value. Valid outbound_protocol values include: IIOP,
HTTP, LDAP, SIP, BUS_CLIENT, BUS_TO_WEBSPHERE_MQ,
BUS_TO_BUS, and ADMIN_SOAP. When you want the
dynamic selection criteria to choose the SSL configuration,
uncomment the default property, and add the connection
information. For example, add the following on one line

com.ibm.ssl.dynamicSelectionInfo=HTTP,
.ibm.com,443|HTTP,.ibm.com,9443

com.ibm.ssl.enabledCipherSuites Commented out by
default

This property enables you to specify a custom cipher suite list
and override the group selection in the
com.ibm.ssl.securityLevel property. The valid list of ciphers
varies according to the provider and JVM policy files that are
applied. For cipher suites, use a space as the delimiter.

com.ibm.ssl.keyStoreName ClientDefaultKeyStore This property references a keystore configuration name. If you
have not already defined the keystore, the rest of the keystore
properties must follow this property. After you define the
keystore, you can specify this property to reference the
previously specified keystore configuration. New keystore
configurations in the ssl.client.props file have a unique name.

com.ibm.ssl.trustStoreName ClientDefaultTrustStore This property references a truststore configuration name. If you
have not already defined the truststore, the rest of the truststore
properties must follow this property. After you define the
truststore, you can specify this property to reference the
previously specified truststore configuration. New truststore
configurations in the ssl.client.props file should have a
unique name.

Keystore configurations:

SSL configurations reference keystore configurations whose purpose is to identify the location of
certificates. Certificates represent the identity of clients that use the SSL configuration. You can specify
keystore configurations with other SSL configuration properties. However, it is recommended that you

Chapter 19. Administering application security 1865



specify the keystore configurations in this section of the ssl.client.props file after the
com.ibm.ssl.keyStoreName property identifies the start of a new keystore configuration. After you fully
define the keystore configuration, the com.ibm.ssl.keyStoreName property can reference the keystore
configuration at any other point in the file.

Table 158. Keystore configuration properties. This table lists the keystore configuration properties.

Property Default Description

com.ibm.ssl.keyStoreName ClientDefaultKeyStore This property specifies the name of the keystore as it is
referenced by the runtime. Other SSL configurations can
reference this name further down in the
ssl.client.props file to avoid duplication.

com.ibm.ssl.keyStore ${user.root}/etc/
key.p12

This property specifies the location of the keystore in the
required format of the com.ibm.ssl.keyStoreType
property. Typically, this property references a keystore file
name. However, for cryptographic token types, this
property references a Dynamic Link Library (DLL) file.
gotcha: If you are using a 4764 cryptography card, then
the keystore file name for the client configuration should
be specified as the file 4764.cfg in a directory structure
of your choice, and the corresponding
com.ibm.ssl.keyStoreType should be set to PKCS11. The
4764.cfg file is NOT supplied with WebSphere
Application Server.

com.ibm.ssl.keyStorePassword WebAS This property is the default password, which is the cell
name for the profile when it is created. The password is
typically encoded using an {xor} algorithm. You can use
iKeyman to change the password in the keystore, then
change this reference. If you do not know the password
and if the certificate is created for you, change the
password in this property, then delete the keystore from
the location where it resides. Restart the client to
recreate the keystore by using the new password, but
only if the keystore name ends with DefaultKeyStore and
if the fileBased property is true. Delete both the keystore
and truststore at the same time so that a proper signer
exchange can occur when both are recreated together.

com.ibm.ssl.keyStoreType PKCS12 This property is the keystore type. Use the default,
PKCS12, because of its interoperability with other
applications. You can specify this property as any valid
keystore type that is supported by the JVM on the
provider list.

com.ibm.ssl.keyStoreProvider IBMJCE The IBM Java Cryptography Extension property is the
keystore provider for the keystore type. The provider is
typically IBMJCE or IBMPKCS11Impl for cryptographic
devices.

com.ibm.ssl.keyStoreFileBased true This property indicates to the runtime that the keystore is
file-based, meaning it is located on the file system.

com.ibm.ssl.keyStoreReadOnly false This property indicates to the run time for WebSphere
Application Server whether the key store can be modified
during the run time.

Truststore Configurations:

SSL configurations reference truststore configurations, whose purpose is to contain the signer certificates
for servers that are trusted by this client. You can specify these properties with other SSL configuration
properties. However, it is recommended that you specify truststore configurations in this section of the

1866 Administering WebSphere applications



ssl.client.props file after the com.ibm.ssl.trustStoreName property has identified the start of a new
truststore configuration. After you fully define the truststore configuration, the com.ibm.ssl.trustStoreName
property can reference the configuration at any other point in the file.

A truststore is a keystore that JSSE uses for trust evaluation. A truststore contains the signers that
WebSphere Application Server requires before it can trust the remote connection during the handshake. If
you configure the com.ibm.ssl.trustStoreName=ClientDefaultKeyStore property, you can reference the
keystore as the truststore. Further configuration is not required for the truststore because all of the signers
that are generated through signer exchanges are imported into the keystore where they are called by the
runtime.

Table 159. Truststore Configuration properties. This table lists the truststore configuration properties.

Property Default Description

com.ibm.ssl.trustStoreName ClientDefaultTrustStore This property specifies the name of
the truststore as it is referenced by
the runtime. Other SSL configurations
can reference further down in the
ssl.client.props file to avoid
duplication.

com.ibm.ssl.trustStore ${user.root}/etc/trust.p12 This property specifies the location of
the truststore in the format that is
required by the truststore type that is
referenced by the
com.ibm.ssl.trustStoreType property.
Typically, this property references a
truststore file name. However, for
cryptographic token types, this
property references a DLL file.
gotcha: If you are using a 4764
cryptography card, then the keystore
file name for the client configuration
should be specified as the file
4764.cfg in a directory structure of
your choice, and the corresponding
com.ibm.ssl.keyStoreType should be
set to PKCS11. The 4764.cfg file is
NOT supplied with WebSphere
Application Server.

Chapter 19. Administering application security 1867



Table 159. Truststore Configuration properties (continued). This table lists the truststore configuration properties.

Property Default Description

com.ibm.ssl.trustStorePassword WebAS This property specifies the default
password, which is the cell name for
the profile when it is created. The
password is typically encoded using
an {xor} algorithm. You can use
iKeyman to change the password in
the keystore, then change the
reference in this property. If you do
not know the password and if the
certificate was created for you,
change the password in this property,
then delete the truststore from the
location where it resides. Restart the
client to recreate the truststore by
using the new password, but only if
the keystore name ends with
DefaultTrustStore and the fileBased
property is true. It is recommended
that you delete the keystore and the
truststore at the same time so that a
proper signer exchange can occur
when both are recreated together.

com.ibm.ssl.trustStoreType PKCS12 This property is the truststore type.
Use the default PKCS12 type
because of its interoperability with
other applications. You can specify
this property as any valid truststore
type that is supported by the JVM
functionality on the provider list.

com.ibm.ssl.trustStoreProvider IBMJCE This property is the truststore provider
for the truststore type. The provider is
typically IBMJCE or IBMPKCS11Impl
for cryptographic devices.

com.ibm.ssl.trustStoreFileBased true This property indicates to the runtime
that the truststore is file-based,
meaning it is located on the file
system.

com.ibm.ssl.trustStoreReadOnly false This property indicates to the run time
for WebSphere Application Server
whether the truststore can be modified
during the run time.

Creating a CA client in SSL
A plug point is provided to allow users to connect to a certificate authority (CA) to request, query, and
revoke certificates. A security configuration object, called a CAClient, must be created for WebSphere to
communicate with the CA. The CAClient object must contain a WSPKIClient() implementation, and it will
handle the connection and communicate with the CA server. Users can also create there own
implementation.

Before you begin

The WSPKIClient interface must be implemented and the class name provided as part of the CAClient
when it is created.

1868 Administering WebSphere applications



You use the administrative console to create a new CA client.

Procedure
1. Click Security > SSL certificate and key management.

2. Click Certificate Authority (CA) client configurations. A panel of existing CA clients appears.

3. Click New to create a new CA client in the configuration.

Note: You can also create a CA client by using the createCAClient AdminTask .

4. Fill in the following information for the CA client

v Name of the CA client.

v The management scope (selected from the drop-down list).

v WSPKIClient implementation class.

v CA server host name.

v User name.

v Password.

v Confirm of password.

v Number of times to poll.

v Polling interval (in minutes) when requestin certificates.

v Custom properties.

5. Click Apply then OK.

Results

The information in the object can then be used by the runtime to connect to a CA to create, revoke, or
replace a certificate.

Deleting a CA client in SSL
You can delete the CAClient object from the security configuration if a connection to a certificate authority
(CA) is no longer needed.

Before you begin

You use the administrative console to delete a CA client.

Procedure
1. Click Security > SSL certificate and key management.

2. Click Certificate Authority (CA) client configurations. A panel displaying the existing CA clients
appears.

3. Click the CA client name you want to delete.

4. Click the Delete button.

Note: You can also use the deleteAClient AdminTask to delete the CA client.

Results

The CA client is deleted from the configuration.

Note: When you use the deleteCAClient AdminTask to delete the CA client, the CA client cannot be
deleted if a CA certificate that exists in the keystore was obtained from the certificate authority and
is still referenced by the CA client. For example, when such CA certificate still exists, the user
receives the following message:

Chapter 19. Administering application security 1869



wsadmin>$AdminTask deleteCAClient {-caClientName myca}
WASX7015E: Exception running command:
"$AdminTask deleteCAClient {-caClientName myca}"; exception information:
com.ibm.websphere.management.cmdframework.CommandValidationException:
CWPKI0687E: The Certificate Authority (CA) client myca is still referenced by:
[Certificate alias myca21 in key store CellDefaultKeyStore].
wsadmin>

Viewing or modifying a CA client in SSL
You can view or modify the CAClient object settings in the security configuration. The CAClient object
contains all the information needed to connect and communicate with a certificate authority (CA). A
connection to a Certificate Authority is used to request a certificate, query a certificate, or revoke a
certificate.

Before you begin

You use the administrative console to view or modify a CA client.

Procedure
1. Click Security > SSL certificate and key management.

2. Click Certificate Authority (CA) client configurations. A panel displaying the existing CA clients
appears.

3. Click the CA client name you want to examine and modify.

Note: You can also use the getCAClient AdminTask to get information about the existing CA client
and the modifyCACleint AdminTask to make changes to the CA client.

4. Make the changes to the CA client information as required. Modify the following information as
required.

v Name of the CA client.

v The management scope (selected from the drop-down list.

v Implementation class.

v CA server host name.

v User name.

v Password.

v Confirm of password.

v Number of times to poll.

v Polling interval (in minutes) when requestin certificates.

v Custom properties.

5. Click Apply then OK.

Results

The information in the object can then be used by the runtime to connect to a CA to create, revoke, or
replace a certificate

What to do next

Creating a keystore configuration for a preexisting keystore file
A Secure Sockets Layer (SSL) configuration references keystore configurations during security processing.
If another keystone tool is used to create a keystore file, or the keystone file was saved from a previous

1870 Administering WebSphere applications



configuration, you must create a new keystone configuration object that references the preexisting
keystone file. The server then uses this new keystone configuration object to obtain information from the
preexisting keystone file.

Before you begin

A keystore must already exist.

Alternative Method: To create a keystore by using the wsadmin tool, use the createKeyStore command
of the AdminTask object. For more information, see the KeyStoreCommands
command group for the AdminTask object article.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound}.

2. Under Related Items, click Key stores and certificates, then click New.

3. Type a name in the Name field. This name uniquely identifies the keystore in the configuration.

4. Type the location of the keystore file in the Path field. The location can be a file name or a file URL to
an existing keystore file.

5. Type the keystore password in the Password field. This password is for the keystore file
that you specified in the Path field.

6. Type the keystore password again in the Confirm Password field to confirm the password.

7. Select a keystore type from the list. The type that you select is for the keystore file that you specified
in the Path field.

8. Select any of the following optional selections:

v The Read only selection creates a keystore configuration object but does not create a keystore file.
If this option is selected, the keystore file that you specified in the Path field must already exist.

v The Initialize at startup selection initializes the keystore during runtime.

v The Enable cryptographic operations on a hardware device specifies whether a hardware
cryptographic device is used for cryptographic operations only.

gotcha: Operations that require login are not supported when using this option.

9. Click Apply and Save.

Results

You have created a keystore configuration object for the keystore file that you specified. This keystore can
now be used in an SSL configuration.

Recreating the .kdb keystore internal password record
The IBM i keystore type IBMi5OSKeyStore does not recognize or generate .sth password stash files.
Instead it keeps an internal record of the password for the .kdb keystore file where it is created. If the .kdb
file is moved, the password is no longer associated with the keystore. In that case, you must use the
Digital Certificate Manager (DCM) to recreate the internal record of the password for the .kdb keystore file.

Before you begin

Refer to the topic Keystore configurations for SSL before attempting this task.

Chapter 19. Administering application security 1871



About this task

To recreate the internal record of the password for the .kdb keystore file, start the DCM. For more
information, see the Digital Certificate Manager information.

Procedure
1. Click Select a Certificate Store.

2. Select Other System Certificate Store.

3. Enter the certificate store path and filename.

4. Enter the certificate store password.

5. Click Continue.

6. In the left hand panel, select Manage Certificate Store.

7. Click Change password.

8. Enter the new password and confirm it. Note that DCM requires a different password than the one
you specified in step 4.

9. Select Automatic login.

10. Click Continue.

11. Click OK when a message displays that confirms that the password is changed.

12. Repeat steps 1 through 5 to create the internal record of the new password for the .kdb keystore file.

13. Repeat steps 1 through 12 to change the password back to the original password and to create the
internal record of the original password for the .kdb keystore file.

Results

You have recreated the internal record of the password for the .kdb keystore file.

Configuring a hardware cryptographic keystore
You can create a hardware cryptographic keystore that WebSphere Application Server can use to provide
cryptographic token support in the server configuration.

About this task

Note: The hardware accelerator is not supported except for the following situations:

v If you are using WebSphere Application Server for z/OS and are using the IBMJCECCA crypto
provider.

v If you are using WebSphere Application Server Version 7.0 and above running on zLinux and
are using the IBMPKCS11 provider.

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Click New.

3. Type a name to identify the keystore. This name is used to enable hardware cryptography in the Web
Services Security configuration.

4. Optionally, you can type a description for the keystore in the Description field.

5. You can specify a Management scope for the key store. This is not required. The management
scope specifies the scope where this Secure Sockets Layer (SSL) configuration is visible. For
example, if you choose a specific node, then the configuration is only visible on that node and any
servers that are part of that node.

1872 Administering WebSphere applications



6. Type the path for the hardware device-specific configuration file. The configuration file is a text file
that contains entries in the following format: attribute = value. The valid values for attribute and
value are described in detail in the Software Developer Kit, Java Technology Edition documentation.
The two mandatory attributes are name and library, as shown in the following sample code:
name = FooAccelerator
library = /opt/foo/lib/libpkcs11.so
slotListIndex = 0

The configuration file should also include device-specific configuration data. Navigate to the
PKCS11ImplConfigSamples.jar file, which contains sample configuration files, under the heading
"PKCS 11 Implementation Provider" on the Java technology site http://www.ibm.com/developerworks/
java/jdk/security/60/.

Note: JSSE2 is unable to use the IBMPKCS11Impl provider for acceleration.

a. You can use this link http://www.ibm.com/developerworks/java/jdk/security/50/secguides/
pkcs11implDocs/IBMJavaPKCS11ImplementationProvider.html to initialize the IBMPKCS11
provider in a thread safe way

b. Specify a unique .cfg file that contains information about the supported hardware device. A
list of supported hardware devices are available at http://www.ibm.com/developerworks/
java/jdk/security/50/secguides/pkcs11implDocs/IBMPKCS11SupportList.html

c. You specify the Signature.getInstance method with the properly initialized IBMPKCS11Impl
provider instance as shown.

Signature.getInstance("SHA1withRSA", ibmpkcs11implinstance);

7. Type a password if the token login is required. Operations that use keys on the token
require a secure login. This field is optional if the keystore is used as a cryptographic accelerator. In
this case, you need to select Enable cryptographic operations on hardware device.

8. Select the PKCS11 type.

9. Select Read only.

10. Click OK and Save.

Results

WebSphere Application Server can now provide cryptographic token support in the server configuration.

Managing keystore configurations remotely
You can manage keystores remotely in a WebSphere Application Server, Network Deployment
environment on separate machines. A node server can hold the configuration for a keystore, while the
actual keystore resides on another system. After you set up a remotely managed configuration, you can
perform all of the certificate and keystore operations for the keystore on the remote machine from the
server that contains the keystore remote configuration.

Before you begin

Key stores can be remotely managed only in network deployed environments.

Alternative Method: To manage a self-signed certificates by using the wsadmin tool, use the
PersonalCertificateCommands group commands of the AdminTask object. For
more information, see the PersonalCertificateCommands command group for the
AdminTask object article.

About this task

Complete the following steps in the administrative console:

Chapter 19. Administering application security 1873

http://www.ibm.com/developerworks/java/jdk/security/60/
http://www.ibm.com/developerworks/java/jdk/security/60/
http://www.ibm.com/developerworks/java/jdk/security/50/secguides/pkcs11implDocs/IBMJavaPKCS11ImplementationProvider.html
http://www.ibm.com/developerworks/java/jdk/security/50/secguides/pkcs11implDocs/IBMJavaPKCS11ImplementationProvider.html
http://www.ibm.com/developerworks/java/jdk/security/50/secguides/pkcs11implDocs/IBMPKCS11SupportList.html
http://www.ibm.com/developerworks/java/jdk/security/50/secguides/pkcs11implDocs/IBMPKCS11SupportList.html


Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security

configurations > {Inbound | Outbound} > ssl_configuration > Key stores and certificates.

2. Click New.

3. Type a name in the Name field. This name uniquely identifies the keystore in the configuration.

4. Type the location of the keystore file in the Path field. The location can be a file name or a file
Uniform Resource Locator (URL) to an existing keystore file.

5. Type the keystore password in the Password field. This password is for the keystore file that you
specified in the Path field.

6. Type the keystore password again in the Confirm Password field to confirm the password.

7. Select a keystore type from the list. The type you select is for the keystore file that you specified in
the Path field.

8. Select the Remotely managed check box, and then fill in one or more hosts names of the systems
where the keystore file is to be located. If you provide multiple host names, separate the host names
with a pipe (|).

9. Select any of the following optional selections:

v The Read only selection creates a keystore configuration object but does not create a keystore
file. If this option is selected, the keystore file that you specified in the Path field must already
exist.

v The Initialize at startup selection initializes the keystore during run time.

10. Select Apply and Save.

Results

A keystore configuration object is created on the server from where the command was run. The keystore
file for the configuration will be created on each system that you specified in the host list.

What to do next

Now, you can perform all certificate management operations on the keystore from the system where the
keystore configuration resides. For example, you can perform certificate management operations, such as:
creating a self-signed certificate, extracting a certificate, or extracting a signer certificate.

Keystores and certificates collection
Use this page to manage keystore types, including cryptography, Resource Access Control Facility
(RACF), Certificate Management Services (CMS), Java, and all trust store types.

gotcha: In most cases, having unused and expired signer certificates in a trust store does not cause
problems. However, if you experience a problem because the trust store includes an unused or
expired signer certificate, you can safely delete the following expired signer certificates from the
dummy keystores files:

v DummyClientKeyFile.jks

v DummyClientTrustFile.jks

v DummyServerKeyFile.jks

v DummyServerTrustFile.jks

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Keystores and certificates.

1874 Administering WebSphere applications



Table 160. Keystores and certificates buttons. This table describes the keystores and certificates buttons.
Button Resulting action

New Adds a new keystore object that can be referenced by Secure Sockets Layer (SSL) configurations or
KeySets. The Keystore management scope is based on the part of the topology tree from which it
was created.

Delete Deletes an existing keystore. The keystore should not be referenced by any other parts of the
configuration before you delete it.

Change password Allows for changing a keystore password.

Exchange signers Refers to exchanging signers in a keystore. You can select two keystores, along with personal
certificates or signer certificates from a selected keystore, then add them as a signer to another
selected keystore.

Keystore usages: Filters the keystore usage types in the keystore collection.

The default value for the keystore usage filter depends on the navigation path that you followed to get to
the Keystores and certificates panel. You can change the value of the keystore usage filter by clicking on
the drop-down list and selecting a different filter value.

Navigation path Keystore usage default value
Security > SSL certificate and key management >
Keystores and certificates

SSL keystores

Security > SSL certificate and key management > Key
sets > CellLTPAKeyPair > Keystores and certificates

Key set keystores

Security > SSL certificate and key management > SSL
configurations > CellDefaultSSLSettings > Keystores and
certificates

SSL keystores

Security > SSL certificate and key management > Manage
endpoint security configurations > node name > Keystores
and certificates

SSL keystores

Name:

Specifies the unique name that is used to identify the keystore. This name is typically scoped by the
ManagementScope scopeName and based upon the location of the keystore. The name must be unique
within the existing keystore collection.

This is a user-defined name.

Description:

Specifies the description of the keystore.

This is a user-defined description.

Path:

Specifies the location of the keystore file in the format needed by the keystore type. This file can be a
card-specific configuration file for cryptographic devices or a filename or file URL for file-based keystores.
It can be a safkeyring URL for RACF keyrings.

Key store settings
Use this page to create all keystore types, including cryptographic, Resource Access Control Facility
(RACF), Certificate Management Services (CMS), Java, and all truststore types.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound}. Under
Related Items, click Key stores and certificates. Click either New or an existing keystore.

Chapter 19. Administering application security 1875



Links to Personal certificates, Signer certificates, and Personal certificate requests enable you to manage
certificates in a manner similar to iKeyman capabilities. A keystore can be file-based, such as CMS or
Java keystore types, or it can be remotely managed.

Note: Any changes made to this panel are permanent.

Name:

Specifies the unique name to identify the keystore. The keystore is typically scoped by the
ManagementScope scopeName based on the location of the keystore. The name must be unique within
the existing keystore collection.

Information Value
Data type: Text

Description:

Specifies the description of the keystore.

Information Value
Data type: Text

Management scope:

Specifies the scope where this Secure Sockets Layer (SSL) configuration is visible. For example, if you
choose a specific node, then the configuration is only visible on that node and any servers that are part of
that node.

Information Value
Data type: Text

Path:

Specifies the location of the keystore file in the format needed by the keystore type. This file can be a
dynamic link library (DLL) for cryptographic devices or a filename or file URL for file-based keystores. It
can be a safkeyring URL for RACF keyrings.

Information Value
Data type: Text

Control region user:

Specifies the Control region Started Task user ID in which the Control region System Authorization Facility
(SAF) keyring is created. The user ID must match the exact ID being used by the Control region. Note:
This option only applies when creating writable SAF keyrings on z/OS.

Information Value
Data type: Text

Servant region user:

Specifies the Servant region Started Task user ID in which the Servant region System Authorization
Facility (SAF) keyring is created. The user ID must match the exact ID being used by the Servant region.
Note: This option only applies when creating writable SAF keyrings on z/OS.

1876 Administering WebSphere applications



Information Value
Data type: Text

Password [new keystore] | Password [existing keystore]:

Specifies the password used to protect the physical keystore in the operating system. For the default
keystore (names ending in DefaultKeyStore or DefaultTrustStore), the password is WebAS. This default
password must be changed.

This field can be edited.

Information Value
Data type: Text

Note: If you want to push the key store to all nodes, the path should be: ${CONFIG_ROOT}/cells/
CELLNAME/yourkeystore.kdb.

Confirm password:

Specifies confirmation of the password to open the keystore file or device.

Information Value
Data type: Text

Type:

Specifies the implementation for keystore management. This value defines the tool that operates on this
keystore type.

The list of options is returned by java.security.Security.getAlgorithms("KeyStore"). Some options might be
filtered and some might be added based on the java.security configuration.

Information Value
Data type: Text
Default: PKCS12

Read only:

Specifies whether the keystore can be written to or not. If the keystore cannot be written to, certain
operations cannot be performed, such as creating or importing certificates.

Information Value
Default: Disabled

Remotely managed:

Specifies whether the key store is remotely managed, which means that a remote MBean call is needed to
update the key store based on the host name specified in the host list field. Most hardware cryptographic
token devices are remotely managed. If a key store is marked remotely managed, list the host name of the
server where the device is installed in the Host list field.

Information Value
Default:

Chapter 19. Administering application security 1877



Initialize at startup:

Specifies whether the keystore needs to be initialized before it can be used for cryptographic operations. If
enabled, the keystore is initialized at server startup.

Information Value
Default: Disabled

Enable cryptographic operations on hardware device:

Specifies whether a hardware cryptographic device is used for cryptographic operations only. Operations
that require a login are not supported when using this option.

Information Value
Default: Disabled

Key managers collection
Use this page to define the implementation settings for key managers. A key manager is invoked during a
Secure Sockets Layer (SSL) handshake to determine which certificate alias is used. The default key
manager (WSX509KeyManager) performs alias selection. If more advanced function is desired, define a
custom key manager on the Manage endpoint security configurations panel.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key managers.

Table 161. Key managers buttons. This table describes the key managers buttons.
Button Resulting action

New Adds a new key manager that can be selected by an SSL configuration. A key manager is invoked
during an SSL handshake to select a specific certificate alias to use from a key store.

Delete Deletes an existing key manager. The key manager should not be referenced by any SSL
configuration before you can delete it.

Name:

Specifies the name of the key manager, which you can select on the SSL configuration panel.

Class name:

Specifies the name of the key manager implementation class. This class implements
javax.net.ssl.X509KeyManager interface and, optionally, the com.ibm.wsspi.ssl.KeyManagerExtendedInfo
interface.

Algorithm:

Specifies the algorithm name of the key manager that is implemented by the selected provider.

Key managers settings
Use this page to define key managers implementation settings. A key manager gets invoked during an
Secure Sockets Layer (SSL) handshake to determine the certificate alias to be used. The default key
manager (WSX509KeyManager) performs alias selection. If more advanced function is desired, a custom
key manager can be specified here and selected in the SSL configuration.

1878 Administering WebSphere applications



To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, clickManage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key managers. On the next panel, click New.

Name:

Specifies the name of the key manager, which you can select on the SSL configuration panel.

Information Value
Data type: Text

Management scope:

Specifies the scope where this Secure Sockets Layer (SSL) configuration is visible. For example, if you
choose a specific node, then the configuration is only visible on that node and any servers that are part of
that node.

Information Value
Data type List
Range: Applicable scopes

Standard:

Specifies the key manager selection that is available from a Java provider that is installed in the
java.security file. This provider might be shipped by Java Secure Sockets Extension (JSSE) or be a
custom provider that implements an X509KeyManager interface.

Information Value
Default: Enabled

Provider:

Specifies the provider name that has an implementation of an X509KeyManager interface. This provider is
typically set to IBMJSSE2.

Information Value
Data type: Text
Default: IBMJCE

Algorithm:

Specifies the algorithm name of the trust manager implemented by the selected provider.

Information Value
Data type: Text
Default: IbmX509

Custom:

Specifies that the key manager selection is based on a custom implementation class that implements the
javax.net.ssl.X509KeyManager interface and optionally the com.ibm.wsspi.ssl.KeyManagerExtendedInfo
interface to obtain additional connection information not otherwise available.

Chapter 19. Administering application security 1879



Information Value
Default: Disabled

Class name:

Specifies the name of the key manager implementation class.

Information Value
Data type: Text

Creating a self-signed certificate
You can create a self-signed certificate. WebSphere Application Server uses the certificate at runtime
during the handshake protocol. Self-signed certificates are located in the default keystore.

Before you begin

You must create a keystore before you can create a self-signed certificate.

Alternative Method: To create a self-signed certificate by using the wsadmin tool, use the
createSelfSignedCertificate command of the AdminTask object. For more
information, see the PersonalCertificateCommands command group for the
AdminTask object article.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore ].

2. From Additional Properties, click Personal certificates.

3. Click Create a self-signed certificate.

4. Type a certificate alias name. The alias identifies the certificate request in the keystore.

5. Type a common name (CN) value. This value is the CN value in the certificate distinguished name
(DN).

6. Type the validity period The default validity period value is 365 days.

7. You can configure one or more of the following optional values:

a. Optional: Select a key size value. The default key size value is 2048 bits.

b. Optional: Type an organization value. This value is the O value in the certificate DN.

c. Optional: Type an organizational unit value. This organizational unit value is the OU value in the
certificate DN.

d. Optional: Type a locality value. This locality value is the L value in the certificate DN.

e. Optional: Type a state or providence value. This value is the ST value in the certificate DN.

f. Optional: Type a zip code value. This zip code value is the POSTALCODE value in the certificate
DN.

g. Optional: Select a country value from the list. This country value is the C= value in the certificate
request DN.

8. Click Apply.

1880 Administering WebSphere applications



Results

You have created a self-signed certificate that resides in the keystore. The SSL configuration for the
WebSphere Application Server runtime uses this certificate for SSL communication. Extract the signer of
the self-signed certificate to add the signer to another keystore.

Replacing an existing personal certificate
Occasionally, you need to replace an existing personal certificate with a new certificate. This task
discusses how to replace the existing personal certificate in the keystore. It searches all keystores for a
signer certificate extracted from the original personal certificate, and places the signer of the new personal
certificate in it's place. It also updates all of the certificate alias references in the security configuration with
the new one.

Before you begin

The current certificate and the certificate replacement must exist in the same keystore before you can
replace a certificate.

Alternative Method: To replace a self-signed certificate by using the wsadmin tool, use the
replaceCertificate command of the AdminTask object. For more information, see
the PersonalCertificateCommands command group for the AdminTask object article

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore ].

2. Under Additional Properties, click Personal certificates.

3. Select the certificate to be replaced. The alias list must include the certificate to be replaced and the
certificate to replace it with.

4. Click Replace.

5. Select a replacement certificate alias from the list.

6. You can delete one of the following types of certificates:

v Select Delete old certificate to delete the existing or expired certificate.

v Select Delete old signers to delete the existing signer certificates.

7. Click Apply.

Results

Your results depend on what you selected:

v If you selected Delete old certificate, the new certificate alias replaces all of the references to the
certificate alias in the configuration.

v If you selected Delete old signers, the new signer certificate replaces all of the occurrences of the old
signer certificates.

v If the new certificate alias replaces the existing alias, the WebSphere Application Server runtime checks
to make sure that:

– All of the SSL Configurations objects reference the certificate

– The Dynamic SSL Configuration Selections objects and the SSL Configuration group objects
reference the certificate.

v If you selected Delete old signers, the existing signer certificates are replaced.

Chapter 19. Administering application security 1881



v If you selected Delete old certificate, the existing certificate is deleted.

Creating a new SSL certificate to replace an existing one in a node
When using the -asExistingNode option on the addNode command, you might be adding an existing node
to a different machine. The default Secure Sockets Layer (SSL) certificate of the node does not contain
the name of the machine the node is located on. In most scenarios, the subject DN of the default
certificate does not make a difference. However, you might want to change the default certificate of the
node to contain the hostname of the node.

Before you begin

To replace the default certificate of a node, you must create a new NodeDefaultKeyStore for the certificate
and then replace the old certificate with the new one.

The certificate created by default on the WebSphere Application Server subjectDN is of the form
cn=<hostname>, ou=<cell name>, ou=<node name>, o=ibm, c=us. When creating a new certificate you
can also customize the subjectDN.

About this task

To create a new SSL certificate in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Select the NodeDefaultKeyStore of the node you want to change.

3. Under Additional Properties, select Personal certificates.

4. Under the Create pull-down, select Chained Certificate.

5. Enter a certificate and alias name. This can be any name you choose as long as the alias does not
already exist. It is just a label to identify the certificate in the keystore.

6. Enter a common name. This is typically the hostname the node is running on.

7. Optional: Fill in any of the other Subject DN related fields. If you want the subject DN to look like the
default subjectDN on WebSphere Application Server, then enter:

v IBM in the Organization field.

v <cell name>,ou=<node name> in the Organization unit field.

v Under the Country or region pull-down, select US.

8. You can use the defaults for Root certificate used to sign the certificate, Key Size, and Validity Period
or supply your own values.

9. Click Apply.

Note: You can also create a new chained certificate using the createChainedCertificate command.
Read PersonalCertificateCommands command group for the AdminTask object for more
information.

You must now replace the old certificate with the one you just created. The replace certificate option
not only replaces the old default certificate with a new one but also replaces any occurrences of the
signer of the old certificate with the signer of the new certificate. The configuration is also checked for
references to the alias name of the old certificate and replaces it with the alias name of the new
certificate. To replace the old certificate with the new one, complete the remaining steps.

10. Click Security > SSL certificate and key management > Key stores and certificates.

11. Select the NodeDefaultKeyStore of the node you want to change.

12. Under Additional Properties, select Personal certificates.

13. Select the default certificate of the node, usually called default.

14. Click Replace.

1882 Administering WebSphere applications



15. Select the certificate alias name for the certificate you just created from the Replace with pull-down.

16. Click Delete old Certificate after replacement.

17. Click Apply.

Note: You can also create a new chained certificate using the replaceCertificate command. Read
PersonalCertificateCommands command group for the AdminTask object for more information.

What to do next

You can also replace default certificates in an entire cell. Read Creating new SSL certificates to replace
existing ones in a cell for more information.

Creating new SSL certificates to replace existing ones in a cell
To replace default Secure Socket Layer (SSL) certificates in an entire cell, you must create a new
self-signed root certificate in the root keystore, DmgrDefaultRootStore, and replace the old root certificate
with the new one.

About this task

For the default certificate of the cell in CellDefaultKeyStore and the default certificate of each node in
NodeDefaultKeyStore, create a new chained certificate and replace the old default certificate with the new
certificate.

The root certificate is created by default on WebSphere Application Server, and has a subjectDN in the
form cn=<hostname>, ou=Root Certificate, ou=<cell name>, ou=<node name>, o=ibm, c=us. When you
create a new root certificate you can also customize the subject DN.

To create a new SSL root certificate in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Key stores and certificates.

2. Under the Keystore usages pull-down, select Root certificate keystore.

3. Select the DmgrDefaultRootStore in the keystore collection.

4. Under Additional Properties, select Personal certificates.

5. Under the Create pull-down, select Self-signed Certificate.

6. Enter a certificate and alias name. This can be any name you choose as long as the alias does not
already exist. It is just a label to identify the certificate in the keystore.

7. Enter a common name. This is typically the hostname the node is running on.

8. Optional: Fill in any of the other Subject DN related fields. If you want the subject DN to look like the
default subjectDN on WebSphere Application Server, then enter:

v IBM in the Organization field.

v <cell name>,ou=<node name> in the Organization unit field.

v Under the Country or region pull-down, select US.

9. You can use the defaults for Root certificate used to sign the certificate, Key Size, and Validity Period
or supply your own values.

10. Click Apply.

Note: You can also create a self-signed certificate using the createSelfSignedCertificate command.
Read PersonalCertificateCommands command group for the AdminTask object for more
information.

You must now replace the old root certificate with the one you just created. The replace certificate
option not only replaces the old default certificate with a new one but also replaces any occurrences

Chapter 19. Administering application security 1883



of the signer of the old certificate with the signer of the new certificate. The configuration is also
checked for references to the alias name of the old certificate and replaces it with the alias name of
the new certificate. To replace the old certificate with the new one, complete the remaining steps.

11. Click Security > SSL certificate and key management > Key stores and certificates.

12. Select the CellDefaultKeyStore of the node you want to change.

13. Under Additional Properties, select Personal certificates.

14. Select the default certificate of the node, usually called default.

15. Click Replace.

16. Select the certificate alias name for the new certificate you just created from the Replace with
pull-down.

17. Click Delete old Certificate after replacement.

18. Click Apply.

What to do next

You can also replace default certificates in a node. Read Creating a new SSL certificate to replace an
existing one in a node for more information

Creating a certificate authority request
To ensure Secure Sockets Layer (SSL) communication, servers require a personal certificate that is either
self-signed, chained or signed by an external certificate authority (CA). You must first create a personal
certificate request to obtain a certificate that is signed by a CA.

Before you begin

The keystore that contains a personal certificate request must already exist.

Alternative Method: To create a certificate request by using the wsadmin tool, use the
createCertificateRequest command of the AdminTask object. For more information,
see the CertificateRequestCommands command group of the AdminTask object
article.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Key stores and certificates > keystore.

2. Click Personal certificate requests > New.

3. Type the full path of the certificate request file. The certificate request is created in this location.

4. Type an alias name in the Key label field. The alias identifies the certificate request in the keystore.

5. Type a common name (CN) value. This value is the CN value in the certificate distinguished name
(DN).

6. You can configure one or more of the following optional values:

a. Optional: Select a key size value. The valid key size values are 512, 1024, 2048, 4096, and 8192.
The default key size value is 2048 bits.

b. Optional: Type an organization value. This value is the O value in the certificate DN.

c. Optional: Type an organizational unit value. This organizational unit value is the OU value in the
certificate DN.

d. Optional: Type a locality value. This locality value is the L value in the certificate DN.

e. Optional: Type a state or providence value. This value is the ST value in the certificate DN.

1884 Administering WebSphere applications



f. Optional: Type a zip code value. The zip code value is the POSTALCODE value in the certificate
DN.

g. Optional: Select a country value from the list. This country value is the C= value in the certificate
request DN.

7. Click Apply.

Results

The certificate request is created in the specified file location in the keystore. The request functions as a
temporary placeholder for the signed certificate until you manually receive the certificate in the keystore.

Note: Key store tools (such as iKeyman and keyTool) cannot receive signed certificates that are
generated by certificate requests from WebSphere Application Server. Similarly, WebSphere
Application Server cannot accept certificates that are generated by certificate requests from other
keystore utilities.

What to do next

Now you can receive the CA-signed certificate into the keystore to complete the process of generating a
signed certificate for your server.

Certificate request settings
Use this page to verify the properties of a personal certificate request.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional
Properties, click Personal certificate requests > certificate request .

File for certificate request:

Specifies the fully qualified name of the file that contains the certificate request that can be sent to a
certificate authority (CA) server.

Key label:

Specifies the certificate alias name for the signer in the key store.

Key size:

Specifies the size of the keys that are generated.

Requested by:

Specifies the Subject distinguished name (DN) that represents the identity of the certificate request.

Fingerprint (SHA Digest):

Specifies the SHA hash of the personal certificate, which can be used to verify that the certificate has not
been altered when it is used in a remote connection.

Signature algorithm:

Specifies the algorithm used to sign the certificate.

Chapter 19. Administering application security 1885



Personal certificates collection
Use this page to manage personal certificates.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional
Properties, click Personal certificates.

The Personal certificates page lists all personal certificates in the selected key store. You can do most
certificate management operations in this panel, including creating a new self-signed certificate, deleting a
certificate, receiving one generated from a CA, replacing a certificate (simultaneous delete and create,
replacing references across all key stores), extracting the signer, and importing or exporting a personal
certificate.

Personal certificate requests are temporary place holders for certificates that will be signed by a certificate
authority (CA).

The Key store collection must contain at least two key store files. You must select one file in order to
replace, extract, or export a key store,

Table 162. Personal certificates buttons. This table lists the personal certificates buttons.
Button Resulting action

Create (drop-down list) Enables the application server to create the following certificates:

v Self-signed Certificate

v CA-signed Certificate

v Chained Certificate

Delete
Specifies to delete a certificate from the key store. Be careful that the certificate alias

is not referenced elsewhere in the Secure Sockets Layer configuration.

Receive a certificate from a certificate
authority

Enables the application server to receive a certificate authority (CA)-generated certificate from a file to
complete a certificate request.

Replace
Replaces a personal certificate with another personal certificate. All key stores in the

configuration looking for signer certificate form the original personal certificate and replaces them with
the new personal certificates signer. Any place in the security configuration where the certificate alias
is referenced will be replaced with the new certificate alias.

Extract Extracts the signer part of personal certificate from the key store and stores it to a file. The file can
then be used to add the signer to another key store.

Import Imports a certificate, including the private key, from a key store file or managed key store.

Export Exports a certificate, including the private key, to a specified key store file or manage key store.

Revoke Revokes a CA-signed certificate.

Renew Renews a self signed or chained certificate.

Alias:

Specifies the alias by which the personal certificate is referenced in the key store.

When you select an alias, the View Certificate panel opens.

Issued by:

Specifies the distinguished name of the entity by which the certificate was issued. This name is the same
as the issued-to distinguished name when the personal certificate is self-signed.

Issued to:

Specifies the distinguished name of the entity to which the certificate was issued.

1886 Administering WebSphere applications



Serial number:

Specifies the certificate serial number that is generated by the issuer of the certificate.

Expiration:

Specifies the expiration date of the signer certificate for validation purposes.

Self-signed certificates settings
Use this page to create self-signed certificates.

To view this administrative console page, click Security SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations

{Inbound | Outbound} > ssl_configuration. Under Related items, click Key stores and certificates
keystore. Under Additional Properties, click Personal certificates > Create (drop-down list) >
Self-signed certificate.

This same help file is available when you create a new certificate or view an existing certificate. The fields
in this help file are described according to how they appear and are used on the administrative console.

Alias:

Specifies the alias for the personal certificate in the keystore.

You enter the alias name for the personal certificate in the keystore when you are creating a certificate.
The alias name is read-only when you view an existing certificate.

Information Value
Data type: Text

Version:

Specifies the version of the personal certificate. Valid versions include X509 V3, X509 V2, or X509 V1. It is
recommended to use X509 V3 certificates.

This field is read-only when you create or view a certificate.

Information Value
Data type: Text
Default: X509 V3
Range:

Key size:

Specifies the key size of the private key that is used by the personal certificate.

When you are creating a certificate you can select the key size from the drop-down list. This field is
read-only when you view a certificate.

Information Value
Data type: Integer
Default: 1024
Other valid key sizes: 512, 2048, 4096

Chapter 19. Administering application security 1887



Common name:

Specifies the common name portion of the distinguished name (DN). It is recommended that this name be
the host name of the machine on which the certificate resides. In some cases, the common name is used
to login during Secure Socket Layer (SSL) certificate authentication; therefore, in some cases, this name
might be used as a user ID for a local operating system registry.

When you create a new certificate you can enter the common name in this field. This field does not
display when you view an existing certificate.

Information Value
Data type: Text

Serial number:

Identifies the certificate serial number that is generated by the issuer of the certificate. When creating a
certificate this field does not appear.

This field is read-only when you view an existing certificate.

Validity period:

Specifies the length in days during which the certificate is valid. The default is 365 days. You can enter
any number of days you wish.

This field is read-only when you view an existing certificate. This field displays a validity period as a range
of days between two dates. For example, Valid from March 16, 2008 to March 16, 2009.

Information Value
Data type: Text

Organization:

You enter the organization portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

Information Value
Data type: Text

Organization unit:

Specifies the organization unit portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

Information Value
Data type: Text

Locality:

Specifies the locality portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

1888 Administering WebSphere applications



Information Value
Data type: Text

State/Province:

Specifies the state portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

Information Value
Data type: Text

Zip code:

Specifies the zip code portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

Information Value
Data type: Integer

Country or region:

Select the country portion of the distinguished name from the drop-down list. This field is optional.

This field displays only when you create a new certificate.

Information Value
Data type: Text
Default: (none)

Refer to http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html for a list of
ISO 3166 country codes.

Validity period:

Identifies the length, in days, when the certificate is valid. The default is 365 days.

This field is read-only when you view an existing certificate and shows the start and end dates.

Issued to:

Identifies the distinguished name of the entity to which the certificate was issued.

This field is read-only when you view an existing certificate.

Issued by:

Identifies the distinguished name of the entity that issued the certificate. When the personal certificate is
self-signed, this name is identical to the Issued to distinguished name.

This field is read-only when you view an existing certificate.

Fingerprint (SHA Digest):

Chapter 19. Administering application security 1889

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html


Identifies the Secure Hash Algorithm (SHA hash) of the certificate, which can be used to verify the
certificate's hash at another location, such as the client side of a connection.

This field is read-only when you view an existing certificate.

Signature algorithm:

Identifies the algorithm used to sign the certificate.

This field is read-only when you view an existing certificate.

Personal certificate requests collection
Use this page to manage personal certificate requests. Personal certificate requests are temporary place
holders for certificates that will be signed by a certificate authority (CA).

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional
Properties, click Personal certificate requests.

A private key is generated during the certificate request generation, but only the certificate is sent to the
CA. The CA generates a new certificate, signed by the CA. This can be added in the Personal Certificates
panel.

Table 163. Personal certificate requests buttons. This table lists the personal certificate requests buttons.
Button Resulting action

New Creates a personal certificate request that can be given to a certificate authority to complete.

Delete Deletes a personal certificate request.

Extract Extracts a personal certificate request. Only one certificate request can be selected at a time.

Query Queries a personal certificate request. Only one certificate request can be selected at a time.

gotcha:

v Any changes made to this panel are permanent.

v A Personal certificate request places a valid self-signed certificate in the keystore. This
placeholder certificate is later replaced with the certificate that the Certificate Authority signs
and returns. You must have a default certificate assigned on the SSL configuration. If a default
certificate is not assign, when multiple personal certificates exist in a keystore and no default
certificate is selected, the selection of a certificate within the SSL configuration keystore is
random, which might cause SSL handshake errors.

Key label:

Specifies the alias that represents the personal certificate request in the key store.

Requested by:

Specifies the Subject distinguished name (DN) that represents the identity of the certificate request.

Personal certificate requests settings
Use this page to create a new certificate request that can be extracted and sent to a certificate authority
(CA).

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

1890 Administering WebSphere applications



ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional
Properties, click Personal certificates requests. Then click the New button.

Personal certificate requests are temporary place holders for certificates that will be signed by a certificate
authority (CA). The private key is generated during the certificate request generation, but only the
certificate is sent to the CA. The CA generates a new certificate, signed by the CA.

Note: Any changes made to this panel are permanent.

File for certificate request:

Specifies the fully qualified file name from which the certificate request is exported. This portion of the
certificate request can be given to the certificate authority to generate the real certificate. After the real
certificate is generated, you can perform a “Receive a certificate from a certificate authority” from the
personal certificate collection view.

Information Value
Data type: String

Key label:

Specifies the alias that represents the personal certificate request in the key store.

Information Value
Data type: String

Key size:

Specifies the size of the keys that are generated.

Information Value
Data type: Integer
Default: 2048

Common name:

Specifies the name of the entity that the certificate represents. This common name can represent a
person, company, or machine. For web sites, the common name is frequently the DNS host name where
the server resides.

Information Value
Data type: String

Organization:

Specifies the organization portion of the distinguished name.

Information Value
Data type: String

Organizational unit:

Specifies the organization unit portion of the distinguished name. This field is optional.

Chapter 19. Administering application security 1891



Information Value
Data type: String

Locality:

Specifies the locality portion of the distinguished name. This field is optional.

Information Value
Data type: String

State or province:

Specifies the state portion of the distinguished name. This field is optional.

Information Value
Data type: String

Zip code:

Specifies the zip code portion of the distinguished name. This field is optional.

Information Value
Data type: Integer

Country or region:

Specifies the country portion of the distinguished name.

Information Value
Data type: String

Refer to http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html for a list of
ISO 3166 country codes.

Extract certificate request
Use this page to extract a certificate request to a file so it can be sent to a certificate authority (CA).

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional
Properties, click Personal certificate requests > Extract.

Key label:

Specifies the alias that represents the personal certificate request in the key store.

File for certificate request:

Specifies the filename where the extracted certificate request is placed.

Information Value
Data type: Text

1892 Administering WebSphere applications

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html


Receiving a certificate issued by a certificate authority
When a certificate authority (CA) receives a certificate request, it issues a new certificate that functions as
a temporary placeholder for a CA-issued certificate. A keystore receives the certificate from the CA and
generates a CA-signed personal certificate that WebSphere Application Server can use for Secure Sockets
Layer (SSL) security.

Before you begin

The keystore must contain the certificate request that was created and sent to the CA. Also, the keystore
must be able to access the certificate that is returned by the CA.

Note: To receive a certificate by using the wsadmin tool, use the receiveCertificate command of the
AdminTask object. For more information, see the PersonalCertificateCommands command group for
the AdminTask object article.

About this task

WebSphere Application Server can receive only those certificates that are generated by a WebSphere
Application Server certificate request. It cannot receive certificates that are created with certificate requests
from other keystore tools, such as iKeyman and keyTool.

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. Under Additional Properties, click Personal certificates.

3. Select a personal certificate.

4. Click Receive a certificate from a certificate authority.

5. Type the full path and name of the certificate file.

6. Select a data type from the list.

7. Click Apply and Save.

Results

The keystore contains a new personal certificate that is issued by a CA. The original certificate request is
changed to a personal certificate.

What to do next

The SSL configuration is ready to use the new CA-signed personal certificate.

Export certificate to a keystore file or a managed keystore:

Use this page to specify a personal certificate to export to a keystore file or a managed keystore.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > keystore . Under Additional
Properties, click Personal certificates. Select a personal certificate using the check box. Then click the
Export button.

Certificate alias to export:

Chapter 19. Administering application security 1893



Displays the name of the certificate that you selected to export on the previous panel.

Information Value
Data type: Text

Keystore Password:

Type in the password of the keystore to use for the export.

Information Value
Data type: Text

Alias:

Specifies the alias that the personal certificate is referenced by in the destination keystore.

Information Value
Data type: Text

Managed key store:

Select this option with the radio button. Then select a keystore from the pull-down list, which is managed
by the security configuration, to export the certificate to.

Information Value
Data type: Drop-down list

Key file name:

Select this option with the radio button. Then type the keystore file name into which the exported certificate
is added. If the keystore file name already exists, the exported certificate is added. If the keystore file
name does not already exist, a keystore file name is created, and the exported certificate is added.

Information Value
Data type: Text

Type:

Specifies the type of keystore file. The valid types are listed in the drop-down list.

Information Value
Data type: Text
Default: PKCS12

Key file password:

Specifies the password that is used to access the keystore file.

Information Value
Data type: Text

Import certificate from a key file or managed keystore:

1894 Administering WebSphere applications



Use this page to specify a personal certificate to import from a keystore or key file.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > keystore . Under Additional
Properties, click Personal certificates. Select a personal certificate using the check box. Then click the
Import button.

Managed key store:

Select this option with the radio button. This selection indicates that the keystore that contains the
certificate to import is a managed keystore.

Information Value
Data type: radio button

Get key store aliases:

Clicking this button queries the configuration for the list of keystore aliases for which the certificate will be
imported to.

Key store:

Select an alias of the keystore from the pull-down list of managed keystores that are managed by the
security configuration. The alias you select identifies the keystore that contains the certificate to import.

Information Value
Data type: drop-down list

Key store password:

Specifies the password for the keystore to use for import.

Information Value
Data type: Text

Key store file:

Select this option with the radio button. This selection indicates a keystore file that contains the certificate
to import.

Information Value
Data type: radio button

Key file name:

Specifies the fully qualified path to keystore file that contains the certificate to import.

Information Value
Data type: Text

Get key file aliases:

Chapter 19. Administering application security 1895



Clicking this button, queries the key file for the aliases of all the personal certificates in the keystore from
which to choose.

Type:

Specify the type of keystore file. Select a valid type from the drop-down list.

Information Value
Data type: Text

Key file password:

Type the password that is used to access the keystore file.

Information Value
Data type: Text

Certificate alias to import:

Specifies the certificate alias identified as the Key file name that you want to import into the current
keystore.

Information Value
Data type: Text
Default: (none)

Imported certificate alias:

Specifies the new alias that you want the certificate to be named in the current keystore.

Information Value
Data type: Text

Receive certificate from CA:

Use this page to import your personal certificate from the certificate authority (CA). The imported certificate
replaces the temporary certificate associated with the public/private keys in the certificate request that is
stored in the key store.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items click Key stores and certificates > key store . Under Additional
Properties, click Personal certificates > Receive certificate from certificate authority.

Certificate file name:

Specifies the filename that contains the certificate generated by the certificate authority (CA).

Information Value
Data type: Text

Data type:

Specifies the format of the file that is either Base64 encoded ASCII data or Binary DER data.

1896 Administering WebSphere applications



Information Value
Data type: Text
Default: Base64-encoded ASCII data

Replace a certificate
Use this page to specify two certificates: the first selected certificate is replaced by the second selected
certificate. The replace function replaces all the old signer certificates in key stores that are managed
throughout the cell with the new signer from the new certificate. The same level of trust that was
established with the old certificate is maintained. All places the certificate's alias is referenced in the
security configuration will be replaced with the certificate's alias. The alias could be referenced on a
security object like the SSL configuration, the dynamic outbound endpoint SSL configuration and key set
groups.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional
Properties click Personal certificates. Select a personal certificate, then click the Replace button.

Old certificate:

Specifies the certificate that you want to replace.

Information Value
Data type: Text

Replace with:

Specifies the certificate that you want to replace the old certificate.

Information Value
Data type: Text
Default: (none)

Delete old certificate after replacement:

Specifies that you want to delete the old certificate and all associated signer certificates after the new
certificate replaces it. If you do not replace the old personal certificate, it might be assigned a new alias
name.

Information Value
Default: Disabled

Delete old signers:

Specifies that you want to delete the old signer certificates that are associated with the old certificate after
the new signer certificates replace them. If you do not delete the old signer certificates, they might be
assigned new alias names.

Information Value
Default: Disabled

Chapter 19. Administering application security 1897



Extracting a signer certificate from a personal certificate
Personal certificates contain a private key and a public key. You can extract the public key, called the
signer certificate, to a file, then import the certificate into another keystore. The client requires the signer
portion of a personal certificate for Security Socket Layer (SSL) communication.

Before you begin

The keystore that contains a personal certificate must already exist.

Alternative Method: To extract a signer certificate from a personal certificate using the wsadmin tool, use
the extractCertificate command of the AdminTask object. For more information, see
the PersonalCertificateCommands command group for the AdminTask object article.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > keystore .

2. Under Additional Properties, click Personal certificates.

3. Select a personal certificate.

4. Click Extract.

5. Type the full path for the certificate file name. The signer certificate is written to this certificate file.

6. Select a data type from the list.

7. Click Apply.

Results

The signer portion of the personal certificate is stored in the file that is provided.

What to do next

This signer can now be imported into other keystores.

Extract certificate
Use this page to extract the signer from the personal certificate and store it in a file. The certificate can be
added to a trust store for trust verification. When extracting the signer from a chained personal certificate,
the signer at the top level of the chain is extracted.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional
Properties, click Personal certificates > Extract.

Certificate alias to extract:

Displays the name of the certificate that you selected for extraction on the previous panel.

Information Value
Data type: Text

Certificate file name:

1898 Administering WebSphere applications



Specifies the fully qualified path where the certificate file will reside.

Information Value
Data type: Text

Data type:

Specifies the format of the file, which is either Base64-encoded ASCII data or Binary DER data.

Information Value
Data type: Text
Default: Base64-encoded ASCII data

Extract signer certificate
Use this page to extract a signer certificate from the keystore to a file so that it can be added elsewhere.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional
Properties, click Signer certificates . Select a signer certificate, then click the Extract button

File name:

Specifies the fully qualified file name where the extracted signer certificate is placed.

Information Value
Data type: Text

Data type:

Specifies the format of the file, which is either Base64 encoded ASCII data or Binary DER data.

Information Value
Data type: Text

Retrieving signers using the retrieveSigners utility at the client
The client requires the signer certificates from the server to be able to communicate with WebSphere
Application Server. Use the retrieveSigners command to get the signer certificate from a server.

Before you begin

The retrieveSigners utility is located in one of the following directories, depending on your operating
system:

v profile_root/bin

In this release, a Java client that does not have access to a stdin console prompt should use the
retrieveSigners utility to download the signers from the remote server key store when signers are needed
for a Secure Sockets Layer (SSL) handshake. For example, you might interpret the client as failing to
respond if an applet client or Java Web Start Client application cannot access the stdin signer exchange
prompt. Thus, you must add the WebSphere Java method call
com.ibm.wsspi.ssl.RetrieveSignersHelper.callRetrieveSigners to your client application to retrieve the
signers and to avoid running the retrieveSigners utility manually.

Chapter 19. Administering application security 1899



Use the retrieveSigners utility for situations where you cannot verify whether or not the
com.ibm.ssl.enableSignerExchangePrompt= property is enabled or disabled when the application makes a
request. Set the com.ibm.ssl.enableSignerExchangePrompt= property to false in the ssl.client.props file if
you cannot see the console.

Alternatively, you can manually create the server key in the client truststore.

About this task

Complete the following steps, as required:

Procedure
1. Use the retrieveSigners command to get the signer certificate from a server. You can find details

about the retrieveSigners parameters in “Secure installation for client signer retrieval in SSL” on page
1804.

2. If the client and server are on the same machine, you will need only the remoteKeyStoreName and
localKeyStoreName parameters. The most typical key store to reference on a remote system is
CellDefaultTrustStore on a network deployed environment and NodeDefaultTrustStore on an
application server.

3. When retrieving signers from a remote server, add these required connection-related parameters:
–host host, –port port, –conntype {RMI | SOAP}.

4. Use the –autoAcceptBootstrapSigner parameter if you want to enable automation of the signer
retrieval. This parameter automatically adds to the server all the signers that are needed to make the
connection.

Results

After running, the command displays the SHI-1 digest of the signers added. The output looks similar to the
following output:

/QIBM/UserData/WebSphere/AppServer/V67/Express/profiles/AppSrv01/bin/retrieveSigners
CellDefaultTrustStore ClientDefaultTrustStore

CWPKI0308I: Adding signer alias "default_signer" to local keystore
"ClientDefaultTrustStore" with the following SHA digest:

Example

The following examples illustrate how to call the retrieveSigners.bat file.

To retrieve signers on the same system, enter:
profile_root/bin/retrieveSigners CellDefaultTrustStore ClientDefaultTrustStore

To retrieve signers on a remote system with a SOAP connection, enter:
profile_root/bin/retrieveSigners CellDefaultTrustStore ClientDefaultTrustStore
-host myRemoteHost -port 8879 -conntype SOAP -autoAcceptBootstrapSigner

To retrieve signers on a remote system that has security enabled, enter:
profile_root/bin/retrieveSigners CellDefaultTrustStore ClientDefaultTrustStore
-host myRemoteHost -port 8879 -conntype SOAP -user testuser -password testuserpwd
-autoAcceptBootstrapSigner

Changing the signer auto-exchange prompt at the client
For clients to communicate with WebSphere Application Server, clients must obtain a signer certificate
from the server. Clients can use the retrieveSigners command to connect to a server to obtain the

1900 Administering WebSphere applications



appropriate signer. A prompt displays that asks whether or not you want to add a signer to the truststore. If
the Secure Sockets Layer (SSL) configuration uses an automated script that might hang, use the prompt
to obtain the certificate.

Before you begin

The com.ibm.ssl.enableSignerExchangePrompt property in the profile_home/properties/
ssl.client.props file controls the signer certificate prompt. By default, this property is set to true,
meaning the prompt is enabled.

About this task

Complete the following steps to disable or enable the signer-exchange prompt at the client:

Procedure
1. Open the profile_home/properties/ssl.client.props file using an editor.

2. Locate the section containing the SSL configuration information for the client that you are working with.

3. Change the value of the com.ibm.ssl.enableSignerExchangePrompt property to false if you do not
want the signer-exchange prompt, or set it to true if you want to be prompted.

4. Save and close the file.

Results

When the com.ibm.ssl.enableSignerExchangePrompt property is set to false, no prompt displays if a
signer is not trusted. In this case the SSL handshake fails. Once the proper signer for the connection
being made is manually installed in the trust store, the SSL handshake can succeed.

When the com.ibm.ssl.enableSignerExchangePrompt property is set to gui or true, a signer-exchange
window is displayed, and you are asked to accept or reject the certificate. If you accept the certificate, it is
installed in the trust store automatically and the handshake succeeds. If you reject the certificate, it does
not get installed in the trust store and the handshake fails since the certificate is not trusted.

When the com.ibm.ssl.enableSignerExchangePrompt property is set to stdin, a signer-exchange ASCII
prompt is displayed, and you are asked to accept or reject the certificate. If you accept the certificate, it is
installed in the trust store automatically and the handshake succeeds. If you reject the certificate, it does
not get installed in the trust store and the handshake fails since the certificate is not trusted.

The prompt looks like the following example:

Example
/QIBM/UserData/WebSphere/AppServer/V85/Express/profiles/default/bin/serverStatus -all
ADMU0116I: Tool information is being logged in file
/QIBM/UserData/WebSphere/AppServer/V85/Express/profiles/default/logs/serverStatus.log
ADMU0128I: Starting tool with the default profile
ADMU0503I: Retrieving server status for all servers
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: server1

*** SSL SIGNER EXCHANGE PROMPT ***
SSL signer from target host 192.174.1.5 is not found in truststore
/QIBM/UserData/WebSphere/AppServer/V85/Express/profiles/default/etc/trust.p12.

Verify that the digest value matches what is displayed at the server in the following signer information:
Subject DN: CN=hostname.austin.ibm.com, O=IBM, C=US
Issuer DN: CN=hostname.austin.ibm.com, O=IBM, C=US
Serial number: 1128544457
Expires: Thu Oct 20 15:34:17 CDT 2006
SHA-1 Digest: 91:A1:A9:2D:F2:7D:70:0F:04:06:73:A3:B4:A4:9C:56:9D:A8:A3:BA

Chapter 19. Administering application security 1901



MD5 Digest: 88:72:C5:88:00:1C:A7:FA:D6:EB:04:88:AC:A1:C9:13

Add signer to the truststore now? (y/n) y
A retry of the request might need to occur.
ADMU0508I: The Application Server "server1" is STARTED.

What to do next

Clients can instigate communications for various processes using signer certificates obtained from
WebSphere Application Server.

Retrieving signers from a remote SSL port
To perform Secure Sockets Layer (SSL) communication with a server, WebSphere Application Server must
retrieve a signer certificate from a secure remote SSL port during the handshake. After the signer
certificate is retrieved, you can add the signer certificate to a keystore.

Before you begin

The keystore that is to contain the signer certificate must already exist.

Alternative Method: To retrieve a signer certificate from a port using the wsadmin tool, use the
retrieveSignerFromPort command of the AdminTask object. For more information,
see the SignerCertificateCommands command group for the AdminTask object
article.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > Key stores and certificates > keystore > Signer certificates > Retrieve
from port.

2. Click Retrieve from port.

3. Type the host name of the machine on which the signer resides.

4. Type the port location on the host machine on which the signer resides. The port location is not limited
to ports on WebSphere Application Server. The ports can include Lightweight Directory Access
Protocol (LDAP) ports or ports on any server on which an SSL port is already configured, such as
SIB_ENDPOINT_SECURE_ADDRESS.

5. Select an SSL configuration for the outbound connection from the list.

6. Type an alias name for the certificate.

7. Click Retrieve signer information. A message window displays information about the retrieved signer
certificate, such as: the serial number, issued-to and issued-by identities, SHA hash, and expiration
date. If a chained certificate is on the port, information about the root is displayed.

8. Click Apply. This action indicates that you accept the credentials of the signer.

Results

The signer certificate that is retrieved from the remote port is stored in the keystore.

What to do next

An SSL configuration or client process that requires an SSL connection to the server can use the retrieved
and approved signer certificate.

1902 Administering WebSphere applications



Retrieve from port
Use this page to retrieve a signer certificate from a remote SSL port. The system connects to the specified
remote SSL host and port and receives the signer during the handshake using an SSL configuration.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional
Properties, click Signer certificates. Then click the Retrieve from port button.

To retrieve a signer certificate from a specific port, you enter the host and port, select an SSL configuration
from the pull-down list, and enter an alias to identify the signer certificate. Click Retrieve Signer
Information and information about the signer certificate is displayed, such as the serial number of the
certificate, who the certificate is issued to and by, the certificate finger print, and the expiration information
for the certificate. If you want the certificate to be stored in the keystore, click Apply or Save.

Host:

Specifies the host name to which you connect when attempting to retrieve the signer certificate from the
Secure Sockets Layer (SSL) port.

Information Value
Data type: Text

Port:

Specifies the SSL port to which you connect when attempting to retrieve the signer certificate.

Information Value
Data type: Text

SSL configuration for outbound connection:

Specifies the SSL configuration that is used to connect to the previously specified SSL port. This
configuration is also the SSL configuration that contains the signer after retrieval. This SSL configuration
does not need to have the trusted certificate for the SSL port as it is retrieved during validation and
presented here.

Information Value
Data type: Text

Alias:

Specifies the certificate alias name that you want to reference the signer in the key store, which is
specified in the SSL configuration.

Information Value
Data type: Text

Retrieved signer information:

Specifies the signer certificate information if it is retrieved from the remote host and port.

Chapter 19. Administering application security 1903



Adding a signer certificate to a keystore
Signer certificates establish the trust relationship in SSL communication. You can extract the signer part of
a personal certificate from a keystore, and then you can add the signer certificate to other keystores.

Before you begin

The keystore that you want to add the signer certificate to must already exist.

Alternative Method: To add a signer certificate to a keystore by using the wsadmin tool, use the
addSignerCertificate command of the AdminTask object. For more information, see
the SignerCertificateCommands command group for the AdminTask object article.

Note: If the security custom property com.ibm.websphere.security.OverwriteAndReplaceOnImport is set to
true then import certificate imports a certificate and overwrites an existing certificate. It then
perform the certificate replace operation on that certificate. Typically, an existing certificate cannot
be overwritten by a certificate that is being imported. The task also replaces all signer certificates
from the original certificate and replaces them with the signer certificate from the new certificate that
is being imported

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> Inbound | Outbound > ssl_configuration > Key stores and certificates.

2. Select a keystore from the list of keystores.

3. Click Signer certificates.

4. Click Add.

5. Enter an alias for the signer certificate in the Alias field

6. Enter the full path to the signer certificate file in the File name field.

7. Select a data type from the list in the Data type field.

8. Click Apply.

Results

When these steps are completed, the signer from the certificate file is stored in the keystore. You can see
the signer in the keystore files list of signer certificates. Use the keystore to establish trust relationships for
the SSL configurations.

Add signer certificate settings
Use this page to add a signer certificate in a certificate file to the keystore in the security configuration.

To view this administrative console page, click Security > SSL certificate and key management >
Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration > Key stores
and certificates > keystore > Signer certificates > Add.

Alias:

Specifies the alias that is used to identify the signer certificate in the keystore.

Information Value
Data type: String

1904 Administering WebSphere applications



File name:

Specifies the path to the filename where the signer certificate is located.

Information Value
Data type: String

Data type:

Specifies the format of the file, which is either Base64 encoded ASCII data or Binary DER data.

Information Value
Data type: String

Signer certificates collection
Use this page to manage signer certificates in key stores. Signer certificates are used by Java Secure
Socket Extensions (JSSE) to validate certificates sent by the remote side of the connection during a
Secure Sockets Layer (SSL) handshake. If a signer does not exist in the trust store that can validate the
certificate sent, the handshake fails and generates an "unknown certificate" error.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional
Properties, click Signer certificates.

Table 164. Signer certificates buttons. This table lists the signer certificates buttons.
Button Resulting action

Add Adds a new trusted (signer) certificate.

Delete Deletes an existing signer certificate.

Extract Extracts a signer certificate from a personal certificate to a file.

Retrieve from port Makes a test connection to an SSL port and retrieves the signer from the server during the
handshake. The information from the certificate will be displayed so you can decide whether to trust
it based upon the MD5 and/or SHA hash.

Alias:

Specifies the alias for this signer certificate in the key store.

Issued to:

Specifies the distinguished name of the entity that requested the certificate.

Fingerprint (SHA digest):

Specifies the Secure Hash Algorithm (SHA hash) of the certificate. This can be used to verify the hash for
the certificate at another location, such as the client side of a connection.

Expiration:

Specifies the expiration date of the signer certificate for validation purposes.

Signer certificate settings
Use this page to verify the general properties of the selected signer certificate.

Chapter 19. Administering application security 1905



To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional
Properties, click Signer certificates. Then click on a signer certificate.

Alias:

Specifies the alias for this signer certificate in the key store.

Version:

Specifies the version of the personal certificate. Valid versions include X509 V3, X509 V2, or X509 V1.

Key size:

Specifies the key size of the public key used by the signer certificate.

Serial number:

Specifies the certificate serial number that is generated by the issuer of the certificate.

Validity period:

Specifies the begin and end dates of the certificate.

Issued to:

Specifies the distinguished name of the entity that requested the certificate.

Issued by:

Specifies the distinguished name of the entity that issued the certificate. This name is the same as the
issued-to distinguished name when the signer certificate is self-signed.

Fingerprint (SHA Digest):

Specifies the Secure Hash Algorithm (SHA) hash of the certificate, which can be used to verify the hash
for the certificate at another location such as the client side of a connection.

Signature algorithm:

Specifies the algorithm that is used to sign the certificate.

Adding a signer certificate to the default signers keystore
Signer certificates are added to a keystore on the client side of an SSL communication to establish trust
with the server. There is common practice for keystores to have trust established when they are created.
The DmgrDefaultSignersStore on a deployment manager and the NodeDefaultSignersStore on a stand
alone application server are created to hold signer certificates used to establish trust by default in newly
create keystores.

Before you begin

The default signers key store is created during profile creation and contains the signer certificate of the
server default root certificate. Additional signer certificates can be added to the default signers key store at

1906 Administering WebSphere applications



any time. Anytime a keystore is created using the admin console or by using the createKeyStore
AdminTask object in scripting, all signer certificates from the default signer store are added to the newly
created keystore.

Alternative Method:

v To add a signer certificate to a default signer keystore by using the wsadmin tool,
use the addSignerCertificate command of the AdminTask object.

v To create a new keystore by using the wsadmin tool, use the createKeyStore
command of the AdminTask object.

v To extract the signer from a personal certificate using the wsadmin tool, use the
extractCertificate of the AdminTask object.

v To exchange a signer certificate using the wsadmin tool, use the
KeyStoreCommands command group for the AdminTask object.

For more information, see the SignerCertificateCommands command group for the
AdminTask object article and the KeyStoreCommands command group for the
AdminTask object article.

Procedure
1. If the certificate is in a certificate file, it can be added to the default signer keystore using the

administrative console.

a. Click Security > SSL certificate and key management.

b. Under Related Items, click Key stores and certificates.

c. c. Select Default signers keystore under KeyStore Usages. A panel displaying a list of keystores
appears.

d. Click on DmgrDefaultSignersStore.

e. Under Additional Properties, click Signer certificates.

f. Click Add .

g. Enter an alias in the alias box, a path to the certificate file in the filename box, and an asterisk (v).
Select the format of the certificate file from the pull down list in the “Data type” box.

h. Click Apply then Save.

Note: You can also perform this addition using the AdminTask, addSignerCertificate.

2. If the signer certificate form of a personal certificate needs to be added to default signers keystore, you
can extract the signer from the personal certificate to a certificate file or the signer can be extracted
directly to the default signers keystore. To extract a signer certificate from a personal certificate to a
certificate file,

a. Click Security > SSL certificate and key management.

b. Under Related Items, click Key stores and certificates.

c. c. Select All under Keystore Usages. A panel displaying a list of keystores appears.

d. Click on the keystore name

e. Under Additional Properties, click Personal certificates.

f. Select a personal certificate.

g. Click Extract.

h. Enter the path to the certificate file in “Certificate file name” box and select a format type from the
pull down list in “Data type” box

i. Click Apply then Save.

j. The signer can be added to the default signers keystore by following step 1.

Chapter 19. Administering application security 1907



Note: You can also extract the signer from a personal certificate using scripting and the AdminTask
extractCertificate.

3. To extract a signer certificate to the default signers keystore, an exchange of the signer certificate can
be performed from the administrative console.

a. Click Security > SSL certificate and key management

b. Under Related Items, click Key stores and certificates.

c. c. Select All under Keystore Usages. A panel displaying a list of keystores appears.

d. Click on the default signers keystore and the keystore that contains the personal certificate whose
signer certificate is needed.

e. Click Exchange Signers.

f. Select the personal certificate whose signer is needed.

g. Click Add.

h. Click Apply then Save.

Note: You can also perform the exchange using the AdminTask, exchangeSigner.

Note: A DataPower certificate can be removed from the default signers keystore if it is present. If you
are not using the DataPower appliance manager you should remove the DataPower certificate
from the default trust store to avoid unintentional trust relationships. However, if you start to use
DataPower appliance manager at a later date you must add the DataPower certificate back to
the default trust store.

Results

When these steps are completed, the signer from the certificate file is stored in the default signers
keystore. You can see the signer in the keystore files list of signer certificates.

What to do next

The new keystore will contain the default signers that were added to the default signers keystore.

Exchanging signer certificates
To establish trust relationships, you can exchange signer certificates between keystores. When you
exchange signer certificates, you are extracting a personal certificate from one keystore and adding it to
another keystore as a signer certificate.

Before you begin

To exchange signer certificates, there must be two keystores.

About this task

Complete the following steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates.

2. Select two keystores from the list of keystores.

3. Click Exchange signers.

4. Select any of the certificates in the first personal certificates list, and click Add. After adding, the signer
part of the selected personal certificate appears in the other (second) keystore signers list.

1908 Administering WebSphere applications



5. Select any of the certificates in the second personal certificates list, and click Add. After adding, the
signer part of the selected personal certificate appears in the other (first) keystore signers list.

6. Optional: If you need to remove any of the certificates from either of the signers lists, highlight one or
more of the certificates, and click Remove.

7. Click Apply and Save.

Results

The signer certificate appears in the list for each keystore.

What to do next

The extracted signer certificate is available to both keystores during the connection handshake.

Keystores and certificates exchange signers
Use this page to extract the signer part of a personal certificate from one keystore and add it to another
keystore as a signer certificate. Signer certificates can also be listed, and they will be added to the other
keystore as well.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key stores and certificates then select two key stores to
exchange and click the Exchange signers.

Note: Any changes made to this panel are permanent.

[keystore] personal certificates:

Specifies the personal certificates and signer certificates that are currently stored in the specified keystore.

Press and hold the Ctrl key to select more than one item from the list.

Information Value
Data type: Text

[keystore] signers:

Specifies the trusted signer certificates that are currently stored in the specified keystore and selected for
the exchange.

Press and hold the Ctrl key to select more than one item from the list.

Information Value
Data type: Text

Add:

Specifies to extract the signer from the selected personal certificate in the keystore list on the left and add
it to the signers list of the keystore on the right.

After the certificate is added, it no longer displays in the left-hand list. The personal certificate is still in the
keystore, but it is no longer selectable

Remove:

Chapter 19. Administering application security 1909



Specifies to remove a selected signer from the signers list of the keystore on the right. The removed
certificate displays in the keystore list on the left.

Configuring certificate expiration monitoring
When certificates expire, they can no longer be used by the system. WebSphere Application Server
provides a utility to monitor certificates that are close to expiration or have already expired. You can
schedule certificate monitoring, or you can request certificate monitoring on demand. You can also
configure options for deleting expired certificates and for recreating certificates.

Before you begin

Important: The Certificate Expiration Monitor does not handle replacing client self-signed certificates and
is not capable of sending the new signer certificate needed for trust. If the client is a web
server plug-in, it will not be able to securely communicate with the application server after
self-signed certificate replacement.

WebSphere Application Server notifies you when a certificate is about to expire. Complete the information
required for notification messaging in “Notifications” on page 1913.

About this task

Complete the following configuration steps in the administrative console:

Procedure
1. Click Security > SSL certificate and key management > Manage certificate expiration.

2. Type a number for the number of days threshold in the Expiration notification threshold field.
WebSphere Application Server issues an expiration warning n number of days before expiration.

3. Select or check one or more of the following options:

v Expiration check notification. Select the method from the list that you want to use to receive your
notification.

v Automatically replace expiring self-signed certificates. If you do not want to recreate the
self-signed certificate, clear the check box.

Attention: When using writable System Authorization Facility (SAF) keyrings in your configuration,
the certificate expiration monitor does not replace expired certificates in the writable SAF keyrings,
but only provides a notification of the expiration.

v Delete expiring certificates and signers after replacement. If you do not want to delete the
expired certificates and signers, clear the check box.

v Enable checking. If you do not want to have certificate monitoring enabled, clear the check box.

4. Enter the time of day when you want certificate monitoring to take place to schedule the running of the
certificate expiration monitor.

5. Select one of the following options:

v Check by calendar. For Weekday, enter the day of week that you want to run the certificate
expiration monitor. For Repeat Interval, specify the frequency to run the certificate monitor.

v Check by number of days. Enter a number for how frequently the monitor runs, in number of days.

6. Type the number of days before the threshold date in which the certificate monitor warns that a
certificate is about to be replaced. When a certificate is within the expiration threshold, and automatic
replacement is enabled, certificates are replaced. This value specifies the time period before the
threshold when warnings are issued by the certificate monitor concerning upcoming replacement dates.

7. Click Apply.

1910 Administering WebSphere applications



Results

After completing the settings, a certificate expiration monitor object and a schedule are set up in the
configuration. The certificate expiration monitor runs according to the configurations options that you
configured.

What to do next

You can generate reports that state which certificates have expired. The reports identify the notifications of
certificate replacements and deletions. The report is sent according to the notification option that you
specified.

Manage certificate expiration settings
Use this page to configure the certificate expiration monitor.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage certificate expiration.

Attention: To see the changes to the Expiration checking fields, you must click Apply.

Start now:

Specifies to start certificate monitoring. When the monitor runs, it visits all the key stores and checks to
see if they are within certificate expiration range. If you set the option to delete or replace expired
certificates, you can run these operations immediately by pressing Start now.

Expiration notification threshold:

Specifies the period of time that occurs chronologically just before the expiration day of the certificate,
within which, if the ExpirationMonitor thread runs, and Automatically replace expiring self-signed and
chained certificates is enabled, a new self-signed or chained certificate is generated. By default, the
replacement period for the certificate is 60 days in length or less as defined in the daysBeforeNotification
property.

There is a pre-notification period where the certificate is added to the notification list but not touched for 90
days prior to the 60 days. By default, this pre-notification period is 90 days in length as defined in the
com.ibm.ws.security.expirationMonitorNotificationPeriod property.

Information Value
Data type: Integer
Default: 60 days or less

Enable checking:

Specifies the certificate monitor is active and will run as scheduled.

Scheduled time of day to check for expired certificates:

Specifies the scheduled time that the system checks for expired certificates.

You can type the scheduled time in hours and minutes, specify either A.M. or P.M., or 24-hour.

Information Value
Data type Integer
Default: 0, 0
Range: 1–12, 0–59

Chapter 19. Administering application security 1911



Check by calendar:

Indicates that you want to schedule a specific day of the week on which the expiration monitor runs. For
example, it might run on Sunday.

Information Value
Default: Enabled

Weekday:

Specifies the day of the week on which the expiration monitor runs if Check on a specific day is
selected.

Information Value
Default: Sunday
Range: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday

Repeat interval:

Specifies the period of time between each schedule time to check for expired certificates or the interval
between schedule checks.

Information Value
Default: Daily
Range: Daily, Weekly

Check by number of days:

Specifies that you want to schedule a specific number of days between each run of the expiration monitor.
The day of the week on which this occurs is not counted. For example, if you set the interval to check for
expired certificates every seven days, the expiration monitor runs on day eight.

Information Value
Default: Disabled

Next start date:

Specifies the date for the next scheduled check. This allows the deployment manager to be stopped and
restarted without resetting the date.

Expiration check notification:

Specifies the notification type (either email, or an entry in the system log) when an expiration monitor runs.

Information Value
Default:

Automatically replace expiring self-signed certificates and chained certificates:

1912 Administering WebSphere applications



Specifies a new self-signed certificate or chained certificate be generated using the same certificate
information if the expiration notification threshold is reached. The old certificate is replaced and uses the
same alias. All old signers are managed by the key store configuration are also replaced. The system only
replaces self-signed certificates.

Note: This checkbox is only applicable when using file based keystores.

Information Value
Default: Enabled

Delete expiring certificates and signers after replacement:

Specifies whether to completely remove old, self-signed certificates from the key store during a replace
operation or leave them there under a renamed alias. If an old certificate is not deleted, the system
renames the alias so that the new certificate can use the old alias, which might be referenced elsewhere
in the configuration.

Note: This checkbox is only applicable when using file based keystores.

Information Value
Default: Enabled

Notifications
Use this page to specify the generic notification definitions that are used in certificate expiration monitors.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, clickManage certificate expiration. Under Related items, click Notifications.

Table 165. Notifications buttons. This table lists the notifications buttons.
Button Resulting action

New Adds a notification. The notification configures how the expiration monitor notifies the administrator
of certificates that will expire within the specified threshold.

Delete Deletes an existing notification.

Notification name:

Specifies the notification name.

Message log:

Specifies that this configuration intends to log certificate expiration information to the message log file.

Send Email:

Specifies that this configuration intends to send certificate expiration information to the list of users in the
email list.

List of email addresses:

Specifies the email addresses that are sent notifications when certificates fall within the expiration
threshold. You must specify the SMTP server for each email address. If an email address is not specified,
by default the application server assumes that the SMTP server is "smtp-server." For example, if you type
name@domain, the SMTP server will be smtp-server.domain.

Chapter 19. Administering application security 1913



Notifications settings
Use this page to set properties for new notifications used in certificate expiration monitors or for security
audit subsystem failures.

To view this administrative console page perform one of the following:

v Click Security > SSL certificate and key management > Manage certificate expiration
>Notifications > New.

v Click Security > Security auditing > Audit monitor > New

.

Notification name:

Specifies the name of the notification configuration.

Information Value
Data type: Text

Message log:

Specifies that this configuration will log the notification to a message log file.

Information Value
Default: Disabled

Email sent to notification list:

Specifies that this configuration send a notification as an email to the email list.

Information Value
Default: Disabled

Email address to add:

Specifies the email addresses that are sent notifications. You must specify the SMTP server for each email
address. If an email address is not specified, by default the application server assumes that the SMTP
server is "smtp-server." For example, if you type name@domain, the SMTP server will be
smtp-server.domain.

Information Value
Data type: Text (format as valid Internet mail address)

Add:

Adds the email address to the right-hand list.

Remove:

Removes the email address from the right-hand list.

Outgoing mail (SMTP) server:

Specifies the SMTP server to be used with the email address. If none is specified, the email realm will be
used.

1914 Administering WebSphere applications



Key management for cryptographic uses
WebSphere Application Server provides a framework for managing keys (secret keys or key pairs) that
applications use to perform cryptographic operations on data. The key management framework provides
an application programming interface (API) for retrieving these keys. Keys are managed in keystores so
the keystore type can be supported by WebSphere Application Server, provided that the keystores can
store the referenced key type. You can configure keys and scope keystores so that they are visible only to
particular processes, nodes, clusters, and so on.

The key management infrastructure is based on two key configuration object types: key sets and key set
groups. WebSphere Application Server uses a key set to manage instances of keys of the same type. You
can configure a key set to generate a single key or a key pair, depending on the key or key pair generator
class. A key set group manages one or more key sets and enables you to configure and generate different
key types at the same time. For example, if your application needs both a secret key and key pair for
cryptographic operations, you can configure two key sets, one for the key pair and one for the secret key
that the key set group manages. The key set group controls the auto-generation characteristics of the
keys, including the schedule. The framework can automatically generate keys on a scheduled basis, such
as on a particular day of the week and time of day, so that key generation is done during off-peak hours.

Figure 1 shows an example of a key set group that is configured to manage two key sets: key set 1 and
key set 2.

Key set 1 generates key pairs. Key set 2 generates secret keys. The application needs both types of keys
for its cryptographic operations, signing and encryption, on data. The keys for each key set need to be
generated in tandem. The application stores the key set group name with the encrypted data. The key set
group generates a new set of keys every Sunday night at 11 P.M.. The application maintains key
generation data for two weeks.

Figure 41.

Chapter 19. Administering application security 1915



Creating a key set configuration
You can use key sets to manage multiple instances of cryptographic keys. WebSphere Application Server
uses keys to encrypt or sign outbound data, and decrypt or verify inbound data during cryptographic
operations.

Before you begin

You must have write-access to the keystore that will contain the keys after you generate them from a key
set. However, if you want to generate keys outside of WebSphere Application Server, you can reference
the keys from a read-only keystore that contains a secret key that you can access when you generate the
keys. If you are creating a key pair using an X509Certificate and a PrivateKey object , see “Example:
Developing a key or key pair generation class for automated key generation” on page 1923.

About this task

Complete the following steps in the administrative console:

Procedure
1. Decide whether you want to create the key set at the cell scope or below the cell scope at the node,

server, or cluster, for example:

v To create a key set at the cell scope, click Security > SSL certificate and key management >
Key sets.

v To create a key set at a scope below the cell level, click Security > SSL certificate and key
management > Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration > Key sets.

2. Click New to create a new key set.

3. Type a key set name. For example, CellmyKey.

4. Type a key alias prefix name. For example, myKey. This field specifies the prefix for the key alias
when the new key is generated and stored in the keystore. Following the prefix is the key reference
version number, for example, 2, so that the full key alias name would be myKey_2. If the key reference
already has a specified alias for a key that exists in the keystore, then WebSphere Application Server
ignores this field.

5. Type a key password. The key password protects the key in the keystore. This password is ignored
by WebSphere Application Server if you already specified a password for the key alias reference. To
check for a key reference password, click Active key history under Additional Properties. The key
reference password protects keys that are generated by a key generator class.

6. Type the password again to confirm it.

7. Optional: Type the key generator class name. For example,
com.ibm.ws.security.ltpa.LTPAKeyGenerator. The class name generates keys. If the class
implements com.ibm.websphere.crypto.KeyGenerator, then a getKey method returns a
java.security.Key object that is set in the keystore using the setKey method without a certificate chain.
If the class implements com.ibm.websphere.crypto.KeyPairGenerator, then a getKeyPair method
returns a com.ibm.websphere.crypto.KeyPair object that contains either a java.security.PublicKey and
java.security.PrivateKey or a java.security.cert.Certificate and a java.security.PrivateKey object. The
key generator class and the KeySetHelper API specify the details of the keys that are generated.

8. Optional: Select Delete key references that are beyond the maximum number of keys if you do
not want old keys saved in the keystore after WebSphere Application Server removes their references
from the Active key history listing. The Active key history lists the keys that the KeySetHelper API is
currently tracking. The number of keys in the list is equal to the number of keys that you specify in
Maximum number of keys referenced.

9. Type a numeric value for the maximum number of keys referenced. For example, if you type 3 and
select Delete key references that are beyond the maximum number of keys, the fourth key
version generation automatically triggers WebSphere Application Server to delete the first key version

1916 Administering WebSphere applications



from the keystore. If you choose not to delete the old keys, they do not display in the Active key
history list but instead remain in the keystore where you can remove them manually.

10. Select a keystore from the drop-down list.

v Select a JCEKS keystore if you are storing a secret key.

v Select any keystore if you are storing a key pair with an X509Certificate and PrivateKey object.

11. Optional: Select Generates key pair if your key generator class name implements the
com.ibm.websphere.crypto.KeyPairGenerator interface instead of the
com.ibm.websphere.crypto.KeyGenerator interface. This option designates that the key references a
key pair instead of a single key. A key pair contains both a public key and a private key. The
WebSphere Application Server run time determines whether or not key pairs are stored and loaded
differently than single keys.

12. Optional: Click Apply if you want to select Active key history under Additional Properties to add
alias references or generate more keys.

a. Click Active key history.

b. Click Add key alias reference if you are not using the key generator class name to add key alias
references to the keys that already exist in the keystore. Use this option to retrieve the keys from
a read-only keystore without the key set generating them.

c. Type an alias reference.

d. Click Generate key if you want to generate a key using the class name that you defined in the
key sets panel. Each new key increments numerically, for example, myAlias_2.

e. Click Apply.

13. Click the key set name in the navigation path at the top of the panel.

14. Click OK and Save.

Results

You have created a key set that you can manage using the Active key history link. You can generate
keys manually to associate them with specified key sets.

What to do next

After you generate new keys from a key set, you can access them programmatically using the
com.ibm.websphere.crypto.KeySetHelper API. You must have Java 2 Security permissions, if enabled, to
access keys in key sets. Specify the key set name within the fine-grained permissions, as in the following
code sample: WebSphereRuntimePermission "getKeySets.keySetName". For more information, see
“Example: Retrieving the generated keys from a key set group” on page 1922. To generate multiple key
types at the same time or to schedule the key generation on a specific schedule, see “Creating a key set
group configuration” on page 1920.

Active key history collection
Use this page to manage key alias references.

To view this administrative console page, click Security > SSL certificate and key management >
Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration > Key Sets >
key set > Active key history.

Table 166. Active key history buttons. This table lists the active key history buttons.
Button Resulting action

Add key alias reference Adds a reference to a key that already exists in a key store. If a key generation class is configured,
the references are added automatically during generation and do not need to be added manually.

Delete Deletes an existing key reference. This action does not delete the key in the keystore.

Generate key Generates a key. The button is displayed only if a generator class name is specified for the key set,
and the selected key store is editable.

Chapter 19. Administering application security 1917



Alias reference:

Specifies the name of the alias as it appears in the keystore.

Add key alias reference settings
Use this page to access key alias reference information.

To view this administrative console page, Under Configuration settings, click Manage endpoint security
configurations > {Inbound | Outbound} > ssl_configuration. Under Related items, click Key Sets >
key set. Under Additional Properties, click Active key history then click the Add key alias reference
button.

Alias reference:

Specifies the name of the alias as it appears in the key store.

Information Value
Data type: Text

Password:

Specifies the key password to get access to the key. This password is enforced by the keystore for that
specific key. If the key does not have a password, this field can be left blank.

Information Value
Data type: Text

Confirm password:

Confirms the password entered in the previous field.

Information Value
Data type: Text

Key sets collection
Use this page to manage key sets, which control a set of key instances of the same type for use in
cryptographic operations. The keys can either be generated using a custom class or reference keys that
already exist in a keystore.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key sets.

Table 167. Key set buttons. This table lists the key set buttons.
Button Resulting action

New Adds a new key set.

Delete Deletes an existing key set. Make sure the key set is not referenced by a key set group before
deleting it.

Key set name:

Specifies the key set name that is used to select the key set from a key set group and from runtime
application programming interfaces (API).

Key store:

1918 Administering WebSphere applications



Specifies the key store that contains the keys for storage, retrieval, or both.

Key alias prefix name:

Specifies the prefix for the key alias when a new key is generated and stored in a key store. The rest of
the key alias comes from the key reference version number.

For example, if the alias prefix is mykey and the key reference version is 2, the keystore references the key
using alias mykey_2. If the key reference already has a specified alias for a key already existing in the
keystore, this field is ignored.

Key sets settings
Use this page to set the properties for a new key set.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, clickManage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key sets > New.

Key set name:

Specifies the key set name that is used to select the key set from a key set group and from runtime
application programming interfaces (API).

Information Value
Data type: Text

Management scope:

Specifies the scope where this Secure Sockets Layer (SSL) configuration is visible. For example, if you
choose a specific node, then the configuration is only visible on that node and any servers that are part of
that node.

Information Value
Data type List
Range: Applicable scopes

Key alias prefix name:

Specifies the prefix for the key alias when a new key is generated and stored in a keystore. The rest of
the key alias comes from the key reference version number. For example, if the alias prefix is mykey and
the key reference version is 2, the keystore references the key using alias mykey_2. If the key reference
already has a specified alias for a key already existing in the keystore, this field is ignored.

Information Value
Data type: Text

Key password:

Specifies the password used to protect the key in the keystore. If a password is specified in the key
reference as well, this password is ignored. This password is used for keys that get generated by a key
generator class.

Information Value
Data type: Text

Chapter 19. Administering application security 1919



Confirm password:

Specifies the same password again to confirm it was entered correctly the first time.

Information Value
Data type: Text

Key generator class name:

Specifies the class name that generates keys. If the class implements
com.ibm.websphere.crypto.KeyGenerator, then a getKey() method should return a java.security.Key object
that is set in the key store using the setKey method without a certificate chain. The key store type
associated with the key set must support storing keys without certificates, such as JCEKS.

Information Value
Data type: Text

If the class implements com.ibm.websphere.crypto.KeyPairGenerator, then a getKeyPair() method should
return a com.ibm.websphere.crypto.KeyPair object containing either a java.security.PublicKey and
java.security.PrivateKey, or a java.security.cert.Certificate[] and a java.security.PrivateKey. The key
generator class and the caller of the KeySetHelper API should know the details of the keys that are
generated. This framework does not need to understand the key algorithms and lengths.

Delete key references that are beyond the maximum number of keys:

Specifies that the keys are deleted from the keystore at the same time that the key reference is deleted.
The server deletes the older key references as the Maximum number of keys referenced value is
exceeded.

Maximum number of keys referenced:

Specifies the maximum number of key instances that are returned when keys from this key set are
requested. The oldest key reference gets removed whenever a new key reference gets generated after the
maximum has been reached.

Information Value
Data type: Integer
Default: 3

Key store:

Specifies the key store that contains the keys for storage, retrieval, or both.

Information Value
Data type: Text

Generates key pair:

Specifies that a key references a key pair instead of a key. The key pair contains both a public key and a
private key.

Creating a key set group configuration
A key set group manages one or more key sets. WebSphere Application Server uses key set groups to
automatically generate cryptographic keys or multiple synchronized key sets.

1920 Administering WebSphere applications



About this task

Complete the following steps in the administrative console:

Procedure
1. Decide whether you want to create the key set group at the cell scope or below the cell scope at the

node, server, or cluster, for example.

v To create a key set group at the cell scope, click Security > SSL certificate and key
management > Key set groups.

v To create a key set group at a scope below the cell level, click Security > SSL certificate and
key management > Manage endpoint security configurations > {Inbound | Outbound} >
SSL_configuration > Key set groups.

2. You can choose to generate a key for an existing key set group, delete an existing key set group, or
create a new key set group.

v To generate a key for an existing key set group, select a key set group from the list of existing key
set groups, and click Generate keys. You have generated a new key for each key set in the
selected group.

v To delete an existing key set group, select a key set group from the list of existing key set groups,
and click Delete. You have deleted the key set group.

v To create a new key set group, go to step 3.

CAUTION:
Do not delete the cell or node LTPAKeySetGroup, which is used by the Lightweight Third Party
Authentication (LPTA) mechanism.

3. Click New to create a new key set group.

4. Type a key set group name. You can reference this name by using the
com.ibm.websphere.crypto.KeySetHelper API to retrieve the managed keys from an application.

5. Select one or more key sets from the Key sets list.

Note: If the key set(s) you want is not listed, make sure that it was created at the same scope or a
higher scope than where you are creating the new key set group.

6. Click Add to add the selected key set(s) to the new key set group.

7. Select Automatically generate keys to generate the new keys on a schedule. If you decide to
generate keys automatically, then you must specify a scheduled time of day.

8. Specify the scheduled time to generate keys automatically in hours and minutes, A.M. or P.M., or
every 24 hours.

9. You can choose to generate new keys on a specific day or at an interval.

v Select Generate on a specific day. Select a day of the week from the drop-down list, and type a
repeat interval number for the number of days between each key generation. This choice enables
you to schedule key generation when your systems are least busy.

v Select Generate at an interval. Type a repeat interval number for the number of days between
each key generation. This choice enables you to schedule key generation more frequently than
once a week.

Note: The Next start date is a read-only field that specifies the date for the next scheduled
generation. You can stop and restart the deployment manager or base application server
without resetting this date. If you do not see the next start date appear after changing the
configuration, click OK to save it, then check that the next start date displays.

10. Click Save.

Chapter 19. Administering application security 1921



Results

You have created a new key set group to manage key sets and key generation on a schedule.

What to do next

After you generate new keys from a key set, you can access them programmatically using the
com.ibm.websphere.crypto.KeySetHelper API. You must have Java 2 Security permissions, if enabled, to
access keys in key sets. Specify the key set name within the fine-grained permissions, as in the following
code sample: WebSphereRuntimePermission "getKeySets.keySetName". For more information, see
“Example: Retrieving the generated keys from a key set group.”

Example: Retrieving the generated keys from a key set group
This example shows how applications can use the com.ibm.websphere.crypto.KeySetHelper API to retrieve
managed keys from the KeySet or KeySetGroup configurations. Use the
com.ibm.websphere.crypto.KeySetHelper API to get either the latest set of keys or all the keys in the
KeySet or KeySetGroup object.

Use the latest keys when performing any new cryptographic operations. All of the other keys that are
defined in the KeySet or KeySetGroup object are for the validation of previously performed cryptographic
operations.

The following example uses a method that an application might use to initialize the keys in the associated
KeySetGroup object. The application might want to store the keys in two separate maps, one for
generation and one for validation. Refer to the API documentation for KeySetHelper API to determine
which Java 2 Security requirements are required.
/**

* Initializes the primary and secondary Maps used for initializing the keys.
*/

public void initializeKeySetGroupKeys() throws com.ibm.websphere.crypto.KeyException
{

java.util.Map generationKeys = null;
java.util.Map validationKeys = null;

PublicKey tempPublicKey = null;
PrivateKey tempPrivateKey = null;
byte[] tempSharedKey = null;

keySetGroupName = "ApplicationKeySetGroup";
com.ibm.websphere.crypto.KeySetHelper ksh = com.ibm.websphere.crypto.KeySetHelper.getInstance();
generationKeys = ksh.getLatestKeysForKeySetGroup(keySetGroupName);

/***
* Latest keys: {
* KeyPair_3=com.ibm.websphere.crypto.KeyPair@64ec64ec,
* Secret_3=javax.crypto.spec.SecretKeySpec@fffe8aa7
* }
***/

if (generationKeys != null)
{

Iterator iKeySet = generationKeys.keySet().iterator();

while (iKeySet.hasNext())
{

String keyAlias = (String)iKeySet.next();

Object key = generationKeys.get(keyAlias);

if (key instanceof java.security.Key)
{

tempSharedKey = ((java.security.Key)key).getEncoded();
}
else if (key instanceof com.ibm.websphere.crypto.KeyPair)
{

java.security.Key publicKeyAsSecret =
((com.ibm.websphere.crypto.KeyPair)key).getPublicKey();

tempPublicKey = new PublicKey(publicKeyAsSecret.getEncoded());
java.security.Key privateKeyAsSecret =

((com.ibm.websphere.crypto.KeyPair)key).getPrivateKey();
tempPrivateKey = new PrivateKey(privateKeyAsSecret.getEncoded());

}
}

1922 Administering WebSphere applications



// save these for use later, if necessary
validationKeys = ksh.getAllKeysForKeySetGroup(keySetGroupName);

/***
* All keys: {
* version_1=
* {Secret_1=javax.crypto.spec.SecretKeySpec@178cf,
* KeyPair_1=com.ibm.websphere.crypto.KeyPair@1c121c12},
* version_2=
* {Secret_2=javax.crypto.spec.SecretKeySpec@17a77,
* KeyPair_2=com.ibm.websphere.crypto.KeyPair@182e182e},
* version_3=
* {Secret_3=javax.crypto.spec.SecretKeySpec@fffe8aa7,
* KeyPair_3=com.ibm.websphere.crypto.KeyPair@4da04da0}
* }
***/

}
else
{

throw new com.ibm.websphere.crypto.KeyException("Could not generateKeys.");
}

}

Example: Developing a key or key pair generation class for automated key
generation
A class that generates keys for cryptographic operations can be created automatically. With this capability,
the key management infrastructure can maintain a list of keys for a predefined key set, and applications
can access these keys.

You can schedule new key generation at predefined frequencies. Remember that key generation
frequency affects the security of your data. For example, for persistent data, you might schedule key
generation less frequently than for real time communications, which require that the keys be generated
more often as old keys expire.

When you develop a key generation class, decide if you are creating a shared key or a key pair because
this decision determines the interface you must use.

If you are developing shared keys, refer to the following example, which uses the KeyGenerator class to
implement the com.ibm.websphere.crypto.KeyGenerator interface. The interface returns a java.security.Key
key, which is stored as a SecretKey in a JCEKS keystore type. You can use any other keystore type that
supports storing secret keys.
package com.ibm.test;

import java.util.*;
import com.ibm.ws.ssl.core.*;
import com.ibm.ws.ssl.config.*;
import com.ibm.websphere.crypto.KeyException;

public class KeyGenerator implements com.ibm.websphere.crypto.KeyGenerator
{

private java.util.Properties customProperties = null;
private java.security.Key secretKey = null;

public KeyGenerator()
{
}

/**
* This method is called to pass any custom properties configured with
* the KeySet to the implementation of this interface.
*
* @param java.util.Properties
**/

public void init (java.util.Properties customProps)
{

customProperties = customProps;
}

/**
* This method is called whenever a key needs to be generated either
* from the schedule or manually requested. The key is stored in the
* KeyStore referenced by the configured KeySet that contains the
* keyGenerationClass implementing this interface. The implementation of
* this interface manages the key type. The user of the KeySet
* must know the type that is returned by this keyGenerationClass.
*
* @return java.security.Key

Chapter 19. Administering application security 1923



* @throws com.ibm.websphere.crypto.KeyException
**/

public java.security.Key generateKey () throws KeyException
{

try
{

// Assume generate3DESKey is there to create the key.
byte[] tripleDESKey = generate3DESKey();
secretKey = new javax.crypto.spec.SecretKeySpec(tripleDESKey, 0, 24, "3DES");

if (secretKey != null)
{

return secretKey;
}
else
{

throw new com.ibm.websphere.crypto.KeyException ("Key could not be generated.");
}

}
catch (Exception e)
{

e.printStackTrace(); // handle exception
}

}
}

If you are developing a key pair, refer to the following example, which uses the KeyPairGenerator class to
implement the com.ibm.websphere.crypto.KeyPairGenerator interface.
package com.ibm.test;

import java.util.*;
import javax.crypto.spec.SecretKeySpec;
import com.ibm.websphere.crypto.KeyException;

/**
* This implementation defines the method to generate a java.security.KeyPair.
* When a keyGeneration class implements this method, the generateKeyPair method
* is called and a KeyPair is stored in the keystore. The isKeyPair
* attribute is ignored since the KeyGenerationClass is an
* implementation of KeyPairGenerator. The isKeyPair attributes is for when
* the keys already exist in a KeyStore, and are just read (not
* generating them).
*
* @author IBM Corporation
* @version WebSphere Application Server 6.1
* @since WebSphere Application Server 6.1
**/
public class KeyPairGenerator implements com.ibm.websphere.crypto.KeyPairGenerator
{

private java.util.Properties customProperties = null;

public KeyPairGenerator()
{
}

/**
* This method is called to pass any custom properties configured with
* the KeySet to the implementation of this interface.
*
* @param java.util.Properties
**/

public void init (java.util.Properties customProps)
{

customProperties = customProps;
}

/**
* This method is called whenever a key needs to be generated either
* from the schedule or manually requested and isKeyPair=true in the KeySet
* configuration. The key is stored in the KeyStore referenced by
* the configured KeySet which contains the keyGenerationClass implementing
* this interface. The implementation of this interface manages the
* type of the key. The user of the KeySet must know the type that
* is returned by this keyGenerationClass.
*
* @return com.ibm.websphere.crypto.KeyPair
* @throws com.ibm.websphere.crypto.KeyException
**/

public com.ibm.websphere.crypto.KeyPair generateKeyPair () throws KeyException
{

try
{

java.security.KeyPair keyPair = generateKeyPair();

// Store as SecretKeySpec
if (keyPair != null)
{

java.security.PrivateKey privKey = keyPair.getPrivate();

1924 Administering WebSphere applications



java.security.PublicKey pubKey = keyPair.getPublic();

SecretKeySpec publicKeyAsSecretKey = new SecretKeySpec
(pubKey.getEncoded(), "RSA_PUBLIC");

SecretKeySpec privateKeyAsSecretKey = new SecretKeySpec
(privKey.getEncoded(), "RSA_PRIVATE");

com.ibm.websphere.crypto.KeyPair pair = new
com.ibm.websphere.crypto.KeyPair(publicKeyAsSecretKey, privateKeyAsSecretKey);

return pair;
}
else
{

throw new com.ibm.websphere.crypto.KeyException ("Key pair could
not be generated.");

}
}
catch (Exception e)
{

e.printStackTrace(); // handle exception
}

}
}

This interface returns a com.ibm.websphere.crypto.KeyPair key pair, which can contain either a
X509Certificate and PrivateKey object or PublicKey and PrivateKey objects. If the
com.ibm.websphere.crypto.KeyPair interface contains aX509Certificate and PrivateKey object, the
certificate and private key are stored in the keystore. Consequently, they can use any KeyStore type.

If the com.ibm.websphere.crypto.KeyPair interface contains PublicKey and PrivateKey objects, you must
convert the encoded values to the SecretKeySpec object in order to store them. The WebSphere
Application Server runtime stores and retrieves the key pair as secret keys. The runtime converts the key
pair back to PublicKey and PrivateKey objects when the server retrieves the pair during the handshake.

Use the following constructors to develop the com.ibm.websphere.crypto.KeyPair interface:

v Public and private constructor
public KeyPair(java.security.Key publicKey, java.security.Key privateKey)

v Certificate and private constructor.
public KeyPair(java.security.cert.Certificate[] certChain,
java.security.Key privateKey)

The previous example code shows the KeyPairGenerator class using the public and private constructor.
Each call to this class generates a new and unique key pair, and this class is invoked by a KeySet to
create a new key pair when isKeyPair=true. The version number in the key set increments each time it is
called.

Key set groups collection
Use this page to manage groups of public, private, and shared keys. These key groups enable the
application server to control multiple sets of Lightweight Third Party Authentication (LTPA) keys.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key set groups.

Table 168. Key set groups buttons. This table lists the key set groups buttons.
Button Resulting action

New Adds a key set group. A key set group combines one or more key sets together as a single key set
group. It allows the generation of multiple different types of keys to occur at the same time. A single
key set represents one type of key, so a key set group allows you to group the different types.

Delete Deletes an existing key set group. You must be sure that there are no other references to this key set
group before you delete it.

Generate keys Generates keys for key set group. The system generates keys for each key set within the key set
group so that the keys remain synchronized with each other in terms of version. You must configure a
valid key generation class and a key store that is writable. See the
com.ibm.websphere.crypto.KeySetHelper application programming interfaces (APIs) to enable the use
of keys that are managed by a KeySetGroup or KeySet.

Chapter 19. Administering application security 1925



Key set group name:

Specifies the name of the key set group used to reference it.

Automatically generate keys:

Specifies that the keys are to be generated automatically on a schedule.

Key set groups settings
Use this page to create new key set groups.

To view this administrative console page, click Security > SSL certificate and key management. Under
Configuration settings, clickManage endpoint security configurations > {Inbound | Outbound} >
ssl_configuration. Under Related items, click Key set groups > New.

Key set group name:

Specifies the name of key set group used. This name can be referenced using the
com.ibm.websphere.crypto.KeySetHelper API to retrieve the managed keys from an application.

Information Value
Data type: Text

Management scope:

Specifies the scope where this Secure Sockets Layer (SSL) configuration is visible. For example, if you
choose a specific node, then the configuration is only visible on that node and any servers that are part of
that node.

Information Value
Data type List
Range: Applicable scopes

Key sets:

Specifies a set of key instances of the same type for use in cryptographic operations.

This setting has the following options:

Add Specifies to add the selected key set part of this key set group.

Remove
Specifies to remove the selection from the Key sets list.

Automatically generate keys:

Specifies that the keys are generated automatically on a schedule. When a new key is generated, the
security.xml is updated and saved by the runtime to track the key reference version. This can cause
save conflicts when updating the same file from admin applications.

gotcha: Starting with Versions 6.1.0.23 and 7.0.0.3, the default value for this property is Disabled.

If you try to enable this property, and automatic synchronization is off in any node, the following
administrative console message displays:
Warning: At least one node in the cell was unreachable or is not configured to automatically synchronize.
It is strongly recommended that you verify your node settings, and do not enable automatic
generation of LTPA keys while automatic synchronization is disabled on any node.

1926 Administering WebSphere applications



Information Value
Default for Versions 7.0, and 7.0.0.1: Enabled
Default for Versions 7.0.0.3 and higher: Disabled

Scheduled time for generation:

Specifies the scheduled time when the system generates selected key set group or groups. You can
specify the scheduled time in hours and minutes; specify either A.M. or P.M., or specify 24-hour. You can
also specify the day of the week you want the scheduled event to occur. It is recommended that you set
this event to occur during a low peak time, especially for keys that are used by runtime for token
validation.

Information Value
Data type Integer
Default: 8, 0 A.M.
Range: 1–12, with a A.M. or P.M. setting

0–59, with a 24-hour setting

Generate on a specific day:

Specifies whether to have the generation occur on a specific day of the week. It is best to auto-generate
keys during a low peak day.

This setting has the following options:

Weekday
Specifies the day of the week on which the expiration monitor will run if the Check on a specific
day option is selected.

Information Value
Default: Sunday
Range: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday

Repeat interval
Specifies the period of time, in weeks, between each schedule time to check for expired
certificates or the interval between schedule checks.

Information Value
Default: 4 weeks

Generate at an interval:

Specifies to generate keys at the specified frequency regardless of the day of the week on which
generation occurs.

Information Value
Default: Disabled

This setting has the following options:

Repeat interval
Specifies the period of time, in days, between each schedule time to check for expired certificates
or the interval between schedule checks.

Chapter 19. Administering application security 1927



Information Value
Default: 7 days

Next start date:

Specifies the date for the next scheduled check. This allows the deployment manager to be stopped and
restarted without resetting the date.

Auditing the security infrastructure
You can use the Auditing Facility to report and track auditable events to ensure the integrity of your
system.

Before you begin

Before enabling the security auditing subsystem, you must enable global security in your environment.

About this task

Note: The security auditing subsystem has been introduced as part of the security infrastructure. The
primary responsibility of the security infrastructure is to prevent unauthorized access and usage of
resources. Utilizing security auditing has two primary goals:

v Confirming the effectiveness and integrity of the existing security configuration.

v Identifying areas where improvement to the security configuration might be needed.

Security auditing achieves these goals by providing the infrastructure that allows you to implement
your code to capture and store supported auditable security events. During run time, all code other
than the Java EE 5 application code is considered to be trusted. Each time a Java EE 5 application
accesses a secured resource, any internal application server process with an audit point included
can be recorded as an auditable event.

The security auditing subsystem has the ability to capture the following types of auditable events:

v Authentication

v Authorization

v Principal/Credential Mapping

v Audit policy management

v Delegation

Restriction: Audit instrumentation has not been included in the web services client run time.

These types of events can be recorded into audit log files. Each audit log has the option to be signed and
encrypted to ensure data integrity. These audit log files can be analyzed to discover breaches over the
existing security mechanisms and to discover potential weaknesses in the current security infrastructure.
Security event audit records are also useful for providing evidence of accountability and nonrepudiation as
well as vulnerability analysis. The security auditing configuration provides four default filters, a default audit
service provider, and a default event factory. The default implementation write to a binary text-file based
log. Use this topic to customize your security auditing subsystem.

Procedure
1. “Enabling the security auditing subsystem” on page 1929

Security auditing will not be performed unless the audit security subsystem has been enabled. Global
security must be enabled for the security audit subsystem to function, as no security auditing occurs if
global security is not also enabled.

1928 Administering WebSphere applications



2. Assign the auditor role to a user

A user with the auditor role is required to enable and configure the security auditing subsystem. It is
important to require strict access control for security policy management. The auditor role has been
created providing granularity to allow for separation of the auditing role from the authority of the
administrator. When Security Auditing is initially enabled, the cell administrator has auditor privileges. If
the environment requires separation of privileges, then changes will need to be made to the default
role assignments.

3. “Creating security auditing event type filters” on page 1934

You can configure event type filters to only record a specific subset of auditable event types in your
audit logs. Filtering the event types that are recorded makes for easier analysis of your audit records
by ensuring only those records important to your environment are archived.

4. Configuring the audit service provider.

The audit service provider is used to format the audit data object that was passed to it before
outputting the data to a repository. A default audit service provider implementation is in included. See
“Configuring the default audit service providers for security auditing” on page 1945 for more details on
the default implementation. A third party implementation can also be coded and used. See “Configuring
a third party audit service providers for security auditing” on page 1949 for more details on this
implementation.

5. “Configuring audit event factories for security auditing” on page 1950

The audit event factory gathers the data associated with the auditable events and creates an audit
data object. The audit data object is then sent to the audit service provider to be formatted and
recorded to the repository.

6. “Protecting your security audit data” on page 1953

It is important to secure and ensure the data integrity of the recorded audit data. To ensure that access
to the data is restricted and tamper proof, you can encrypt and sign your audit data.

7. “Configuring security audit subsystem failure notifications” on page 1942

Notifications can be enabled to generate alerts when the security auditing subsystem experiences a
failure. Notifications can be configured to record an alert in the System logs or can be configured to
send an alert through email to a specified list of recipients.

Results

After successfully completing this task, you audit data will be recorded for the selected auditable events
that were specified in the configuration.

What to do next

After configuring security auditing, you can analyze your audit data for potential weaknesses in the current
security infrastructure and to discover security breaches that may have occurred over the existing security
mechanisms. You can also use the security auditing subsystem to provide data for problem determination.
If the default audit service provider was selected, the resulting binary audit log file can be read using the
Audit Reader.

Enabling the security auditing subsystem
Security auditing will not be performed unless the audit security subsystem has been enabled. Global
security must be enabled for the security audit subsystem to function, as no security auditing occurs if
global security is not also enabled.

Before you begin

Before enabling security auditing subsystem, enable global security in your environment.

Chapter 19. Administering application security 1929



About this task

The recording of auditable security events is achieved by enabled the security auditing subsystem. Follow
these steps to enable the security auditing subsystem.

Procedure
1. Click Security > Security auditing.

2. Select Enable security auditing. The Enable security auditing check box is not selected by default. This
check box must be selected to allow security auditing to be performed with the configurations that have
been specified in the audit.xml file.

Note: The audit.xml file is used to store the audit subsystem configurations. Changes to the security
auditing subsystem should be made with the user interface or the wsadmin utility. This file
should not be edited manually.

3. Select the action from the Audit subsystem failure action dropdown menu to be perform when an audit
subsystem failure occurs. Notifications configured to warn of a security auditing subsystem failure will
not be posted if the No Warning option is selected for this field. If you select either the Log warning or
the Terminate server option, then you must also configure a notification for the action to be performed.

4. Select the Auditor ID from the dropdown menu. The auditor role is needed to make changed to the
security auditing configurations. By default, when auditing is first enabled, the primary administrator is
also given the auditor role. The primary administrator can then add the auditor role to other users. After
the auditor role is added to other users, the auditor role can be removed from the administrator to
create a separation of authority between the auditor and the administrator. The Auditor ID is the user
considered to be the primary auditor.

5. Optional: Select Enable verbose auditing. When an auditable event is recorded, a default set of audit
data is included in the audit data object and recorded to the repository. An additional set of audit data
is made available by enabling verbose auditing.

6. Click Apply.

7. Restart the application server. The application server must be restarted before the changes go into
effect.

Results

The successful competition of these steps results in the security auditing subsystem being enabled.

What to do next

After enabling the security auditing subsystem, refinements can be made to the configuration. You might
want to modify the access control of the audit subsystem to separate the authority of the administrator
from the authority of the auditor. If no changes to your access control are needed, then you can configure
the types of auditable security events should be recorded. To configure the types of events that are
recorded, click Event type filters.

Security Auditing detail
The Security auditing subsystem can be enabled and configured from this panel, by users assigned the
auditor role.

To view this administrative console page, click Security > Security Auditing. If Enable security auditing is
not selected, then all of the other fields on this panel will be disabled.

Enable security auditing:

1930 Administering WebSphere applications



The Enable security auditing check box allows users to enable or disable Security Auditing. By default,
Security Auditing will not be enabled. This field corresponds with the auditEnabled field in the audit.xml
file.

Audit subsystem failure action:

The Audit subsystem failure action setting describes the behavior of the application server in the event of a
failure in the auditing subsystem. Audit Notifications must be configured in order for notifications of a
failure in the audit subsystem to be logged. If security auditing is not enabled, then these actions will not
be performed. Failures can include an error in the interface or in the event processing. By default, the
audit subsystem failure action setting is set to No warning.

The Audit subsystem failure action dropdown menu has the following options:

v No warning

The No warning action specifies that the auditor will not be notified of a failure in the audit subsystem.
The product will continue processing but audit reporting will be disabled.

v Log warning

The Log warning action specifies that the auditor will be notified of a failure in the audit subsystem. The
product will continue processing but audit reporting will be disabled.

v Terminate server

The Terminate server action specifies the application server to gracefully quiesce when an
unrecoverable error occurs in the auditing subsystem. If email notifications are configured, the auditor
will be sent a notification that an error has occurred. If logging to the system log is configured, the
notification of the failure will be logged to the system file.

Primary auditor user name:

The Primary auditor user name dropdown menu defines a valid user which exists in the current user
registry and for whom the auditor role has been given. By default, this field is blank and is a required field.

Enable verbose auditing:

The Enable verbose auditing option determines the amount of audit data that is reported in an audit
record. Verbose mode captures all the auditable data points, whereas not enabling verbose mode captures
only a subset of the available data. This option is disabled by default.

Context object fields
Each auditable event has an associated set of information that is available for logging. This information is
grouped into specific context objects. The context objects that are available for logging a specific event are
specified by the event type. This topic details the information that exists for each context object and
specifies whether the information is logged by default or is only logged when the verbose logging option is
enabled.

The SessionContextObj object

Table 169. SessionContextObj fields. This table lists the SessionContextObj fields.
Field Type Description Default or Verbose logging

sessionId String An identifier for the user session Default

remoteAddr String The IP address for the remote host Default

remotePort String The port of the remote host Default

remoteHost String The host name of the remote host Default

Chapter 19. Administering application security 1931



The PropagationContextObj object

Table 170. PropagationContextObj fields. This table lists the PropagationContextObj fields.
Field Type Description Default or Verbose logging

firstCaller String The identity of the first user in the
caller list

Default

callerList String array A list of names representing the
identities of the users

Verbose

The RegistryContextObj object

Table 171. RegistryContextObj fields. This table lists the RegistryContextObj fields.
Field Type Description Default or Verbose logging

type String The type of user registry being
used, such as LDAP or AIX

Default

The ProcessContextObj object

Table 172. ProcessContextObj fields. This table lists the ProcessContextObj fields.
Field Type Description Default or Verbose logging

domain String The domain to which the user
belongs

Verbose

realm String The registry partition to which the
user belongs

Default

The EventContextObj object

Table 173. EventContextObj fields. This table lists the EventContextObj fields.
Field Type Description Default or Verbose logging

lastEventTrailId String The last ID associated with a given
transaction

Verbose

eventTrailId String array An array of IDs that allow events
that belong to a given transaction to
be correlated

Default

creationTime Date The date an event was created Default

globalInstanceId Long The unique identifier of this event Default

The DelegationContextObj object

Table 174. DelegationContextObj fields. This table lists the DelegationContextObj fields.
Field Type Description Default or Verbose logging

delegationType String no delegation, simple delegation,
method delegation or switch user
delegation

Default

roleName String The Run as role being used:
runAsClient, runAsSpecified,
runAsSystem, own ID

Default

identityName String Information about the mapped user Default

The AuthnContextObj object

Table 175. AuthnContextObj fields. This table lists the AuthnContextObj fields.
Field Type Description Default or Verbose logging

authnType String The type of authentication used Default

1932 Administering WebSphere applications



The ProviderContextObj object

Table 176. ProviderContextObj fields. This table lists the ProviderContextObj fields.
Field Type Description Default or Verbose logging

provider String The provider of the authentication
or authorization service

Default

providerStatus String Status of whether the authentication
or authorization event processed
successfully by the provider

Default

The AuthnMappingContextObj object

Table 177. AuthnMappingContextObj fields. This table lists the AuthnMappingContextObj fields.
Field Type Description Default or Verbose logging

mappedSecurityDomain String The security domain after mapping
has occurred

Default

mappedRealm String The realm after mapping has
occurred

Default

mappedUserName String The user name after mapping has
occurred

Default

The AuthnTermContextObj object

Table 178. AuthnTermContextObj fields. This table lists the AuthnTermContextObj fields.
Field Type Description Default or Verbose logging

terminateReason String The reason authentication ended Default

The AccessContextObj object

Table 179. AccessContextObj fields. This table lists the AccessContextObj fields.
Field Type Description Default or Verbose logging

progName String The name of the program that was
involved in the event

Default

action String The action being performed. Default

registryUserName String The name of the user in the registry Default

appUserName String The name of the user within an
application

Default

accessDecision String The decision of the authorization
call

Default

resourceName String The name of the resource in the
context of the application

Default

resourceType String The type of resource Default

resourceUniqueId Long The unique identifier of the resource Default

permissionsChecked String array The permissions that were checked
during the authorization call

Default

permissionsGranted String array The permissions that were granted
during the authorization call

Default

rolesChecked String array The roles that were checked during
the authorization call

Default

rolesGranted String array The roles that were granted during
the authorization call

Default

The PolicyContextObj object

Table 180. PolicyContextObj fields. This table lists the PolicyContextObj fields.
Field Type Description Default or Verbose logging

policyName String The name of the policy Default

Chapter 19. Administering application security 1933



Table 180. PolicyContextObj fields (continued). This table lists the PolicyContextObj fields.
Field Type Description Default or Verbose logging

policyType String The type of policy Default

The KeyContextObj object

Table 181. KeyContextObj fields. This table lists the KeyContextObj fields.
Field Type Description Default or Verbose logging

keyLabel String The key or certificate label Default

keyLocation String The physical location of the key
database

Default

certLifetime Date The date when a certificate expires Default

The CipherContextObj object

Table 182. CipherContextObj fields. This table lists the CipherContextObj fields.
Field Type Description Default or Verbose logging

cipherData Byte array The cipher data that is captured Verbose

The MgmtContextObj object

Table 183. MgmtContextObj fields. This table lists the MgmtContextObj fields.
Field Type Description Default or Verbose logging

mgmtType String The type of management operation Default

mgmtCommand String The application-specific command
that was performed

Default

targetInfoAttributes Target Atrribute array Information about one or more
secondary objects involved in this
operation

Verbose

The ResponseContextObj object

Table 184. ResponseContextObj fields. This table lists the ResponseContextObj fields.
Field Type Description Default or Verbose logging

url String The URL of the HTTP request Default

httpRequestHeaders Attributes array The HTTP request headers
provided by the client

Verbose

httpResponseHeaders Attributes array The HTTP response headers
returned by the server

Verbose

The CustomPropertyContextObj object

Table 185. CustomPropertyContextObj fields. This table lists the CustomPropertyContextObj fields.
Field Type Description Default or Verbose logging

key String The label representing the custom
property key name

Verbose

value Object The object value of the custom
property

Verbose

Creating security auditing event type filters
Event type filters are used to specify the types of auditable security events that are audited. Default event
type filters are included with the product, but you can also configure new event type filters to specify a
subset of auditable event types to be recorded by the security auditing subsystem.

1934 Administering WebSphere applications



Before you begin

Before configuring security auditing filters and the rest of the security auditing subsystem, enable global
security in your environment. You must be assigned the auditor role to complete this task. Event type
filters are used to specify what events are audited. The amount of data that is recorded for each event is
specified with the Enable verbose auditing check box on the same panel used to enable the auditing
subsystem. Navigate to Security > Security auditing to enable security auditing and determine the data
recorded for each event.

About this task

Table 186. Commonly used event type filters by default in the audit.xml template file. The application server provides
the following commonly used event type filters by default in the audit.xml template file:
Name Event name Outcome of event

DefaultAuditSpecification_1 SECURITY_AUTHN SUCCESS

DefaultAuditSpecification_2 SECURITY_AUTHN DENIED

DefaultAuditSpecification_3 SECURITY_RESOURCE_ACCESS SUCCESS

DefaultAuditSpecification_4 SECURITY_AUTHN REDIRECT

New event type filters can be created, or the existing default filters can be extended, to capture more
event types and outcomes. Use this task to create new event type filters.

.

Procedure
1. Click Security > Security Auditing > Event type filters> New.

2. Enter the unique name that should be associated with this event type filter configuration in the Name
field.

3. Specify the events that should be recorded when this filter is applied:

a. Select the events that you want to be audited from the Selectable events list.

b. Click Add >> to add the selected events to the Enabled events list.

c. Select the outcomes that you want to be audited from the Selectable event outcomes list.

d. Click Add >> to add the selected outcomes to the Enabled event outcomes lists.

4. Click OK.

Results

The successful completion of this task results in the creation of an event type filter than can be selected
by the audit service providers and audit event factories to gather and record a specific set of auditable
security events.

What to do next

After creating an event type filter, the filter must be specified in the audit service provider and the audit
event factory to be used to gather or report audit data. The next step in configuring the security auditing
subsystem is you should configure an audit service provider to define where the audit data will be
archived.

Auditable security events
Auditable security events are security events that have audit instrumentation added to the security run time
code to enable them to be recorded. Event filters are configured to specify which auditable security events
are recorded to the audit log files.

The following list describes each valid auditable event that you can specify as an enabled event type when
creating an event filter:

Chapter 19. Administering application security 1935



Table 187. Event types. Valid auditable events can be specified as an enabled event type when creating an event
filter:
Event name Description

SECURITY_AUTHN Audits all authentication events

SECURITY_AUTHN_MAPPING Audits events that record mapping of credentials where two user identities are involved

SECURITY_AUTHN_TERMINATE Audits authentication termination events such as a timeout, terminated session, or user-initiated
logging out

SECURITY_AUTHZ Audits events related to authorization checks when the system enforces access control policies

SECURITY_RUNTIME Audits runtime events such as the starting and the stopping of security servers. This event type is not
meant for administrative operations performed by a system administrator as such operations need to
use the other SECURITY_MGMT_* event types.

SECURITY_MGMT_AUDIT Audits events that record operations related to the audit subsystem such as starting audit, stopping
audit, turning audit on or off, changing configuration of audit filters or level, archiving audit data,
purging audit data, and so on.

SECURITY_RESOURCE_ACCESS Audits events that record all accesses to a resource. Examples are all accesses to a file, all HTTP
requests and responses to a given web page, and all accesses to a critical database table

SECURITY_SIGNING Audits events that record signing such as signing operations used to validate parts of a SOAP
Message for web services

SECURITY_ENCRYPTION Audits events that record encryption information such as encryption for web services

SECURITY_AUTHN_DELEGATION Audits events that record delegation, including identity assertion, RunAs, and low assertion. Used
when the client identity is propagated or when delegation involves the use of a special identity. This
event type is also used when switching user identities within a given session.

SECURITY_AUTHN_CREDS_MODIFY Audits events to modify credentials for a given user identity

For each audit event type, you must specify an outcome. Valid outcomes include SUCCESS, FAILURE,
REDIRECT, ERROR, DENIED, WARNING, and INFO. Not all outcomes are applicable with all event
types.

Note: Support for the SECURITY_RUNTIME auditing event type has been fully implemented for this
release of WebSphere Application Server. It audits runtime events such as the starting and the
stopping of security servers.

Event type filter settings
The Event type filter settings panel is used by an auditor to manage and create event type filters. Default
event type filters have been included, this panel allows additional event type filters to be added. Existing
event type filters are also managed using this panel.

To view this administrative console page, click one of the following paths:

v Security > Security Auditing > Event type filters > event_type_filter_name.

v Security > Security Auditing > Event type filters > New .

Name:

The Name field specifies the unique name of the event type filter.

Enabled:

The state of enablement of the filter is defined by the Enable check box. This field is represented as a
boolean value. A value of true specifies that the enable field associated with the audit specification in the
audit.xml is set to true. It does not imply that all configured event factories and service providers will be
using this filter.

Filters still need to be configured for each event factory and service provider. Filters are enabled by default
during configuration. However, if a filter has the enabled checkbox set to false, the filter will not gather or
report data for the events and outcomes defined in that filter.

Events to associate with an audit filter:

1936 Administering WebSphere applications



The Events to associate with an audit filter field specifies the auditable security events to be associated
with this filter.

v Selectable events:

The Selectable events list displays the available auditable security events. To enable an event for this
filter, select the event from the Selectable event outcomes list and then click Add.

v Enabled events:

The Enabled events list displays the audit security events that are currently enabled for this filter. To
disable an event for this filter, select the event from the Enabled events list and then click Remove.

Event outcomes to associate with an audit filter:

The Event outcomes to associate with an audit filter field specifies the auditable security event outcomes
to be associated with this filter.

v Selectable event outcomes:

The Selectable event outcomes list displays the available auditable security event outcomes. To enable
an event outcome for this filter, select the event outcome from the Selectable event outcomes list and
then click Add.

v Enabled event outcomes:

The Enabled event outcomes list displays the audit security event outcomes that are currently enabled
for this filter. To disable an event outcome for this filter, select the event outcome from the Enabled
event outcomes list and then click Remove.

Event type filters collection
The Event type filters panel displays a listing of all configured audit specifications with their unique names,
the state of their enablement, and the event types and event outcomes that are specified for each
configuration.

To view this administrative console page, click Security > Security Auditing > Event type filters.

Name:

The Name field displays the unique name of the event type filter that is being represented.

Enable:

The Enable check box species the state of enablement for the filter. This field is represented as a boolean
value. A value of true specifies that the enable field associated with the audit specification in the audit.xml
is set to true. It does not imply that all configured event factories and service providers will be using this
filter. Filters are enabled by default when they are created. Even though it is enabled by default when it is
created, the event type filter must be specified for the event factory and the audit service provider before it
is actually used,

Filters still need to be configured for each event factory and service provider. A filter that is configured for
an event factory or a service provider that has Enabled set to false, will not gather or report data for the
events and outcomes defined in that filter.

Events and outcomes:

The event types and the event outcomes that are specified by this filter. The specifications are listed in the
form event_type:event_outcome and separated by commas if multiple combinations are specified by the
event type filter.

Chapter 19. Administering application security 1937



Example: Generic Event Interface
This interface is used for processing generic audit events. Other interfaces can be defined which extend
this interface to process specific audit event groupings, such as security events, transaction events, or
other custom groupings. For WebSphere Application Server version 7.0, only security types of events are
supported.

Generic Event Interface

Specific implementations might be developed to handle the data in a particular internal format. When the
buildEvent() method is called, the implementation must then build the specified base event type using the
internal information it has stored. After the information has been stored into a GenericEvent instance, the
GenericEvent interface provides a generic way of handling the event.
public interface GenericEvent {

/** * Property name used to specify the base event type to the
* {@link GenericEvent#buildEvent} method.
*/
public static final String BASE_EVENT_TYPE = GenericEvent.class.getName() + ".baseEventType";

/**
* Returns the eventType of the event. The eventType distinguishes between these
* related events.
* The eventType depends on the particular implementation
* of the GenericEvent. For example, the Security Event implmentation has
* eventTypes such as SECURITY_AUTHN and SECURITY_AUTHZ.
* @return eventType - the eventType of the event
*/

public String getEventType();
/**
* Returns the creationTime, the creation time of the event.
* @return creationTime - the creation time of the event
*/ public Date getCreationTime(); /** * Returns the version, the version of the event.
* @return version - the version of the event
*/

public String getVersion (Properties props) throws GenericEventConfigurationException;
/**
* Returns the globalInstanceId, which is a globally unique instance
* identifier for the event.
* @return globalInstanceId - a globally unique instance identifier for the event
*/

public Long getGlobalInstanceId();
/**
* Verifies whether the event is valid; which depends on the particular
* implementation of the GenericEvent. If the event is not valid, an
* GenericEventValidationException error occurs.
*/

public void validate() throws GenericEventValidationException;
/**
* Returns the internally wrapped base event instance after
* completing and validating the current instance of the GenericEvent.
* An GenericEvent implementation can maintain its information
* in any undisclosed internal format. The buildEvent()
* method that specifies that a specific base event type be built
* using the internal information. This allows GenericEvent implementations
* to support multiple base event formats. Thus the GenericEvent implmentation
* provides a layer of abstraction higher than the base event type.
* @param properties The value of the property BASE_EVENT_TYPE
* defines the type of the base event * @return the internally wrapped base event instance
* @throws GenericEventConfigurationException if the base event type is invalid
* or the JAR files to support that event type are not available.
* @throws GenericEventCompletionException if event completion has failed.
* @throws GenericEventValidationException if the validation has failed. This is
* validation as is performed by the validate() method.
*/

public Object buildEvent(Properties properties)
throws GenericEventConfigurationException,

GenericEventValidationException,
GenericEventCompletionException;

/**
* Returns the wrapped base event instance as a string after
* completing and validating the current instance of the GenericEvent.
* An GenericEvent implementation can maintain its information
* in any undisclosed internal format. It is the buildEventString()
* method that specifies that a specific base event type be built
* using the internal information. This allows GenericEvent implementations
* to support multiple base event formats. Thus the GenericEvent implmentation
* provides a layer of abstraction higher than the base event type.

1938 Administering WebSphere applications



* @param properties The value of the property BASE_EVENT_TYPE
* defines the type of the base event
* @return the wrapped base event instance as a String
* @throws GenericEventConfigurationException if the base event type is invalid
* or the JAR files to support that event type are not available.
* @throws GenericEventCompletionException if event completion has failed.
* @throws GenericEventValidationException if the validation has failed. This is
* validation as is performed by the validate() method.
*/

public String buildEventString(Properties properties)
throws GenericEventConfigurationException,

GenericEventValidationException,
GenericEventCompletionException;

}

Context objects for security auditing
Each event has an associated set of information that is available for logging. This information is grouped
into specific context objects. The context objects that are available for logging a specific event are
specified by the event type. All event types have the sessionContextObj, eventContextObj,
accessContextObj, propogationContextObj, processContextObj and registryContextObj objects. This topic
specifies which additional context objects are available for each event type.

Table 188. Context objects associated with event types. The following table describes the context objects associated
with event types.
Event Type Additional Context Objects

SECURITY_AUTHN authnContextObj, providerContextObj

SECURITY_AUTHN_DELEGATION delegationContextObj

SECURITY_AUTHN_MAPPING authnMappingContextObj, providerContextObj

SECURITY_AUTHZ providerContextObj, policyContextObj

SECURITY_ENCRYPTION keyContextObj

SECURITY_MGMT_AUDIT mgmtContextObj

SECURITY_RESOURCE_ACCESS responseContextObj

For more details on the auditable data that is gather for each of these context objects, see the information
for context object fields.

Context object fields
Each auditable event has an associated set of information that is available for logging. This information is
grouped into specific context objects. The context objects that are available for logging a specific event are
specified by the event type. This topic details the information that exists for each context object and
specifies whether the information is logged by default or is only logged when the verbose logging option is
enabled.

The SessionContextObj object

Table 189. SessionContextObj fields. This table lists the SessionContextObj fields.
Field Type Description Default or Verbose logging

sessionId String An identifier for the user session Default

remoteAddr String The IP address for the remote host Default

remotePort String The port of the remote host Default

remoteHost String The host name of the remote host Default

The PropagationContextObj object

Table 190. PropagationContextObj fields. This table lists the PropagationContextObj fields.
Field Type Description Default or Verbose logging

firstCaller String The identity of the first user in the
caller list

Default

callerList String array A list of names representing the
identities of the users

Verbose

Chapter 19. Administering application security 1939



The RegistryContextObj object

Table 191. RegistryContextObj fields. This table lists the RegistryContextObj fields.
Field Type Description Default or Verbose logging

type String The type of user registry being
used, such as LDAP or AIX

Default

The ProcessContextObj object

Table 192. ProcessContextObj fields. This table lists the ProcessContextObj fields.
Field Type Description Default or Verbose logging

domain String The domain to which the user
belongs

Verbose

realm String The registry partition to which the
user belongs

Default

The EventContextObj object

Table 193. EventContextObj fields. This table lists the EventContextObj fields.
Field Type Description Default or Verbose logging

lastEventTrailId String The last ID associated with a given
transaction

Verbose

eventTrailId String array An array of IDs that allow events
that belong to a given transaction to
be correlated

Default

creationTime Date The date an event was created Default

globalInstanceId Long The unique identifier of this event Default

The DelegationContextObj object

Table 194. DelegationContextObj fields. This table lists the DelegationContextObj fields.
Field Type Description Default or Verbose logging

delegationType String no delegation, simple delegation,
method delegation or switch user
delegation

Default

roleName String The Run as role being used:
runAsClient, runAsSpecified,
runAsSystem, own ID

Default

identityName String Information about the mapped user Default

The AuthnContextObj object

Table 195. AuthnContextObj fields. This table lists the AuthnContextObj fields.
Field Type Description Default or Verbose logging

authnType String The type of authentication used Default

The ProviderContextObj object

Table 196. ProviderContextObj fields. This table lists the ProviderContextObj fields.
Field Type Description Default or Verbose logging

provider String The provider of the authentication
or authorization service

Default

providerStatus String Status of whether the authentication
or authorization event processed
successfully by the provider

Default

1940 Administering WebSphere applications



The AuthnMappingContextObj object

Table 197. AuthnMappingContextObj fields. This table lists the AuthnMappingContextObj fields.
Field Type Description Default or Verbose logging

mappedSecurityDomain String The security domain after mapping
has occurred

Default

mappedRealm String The realm after mapping has
occurred

Default

mappedUserName String The user name after mapping has
occurred

Default

The AuthnTermContextObj object

Table 198. AuthnTermContextObj fields. This table lists the AuthnTermContextObj fields.
Field Type Description Default or Verbose logging

terminateReason String The reason authentication ended Default

The AccessContextObj object

Table 199. AccessContextObj fields. This table lists the AccessContextObj fields.
Field Type Description Default or Verbose logging

progName String The name of the program that was
involved in the event

Default

action String The action being performed. Default

registryUserName String The name of the user in the registry Default

appUserName String The name of the user within an
application

Default

accessDecision String The decision of the authorization
call

Default

resourceName String The name of the resource in the
context of the application

Default

resourceType String The type of resource Default

resourceUniqueId Long The unique identifier of the resource Default

permissionsChecked String array The permissions that were checked
during the authorization call

Default

permissionsGranted String array The permissions that were granted
during the authorization call

Default

rolesChecked String array The roles that were checked during
the authorization call

Default

rolesGranted String array The roles that were granted during
the authorization call

Default

The PolicyContextObj object

Table 200. PolicyContextObj fields. This table lists the PolicyContextObj fields.
Field Type Description Default or Verbose logging

policyName String The name of the policy Default

policyType String The type of policy Default

The KeyContextObj object

Table 201. KeyContextObj fields. This table lists the KeyContextObj fields.
Field Type Description Default or Verbose logging

keyLabel String The key or certificate label Default

keyLocation String The physical location of the key
database

Default

certLifetime Date The date when a certificate expires Default

Chapter 19. Administering application security 1941



The CipherContextObj object

Table 202. CipherContextObj fields. This table lists the CipherContextObj fields.
Field Type Description Default or Verbose logging

cipherData Byte array The cipher data that is captured Verbose

The MgmtContextObj object

Table 203. MgmtContextObj fields. This table lists the MgmtContextObj fields.
Field Type Description Default or Verbose logging

mgmtType String The type of management operation Default

mgmtCommand String The application-specific command
that was performed

Default

targetInfoAttributes Target Atrribute array Information about one or more
secondary objects involved in this
operation

Verbose

The ResponseContextObj object

Table 204. ResponseContextObj fields. This table lists the ResponseContextObj fields.
Field Type Description Default or Verbose logging

url String The URL of the HTTP request Default

httpRequestHeaders Attributes array The HTTP request headers
provided by the client

Verbose

httpResponseHeaders Attributes array The HTTP response headers
returned by the server

Verbose

The CustomPropertyContextObj object

Table 205. CustomPropertyContextObj fields. This table lists the CustomPropertyContextObj fields.
Field Type Description Default or Verbose logging

key String The label representing the custom
property key name

Verbose

value Object The object value of the custom
property

Verbose

Configuring security audit subsystem failure notifications
Notifications can be generated by a failure of the security audit subsystem. The security audit subsystem
notifications can alert auditors that the security audit system is no longer recording auditable security
events. Notifications are generated by a failure of the auditing subsystem, they are not related to any
auditable security events or event outcome that has occurred. Notifications triggered by an event or an
event outcome are not supported.

Before you begin

Before configuring notifications, enable global security and the security audit subsystem in your
environment. You must be assigned the auditor role to complete this task.

About this task

If a problem is experienced with the security audit subsystem, then a notification can be generated. This is
an alert that security events are no longer being audited. Notification can be written to the system log file
or can be sent to a specified group of users as an email. You are able to configure notifications to alert the
auditor of a problem using both of these methods simultaneously. Notifications are only generated when

1942 Administering WebSphere applications



the Audit subsystem failure action field is set to Log warning or Terminate server.

Procedure
1. Optional: Click Security > Security Auditing.

2. Optional: Confirm the Audit subsystem failure action field is set to Log warning or Terminate server. If
the Audit subsystem failure action field is set to No warning, then notifications will not be generated.

3. Click Security > Security Auditing > Audit monitor .

4. Under Notifications, Click New

5. Enter the name that should be associated with this notification configuration in the Notification name
field.

6. Select the Message log check box to specify the failure notifications are recorded in the audit log.

7. Select the email sent to notification list check box to specify that failure notification email should be
sent to the addresses listed in the notification list.

8. Enter an email address in the email address to add field This step is not needed if email notifications
are not going to be sent.

9. Enter the mail server address in the Outgoing mail (STMP) server address. This step is not needed if
email notifications are not going to be sent.

10. Click Add >> to add the email address and associated mail server to the email notification list.

11. Repeat steps 5 through 7 for each email address you want to specify in the email notification list.

12. Click OK.

13. Select the Enable monitoring check box to turn on audit failure notifications.

14. Select the notification configuration to be used from the Monitor notification dropdown menu.

15. Click OK.

Results

After completing this task, a notification will be generated if the security auditing subsystem experiences
an unrecoverable error resulting in security events no longer being audited.

What to do next

After configuring notifications, you can analyze your audit data for potential weaknesses in the current
security infrastructure and to discover possible security breaches that might have occurred.

Audit notifications cannot be removed using the administrative console. To remove an audit notification you
first must run the deleteAuditNotificationMonitorByRef or the deleteAuditNotificationMonitorByName
command. After running one of those commands, remove the audit notification by running the
deleteAuditNotification command.

Audit monitor collection
Use this page to configure audit subsystem failure notifications. The Auditor monitor panel lists the existing
notification configurations and is the gateway for creating new notification configurations and for managing
the existing notification configurations.

To view this administrative console page, click Security > Security Auditing > Audit monitor.

Enable monitoring:

Specifies whether to enable or disable notifications. If the check box is selected, then monitoring is
enabled. If the check box is not selected, then monitoring is disabled. This check box is disabled by
default.

Chapter 19. Administering application security 1943



Monitor notification:

Specifies the notification configuration that will be used for reporting audit subsystem failures.

Notification name:

Specifies a string that uniquely identifies a notification configuration.

Message log:

Specifies if the configuration will send failure notifications to the message log file. If the value is true, then
failure notifications will be sent to the message log file. If the value is false, then failure notifications will be
not be sent to the message log file. When creating a notification, this field is in the form of a check box
and is not selected by default.

Send Email:

Specifies whether an email notification is sent to the addresses listed in the List of email addresses
column.

List of email addresses:

Specifies the email addresses listed as recipients for email notification in the event of an audit subsystem
failure. No email addresses are listed by default. Email addresses will appear in this column if they are
listed in the notification list in the notification, this applies even when the Email sent to notification list
check box is not selected in the notification.

Audit notification settings
Use this page to create and manage notification configurations that define how auditors are made aware
of audit subsystem failures.

To view this administrative console page, click Security > Security Auditing > Audit monitor > New.

Notification name:

Specifies a string that uniquely identifies a notification configuration.

Message log:

Specifies if the configuration will send failure notifications to the message log file. If the check box is
selected, then failure notifications will be sent to the message log file. If the check box is not selected,
then failure notifications will be not be sent to the message log file. This check box is not selected by
default.

Send secure emails:

Email sent to the notification list:

Specifies whether the configuration will send a failure notification to the recipients listed in the notification
list. If the check box is selected, then failure notifications will be sent to the recipients in the notification list.
If the check box is not selected, then failure notifications will not be sent to the recipients in the notification
list. This check box is not selected by default.

Email address to add:

1944 Administering WebSphere applications



Specifies the email address to be added to the notification list to received failure notification emails. To add
a recipient to the notification list, this field and the Outgoing mail (SMTP) server field must both be
completed before you click the Add.

Outgoing mail (SMTP) server:

Specifies the SMTP server to be used with this email address. If no server is specified, then the email
realm will be used.

Configuring the default audit service providers for security auditing
The audit service provider is used to format the audit data object that was sent by the audit event factory.
After being formatted, the audit data is recorded to the repository defined in the audit service provider
configuration.

Before you begin

Before configuring the audit service provider, enable global security in your environment.

About this task

This task configures the audit service provider used to record generated audit records.

Procedure
1. Click Security > Security Auditing > Audit service provider.

2. Click New and then select Binary file based emitter.

3. Enter the unique name that should be associated with this audit service provider in the Name field.

4. Enter the file location of the binary log file in the Audit log file location field.

Note: When the server is stopped, the current audit file will be saved with a timestamp in the file
name; this is to facilitate archiving and to allow you to easily determine the audit files for
specific periods. When you start the server again, audit data will be written to a new audit file
that does not include the timestamp in the name.

5. Optional: Enter the maximum size allowed for a single binary log file in the Audit log file size field.

This field is specified in megabytes. After the maximum audit file size is reached, a new audit file will
be created or an existing audit file will be overwritten. If the maximum number of audit log files has not
been set, the default maximum file value used is 10 megabytes. There is no audit archiving utility
included with the product. You are responsible for the archiving of your audit data.

6. Optional: In the Maximum number of audit log files field, enter the maximum number of audit logs to be
stored before the oldest is overwritten.

The default value for this field is 100. The value of 100 is also used if the field is empty.

Note: The maximum number of logs does not include the current binary log that is being written to. It
is a reference to the maximum number of archived (timestamped) logs. The total number of
binary logs that can exist for a server process is the maximum number of archived logs plus the
current log.

Also under this field, there are additional options to select the behavior when the maximum number of
logs is reached. The choices are:

oldest If you select this option, when the maximum audit logs are reached, the oldest audit log is
rewritten; notification is not sent to the auditor.

stop server
This option does not rewrite over the oldest audit log. It stops the audit service, sends a
notification to the SystemOut.log, and quiesces the application server.

Chapter 19. Administering application security 1945



stop logging
This option does not rewrite over the oldest audit log. It also stops the audit service, but does
allow the WebSphere process to continue. Notifications are not posted in the SystemOut.log.

7. Select the filters to be used by this audit service provider. The Selectable filter list consists of a list of
the configured filters that have been configured and are currently enabled.

a. Select the filters that should be audited from the Selectable filter list.

b. Click Add >> to add the selected filters to the Enabled filter list.

8. Click Apply.

Results

After completing these steps, your audit data will be sent to the specified repository in the format required
by that repository.

What to do next

After creating an audit service provider, the audit service provider must be associated with an audit event
factory provide the audit data objects to the audit service provider. Next you should configure an audit
event factory.

Audit service provider collection
The Audit service provider panel displays a listing of all configured audit service provider implementations.
Using this panel, a user can define a new audit service provider implementation, delete an existing
implementation, and display or modify the fields associated with an existing implementation.

To view this administrative console page, click Security > Security Auditing > Audit service provider.

By default, the audit.xml will contain the IBM audit service provider implementation which emits audit
records to a binary filed-based text file. This implementation is used for Binary file- based audit service
provider configurations. For each existing audit service provider in the list on this panel, the unique name,
type and event formatting class associated with the audit service provider will be displayed.

Name:

The Name field is the unique name associated with the audit service provider implementation.

Type:

The Type field specifies if the implementation is a binary file-based implementation, SMF implementation
or a third party implementation.

Event formatting module class name:

The event formatting class is a class used to format the generic event data object into a format that is
specific to the audit service provider implementation. For example, a third party audit service provider
implementation might have an event formatting class that takes the generic event and translates it into
XML data. There is no Event formatting module class for binary file-based implementations nor for SMF
implementations.

Audit service provider settings
Use this page to define the implementation details of the audit service provider. There are three types of
audit service providers: binary file-based, third party and SMF.

To view this administrative console page, click one of the following paths:

v Security > Security auditing > Audit service provider > audit_service_provider_name.

1946 Administering WebSphere applications



v Security > Security auditing > Audit service provider > New > Binary File-based emitter.

v Security > Security auditing > Audit service provider > New > Third party emitter.

Name:

Specifies the unique name associated with the audit service provider.

Third party emitter class name:

Specifies the name of the class for this implementation. This field is only present for Third party emitter
implementations.

Audit file location:

Specifies the path to the binary log file.

Audit file size:

Specifies the maximum size of a single binary log file. This value is defined in megabytes.

Maximum number of audit log files:

Specifies the maximum number of binary log files to create before the oldest is replaced.

Note: The maximum number of logs does not include the current binary log that is being written to. It is a
reference to the maximum number of archived (timestamped) logs. The total number of binary logs
that can exist for a server process is the maximum number of archived logs plus the current log.

Audit log wrapping:

Specifies the wrapping behavior of the binary audit log when the maximum number of binary audit log files
is reached.

There are customizable options available when specifying the default audit log wrapping behavior. This is
only applicable to the Binary Audit Log implementation. Choose from one of the following options:

WRAP
If you select this option, when the maximum audit logs are reached, the oldest audit log is
rewritten; notification is not sent to the auditor. This is the default option, and mimics the default
behavior in WebSphere Application Server Version 7.0.

NOWRAP
This option does not rewrite over the oldest audit log. It stops the audit service, sends a
notification to the SystemOut.log, and quiesces the application server.

SILENT_FAIL
This option does not rewrite over the oldest audit log. It also stops the audit service, but does
allow the WebSphere process to continue. Notifications are not posted in the SystemOut.log.

Note: If audit notification of failures in the audit subsystem is configured, and SILENT_FAIL is
selected, the auditor is not notified of the audit subsystem failure. The SILENT_FAIL option
takes precedence

Note: If you use the NOWRAP or SILENT_FAIL options, when the server is stopped as a result of
the logs being maxed-out, a stopserver is performed, or because the server abends in
some way, you must archive the binary audit logs before you restart the server.

Chapter 19. Administering application security 1947



Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Event formatting module class name:

Specifies a class used to format the generic event into a format that is specific to the audit service
provider implementation. For example, a third party audit service provider implementation might have an
event formatting class that takes the generic event and translates it into XML data.

Selectable filters:

Specifies the available event filters. To enable a filter for an implementation, select the filter from the
Selectable event filters list and then click >.

Enabled filters:

Specifies the event filters that are currently enabled for an implementation. To disable a filter for an
implementation, select the filter from the Enabled filters list and then click <.

Custom properties:

Specifies any custom properties that might be used to add properties to a third party implementation.
Custom properties are not available for binary file-based implementations or SMF implementations.

v Name

v Value

Example: Base Generic Emitter Interface
The Base Generic Emitter interface defines how audit events are emitted. Other interfaces can exist to
extend this interface and to process specific audit events groupings, such as security events, transactional
events, or some other custom grouping. Use this interface to create a custom implementation of the
emitter.

Base Generic Emitter Interface
/**
* This is the interface for the event emitter. Event sources use this interface
* to send events to an event service.
*
*/
public interface BaseGenericEmitter {
/**
* Sends an event to the configured GenericEmitter implementation.
*
* @param event The event to be sent to the event service.
* This value cannot be null.
* @return The global instance ID of the event that was built.
* @exception GenericEmitterException If an error occurs during emitter processing.
* @exception IllegalArgumentException If the event parameter is null.
*/
public String sendEvent(GenericEvent event) throws

GenericEventException;
/** * Sends an array of events to the configured GenericEmitter implementation.
* @param events The event array to be sent to the event service.
* This value cannot be null.
* @return The global instance IDs of the events that were built.
* @exception GenericEmitterException If an error occurs during emitter processing.
* @exception IllegalArgumentException If the events parameter is null.
*/
public String[] sendEvents(GenericEvent events[]) throws

GenericEventException;
/**
* Causes the emitter to release all resources that are owned by this

1948 Administering WebSphere applications



* object and its dependents.
* Subsequent calls to this method have no effect.
*
* @throws GenericEmitterException If the emitter does release the
* held resources.
* resources.
* @throws GenericEventException If any other error occurs when releasing resources.
*/
public void close() throws

GenericEventException;
}

Configuring a third party audit service providers for security auditing
The audit service provider is used to format the audit data object that was sent by the audit event factory.
In addition to the default audit service provider, you may use a third party implementation as your audit
service provider.

Before you begin

Before configuring the audit service provider, enable global security in your environment.

About this task

This task configures the audit service provider used to record generated audit records.

Procedure
1. Click Security > Security Auditing > Audit service provider.

2. Click New and then select Third party emitter.

3. Enter the unique name that should be associated with this audit service provider in the Name field.

4. Enter the Third party emitter class name.

5. Enter the Event formatting module class name. This field specifies the class used to format the generic
event into a format that is specific to the audit service provider implementation. For example, your
implementation might have an event formatting class that takes the generic event and translates it into
XML data.

6. Select the filters to be used by this audit service provider. The Selectable filter list consists of a list of
the configured filters that have been configured and are currently enabled.

a. Select the filters that should be audited from the Selectable filter list.

b. Click Add >> to add the selected filters to the Enabled filter list.

7. Optional: Enter any custom properties that you included in your third party emitter code.

8. Click Apply.

Results

After completing these steps, your audit data will be sent to the specified repository in the format required
by that repository.

What to do next

After creating an audit service provider, the audit service provider must be associated with an audit event
factory provide the audit data objects to the audit service provider. Next you should configure an audit
event factory.

Example: Base Generic Emitter Interface
The Base Generic Emitter interface defines how audit events are emitted. Other interfaces can exist to
extend this interface and to process specific audit events groupings, such as security events, transactional
events, or some other custom grouping. Use this interface to create a custom implementation of the
emitter.

Chapter 19. Administering application security 1949



Base Generic Emitter Interface
/**
* This is the interface for the event emitter. Event sources use this interface
* to send events to an event service.
*
*/
public interface BaseGenericEmitter {
/**
* Sends an event to the configured GenericEmitter implementation.
*
* @param event The event to be sent to the event service.
* This value cannot be null.
* @return The global instance ID of the event that was built.
* @exception GenericEmitterException If an error occurs during emitter processing.
* @exception IllegalArgumentException If the event parameter is null.
*/
public String sendEvent(GenericEvent event) throws

GenericEventException;
/** * Sends an array of events to the configured GenericEmitter implementation.
* @param events The event array to be sent to the event service.
* This value cannot be null.
* @return The global instance IDs of the events that were built.
* @exception GenericEmitterException If an error occurs during emitter processing.
* @exception IllegalArgumentException If the events parameter is null.
*/
public String[] sendEvents(GenericEvent events[]) throws

GenericEventException;
/**
* Causes the emitter to release all resources that are owned by this
* object and its dependents.
* Subsequent calls to this method have no effect.
*
* @throws GenericEmitterException If the emitter does release the
* held resources.
* resources.
* @throws GenericEventException If any other error occurs when releasing resources.
*/
public void close() throws

GenericEventException;
}

Configuring audit event factories for security auditing
The audit event factory collects the data associated with the auditable security events and builds the audit
data object. The object is then sent to the audit service provider to be formatted and recorded to a
specified repository.

Before you begin

Before configuring an event factory, enable global security in your environment. An event type filter and an
audit service provider need to be created before completing these steps

About this task

Procedure
1. Click Security > Security Auditing > Audit event factory configurations > New.

2. Enter the unique name that should be associated with this Audit event factory configuration in the
Name field.

3. Select either IBM audit event factory or Third party event factory.

a. Enter the Third party audit event factory class name. This step is only required if a Third party
event factory is being created.

4. Select the appropriate audit service provider implementation from the Audit service provider dropdown
menu,

5. Select the event type filter configuration to be used by this audit event factory. The Filters list consists
of a list of the event type filter configurations that have been created and are currently enabled.

a. Select the event type filters that should be used from the Selectable filter list.

b. Click Add >> to add the selected event type filter configurations to the Enabled filter lists.

6. Enter any Custom properties that need to be included with this audit event factory configuration.
Custom properties are only available for Third party event factory implementations.

1950 Administering WebSphere applications



7. Click Apply.

Results

After successful completion of these steps, you will have an event factory that can be used to gather
auditable event data.

What to do next

After configuring an audit event factory, you can optionally protect your data by configuring the security
auditing subsystem to sign and encrypt your audit logs.

Audit event factory configuration collection
The Audit event factory configuration panel displays a list of all currently configured audit event factory
implementations. This panel allows a user with the auditor role to manage their configured audit event
factories. This includes the ability to configure a new implementation, which is done using the New button
on this panel.

To view this administrative console page, click Security > Security Auditing > Audit event factory
configuration.

Name:

The Name field specifies the unique name associated with the audit event factory configuration.

Type:

The Type field specifies this audit event factory configuration as either an IBM audit event factory or a
Third party audit event factory.

Class name:

The Class name field specifies the class that is being implemented in an audit event factory configuration.

The class name is com.ibm.ws.security.audit.AuditEventFactoryImpl for an IBM event factory. For a
Third party audit event factory, the class name is the class specified in the Third party audit event factory
class name field.

Audit event factory settings
The Audit event factory settings panel displays the details of a specific audit event factory. The auditor
uses this panel to manage and create audit event factory configurations.

To view this administrative console page, click on of the following paths:

v Security > Security Auditing > Audit event factory configuration >
audit_event_factory_configuration_name.

v Security > Security Auditing > Audit event factory configuration > New.

Name:

Specifies the unique name associated with the audit event factory configuration.

Type:

Specifies this audit event factory configuration as either an IBM audit event factory or a Third party audit
event factory. This field does not appear on the panel during the creation of a new audit event factory. It is
included when viewing or modifying an existing audit event factory.

Chapter 19. Administering application security 1951



IBM audit event factory:

Specifies that the Type field of this audit event factory is IBM audit event factory. This check box only
appears on the panel during the creation of a new audit event factory. This check box is selected by
default when creating a new audit event factory.

Third party audit event factory:

Specifies that the Type field of this audit event factory is Third party audit event factory. This check box
only appears on the panel during the creation of a new audit event factory. This check box is not selected
by default when creating a new audit event factory.

v The Third party audit event factory class name field is active when the Third party audit event factory
check box is selected. This field represents the class name of the third-party implementation of the Audit
Event Factory interface

Class name:

Specifies the class that is being implemented in a audit event factory configuration.

Although not specified during creation, the class name is
com.ibm.ws.security.audit.AuditEventFactoryImp for an IBM event factory.

Audit service provider:

Specifies where the audit data objects gathered by this audit event factory will be sent.

Selectable filters:

Specifies the filters that are currently available to be used for an implementation. To enable a filter for an
implementation, select the filter from the Selectable filter list and then click >.

Enabled filters:

Specifies the filters that are currently enabled for an implementation. To disable a filter for an
implementation, select the filter from the Enabled filter list and then click <.

Custom properties:

Specifies properties that the auditor can define to configure the Audit Event Factory implementation. This
might be used by third party implementation of the audit event factory interface. Custom properties are not
used for the IBM audit event factory implementation.

Each custom property has the following fields:

v Name

v Value

Example: Generic Event Factory Interface
This interface is used for processing generic audit events. Other interfaces can be defined which extend
this interface to process specific audit event groupings, such as security events, transaction events, or
some other custom grouping.

Generic Event Factory Interface
/**
* GenericEventFactory is the interface that is used to generate audit events.
* This interface may be extended to generate application specific audit events.
*
* One or more GenericEventFactory implementations each with a unique name can be defined in the
* security configuration and be used by WebSphere Application Server security auditing service.

1952 Administering WebSphere applications



* @author IBM Corporation
* @version WAS 7.0
* @since WAS 7.0
*/
public interface GenericEventFactory {
/**
* The init method allows a GenericEventFactory implementation to
* initialize its internal auditing configuration using the properties and context object.
*
* The properties and context objects are treated as read-only and must not be modified by the
* GenericEventFactory implementation.
*
* @param A String object represents the name of this GenericEventFactory.
* @param A Map properties object that contains the custom properties that can be defined in the
* the admin console or by using wsadmin scripting tool.
* @param A Map object that contains the context that includes cell name, node name, and server name.
* @exception ProviderFailureException might occur if the audit factory does not initialize
*/
public void init(String name, Map properties, Map context) throws ProviderFailureException;
/**
*
* The terminate method gracefully quiesces the event factory implementation.
*/
public void terminate();
/**
*
* The refresh method allows a GenericEventFactory implementation to
* update its internal auditing configuration using the properties object.
*
* The properties object is treated as read-only and must not be modified by the
* GenericEventFactory implementation.
*
* @param A Map object that contains the custom properties
* @exception ProviderFailureException might occur if the factory does not refresh
*/
public void refresh(java.util.Map properties) throws ProviderFailureException;
/**
*
* The getName method returns the name of this GenericEventFactory.
*
* @param None
* @return a String object represents the name of the GenericEventFactory.
*/
public String getName();
/**
*
* The sendEvent method determines whether the specified audit event is generated by this
* GenericEventFactory.
*
* @param a String object represents an audit event
* @param a OutcomeType object represents the audit outcome value
* @exception ProviderFailureException might occur if the audit factory does not initialize
* @return a boolean success/failure
* @exception ProviderFailureException might occur if the audit factory does not send the event.
*/
public boolean sendEvent(String auditEventType, OutcomeType auditOutcome) throws
ProviderFailureException;
*
}

Protecting your security audit data
The security auditing subsystem allows for protection of your security audit data by increasing the
assurance that the audit data has not been tampered or modified outside of the auditing facility. This
option also protects the confidentiality of the data. The audit data is protected by encrypting and signing
the recording data.

Before you begin

Restriction: Signing and encrypting your audit data is only available for data created using the default
binary log audit service provider. If you are using the SMF emitter or a 3rd party emitter you
will not be able to sign or encrypt your data.

Before configuring protection for your security audit data, enable global security and security auditing in
your environment. You must be assigned the auditor role to complete the task of protecting your audit
data. You will also need the administrator role to configure your audit data to be signed.

Chapter 19. Administering application security 1953



About this task

The practice of auditing requires assurances that your audit data is accurate and uncompromised. Your
audit data has the option to be encrypted, signed, or encrypted and signed. You can protect your audit
data using these options to provide assurances that you data is only viewed by authorized users and can
not untraceably be modified . To protect the validity of your security auditing functionality, complete the
following steps:

Procedure
1. “Encrypting your security audit records” Audit logs can be encrypted to ensure your audit data is

protected. The audit logs will be encrypted using a certificate that is saved to a keystore in the
audit.xml file. By encrypting your audit records, only users with the password to the keystore will be
able to view or update the audit logs.

2. “Signing your security audit records” on page 1955 Audit logs can be signed to ensure the integrity of
your audit data. By signing your audit records, you ensure any modifications of the audit logs can be
traced.

Results

After completing these steps your data will be signed, encrypted or signed and encrypted to provide
assurances that the data is accurate and confidential.

What to do next

After protecting your data, you can configure notifications to ensure you are notified if a problem with the
security auditing subsystems occurs that prevents security events from being recorded.

Encrypting your security audit records
Audit logs can be encrypted to ensure your audit data is protected. By encrypting your audit records, only
users with access to the encrypting certificate will be able to view the audit logs.

Before you begin

Restriction: Encrypting audit data is only available for data created using the default audit service
provider. If you are using the SMF emitter or a 3rd party emitter you will not be able to
encrypt your data.

Before configuring your security audit records to be encrypted, enable global security and security auditing
in your environment. You must be assigned the auditor role to encrypt your security auditing records. If you
are using a certificate stored in the security.xml file, you also require the administrator role to complete
this task.

About this task

Procedure
1. Click Security > Security Auditing > Audit record encryption configuration.

2. Select the Enable encryption check box to specify that your audit records should be encrypted. All
other fields on this panel will be unavailable until this check box has been selected.

3. Select the keystore that contains the encrypting certificate from the dropdown menu or click New to
create a new certificate in an existing keystore. Use the following steps if you are creating a new
certificate:

a. Enter the name of the keystore in the Name field.

b. Enter the path to the keystore file in the Path field.

c. Enter the password to be associated with the keystore in the Password field.

1954 Administering WebSphere applications



d. Confirm the password associated with the keystore by retyping the password in the Confirm
password field.

e. Select the keystore type from the Type dropdown list. The default value of the Type dropdown list
is PKCS12.

4. If you are using an existing certificate to encrypt your audit records, ensure Certificate in keystore is
selected and specify the intended certificate in the Certificate alias dropdown menu.

5. If you are generating a new certificate to encrypt your audit records, select Create a new certificate in
the selected keystore and follow these steps:

a. Enter the name of your new certificate in the Certificate alias field.

b. Select either Automatically generate certificate or Import a certificate. The certificate used to
encrypt the data in the audit log files can either be created or imported. If you selected to generate
a certificate, then skip to the last step on this page. If you selected to import a certificate, then
continue on with step c.

c. Enter the name of the keystore file in the Key file name field.

d. Enter the path to the keystore file in the Path field.

e. Select the keystore type from the Type dropdown list. The default value of the Type dropdown list
is PKCS12.

f. Enter the password associated with the keystore in the Key File password field.

g. Click Get key file aliases to populate the Certificate alias to import dropdown menu.

h. Select the certificate to be imported from the Certificate alias to import dropdown menu.

6. Click OK.

Results

After completing these steps, your audit logs will be encrypted to ensure only authorized users can view
the content of your audit log files.

What to do next

After you have finished configuring your audit logs to be encrypted, you can ensure the data integrity of
your audit logs by configuring the audit subsystem to sign your audit records.

Signing your security audit records
Audit logs can be signed to ensure the integrity of your audit data. By signing your audit records,
modifications of the audit logs can be traced.

Before you begin

Restriction: Signing audit data is only available for data created using the default audit service provider. If
you are using the SMF emitter or a 3rd party emitter you will not be able to sign your data.

Before configuring your security audit records to be signed, enable global security and security auditing in
your environment. You must be assigned the auditor role and the administrator role to configure audit
record signing.

About this task

Procedure
1. Click Security > Security Auditing > Audit record signing configuration.

2. Select the Enable signing check box to specify that your audit records should be signed. All other fields
on this panel will be unavailable until this check box has been selected.

Chapter 19. Administering application security 1955



3. Select the keystore that contains the signing certificate from the Managed keystore containing the
signing certificate dropdown menu.

4. If you are using an existing certificate to sign your audit records, ensure Certificate in keystore is
selected and specify the intended certificate in the Certificate alias dropdown menu.

5. If you are generating a new certificate to sign your audit records, select Create a new certificate in the
selected keystore and follow these steps:

a. Enter the name of your new certificate in the Certificate alias field.

b. Select on of the following options: Import the encryption certificate, Automatically generate
certificate or Import a certificate. The certificate used to encrypt the data in the audit log files can
either be created or imported.

v If you selected Import the encryption certificate, then you will use the encryption certificate to
also sign your audit records. Skip to the last step on this page to complete this configuration.

v If you selected to generate a certificate, then skip to the last step on this page to complete this
configuration.

v If you selected to import a certificate from an existing keystore, then continue on with step c.

c. Enter the name of the keystore file in the Key file name field.

d. Enter the path to the keystore file in the Path field.

e. Select the keystore type from the Type dropdown list. The default value of the Type dropdown list
is PKCS12.

f. Enter the password associated with the keystore in the Key File password field.

g. Click Get key file aliases to populate the Certificate alias to import dropdown menu.

h. Select the certificate to be imported from the Certificate alias to import dropdown menu.

6. Click OK.

Results

After you have completed these steps, your audit logs will be digitally signed to ensure the integrity of the
data.

What to do next

After you have finished configuring your audit logs to be signed, you can ensure the confidentiality of your
audit logs by configuring the audit subsystem to encrypt your audit records.

Audit encryption keystores and certificates collection
The Audit encryption keystores and certificates panel allows the auditor to manage the keystores and
certificates used for audit encryption.

To view this administrative console page, click Security > Security Auditing > Audit encryption
keystores and certificates.

Name:

Specifies the unique name of the keystores used for storing the encryption certificate.

Path:

Specifies the path to the listed keystore file.

The path to the keystore file can be listed using environment variables, ${PROFILE_ROOT}, or with a fully
qualified path.

1956 Administering WebSphere applications



Audit record encryption configuration settings
Use this page to enable encryption for your audit records. Encrypting your audit records ensures only a
user given access to the certificate used for encryption is allowed to view the audit records.

To view this administrative console page, click Security > Security auditing > Audit record encryption
configuration. If Enable encryption is not selected, then all of the other fields on this panel will be
disabled. Encryption is not enabled by default.

Enable encryption:

Specifies whether your audit records will be encrypted. This check box is not selected by default.

Audit keystore containing the encryption certificate:

Specifies the audit keystore specified to store the encryption certificate.

A new keystore can be created by clicking on the New... button.

Certificate in keystore:

Specifies an existing certificate will be used from the keystore specified in the Audit keystore containing
the encryption certificate field. This field is selected by default. If a keystore in the security.xml file is
used, the administrator role is required.

v Certificate alias

When the Certificate in keystore field is selected, the certificate alias dropdown menu displays a list of
certificate aliases contained in the keystore defined by the Audit keystore containing the encryption
certificate field. Select the certificate from the dropdown menu to be used to encrypt your audit records.

Create a new certificate in the selected keystore:

Specifies that a new certificate will be created in the keystore defined by the Audit keystore containing
the encryption certificate field.

v Certificate alias

When the Create a new certificate in the selected keystore is selected, the Certificate alias field is
used to define the name of the certificate to be created in the keystore defined by the Audit keystore
containing the encryption certificate field.

v Automatically generate certificate

When selected, the Automatically generate certificate field specifies that the application server will
automatically generate the certificate. This field is selected by default when the Create a new
certificate in the selected keystore field is selected.

v Import a certificate

When selected, the Import a certificate field specifies that an existing self-signed certificate will be
imported by the auditor into the keystore and used to encrypt your audit records. This field is not
selected by default when the Create a new certificate in the selected keystore field is selected. The
following fields need to be defined to import an existing certificate.

– The Key file name field specifies the keystore filename that contains the certificate to be imported.

– The Path field specifies the path to the keystore file that contains the certificate to be imported.

– The Type field specifies the type of the keystore file that contains the certificate to be imported.

– The Key file password field specifies the password used to access the keystore file that contains
the certificate to be imported.

– Certificate alias to import field specifies the alias of the certificate to be imported.

Chapter 19. Administering application security 1957



Audit record signing configuration settings
Use this page to enable signing for your audit records. Signing audit records ensures tamper-proof
recording of the auditable events. Both the auditor and administrator roles are required to configure the
signing of your audit data.

To view this administrative console page, click Security > Security auditing > Audit record signing
configuration. If Enable signing is not selected, then all of the other fields on this panel will be disabled.

Enable signing:

Specifies whether your audit records will be encrypted. This check box is not selected by default.

Managed keystore containing the signing certificate:

Specifies the keystore used to store the signing certificate.

Certificate in keystore:

Specifies an existing certificate will be used from the keystore specified in the Managed keystore
containing the signing certificate field. This field is selected by default.

v Certificate alias

When the Certificate in keystore field is selected, the Certificate alias dropdown menu displays a list
of certificate aliases contained in the keystore defined by the Managed keystore containing the
signing certificate field. Select the certificate from the dropdown menu to be used to sign your audit
records.

Create a new certificate in the selected keystore:

Specifies that a new certificate will be created in the keystore defined by the Managed keystore
containing the signing certificate field.

v Certificate alias

When the Create a new certificate in the selected keystore is selected, the Certificate alias field is
used to define the name of the certificate to be created in the keystore defined by the Audit keystore
containing the encryption certificate field.

v Import the encryption certificate

Specifies the certificate used for encryption will be imported into the signing keystore file and used for
signing.

v Automatically generate certificate

Specifies the application server will automatically generate the certificate. This field is selected by
default when the Create a new certificate in the selected keystore field is selected.

v Import a certificate

Specifies an existing self-signed certificate will be imported by the auditor into the keystore and used to
encrypt your audit records. This field is not selected by default when the Create a new certificate in
the selected keystore field is selected. The following fields need to be defined to import an existing
certificate.

– The Key file name field specifies the keystore filename that contains the certificate to be imported.

– The Path field specifies the path to the keystore file that contains the certificate to be imported.

– The Type field specifies the type of the keystore file that contains the certificate to be imported.

– The Key file password field specifies the password used to access the keystore file that contains
the certificate to be imported.

– Certificate alias to import field specifies the alias of the certificate to be imported.

1958 Administering WebSphere applications



Audit record keystore settings
The Audit record keystore panel is used by an auditor to define the keystores used for storing the
encryption certificate used to encrypt the audit records. Keystores used for auditing are managed outside
of other keystores being used on the system to facilitate separation of the authority of the auditor for the
authority of the administrator.

To view this administrative console page, click one of the following paths:

v Security > Security Auditing > Audit encryption keystores and certificates > keystore_name.

v Security > Security Auditing > Audit encryption keystores and certificates > New.

v Security > Security Auditing > Audit record encryption configuration > New

Name:

The Name field specifies the unique name for the keystore. This is a required field.

Path:

Specifies the path where the keystore file is located. This is a required field.

Password:

Specifies the password to be used for this keystore. This is a required field.

Confirm Password:

Specifies confirmation of the value provided in the Password field. This is a required field.

Type:

The Type field specifies the type of the keystore. The Type dropdown menu has the following options for
defining the keystore type:

v JCEKS

v CMSKS

v PKCS12 - The default value for the Type field is PKCS12.

v Cryptographic Token Device (PKCS11)

v JKS

v PKCS12JarSigner

Using the audit reader
The audit reader is a utility that can be used to read the binary audit logs generated by the default binary
emitter implementation. The audit reader parses the audit log to generate an HTML report. The audit
reader is invoked using wsadmin commands and is not accessible using the administrative console.

Before you begin

The audit reader can only be used to parse log files that are created by the default audit service provider.
Logs created by a third-party emitter can not be parsed by the audit reader.

About this task

Your audit logs might be encrypted, signed, encrypted and signed or neither encrypted nor signed. The
audit reader is able to parse any of these combinations to generate an HTML report. If the audit log file is

Chapter 19. Administering application security 1959



encrypted, the password of the keystore storing the certificate used to encrypt the log must be provided.
The showAuditLogEncryptionInfo wsadmin command can be used to get information to determine which
keystore was used to sign the audit log.

Depending on the selections you made in your audit service provider configuration, the size of the audit
logs can become large enough to make them cumbersome to review. What data has been recorded into
your log is dependant on the event type filers you are using and whether you specified to use verbose
logging. Options are provided for you to further limit the data included in the HTML report that is generated
by the audit reader to a subset that you specify. The audit reader can be used to parse the same data
multiple times to generate separate reports for your different requirements.

By default, all event types, outcome types, timestamps, and sequence numbers will be gathered from the
Binary Audit log and generated into a report. The ability to specify only specific event types, only specific
sequence numbers, only records with specific timestamps, as well as specific outcome types is provided. A
sequence number is a unique identifier assigned to each audit record. Options exist to limit which events,
outcomes, and sequence numbers are included in the report.

The report type controls what data is reported for each audit record in the log file. The default report type
includes the follow data for each audit record:

v creationTime

v action

v progName

v registryType

v domain

v realm

v remoteAddr

v remotePort

v remoteHost

v resourceName

v resourceType

v resourceUniqueId

The complete report type generates a report based on all the data that was logged for the selected audit
records. The complete report type includes all the data that is included by the default report type and all
the additional datapoints that were logged for these audit records. The additional available datapoints for
an audit record varies depending on the event type it represents.

A custom report type is also included. Use the custom report type to specify only the datapoints that you
want generated in the report. A report may be generated based on the following criteria:

v all or specific event types

v all or specific outcome types

v all or a specific sequence number range

v all or a specific timestamp range

Procedure

Run the binaryAuditLogReader wsadmin command to use the audit reader to generate a log report. See
the AuditReaderCommands command group for the AdminTask object article for more information.

1960 Administering WebSphere applications



Results

After you complete these steps, you will generated an HTML report containing the data specific to your
requirement.

Example

Audit Event Outcome Codes

In a binary audit log or the output of the audit reader tool, audit event outcomes are expressed with a
numeric code. Use this table to associate the audit event outcome code in the binary audit logs to a
generic error messages.

Table 206. Event Outcome Codes. This table lists the event outcome codes.
Outcome reason code Description

0 An error occurred while parsing the certificate.

1 The security context does not exist for the thread.

2 There is conflicting session evidence.

3 The session has been rejected.

4 The token has expired.

5 Successful authentication has occurred.

6 Successful authentication for accessing a resource has occurred.

7 Successful authentication occurred while mapping a user.

8 Successful authorization has occurred.

9 Login termination was successful.

10 Invalid evidence exists.

11 There was a GSS formatting error.

12 Credentials were unauthenticated.

13 Authentication failed.

14 An invalid resource was accessed.

15 Authentication was denied.

16 Authorization was denied.

17 Access was denied because of an authentication failure.

18 Authorization was excluded.

19 Authorization was excluded because of access without proper security role.

20 An unsupported authentication mechanism was used.

21 An authentication redirect occurred.

22 The context does not exist.

23 A TAI challenge occurred.

24 A TAI validation was not successful.

25 A TAI mapping was not successful.

26 A provider failure occurred.

27 A SSO token validation was not successful.

28 An invalid user id or password was provided.

29 A send login form

30 An invalid configuration exists.

31 An user id or password is missing.

32 Failure occurred for an unknown reason.

33 The account was disabled because of retry violations.

34 The account was locked out because of retry violations.

35 The account was locked out because the maximum number of unsuccessful login attempts has
occurred.

36 The account is disabled.

37 The account has expired.

Chapter 19. Administering application security 1961



Table 206. Event Outcome Codes (continued). This table lists the event outcome codes.
Outcome reason code Description

38 The account is unlocked.

39 The maximum inactive time permitted for the account has elapsed.

40 The password has expired.

41 The minimum interval for a password change has unexpired.

42 The maximum interval permitted before a password must be changes has elapsed.

43 An authentication failure has occurred.

44 An invalid user name was provided.

45 A pin is required.

46 This outcome code is not used in this release.

47 A user mapping did not occur successfully.

48 A certificate failure occurred.

49 A policy violation has occurred.

50 A policy violation has occurred because of the time of day.

51 The policy allows access.

52 A policy violation has occurred because the maximum number of unsuccessful login attempts
has been reached.

53 A user name mismatch has occurred.

54 An invalid user password was provided.

55 A token signature violation has occurred.

56 The token is not yet valid.

57 The token is not supported.

58 The token is not in a valid format.

59 A credential mapping failure occurred.

60 The delegate is not authorized.

61 Access to a resource is unauthorized because of an authorization.

62 Access to a resource is unauthorized because of a time of day policy.

63 Access to a resource is unauthorized.

64 Access to a resource is unauthorized because of quality of protection.

65 Access to a resource is unauthorized because of an authorization level.

66 Access to a resource is unauthorized because reauthentication is required.

67 A password error has occurred because it does not meet password standards: minimum
alphabetic characters required.

68 A password error has occurred because it does not meet password standards: minimum
alphanumeric characters required.

69 A password error has occurred because it does not meet password standards: minimum
numeric characters required.

70 A password error has occurred because it does not meet password standards: minimum
alphabetic low case characters required.

71 A password error has occurred because it does not meet password standards: minimum
alphabetic upper case characters required.

72 A password error has occurred because it does not meet password standards: minimum special
characters required.

73 A password error has occurred because it does not meet password standards: maximum
repeated characters exceeded.

74 A password error has occurred because it does not meet password standards: contains user
name

75 A password error has occurred because it does not meet password standards: reused
password.

76 A password error has occurred because it does not meet password standards: contains
previous password.

77 A password error has occurred because it does not meet password standards: violations in
number of characters.

78 A password error has occurred because it does not meet password standards: first or last
characters are numeric.

79 An illegal form login configuration exists.

1962 Administering WebSphere applications



Table 206. Event Outcome Codes (continued). This table lists the event outcome codes.
Outcome reason code Description

80 Access is denied because of a incorrect URI.

81 Start was successful

82 Stop was successful.

83 The audit subsystem has been stopped.

84 The audit subsystem has successfully been enabled.

85 The audit subsystem has had a successful policy change.

86 Delegation was successful.

87 Delegation was not successful.

88 The audit subsystem has successfully been disabled.

89 An audit subsystem has occurred because a security header is missing.

90 An audit timestamp has been confirmed.

91 A bad audit timestamp has occurred.

92 Audit confidentially has been confirmed

93 Audit confidentially cannot be confirmed.

94 An audit decryption error has occurred.

103 A login attempt has been made by a user who has already logged in successfully.

Chapter 19. Administering application security 1963



1964 Administering WebSphere applications



Chapter 20. Administering Service integration

This page provides a starting point for finding information about service integration.

Service integration provides asynchronous messaging services. In asynchronous messaging, producing
applications do not send messages directly to consuming applications. Instead, they send messages to
destinations. Consuming applications receive messages from these destinations. A producing application
can send a message and then continue processing without waiting until a consuming application receives
the message. If necessary, the destination stores the message until the consuming application is ready to
receive it.

Enabling or disabling service integration notification events
You can monitor your service integration environment by using notification events.

About this task

Service integration notification events allow you to monitor the activity of your service integration
configuration by using your own system management application. For more details see Service integration
notification events.

You can enable or disable service integration notification events at either the bus or the messaging engine
level. The following table illustrates the effect of the two setting levels on the enablement of notifications:

Table 207. Notification settings. The first and second columns of the table list the combinations of the bus-level and
messaging engine level notification settings. The third column indicates if the notification is enabled or not based on
the combination of the two notification settings.

Bus-level notification setting ME-level notification setting Are notifications enabled

Not set Not set Disabled

Not set Enabled Enabled

Not set Disabled Disabled

Disabled Not set Disabled

Disabled Enabled Disabled

Disabled Disabled Disabled

Enabled Not set Enabled

Enabled Enabled Enabled

Enabled Disabled Disabled

Procedure
1. By using the administrative console, open the Custom properties page for either the bus or the

messaging engine for which you want to set notification events:

v Click Service integration -> Buses -> bus_name -> [Additional Properties] Custom properties
to display the custom properties for a bus.

v Click Service integration -> Buses -> bus_name -> [Topology] Messaging engines ->
engine_name -> [Additional Properties] Custom properties to display the custom properties for a
messaging engine.

2. Click New to create a new custom property.

3. Enter sib.event.notification as the name of the custom property. Set the value of the custom property to
either “enabled” or “disabled” as required.

4. Optional: Enter a description for the custom property.

5. Click OK and save your changes to the master configuration.

© Copyright IBM Corp. 2012 1965



Administering service integration buses
Application servers or clusters of application servers in a WebSphere Application Server cell can cooperate
to provide asynchronous messaging services. Service integration provides asynchronous messaging
services, and a group of servers or clusters that cooperate in this way is called a service integration bus.
Each of the cooperating servers or clusters is made a member of the bus. In the simplest case, a service
integration bus consists of a single bus member, which is one application server.

Procedure
v “Configuring buses”

v “Operating buses” on page 2024

v “Managing service integration buses with administrative commands” on page 2025

Configuring buses
You can configure service integration buses in a variety of ways; for example you can create and apply
security to a bus and you can then add servers or server clusters to that bus.

Creating a bus
When you create a service integration bus, you add a new bus in the administrative console, and then add
one or more servers or server clusters as bus members. Thereafter, you administer the bus, and its
constituent bus members, as a single unit.

Before you begin
v Plan your bus topology. For more information, see Bus configurations.

v Plan your security strategy. For more information, see Service integration security planning.

About this task

You can create a bus by using the administrative console. Wizards are provided to help you add a secured
bus, and add a member to the bus. A messaging engine is created for most types of bus member, and you
are prompted to specify a data store. The exception is WebSphere MQ server where, because a
messaging engine is not created, a message store is not required.

Procedure
1. Add a secured bus or an unsecured bus. For the steps, see “Adding buses” on page 1967.

2. Add a member to the bus. See “Adding a server as a new bus member” on page 1971. This creates a
messaging engine with default properties.

3. Optional: Configure the messaging engine, if required. See “Configuring messaging engine properties”
on page 1979.

4. Optional: Configure the message store for the messaging engine, if required. For a messaging engine
in an application server, you can change the data store configuration. You might do this, for example, if
you want to use DB2 rather than Apache Derby as the database system. For more information about
changing the data store configuration, see “Configuring a JDBC data source for a messaging engine”
on page 2043. You can also change the file store configuration. Refer to “Modifying file store
configuration” on page 2036.

5. Restart the server. The messaging engine starts when the server starts.

Results

A new bus is created.

1966 Administering WebSphere applications



What to do next

You can now change the configuration of the bus; for example, by adding additional members, by creating
bus destinations, and by creating links to WebSphere MQ networks. You can create other buses and, if
required, connect them together.

Adding buses
You can add a new service integration bus by using the administrative console. If messaging security is
enabled, security settings are configured for the bus by default. You can add a unsecured bus if you
disable messaging security.

Adding a secured bus:

In this task you add a new service integration bus that is secured by default. The security settings for the
bus are stored in a security domain. When you add a new bus, you can assign it to the default global
security domain, the cell-level domain, or specify a custom domain that contains a set of settings that are
unique to the bus, or shared with another resource.

Before you begin

v Plan the security requirements for the bus. For more information about security planning, see Service
integration security planning. For more information about security domains, see Messaging security and
multiple security domains.

v Stop all servers that have the SIB Service enabled. This ensures that the bus security configuration is
applied consistently when the servers are restarted. For more information, see Stopping an application
server.

About this task

This task uses an administrative console security wizard to add a new bus. If the wizard detects that
administrative security is disabled, it prompts you to configure a user repository, and enable administrative
security.

By default, connecting clients are required to use SSL protected transports to ensure data confidentiality
and integrity. If you do not want clients to use SSL protected transports, you can specify that you do not
require this option.

The type of security domain you can specify for the bus depends on the versions of the bus members you
intend to add to the bus:

v You must specify the global domain if you want to add one or more WebSphere Application Server
Version 6 bus members.

v You can specify the global, cell-level, or custom domain if you want to add WebSphere Application
Server Version 7.0 or later bus members only.

Procedure

1. In the navigation pane, click Service integration -> Buses. A list of buses is displayed.

2. Click New.

3. Type a name for the new bus. You must choose bus names that are compatible with the WebSphere
MQ queue manager naming restrictions. You cannot change a bus name after the bus is created,
which means that you can only interoperate with WebSphere MQ in the future if you use compatible
names. See the topic about WebSphere MQ naming restrictions in the related links.

4. Ensure that the Bus security check box is selected.

5. Click Next. The Bus Security Configuration wizard is started.

6. Read the Introduction panel, and click Next.

Chapter 20. Welcome to administering Service integration 1967



7. If the wizard detects that administrative security is disabled, follow the prompts to select, and
configure the appropriate user repository.

8. Click Next. A summary of the administrative security settings for the bus is displayed.

9. Review the summary, and click Finish. Administrative security for the cell is now enabled.

10. If you do not want clients to use SSL protected transports, clear the check box Require clients use
SSL protected transports .

11. Select a security domain for the bus.

12. If you have selected to use a custom security domain, follow the prompts to specify a user realm.

13. Review the summary of your choices, and click Finish.

14. Save your changes to the master configuration.

Results

You have created a new bus secured with your chosen security settings.

What to do next

v You must restart the servers. Starting an application server provides more information.

v You can add bus members to the bus.

v Groups of users in the user repository require explicit authority to access the bus. For more information,
see Administering authorization permissions.

Adding an unsecured bus:

By default, bus security is enabled and you add buses with security configured. However, you can add a
new service integration bus without any security settings. If you want to secure the bus at a later date, you
can do so by configuring the security settings for the bus.

About this task

To add a bus, use the administrative console to complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> Buses. A list of buses is displayed.

2. In the content pane, click New.

3. Type a name for the new bus. You must choose bus names that are compatible with the WebSphere
MQ queue manager naming restrictions. You cannot change a bus name after the bus is created,
which means that you can only interoperate with WebSphere MQ in the future if you use compatible
names. See the topic about WebSphere MQ naming restrictions in the related links.

4. Clear the Bus security check box to disable bus security.

5. Click Next.

6. Review the summary of the settings for the new bus, then click Finish.

7. Save your changes to the master configuration.

Results

Bus security is disabled, and you have added a new unsecured service integration bus.

What to do next

You can now add servers to the bus.

1968 Administering WebSphere applications



Configuring bus properties
You can configure how many messages the bus can handle, when to discard messages, and which
messaging engines the bus can communicate with. You can also specify changes that can be made to the
bus that do not require a restart of the messaging engines.

About this task

You configure bus properties after you have created a bus. To configure the properties of a bus, use the
administrative console to complete the following steps:

Procedure
1. Click Service integration -> Buses -> bus_name.

2. Specify the following properties for the bus:

Description
A service integration bus supports applications using message-based and service-oriented
architectures. A bus is a group of interconnected servers and clusters that have been added as
members of the bus. Applications connect to a bus at one of the messaging engines
associated with its bus members.

Inter-engine transport chain
The transport chain used for communication between messaging engines in this bus.

The transport chain must correspond to one of the transport chains defined in the Messaging
engine inbound transports settings for the server. All servers automatically have a number of
transport chains defined to them, and it is also possible to create new transport chains.

When you specify the name of a transport chain, that chain must be defined to all servers
hosting messaging engines in the bus. Otherwise, some messaging engines might not be able
to communicate with their peers in the bus.

When the use of permitted chains is enforced and a protocol is not specified for intra-bus
communications then InboundSecureMessaging is assumed instead of
InboundBasicMessaging. This can be overridden by setting the protocol attribute in the bus
configuration. If InboundSecureMessaging is not a permitted chain then an error occurs.

Discard messages
Whether messages on a deleted message point should be retained at a system exception
destination or can be discarded. Select this option to indicate that after a queue has been
deleted, any messages left in the data store for that queue should be discarded.

Configuration reload enabled
Select this option to enable automatic update of configuration information on all the messaging
engines on the bus.

Changes to bus destinations or mediations are applied when destinations or mediations are
added to or removed from the bus.

Changes to the modifiable configuration information for any foreign bus connections are also
updated automatically. The time when these changes take effect varies:

Foreign Bus Connection properties
Immediately

WebSphere MQ link properties
On channel restart, except Description (immediately), and Initial State (on messaging
engine restart)

MQ sender channel properties
On channel restart, except Initial State (on messaging engine restart or sender channel
creation)

Chapter 20. Welcome to administering Service integration 1969



MQ receiver channel properties
On channel restart, except Initial State (on messaging engine restart or receiver
channel creation)

Publish/subscribe broker profile (0 to n) properties
Immediately

Service integration bus link properties
On link restart, except Description (immediately), and Initial State (on messaging
engine restart or link creation)

To ensure that dynamic configuration updates are made on an application server, click Servers
-> Server Types -> WebSphere application servers -> server_name -> [Server
messaging] SIB service then select Configuration reload enabled.

To ensure that dynamic configuration updates are made to each node, click System
administration -> Console Preferences to display the Console Preferences window then
select Synchronize changes with nodes.

Default messaging engine high message threshold
A threshold above which the messaging system will take action to limit the addition of more
messages to a message point. When a messaging engine is created on the bus, the value of
this property is used to set the default high message threshold for the messaging engine.

3. Specify topology, destination resources, web services and additional properties for the bus, as
required. To restrict the number of audit messages, add a custom property called
audit.bus.authentication with one of the following values:

v all (audit all attempts to authenticate to the bus)

v failure (audit only failure to authenticate to the bus)

v none (do not audit any attempts to authenticate to the bus)

4. Click OK.

5. Save your changes to the master configuration.

Listing the buses
You can view the list of the service integration buses that currently exist. You can decide which buses you
want to change, for example, to add a server to a bus.

About this task

To list the buses, use the administrative console to complete the following step. After you list the service
integration buses, you can add or delete a bus. Also, you can select a bus to view its details, add a
member to the bus, create a foreign bus connection, or apply security to the bus.

Procedure

In the navigation pane, click Service integration -> Buses.

Results

A list of buses is displayed in the content pane.

What to do next

You can now add or delete buses, or click on a bus name to display or configure its properties.

Displaying the topology of a service integration bus
You can display a tree view of the members of a bus, and the messaging engines used by a selected bus,
in the administrative console. You can also view the runtime status for each messaging engine.

1970 Administering WebSphere applications



About this task

Use this task to display a local topology view of the bus members and messaging engines in a service
integration bus. You can use this view to add servers as members of the bus.

To display the local topology view of a service integration bus, use the administrative console to complete
the following steps:

Procedure
1. In the navigation pane, click Service integration -> Buses. A list of buses is displayed in the content

pane.

2. In the content pane, click the name of the bus. For example, SCA.SYSTEM.localhostCell01.Bus

3. Click the tab Local Topology

Results

The topology of the bus is displayed as an expandable tree.

What to do next

You can expand nodes of the tree to display the bus members and their messaging engines.

You can add servers as members of the bus.

Deleting a bus
You can delete a service integration bus, for example if it is no longer in use.

Before you begin

Attention: When you delete a bus, each messaging engine on the bus is also deleted and any
associated messages are discarded. If you subsequently create a new bus with the same name as the
deleted bus, the new bus will not have the same universal unique identifier (UUID) as the deleted bus.

About this task

To delete a bus, use the administrative console to complete the following steps.

Procedure
1. In the navigation pane, click Service integration -> Buses. A list of buses is displayed in the content

pane.

2. In the content pane, select the bus that you want to delete.

3. Click Delete.

4. Click OK.

5. Save your changes to the master configuration.

What to do next

You must disable the SIB Service at server startup.

Configuring the members of a bus
Use the administrative console to add, remove, and list the members of a bus.

Adding a server as a new bus member:

Chapter 20. Welcome to administering Service integration 1971



The members of a service integration bus are the application servers and clusters within which messaging
engines for that bus can run. When you add a new bus member, you configure its message store, which is
either a file store or a data store.

About this task

If you add a server as a member of a bus, WebSphere Application Server creates a messaging engine for
the server. By default, the messaging engine is configured to use a file store. If you choose a data store,
you have the choice of using the default JDBC data source and Derby JDBC Provider for its data store. If
you do not want to use the default data source configuration, you can choose to use a different data
source or you can configure the data store to use a different JDBC provider.

If you subsequently delete a bus member and then recreate it, you should make sure that you understand
the life cycle of the file store or a data store. Refer to Data store life cycle and “Removing a messaging
engine from a bus” on page 1980 for details.

If you are working in a mixed-version cell, a service integration bus running in this version of the product
can only include WebSphere Application Server Version 6 bus members that are running in the following
versions of the product:

v 6.0.2 (Fix Pack 23 or later)

v 6.1.0 (Fix Pack 13 or later)

If security is enabled, and the bus has mixed-version bus members, the bus members establish trust by
using an inter-engine authentication alias. If you add a server as a bus member at WebSphere Application
Server Version 6, and it is the first bus member at this level, you must select or create an authentication
alias during this task. This action sets the inter-engine authentication alias.

You can optionally tune the initial and maximum Java virtual machine (JVM) heap sizes. Tuning
the heap sizes helps to ensure that application servers hosting one or more messaging engines are
provided with an appropriate amount of memory for the message throughput you require.

Procedure

1. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Bus
members. A list of members in the bus is displayed.

2. Click Add.

3. Select scope of the new bus member: this is one of Server, Cluster or WebSphere MQ server.
Server is selected by default. Only select the Cluster scope in WebSphere Application Server
environments that support server clusters.

4. Make your selection and click Next.

5. Select the type of message store: it is either a file store or a data store. For more information, see
File stores and Data stores. File store is selected by default.

6. Click Next.

Optional: If you use a file store and want to change the default values, you can change them here.
For more information refer to “Modifying file store configuration” on page 2036.

Optional: If you use a data store and want the messaging engine in the bus member to use a
non-default data source, select Use existing data source and enter the JNDI name of an
existing data source, and the name of the schema and authentication alias to be used. For
more information, see “Configuring a messaging engine to use a data store” on page
2040. If there are multiple messaging engines, you must configure each messaging engine
to use a unique schema, otherwise FFDC error messages stating that Connection cannot
be provided as Datasource has been disabled! might appear. This applies to DB2 in
particular.

1972 Administering WebSphere applications



7. Click Next.

Optional: You can view the current settings of the initial and maximum Java Virtual Machine (JVM)
heap sizes. If you want to tune performance by changing the current settings, select the
Change heap sizes check box and enter the required changes in the Proposed heap
sizes fields.

8. Click Next.

9. If security is enabled, and adding this server creates a mixed-version bus, the wizard prompts for an
authentication alias. Do one of the following:

v Select an existing authentication alias.

v Create a new authentication alias. Specify a unique alias name and password.

This action sets the inter-engine authentication alias.

10. Click Finish to confirm the creation of the bus member.

11. Save your changes to the master configuration. You must restart the server for the changes to take
effect.

Results

The member is added to the bus and a messaging engine is created for that member.

What to do next

Next, you can configure the messaging engine. For more information about configuring messaging engines
and their message stores, see the related tasks.

Adding a WebSphere MQ server as a member of a bus:

A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. A WebSphere MQ server bus member is used as a bus member for assigning queue
points and mediation points to WebSphere MQ queues.

Before you begin

Get details of the client connection from your WebSphere MQ administrator.

Ensure that the WebSphere MQ server has been configured, that the bus has been defined and that the
server is not already a member of the bus.

Decide which method to use to configure these resources. You can add the WebSphere MQ server as a
bus member by using the administrative console as described in this task, or by using the
“addSIBusMember command” on page 2364.

About this task

When you add a WebSphere MQ server to one or more buses, messaging engines on these buses can
access queues on the target WebSphere MQ installation. When you make the server a bus member, you
can override the server connection settings with settings that are specific to the new bus member. This
can be useful in a multiple bus topology.

Procedure

1. Start the administrative console.

2. Navigate to the list of bus members for the bus to which you are adding the WebSphere MQ server.

Click Service integration -> Buses -> bus_name -> [Topology] Bus members.

Chapter 20. Welcome to administering Service integration 1973



3. Click Add. The “Add a new bus member” wizard is displayed.

4. Select the WebSphere MQ server to add to the bus:

a. Select WebSphere MQ server.

b. From the drop-down list, select the server to add.

c. Click Next.

5. Specify the virtual queue manager name.

When sending messages to WebSphere MQ, the WebSphere MQ gateway queue manager sees the
bus as a remote queue manager. The virtual queue manager name is the name that is passed to
WebSphere MQ as the name of this remote queue manager. The default value is the name of the
bus. If this value is not a valid name for a WebSphere MQ queue manager, or if another WebSphere
MQ queue manager already exists that has the same name, then replace the default value with
another value that is a valid and unique name for a WebSphere MQ queue manager. To be valid, the
name must meet the following criteria:

v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the Rules for naming WebSphere
MQ objects topic in the WebSphere MQ information center).

6. Optional: To override the server connection settings, select the Override WebSphere MQ server
connection properties check box.

When you select this option, the connection properties for the server are made available so that you
can change them to settings that are specific to this bus member. For more information about these
connection properties, see “WebSphere MQ server bus member [Settings]” on page 2346.

7. Optional: If you have changed the server connection settings, you can click Test connection to test
the connection to the associated WebSphere MQ network.

8. Click Next.

9. Click Finish to confirm.

10. Save your changes to the master configuration.

What to do next

You are now ready to create a WebSphere MQ queue-type destination for the new bus member.

Listing the members of a bus:

You can display a list of servers that have been added as members of a bus.

About this task

You can list the members of a bus, then you can add, remove, or edit the bus members. To list the
members of a bus, use the administrative console to complete the following steps.

Procedure

1. In the navigation pane, click Service integration -> Buses. A list of buses is displayed in the content
pane.

2. In the content pane, select the bus whose members you want to list.

3. In the content pane, under Topology, click Bus members. A list of members of the bus is displayed.

Removing a member from a bus:

You can remove an application server from a bus so that it is no longer used to process messages.

1974 Administering WebSphere applications



Before you begin

Attention:

v When you remove a member from a bus, all messaging engines on that bus member are also deleted
and their associated messages are discarded. If you add the same bus member again, first you must
manually delete the old data source for the messaging engines to ensure that once the new messaging
engines are created, they can restart.

v If you remove a member from a bus, and it is the only member for that server, you must also disable
the SIB Service at server start up.

About this task

To remove a member from a bus, use the administrative console to complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> Buses. A list of buses is displayed in the content
pane.

2. In the content pane, select the bus from which you want to remove the member.

3. In the content pane, under Topology, click Bus members. A list of members in the bus is displayed.

4. Select the bus member that you want to remove.

5. Click Remove.

6. Save your changes to the master configuration.

Results

The member is removed from the bus. All the messaging engines on that bus member and the core group
policies that are associated with those messaging engines are deleted.

What to do next

If you have removed the only bus member for a server, you must now disable the SIB Service at server
start up.

Disabling the service integration service:

The SIB Service, which provides messaging capability, is enabled automatically when you add a server to
a service integration bus. If required, you can disable service integration bus functions when the
application server starts.

About this task

You can choose to disable the SIB Service, for example if you have removed the only bus member for a
server.

You can use the administrative console to disable the SIB Service, or wsadmin scripting. The following
example shows a Jython script for disabling the SIB Service:

server = AdminConfig.getid(’/Server:server1/’)
sibService = AdminConfig.list(’SIBService’, server)
AdminConfig.modify(sibService, [["enable", "false"]])

To use the administrative console to disable the SIB Service, complete the following steps.

Chapter 20. Welcome to administering Service integration 1975



Procedure

1. Click Servers -> Server Types -> WebSphere application servers -> server_name -> [Server
messaging] SIB service to display the SIB service settings pane.

2. Click the Configuration tab to display configuration properties for the service integration service.

3. Clear the Enable service at server startup check box.

4. Save your changes to the master configuration.

Results

You have disabled the SIB Service. Service integration bus functions are not available when the
application server starts up.

Administering bootstrap members for a bus
A service integration bus can have bootstrap members. These are bus members, cell members for which
the Service Integration Bus Service is enabled, or nominated cell members that can service requests to
bootstrap into the bus, depending on the bootstrap policy configured for the bus.

Before you begin

Note: If the bus is in a mixed-version cell, the deployment manager must be at a Version 7.0 or later
level.

About this task

You can configure the bootstrap member policy for a bus, nominate, list and delete bootstrap members for
a selected bus as follows:

Configuring a bootstrap member policy for a bus:

By configuring a bootstrap member policy for a selected service integration bus, you control which servers
respond to bootstrap requests from client applications.

Before you begin

Note: If the bus is in a mixed-version cell, the deployment manager must be at a Version 7.0 or later
level.

About this task

A bus can use bootstrap members to service connection requests from client applications. In this task, you
define a bootstrap member policy for a selected bus that defines which servers can bootstrap into the bus.
The default bootstrap member policy is all cell members that have the Service Integration Bus Service
enabled. You can restrict bootstrap membership to bus members only, or to bus members, and nominated
bootstrap members. These are servers that are not bus members, but have been nominated as bootstrap
members.

Procedure

1. Log onto the administrative console.

2. Click Service integration -> Buses -> bus_name. The configuration panel for the selected bus is
displayed.

3. Choose one of the following bootstrap members policies for the bus:

All members of the cell with the Service Integration Bus Service enabled
This is the default option. All the servers in the cell that have the Service Integration Bus
Service enabled are bootstrap members.

1976 Administering WebSphere applications



Bus members and nominated bootstrap members
Bootstrap membership is restricted to servers that are bus members, or have been nominated
as bootstrap members.

Bus members only
Bootstrap membership is restricted to servers that are bus members.

4. Click Apply.

5. Save your changes to the master configuration.

Results

Requests from client applications to connect to the bus are serviced by the servers in the cell that meet
the criteria set by the bootstrap member policy you have configured for the bus.

What to do next

Use the administrative console to list, nominate or delete bootstrap members for the selected bus.

Listing the bootstrap members for a bus:

Use this task to find out which servers in the cell are available to service requests from clients to connect
to a particular service integration bus. The list of available servers is restricted by the bootstrap member
policy configured for the bus.

Before you begin

You must ensure that the appropriate bootstrap member policy has been configured for the bus. For more
information, see “Configuring a bootstrap member policy for a bus” on page 1976.

About this task

In this task, you use the administrative console to list the bootstrap members for a selected bus. The list of
bootstrap members depends on which of the following bootstrap member policies is configured for the bus:

All members of the cell with the Service Integration Bus Service enabled
This is the default policy. The list includes all the WebSphere Application ServerVersion 7.0 or later
servers in the cell that have the Service Integration Bus Service enabled.

Bus members and nominated bootstrap members
The list includes all the servers that are bus members, or have been nominated as bootstrap
members.

Bus members only
The list includes only servers that are members of the bus.

Procedure

1. Log into the administrative console.

2. Click Service integration -> Buses -> bus_name -> [Topology] Bootstrap members.

Results

A list of the bootstrap members for the selected bus is displayed.

What to do next

You can use the administrative console to nominate or remove bootstrap members, or configure a different
bootstrap member policy for the bus.

Chapter 20. Welcome to administering Service integration 1977



Nominating bootstrap members for a bus:

You can nominate one or more servers on cell nodes as bootstrap members for a selected bus. When the
Bus members and nominated bootstrap members policy is configured for the bus, the nominated bootstrap
members can service requests from client applications to connect to the bus.

Before you begin

Note: You must ensure that the following requirements are met:

v If the bus is in a mixed-version cell, the deployment manager must be at a Version 7.0 or later
level.

v The servers that you want to nominate as bootstrap members must be on Version 7.0 or later
cell nodes.

About this task

In this task, you use an administrative console wizard to configure the Bus members and nominated
bootstrap members policy, and nominate bootstrap members for a selected bus.

Procedure

1. Log onto the administrative console.

2. Click Service integration -> Buses -> bus_name -> [Topology] Bootstrap members. The
Bootstrap members panel displays all the bus members, servers in the cell that have the Service
Integration Bus Service enabled.

3. Select the policy Bus members and nominated bootstrap members.

4. Click Apply. A list of current bus members, and nominated bootstrap members is displayed.

5. Click New. The Nominate a bootstrap server wizard is started.

6. Type the name of the server that you want to add in the Name field. The first match in the list of
available servers and clusters is highlighted. Click Add to add the named server to the list of servers
to add.

7. When you have listed all the servers that you want to add, click Next.

8. Review the summary of the servers that you have chosen to add.

9. Optional: If you want to change your selections:

a. Click Previous to return to the first step of the wizard.

b. Make the changes you require, and click Next.

10. Click Finish to add the new bootstrap members to the local configuration.

11. Save your changes to the master configuration. An updated list of bus members and nominated
bootstrap members is displayed.

Results

The nominated servers can service requests from client applications to bootstrap into the bus.

Deleting nominated bootstrap members from a bus:

Deleting a nominated bootstrap member from a selected service integration bus prevents the server from
servicing requests from client applications to bootstrap into the bus.

Before you begin

You must configure the Bus members and nominated bootstrap members policy for the selected bus.
For more information, refer to “Configuring a bootstrap member policy for a bus” on page 1976.

1978 Administering WebSphere applications



About this task

In this task, you use the administrative console to list all the bootstrap members for a selected bus, and
then delete the nominated bootstrap members that you no longer want to use to bootstrap into the bus.
Note that you can delete only nominated bootstrap members.

Procedure

1. Log onto the administrative console.

2. Click Service integration -> Buses -> bus_name -> [Topology] Bootstrap members. All the
nominated bootstrap members for the bus are listed.

3. Select the nominated bootstrap members that you no longer want to use to bootstrap into the bus, and
click Delete. The Bootstrap members panel displays an updated list of bootstrap members.

4. Save your changes to the master configuration.

Results

You cannot use the deleted nominated bootstrap members to bootstrap into the selected bus.

Configuring messaging engines
You can configure messaging engines in a variety of ways. For example, you can create and apply
security to a messaging engine, then use this engine to send and receive messages. When you add a
server cluster to a service integration bus, at least one messaging engine is created automatically. If you
also use messaging engine policy assistance, some configuration properties are set automatically.

Configuring messaging engine properties:

You can configure the properties of a messaging engine in the administrative console. For example you
can select whether the messaging engine is started automatically when its associated application server is
started, how many messages it can process, and target groups that the engine can join.

About this task

In most cases, you can configure the properties of a messaging engine without interrupting the processing
of messages by the messaging engine.

Procedure

1. Start the administrative console.

2. Navigate to Service integration -> Buses -> bus_name -> [Topology] Messaging engines ->
engine_name.

3. Configure the messaging engine properties. For information about the properties that you can
configure, see the property descriptions in “Messaging engines [Settings]” on page 2215

4. Click OK.

5. Save your changes to the master configuration.

Listing the messaging engines in a bus:

You can view the list of existing messaging engines in a bus by using the administrative console. You can
decide which messaging engines you want to change, for example which buses they are associated with.

About this task

To list the messaging engines in a bus, use the administrative console to complete the following steps.

Chapter 20. Welcome to administering Service integration 1979



Procedure

1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the bus that your messaging engine belongs to.

3. In the content pane, under Topology, click Messaging engines. The list of messaging engines in the
bus is displayed.

Removing a messaging engine from a bus:

You can remove a messaging engine from a service integration bus if you no longer require it to send and
receive messages on the bus.

Before you begin

You should be wary of deleting and recreating messaging engines on bus members for which
WS-Notification-administered subscribers have been configured, because in some cases this can leave the
remote web service subscription active (and passing notification messages to the local server) even
though there is no longer any record of it. For more information, see the WS-Notification troubleshooting
tip Problems can occur when deleting administered subscribers and messaging engines.

Procedure

1. Stop the messaging engine. You can stop either in Immediate or Force mode, as described in
“Stopping a messaging engine” on page 2034.

2. Use the wsadmin command deleteSIBEngine to delete the messaging engine. All service integration
bus links, MQ links, and custom properties that are owned by the engine are deleted.

Note: When you remove a messaging engine, WebSphere Application Server does not delete the data
store tables automatically. You must remove them manually, or delete all the rows in all the
tables. If you do this, a new messaging engine might fail to start if it attempts to use an
orphaned data store. Refer to the documentation for your chosen relational database
management system for information about deleting tables.

Alternatively, for Apache Derby, you can delete the database directory, which is located in
profile_root/databases/com.ibm.ws.sib, where profile_root is the directory in which
profile-specific information is stored. However, do this only if the messaging engine is the sole
user of the database.

For more information, see Data store life cycle.

Similarly, the file store files are not automatically deleted when you delete the messaging
engine. You might want to delete the file store files to reclaim disk space.

Listing the messaging engines defined for a server bus member:

You can display a list of messaging engines defined for a server bus member by using the administrative
console. You can decide which messaging engines you want to change, for example, which buses they
are associated with.

About this task

To display the list of messaging engines, use the administrative console to complete the following steps:

1980 Administering WebSphere applications



Procedure

1. In the navigation pane, click either Service integration -> Buses -> bus_name -> [Topology]
Messaging engines or Servers -> Server Types -> WebSphere application servers ->
server_name -> [Server messaging] Messaging engines. A list of messaging engines is displayed in
the content pane.

2. Optional: Select one or more messaging engines to work with, for example to change the properties of
the messaging engine.

Creating the database, schema and user ID for a messaging engine:

Before the data store for a messaging engine can be set up, you must first create the database, the
schema and the database user ID that the messaging engine needs to access the data store tables.

Before you begin

Before you start this task, review the information in Configuration planning for a messaging engine to use
a data store, and ensure that you have taken any appropriate action.

About this task

To create the database, schema and user ID for a messaging engine, complete the following steps.

Procedure

1. Create the database for the data store.

2. Create users and schemas in the database. Ensure that the user ID has sufficient privilege to allow the
messaging engine to access the data store tables. For more information about the privileges that are
required for the selected database, see “Database privileges” on page 2051.

3. If required, create the data store tables by using the data definition language (DDL) statements
generated by using the sibDDLGenerator command.

Configuring a messaging engine data store to use a data source:

After configuring a JDBC data source, you can configure a messaging engine data store to use the data
source.

Before you begin

To complete this task, you must have chosen or created a bus and a messaging engine, and the
messaging engine must specify data store as its message store type.

You must also have configured a data source, as described in “Creating the database, schema and user
ID for a messaging engine.”

About this task

A messaging engine uses an instance of a JDBC data source to interact with the database that contains
the data store for that messaging engine.

Use the WebSphere Application Server administrative console to set the data store configuration
parameters.

Procedure

1. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging
engines -> engine_name.

Chapter 20. Welcome to administering Service integration 1981



2. Check that the Message store type is Data store.

3. Click [Additional Properties] Message store. The data store configuration detail panel is displayed.

4. Specify the following data store configuration details:

Data source JNDI name
Type the JNDI name of the data source that provides access to database that holds the data
store.

Schema name
Type the name of the database schema that contains the tables used by the data store.

General tip: The schema name is usually the same as the user ID that is declared in the
authentication alias. With some databases, for example DB2, you can provide an
alternative schema name. For more information about the relationship between
users and schema, refer to the documentation for your chosen RDBMS.

Informix tip: When you configure your messaging engine to use an Informix database, you
must specify the schema name in lowercase letters.

When it is starting, a messaging engine that uses a data store checks to see if its data store
exists. If the Create tables option is selected for the configuration, the messaging engine
creates the tables in its chosen schema.

The Schema name field is optional. If you require a schema name, consider the following:

v The default schema name is IBMWSSIB.

v If you delete the text so that field is blank, the messaging engine takes the user id defined
in the authentication alias to be the schema name.

v If you define a schema name explicitly, that schema name is used by the messaging engine.

v If there are multiple messaging engines, you must configure each messaging engine to use
a unique schema, otherwise FFDC error messages stating that Connection cannot be
provided as Datasource has been disabled! might appear. This applies to DB2 in
particular.

Authentication alias
Select the authentication alias that enables access to the data source.

Apache Derby Tip: When you create a new Network Attached Apache Derby data
store, by default you get a blank authentication alias.

Create tables
Select the check box if you want WebSphere Application Server to create the database tables
automatically.

Note: The user ID that the messaging engine uses to connect to the data source must have
sufficient authority to create the database tables and indexes.

DB2 for z/OS restriction: Do not select Create tables if you are using DB2 for z/OS,
otherwise an exception will be thrown when WebSphere Application
Server attempts to create the tables.

Restrict long running locks

Note: This parameter specifies whether the active messaging engine must retain long running
locks on the SIBOWNER table in the database.

Select the check box to restrict the active messaging engine from retaining long running locks
on the SIBOWNER table in the database. When this option is selected, the messaging engine
establishes a lock over the database only for short durations. In the event of the active
messaging engine not responding to the database, the standby messaging engine will be able

1982 Administering WebSphere applications



to take ownership of the database because the active messaging engine holds only short
duration locks. This option also ensures that only one active messaging engine can access the
database at a given time.

Note: When the check box is selected and if the active messaging engine fails to
communicate with the database or respond to the database, all the current transactions
from the applications are ended and no new connections from the applications are
allowed to the messaging engine.

Number of tables for permanent objects
Permanent tables contain persistent objects for the data store.

Note: You can only increase the number of permanent tables, not decrease them.

Number of tables for temporary objects
Temporary tables contain nonpersistent objects that have been saved to the data store to
reduce the messaging engine memory requirement.

Note: You can only increase the number of temporary tables, not decrease them.

Configuring service integration bus links:

You can configure service integration bus links on messaging engines in a variety of ways. For example,
you can start, stop, or remove links.

About this task

When you create a foreign bus connection to connect two service integration buses, a service integration
bus link is created automatically. The foreign bus connection contains a routing definition, which is a virtual
link, and the service integration bus link is the corresponding physical link on the messaging engine.

Configuring foreign bus connections:

You can configure a bus to connect to, and exchange messages with, other messaging networks. To do
this, you must configure a foreign bus connection. A foreign bus connection encapsulates information
related to the remote messaging network, such as the type of the foreign bus and whether messaging
applications are allowed to send messages to the foreign bus.

About this task

A foreign bus connection is associated with a service integration bus. The bus with which the foreign bus
connection is associated is known as the local bus. The foreign bus connection represents another service
integration bus, either in the same cell as the local bus or in a different cell, or it represents a WebSphere
MQ queue manager. From the local bus, every other bus is regarded as a foreign bus, even if it is a bus in
the same cell.

Messages route to a foreign bus either directly through a link between the local bus and the foreign bus,
or indirectly through one or more intermediate buses.

If, when you configure the local bus, you select Configuration reload enabled, future changes to the
configuration information for any foreign bus connections are updated automatically. The time when these
changes take effect varies:

Foreign Bus Connection properties
Immediately

Chapter 20. Welcome to administering Service integration 1983



WebSphere MQ link properties
On channel restart, except Description (immediately), and Initial State (on messaging engine
restart)

MQ sender channel properties
On channel restart, except Initial State (on messaging engine restart or sender channel creation)

MQ receiver channel properties
On channel restart, except Initial State (on messaging engine restart or receiver channel creation)

Publish/subscribe broker profile (0 to n) properties
Immediately

Service integration bus link properties
On link restart, except Description (immediately), and Initial State (on messaging engine restart or
link creation)

To ensure that dynamic configuration updates are made to each node, click System administration ->
Console Preferences to display the Console Preferences window, then select Synchronize changes
with nodes.

Configuring the properties of a service integration bus link:

After establishing a service integration bus link you might want to configure the properties of a service
integration bus link such as the name of the service integration bus link, or authentication alias used by
foreign bus that the link connects to.

About this task

To configure the properties of a service integration bus link, use the administrative console to complete the
following steps:

Procedure

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine for which you want to configure the service
integration bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link that you want to configure.

5. Specify the following properties for the service integration bus link:

Name The name of the service integration bus link. In order to work, the name must be the same as
the name of the corresponding service integration bus link configured on the target foreign bus.

Description
An optional description for the service integration bus link, for administrative purposes.

UUID The universal unique identifier assigned by the system to the service integration bus link for
administrative purposes.

Foreign messaging engine
The messaging engine on the foreign bus to which this link connects.

Note: This foreign bus name must not be altered after it has been configured. If you alter it,
any messaging engines that already hold state information on the link will not be able to
use the link unless the foreign bus name is reset to its original value.

1984 Administering WebSphere applications



Target inbound transport chain
The type of transport chain used for communication with the foreign bus. The transport chain
name must be the name of the transport chain as defined on the server on which the target
messaging engine is hosted.

Bootstrap endpoints
The comma-separated list of endpoints used to connect to a bootstrap server. This property is
set in the same way as the Provider endpoint property in the JMS connection factory settings.
For more information, see the steps relating to setting bootstrap endpoints in “Configuring a
connection to a non-default bootstrap server” on page 511.

Note: Service integration bus links over BootstrapTunneledMessaging and
BootstrapTunneledSecureMessaging transport chains only work directly between
application server instances. Bus links over TunneledMessaging transport chains do not
work if an HTTP server is placed in front of either application server instance.

Authentication alias
The name of the authentication alias, used to authenticate access to the foreign bus. The alias
must be known to the foreign bus.

Initial state
Whether the link is started automatically when the messaging engine is started. Until started,
the gateway link is unavailable. If this property is set to Started the service integration bus link
is started when the messaging engine is started.

6. Click OK.

7. Save your changes to the master configuration.

Listing the service integration bus links:

You can list all the service integration bus links that are linked to a messaging engine.

About this task

To list the service integration bus links for a messaging engine, use the administrative console to complete
the following steps:

Procedure

1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the bus that your messaging engine belongs to.

3. In the content pane, under Additional properties, click Messaging engines. The list of messaging
engines in the bus is displayed.

4. In the content pane, select the messaging engine for which you want to list the service integration bus
links.

5. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

Chapter 20. Welcome to administering Service integration 1985



Example

The following combinations of Status and Activity values are possible:

Table 208. Results of possible status and activity values. The first and second columns of the table provide the
possible combinations of status and activity values, and the third column explains the possible connection status of
the local and foreign buses.

Status Activity Meaning

started inactive The service integration bus link is started on the local
messaging engine but has no connection to the foreign bus.
The service integration bus link is attempting to activate a
connection to the foreign bus. The service integration bus link
on the foreign bus must also be started to successfully
activate of a connection between the buses.

started active The service integration bus link is started on the local
messaging engine and has an active connection to the foreign
bus.

stopped inactive The service integration bus link is stopped on the local
messaging engine and there is no connection to the foreign
bus.

unknown inactive An error might have occurred in setting up the link, such that
the object that is used to report the current state is not
available.

What to do next

You can now add or remove a service integration bus link or select a service integration bus link to start,
stop, or configure.

Starting a service integration bus link:

When a service integration bus link has been started, it can be used for communicating with its associated
messaging engines.

About this task

To start a service integration bus link, use the administrative console to complete the following steps:

Procedure

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine for which you want to start the service integration
bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link that you want to start.

5. Click Start.

Stopping a service integration bus link:

When a service integration bus link has been stopped, it cannot be used for communication until it is
restarted.

About this task

To stop a service integration bus link, use the administrative console to complete the following steps:

1986 Administering WebSphere applications



Procedure

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine to which the service integration bus link that you
want to stop belongs.

3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link that you want to stop.

5. Click Stop.

Removing a service integration bus link:

When a service integration bus link to a messaging engine has been removed, it cannot be used for
communication until it is recreated.

Before you begin

Before you remove the service integration bus link you must stop the link.

When you remove a service integration bus link, all traffic that uses the link needs to be dealt with in a
similar way to when you remove a destination. For further details, see “Deleting a non-topic space bus
destination” on page 2080. Note that express Quality of Service (QoS) messages are discarded.

About this task

To remove a service integration bus link from a messaging engine, use the administrative console to
complete the following steps:

Procedure

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine that is associated with the service integration bus
link that you want to remove.

3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link that you want to remove.

5. Click Delete.

6. Save your changes to the master configuration.

What to do next

When you remove a service integration bus link, all traffic that uses the link must be diverted by alternative
routes or held pending further administrative action. Express QoS messages are discarded.

Configuring bus destinations
Use the following tasks to configure permanent bus destinations on service integration buses.

About this task

The steps involved in configuring a bus destination depend on the intended usage of the destination.

For example, the following figure shows a basic scenario based on an application using a JMS queue for
point-to-point messaging. A producing application sends messages to a JMS queue from which a
consuming application retrieves the messages. The JMS queue is assigned to a queue destination and its

Chapter 20. Welcome to administering Service integration 1987



associated queue point, where messages are stored.

To enable the JMS applications to use a queue destination, you configure the following administrative
destination objects:

1. A queue destination on a service integration bus. This configures the properties of the queue, such as
the name, and associates the queue with one bus member (an application server). This also
automatically configures, on the bus member, a queue point where messages for the queue are held
and processed.

2. A JMS queue, which configures the name that applications can use to look up the queue in JNDI. The
JMS queue encapsulates the name of the queue destination, as defined in the queue destination
above, together with other properties to be used by applications.

After you have created a queue destination, you can optionally configure the queue point to override some
properties configured on the queue destination. You can also undertake other configuration tasks on the
destination and its queue point, and can act on the runtime view.

Each messaging engine has a default exception destination, named
_SYSTEM.Exception.Destinaton.messaging_engine_name. This exception destination can be used to handle
messages that cannot be delivered for all bus destinations that are localized to the messaging engine.
Each bus destination can be configured with a non-default exception destination.

Procedure
v “Listing bus destinations” on page 2055

v “Creating a bus destination” on page 2055

v “Configuring bus destination properties” on page 2063

v “Configuring mediations” on page 2071

v “Configuring a destination forward routing path” on page 2071

v “Configuring a destination reverse routing path” on page 2073

v “Configuring context properties for a bus destination” on page 2074

v “Administering destination roles” on page 2075

v “Deleting a bus destination” on page 2080

v “Resetting a destination” on page 2082

Connecting buses
You can connect several service integration buses in a network directly, or indirectly, by creating and
configuring foreign bus connections. You can connect a service integration bus and a WebSphere MQ
queue manager or queue-sharing group in a similar way. You can enable point-to-point or
publish/subscribe messaging across multiple buses.

Figure 42. Application use of destinations - basic case

1988 Administering WebSphere applications



About this task

For a conceptual overview of connecting different service integration buses, including security issues, see
Interconnected buses. You can configure a bus to connect to, and exchange messages with, other
messaging networks. To do this, you must configure a foreign bus connection. A foreign bus connection
encapsulates information related to the remote messaging network, such as the type of the foreign bus
and whether messaging applications are allowed to send messages to the foreign bus. Messages route to
a foreign bus either directly through a link between the local bus and the foreign bus, or indirectly through
one or more intermediate buses.

Configuring foreign bus connections:

You can configure a bus to connect to, and exchange messages with, other messaging networks. To do
this, you must configure a foreign bus connection. A foreign bus connection encapsulates information
related to the remote messaging network, such as the type of the foreign bus and whether messaging
applications are allowed to send messages to the foreign bus.

About this task

A foreign bus connection is associated with a service integration bus. The bus with which the foreign bus
connection is associated is known as the local bus. The foreign bus connection represents another service
integration bus, either in the same cell as the local bus or in a different cell, or it represents a WebSphere
MQ queue manager. From the local bus, every other bus is regarded as a foreign bus, even if it is a bus in
the same cell.

Messages route to a foreign bus either directly through a link between the local bus and the foreign bus,
or indirectly through one or more intermediate buses.

If, when you configure the local bus, you select Configuration reload enabled, future changes to the
configuration information for any foreign bus connections are updated automatically. The time when these
changes take effect varies:

Foreign Bus Connection properties
Immediately

WebSphere MQ link properties
On channel restart, except Description (immediately), and Initial State (on messaging engine
restart)

MQ sender channel properties
On channel restart, except Initial State (on messaging engine restart or sender channel creation)

MQ receiver channel properties
On channel restart, except Initial State (on messaging engine restart or receiver channel creation)

Publish/subscribe broker profile (0 to n) properties
Immediately

Service integration bus link properties
On link restart, except Description (immediately), and Initial State (on messaging engine restart or
link creation)

To ensure that dynamic configuration updates are made to each node, click System administration ->
Console Preferences to display the Console Preferences window, then select Synchronize changes
with nodes.

Connecting a bus and a WebSphere MQ gateway queue manager to use point-to-point messaging:

Chapter 20. Welcome to administering Service integration 1989



You can connect a service integration bus to a WebSphere MQ queue manager or (for WebSphere MQ for
z/OS) queue sharing group to send or receive messages by using point-to-point messaging. One way to
do this is to create a foreign bus connection, where the WebSphere MQ queue manager or queue-sharing
group is configured as a foreign bus.

Before you begin

To connect a service integration bus and a WebSphere MQ queue manager or queue-sharing group to use
point-to-point messaging, the following resources must be defined in WebSphere Application Server:

v A service integration bus that you want to connect from, known as the local bus. The bus must have at
least one bus member.

The following resources must be defined in WebSphere MQ:

v A queue manager or queue-sharing group, which acts as the gateway to the WebSphere MQ network.

v A listener that is configured and running.

v A sender channel (to receive messages on the local bus), a receiver channel (to send messages from
the local bus), or both.

About this task

In point-to-point messaging, the sending application specifies the target destination for the message. To
receive the message, the receiving application specifies the same destination when it communicates with
the messaging provider. Therefore, there is a one-to-one mapping between the sender and receiver of a
message.

This task describes one way to achieve point-to-point messaging between WebSphere MQ queue
manager or queue-sharing group. For further information about interoperation with a WebSphere MQ
network, see the related tasks.

Procedure

1. In the navigation pane, click Service integration -> Buses. A list of service integration buses is
displayed.

2. In the Buses pane, click the service integration bus that you want to connect from, that is, the local
bus.

3. In the configuration tab, under Topology, click Foreign bus connections.

4. In the Foreign bus connections pane, click New to start the Foreign bus connection wizard.

5. In the Bus connection type pane, ensure that Direct connection is selected.

6. In the Foreign bus type pane, select WebSphere MQ.

7. In the Local bus details pane, select the messaging engine that you want to use and enter the name
of the virtual queue manager, that is, the name by which the virtual queue manager of the service
integration bus is known to the WebSphere MQ network.

8. In the WebSphere MQ details pane, enter a name for the foreign bus, that is, the bus that represents
the WebSphere MQ queue manager. Enter a name for the WebSphere MQ link that connects to the
foreign bus. Ensure that these two names are not the same.

9. Ensure that the Configure publish-subscribe messaging for this connection check box is clear.

10. To send messages from the local bus to the WebSphere MQ queue manager, complete the following
details:

a. Ensure that Enable Service integration bus to WebSphere MQ message flow is selected.

b. Enter the WebSphere MQ receiver channel name, host name and communication port.

c. If the WebSphere MQ queue manager requires a secure connection, select the Is the
WebSphere MQ receiver channel secure? check box. When this option is selected, the
WebSphere MQ receiver channel accepts only connections that have secure sockets layer (SSL)

1990 Administering WebSphere applications



based encryption. The connection is successful only if a set of suitably compatible SSL credentials
are associated with the service integration bus outbound channel and the WebSphere MQ
receiver channel that it connects to.

11. To receive messages on the local bus from the WebSphere MQ queue manager, complete the
following details:

a. Ensure that Enable WebSphere MQ to Service integration bus message flow is selected.

b. Enter the WebSphere MQ sender channel name.

c. Optionally, enter the service integration bus inbound user ID. When the local bus is secure, the
inbound user ID replaces the user ID in messages from the foreign bus that arrive at the local bus
and is used to authorize whether those messages can access their destinations. Specify an
inbound user ID for the local service integration bus under the following circumstances:

v The foreign bus is in a different security domain, so user IDs in the foreign bus are not
recognized in the local bus.

v You want local control of access to inbound messages to the local bus.

If the local bus is not secure, the inbound user ID has no effect on messages. If the local bus is
secure, the foreign bus is not secure, and an inbound user ID is not set, an inbound message
from the foreign bus is only authorized to destinations that allow unauthenticated users access.

12. When the Foreign bus connection wizard is finished, save your changes to the master configuration.

Results

You have created a connection between a service integration bus and a WebSphere MQ queue manager
to use point-to-point messaging. You have created a direct foreign bus connection, which contains a
routing definition, or virtual link. The physical link, a WebSphere MQ link on the messaging engine for the
local bus, is created automatically.

What to do next

You can test the connection.

Connecting a bus and a WebSphere MQ network to use publish/subscribe messaging:

You can connect a service integration bus and a WebSphere MQ network to send and receive messages
by using publish/subscribe messaging. To do this, you create a foreign bus connection, where the
WebSphere MQ network is viewed as a foreign bus.

Before you begin

To connect a service integration bus and a WebSphere MQ network to use publish/subscribe messaging,
the following resources must be defined in WebSphere Application Server:

v A service integration bus that you want to connect from, known as the local bus. The bus must have at
least one bus member.

The following resources must be defined in WebSphere MQ:

v A queue manager or (for WebSphere MQ for z/OS) queue-sharing group, which acts as the gateway to
the WebSphere MQ network.

v A listener that is configured and running.

v A topic and input queue for broker publish/subscribe flow configured in WebSphere MQ.

v A sender channel (to receive messages on the local bus), a receiver channel (to send messages from
the local bus), or both.

Chapter 20. Welcome to administering Service integration 1991



About this task

In publish/subscribe messaging, the sending application publishes messages to an intermediate broker
destination. Multiple receiving applications can subscribe to this destination to receive a copy of any
messages that are published. When a message arrives at a destination, the messaging provider distributes
a copy of the message to all the receiving applications that subscribe to the destination. There can be a
one-to-many relationship between the sender and receiver of a message, depending on how many
receiving applications are subscribed to a destination when a message arrives.

Procedure

1. In the navigation pane, click Service integration -> Buses. A list of service integration buses is
displayed.

2. In the Buses pane, click the service integration bus that you want to connect from, that is, the local
bus.

3. In the configuration tab, under Topology, click Foreign bus connections.

4. In the Foreign bus connections pane, click New to start the Foreign bus connection wizard.

5. In the Bus connection type pane, ensure that Direct connection is selected.

6. In the Foreign bus type pane, select WebSphere MQ.

7. In the Local bus details pane, select the messaging engine that you want to use and enter the name
of the virtual queue manager, that is, the name by which the virtual queue manager of the service
integration bus is known to the WebSphere MQ network.

8. In the WebSphere MQ details pane, complete the following details:

a. Enter a name for the foreign bus, that is, the bus that represents the WebSphere MQ network.

b. Enter a name for the WebSphere MQ link that connects to the foreign bus. Ensure that the
Foreign bus name and MQ link name are different.

c. Select the Configure publish-subscribe messaging for this connection check box.

9. To send messages from the local bus to the WebSphere MQ network, complete the following details:

a. Ensure that Enable Service integration bus to WebSphere MQ message flow is selected.

b. Enter the WebSphere MQ receiver channel name, host name and communication port.

c. If the WebSphere MQ gateway queue manager or queue-sharing group requires a secure
connection, select the Is the WebSphere MQ receiver channel secure? check box. When this
option is selected, the WebSphere MQ receiver channel accepts only connections that have
secure sockets layer (SSL) based encryption. The connection is successful only if a set of suitably
compatible SSL credentials are associated with the service integration bus outbound channel and
the WebSphere MQ receiver channel that it connects to.

10. To receive messages on the local bus from the WebSphere MQ network, complete the following
details:

a. Ensure that Enable WebSphere MQ to Service integration bus message flow is selected.

b. Enter the WebSphere MQ sender channel name.

c. Optionally, enter the service integration bus inbound user ID. When the local bus is secure, the
inbound user ID replaces the user ID in messages from the foreign bus that arrive at the local bus
and is used to authorize whether those messages can access their destinations. Specify an
inbound user ID for the local service integration bus under the following circumstances:

v The foreign bus is in a different security domain, so user IDs in the foreign bus are not
recognized in the local bus.

v You want local control of access to inbound messages to the local bus.

If the local bus is not secure, the inbound user ID has no effect on messages. If the local bus is
secure, the foreign bus is not secure, and an inbound user ID is not set, an inbound message
from the foreign bus is only authorized to destinations that allow unauthenticated users access.

1992 Administering WebSphere applications



11. From the Publish-subscribe details pane, repeat the following steps for each topic mapping you want
to create:

a. Enter the name of the topic on the local bus.

b. Select the name of the topic space on the local bus that will map to the topic space on the foreign
bus.

c. Enter the name of the gateway queue manager or queue sharing group for the WebSphere MQ
broker configured for broker publish/subscribe flow.

d. To send messages from the local bus to the WebSphere MQ gateway queue manager or
queue-sharing group, enter the name of the queue for the WebSphere MQ broker destination.

e. To receive messages on the local bus from the WebSphere MQ gateway queue manager or
queue-sharing group, enter the name of the subscription point that will receive messages.

f. Select the direction of message flow for the publish/subscribe topic mapping. The options available
depend on whether you completed details on the WebSphere MQ details pane to send messages,
receive messages, or both, on the local bus.

g. Click Add.

12. When the Foreign bus connection wizard is finished, save your changes to the master configuration.

Results

You have created a connection between a service integration bus and a WebSphere MQ network to use
publish/subscribe messaging. You have created a direct foreign bus connection, which contains a routing
definition, or virtual link. The physical link, a WebSphere MQ link on the messaging engine for the local
bus, is created automatically.

What to do next

You can test the connection.

Connecting service integration buses to use point-to-point messaging:

You can connect a service integration bus to another service integration bus to send and receive
messages by using point-to-point messaging. To do this, you create a foreign bus connection.

Before you begin

To connect a service integration bus to another service integration bus to use point-to-point messaging, the
following resources must be defined:

v A service integration bus that you want to connect from, known as the local bus. The bus must have at
least one bus member.

v A service integration bus that you want to connect to, known as the foreign bus. The bus must have at
least one bus member.

v Optionally, to configure a secure connection, an authentication alias.

The buses that you connect must have unique names, because the connection will fail if the buses have
the same name.

About this task

In point-to-point messaging, the sending application specifies the target destination for the message. To
receive the message, the receiving application specifies the same destination when it communicates with
the messaging provider. Therefore, there is a one-to-one mapping between the sender and receiver of a
message.

Chapter 20. Welcome to administering Service integration 1993



Procedure

1. In the navigation pane, click Service integration -> Buses. A list of service integration buses is
displayed.

2. In the Buses pane, click the service integration bus that you want to connect from, that is, the local
bus.

3. In the configuration tab, under Topology, click Foreign bus connections.

4. In the Foreign bus connections pane, click New to start the Foreign bus connection wizard.

5. In the Bus connection type pane, ensure that Direct connection is selected.

6. In the Foreign bus type pane, ensure that Service integration bus is selected.

7. In the Local bus details pane, select from the drop-down list the messaging engine that you want to
use.

8. Optionally, enter a name for the inbound user ID. When the local bus is secure, the inbound user ID
replaces the user ID in messages from the foreign bus that arrive at the local bus and is used to
authorize whether those messages can access their destinations. Specify an inbound user ID for the
local service integration bus under the following circumstances:

v The foreign bus is in a different security domain, so user IDs in the foreign bus are not recognized
in the local bus.

v You want local control of access to inbound messages to the local bus.

If the local bus is not secure, the inbound user ID has no effect on messages. If the local bus is
secure, the foreign bus is not secure, and an inbound user ID is not set, an inbound message from
the foreign bus is only authorized to destinations that allow unauthenticated users access.

9. In the Foreign bus details pane, complete the details as appropriate:

v If the service integration bus you want to connect to is in a different cell from the local bus,
complete the following details:

a. Ensure that Configure a foreign bus in a remote cell is selected.

b. Enter the name of the service integration bus to connect to, that is, the foreign bus. Enter the
exact name of the existing service integration bus.

c. Enter the name of the gateway messaging engine in the foreign bus, that is, the messaging
engine to connect to in the foreign bus.

d. Ensure that the Configure publish-subscribe messaging for this connection check box is
clear.

e. Enter the name of the service integration bus link.

f. Enter one or more bootstrap endpoints, that is, the host, port location, and transport chain for
the messaging engine on the foreign bus that the local service integration bus connects to. The
port is the SIB_ENDPOINT_ADDRESS (or SIB_ENDPOINT_SECURE_ADDRESS if security is
enabled) of the messaging engine. Use the format hostName:portNumber:chainName,
separating each bootstrap endpoint by a comma. For more information, see the steps relating to
setting bootstrap endpoints in “Configuring a connection to a non-default bootstrap server” on
page 511.

v If the service integration bus you want to connect to is in the same cell as the local bus, complete
the following details:

a. Ensure that Configure a foreign bus in a local cell is selected.

b. Select the name of the service integration bus to connect to, that is, the foreign bus.

c. Select the name of the gateway messaging engine in the foreign bus, that is, the messaging
engine to connect to in the foreign bus.

d. Ensure that the Configure publish-subscribe messaging for this connection check box is
clear.

e. Enter the name of the service integration bus link.

10. Optionally, to secure the connection, in the Foreign bus details pane, complete the following details:

1994 Administering WebSphere applications



a. Select the Secure connection check box.

b. Select the type of transport chain to use to communicate with the messaging engine in the foreign
bus. Select one of the following:

v InboundBasicMessaging. InboundBasicMessaging is a predefined transport chain where
communication uses the TCP protocol.

v InboundSecureMessaging. InboundSecureMessaging is a predefined transport chain where
communication is secured by using the secure sockets layer (SSL) based encryption protocol
over a TCP network. For successful connection, a set of suitably compatible SSL credentials
must be associated with the local bus inbound channel and the foreign bus outbound channel.

v Other, please specify. Select this option to specify your own transport chain and enter the
details in the field that appears.

c. Select the name of the authentication alias to use to authenticate access to the foreign bus. The
alias must be known to the foreign bus.

11. When the Foreign bus connection wizard is finished, save your changes to the master configuration.

Results

You have created a connection from a local service integration bus to a foreign service integration bus to
use point-to-point messaging. You have created a direct foreign bus connection, which contains a routing
definition, or virtual link. The physical link, a service integration bus link on the messaging engine for the
local bus, is created automatically.

What to do next

You must create a connection in the opposite direction between the two buses. To do this, repeat the
procedure, using the bus you have just connected to as the local bus, and the bus you have just
connected from as the foreign bus. Ensure that you use exactly the same name for the service integration
bus link. After you create a foreign bus connection for each service integration bus, you can test the
connection.

Connecting service integration buses to use publish/subscribe messaging:

You can connect a service integration bus to another service integration bus to send and receive
messages by using publish/subscribe messaging. To do this, you create a foreign bus connection.

Before you begin

To connect a service integration bus to another service integration bus to use publish/subscribe
messaging, the following resources must exist:

v A service integration bus that you want to connect from, known as the local bus. The bus must have at
least one bus member.

v A service integration bus that you want to connect to, known as the foreign bus. The bus must have at
least one bus member.

v A topic space on both service integration buses. If the foreign bus is in a remote cell, you must know
the topic space name.

v Optionally, to configure a secure connection, an authentication alias.

The buses that you connect must have unique names, because the connection will fail if the buses have
the same name.

About this task

In publish/subscribe messaging, the sending application publishes messages to an intermediate broker
destination. Multiple receiving applications can subscribe to this destination to receive a copy of any

Chapter 20. Welcome to administering Service integration 1995



messages that are published. When a message arrives at a destination, the messaging provider distributes
a copy of the message to all the receiving applications that subscribe to the destination. There can be a
one-to-many relationship between the sender and receiver of a message, depending on how many
receiving applications are subscribed to a destination when a message arrives.

Procedure

1. In the navigation pane, click Service integration -> Buses. A list of service integration buses is
displayed.

2. In the Buses pane, click the service integration bus that you want to connect from, that is, the local
bus.

3. In the configuration tab, under Topology, click Foreign bus connections.

4. In the Foreign bus connections pane, click New to start the Foreign bus connection wizard.

5. In the Bus connection type pane, ensure that Direct connection is selected.

6. In the Foreign bus type pane, ensure that Service integration bus is selected.

7. In the Local bus details pane, select from the drop-down list the messaging engine that you want to
use.

8. Optionally, enter a name for the inbound user ID. When the local bus is secure, the inbound user ID
replaces the user ID in messages from the foreign bus that arrive at the local bus and is used to
authorize whether those messages can access their destinations. Specify an inbound user ID for the
local service integration bus under the following circumstances:

v The foreign bus is in a different security domain, so user IDs in the foreign bus are not recognized
in the local bus.

v You want local control of access to inbound messages to the local bus.

If the local bus is not secure, the inbound user ID has no effect on messages. If the local bus is
secure, the foreign bus is not secure, and an inbound user ID is not set, an inbound message from
the foreign bus is only authorized to destinations that allow unauthenticated users access.

9. In the Foreign bus details pane, complete the details as appropriate:

v If the service integration bus you want to connect to is in a different cell from the local bus,
complete the following details:

a. Ensure that Configure a foreign bus in a remote cell is selected.

b. Enter the name of the service integration bus to connect to, that is, the foreign bus. Enter the
exact name of the existing service integration bus.

c. Enter the name of the gateway messaging engine in the foreign bus, that is, the messaging
engine to connect to in the foreign bus.

d. Select the Configure publish-subscribe messaging for this connection check box.

e. Enter the name of the service integration bus link.

f. Enter one or more bootstrap endpoints, that is, the host, port location, and transport chain for
the messaging engine on the foreign bus that the local service integration bus connects to. The
port is the SIB_ENDPOINT_ADDRESS (or SIB_ENDPOINT_SECURE_ADDRESS if security is
enabled) of the messaging engine. Use the format hostName:portNumber:chainName,
separating each bootstrap endpoint by a comma. For more information, see the steps relating to
setting bootstrap endpoints in “Configuring a connection to a non-default bootstrap server” on
page 511.

v If the service integration bus you want to connect to is in the same cell as the local bus, complete
the following details:

a. Ensure that Configure a foreign bus in a local cell is selected.

b. Select the name of the service integration bus to connect to, that is, the foreign bus.

c. Select the name of the gateway messaging engine in the foreign bus, that is, the messaging
engine to connect to in the foreign bus.

d. Select the Configure publish-subscribe messaging for this connection check box.

1996 Administering WebSphere applications



e. Enter the name of the service integration bus link.

10. Optionally, to secure the connection, in the Foreign bus details pane, complete the following details:

a. Select the Secure connection check box.

b. Select the type of transport chain to use to communicate with the messaging engine in the foreign
bus. Select one of the following:

v InboundBasicMessaging. InboundBasicMessaging is a predefined transport chain where
communication uses the TCP protocol.

v InboundSecureMessaging. InboundSecureMessaging is a predefined transport chain where
communication is secured by using the secure sockets layer (SSL) based encryption protocol
over a TCP network. For successful connection, a set of suitably compatible SSL credentials
must be associated with the local bus inbound channel and the foreign bus outbound channel.

v Other, please specify. Select this option to specify your own transport chain and enter the
details in the field that appears.

c. Select the name of the authentication alias to use to authenticate access to the foreign bus. The
alias must be known to the foreign bus.

11. In the Publish-subscribe details pane, repeat the following steps for each topic mapping you want to
create:

a. Select the name of the topic space on the local bus that will map to the topic space on the foreign
bus.

b. Enter the name of the topic space on the foreign bus. If the foreign bus is in the same cell as the
local bus, you can select this name from a drop-down list.

c. Click Add.

12. When the Foreign bus connection wizard is finished, save your changes to the master configuration.

Results

You have created a connection from a local service integration bus to a foreign service integration bus to
use publish/subscribe messaging. You have created a direct foreign bus connection, which contains a
routing definition, or virtual link. The physical link, a service integration bus link on the messaging engine
for the local bus, is created automatically.

What to do next

You must create a connection in the opposite direction between the two buses. To do this, repeat the
procedure, using the bus you have just connected to as the local bus, and the bus you have just
connected from as the foreign bus. Ensure that you use exactly the same name for the service integration
bus link. After you create a foreign bus connection for each service integration bus, you can test the
connection.

Connecting buses by using an indirect connection:

You can connect a service integration bus to another service integration bus or a WebSphere MQ queue
manager or queue-sharing group (known as the “gateway queue manager”) through one or more
intermediate foreign buses. To do this, you create an indirect foreign bus connection.

Before you begin

To create an indirect foreign bus connection, the following resources must be defined:

v A service integration bus that you want to connect from, known as the local bus.

v A direct foreign bus connection from the local bus to the bus you want to use as the intermediate bus.

v A service integration bus or a gateway queue manager that you want to connect to indirectly, known as
the target foreign bus.

Chapter 20. Welcome to administering Service integration 1997



About this task

To connect two buses indirectly, you create a indirect foreign bus connection on the local bus that specifies
a suitable intermediate bus and the required target bus. There must be a connection, either direct or
indirect, between the intermediate bus and the target foreign bus, that is, the service integration bus or a
gateway queue manager that you want to connect to.

To connect one bus to another bus through an intermediate bus, or a chain of buses, if the connection
between the intermediate bus or the chain of buses and the target bus already exists, you do not require
any new physical links. Instead, each foreign bus connection identifies a neighboring bus on the route to
the final target bus as the “next hop” in the chain. Each bus in the chain must know about the next hop in
the chain to reach the target bus. The local bus uses a foreign bus connection to identify the next bus in
the chain to the target bus, and uses its direct physical link to flow messages to that bus. Then, each
intermediate bus uses its locally defined foreign bus connection to identify the next bus in the chain until
the target bus is reached.

Procedure

1. In the navigation pane, click Service integration -> Buses. A list of service integration buses is
displayed.

2. In the Buses pane, click the service integration bus that you want to connect from, that is, the local
bus.

3. In the configuration tab, under Topology, click Foreign bus connections.

4. In the Foreign bus connections pane, click New to start the Foreign bus connection wizard.

5. In the Bus connection type pane, select Indirect, using another bus.

6. In the Indirect connection details pane, complete the following details:

a. Enter the name of the target foreign bus that you want to connect to indirectly.

b. Select the name of the existing, directly connected foreign bus that will be the intermediate bus to
the target bus.

7. When the Foreign bus connection wizard is finished, save your changes to the master configuration.

Results

You have created a connection from the local bus to the target bus by way of the intermediate bus. You
have created an indirect foreign bus connection, which contains a routing definition, or virtual link.

What to do next

Check whether there are connections between the intermediate bus you specified and the target bus. If
necessary, repeat the procedure to create the “next hop” in the chain.

Testing foreign bus connections:

After you define a direct foreign bus connection between a service integration bus and either another
service integration bus or a WebSphere MQ queue manager, you can test the connection to check that it
can be used to exchange messages.

Before you begin

To test a foreign bus connection, a service integration bus, known as the local bus, with a direct foreign
bus connection to a service integration bus, or a WebSphere MQ queue manager must be defined.

1998 Administering WebSphere applications



About this task

You might want to test a foreign bus connection before you send messages that use that connection, or if
you have difficulty sending and receiving messages that use that connection. You can test only direct
foreign bus connections. You cannot test indirect foreign bus connections, because it might not be possible
to reach the target destination bus.

If a connection name list is provided in the WebSphere MQ link sender channel properties, the
connections are tried in the order in which they are specified in the connection list until a connection is
successful. If no connection is successful an error message is logged.

Procedure

1. In the navigation pane, click Service integration -> Buses.

2. In the Buses pane, click the bus that has the connection you want to test.

3. In the configuration tab, under Topology, click Foreign bus connections. A list of foreign bus
connections is displayed.

4. Select the check box for the connection you want to test.

5. Click Test Connection. A message is displayed at the top of the pane that shows the result of the test.

Results

You have tested a bus connection.

Listing the foreign bus connections:

You can list the foreign bus connections that are associated with a local bus to see which foreign buses
are currently configured.

Before you begin

To list foreign bus connections, the following resources must be defined:

v A service integration bus with one or more foreign bus connections between it and another service
integration bus or a WebSphere MQ queue manager.

About this task

You can list foreign bus connections by using the administrative console, as described in this topic, or by
using the wsadmin tool and the listSIBForeignBuses command.

To list the foreign bus connections that are associated with the local bus, complete the following steps.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses.

3. In the service integration buses pane, select the bus for which you want to list the connections.

4. In the configuration tab, under Topology, click Foreign bus connections. A list of buses that have a
foreign bus connection from the local bus is displayed.

Results

You have listed the foreign bus connections that are associated with the local bus.

Removing a foreign bus connection from a bus:

Chapter 20. Welcome to administering Service integration 1999



You can remove a foreign bus connection from a bus so that the connection can no longer be used for
sending and receiving messages.

Before you begin

When a foreign bus connection is deleted from the configuration, the next time the hosting messaging
engine for a link transmitter is started, the messaging engine moves the messages to the exception
destination. To avoid this situation, drain the messages from the link transmitter queue as far as is possible
and then, before deleting the link configuration, either move any remaining messages from the
transmission queues to an exception destination, or delete them. For more details, refer to the subtopics
that follow.

About this task

Removing a foreign bus connection from a bus removes the resources associated with the connection.
The bus will no longer service the deleted link.

Procedure

1. In the navigation pane, click Service integration -> Buses.

2. In the Buses pane, select the bus from which you want to remove the foreign connection.

3. In the configuration tab, under Topology, click Foreign bus connections to display a list of
connections for this bus.

4. Select the check box that corresponds to the connection that you want to remove.

5. Click Delete.

6. Save your changes to the master configuration.

Results

You have now deleted the foreign bus connection from a bus. This connection can no longer be used for
communication.

Preparing to remove a foreign bus connection between two service integration buses:

Before you remove a foreign bus connection between two service integration buses, drain as many
messages as you can from the link transmitter queue, then manually move or delete any remaining
messages.

Before you begin

You must know which foreign bus connection is being prepared for deletion.

About this task

When a foreign bus connection and its service integration bus link is deleted from the configuration, the
next time the hosting messaging engine for a link transmitter is started, the messaging engine deletes all
its messages or moves them to the exception destination. To avoid messages being unintentionally deleted
or moved to the exception destination, drain the messages from the link transmitter queue as much as
possible and then, before deleting the link configuration, either move any remaining messages to an
exception destination or delete them.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses to display a list of buses.

3. Select the bus from which you want to remove the foreign bus connection.

2000 Administering WebSphere applications



4. In the Configuration tab, under Topology, click Foreign bus connections. A list of connections for
this bus is displayed.

5. From the list of foreign bus connections, click the name of the foreign bus connection to display its
details.

6. Under General properties, clear the Send Allowed check box to prevent new messages from being
produced for this service integration bus link.

7. Click Apply to save the configuration.

8. To determine when there are no more messages queued on this link, under Related Items click
Service integration bus links to display the details of the service integration bus links.

9. Click the Refresh icon of Status to refresh the view of the current outbound messages.

10. When there are no current outbound messages, select the check box next to the appropriate link and
then click Stop to stop the link to the foreign bus. When the status of the link turns to red, the link to
the foreign bus has no remaining messages and is stopped.

11. Repeat steps 2 to 10 for the foreign bus, because the foreign bus can continue to produce messages
after the foreign bus connection on the local bus has been deleted.

12. Save your changes to the master configuration.

Results

You have drained the messages from the link transmitter queue as much as possible, and either moved
any remaining messages from the transmission queues to an exception destination or deleted them. You
are now ready to remove the foreign bus connection.

Preparing to remove a foreign bus connection between a service integration bus and a WebSphere MQ
network:

Before you remove a foreign bus connection between a service integration bus and a WebSphere MQ
network, drain as many messages as you can from the link transmitter queue, then manually move or
delete any remaining messages.

Before you begin

You must know which foreign bus connection is being prepared for deletion. You should also inform the
WebSphere MQ administrator that the foreign bus connection is about to be deleted and therefore no
longer paired with its WebSphere MQ gateway queue manager or message broker in the WebSphere MQ
network.

About this task

When a foreign bus connection is deleted from the configuration, the next time the hosting messaging
engine for a link transmitter is started, it deletes all its messages or moves them to the exception
destination. To avoid messages being unintentionally deleted or moved to the exception destination, drain
as many messages as possible from the link transmitter queue. Then, before you delete the link
configuration, either move any remaining messages to an exception destination or delete them.

If there are publish/subscribe broker profiles defined, you should remove the subscriptions.

Procedure

1. Start the administrative console.

2. Optional: If there are publish/subscribe broker profiles defined on any of the links for this foreign bus
connection, remove the subscriptions.

Complete the following substeps for each broker profile:

Chapter 20. Welcome to administering Service integration 2001



a. Navigate to Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections
-> foreign_bus_name -> [Related Items] WebSphere MQ links -> link_name -> [Additional
Properties] Publish/subscribe broker profiles -> profile_name

b. Click the Runtime tab.

c. Click Subscriptions.

d. Click Unsubscribe to remove all the subscriptions listed.

When an unsubscribe command is sent to the message broker in the WebSphere MQ network, the
relevant topic mapping is put into an indoubt state until the unsubscribe is confirmed when the topic
mapping is deleted. After the unsubscribe is confirmed, the topic mapping is no longer shown in the
runtime view. You might have to refresh the runtime view for all subscriptions to be shown as removed.

3. Prevent new messages from being produced for this foreign bus connection.

a. Navigate to Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections
-> foreign_bus_name

b. Under General properties, clear the Send Allowed check box.

c. Click Apply to save the configuration.

4. Determine when there are no more messages queued, then stop the link to the foreign bus in a
controlled manner.

a. Under Related Items, click WebSphere MQ links to display the list of links for this bus.

b. Click the Refresh icon of Status to refresh the view of the current outbound messages.

c. When there are no current outbound messages, select the check box next to the appropriate link
and then select a Stop mode of "Quiesce".

d. Select a Target state of "Stopped" so that the link can only be started again by administrator
action.

e. When the status of the link turns to red, the link to the foreign bus has no remaining messages and
is stopped.

5. The foreign bus can continue to produce messages after the foreign bus connection on the local bus
has been deleted. Because the foreign bus is a WebSphere MQ network, refer to the WebSphere MQ
Intercommunication guide for details about the safe deletion of channels at Managing WebSphere MQ
channels.

6. Save your changes to the master configuration.

Results

You have removed the subscriptions from any publish/subscribe brokers on the link. You have drained as
many messages as possible from the link transmitter queue, and either moved any remaining messages
from the transmission queues to an exception destination or deleted them.

What to do next

You are now ready to remove the foreign bus connection.

Configuring destination defaults for a foreign bus connection:

You can configure default values to apply when applications use destinations on a foreign bus and these
properties are not explicitly defined elsewhere. You configure the destination defaults for the foreign bus
connection, which represents either a service integration bus or a WebSphere MQ queue manager or
queue-sharing group (known as a “gateway queue manager”).

Before you begin

To configure destination defaults for a foreign bus, at least one foreign bus connection that represents that
foreign bus must be defined.

2002 Administering WebSphere applications

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzae.doc/ic14550_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.csqzae.doc/ic14550_.htm


About this task

Destination defaults are default values for the destination attributes, such as the default priority. They are
used when an application produces messages that are destined for a destination on a foreign bus, but the
properties are not defined elsewhere:

v The application has not explicitly set certain attributes on the message.

v A foreign destination is not defined on the local bus, so cannot be a source of destination defaults.

v An alias destination is not defined on the local bus, so cannot be a source of destination defaults.

You configure destination defaults for a foreign bus connection to apply to all applicable destinations on
the corresponding foreign bus. In contrast, the destination defaults of an alias destination or foreign
destination apply to an individual destination on a foreign bus.

Procedure

1. In the navigation pane, click Service integration -> Buses.

2. In the service integration buses pane, select the bus that you want to configure.

3. In the configuration tab, under Topology, click Foreign bus connections. A list of foreign bus
connections is displayed.

4. Select the foreign bus connection that you want to configure.

5. In the content pane, under Additional properties, click Destination defaults.

6. Specify the following properties for the destination defaults:

Default priority
The default priority assigned to messages sent to this destination when a priority has not been
set by the producer.

Default reliability
The reliability assigned to a message produced to this destination when an explicit reliability
has not been set by the producer.

Maximum reliability
The maximum reliability of messages accepted by this destination.

Send allowed
Clear this option (setting it to false) to stop producers from being able to send messages to
destinations on this foreign bus.

Enable producers to override default reliability
Select this option to enable producers to override the default reliability that is set on the
destination.

Include an RFH2 message header when sending messages to WebSphere MQ.
If selected, messages sent to WebSphere MQ include an RFH2 header. The RFH2 header
stores additional information to that which is stored in theWebSphere MQ message header.

7. Click OK.

8. Save your changes to the master configuration.

Results

You have configured destination defaults for a foreign bus connection.

Managing messages that use foreign bus connections:

You can manage messages that use a foreign bus connection.

Chapter 20. Welcome to administering Service integration 2003



Before you begin

You must know whether the foreign bus connection represents a connection from a service integration bus
to another service integration bus, or to a WebSphere MQ network, because this determines the points
where you can manage messages.

About this task

For a foreign bus connection from a service integration bus to another service integration bus, you can
manage messages that are queued for link transmitters and link receivers.

For a foreign bus connection from a service integration bus to a WebSphere MQ network, you can
manage messages that are queued for link transmitters, known link transmitters, and the sender channel
transmitter.

A link can have multiple link transmitters; one for each messaging engine that sends messages on the link
to the foreign bus, and one for each topic space destination that is mapped to a topic space in the foreign
bus.

For a foreign bus connection to a WebSphere MQ network, there is one known link transmitter for each
link transmitter, and one sender channel transmitter for the WebSphere MQ link that sends messages to a
gateway queue manager on the WebSphere MQ network.

Complete this task when you want to view, delete, or move messages on a transmitter.

Procedure

Select the appropriate task from the following topics.

Configuring exception destination processing for a link to a foreign bus:

You can configure the exception destination processing for a link from a service integration bus to another
service integration bus or to a WebSphere MQ network. You can configure whether any undeliverable
messages that the link handles are rerouted to an exception destination, and whether to use a system
default exception destination or configure a specific exception destination.

Before you begin

To configure the exception destination processing for a service integration bus link or WebSphere MQ link,
you must know the name of the foreign bus connection that is associated with that link. A foreign bus
connection represents either a connection between two service integration buses or a connection between
a service integration bus and a WebSphere MQ network.

To configure a specific exception destination for the link, the exception destination must exist. An exception
destination must be a queue destination, and can be on the local bus or a foreign bus. See “Creating a
queue for point-to-point messaging” on page 2055.

About this task

An exception destination for a link is the destination for an inbound message when the service integration
bus link or WebSphere MQ link cannot deliver the message to its target bus destination, or to the
exception destination that is configured for that target destination, or when the target destination does not
exist.

You can configure an exception destination for a link as one of the following:

2004 Administering WebSphere applications



v None. The link does not use an exception destination and undeliverable messages are not rerouted to
an exception destination. For a service integration bus link, such messages can block the processing of
other messages waiting for delivery to the same destination. For a WebSphere MQ link, such messages
can block the processing of other messages waiting for delivery through that link to the same bus.

v System. The link uses the default exception destination. Messages that cannot be delivered to the bus
destination are rerouted to the system default exception destination for the messaging engine that this
link is assigned to: _SYSTEM.Exception.Destination.messaging_engine_name. This is the default
option.

v Specify. The link uses the specified exception destination. If the link cannot use this exception
destination, it uses the system exception destination.

Note that best-effort messages are always discarded if they cannot be delivered to their target destination,
that is, they never use an exception destination.

Any report options that are set in the properties of a message also affect exception destination processing.
Depending on the report options, a message might be discarded if it is not delivered.

Procedure

1. In the navigation pane of the administrative console, click Service integration -> Buses to display a
list of buses.

2. Select the bus that has the link for which you want to configure exception destination processing.

3. In the Configuration tab, under Topology, click Foreign bus connections to display a list of
connections for this bus.

4. Select the name of the foreign bus connection that is associated with the link for which you want to
configure exception destination processing.

5. For a link to another service integration bus, under Related Items, click Service integration bus
links. For a link to a WebSphere MQ network, under Related Items, click WebSphere MQ links.

6. Select the name of the link you require from the list. The details of that link are displayed.

7. In the Configuration tab, under General properties, in the Exception destination section, use the
radio buttons to configure the exception destination processing that this link uses:

v Select None to specify that the link does not use an exception destination.

v Select System to use the default exception destination.

v Select Specify and enter an exception destination to configure the exception destination you
require.

8. Save your changes to the master configuration.

Results

You have configured the exception destination processing for undeliverable messages that are handled by
the link.

What to do next

You can also configure exception destination processing for a bus destination.

Managing messages in a link transmission queue for a connection between two buses:

You can manage messages in a link transmission queue that is associated with a foreign bus connection
from one service integration bus to another service integration bus.

Before you begin

You must know the link transmitter on which messages are to be managed.

Chapter 20. Welcome to administering Service integration 2005



About this task

A service integration bus link can have multiple link transmitters. For applications that use point-to-point
messaging, there is one link transmitter for each messaging engine in the sending bus. For applications
that use publish/subscribe messaging, there is one link transmitter for each topic space destination that is
mapped to a topic space in the foreign bus.

Complete this task when you want to view, delete, or move messages that are queued for a link
transmitter.

Procedure

1. From the navigation pane of the administrative console, click Service integration -> Buses to display
a list of buses.

2. Select the bus whose link transmission queue you want to manage.

3. In the Configuration tab, under Topology, click Foreign bus connections to display a list of
connections for this bus.

4. From the list of foreign bus connections, select the name of a foreign bus connection to display its
details.

5. Under Related Items, click Service integration bus links, then select the check box for a link.

6. In the Runtime tab, click Link transmitters to display the list of link transmitters for messaging
engines that are sending messages to the foreign bus.

7. Optional: To manage all messages that are queued for a link transmitter, select the link transmitter and
complete your required task:

v Click Delete all messages to delete all the available messages that are queued for a selected link
transmitter.

v Click Move all messages to move all the available messages that are queued for a selected link
transmitter to the configured exception destination. If the exception destination is configured as
None, or if the link transmitter is a publish/subscribe link transmitter, the messages are discarded. If
it is configured as System, the messages are sent to the system default exception destination. If a
specified destination is configured, the messages are sent to the exception destination specified for
this link.

8. Optional: To manage selected messages that are queued for a link transmitter, click the name of the
messaging engine from the list of link transmitters, and then click View messages to view the
messages on an outbound stream from this link transmitter to the foreign bus.

9. Select one or more messages and complete your required task:

v Click Delete to delete the selected messages.

v Click Move to move the selected messages to the local exception destination. If the exception
destination is configured as None, or if the link transmitter is a publish/subscribe link transmitter, the
messages are discarded.

v Click Refresh to view the current messages that are queued for a selected link transmitter.

Note: Only messages up to the specified maximum displayed messages are displayed.

Results

You have managed the messages that are queued for a specified link transmitter for a specified foreign
bus connection.

Viewing messages in a link receiver queue for a connection between two buses:

You can view messages in a link receiver queue that is associated with a foreign bus connection from one
service integration bus to another service integration bus.

2006 Administering WebSphere applications



Before you begin

You must know the link receiver on which messages are to be viewed.

About this task

A service integration bus link can have multiple link receivers. For applications that use point-to-point
messaging, there is one link receiver for each messaging engine in the foreign bus, that is, the bus that
sends messages through the link. For applications that use publish/subscribe messaging, there is one link
receiver for each topic space in the foreign bus.

In this situation, the bus with the link receiver is the local bus. The bus that the applications that produce
messages are connected to is the foreign bus.

Complete this task when you want to view messages on a link receiver.

Procedure

1. From the navigation pane of the administrative console, click Service integration -> Buses to display
a list of buses.

2. Select the bus that has the link receiver queue you want to view.

3. In the Configuration tab, under Topology, click Foreign bus connections to display a list of
connections for this bus.

4. From the list of foreign bus connections, select the name of the foreign bus connection to display its
details.

5. Under Related links click Service integration bus links, then select the check box for a link.

6. In the Runtime tab, click Link receivers to display the list of link receivers for messaging engines on
the foreign bus that are sending messages to this bus.

7. To view the messages on the link receiver, select the name of the messaging engine from the list of
link receivers, then click View messages to view the messages on an inbound stream from the
messaging engine on the foreign bus. Click Refresh to view the current messages on the selected link
receiver.

Results

You have viewed the messages on a specified link receiver queue for a specified foreign bus connection.

Managing messages in a link transmission queue for a connection to a WebSphere MQ network:

You can manage messages in a link transmission queue that is associated with a foreign bus connection
from a service integration bus to a WebSphere MQ network.

Before you begin

You must know the foreign bus connection and the link transmitter for which you want to manage
messages.

About this task

A link can have multiple link transmitters; one for each messaging engine that sends messages on the link
to the foreign bus, and one for each topic space destination that is mapped to a topic space in the foreign
bus.

Complete this task when you want to view, delete, or move messages that are queued for a link
transmitter.

Chapter 20. Welcome to administering Service integration 2007



Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses to display a list of buses.

3. Select the bus whose link transmission queue you want to manage.

4. In the Configuration tab, under Topology, click Foreign bus connections to display a list of
connections for this bus.

5. Select the name of the foreign bus connection to display its details.

6. Under Related Items, click WebSphere MQ links, then select the name of the link.

7. In the Runtime tab, click Sender channel to display the sender channels that are sending messages
to the foreign bus.

8. Optional: To manage all messages that are queued for a link transmitter, select the link transmitter
and complete your required task:

v Click Delete all messages to delete all the available messages that are queued for the selected
link transmitter.

v Click Move all messages to move all the available messages that are queued for the selected link
transmitter to the configured exception destination. If the exception destination is configured as
None, or if the link transmitter is a publish/subscribe link transmitter, the messages are discarded.
If it is configured as System, the messages are sent to the system default exception destination. If
a specified destination is configured, the messages are sent to the exception destination specified
for this link.

9. Optional: To manage selected messages that are queued for a link transmitter, click the name of the
messaging engine from the list of link transmitters and then click View messages to view the
messages on an outbound stream from this link transmitter to the foreign bus.

10. Select one or more messages and complete one of the following tasks:

v Click Delete to delete the selected messages.

v Click Move to move the selected messages to the local exception destination.If the exception
destination is configured as None, or if the link transmitter is a publish/subscribe link transmitter,
the messages are discarded.

v Click Refresh to view the current messages that are queued for the selected link transmitter.

Note: Only messages up to the specified Maximum displayed messages are displayed.

Results

You have managed the messages that are queued for a specified link transmitter for a specified foreign
bus connectoin.

Managing messages in a known link transmission queue for connection to a WebSphere MQ network:

You can manage messages in a known link transmission queue that is associated with a foreign bus
connection from a service integration bus to a WebSphere MQ network.

Before you begin

You must know the foreign bus connection and the known link transmitter for which for which you want to
manage messages.

About this task

A link can have multiple known link transmitters; one for each messaging engine in the bus that has sent
messages through the link to the foreign bus, and one for each topic space destination that is mapped to a
topic space in the foreign bus.

2008 Administering WebSphere applications



Complete this task when you want to view, delete, or move messages that are queued for a known link
transmitter.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses to display a list of buses.

3. Select the bus whose known link transmission queue you want to manage.

4. In the Configuration tab, under Topology, click Foreign bus connections to display a list of
connections for this bus.

5. Select the name of the foreign bus connection to display its details.

6. Under Related Items click WebSphere MQ links, then select the name of the link.

7. In the Configuration tab, under Additional Properties, click Sender channel to display the sender
channels for all messaging engines that are sending messages to this bus. The sender channel
sends messages to the gateway queue manager.

8. From the list of sender channels, select the check box of a Sender MQ channel name and click
View known link transmitters to display a list the remote messaging engines producing messages
for this WebSphere MQ link.

9. Click Refresh to view the current messages on the message engines.

10. Optional: To manage all messages that are queued for a known link transmitter, select a known link
transmitter and complete your required task:

v Click Delete all messages to remove the messages from the known link transmission queue.

v Click Move all messages to move all the available messages that are queued for a selected
known link transmitter to the configured exception destination. If the exception destination is
configured as None, or if the known link transmitter is a publish/subscribe known link transmitter,
the messages are discarded. If it is configured as System default the messages are sent to the
system default exception destination. If a Specified destination is configured, the messages are
sent to the exception destination specified for this link.

11. Optional: To manage selected messages that are queued for a known link transmitter, select a known
link transmitter then click View messages to view the messages.

12. Select one or more messages and complete your required task:

v Click Delete to remove the selected messages from the known link transmission queue.

v Click Move to move the selected messages to the configured exception destination. If the
exception destination is configured as None, or if the known link transmitter is a publish/subscribe
known link transmitter, the messages are discarded. If the exception destination is configured as
System default, the messages are sent to the system default exception destination. If a Specified
destination is configured, the messages are sent to the exception destination specified for this
link.

Results

You have managed the messages in a known link transmission queue for a specified foreign bus
connection between a service integration bus and a WebSphere MQ network.

Managing messages in a sender channel transmission queue for a connection to a WebSphere MQ
network:

You can manage messages in a sender channel transmission queue that is associated with a foreign bus
connection between a service integration bus and a WebSphere MQ network.

Chapter 20. Welcome to administering Service integration 2009



Before you begin

You must know the foreign bus connection and the sender channel transmitter for which you want to
manage messages.

About this task

There is one sender channel transmitter on the WebSphere MQ link that sends messages to a gateway
queue manager on the WebSphere MQ network (the foreign bus).

Complete this task when you want to view, delete, or move messages that are queued for the sender
channel transmitter.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses to display a list of buses.

3. Select the bus whose sender channel transmission queue you want to manage.

4. In the Configuration tab, under Topology, click Foreign bus connections to display a list of
connections for this bus.

5. Select the name of the foreign bus connection to display its details.

6. In the Configuration tab, under Related Items click WebSphere MQ links, then select the check box
for a link.

7. Click Sender channel transmitter under Current outbound messages, or click Sender channel
transmitter under Messages sent, to see the relevant message details for this sender channel
transmitter.

8. Select the check box of the sender channel transmitter and complete your required task:

v Click Delete all messages to remove the messages from the sender channel transmission queue.

v Click Move all messages to move all the available messages on the sender channel transmitter to
the configured exception destination. If the exception destination is configured as None, the
messages are discarded. If it is configured as System, the messages are sent to the system default
exception destination. If a specified destination is configured, the messages are sent to the
exception destination specified for this link.

Results

You have managed the messages on a sender channel transmitter that sends messages to a gateway
queue manager on the WebSphere MQ network.

Managing pending acknowledgement messages on a deleted WebSphere MQ link:

If a foreign bus link to a WebSphere MQ network is deleted from the WebSphere Application Server
configuration before being drained of messages, a batch of messages pending acknowledgement remains
stored in the WebSphere MQ link sender channel transmitter. You can use the administrative console to
resolve these messages.

Before you begin

You must know the name of the WebSphere MQ link that has been deleted.

About this task

To resolve pending acknowledgement messages on a deleted WebSphere MQ link, use the administrative
console to complete the following steps.

2010 Administering WebSphere applications



Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses to display a list of buses.

3. Select the bus whose link transmission queue you want to manage.

4. In the Configuration tab, under Topology, click Foreign Bus Connections to display a list of
connections for this bus.

5. From the list of foreign bus connections, select the name of a foreign bus connection to display its
details.

6. Under Related Items click Service integration bus links to display the details of the service
integration bus links.

7. Select the MQ network foreign bus that has a connection that is active, but a configuration status that
is Deleted. If clicking Link transmitters displays an empty list, no messaging engines are producing
messages to this link and all the link transmitters have been deleted because they were drained of
messages. The Sender channel transmitter link displays the status of the sender channel as
stopped but Current outbound messages shows remaining messages on the sender channel
transmitter.

8. Click a WebSphere MQ link Sender channel link to display the messages that are queued on the
WebSphere MQ link sender channel transmitter for transmission to the WebSphere MQ network.

9. If the Status of a batch of messages is “Commit pending batch”, the batch has arrived safely at the
MQ network. Select the batch and click Commit pending batch to remove the messages from the
transmission queue.

10. If the Status of a batch of messages is “Pending batch acknowledgement”, the batch did not arrive at
the MQ network. Select the batch and click Rollback pending acknowledge batch to roll back the
transaction and restore the messages to the channel in an available state. These messages are
either automatically deleted or moved to the exception destination. When the channel transmitter is
empty, the link is automatically deleted from the runtime environment.

Results

You have resolved any pending acknowledgement messages on a WebSphere MQ link that has been
deleted from a foreign bus connecting to a service integration bus.

Modifying a routing definition:

You can view or change the routing definition of an existing foreign bus connection between a local bus
and a foreign bus. The routing definition defines the virtual link between two buses that enables them to
exchange messages. The routing definition can define properties for a virtual service integration bus link, a
virtual WebSphere MQ link, or an indirect foreign bus connection.

About this task

You create a routing definition when you create a foreign bus connection. For a direct foreign bus
connection, the routing definition, or virtual link, has a corresponding physical link on a messaging engine.

To change the properties of the routing definition, use the administrative console to complete the following
steps:

Procedure

1. In the navigation pane, click Service integration -> Buses. A list of service integration buses is
displayed.

2. In the Buses pane, click the service integration bus that is connected to another bus, that is, the local
bus you require.

Chapter 20. Welcome to administering Service integration 2011



3. In the content pane, under Topology, click Foreign bus connections. A list of buses that have a
foreign bus connection from the local bus is displayed.

4. Select the required foreign bus.

5. In the content pane, under Additional properties, click the routing properties option. The routing
properties option depends on the type of routing definition and is one of the following:

v Service integration bus link routing properties

v WebSphere MQ link routing properties

v Indirect routing properties

6. Optional: Specify the new routing properties:

v For a virtual service integration bus link or a virtual WebSphere MQ link, specify properties as
follows:

Inbound user ID
The user name used to authenticate inbound message flows from the foreign bus.

When the local bus is secure, the inbound user ID replaces the user ID in messages from
the foreign bus that arrive at the local bus and is used to authorize whether those messages
can access their destinations. Specify an inbound user ID for the local service integration
bus under the following circumstances:

– The foreign bus is in a different security domain, so user IDs in the foreign bus are not
recognized in the local bus.

– You want local control of access to inbound messages to the local bus.

If the local bus is not secure, the inbound user ID has no effect on messages. If the local
bus is secure, the foreign bus is not secure, and an inbound user ID is not set, an inbound
message from the foreign bus is only authorized to destinations that allow unauthenticated
users access.

Outbound user ID
The user name used to authenticate outbound message flows to the foreign bus.

The outbound user ID replaces the user ID that identifies the message source in every
message sent to the foreign bus. Where it is defined, the outbound user ID replaces the
user ID in messages sent by the local bus to the foreign bus. If the local bus and the foreign
bus are both secure, and the foreign bus has not overridden the user ID with its own
inbound user ID, the foreign bus also uses the outbound user ID to authorize the message
to its destination.

v For an indirect foreign bus connection, select the name of the next foreign bus you require in the
chain of intermediate buses. For a bus to be available for selection, it must already have a direct
foreign bus connection from the local bus.

7. Click OK.

8. Save your changes to the master configuration.

Configuring service integration bus links:

You can configure service integration bus links on messaging engines in a variety of ways. For example,
you can start, stop, or remove links.

About this task

When you create a foreign bus connection to connect two service integration buses, a service integration
bus link is created automatically. The foreign bus connection contains a routing definition, which is a virtual
link, and the service integration bus link is the corresponding physical link on the messaging engine.

Configuring the properties of a service integration bus link:

2012 Administering WebSphere applications



After establishing a service integration bus link you might want to configure the properties of a service
integration bus link such as the name of the service integration bus link, or authentication alias used by
foreign bus that the link connects to.

About this task

To configure the properties of a service integration bus link, use the administrative console to complete the
following steps:

Procedure

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine for which you want to configure the service
integration bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link that you want to configure.

5. Specify the following properties for the service integration bus link:

Name The name of the service integration bus link. In order to work, the name must be the same as
the name of the corresponding service integration bus link configured on the target foreign bus.

Description
An optional description for the service integration bus link, for administrative purposes.

UUID The universal unique identifier assigned by the system to the service integration bus link for
administrative purposes.

Foreign messaging engine
The messaging engine on the foreign bus to which this link connects.

Note: This foreign bus name must not be altered after it has been configured. If you alter it,
any messaging engines that already hold state information on the link will not be able to
use the link unless the foreign bus name is reset to its original value.

Target inbound transport chain
The type of transport chain used for communication with the foreign bus. The transport chain
name must be the name of the transport chain as defined on the server on which the target
messaging engine is hosted.

Bootstrap endpoints
The comma-separated list of endpoints used to connect to a bootstrap server. This property is
set in the same way as the Provider endpoint property in the JMS connection factory settings.
For more information, see the steps relating to setting bootstrap endpoints in “Configuring a
connection to a non-default bootstrap server” on page 511.

Note: Service integration bus links over BootstrapTunneledMessaging and
BootstrapTunneledSecureMessaging transport chains only work directly between
application server instances. Bus links over TunneledMessaging transport chains do not
work if an HTTP server is placed in front of either application server instance.

Authentication alias
The name of the authentication alias, used to authenticate access to the foreign bus. The alias
must be known to the foreign bus.

Initial state
Whether the link is started automatically when the messaging engine is started. Until started,
the gateway link is unavailable. If this property is set to Started the service integration bus link
is started when the messaging engine is started.

Chapter 20. Welcome to administering Service integration 2013



6. Click OK.

7. Save your changes to the master configuration.

Listing the service integration bus links:

You can list all the service integration bus links that are linked to a messaging engine.

About this task

To list the service integration bus links for a messaging engine, use the administrative console to complete
the following steps:

Procedure

1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the bus that your messaging engine belongs to.

3. In the content pane, under Additional properties, click Messaging engines. The list of messaging
engines in the bus is displayed.

4. In the content pane, select the messaging engine for which you want to list the service integration bus
links.

5. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

Example

The following combinations of Status and Activity values are possible:

Table 209. Results of possible status and activity values. The first and second columns of the table provide the
possible combinations of status and activity values, and the third column explains the possible connection status of
the local and foreign buses.

Status Activity Meaning

started inactive The service integration bus link is started on the local
messaging engine but has no connection to the foreign bus.
The service integration bus link is attempting to activate a
connection to the foreign bus. The service integration bus link
on the foreign bus must also be started to successfully
activate of a connection between the buses.

started active The service integration bus link is started on the local
messaging engine and has an active connection to the foreign
bus.

stopped inactive The service integration bus link is stopped on the local
messaging engine and there is no connection to the foreign
bus.

unknown inactive An error might have occurred in setting up the link, such that
the object that is used to report the current state is not
available.

What to do next

You can now add or remove a service integration bus link or select a service integration bus link to start,
stop, or configure.

Starting a service integration bus link:

When a service integration bus link has been started, it can be used for communicating with its associated
messaging engines.

2014 Administering WebSphere applications



About this task

To start a service integration bus link, use the administrative console to complete the following steps:

Procedure

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine for which you want to start the service integration
bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link that you want to start.

5. Click Start.

Stopping a service integration bus link:

When a service integration bus link has been stopped, it cannot be used for communication until it is
restarted.

About this task

To stop a service integration bus link, use the administrative console to complete the following steps:

Procedure

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine to which the service integration bus link that you
want to stop belongs.

3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link that you want to stop.

5. Click Stop.

Removing a service integration bus link:

When a service integration bus link to a messaging engine has been removed, it cannot be used for
communication until it is recreated.

Before you begin

Before you remove the service integration bus link you must stop the link.

When you remove a service integration bus link, all traffic that uses the link needs to be dealt with in a
similar way to when you remove a destination. For further details, see “Deleting a non-topic space bus
destination” on page 2080. Note that express Quality of Service (QoS) messages are discarded.

About this task

To remove a service integration bus link from a messaging engine, use the administrative console to
complete the following steps:

Procedure

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine that is associated with the service integration bus
link that you want to remove.

Chapter 20. Welcome to administering Service integration 2015



3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link that you want to remove.

5. Click Delete.

6. Save your changes to the master configuration.

What to do next

When you remove a service integration bus link, all traffic that uses the link must be diverted by alternative
routes or held pending further administrative action. Express QoS messages are discarded.

Configuring topic space mappings between service integration buses:

A topic space mapping allows subscribers on the local topic space to receive messages published in the
foreign topic space. You can configure topic space mappings between a local service integration bus and a
foreign service integration bus.

About this task

A topic space mapping allows subscribers on the local topic space to receive messages published in the
foreign topic space. For publications to flow from the local topic space into the foreign bus, an equivalent
topic space mapping is required by the foreign bus.

If you want to publish messages from a local bus to a foreign bus that is linked indirectly through a third
bus, you must configure topic space mappings between the local bus and the intermediate bus, and
between the intermediate bus and the foreign bus. The messages can be for publication to the foreign bus
only, or to all three buses. If you want to publish messages only to the local and foreign buses, these two
buses must be connected directly.

If you want to publish messages from a local service integration bus to a foreign bus that represents a
WebSphere MQ network, you must define topic mappings on the broker profile associated with the
WebSphere MQ link.

For more details about the foreign bus and publish/subscribe messaging between buses, see Foreign
buses.

Creating topic space mappings:

A topic space mapping allows subscribers on the local topic space to receive messages published in the
foreign topic space. You can create topic space mappings between two service integration buses.

About this task

You can create topic space mappings as part of the procedure to create a foreign bus connection, or you
can create them separately, as described in this topic.

Note that for publishing and subscribing between a service integration bus and a foreign bus that
represents a WebSphere MQ network, you must define topic mappings on the broker profile associated
with the WebSphere MQ link.

To map a topic space on a local service integration bus to a topic space on a foreign service integration
bus, use the administrative console to complete the following steps.

2016 Administering WebSphere applications



Procedure

1. In the navigation pane, click Service integration -> Buses. A list of service integration buses is
displayed.

2. In the Buses pane, click the service integration bus that is connected to another bus, that is, the local
bus you require.

3. In the content pane, under Topology, click Foreign bus connections. A list of buses that have a
foreign bus connection from the local bus is displayed.

4. Select the required foreign bus.

5. In the content pane, under Additional properties, click Service integration bus link routing
properties.

6. In the content pane, under Additional properties, click Topic space map entries.

7. Click New.

8. Specify the mappings as follows:

Local topic space
The name of the topic space on this (local) bus that is mapped to the remote topic space on
the foreign bus.

Remote topic space
The name of the topic space on the foreign bus that is mapped to the local topic space.

Note: The names of the local and foreign topic space do not have to match, but the names of the
topics must match in both local and foreign buses.

9. Click OK.

10. Save your changes to the master configuration.

Results

The remote topic space is mapped to the local topic space.

Deleting topic space mappings:

You can delete topic space mappings so that subscribers on the local topic space cannot receive
messages that are published in the foreign topic space.

About this task

To delete topic space mappings, use the administrative console to complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> Buses. A list of service integration buses is
displayed.

2. In the Buses pane, click the service integration bus that is connected to another bus, that is, the local
bus you require.

3. In the content pane, under Topology, click Foreign bus connections. A list of buses that have a
foreign bus connection from the local bus is displayed.

4. Select the required foreign bus.

5. In the content pane, under Additional properties, click Service integration bus link routing
properties.

6. In the content pane, under Additional properties, click Topic space map entries. A list of topic space
map entries is displayed.

7. Select the topic space map entry that you want to remove.

8. Click Delete.

Chapter 20. Welcome to administering Service integration 2017



9. Save your changes to the master configuration.

Listing topic space map entries:

A topic space mapping allows subscribers on the local topic space to receive messages published in the
foreign topic space. You can list topic space map entries to view existing map entries.

Before you begin

There must be a service integration bus link between a local service integration bus and a foreign service
integration bus.

About this task

To list the topic space map entries, use the administrative console to complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> Buses. A list of service integration buses is
displayed.

2. In the Buses pane, click the service integration bus that is connected to another bus, that is, the local
bus you require.

3. In the content pane, under Topology, click Foreign bus connections. A list of buses that have a
foreign bus connection from the local bus is displayed.

4. Select the required foreign bus.

5. In the content pane, under Additional properties, click Service integration bus link routing
properties.

6. In the content pane, under Additional properties, click Topic space map entries. The list of
mappings between topic spaces in the local bus and topic spaces in the foreign bus is shown.

Topic names and use of wildcard characters in topic expressions:

Wildcard characters can be used in topic expressions to retrieve topics provided by the default messaging
provider and service integration technologies.

Each subscribe request includes a topic expression that identifies one or more topics that the subscription
is to be associated with, and that the request uses to match against incoming messages.

Subscription topic expressions for the default messaging provider and service integration technologies are
based on a subset of the XPath location path syntax.

Identifying individual topics

Every topic in a topic space has a topic name consisting of one or more name parts, separated by /
(forward slash) characters:

Topic name = name_part | (name_part ’/’ topic_name)

Using wildcards to identify multiple topics

To select one or more topics in a topic space, you can use a topic path, a location path that contains
wildcard characters. Topic spaces are evaluated by using a subset of the XPath location path syntax with
the <topicspace> element as the initial context node, so that non-wildcarded topic paths look exactly like
topic names.

The syntax for topic paths can be summarized as follows:

2018 Administering WebSphere applications



v A topic path that contains no * (asterisk), // (double forward slash), or . (dot) symbols is asking for an
exact match with the topic name specified.

v A * (asterisk) can be used as a wild card and matches one level (regardless of the value of the name
part at that level)

A * can be used anywhere in a topic path expression, but if it isn't at the start it must be preceded by a
/, and if it is isn't at the end it must be followed by a /

v // can be used as a wild card and matches 0 or more levels

A // can be used anywhere in the expression except at the end. To match 0 or more levels at the end of
the expression you end the expression with the syntax //. (double-slash dot). To match one or more
levels at the end use //* (double-slash asterisk)

A topic path must not contain more than two consecutive / symbols.

The following table lists some example topic paths showing the XPath syntax and the equivalent WBI
Message Broker selectors:

Table 210. XPath syntax and WBI Message Broker selectors. The first column of the table lists some topic path
examples. The second column displays the topics selected in the path. The third column provides the equivalent WBI
Message Broker selectors.

Topic path Topics selected
WBI Message Broker
equivalent

A/B Selects the B child of A A/B

A/* Selects all children of A A/+

A//* Selects all descendents of A A/#/+

A//. Selects A and all descendents of A A/#

//* Selects everything # (or #/+)

A/./B Equivalent to A/B A/B

A/*/B Selects all B grandchildren of A A/+/B

A//B Selects all B descendents of A A/#/B

//A Selects all A elements at any level #/A

* Selects all first level elements +

Defining outbound chains for bootstrapping
You can define new outbound chains by using the wsadmin utility. These chains can be used for
bootstrapping connections to messaging engines.

About this task

To create outbound chains for bootstrapping, there are several main steps:

1. Locate the appropriate TransportChannelService configuration object. This object is the parent object
of all the objects created.

2. Create the individual channels that comprise the transport channel service. Some of these channels
might require references to other configuration objects.

3. Assemble the channels that you have created into an outbound channel chain.

The channels used to build an outbound bootstrap chain determine the protocol with which the outbound
chain can be used to bootstrap. The following table shows all valid bootstrap chains with their bootstrap
protocols.

Chapter 20. Welcome to administering Service integration 2019



Table 211. Valid bootstrap chains and protocols. The first column contains the bootstrap protocol used in building
the outbound bootstrap chain. The second to fifth columns in the table contain the channels that are valid for the
protocol specified on the first column. The order of the channels is important while building the chain. The order of
the channels from left to right as given in the table is TCP, SSL, HTTP, HTTP tunneling, and JFAP channels.

Bootstrap protocol TCP channel SSL channel HTTP channel
HTTP tunneling
channel JFAP channel

TCP X X

SSL X X X

HTTP X X X X

HTTPS X X X X X

For example, a chain for bootstrapping that uses the SSL protocol would consist of a TCP channel, SSL
channel, and JFAP channel. When you create chains, the order of channels in the chain is important. You
must specify channels in the order (left to right) in which they appear in the preceding table.

The example in this topic describes how to create a bootstrap chain that is capable of bootstrapping by
using the HTTPS protocol. This requires a chain containing all the channel types described. Thus, it is
easy to see how to create chains for other protocols by omitting channels during the chain creation step.

Note: You open a wsadmin command session from within Qshell. For more information, see
the topic “Configure Qshell to run WebSphere Application Server scripts”.

Procedure
1. Locate the TransportChannelService object for the server in which you want to create the new chain.

For example, in a WebSphere Application Server Network Deployment configuration, you can list the
available TransportChannelService objects and select the appropriate service as follows.

Using Jython:
wsadmin>AdminConfig.list("TransportChannelService" )
(cells/BadgerCell01/nodes/BadgerCellManager01/servers/dmgr|server.xml
#TransportChannelService_1)
(cells/BadgerCell01/nodes/BadgerNode01/servers/nodeagent|server.xml
#TransportChannelService_1095
711814579)
(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml
#TransportChannelService_109571
2023139)
(cells/BadgerCell01/nodes/BadgerNode01/servers/server2|server.xml
#TransportChannelService_109571
2039302)
wsadmin>tcs = AdminConfig.list("TransportChannelService" ).split("\r\n")[2]

Using Jacl:
wsadmin> $AdminConfig list TransportChannelService
(cells/BadgerCell01/nodes/BadgerCellManager01/servers/dmgr|server.xml
#TransportChannelService_1)
(cells/BadgerCell01/nodes/BadgerNode01/servers/nodeagent|server.xml
#TransportChannelService_1095
711814579)
(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml
#TransportChannelService_109571
2023139)
(cells/BadgerCell01/nodes/BadgerNode01/servers/server2|server.xml
#TransportChannelService_109571
2039302)
wsadmin> set tcs [lindex [$AdminConfig list TransportChannelService] 2]
(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#
TransportChannelService_1095712023139)

2. Define an outbound TCP channel called testTCPChannel.

Using Jython:
wsadmin>tcpChannel = AdminConfig.create("TCPOutboundChannel", tcs,
[["name", "testTCPChannel"]] )

2020 Administering WebSphere applications



Using Jacl:
wsadmin>set tcpChannel [$AdminConfig create TCPOutboundChannel $tcs
"{name testTCPChannel}"]
testTCPChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/
server1|server.xml#TCPOutboundChannel_1095969213949)

3. Define an outbound SSL channel called testSSLChannel. There are two steps required to define such
a channel.

a. Identify the SSL alias to be used by the channel.

Using Jython:
wsadmin>for obj in AdminConfig.list("SSLConfig" ).split("\r\n"):
print obj+AdminConfig.show(obj, "alias")
(cells/BadgerCell01|security.xml#SSLConfig_1)
[alias BadgerCellManager01/DefaultSSLSettings]
(cells/BadgerCell01|security.xml#SSLConfig_1095711819776)
[alias BadgerNode01/DefaultSSLSettings]

Using Jacl:
wsadmin>foreach obj [$AdminConfig list SSLConfig] { puts "$obj
[$AdminConfig show $obj alias]]" }
(cells/BadgerCell01|security.xml#SSLConfig_1) {alias BadgerCellManager01/
DefaultSSLSettings}]
(cells/BadgerCell01|security.xml#SSLConfig_1095711819776) {alias BadgerNode01/
DefaultSSLSettings}]

b. Create an SSL channel as in the following example, in which the BadgerNode01/
DefaultSSLSettings alias is used.

Using Jython:
wsadmin>sslChannel =
AdminConfig.create("SSLOutboundChannel", tcs, [["name", "testSSLChannel"],
["sslConfigAlias", "BadgerNode01/DefaultSSLSettings"]] )

Using Jacl:
wsadmin>set sslChannel [$AdminConfig create SSLOutboundChannel $tcs
"{name testSSLChannel}
{sslConfigAlias BadgerNode01/DefaultSSLSettings}"]
testSSLChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#
SSLOutboundChannel_1095971760671)

4. Define an outbound HTTP channel called testHTTPChannel.

Using Jython:
wsadmin>httpChannel = AdminConfig.create("HTTPOutboundChannel", tcs,
[["name", "testHTTPChannel"]] )

Using Jacl:
wsadmin>set httpChannel [$AdminConfig create HTTPOutboundChannel $tcs
"{name testHTTPChannel}"]
testHTTPChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#
HTTPOutboundChannel_1095971896556)

5. Define an outbound HTTP tunneling channel called testHTCChannel.

Using Jython:
wsadmin>htcChannel = AdminConfig.create("HTTPTunnelOutboundChannel", tcs,
[["name", "testHTCChannel"]] )

Using Jacl:
wsadmin>set htcChannel [$AdminConfig create HTTPTunnelOutboundChannel $tcs
"{name testHTCChannel}"]
testHTCChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#
HTTPTunnelOutboundChannel_1095972164201)

6. Define an outbound JFAP channel called testJFAPChannel.

Using Jython:
wsadmin>jfapChannel = AdminConfig.create("JFAPOutboundChannel", tcs,
[["name", "testJFAPChannel"]] )

Using Jacl:

Chapter 20. Welcome to administering Service integration 2021



wsadmin>set jfapChannel [$AdminConfig create JFAPOutboundChannel $tcs
"{name testJFAPChannel}"]
testJFAPChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#
JFAPOutboundChannel_1095972226631)

7. Finally, create the channel chain by combining the channels defined so far. For example, to create a
chain called testChain:

Using Jython:
wsadmin>AdminConfig.create("Chain", tcs, [["name", "testChain"], ["enable", "true"],
["transportChannels", [tcpChannel, httpChannel, htcChannel, jfapChannel]]] )
testChain(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#
Chain_1095972662147)

Using Jacl:
wsadmin>$AdminConfig create Chain $tcs "{name testChain} {enable true}
{transportChannels {$tcpChannel $httpChannel $htcChannel $jfapChannel}}"
testChain(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#
Chain_1095972662147)

Defining outbound chains for WebSphere MQ interoperation
You can define new outbound chains by using the wsadmin utility. These chains can be used for
interoperating with WebSphere MQ.

About this task

The channels used to build an outbound chain determine with which configurations of the WebSphere MQ
queue manager sender channel so a network connection can be successfully established. The following
table shows all the valid chain configurations and describes the configuration of aWebSphere MQ queue
manager sender channel with which they can be used to establish a connection.

Table 212. Valid chain and WebSphere MQ queue manager sender channel configurations. The first column of the
table provides the WebSphere MQ channels. The second to fourth columns in the table indicate whether the TCP,
SSL, and MQFAP channels in combination with the WebSphere MQ channel can establish a network connection
successfully. It is important to follow a specific order of the channels while building the chain. The order of the
channels from left to right as given in the table is TCP, SSL, and MQFAP channels.

channel Unsecured channel channel secured by using SSL

TCP channel X X

SSL channel X

MQFAP channel X X

For example, an SSL-based chain would consist of a TCP channel, SSL channel and MQFAP channel.
When creating chains, the order of channels in the chain is important. You must specify channels in the
order (left to right) in which they appear in the above table.

The example in this topic describes how to create an outbound chain capable of being used to contact
WebSphere MQ queue manager receiver channels by using SSL-based encryption.

Note: You open a wsadmin command session from within Qshell. For more information, see
the topic “Configure Qshell to run WebSphere Application Server scripts”.

Procedure
1. Locate the TransportChannelService object for the server in which you want to create the new chain.

For example, in a WebSphere Application Server Network Deployment configuration, you can list the
available TransportChannelService objects and select the appropriate service.

Using Jython:
wsadmin>AdminConfig.list("TransportChannelService" )
(cells/BadgerCell01/nodes/BadgerCellManager01/servers/dmgr|server.xml
#TransportChannelService_1)
(cells/BadgerCell01/nodes/BadgerNode01/servers/nodeagent|server.xml

2022 Administering WebSphere applications



#TransportChannelService_1095
711814579)
(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml
#TransportChannelService_109571
2023139)
(cells/BadgerCell01/nodes/BadgerNode01/servers/server2|server.xml
#TransportChannelService_109571
2039302)
wsadmin>tcs = AdminConfig.list("TransportChannelService" ).split("\r\n")[2]

Using Jacl:
wsadmin> $AdminConfig list TransportChannelService
(cells/BadgerCell01/nodes/BadgerCellManager01/servers/dmgr|server.xml
#TransportChannelService_1)
(cells/BadgerCell01/nodes/BadgerNode01/servers/nodeagent|server.xml
#TransportChannelService_1095711
814579)
(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml
#TransportChannelService_109571202
3139)
(cells/BadgerCell01/nodes/BadgerNode01/servers/server2|server.xml
#TransportChannelService_109571203
9302)
wsadmin> set tcs [lindex [$AdminConfig list TransportChannelService] 2]
(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml
#TransportChannelService_109571202
3139)

2. Define an outbound TCP channel called testTCPChannel.

Using Jython:
wsadmin>tcpChannel = AdminConfig.create("TCPOutboundChannel", tcs,
[["name", "testTCPChannel"]] )

Using Jacl:
wsadmin>set tcpChannel [$AdminConfig create TCPOutboundChannel $tcs
"{name testTCPChannel}"]
testTCPChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#
TCPOutboundChannel_1095969213949)

3. Define an outbound SSL channel called testSSLChannel. There are two steps required to define such
a channel.

a. Identify the SSL alias to be used by the channel.

Using Jython:
wsadmin>for obj in AdminConfig.list("SSLConfig" ).split("\r\n"):
print obj+AdminConfig.show(obj, "alias")

Using Jacl:
wsadmin>foreach obj [$AdminConfig list SSLConfig] { puts "$obj
[$AdminConfig show $obj alias]]" }
(cells/BadgerCell01|security.xml#SSLConfig_1) {alias BadgerCellManager01/
DefaultSSLSettings}]
(cells/BadgerCell01|security.xml#SSLConfig_1095711819776) {alias BadgerNode01/
DefaultSSLSettings}]

b. Create an SSL channel as in the following example, in which the BadgerNode01/
DefaultSSLSettings alias is used.

Using Jython:
wsadmin>sslChannel = AdminConfig.create("SSLOutboundChannel", tcs, [["name",
"testSSLChannel"], ["sslConfigAlias","BadgerNode01/DefaultSSLSettings"]])

Using Jacl:
wsadmin>set sslChannel [$AdminConfig create SSLOutboundChannel $tcs
"{name testSSLChannel}
{sslConfigAlias BadgerNode01/DefaultSSLSettings}"]
testSSLChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#
SSLOutboundChannel_1095971760671)

4. Define an outbound MQFAP channel called testMQFAPChannel.

Using Jython:
wsadmin>mqfapChannel = AdminConfig.create("MQFAPOutboundChannel", tcs,
[["name", "testMQFAPChannel"]] )

Chapter 20. Welcome to administering Service integration 2023



Using Jacl:
wsadmin>set mqfapChannel [$AdminConfig create MQFAPOutboundChannel $tcs
"{name testMQFAPChannel}"]
testMQFAPChannel(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#
MQFAPOutboundChannel_1095977512682)

5. Finally, create the channel chain by combining the channels defined so far. For example, to create a
chain called testChain:

Using Jython:
wsadmin>AdminConfig.create("Chain", tcs, [["name", "testChain"], ["enable",
"true"], ["transportChannels", [tcpChannel, sslChannel, mqfapChannel]]] )

Using Jacl:
wsadmin>$AdminConfig create Chain $tcs "{name testChain} {enable true}
{transportChannels {$tcpChannel $sslChannel $mqfapChannel}}"
testChain(cells/BadgerCell01/nodes/BadgerNode01/servers/server1|server.xml#Chain_109
5977640896)

Operating buses
Use these tasks to operate service integration buses.

About this task

The topics in this section describe how to display the runtime properties of messaging engines and their
associated service integration bus links. The properties are influenced by the following operations:

v Starting and stopping messaging engines.

v Starting and stopping service integration bus links.

Displaying the runtime properties of a messaging engine
Display the runtime properties of a messaging engine by using the administrative console.

Before you begin

To be able to retrieve the status of messaging engines, you must be logged into the administrative console
with at least monitor authority. If you do not have this authority, the messaging engine status is displayed
as "Unavailable", even if the messaging engine has started. Also, if you are not logged in with the authority
needed to retrieve the status of messaging engines, a SECJ0305I error message is logged in the server
SystemOut.log file.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

About this task

To display the runtime properties of a messaging engine, use the administrative console to complete the
following steps.

Procedure
1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the bus to which your messaging engine belongs.

3. In the content pane, under Topology, click Messaging engines. A list of messaging engines is
displayed.

2024 Administering WebSphere applications



4. Click the messaging engine name.

5. Click the Runtime tab. The status of the messaging engine, that is, whether it is currently started or
stopped is displayed.

Displaying the runtime properties of a service integration bus link
Display the runtime properties of a service integration bus link by using the administrative console.

About this task

To display the runtime properties of a service integration bus link, use the administrative console to
complete the following steps:

Procedure
1. Display the list of messaging engines.

2. In the content pane, select the messaging engine that contains the service integration bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link whose properties you want to display.

5. Click the Runtime tab. The following properties are displayed:

Status
The runtime status of the service integration bus link.

Activity
Whether the service integration bus link is currently inactive, active, or its activity is unknown.

Managing messages on message points
Use these tasks to list and act on runtime messages that exist on message points in a service integration
bus.

About this task

You can list the message points for bus destinations and messaging engines, and list the messages on a
selected message point. You can use the list of messages as part of a troubleshooting task to find
messages that need to be deleted.

Procedure
v “Listing messages on a message point” on page 567

v “Deleting messages on a message point” on page 567

Managing service integration buses with administrative commands
You can use these commands to manage service integration buses.

About this task

These commands provide an alternative to using the administrative console or using the more complex
syntax of wsadmin and Jython.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Procedure
1. Open a wsadmin command session in local mode For example:

wsadmin -conntype none -lang jython

Chapter 20. Welcome to administering Service integration 2025



2. Type AdminTask.command, where command is the command format as indicated in the related reference
topics.

For example:
wsadmin>AdminTask.listSIBusMembers(’[-bus bus1 ]’)
[cells/cell01/buses/bus1|sib-bus.xml#SIBusMember_1092155259869]
[cells/cell01/buses/bus1|sib-bus.xml#SIBusMember_1092159844593]
[cells/cell01/buses/bus1|sib-bus.xml#SIBusMember_1092160253751]

wsadmin>AdminTask.listSIBEngines(’[-bus bus1 ]’)
’node01.server1-bus1(cells/cell01/nodes/node01/servers/server1|sib-engines.xml#
SIBMessagingEngine_1212163145962)\r\n
node02.server2-bus2(cells/cell01/nodes/node02/servers/server2|sib-engines.xml#
SIBMessagingEngine_1212163146273)’

Administering messaging engines
These topics provide information about messaging engines, which provide the processing function on a
service integration bus.

Procedure
v “Configuring messaging engines” on page 1979

v “Starting a messaging engine” on page 2033

v “Stopping a messaging engine” on page 2034

v “Displaying the runtime properties of a messaging engine” on page 2024

v “Displaying the runtime properties of a service integration bus link” on page 2025

v “Managing messaging engines with administrative commands” on page 2036

Configuring messaging engines
You can configure messaging engines in a variety of ways. For example, you can create and apply
security to a messaging engine, then use this engine to send and receive messages. When you add a
server cluster to a service integration bus, at least one messaging engine is created automatically. If you
also use messaging engine policy assistance, some configuration properties are set automatically.

Configuring messaging engine properties
You can configure the properties of a messaging engine in the administrative console. For example you
can select whether the messaging engine is started automatically when its associated application server is
started, how many messages it can process, and target groups that the engine can join.

About this task

In most cases, you can configure the properties of a messaging engine without interrupting the processing
of messages by the messaging engine.

Procedure
1. Start the administrative console.

2. Navigate to Service integration -> Buses -> bus_name -> [Topology] Messaging engines ->
engine_name.

3. Configure the messaging engine properties. For information about the properties that you can
configure, see the property descriptions in “Messaging engines [Settings]” on page 2215

4. Click OK.

5. Save your changes to the master configuration.

Listing the messaging engines in a bus
You can view the list of existing messaging engines in a bus by using the administrative console. You can
decide which messaging engines you want to change, for example which buses they are associated with.

2026 Administering WebSphere applications



About this task

To list the messaging engines in a bus, use the administrative console to complete the following steps.

Procedure
1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the bus that your messaging engine belongs to.

3. In the content pane, under Topology, click Messaging engines. The list of messaging engines in the
bus is displayed.

Removing a messaging engine from a bus
You can remove a messaging engine from a service integration bus if you no longer require it to send and
receive messages on the bus.

Before you begin

You should be wary of deleting and recreating messaging engines on bus members for which
WS-Notification-administered subscribers have been configured, because in some cases this can leave the
remote web service subscription active (and passing notification messages to the local server) even
though there is no longer any record of it. For more information, see the WS-Notification troubleshooting
tip Problems can occur when deleting administered subscribers and messaging engines.

Procedure
1. Stop the messaging engine. You can stop either in Immediate or Force mode, as described in

“Stopping a messaging engine” on page 2034.

2. Use the wsadmin command deleteSIBEngine to delete the messaging engine. All service integration
bus links, MQ links, and custom properties that are owned by the engine are deleted.

Note: When you remove a messaging engine, WebSphere Application Server does not delete the data
store tables automatically. You must remove them manually, or delete all the rows in all the
tables. If you do this, a new messaging engine might fail to start if it attempts to use an
orphaned data store. Refer to the documentation for your chosen relational database
management system for information about deleting tables.

Alternatively, for Apache Derby, you can delete the database directory, which is located in
profile_root/databases/com.ibm.ws.sib, where profile_root is the directory in which
profile-specific information is stored. However, do this only if the messaging engine is the sole
user of the database.

For more information, see Data store life cycle.

Similarly, the file store files are not automatically deleted when you delete the messaging
engine. You might want to delete the file store files to reclaim disk space.

Listing the messaging engines defined for a server bus member
You can display a list of messaging engines defined for a server bus member by using the administrative
console. You can decide which messaging engines you want to change, for example, which buses they
are associated with.

About this task

To display the list of messaging engines, use the administrative console to complete the following steps:

Chapter 20. Welcome to administering Service integration 2027



Procedure
1. In the navigation pane, click either Service integration -> Buses -> bus_name -> [Topology]

Messaging engines or Servers -> Server Types -> WebSphere application servers ->
server_name -> [Server messaging] Messaging engines. A list of messaging engines is displayed in
the content pane.

2. Optional: Select one or more messaging engines to work with, for example to change the properties of
the messaging engine.

Creating the database, schema and user ID for a messaging engine
Before the data store for a messaging engine can be set up, you must first create the database, the
schema and the database user ID that the messaging engine needs to access the data store tables.

Before you begin

Before you start this task, review the information in Configuration planning for a messaging engine to use
a data store, and ensure that you have taken any appropriate action.

About this task

To create the database, schema and user ID for a messaging engine, complete the following steps.

Procedure
1. Create the database for the data store.

2. Create users and schemas in the database. Ensure that the user ID has sufficient privilege to allow the
messaging engine to access the data store tables. For more information about the privileges that are
required for the selected database, see “Database privileges” on page 2051.

3. If required, create the data store tables by using the data definition language (DDL) statements
generated by using the sibDDLGenerator command.

Configuring a messaging engine data store to use a data source:

After configuring a JDBC data source, you can configure a messaging engine data store to use the data
source.

Before you begin

To complete this task, you must have chosen or created a bus and a messaging engine, and the
messaging engine must specify data store as its message store type.

You must also have configured a data source, as described in “Creating the database, schema and user
ID for a messaging engine” on page 1981.

About this task

A messaging engine uses an instance of a JDBC data source to interact with the database that contains
the data store for that messaging engine.

Use the WebSphere Application Server administrative console to set the data store configuration
parameters.

Procedure

1. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging
engines -> engine_name.

2. Check that the Message store type is Data store.

2028 Administering WebSphere applications



3. Click [Additional Properties] Message store. The data store configuration detail panel is displayed.

4. Specify the following data store configuration details:

Data source JNDI name
Type the JNDI name of the data source that provides access to database that holds the data
store.

Schema name
Type the name of the database schema that contains the tables used by the data store.

General tip: The schema name is usually the same as the user ID that is declared in the
authentication alias. With some databases, for example DB2, you can provide an
alternative schema name. For more information about the relationship between
users and schema, refer to the documentation for your chosen RDBMS.

Informix tip: When you configure your messaging engine to use an Informix database, you
must specify the schema name in lowercase letters.

When it is starting, a messaging engine that uses a data store checks to see if its data store
exists. If the Create tables option is selected for the configuration, the messaging engine
creates the tables in its chosen schema.

The Schema name field is optional. If you require a schema name, consider the following:

v The default schema name is IBMWSSIB.

v If you delete the text so that field is blank, the messaging engine takes the user id defined
in the authentication alias to be the schema name.

v If you define a schema name explicitly, that schema name is used by the messaging engine.

v If there are multiple messaging engines, you must configure each messaging engine to use
a unique schema, otherwise FFDC error messages stating that Connection cannot be
provided as Datasource has been disabled! might appear. This applies to DB2 in
particular.

Authentication alias
Select the authentication alias that enables access to the data source.

Apache Derby Tip: When you create a new Network Attached Apache Derby data
store, by default you get a blank authentication alias.

Create tables
Select the check box if you want WebSphere Application Server to create the database tables
automatically.

Note: The user ID that the messaging engine uses to connect to the data source must have
sufficient authority to create the database tables and indexes.

DB2 for z/OS restriction: Do not select Create tables if you are using DB2 for z/OS,
otherwise an exception will be thrown when WebSphere Application
Server attempts to create the tables.

Restrict long running locks

Note: This parameter specifies whether the active messaging engine must retain long running
locks on the SIBOWNER table in the database.

Select the check box to restrict the active messaging engine from retaining long running locks
on the SIBOWNER table in the database. When this option is selected, the messaging engine
establishes a lock over the database only for short durations. In the event of the active
messaging engine not responding to the database, the standby messaging engine will be able

Chapter 20. Welcome to administering Service integration 2029



to take ownership of the database because the active messaging engine holds only short
duration locks. This option also ensures that only one active messaging engine can access the
database at a given time.

Note: When the check box is selected and if the active messaging engine fails to
communicate with the database or respond to the database, all the current transactions
from the applications are ended and no new connections from the applications are
allowed to the messaging engine.

Number of tables for permanent objects
Permanent tables contain persistent objects for the data store.

Note: You can only increase the number of permanent tables, not decrease them.

Number of tables for temporary objects
Temporary tables contain nonpersistent objects that have been saved to the data store to
reduce the messaging engine memory requirement.

Note: You can only increase the number of temporary tables, not decrease them.

Configuring service integration bus links
You can configure service integration bus links on messaging engines in a variety of ways. For example,
you can start, stop, or remove links.

About this task

When you create a foreign bus connection to connect two service integration buses, a service integration
bus link is created automatically. The foreign bus connection contains a routing definition, which is a virtual
link, and the service integration bus link is the corresponding physical link on the messaging engine.

Configuring the properties of a service integration bus link:

After establishing a service integration bus link you might want to configure the properties of a service
integration bus link such as the name of the service integration bus link, or authentication alias used by
foreign bus that the link connects to.

About this task

To configure the properties of a service integration bus link, use the administrative console to complete the
following steps:

Procedure

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine for which you want to configure the service
integration bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link that you want to configure.

5. Specify the following properties for the service integration bus link:

Name The name of the service integration bus link. In order to work, the name must be the same as
the name of the corresponding service integration bus link configured on the target foreign bus.

Description
An optional description for the service integration bus link, for administrative purposes.

2030 Administering WebSphere applications



UUID The universal unique identifier assigned by the system to the service integration bus link for
administrative purposes.

Foreign messaging engine
The messaging engine on the foreign bus to which this link connects.

Note: This foreign bus name must not be altered after it has been configured. If you alter it,
any messaging engines that already hold state information on the link will not be able to
use the link unless the foreign bus name is reset to its original value.

Target inbound transport chain
The type of transport chain used for communication with the foreign bus. The transport chain
name must be the name of the transport chain as defined on the server on which the target
messaging engine is hosted.

Bootstrap endpoints
The comma-separated list of endpoints used to connect to a bootstrap server. This property is
set in the same way as the Provider endpoint property in the JMS connection factory settings.
For more information, see the steps relating to setting bootstrap endpoints in “Configuring a
connection to a non-default bootstrap server” on page 511.

Note: Service integration bus links over BootstrapTunneledMessaging and
BootstrapTunneledSecureMessaging transport chains only work directly between
application server instances. Bus links over TunneledMessaging transport chains do not
work if an HTTP server is placed in front of either application server instance.

Authentication alias
The name of the authentication alias, used to authenticate access to the foreign bus. The alias
must be known to the foreign bus.

Initial state
Whether the link is started automatically when the messaging engine is started. Until started,
the gateway link is unavailable. If this property is set to Started the service integration bus link
is started when the messaging engine is started.

6. Click OK.

7. Save your changes to the master configuration.

Listing the service integration bus links:

You can list all the service integration bus links that are linked to a messaging engine.

About this task

To list the service integration bus links for a messaging engine, use the administrative console to complete
the following steps:

Procedure

1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the bus that your messaging engine belongs to.

3. In the content pane, under Additional properties, click Messaging engines. The list of messaging
engines in the bus is displayed.

4. In the content pane, select the messaging engine for which you want to list the service integration bus
links.

5. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

Chapter 20. Welcome to administering Service integration 2031



Example

The following combinations of Status and Activity values are possible:

Table 213. Results of possible status and activity values. The first and second columns of the table provide the
possible combinations of status and activity values, and the third column explains the possible connection status of
the local and foreign buses.

Status Activity Meaning

started inactive The service integration bus link is started on the local
messaging engine but has no connection to the foreign bus.
The service integration bus link is attempting to activate a
connection to the foreign bus. The service integration bus link
on the foreign bus must also be started to successfully
activate of a connection between the buses.

started active The service integration bus link is started on the local
messaging engine and has an active connection to the foreign
bus.

stopped inactive The service integration bus link is stopped on the local
messaging engine and there is no connection to the foreign
bus.

unknown inactive An error might have occurred in setting up the link, such that
the object that is used to report the current state is not
available.

What to do next

You can now add or remove a service integration bus link or select a service integration bus link to start,
stop, or configure.

Starting a service integration bus link:

When a service integration bus link has been started, it can be used for communicating with its associated
messaging engines.

About this task

To start a service integration bus link, use the administrative console to complete the following steps:

Procedure

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine for which you want to start the service integration
bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link that you want to start.

5. Click Start.

Stopping a service integration bus link:

When a service integration bus link has been stopped, it cannot be used for communication until it is
restarted.

About this task

To stop a service integration bus link, use the administrative console to complete the following steps:

2032 Administering WebSphere applications



Procedure

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine to which the service integration bus link that you
want to stop belongs.

3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link that you want to stop.

5. Click Stop.

Removing a service integration bus link:

When a service integration bus link to a messaging engine has been removed, it cannot be used for
communication until it is recreated.

Before you begin

Before you remove the service integration bus link you must stop the link.

When you remove a service integration bus link, all traffic that uses the link needs to be dealt with in a
similar way to when you remove a destination. For further details, see “Deleting a non-topic space bus
destination” on page 2080. Note that express Quality of Service (QoS) messages are discarded.

About this task

To remove a service integration bus link from a messaging engine, use the administrative console to
complete the following steps:

Procedure

1. Display the list of messaging engines.

2. In the content pane, select the messaging engine that is associated with the service integration bus
link that you want to remove.

3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link that you want to remove.

5. Click Delete.

6. Save your changes to the master configuration.

What to do next

When you remove a service integration bus link, all traffic that uses the link must be diverted by alternative
routes or held pending further administrative action. Express QoS messages are discarded.

Starting a messaging engine
You can either start a messaging engine directly by using the administrative console or by starting the
server that hosts the messaging engine.

About this task

To start a messaging engine, use the administrative console to complete the following steps.

Chapter 20. Welcome to administering Service integration 2033



Procedure
1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the bus that your messaging engine belongs to.

3. Do one of the following to display a list of messaging engines:

v For a list of messaging engines in the bus, in the content pane, under Topology, click Messaging
engines.

v For a list of messaging engines for a server, in the content pane, under Topology, click Bus
Members. Click the name of the required server.

v For a list of messaging engines for a cluster, in the content pane, under Topology, click Bus
Members. Click the name of the required cluster.

4. Select the messaging engine that you want to start.

5. Click Start.

Stopping a messaging engine
You can either stop a messaging engine directly or stop it by stopping the server that hosts the messaging
engine.

About this task

A messaging engine can stop in two ways:

Immediate
The messaging engine is stopped on completion of all messaging operations that are being carried
out at the time of the stop request.

Force The messaging engine is stopped without allowing messaging operations to complete and
applications are forcefully disconnected.

To stop a messaging engine, use the administrative console to complete the following steps.

Procedure
1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the bus that the messaging engine belongs to.

3. Do one of the following to display a list of messaging engines:

v For a list of messaging engines in the bus, in the content pane, under Topology, click Messaging
engines.

v For a list of messaging engines for a server, in the content pane, under Topology, click Bus
Members. Click the name of the required server.

v For a list of messaging engines for a cluster, in the content pane, under Topology, click Bus
Members. Click the name of the required cluster.

4. Select the messaging engine that you want to stop.

5. Select Immediate or Force from the Stop mode drop-down list.

6. Click Stop.

What to do next

Tip: If an immediate stop is taking too long, you can escalate it to a force stop by selecting the Force
option. This overrides your previous selection of the Immediate option.

Displaying the runtime properties of a messaging engine
Display the runtime properties of a messaging engine by using the administrative console.

2034 Administering WebSphere applications



Before you begin

To be able to retrieve the status of messaging engines, you must be logged into the administrative console
with at least monitor authority. If you do not have this authority, the messaging engine status is displayed
as "Unavailable", even if the messaging engine has started. Also, if you are not logged in with the authority
needed to retrieve the status of messaging engines, a SECJ0305I error message is logged in the server
SystemOut.log file.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

About this task

To display the runtime properties of a messaging engine, use the administrative console to complete the
following steps.

Procedure
1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the bus to which your messaging engine belongs.

3. In the content pane, under Topology, click Messaging engines. A list of messaging engines is
displayed.

4. Click the messaging engine name.

5. Click the Runtime tab. The status of the messaging engine, that is, whether it is currently started or
stopped is displayed.

Displaying the runtime properties of a service integration bus link
Display the runtime properties of a service integration bus link by using the administrative console.

About this task

To display the runtime properties of a service integration bus link, use the administrative console to
complete the following steps:

Procedure
1. Display the list of messaging engines.

2. In the content pane, select the messaging engine that contains the service integration bus link.

3. In the content pane, under Additional properties, click Service integration bus links. A list of
service integration bus links is displayed.

4. Select the service integration bus link whose properties you want to display.

5. Click the Runtime tab. The following properties are displayed:

Status
The runtime status of the service integration bus link.

Activity
Whether the service integration bus link is currently inactive, active, or its activity is unknown.

Chapter 20. Welcome to administering Service integration 2035



Managing messaging engines with administrative commands
You can use these commands to manage messaging engines.

About this task

These commands provide an alternative to using the administrative console or using the more complex
syntax of wsadmin and Jython.

Procedure
1. Open a wsadmin command session in local mode. For example:
wsadmin -conntype none -lang jython

The wsadmin scripting client is run from Qshell. For more information, see Configuring
Qshell to run WebSphere scripts using wsadmin scripting.

2. Type AdminTask.command, where command is the command format as indicated in the related reference
topics.

For example:
wsadmin>AdminTask.listSIBusMembers(’[-bus bus1 ]’)
[cells/cell01/buses/bus1|sib-bus.xml#SIBusMember_1092155259869]
[cells/cell01/buses/bus1|sib-bus.xml#SIBusMember_1092159844593]
[cells/cell01/buses/bus1|sib-bus.xml#SIBusMember_1092160253751]

wsadmin>AdminTask.listSIBEngines(’[-bus bus1 ]’)
’node01.server1-bus1(cells/cell01/nodes/node01/servers/server1|sib-engines.xml#
SIBMessagingEngine_1212163145962)\r\n
node02.server2-bus2(cells/cell01/nodes/node02/servers/server2|sib-engines.xml#
SIBMessagingEngine_1212163146273)’

Administering message stores
A message store enables a messaging engine to preserve operating information and to retain those
objects that messaging engines need for recovery in the event of a failure. The default message store for
a typical messaging engine is file store. You can also configure a messaging engine to use a data store.

Procedure
v “Administering file stores”

v “Administering data stores” on page 2040

v “Avoiding message store errors when creating a messaging engine” on page 2052

v “Avoiding errors when creating a messaging engine with a file store or a data store by using the
wsadmin tool” on page 2053

Administering file stores
A file store is a type of message store that directly uses files in the file system through the operating
system. Each messaging engine has one and only one file store.

Configuring file store attributes for a messaging engine
When a messaging engine is created, it uses a file store by default. You can configure the file store
attributes according to your requirements.

About this task

You set up a messaging engine to use a file store by accepting the default choice of message store when
you are creating a bus and adding a new bus member. You can choose either to accept the default
settings that the administrative console displays, or to make changes to these settings. After the file store
has been created, you can, if required, then make changes to the file store settings.

Modifying file store configuration:

2036 Administering WebSphere applications



After a file store has been created, you can, if required, modify file store attributes.

About this task

When you add a new bus member that uses a file store, you can choose either to accept the default
settings for the file store or make changes to these settings, depending on your requirements.

After the file store has been created, you can, if required, subsequently modify the log size, permanent
store size, or temporary store size settings directly through the administrative console. The new values
take effect the next time the messaging engine is started.

The directory paths for the file store are fixed when the file store is created, and cannot subsequently be
modified. You can create a new file store in a new location. To do this you remove the server or cluster as
a bus member and then add it again choosing a new location for the file store. Any messages remaining in
the original file store would be lost during this process.

Note: The default configuration for a file store is intended to be sufficient when used in typical messaging
workloads. To improve the performance or resilience of the log file, the permanent store file, or the
temporary store file, you can modify the file store attributes to control where these files are placed.
For example, you can achieve better performance if you place these three file store files on a faster
disk. Similarly, you can control the sizes of the log file, the permanent store file, and the temporary
store file so that they can handle workloads with a large number of active transactions, large
messages, or a large volume of message data resident in the messaging engine.

Procedure

v To make changes to the log size, permanent store size or temporary store size, complete the following
steps:

1. Open the Administrative console.

2. Click Service integration -> Buses -> bus_name -> [Topology] Messaging engines ->
engine_name -> [Additional Properties] Message store.

3. Make the changes that you require to the existing log size, permanent store size, or temporary store
settings, then click OK. For more information about configuring the properties, see “File store
[Settings]” on page 2142

4. Save your changes to the master configuration.

v To choose a new location for a file store, complete the following steps:

1. To avoid losing messages on destinations that are localized on the file store, first ensure that no
messages are left on the queues.

2. Remove the server or cluster as a member of the bus.

3. Add the server and cluster as a bus member again, choosing a new location for the file store.

Selecting messaging engine behavior when a file store is full:

You can specify what action a messaging engine takes when a file store is full and applications try to send
further messages. You can make application threads wait for the checkpoint to complete, or throw an
exception immediately.

About this task

When a file store is full, the messaging engine carries out a checkpoint of the log file to reconcile all
message sends and receives since the last checkpoint. This process might take some time to complete.
Between the time when the file store becomes full and the time when the checkpoint is complete, if
applications try to send a message, the messaging engine throws the exception ObjectStoreFullException
and issues message CWSOM1042E.

Chapter 20. Welcome to administering Service integration 2037



When an application thread that is sending a message finds that the file store is full, it requests a
checkpoint. The default behavior is that the application thread then throws the exception
ObjectStoreFullException to the application immediately. You can select an alternative behavior where the
application thread does not throw the exception, but waits until the checkpoint has completed. If the
checkpoint frees space in the file store, the application thread proceeds and sends the messages before
returning. If the file store is still full after the checkpoint, the application thread throws the exception to the
application.

Choose to make application threads wait if your applications delete all the messages in the file store, and
so they logically know that the file store is no longer full. Although the applications must still wait until the
checkpoint is complete, they do not receive exceptions while the checkpoint is being carried out, and they
do not have to retry the send.

To change the behavior when the file store is full, use the administrative console to set the value of the
property sib.msgstore.storeFullWaitForCheckPoint as follows:

Procedure

1. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging
engines -> engine_name -> [Additional Properties] Custom properties.

2. Type the name of the property, sib.msgstore.storeFullWaitForCheckPoint.

3. Type the value true to make application threads wait for the checkpoint to complete before returning.
The default value false makes application threads throw the exception ObjectStoreFullException
immediately after requesting the checkpoint.

4. Click OK.

5. Save your changes to the master configuration.

What to do next

Remember: When you change this property, the new value does not take effect until you restart the
messaging engine.

Deleting files following removal of a messaging engine:

Removing a messaging engine from the configuration does not automatically delete the file store files. You
must also find and delete the log file, the permanent store file, and the temporary store file from the disk to
reclaim disk space.

About this task

Files comprising a file store still remain when the messaging engine is deleted. If you are using the default
values for the file store directory names, you can delete and then re-create a messaging engine with the
same name without manually removing the files. This is due to the presence of the universal unique
identifier (UUID) of the messaging engine in the default log and store directory names of a file store.

For example, if the deleted messaging engine is called messagingengine0, and the new one is called
messagingengine1, then the log file in the old file store is:

C:\{USER_INSTALL_ROOT}\filestores\..\messagingengine0\..\logfile

The log file in the new files store is:

C:\{USER_INSTALL_ROOT}\filestores\..\messagingengine1\..\logfile

The two log files coexist in the same file stores directory. You do not have to delete the old files.

2038 Administering WebSphere applications



Procedure

1. Locate the directory in which your old file store log files and store files are stored.

2. Delete the redundant files by using the facilities of the operating systems.

Results

After deleting the files left by the redundant file store, free disk space becomes available to your file
system.

Backing up and restoring a messaging engine file store
A file store is a type of message store that directly uses files in a file system through the operating system.
Therefore, administration of the file store depends on the type of operating system.

Procedure
v “Backing up a file store”

v “Restoring a file store”

Backing up a file store:

You can back up the files in a file store by using the facilities of your operating system, or by using a
backup tool.

About this task

A file store is a type of message store that directly uses files in a file system through the operating system.
Use the facilities of your operating system or a backup tool to back up the log file, the permanent store
file, and the temporary store file, which comprise a file store. For more information about these files, see
Hints and tips for configuring file store size.

Important: If you start backing up files while the messaging engine is still running, data might be
corrupted.

Note: You must treat the log file, the temporary store file, and the permanent store file as one unit; that is,
any operations must be performed on all three files.

Restoring a file store:

You can restore the files in a file store by using the facilities of your operating system, or you can restore
the backup copies of your files by using a backup tool.

Before you begin

Before you start this task, make sure that the messaging engine is not running.

Important: If you restore a file store while the messaging engine is still running, data might be corrupted.

About this task

When you complete this task, you must treat the log file, the temporary store file, and the permanent store
file (which together comprise a file store) as one unit; that is, any operations must be performed on all
three files. For more information about these files, see Hints and tips for configuring file store size.

Chapter 20. Welcome to administering Service integration 2039



Procedure

Use the facilities of your operating system, or a backup tool, to restore the backup copy of the log file, the
permanent store file, and the temporary store file.

Administering data stores
A data store is a type of message store that uses a relational database. A data store consists of a set of
tables that are in the same database schema. It is used by a messaging engine to store operating
information in the database, as well as to preserve essential objects that the messaging engine needs for
recovery in the event of a failure.

About this task

A data store consists of the set of tables that a messaging engine uses to store persistent data in a
database. See “Data store tables” on page 2050 for a list of the tables that comprise a data store. All the
tables in a data store are held in the same database schema. You can create multiple data stores in the
same database, provided that you use a different schema name for each data store.

Configuring a messaging engine to use a data store
Although the default message store for a typical messaging engine is file store, you can also configure a
messaging engine to use a data store.

About this task

Each messaging engine has its own file store or data store. If the data store is chosen the messaging
engine uses an instance of a JDBC data source to interact with the database that contains the data store
for that messaging engine.

When a new messaging engine that uses a data store is created on a single server, it is configured to use
an Apache Derby data source by default. This enables the messaging engine to run without needing any
additional configuration.

If you want to configure a new messaging engine to use your chosen data source when you create that
messaging engine on a single server, see “Adding a server as a new bus member” on page 1971.

If you do not want to use the default data source configuration, you can use the WebSphere Application
Server administrative console to change the configuration parameters. For example, you can change the
data source or you can configure the data store to use a different JDBC provider.

Note: WebSphere Application Server supports direct customer use of the Apache Derby database in test
environments only. The product does not support direct customer use of Apache Derby database in
production environments.

Creating the database, schema and user ID for a messaging engine:

Before the data store for a messaging engine can be set up, you must first create the database, the
schema and the database user ID that the messaging engine needs to access the data store tables.

Before you begin

Before you start this task, review the information in Configuration planning for a messaging engine to use
a data store, and ensure that you have taken any appropriate action.

About this task

To create the database, schema and user ID for a messaging engine, complete the following steps.

2040 Administering WebSphere applications



Procedure

1. Create the database for the data store.

2. Create users and schemas in the database. Ensure that the user ID has sufficient privilege to allow the
messaging engine to access the data store tables. For more information about the privileges that are
required for the selected database, see “Database privileges” on page 2051.

3. If required, create the data store tables by using the data definition language (DDL) statements
generated by using the sibDDLGenerator command.

Creating the database for a data store:

When you are creating a database to use as the data store for your messaging engine, you must choose
a relational database management system (RDBMS) and create the database in accordance with your
selected RDBMS.

Before you begin

Choose which Relational Database Management System (RDBMS) you want to use for the data store.
Unless you are using the embedded Apache Derby provider, create the database before you create a
messaging engine. Make a note of the database parameters that you need for configuring the data source.
For more information, see “Configuring a JDBC data source for a messaging engine” on page 2043.

Procedure

Refer to the documentation for your chosen RDBMS for information about how to create a database.
The default database for a data store is an embedded Apache Derby database. If you have chosen to
configure the bus member to use a data store with default settings, it can only be a server. Unless the
data store database exists already, the messaging engine creates the database automatically when the
messaging engine makes its initial connection.

Sybase tips:

v Ensure that you create the database server with a page size of at least 4 KB.

v Ensure that you set the lock scheme property on your server to the value datarows. This
avoids the possibility of a deadlock on the data store tables.

v Ensure that you set the enable housekeeper GC property on your server to the value 5.
This improves the ability of the server to reclaim redundant space within your database
when it is under heavy load.

v Ensure that you select the allow nulls by default option for your database instance.
This is required for the correct operation of the messaging engine.

Informix tip: The one-to-one relationship between a messaging engine and a data store means that
every messaging engine must have its own database tables. If you are using the Informix
RDBMS, configure a separate database instance for each messaging engine. Problems
have been observed in this environment when the data stores for multiple messaging
engines were configured to use separate schemas in the same database.

Creating users and schemas in the database:

After you have created a database, you create the schema in which all tables in the data store are held.
Depending on which database you are using, you create one or more database user IDs to enable the
messaging engine to access the data store tables.

Before you begin

Before you begin this task, you must first create the database for your messaging engine.

Chapter 20. Welcome to administering Service integration 2041



About this task

All the tables in the data store must be stored in the same schema. You can create more than one data
store in a database, provided that you use a different schema name for each data store. Although every
messaging engine uses the same table names, its relationship with the schema gives each messaging
engine exclusive use of its own tables.

To connect to WebSphere Application Server, you must create at least one messaging engine user ID. The
number of user IDs you need depends on the database you use:

v If you are using Derby, DB2, or Oracle, the messaging engine can be configured to create any
additional schemas that might be required for other data stores. That is, if you only create one user, it
can have one to many relationships with the schemas in the database. See “Configuring a messaging
engine data store to use a data source” on page 1981 for details.

v For all other types of databases, the schemas must be created before starting the messaging engines
that depend on them.

If a database user ID can be configured to use multiple schemas, then only that user ID is needed for all
messaging engines. Otherwise the user ID is restricted to using tables in its own schema. In this case
there can be only one user ID per schema.

Procedure

1. Create the users and schema in accordance with the documentation for your chosen relational
database management system (RDBMS). With DB2 databases, you create users and schema in
separate steps. With the other databases, there is a one-to-one relationship between a schema and a
user.

2. Ensure that the messaging engine user ID has the privileges required to enable the messaging engine
to access the data store tables and, if required, create the data store tables automatically. See
“Database privileges” on page 2051.

Creating data store tables:

When you create the data store tables, you have two options. You can either choose that WebSphere
Application Server does it automatically, or that the database administrator does it manually.

Before you begin

Before you begin this task, decide whether you want WebSphere Application Server to create the tables
automatically, or whether you want your database administrator to create the tables.

DB2 for z/OS restriction: The option for WebSphere Application Server to create the tables is not
available with DB2 for z/OS. Refer to “Generating the DDL statements needed
to create or alter data store tables” on page 2043 if you use DB2 for z/OS.

Procedure

v If you want WebSphere Application Server to create the tables, complete the following steps:

1. Ensure that WebSphere Application Server has sufficient authority to create tables and indexes. For
more information about the privileges required for your chosen database, see “Database privileges”
on page 2051.

2. When you configure your messaging engine data store, ensure that the Create tables option is
selected so that the messaging engine creates the tables in its chosen schema. For more
information, see “Configuring a messaging engine data store to use a data source” on page 1981.

DB2 for z/OS restriction: Do not select Create tables, otherwise an exception will be thrown when
WebSphere Application Server attempts to create the tables.

2042 Administering WebSphere applications



v If you want your database administrator to create the database tables manually, use the
sibDDLGenerator command to generate the DDL statements that the database administrator needs to
create the tables for the messaging engine data store. For further information, see “Generating the DDL
statements needed to create or alter data store tables.”

Generating the DDL statements needed to create or alter data store tables:

To enable your database administrator to create or alter the data store tables manually, you must generate
data definition language (DDL) statements.

Before you begin

Before you start this task, review the information in Configuration planning for a messaging engine to use
a data store, and ensure that your database administrator has taken any appropriate action.

About this task

Use the sibDDLGenerator command to generate the DDL statements that the database administrator
needs to create the tables for the messaging engine data store. Use the sibDBUpgrade command to
generate the DDL statements that the database administrator needs to alter the tables for the messaging
engine data store.

Procedure

1. At a command prompt, issue the sibDDLGenerator to create or sibDBUpgrade command to alter the
data store tables and redirect the output to a file. For information on these command-line utilities, refer
to “sibDDLGenerator command” on page 2524 and “sibDBUpgrade command” on page 2528.

Important: If you want to process the DDL statements with a command line processor that requires
the statements to conform to a specific format, use the optional parameters that control the
format of the DDL statements. For example, if each statement must end with a semicolon,
use -statementend ;

To access the IBM i command line, or run an IBM i command line program, use the
STRQSH command to start a Qshell session. For more information, see Configuring Qshell to run
WebSphere scripts using wsadmin scripting.

2. Send the output file to your database administrator to process the DDL statements that are generated.
The DDL statements can be ported across operating systems, for example, you can generate the DDL
statements on a machine running the Windows operating system and then run them on a machine
running the z/OS operating system.

Attention:

v Your database administrator can modify the DDL statements, but must not modify the table names
or the column names in any way because doing so might prevent the messaging engine from
starting.

v If the DDL statements are to be run on the z/OS operating system, your database administrator
must change the VCAT name in the first line of the DDL statements (the create storage group
statement) to a valid high-level qualifier for their system.

Configuring a JDBC data source for a messaging engine:

If you are using a data store for a messaging engine, the messaging engine uses an instance of JDBC
data source to interact with the database containing the data store.

Before you begin

Restriction: When you are configuring a service integration bus member to use a data store, be aware
that using a type 2 JDBC driver for the data store is not supported for configurations where

Chapter 20. Welcome to administering Service integration 2043



WebSphere MQ server definitions are also used. If your configuration includes WebSphere
MQ server definitions and you are using a data store, you must use type 4 JDBC drivers.

Apache Derby Tip: When you create a new Network Attached Apache Derby data store, by
default you get a blank authentication alias.

Oracle Tip: Use the Oracle 10g thin driver for the service integration data store. This driver is compatible
with earlier versions of Oracle.

About this task

Each messaging engine has its own file store or data store. If the data store is chosen the messaging
engine uses an instance of a JDBC data source to interact with the database that contains the data store
for that messaging engine.

Use the administrative console to set the data source configuration parameters. Note that your choice of
relational database management system (RDBMS) determines the parameters you set.

Procedure

1. Create a JDBC provider. See “Configuring a JDBC provider using the administrative console” on page
250. Under General Properties, in the Select the implementation type field, ensure that you select
Connection pool data source.

For information about the settings for your chosen RDBMS, see “Data source minimum required
settings, by vendor” on page 230.

2. Create a data source for the JDBC provider. Refer to “Configuring a data source using the
administrative console” on page 257.

a. Under Additional Properties, ensure that you select Data sources.

b. Configure the connection pool for the JDBC data source. Set the Maximum connections to the
number of connections you require, for example, at least 50. The default number of connections is
10. For more information, see Tuning the JDBC data source of a messaging engine.

3. Test the connection by using the test connection service provided for validating data source
configurations See “Test connection service” on page 308.

Configuring a messaging engine data store to use a data source:

After configuring a JDBC data source, you can configure a messaging engine data store to use the data
source.

Before you begin

To complete this task, you must have chosen or created a bus and a messaging engine, and the
messaging engine must specify data store as its message store type.

You must also have configured a data source, as described in “Creating the database, schema and user
ID for a messaging engine” on page 1981.

About this task

A messaging engine uses an instance of a JDBC data source to interact with the database that contains
the data store for that messaging engine.

Use the WebSphere Application Server administrative console to set the data store configuration
parameters.

2044 Administering WebSphere applications



Procedure

1. In the navigation pane, click Service integration -> Buses -> bus_name -> [Topology] Messaging
engines -> engine_name.

2. Check that the Message store type is Data store.

3. Click [Additional Properties] Message store. The data store configuration detail panel is displayed.

4. Specify the following data store configuration details:

Data source JNDI name
Type the JNDI name of the data source that provides access to database that holds the data
store.

Schema name
Type the name of the database schema that contains the tables used by the data store.

General tip: The schema name is usually the same as the user ID that is declared in the
authentication alias. With some databases, for example DB2, you can provide an
alternative schema name. For more information about the relationship between
users and schema, refer to the documentation for your chosen RDBMS.

Informix tip: When you configure your messaging engine to use an Informix database, you
must specify the schema name in lowercase letters.

When it is starting, a messaging engine that uses a data store checks to see if its data store
exists. If the Create tables option is selected for the configuration, the messaging engine
creates the tables in its chosen schema.

The Schema name field is optional. If you require a schema name, consider the following:

v The default schema name is IBMWSSIB.

v If you delete the text so that field is blank, the messaging engine takes the user id defined
in the authentication alias to be the schema name.

v If you define a schema name explicitly, that schema name is used by the messaging engine.

v If there are multiple messaging engines, you must configure each messaging engine to use
a unique schema, otherwise FFDC error messages stating that Connection cannot be
provided as Datasource has been disabled! might appear. This applies to DB2 in
particular.

Authentication alias
Select the authentication alias that enables access to the data source.

Apache Derby Tip: When you create a new Network Attached Apache Derby data
store, by default you get a blank authentication alias.

Create tables
Select the check box if you want WebSphere Application Server to create the database tables
automatically.

Note: The user ID that the messaging engine uses to connect to the data source must have
sufficient authority to create the database tables and indexes.

DB2 for z/OS restriction: Do not select Create tables if you are using DB2 for z/OS,
otherwise an exception will be thrown when WebSphere Application
Server attempts to create the tables.

Restrict long running locks

Note: This parameter specifies whether the active messaging engine must retain long running
locks on the SIBOWNER table in the database.

Chapter 20. Welcome to administering Service integration 2045



Select the check box to restrict the active messaging engine from retaining long running locks
on the SIBOWNER table in the database. When this option is selected, the messaging engine
establishes a lock over the database only for short durations. In the event of the active
messaging engine not responding to the database, the standby messaging engine will be able
to take ownership of the database because the active messaging engine holds only short
duration locks. This option also ensures that only one active messaging engine can access the
database at a given time.

Note: When the check box is selected and if the active messaging engine fails to
communicate with the database or respond to the database, all the current transactions
from the applications are ended and no new connections from the applications are
allowed to the messaging engine.

Number of tables for permanent objects
Permanent tables contain persistent objects for the data store.

Note: You can only increase the number of permanent tables, not decrease them.

Number of tables for temporary objects
Temporary tables contain nonpersistent objects that have been saved to the data store to
reduce the messaging engine memory requirement.

Note: You can only increase the number of temporary tables, not decrease them.

Backing up and restoring a messaging engine data store
Administering the data store for a messaging engine includes restoring and backing up the data store.

Procedure
v “Backing up a data store”

v “Restoring a data store”

Backing up a data store:

Backing up a data store enables you to restore the data store from the backup if a failure occurs that
cannot be dealt with by the system.

About this task

To back up the tables that comprise a data store, refer to the documentation for your chosen database.

Note: If your relational database management system (RDBMS) is DB2, and it is being used as the
persistent data store, the backup process can use the suspended I/O feature of DB2. With other
databases that do not possess this capability, the backup might present a longer interruption to
service, or require that the messaging engine is stopped while the backup is made. If you attempt
to back up the data store for a messaging engine that is still running, you might lose or corrupt
important data.

Procedure

1. Unless your backup process uses the suspended I/O feature of DB2 stop the messaging engine.

2. Back up the data store in accordance with the documentation for your chosen database. Include the
tables described in “Data store tables” on page 2050.

Restoring a data store:

If a failure occurs that cannot be dealt with by the system, you can restore the data store from a backup, if
you are regularly backing up the data store tables.

2046 Administering WebSphere applications



About this task

To restore the tables that comprise a data store, refer to the documentation for your chosen database.

Note: You must stop the messaging engine before restoring the data store. If you attempt to restore the
data store for a messaging engine that is still running, you might lose or corrupt important data.

Procedure

Restore the data store in accordance with the documentation for your chosen database. Include the tables
described in “Data store tables” on page 2050.

Emptying the data store for a messaging engine
By emptying the data store of a messaging engine, you can discard persistent operating information
without deleting the messaging engine.

About this task

Persistent operating information for a messaging engine is stored as persistent messages and associated
information about message delivery and transmission. To discard this information without deleting the
messaging engine and its destinations from the WebSphere Application Server configuration, you empty
the messaging engine data store.

CAUTION:

v When you empty the data store, all of the persistent messages that were held are lost and any
destinations that you created continue to exist.

v Be very careful to completely empty the data store. You get unpredictable behavior if the data
store is only partially emptied.

Procedure
1. Ensure that the messaging engine and application server are stopped.

2. Empty the data store. There are several ways to achieve this:

a. If you are using the embedded Derby database (as the default data store does) and the database
contains just the tables for the messaging engine data store, delete the files that the database
uses. This deletes the database. When the messaging engine is next started, it creates an empty
database to replace it.

Important: If you are using the same database for application data, you must instead empty the
data store tables as described for any other RDBMS in a subsequent step.

1) Find the database data directory in your file system. The name of the directory that contains
the files used by the database is the same as the name of the database in the configuration of
the JDBC data source used by the messaging engine data store. By default, this is
${USER_INSTALL_ROOT}/profiles/dmgr/databases/com.ibm.ws.sib/messagingEngineName

2) Delete the directory. If you have configured a separate log directory for your Derby database,
delete this too. If you find that you cannot delete the files, confirm that the application server is
also stopped (if you stop the messaging engine but not the application server, you cannot
delete the files).

b. If you are using the Derby Network Server database, use a similar procedure but also stop Derby
Network Server before you delete the files. You must restart Derby Network Server before starting
the messaging engine.

c. If you are using any other RDBMS, empty the data store tables by using the administration tools of
your RDBMS. You can either remove all data from the tables, or drop and recreate the tables.

Chapter 20. Welcome to administering Service integration 2047



Most RDBMS support the TRUNCATE TABLE statement that removes all data from the tables. This is
the preferred way of emptying the data store tables because it leaves the tables and their
authorizations intact.

If you RDBMS does not support the TRUNCATE TABLE statement (for example, DB2 does not), you
can use the DELETE statement to delete all of the rows from all of the tables. However, if the tables
contain a lot of data, this might not be practical because of resource limitations in the RDBMS. In
this case, drop the tables and recreate them with the required indices and authorities.

Tip: If you have enabled WebSphere Application Server to create the data store tables, you can
drop the tables by using the DROP TABLE statement. When the messaging engine is next
started, it creates empty tables to replace them. If you have not enabled WebSphere
Application Server (base) to create the data store tables, you must recreate the tables that
you drop before you start the messaging engine.

Tip: You can use the -drop option of the sibDDLGenerator command to generate DDL to drop the
tables.

Optional: If you have deleted the messaging engine by removing it from the bus, you can now
recreate it.

3. Start the messaging engine and the application server.

Sharing connections to benefit from one-phase commit optimization

In some circumstances, you can configure your JMS application to share the JDBC connection that a
messaging engine uses. Sharing connections enables you to use one-phase commit optimization. This can
improve the performance of your application.

About this task

Messaging engines store persistent data in a database, and use a JDBC data source to interact with that
database. Some JMS applications also store persistent data in a database, for example if the application
uses entity enterprise beans. Typically, such applications use two-phase commit transactions to coordinate
updates to the JMS and JDBC resources involved.

You can configure your application to share the JDBC connection used by a messaging engine, which
enables you to use one-phase commit transactions and improve the performance of your application. You
can benefit from the one-phase commit optimization in the following circumstances:

v Your application must use the assured persistent reliability attribute for its JMS messages.

v Your application must use container-managed persistence (CMP) entity beans that are bound to the
same JDBC data source that the messaging engine uses for its data store.

Restriction: You cannot benefit from the one-phase commit optimization in the following circumstances:

v If your application uses a reliability attribute other than assured persistent for its JMS
messages.

v If your application uses BMP entity beans, or JDBC clients.

v If your application uses DB2 High Availability Disaster Recovery (HADR).

Before you configure your system, ensure that you consider all of the components of your Java EE
application that might be affected by one-phase commits.

Procedure
1. Select the assured persistent reliability attribute for your JMS messages.

2048 Administering WebSphere applications



2. Deploy all CMP enterprise beans involved in one-phase commit transactions with res-auth set to
Container.

3. Deploy all CMP enterprise beans involved in one-phase commit transactions where AccessIntent
maps to a transaction isolation level of JDBC Read Committed. You can choose any of the following
values for AccessIntent:

v WSOptimisticUpdate

v WSOptimisticRead

v WSPessimisticUpdate-NoCollisions

Oracle tip: All values for AccessIntent, except WSPessimisticUpdateExclusive, map to the JDBC Read
Committed transaction isolation level.

DB2 tip: You can use any value for AccessIntent, because WebSphere Application Server exploits
the DB2 dynamic transaction isolation level support.

4. Ensure that you use the same authentication alias for both your CMP enterprise beans and the
messaging engine data store.

5. When you configure your JDBC data source, ensure that you select the Use data source for CMP
beans option.

6. Set the value of the JDBC data source custom property jmsOnePhaseOptimization to true.

7. Use the JMS connection factory or activation specification panels to select the Share data source
with CMP option.

8. When you create your JDBC provider and set the Select the implementation type field, ensure that
you select Connection pool data source (and not XA data source).

Configuring messaging engine and server behavior when a data store connection
is lost
If the connection between a running messaging engine and its data store is lost, either due to a failure or
because you stop the database for maintenance, you can ensure that the messaging engine functions
correctly after the connection is restored, by configuring the server to restart automatically.

About this task

The behavior described in this topic occurs only if the messaging engine is running and has established
exclusive locks on its data store.

By setting the sib.msgstore.jdbcFailoverOnDBConnectionLoss custom property on a messaging engine,
you can determine the behavior of the messaging engine and its hosting server in the event that the
connection to the data store is lost.

Table 214. The behavior that is determined by the sib.msgstore.jdbcFailoverOnDBConnectionLoss custom property..
The first column of the table lists the sib.msgstore.jdbcFailoverOnDBConnectionLoss custom property values. The
second column explains the behavior of the messaging engine when the data store connection is lost.

Property value Behavior when the data store connection is lost

true (default) The server shuts down and must be manually restarted.

false The messaging engine continues to run and accept work, and periodically attempts to regain the
connection to the data store. If work continues to be submitted to the messaging engine while the
data store is unavailable, the results can be unpredictable, and the messaging engine can be in an
inconsistent state when the data store connection is restored.
Note: If work continues to be submitted to the messaging engine, even nonpersistent messaging
can fail because the messaging engine might need to use the data store, for example to allocate a
unique ID to a message, or to move nonpersistent messages out of memory.

Chapter 20. Welcome to administering Service integration 2049



Procedure
1. Click Service integration -> Buses -> bus_name -> [Topology] Messaging engines ->

engine_name -> [Additional Properties] Custom properties to navigate to the custom properties
panel for the messaging engine.

2. Click New.

3. Type sib.msgstore.jdbcFailoverOnDBConnectionLoss in the Name field and true in the Value field.

4. Click OK.

5. Save your changes to the master configuration.

6. Restart the application server.

Results

If the connection between the messaging engine and its data store is lost, the application server that is
hosting the messaging engine shuts down.

What to do next

After a server restart, click Service integration -> Buses -> bus_name -> [Topology] Messaging
engines to view the status of the messaging engine. Check that the messaging engine has been restarted
and is running.

You might want to tune your system so that the loss of the database connection is detected quickly, and
the messaging engine waits for a reasonable amount of time for the data store to become available again
before attempting to start on another server.

Data store tables
A data store uses a relational database management system (RDBMS), working through JDBC, to store
data as rows in a set of tables. This data is important when you are backing up or restoring a data store.

The following table summarizes the purpose of each data store table.

Table 215. Data store tables.. The first column of the table shows the name of the table. The second column
describes the purpose of the data store table.

Table name Purpose

SIBOWNER Ensures exclusive access to the data store by an active
messaging engine.

SIBOWNERO Used for locking the data store. This table stores no data
in its one EMPTY_COLUMN column.

SIBCLASSMAP Catalogs the different object types in the data store.

SIBLISTING Catalogs the SIBnnn tables.

SIBXACTS Maintains the status of active two-phase commit
transactions.

SIBKEYS Assigns unique identifiers to objects in the messaging
engine.

SIBnnn, where nnn is a number Contains persistent objects such as messages and
subscription information. These tables hold both
persistent and nonpersistent objects, using separate
tables for the different types of data.

Note: The SIBOWNERO table was introduced for WebSphere Application Server Version 7.0 and must be
created when you are migrating to WebSphere Application Server Version 7.0 or later from an

2050 Administering WebSphere applications



earlier version of WebSphere Application Server. See Migrating a messaging engine based on a
data store for things to consider when you are migrating a messaging engine based on a data
store.

Altered database tables
A data store uses a relational database management system (RDBMS), working through JDBC, to store
data as rows in a set of tables. A few of the database tables are altered as a result of running the
sibDBUpgrade command.

The following table lists the database tables that are altered after running the “sibDBUpgrade command”
on page 2528.

Table 216. Altered database tables. The first column of the table shows the name of the modified table. The second
column of the table describes the purpose of the table.

Table name Purpose

SIBOWNER Ensures exclusive access to the data store by an active
messaging engine.

SIBnnn, where nnn is a number Contains persistent objects such as messages and
subscription information. These tables hold both
persistent and nonpersistent objects, using separate
tables for different types of data.

Database privileges
In order for a messaging engine to use its data store, the database user ID that the messaging engine
uses must have sufficient privilege to enable the messaging engine to access the data store tables. If you
want the messaging engine to create the data store tables automatically, the messaging engine user ID
requires additional privileges.

The following table describes the database privileges that the messaging engine user ID requires to
access the data store and create the data store tables.

Database
management
system

Minimum privilege required for the
messaging engine to use the data store
tables

Additional privilege required for the
messaging engine to create the data store
tables

DB2 The messaging engine user ID needs SELECT,
INSERT, UPDATE, and DELETE privileges on the
tables.

The messaging engine user ID needs CREATETAB
authority on the database and USE privilege on
the table space as well as CREATEIN privilege on
the schema.

Oracle The messaging engine user ID needs at least
SESSION privilege to connect to the database. If
the same user ID owns both the data store
schema and the messaging engine that is
connecting to the database, the messaging
engine has sufficient privilege to manipulate the
tables. Otherwise, the messaging engine needs
SELECT, INSERT, UPDATE and DELETE object
privileges on the tables that comprise the data
store, and DROP ANY TABLE system privilege to
enable use of the TRUNCATE TABLE statement.

The messaging engine user ID requires sufficient
privilege to create relational tables and indexes
in the data store schema. The messaging engine
also requires a space quota in the default
tablespace of the owner of that schema.

SQL Server Configure the SQL Server for SQL Server and
Windows authentication. This allows
authentication to be based on an SQL server
login ID and password. The messaging engine
user ID can be the owner of the tables, or be a
member of a group that has sufficient authority
to issue TRUNCATE TABLE statements.

The messaging engine user ID needs CREATE
TABLE statement privilege.

Chapter 20. Welcome to administering Service integration 2051



Database
management
system

Minimum privilege required for the
messaging engine to use the data store
tables

Additional privilege required for the
messaging engine to create the data store
tables

Sybase The messaging engine user ID can be the owner
of the tables, or can be a member of a group
that has sufficient authority to issue TRUNCATE
TABLE statements.

The messaging engine user ID needs CREATE
TABLE permission.

Informix The messaging engine user ID must have
CONNECT privilege on the database. It must also
have SELECT, INSERT, UPDATE and DELETE
authority on the tables.

The messaging engine user ID must have
RESOURCE privilege on the database.

Derby If user authentication is enabled, you must
authorize the messaging engine user ID to
access the database.
Remember: The default database that is
generated by the messaging engine has no
security mechanisms enabled.

You need no additional privileges.

If you do not grant TRUNCATE TABLE authority to the database user ID, you can force the messaging
engine to delete rows individually instead of truncating the table. To force the messaging engine to delete
rows individually, set sib.msgstore.jdbcUseDeleteInsteadOfTruncateAtStartup to true as a custom
property of the messaging engine.

Note: If you use DELETE instead of TRUNCATE, startup is slower when there are many non-persistent
messages in the datastore.

Avoiding message store errors when creating a messaging engine
Using different combinations of parameters can create a file store or a data store according your
requirements. The outcome varies in server and cluster scopes.

Server scope

When you add a server as a new bus member take note of the following:

v If you do not specify the type of message store, then a file store is created by default. If you set Create
default data source to True or supply a Data source JNDI name, then a data store is created.

v If you choose to use a file store, then only file store attributes are presented to be specified. For
example the log file directory.

v If you choose to use a data store:

– Only data store attributes are presented to be specified. For example the Data source JNDI name.

– If you set Create default data source to False then you must specify a Data source JNDI name.

For more information about file store and data store refer to “Administering message stores” on page
2036.

Cluster scope

When you add a cluster as a new bus member take note of the following:

v If you choose to use a file store:

– You must not use the default log file, permanent store file and temporary store file directories
because they are not suitable for cluster engines.

– You must specify the Log directory, Permanent store directory and Temporary store directory to
be at locations that all members of the cluster can access on your file system.

v If you choose to use a data store:

2052 Administering WebSphere applications



– You must not use the default data source because it is not suitable for cluster engines.

– You must specify the Data source JNDI name of an existing data source.

For more information about file store and data store refer to “Administering message stores” on page
2036.

Avoiding errors when creating a messaging engine with a file store or
a data store by using the wsadmin tool
Using different combinations of parameters can create a file store or a data store according your
requirements. The outcome varies in server and cluster scopes.

Server scope

When you add a server as a new bus member by using administrative commands (by specifying
createSIBEngine -server) take note of the following:

v If you do not specify the type of message store, then a file store is created by default. If you specify
-createDefaultDatasource or -dataSourceJndiName, then a data store is created.

v If you choose to use a file store (by specifying -filestore), then only file store attributes can be
specified.

v If you choose to use a data store (by specifying -datastore):

– Only data store attributes can be specified.

– If you set -createDefaultDatasource to False then you must specify -dataSourceJndiName.

Cluster scope

When you add a cluster as a new bus member by using administrative commands (by specifying
createSIBEngine -cluster) take note of the following:

v If you choose to use a file store (by specifying -filestore):

– You must not use the default log file, permanent store file and temporary store file directories
because they are not suitable for cluster engines.

– You must specify -logDirectory, -permanentStoreDirectory and -temporaryStoreDirectory to be at
locations that all members of the cluster can access on your file system.

v If you choose to use a data store (by specifying -datastore):

– You must not specify -createDefaultDatasource because the default data source is not suitable for
cluster engines.

– You must specify -dataSourceJndiName, giving the name of an existing data source.

Administering bus destinations
Configure service integration bus destinations, so that applications can attach to them to exchange
messages as producers, consumers, or both.

Procedure
v “Configuring bus destinations” on page 1987

v “Managing bus destinations with administrative commands” on page 2083

v “Configuring message points” on page 2083

v “Managing messages on message points” on page 566

v “Administering durable subscriptions” on page 2086

Configuring bus destinations
Use the following tasks to configure permanent bus destinations on service integration buses.

Chapter 20. Welcome to administering Service integration 2053



About this task

The steps involved in configuring a bus destination depend on the intended usage of the destination.

For example, the following figure shows a basic scenario based on an application using a JMS queue for
point-to-point messaging. A producing application sends messages to a JMS queue from which a
consuming application retrieves the messages. The JMS queue is assigned to a queue destination and its
associated queue point, where messages are stored.

To enable the JMS applications to use a queue destination, you configure the following administrative
destination objects:

1. A queue destination on a service integration bus. This configures the properties of the queue, such as
the name, and associates the queue with one bus member (an application server). This also
automatically configures, on the bus member, a queue point where messages for the queue are held
and processed.

2. A JMS queue, which configures the name that applications can use to look up the queue in JNDI. The
JMS queue encapsulates the name of the queue destination, as defined in the queue destination
above, together with other properties to be used by applications.

After you have created a queue destination, you can optionally configure the queue point to override some
properties configured on the queue destination. You can also undertake other configuration tasks on the
destination and its queue point, and can act on the runtime view.

Each messaging engine has a default exception destination, named
_SYSTEM.Exception.Destinaton.messaging_engine_name. This exception destination can be used to handle
messages that cannot be delivered for all bus destinations that are localized to the messaging engine.
Each bus destination can be configured with a non-default exception destination.

Procedure
v “Listing bus destinations” on page 2055

v “Creating a bus destination” on page 2055

v “Configuring bus destination properties” on page 2063

v “Configuring mediations” on page 2071

v “Configuring a destination forward routing path” on page 2071

v “Configuring a destination reverse routing path” on page 2073

v “Configuring context properties for a bus destination” on page 2074

v “Administering destination roles” on page 2075

v “Deleting a bus destination” on page 2080

Figure 43. Application use of destinations - basic case

2054 Administering WebSphere applications



v “Resetting a destination” on page 2082

Listing bus destinations
Use this task to display administrative lists of bus destinations for a service integration bus.

About this task

From the panel that lists bus destinations you can use the buttons provided to create, delete, or change
the mediation of destinations, or can select a destination to browse details and options for that destination.

To list bus destinations on a bus, use the administrative console to complete the following steps.

Procedure

Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations. This
displays a list of the bus destinations on the bus.
Any temporary destination in the list is identified by the prefix _Q for temporary queues or _T for temporary
topics.

What to do next

To browse or change the properties of a destination, click its name in the list displayed.

To act on one or more of the destination listed, select the check boxes next to the names of the
destinations that you want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

Creating a bus destination
Use the following tasks to create a new bus destination on a service integration bus.

About this task

The steps involved in defining a new destination depend on the intended usage of the destination.

These are permanent destinations, with their properties defined by administrative resources, and are in
addition to any temporary destinations created at runtime by the bus for applications.

Procedure
v “Creating a queue for point-to-point messaging”

v “Creating a topic space for publish/subscribe messaging” on page 2057

v “Creating an alias destination on a bus” on page 2058

v “Creating a foreign destination on a bus” on page 2061

Creating a queue for point-to-point messaging:

You can create a queue, which is a bus destination that represents a message queue and that is used for
point-to-point messaging.

Before you begin

During this task you must specify the name of a bus member to which the bus destination is assigned.
That bus member is to host the queue point for the new bus destination, and must already have been
configured.

Chapter 20. Welcome to administering Service integration 2055



About this task

To define a new queue for point-to-point messaging, you specify only a minimum set of properties. You
can change these properties and configure further properties after you complete this task.

To define a queue, use the administrative console to complete the following steps.

Procedure

1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the bus that is to provide the message point for the queue.

3. In the content pane, under Destination resources, click Destinations. A list of any existing bus
destinations is displayed.

4. To create a destination, click New.

a. On the Create new destination page, ensure that Queue is selected.

b. Click Next.

c. In the Identifier field, type the name that you want to give the queue destination for administrative
purposes. Restrict the name to 48 characters or less, and restrict its character set to: numerics
(0-9), period (.), forward slash (/), underscore (_), percent sign (%), uppercase A-Z, lowercase a-z
(but there are restrictions on the use of lowercase letters for z/OS console support). On systems
that use EBCDIC Katakana, you cannot use lowercase characters.

5. Optional: In the Description field, type a description of the destination, for administrative purposes.

6. Click Next.

7. On the Assign the queue to a bus member page, select the bus member that is to provide the queue
point for the destination. The queue point is where the messages for the queue are held.

8. Click Next.

9. Optional: If the bus member is a WebSphere MQ server, set the WebSphere MQ queue point
attributes:

a. Specify a value in the WebSphere MQ queue name filter field, then click Go.

The wizard automatically discovers available WebSphere MQ queues. However, some
WebSphere MQ topologies have many thousands of queues defined to a queue manager. Use
this filter to limit the number of queues that are listed.

The default filter value is an asterisk (*). If this value (or no value) is set then all queues, or all
queues of a specific type (based on any queue type custom property that is set), are listed. Any
other value that you specify must meet the following criteria:

v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the Rules for naming
WebSphere MQ objects topic in the WebSphere MQ information center).

You can also use the wildcard character (*) with other text. For example, if you enter a value of
PAYROLL*, then all available queues with names that start with PAYROLL are displayed.

b. Specify a WebSphere MQ queue name.

Select a queue name from the filtered list. If the list does not include the queue that you want,
select the last entry in the list labeled other, please specify. A text entry box is displayed next to
the drop-down list. Type the queue name into the text entry box.

If the queue is found on the remote WebSphere MQ system, the properties of the queue as
defined within WebSphere MQ are displayed as read-only fields. This should help you to confirm
that you have found the queue that you want, and that it is configured as you intend. If the queue
is not found, these read-only fields are removed from view.

c. Specify the reliability levels that you require when inbound nonpersistent and inbound persistent
WebSphere MQ messages are converted to service integration format messages. Applications
receive messages direct from the specified WebSphere MQ queue, so in general the reliability

2056 Administering WebSphere applications



level for a message is of no interest to the receiver because the message has already been
delivered successfully. However, the message is converted to a service integration format
message (and typically to a JMS format service integration message) as it is received, and this
option specifies the reliability level for the service integration format message. For information
about the available reliability levels, see “WebSphere MQ queue points [Settings]” on page 2335.

d. Specify whether you want WebSphere MQ to include an MQRFH2 message header when
sending messages to the queue.

The MQRFH2 header stores service integration messaging information that does not have a
corresponding WebSphere MQ message header field. When a message is sent to the destination,
service integration instructs WebSphere MQ to write the message to the queue. This option
specifies whether service integration instructs WebSphere MQ to write the message with an
MQRFH2 header.

If the consumer of the message is a JMS application running in WebSphere MQ or service
integration, or a WebSphere MQ XMS application, or a WebSphere MQ MQI application that
expects an MQRFH2 header, select this option. If the consumer is a WebSphere MQ MQI
application that does not expect an MQRFH2 header, do not select this option.

e. Click Next.

10. On the Confirm queue creation page, review the summary of actions.

v To create the queue, click Finish.

v If you want to change any of the properties that you have specified, click Previous, then change
the properties on the preceding pages.

11. Save your changes to the master configuration.

What to do next

You can configure further properties of the queue, for example message reliability settings. See
“Configuring bus destination properties” on page 2063. If you configure message reliability settings,
remember that higher levels of reliability have a greater impact on performance.

By default, messages that cannot be delivered to the queue are sent to the default exception destination
for the messaging engine that hosts the queue point. If you want to use a specific exception destination for
messages that cannot be delivered to this queue destination, that exception destination must be defined
already. For more information about configuring exception destinations, see Configuring an exception bus
destination.

If the queue is to be used for JMS point-to-point messaging, specify the queue identifier on a JMS queue,
as described in “Configuring a queue for the default messaging provider” on page 502.

Creating a topic space for publish/subscribe messaging:

You can create a topic space, which is a bus destination that represents a set of “publish and subscribe”
topics and that is used for publish/subscribe messaging.

About this task

You create a topic space when you deploy JMS applications that use publish/subscribe messaging.

To create a topic space, you specify only a minimum set of properties. You can change these properties
and configure further properties after you complete this task.

To create a topic space, use the administrative console to complete the following steps.

Procedure

1. In the navigation pane, click Service integration -> Buses.

Chapter 20. Welcome to administering Service integration 2057



2. In the content pane, click the name of the bus that is to provide the publication points for the topic
space.

3. In the content pane, under Destination resources, click Destinations. A list of any existing bus
destinations is displayed.

4. To create a topic space, click New.

a. On the Create new destination page, select Topic space.

b. Click Next.

c. In the Identifier field, type the name that you want to give the topic space for administrative
purposes.

5. Optional: In the Description field, type a description of the destination, for administrative purposes.

6. Click Next.

7. On the Confirm topic space creation page, review the summary of actions.

v To create the topic space, click Finish.

v If you want to change any of the properties that you have specified, click Previous, then change the
properties on the preceding pages.

8. Save your changes to the master configuration.

What to do next

You can configure further properties of the topic space, for example message reliability settings. See
“Configuring bus destination properties” on page 2063. If you configure message reliability settings,
remember that higher levels of reliability have a greater impact on performance.

By default, messages that cannot be delivered to the topic space are sent the default exception destination
for the messaging engine that is publishing the message. If you want to use a specific exception
destination for messages that cannot be delivered to this topic space, you must have already defined that
exception destination. For more information about configuring exception destinations, see “Configuring
exception destination processing for a bus destination” on page 2063.

If the topic space is to be used for JMS publish/subscribe messaging, specify the topic space identifier on
a JMS topic as described in “Configuring a topic for the default messaging provider” on page 503.

Creating an alias destination on a bus:

You can create an alias destination on a service integration bus. An alias destination maps an alternative
name for a queue destination or a topic space destination. Any alias destination properties that you set
override the destination defaults.

About this task

An alias destination maps an alias bus name and destination name (identifier) to a target bus name and
destination name where the bus name, or the destination name, or both, are different.

To define a new alias destination, use the administrative console to complete the following steps.

Procedure

1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the bus on which the alias destination is to be created.

3. In the content pane, under Destination resources, click Destinations. A list of any existing bus
destinations is displayed.

4. To create a destination, click New.

a. On the Create new destination page, select Alias.

2058 Administering WebSphere applications



b. Click Next.

c. In the Identifier field, type the name of the destination for applications to use to refer to the alias
destination.

5. Specify the following properties for the destination:

Bus The name of the bus for applications to use to refer to the alias destination. If you leave this
field empty, the name of the local bus is used.

Target identifier
The identifier of the target destination that this alias destination represents.

If the alias destination targets a queue that is provided by WebSphere MQ, type the value as a
concatenation of the queue name and the queue manager name,
queue_name@qmanager_name; for example: Queue1@Qmgr2.

Target bus
The name of the bus that hosts the target destination. This can be the local bus, a foreign
service integration bus, or a foreign bus that represents a WebSphere MQ network. The
default is the name specified for the Bus property.

6. Optional: Specify the following properties for the destination. These will override the destination
defaults.

Description
An optional description of the destination, for administrative purposes.

Enable producers to override default reliability
Controls the quality of service for message flows between producers and the destination.
Select this option to use the quality of service specified by producers instead of the quality
defined for the destination.

Default reliability
The reliability assigned to a message produced to this destination when an explicit reliability
has not been set by the producer.

INHERIT
Use the reliability configured on the target destination.

Best effort nonpersistent
Messages are discarded when a messaging engine stops or fails. Messages might
also be discarded if a connection used to send them becomes unavailable or as a
result of constrained system resources.

Express nonpersistent
Messages are discarded when a messaging engine stops or fails. Messages might
also be discarded if a connection used to send them becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging engine fails.

Assured persistent
Messages are not discarded.

Note: Higher levels of reliability have higher impacts on performance.

For more information about service integration reliability levels, see Message reliability levels -
JMS delivery mode and service integration quality of service.

Maximum reliability
The maximum reliability of messages accepted by this destination.

Chapter 20. Welcome to administering Service integration 2059



Producers cannot send messages to this destination with a reliability higher than the value
specified for this property.

INHERIT
Use the reliability configured on the target destination.

Best effort nonpersistent

Express nonpersistent

Reliable nonpersistent

Reliable persistent

Assured persistent

For more information about service integration reliability levels, see Message reliability levels -
JMS delivery mode and service integration quality of service.

Send allowed
Clear this option (setting it to false) to stop producers from being able to send messages to
this destination.

INHERIT
Use the value configured on the target destination.

TRUE Producers can send messages to this destination.

FALSE
Producers cannot send messages to this destination.

Receive allowed
Clear this option (setting it to false) to prevent consumers from being able to receive messages
from this destination.

INHERIT
Use the value configured on the target destination.

TRUE Consumers can receive messages from this destination.

FALSE
Consumers cannot receive messages from this destination.

Default forward routing path
The value to which a message's forward routing path will be set if the message contains no
forward routing path. This identifies a sequential list of intermediary bus destinations that
messages must pass through to reach a target bus destination. The format of the field is a list
of line-delimited bus destinations specified as bus:name.

Delegate authorization check to target destination
Indicates which destination access role is checked when a user accesses the alias destination.
When this option is selected, the destination access role of the target destination is checked.
When this option is not selected, the destination access role of the alias destination is
checked.

If you do not want to override the security of the target destination, select this option.

7. Click Next.

8. On the Confirm alias destination creation page, review the summary of actions.

v To create the alias destination, click Finish.

v To change any of the destination properties, click Previous, then change the properties on the
preceding pages.

9. Save your changes to the master configuration.

2060 Administering WebSphere applications



What to do next

You can change properties or configure further properties of the alias destination. See “Configuring alias
destination properties” on page 2068.

If you want to override security settings for the destination, see “Administering destination roles” on page
2075.

Creating a foreign destination on a bus:

You can create a foreign destination on a service integration bus. A foreign destination represents a
destination that is defined in another bus (a foreign bus). You use a foreign destination when you need to
override messaging defaults, security settings, or both for an individual destination on a foreign bus.

About this task

This figure shows a foreign destination that points to a target destination on another bus. There is also a
JMS connection factory and JMS queue that an application uses without being aware of the associated
foreign destination.

The foreign destination encapsulates the name of the target destination that exists in the foreign bus
(Identifier property) and the name of that foreign bus (Bus property). An application that is to use the
foreign destination to exchange messages with the target destination must specify the Identifier and Bus
properties.

For example, an administrator wants JMS applications to connect to one bus, BusA, and send messages
to a JMS queue backed by a queue, targetQueue, on another bus, BusB. The administrator connects the
buses, creates a foreign destination on BusA and sets the following properties on the foreign destination
and JMS queue:

Table 217. Example property settings. The table provides an example of how the properties can be set when
creating a foreign destination on a service integration bus. The first column of the table lists the JMS queue names.
The second column contains the identifier and bus names of the foreign destination on a service integration bus, for
example, BusA. The third column contains the identifier of the queue on a service integration bus, for example, BusB.

JMS queue Foreign destination (on BusA) Queue (on BusB)

Queue name targetQueue

Bus name BusB

Identifier targetQueue

Bus BusB

Identifier targetQueue

To define a new foreign destination, use the administrative console to complete the following steps.

Figure 44. Creating a foreign destination on a service integration bus

Chapter 20. Welcome to administering Service integration 2061



Procedure

1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the bus that you want to create the foreign destination on.

3. In the content pane, under Destination resources, click Destinations. A list of any existing bus
destinations is displayed.

4. To create a destination, click New.

a. On the Create new destination page, select Foreign.

b. Click Next.

c. In the Identifier field, type the name of the target destination that exists in the foreign bus. The
identifier that you specify must match the name of the target destination that exists in the foreign
bus. If the foreign destination is a WebSphere MQ destination, the identifier must be in the form
qName@qmName where qName is the name of the queue and qName is the name of the queue
manager. For example, the identifier for a queue called WMQ21 on queue manager QM02 would
be WMQ21@QM02.

d. In the Bus field, type the name of the foreign bus that hosts the target destination. On the bus
where you are creating the foreign destination, a foreign bus connection that represents this foreign
bus must be already defined.

5. Optional: Specify the following properties for the destination. These will override the destination
defaults.

Description
An optional description of the destination, for administrative purposes.

Enable producers to override default reliability
Select this option to enable producers to override the default reliability that is set on the
destination.

Default reliability
The reliability assigned to a message produced to this destination when an explicit reliability
has not been set by the producer.

Best effort nonpersistent
Messages are discarded when a messaging engine stops or fails. Messages might
also be discarded if a connection used to send them becomes unavailable or as a
result of constrained system resources.

Express nonpersistent
Messages are discarded when a messaging engine stops or fails. Messages might
also be discarded if a connection used to send them becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging engine fails.

Assured persistent
Messages are not discarded.

Note: Higher levels of reliability have higher impacts on performance.

For more information about service integration reliability levels, see Message reliability levels -
JMS delivery mode and service integration quality of service.

Maximum reliability
The maximum reliability of messages accepted by this destination.

Best effort nonpersistent

Express nonpersistent

2062 Administering WebSphere applications



Reliable nonpersistent

Reliable persistent

Assured persistent

For more information about service integration reliability levels, see Message reliability levels -
JMS delivery mode and service integration quality of service.

6. Click Next.

7. On the Confirm foreign destination creation page, review the summary of actions.

v To create the foreign destination, click Finish.

v If you want to change any of the destination properties, click Previous, then change the properties
on the preceding pages.

8. Save your changes to the master configuration.

What to do next

Ensure that you have defined a foreign bus connection (to identify the target bus) and the target
destination on that bus.

You can change properties or configure further properties of the foreign destination. See “Configuring bus
destination properties.”

If you want to override security settings for the destination, see “Administering destination roles” on page
2075.

Configuring bus destination properties
You can view or change the configuration properties of a bus destination, that is, a queue, topic space,
alias destination, or foreign destination.

About this task

For an overview of bus destinations, see Bus destinations.

To view or change the properties of a destination, use the administrative console to complete the following
steps.

Procedure
1. From the navigation pane, click Service integration -> Buses -> bus_name -> [Destination

resources] Destinations -> destination_name. The configuration page for the type of destination you
selected is displayed, that is, one of the following pages:

v Queue settings

v Topic space settings

v Alias destination settings

v Foreign destination settings

2. Change the destination properties to suit your needs. For details of the properties, see the relevant
settings topic for the type of destination you selected.

3. Click OK.

4. Save your changes to the master configuration.

Configuring exception destination processing for a bus destination:

Chapter 20. Welcome to administering Service integration 2063



You can configure the exception destination processing for a queue destination or topic space destination.
You can configure whether any undeliverable messages are rerouted to an exception destination, and
whether to use a system default exception destination or configure a specific exception destination.

Before you begin

To configure a specific exception destination for a queue destination or topic space destination, the
exception destination must exist. An exception destination must be a queue destination. See “Creating a
queue for point-to-point messaging” on page 2055.

About this task

An exception destination for a queue destination or topic space destination is the destination for a
message when a message cannot be delivered because the number of delivery attempts to a transactional
consumer is exceeded.

You can configure an exception destination for a bus destination as one of the following:

v None. The bus destination does not use an exception destination and undeliverable messages are not
rerouted to an exception destination. Attempts to redeliver the message continue, up to the maximum
failed deliveries limit set for the bus destination. Then attempts to redeliver the message continue with a
time interval between retry attempts. This interval is either the Default blocked destination retry interval
of the messaging engine that is associated with this destination, or the Blocked retry timeout in
milliseconds that is set for this destination.

v System. The bus destination uses the default exception destination. Messages that cannot be delivered
to the bus destination are rerouted to the system default exception destination for the messaging engine
that detects the problem: _SYSTEM.Exception.Destination.messaging_engine_name. This option is the
default option.

v Specify. The bus destination uses the specified exception destination. If the bus destination cannot use
this exception destination, it uses the system exception destination.

Note:

v You cannot configure exception destination processing for a bus; you must configure exception
destination processing for each destination on the bus.

v Do not modify or delete the default system exception destination.

v If you use an exception destination for a bus destination, it can affect message ordering in the
bus. For more information, see Message ordering.

v Best-effort messages are always discarded if they cannot be delivered to their target destination,
that is, they never use an exception destination.

v Any report options that are set in the properties of a message also affect exception destination
processing. Depending on the report options, a message might be discarded if it is not delivered.

To configure the exception destination processing for a bus destination, use the administrative console to
complete the following steps.

Procedure

1. In the navigation pane of the administrative console, click Service integration -> Buses to display a
list of buses.

2. Select the bus with the destination for which you want to configure an exception destination.

3. In the Configuration tab, under Destination resources, click Destinations to display a list of
destinations for this bus.

4. Select the name of the bus destination you require from the list. The details of that destination are
displayed.

2064 Administering WebSphere applications



5. In the Configuration tab, under General properties, in the Exception destination section, use the
radio buttons to configure the exception destination processing that this bus destination uses:

v Select None to specify that the bus destination does not use an exception destination.

v Select System to use the default exception destination.

v Select Specify and enter an exception destination to configure the exception destination you
require.

6. Optional: If you selected None, you can set the time interval to apply between retry attempts, after the
maximum failed deliveries limit is reached, for this destination. Select Override messaging engine
blocked retry timeout default, then enter the value you require in Blocked retry timeout in
milliseconds. Otherwise, the value set for the Default blocked destination retry interval of the
associated messaging engine is used.

7. Optional: To change the number of delivery attempts for a message, enter a value in Maximum failed
deliveries per message. When the exception destination is configured as None, this is the number of
delivery attempts before a time interval between retry attempts is applied. When the exception
destination is configured as System or Specify, this is the number of delivery attempts for a message
that is backed out and tried again before the message is sent to the exception destination.

8. Optional: Select Keep count of failed deliveries per message to persist the failed delivery counts of
JMS messages in the message store. This option retains the count of failed deliveries even after the
system is restarted.

Note: The Keep count of failed deliveries per message option persists the failed delivery counts of the
messages in the message store.

9. Save your changes to the master configuration.

Results

You have configured the exception destination processing for a bus destination.

What to do next

You can also configure exception destination processing for a service integration bus link or WebSphere
MQ link.

Controlling whether applications can send or receive messages for a bus destination:

You can prevent applications from either sending messages to, or receiving messages from, a destination.
To do this you use the Receive allowed, Send allowed, and Receive exclusive properties of destinations
to control access to destinations. When you save changes to those properties, this affects open producers
and consumers attached to localization points for that destination.

About this task

Use this task to change the configuration properties of a bus destination to control whether applications
can send messages to, or receive messages from, a destination. For example, some destinations only
exist in order to be associated with mediations; applications should not be able to put to or get from such
a destination.

The changes that you make affect the configuration of a bus destination and when saved, are
automatically applied to all message points for that destination. You can make the same changes to an
individual destination localization point to control access to only that one point.

When you save changes that affect the access to a bus destination, this affects producers or consumers
attached to message points for that destination. For each producer or consumer, any existing operations
are allowed to complete (except for one case, as described in the next paragraph). The producer or

Chapter 20. Welcome to administering Service integration 2065



consumer then undergoes a state change to conform to the destination, and subsequent operations will fail
with an exception. The exception message indicates the specific reason for the exception; that is, that the
destination no longer accepts sending or receiving of messages.

The only case where this behavior does not occur is the receiveWithWait() method. Blocking receives are
cancelled when the state change to the consumer is made, and an exception is thrown. So, a
receiveWithWait() method that is outstanding at the time of the configuration change is not allowed to
complete, although the exception still occurs asynchronously with the configuration change.

Procedure

1. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
destination_name.

2. Optional: Change one or more of the following properties:

Receive allowed
Clear this check box (setting to the option to false) to prevent messages from being received
from message points for this destination. The effect depends on the type of destination:

v Queue point. Any open consumers change state and an exception is thrown when the
consumer requests a message.

v Publication point. Any messages that have been published to the messaging engine for a
publication point are stopped from proceeding either to local consumers or onwards to other
messaging engines. Local consumers get the same exception as for a queue point.

v Mediation point of a mediated destination. The bus stops the mediation instance that is
running locally to the mediation point; other instances of the mediation running on other
messaging engines continue as normal.

In all cases, messages can continue to be sent, and accumulate on the destination localization
point.

Send allowed
Clear this check box (setting the option to false) to prevent messages from being accepted
onto the message points for this destination.

v For a queue point of a non-mediated destination, or a mediation point of a mediated
destination, new messages (from attached producers or forwarded from another destination)
are redirected to any available message point. If no message points are available, then
messages that have already been accepted onto the bus, and new messages from attached
producers, are preserved by the bus until a message point becomes available. The only
exception to this is the case of a destination with only one message point (queue point or
mediation point depending on whether the destination is mediated or non-mediated), where
the producer is attached to the same messaging engine. In this case, an exception is thrown
on each send call. The exception message indicates that the reason for the exception is that
the only extant localization has been disabled for send. The producer remains open as
normal, and any more send calls succeed if the Send allowed property of the localization is
reselected (reset to true).

v For a queue point of a mediated destination, clearing this Send allowed property alters the
behavior of the mediation instances that are sending to the destination in the same way as
setting it to false on a non-mediated destination affects producing applications: Messages
are sent instead to any alternative message point. If no localizations are available, are
preserved by the bus until a message point becomes available. For any mediation instance
(that is, on any server that has a mediation point), if the same server hosts a queue point,
and that queue point is the only queue point for the destination, then the mediation changes
to the “stopped on error” state.

v For a publication point, clearing this Send allowed property stops applications attached
locally to the topic space from publishing messages. The send calls receive an exception,
and the producer remains open.

2066 Administering WebSphere applications



Receive exclusive
If you select this check box (setting the option to true), then only one consumer can be
attached to any message point. This property is particularly intended for use with queues, but
can be used with any type of destination.

v For a queue, the bus chooses a queue point for each request to create a consumer. If the
selected queue point already has an attached consumer, then the call fails with an exception
(containing an exception message and linked exception that indicate the precise nature of
the failure). There is no guarantee that all available queue points are used before the
exception is thrown.

v For a topic space, only one consumer can attach to any given messaging engine.

If you change the Receive exclusive property from false to true, some consumers are
selected to be the exclusive receivers in accordance with the rules above. All other consumers
are detached from the destination, in the same way as is described above for a transition of
the Receive allowed property from true to false.

3. Click OK.

4. Save your changes to the master configuration.

Specifying whether strict message order is preserved for a bus destination:

Use this task to change the configuration properties of a bus destination to control whether strict message
order is preserved.

Before you begin

The changes made in this task affect the configuration of a bus destination. Before you begin this task,
make sure that you fully understand the restrictions that apply to ordered destinations. For further details
see Strict message ordering for bus destinations.

About this task

Although messages produced by a single producer to a single destination are seen by a consumer to that
destination in the same order as they are produced, there are certain topologies and events, such as
system failures, that can change the order of messages (see Message ordering). If strict message order is
essential, you can configure a destination to preserve the order of the messages in a much more rigorous
manner. Configuring a destination in this way, when used with restricted topologies, maintains message
order in all circumstances (for further information, see Strict message ordering for bus destinations).

To preserve the order of the messages that are delivered to a destination, use the administrative console
to complete the following steps:

Procedure

1. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
destination_name.

2. Select the Maintain strict message order check box (setting the option to true).

3. Click OK.

4. Save your changes to the master configuration.

Results

An ordered destination has priority over several other configuration properties, such as the number of
consumers that are allowed to attach to the destination. The system overrides these configuration
properties at run time, and generates a system log warning. For more information about the configuration
properties that the system overrides at run time, and the impact of including an ordered destination in your
system, see Strict message ordering for bus destinations.

Chapter 20. Welcome to administering Service integration 2067



Specifying whether messages are forwarded to WebSphere MQ as JMS messages:

Use this task to create a destination context property that determines whether an MQRFH2 header is
added to WebSphere MQ JMS messages produced by foreign or alias destinations.

Before you begin

This task assumes that you have created an alias bus destination or a foreign bus destination. For more
information, see “Creating an alias destination on a bus” on page 2058 or “Creating a foreign destination
on a bus” on page 2061.

About this task

Carry out this task if you want JMS messages produced by foreign bus destinations or alias bus
destinations forwarded to WebSphere MQ. In this task, you define a destination context property called
_MQRFH2Allowed that adds an MQRFH2 header to JMS messages. If you do not configure
_MQRFH2Allowed, the default value is NO, and an MQRFH2 header is not added to the message.
WebSphere Application Server Version 5.1 users may be aware of a WebSphere MQ flag called
TARGCLIENT that was used to add RFH2 headers to JMS messages. For more information about the use
of the MQRFH2 header in interoperating with WebSphere MQ, see Mapping the message body to and
from WebSphere MQ format and Point-to-point messaging with a WebSphere MQ network.

To create and configure a context property called _MQRFH2Allowed on a foreign or alias destination, use
the administrative console to complete the following steps:

Procedure

1. Display the context properties for a selected foreign or alias destination:

a. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations.

b. Select the foreign or alias destination for which you want to create the context property.

c. Under Additional Properties, click Context properties.

2. Click New to create a new context property.

3. Specify the following context information:

Name Type the name _MQRFH2Allowed.

Context type
Select the information type Boolean in the drop-down list.

Context value
Type the value true .

4. Click OK.

5. Save your changes to the master configuration.

Results

An MQRFH2 header is added to all messages produced by the foreign or alias destination. This means
that JMS messages will be forwarded to WebSphere MQ as JMS messages.

Configuring alias destination properties:

Use this task to browse or change the configuration properties of an alias destination on a service
integration bus. An alias destination maps a bus name and destination name (identifier) to a target where
the bus name, or the destination name, or both, are different. Any alias destination properties that you set
override the destination defaults.

2068 Administering WebSphere applications



About this task

To browse or change the properties of an alias destination, use the administrative console to complete the
following steps.

Procedure

1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the bus on which the alias destination was created.

3. In the content pane, under Destination resources, click Destinations. A list of existing bus destinations
is displayed.

4. Select the alias destination that you want to configure.

5. You can view or change the following alias destination properties.

Description
An optional description for the bus destination, for administrative purposes.

Target identifier
The name of the destination for which this is an alias.

Target bus
The name of the bus on which the destination for which this is an alias exists.

Use all target queue points
This property is displayed only if the destination that the Target identifier and Target bus
properties identifies has multiple queue points configured (that is, the destination is on a
cluster bus member with multiple messaging engines) and the Target bus is the local
bus.Whether to use all target queue points indicates whether all the queue points of the target
queue can be used, including any queue points created after the alias is configured. When
selected, the Target queue points menu is disabled.

Unselected queue points
A list of the queue points that are not addressable by the alias definition. The list is generated
from the complete list of queue points for this queue. This list is enabled only when Use all
target queue points is unchecked.

Selected queue points
A list of the queue points that are addressable by the alias definition. This list is enabled only
when Use all target queue points is unchecked.

6. You can change the following alias destination properties to suit your needs. These values will override
the destination defaults.

Enable producers to override default reliability
Controls the quality of service for message flows between producers and the destination.
Select this option to use the quality of service specified by producers instead of the quality
defined for the destination.

Default reliability
The reliability assigned to a message produced to this destination when an explicit reliability
has not been set by the producer.

INHERIT
Use the reliability configured on the target destination.

Best effort nonpersistent
Messages are discarded when a messaging engine stops or fails. Messages might
also be discarded if a connection used to send them becomes unavailable or as a
result of constrained system resources.

Chapter 20. Welcome to administering Service integration 2069



Express nonpersistent
Messages are discarded when a messaging engine stops or fails. Messages might
also be discarded if a connection used to send them becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging engine fails.

Assured persistent
Messages are not discarded.

Note: Higher levels of reliability have higher impacts on performance.

For more information about service integration reliability levels, see Message reliability levels -
JMS delivery mode and service integration quality of service.

Maximum reliability
The maximum reliability of messages accepted by this destination.

Producers cannot send messages to this destination with a reliability higher than the value
specified for this property.

INHERIT
Use the reliability configured on the target destination.

Best effort nonpersistent

Express nonpersistent

Reliable nonpersistent

Reliable persistent

Assured persistent

For more information about service integration reliability levels, see Message reliability levels -
JMS delivery mode and service integration quality of service.

Default priority
The default priority for messages sent to the target destination, in the range 0 (lowest) through
9 (highest), or -1. The value -1 indicates that messages should use the default priority defined
on the target destination. The default priority is used only if a message does not specify its
own priority.

Send allowed
Clear this option (setting it to false) to stop producers from being able to send messages to
this destination.

INHERIT
Use the value configured on the target destination.

TRUE Producers can send messages to this destination.

FALSE
Producers cannot send messages to this destination.

Receive allowed
Clear this option (setting it to false) to prevent consumers from being able to receive messages
from this destination.

INHERIT
Use the value configured on the target destination.

TRUE Consumers can receive messages from this destination.

2070 Administering WebSphere applications



FALSE
Consumers cannot receive messages from this destination.

Reply destination
The name of a destination to be appended to any non-empty reverse routing path of messages
sent to this destination.

Reply destination bus
The bus on which the reply destination exists.

Default forward routing path
The value to which a message's forward routing path will be set if the message contains no
forward routing path. This identifies a sequential list of intermediary bus destinations that
messages must pass through to reach a target bus destination. The format of the field is a list
of line-delimited bus destinations specified as bus:name.

Delegate authorization check to target destination
Indicates which destination access role is checked when a user accesses the alias destination.
When this option is selected, the destination access role of the target destination is checked.
When this option is not selected, the destination access role of the alias destination is
checked.

Include an RFH2 message header when sending messages to WebSphere MQ
Indicates whether messages sent to WebSphere MQ include an RFH2 header. The RFH2
header stores additional information to that which is stored in theWebSphere MQ message
header. This property applies when the target bus is a WebSphere MQ queue manager.

7. Click OK.

8. Save your changes to the master configuration.

What to do next

If you want to enable correct processing of messages, under Additional Properties click Context
properties. This information adds to the context information derived from processing the message header.

If you want an expandable tree view of all the applications and messaging resources that reference the
current destination, both directly and indirectly, under Related Items click Application resources
topology. As many of the references as possible are resolved to links to the associated configuration
panel for the referenced object.

Configuring mediations
Use this task to configure one or more mediations for a selected bus destination in a service integration
bus.

About this task

You can configure a destination with one or more mediations that refine how messages are handled by the
destination, and can configure destination properties that affect how the mediations are used; for example,
that they should run within a global transaction.

For more information about configuring mediations, see “Mediating a destination” on page 2100.

Configuring a destination forward routing path
Use this task to configure a forward routing path for a selected bus queue. The forward routing path
identifies a sequence of bus destinations that a message should pass through after it has been delivered
to the bus destination to which the producer is attached.

Chapter 20. Welcome to administering Service integration 2071



About this task

If producing and consuming applications both attach directly to the destination that is to host and process
their messages, you do not have to use routing paths. You can still use mediations assigned to the
destination to manipulate messages. However, if you want a more flexible architecture, you can assign
mediations to several destinations then specify those destinations as the forward routing path for another
destination. For example in the above diagram, on the destination called Destination, on the bus called
myBus, you would set the Default forward routing path property to:

mybus:D1
mybus:D2
mybus:D3
mybus:D4

For each destination that should be visited by a reply message on its ways back to the producer
application, you can specify the name of a reply destination, which is the next destination in the reverse
routing path. If the same destinations are used for both the forward and return routing paths, you can
configure the return routing path when you configure the forward routing path, as described in this topic.
Otherwise, see “Configuring a destination reverse routing path” on page 2073.

To configure a forward routing path, you only have to change the properties of the destinations you want to
use. This topic contains optional steps to create destinations, in case you have not already done so.

To configure a forward routing path for a destination, use the administrative console to complete the
following steps:

Procedure
1. Optional: If you have not already done so, create the destination to which the producer applications

attach. For this destination, you can create a queue or create a topic space.

2. Optional: If you have not already done so, create each destination in the path. Only the last destination
in the path can be a topic space; all other destinations in the path must be queues.

If the destination is also to be part of the return routing path for reply messages, specify the name of
the next destination in the return routing path:

a. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
destination_name.

b. In the Reply destination bus field, type the name of the next destination in the return routing path.

c. Save your changes to the master configuration.

3. Optional: If you have not already done so, assign mediations to the destinations in the path. You can
include a destination without mediations in a routing path, to provide a future option to apply a
mediation assigned to that destination.

2072 Administering WebSphere applications



4. Edit the properties of the destination to which the producer applications attach, to configure the forward
routing path.

a. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
destination_name.

b. In the Default forward routing path field, type the names of the destinations in the path. Type a list
of bus destinations, each on a separate line, of the form bus_name:destination_name

Where

bus_name
Is the name of the service integration bus on which the destination is configured.

destination_name
is the name of the bus destination.

For example:
mybusA:queueA
anobusB:queueB
busC:queueC

c. Save your changes to the master configuration.

Configuring a destination reverse routing path
Use this task to configure a reverse routing path between two bus destinations. The reverse routing path
identifies the list of destinations to which a reply message should be sent when the consumer of a request
message sends a reply message back to the producer of the reply message.

About this task

In the following figure, a producing application sends messages to a bus destination. Unknown to the
application, the messages are then passed along a forward routing path of other bus destinations to a
target destination where a consuming application retrieves the messages.

For each destination that is to be part of a reverse routing path back to the producer application, you can
specify the name of a reply destination, which is the next destination in the reverse routing path. For
example in the above diagram, if reply messages are to retrace the forward routing path back to the
producing application, you would set reverse routing path as follows:

Destination Reply destination bus

D4 D3

D3 D2

D2 D1

Figure 45. Example of a routing path

Chapter 20. Welcome to administering Service integration 2073



Destination Reply destination bus

D1 Destination

You can specify a different reverse routing path to the forward routing path, to enable more mediations to
be applied to reply messages, or to apply mediations in a different destination sequence.

If the same destinations are used for both the forward and reverse routing paths, you can configure the
reverse routing path when you configure the forward routing path, as described in “Configuring a
destination forward routing path” on page 2071. Otherwise, you can configure (or change) the reverse
routing path as described in this topic.

To configure a reverse routing path, you only have to change the properties of the destinations you want to
use. This topic contains optional steps to create destinations, in case you have not already done so.

To configure a reverse routing path for a destination, use the administrative console to complete the
following steps:

Procedure
1. Optional: If you have not yet done so, create the destination to which the producer applications

attaches. For this destination, you can create a queue or create a topic space.

2. Optional: If you have not already done so, create each destination in the path.

3. Optional: If you have not already done so, assign mediations to the destinations in the path. You can
include a destination without mediations in a routing path, to provide a future option to apply a
mediation assigned to that destination.

4. On each destination in the reverse routing path, specify the name of the next destination in the path:

a. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
destination_name.

b. In the Reply destination field, type the name of the next destination in the reverse routing path.

c. In the Reply destination bus field, type the name of the next destination in the reverse routing path.

d. Save your changes to the master configuration.

Configuring context properties for a bus destination
Use this task to configure context properties for a bus destination.

About this task

The context properties contribute to the mediation context that is used with the message header
information to ensure that messages are processed correctly by a mediation assigned to this bus
destination.

Note: Context properties on the destination take precedence over context properties on a mediation. For
example, if a property with the same name is configured for a destination and a mediation, the
property on the destination takes precedence.

To configure context information for a bus destination, use the administrative console to complete the
following steps:

Procedure
1. Display the context properties for a selected bus destination:

a. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
destination_name.

b. Under Additional Properties, click Context properties.

2074 Administering WebSphere applications



2. Choose whether to create a new context property, configure an existing property, or delete one or
more existing properties.

v To create a new context property, click New.

v To browse or change an existing context property, click the property name.

v To delete one or more existing context properties, select the check box for each property you want
to delete, then click Delete.

3. To create or change a context property, specify the following context information:

Name Type a name for the context property.

Context type
Select the information type for the context property in the selection list.

Context value
Type a value for the context property.

4. Click OK.

5. Save your changes to the master configuration.

Administering destination roles
Service integration bus security uses role-based authorization. When messaging security is enabled, users
and groups must have authority to undertake messaging operations, at a bus destination. By administering
destination roles, you can control which users and groups can undertake operations at a bus destination,
and the types of operations that they can perform.

About this task

You use the administrative console to administer users and groups in access roles for a destination. The
access roles available for a destination depend on the type of destination. The table below lists the roles
that you can assign for each destination type:

Table 218. Destination roles. The first column of the table contains the list of destination types. The second column
contains the access roles that can be assigned for the destination types.

Destination type Access roles

queue sender, receiver, browser, creator

port sender, receiver, browser, creator

webService sender, receiver, browser, creator

topicSpace sender, receiver

foreignDestination sender

alias sender, receiver, browser

In addition to controlling which users and groups have access to a specific local or foreign destination, you
can also control the inheritance of access roles for a specific local destination. In this case, the default
access roles that apply to all the destinations in the local bus namespace are added to any access roles
that have been added for a specific destination.

Procedure
v “Adding users and groups to destination roles”

v “Removing users and groups from destination roles” on page 2077

v “Listing users and groups in destination roles” on page 2078

v “Restoring default inheritance for a destination” on page 2079

v “Disabling inheritance from the default resource” on page 2079

v Overriding inheritance from the default resource for a destination

Adding users and groups to destination roles:

Chapter 20. Welcome to administering Service integration 2075



Service integration bus security uses role-based authorization. By adding users and groups to the
destination roles for a secured bus, you can control which users and group members can undertake
messaging operations at a bus destination.

Before you begin

Ensure that the following conditions are met:

v Security is enabled for the bus. For more information, see Securing buses.

v The users and groups that you want to add to destination roles must exist already in the user repository.

About this task

By adding users or groups to the destination role, you grant the users or groups authority to undertake the
operation defined by the role at a selected destination. The destination roles are sender, receiver, browser,
and creator, depending on the destination type.

In this task you use the administrative console Security wizard to retrieve selected users or groups from
the user repository, and add them to destination roles for selected bus destinations.

Tip: To add a large number of users to destination roles, it is advisable to create a group in the user
repository, and add the group to the destination roles.

Procedure

1. Start the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage
destination access roles. A list of the destinations defined for the selected bus is displayed in the
Destinations panel.

3. Select one or more destination to work with:

v Click a single destination name.

v Select the check boxes next to multiple destination names, and then click Manage Access Roles.

The Destination access roles panel is displayed. The information for each destination you have
selected is displayed in a collapsed section.

4. Expand a destination header to list the users and groups that have been assigned to roles for this
destination. You can verify that the user or group you want to add does not already have a role at this
destination.

5. Click Add to start the Security wizard. The wizard takes you through the following steps to add
selected users or groups to access roles for the expanded destination:

a. Search for the users or groups that you want to add to access roles for the expanded destination:

Users or Groups
Select either Users or Groups to specify whether you want to grant access roles to users
or groups.

Search pattern
This field is mandatory. Specify a search string that is matched against user IDs or group
names in the user repository. Only user IDs or group names that match the search pattern
are retrieved, subject to the maximum number of search results. Wildcard characters are
allowed.

Maximum number of search results to display
This field is mandatory. Specify the maximum number of user IDs or group names you
want the administrative console to display.

b. Click Next. The wizard displays the users or groups in the user repository that match the
information that you provided in the previous step.

2076 Administering WebSphere applications



c. Select the check boxes next to the user IDs or group names that you want to add to access roles
for the currently expanded destination, and click Next. A list of user IDs or group names that you
can add to destination roles is displayed. Note that some users or groups might already be
assigned to access roles for this destination.

d. Select the appropriate access role icon for the user ID or group name that you want to add to the
role at this destination. For example, select the Receiver icon for a user ID or group name that you

want to add to the receiver role. The icon changes from to to show that you have added
the user or group to the access role for the resource.

e. Repeat the previous step to add more users or groups to access roles for the currently expanded
destination, and then click Next. A summary of your access role assignments is displayed.

f. Optional: Click Previous to review and change your assignments, if required.

g. Click Finish to confirm your assignments.

6. Repeat steps 4 and 5 for each destination you want to work with.

7. Save your changes to the master configuration.

Results

The selected users and groups are added to the access roles for the currently expanded destination. The
new access role assignments are displayed in the Destination access roles panel.

Example

A group called MyGroup receives messages from three queues, Queue 1, Queue 2, and Queue 3. If you
want the group MyGroup to produce and consume messages at an additional destination, Queue 4, you
add MyGroup to Queue 4, and then add MyGroup to the sender and receiver roles for Queue 4.

What to do next

Use the administrative console to complete other security administrative tasks.

Removing users and groups from destination roles:

Service integration bus security uses role-based authorization. By removing users and groups from the
destination roles for a secured bus, you can prevent those users and group members from performing
messaging operations on the bus.

About this task

When selected users and groups no longer require access to a destination, you can remove them from all
the roles for that destination.

Procedure

1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage
destination access roles A list of the destinations defined for the selected bus is displayed in the
Destinations panel.

3. Select one or more destinations to work with:

v Click a single destination name.

v Select the check boxes next to multiple destination names, and then click Manage Access Roles.

The Destination access roles panel is displayed. The information for each destination you have
selected is displayed in a collapsed section.

Chapter 20. Welcome to administering Service integration 2077



4. Expand a destination header to list the users and groups that have been assigned to roles at this
destination, and verify that the user or group that you want to remove has a role at this destination.

5. Select the users and groups that you want to remove from all role types at this destination, and click
Remove.

6. Save your changes to the master configuration.

Results

The selected users and groups are removed from all role types at the selected destination. The Manage
access roles for users and groups panel displays the updated role type assignments.

Example

The members of three groups, Group A, Group B, and Group C, belong to the sender role and the
receiver role for two queue destination, Queue 1 and Queue 2. If Group B is no longer required to send
and receive messages on Queue 2, you can use this task to remove Group B from all the role types on
Queue 2.

What to do next

Use the administrative console to complete other security administrative tasks.

Listing users and groups in destination roles:

Service integration bus security uses role-based authorization. By listing the users and groups in the
destination roles for a selected secured bus, you can find out which users and groups are authorized to
access the bus, and its resources.

About this task

In this task you use the administrative console to list all the users and groups in destination roles for
selected destinations. The list includes users and groups that have references in the service integration
role-based configuration; it does not include all the users and groups that exist in the user repository. The
permitted destination roles are sender, receiver, browser and creator, depending on the destination type.
Icons are used in the administrative console to represent the roles to which users and groups have been

assigned. For example, if the role type set icon ( ) is displayed in the sender role for a group called
Group 1, it means that Group 1 has been assigned to the sender role for a selected destination. For a
complete description of all the icons used to represent role assignments in the administrative console, see
“Access role assignments for bus security resources” on page 2529.

Procedure

1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage
destination access roles. The Destinations panel lists all the destinations defined for the selected
bus.

3. Select one or more destinations to work with:

v Click the name of a single destination.

v Select the check boxes next to multiple destinations, and click Manage Access Roles.

The Destination access roles panel is displayed. The information for each selected destination is
displayed in a collapsed section.

4. Expand a destination header.

2078 Administering WebSphere applications



Results

The Destination access roles panel lists the users and groups in access roles for the expanded
destination.

What to do next

You can now administer the users and groups in destination roles at this destination.

Restoring default inheritance for a destination:

Service integration bus security uses role-based authorization. By default, all local destinations inherit
access roles from the default resource. If default inheritance has been previously overridden, you can
restore it for a selected destination.

Before you begin

Default inheritance has been overridden for a selected secured destination. For more information, see
Overriding inheritance from the default resource for a destination.

About this task

If default inheritance has been overridden for a particular destination, you can restore it. In this task, you
use the administrative console to restore the role type assignments from the default resource to a selected
destination. A destination can only inherit access roles that are allowed for that particular type of
destination. For example, a topic space can inherit the sender and receiver roles, but it cannot inherit the
browser role. Inherited access roles are added to any existing access roles for the destination.

Procedure

1. Log into the administrative console.

2. Click Service integration -> Buses -> security_value -> [Authorization Policy] Manage
destination access roles. The Destinations panel lists all the destinations defined for the selected
bus.

3. Select one or more destinations to work with:

v Click the name of a single destination.

v Select the check boxes next to multiple destinations, and click Manage Access Roles.

The Destination access roles panel is displayed. The information for each selected destination is
displayed in a collapsed section.

4. Expand a destination to list the users and groups that have been assigned to roles for this destination.

5. Select the Inherit from default check box.

6. Click OK to save your changes.

7. Save your changes to the master configuration.

Results

The role type assignments for the default resource are inherited by the selected destination. The
Destination access roles panel displays the newly inherited default access roles for the destination, and
any existing access roles.

Disabling inheritance from the default resource:

You can disable the inheritance of security access roles from the default resource for selected resources.

Chapter 20. Welcome to administering Service integration 2079



Before you begin

About this task

In this task, you use the administrative console to disable the inheritance of access roles from the default
resource for selected resources. Disabling inheritance from the default access roles means that users or
groups that have roles in the default access role no longer have access to this destination.

Use the administrative console to disable the inheritance of access roles from selected resources as
follows:

Procedure

1. Use the administrative console to navigate to a list of the resources you want to work with for a
specific bus. For example, to list all the known destinations for a selected bus, click Service
integration -> Buses -> security_value -> [Authorization Policy] Manage destination access
roles. The Destination panel lists all the destinations defined on the selected bus.

2. Do one of the following to select one or more resources:

v Click the name of a single resource.

v Select the check boxes next to multiple resources, and click Manage Access Roles.

The Access Roles panel displays access role information for each selected resource within a collapsed
section.

3. Expand a resource header to list the users and groups that have been assigned to roles for this
resource.

4. Clear the Inherit from default check box.

5. Click OK to save your changes. The role types for the default resource are removed from the selected
resource, and the Access Roles panel is updated.

6. Save your changes to the master configuration.

Deleting a bus destination
Use these tasks to delete a bus destination from a service integration bus.

About this task

The steps required depend on the type of destination.

Deleting a non-topic space bus destination:

Use this task to delete, from a service integration bus, a bus destination that is not for a topic space.

Before you begin

You cannot delete bus destinations that are required by the system; for example, the default exception
destination for a messaging engine: _SYSTEM.Exception.Destination.messaging_engine_name.

Before you can completely delete a bus destination, you must ensure that the destination message point is
empty of all messages. A delete action is rejected if there are any messages on the message point that
are committed, uncommitted, indoubt, or locked.

Any reliable or durable messages that are sent after the delete action, but before the close of producers,
are sent to one of the following destinations:

v Another message point of the destination, if possible.

v The exception destination for the deleted destination.

2080 Administering WebSphere applications



Note: Any attached producers or consumers are closed asynchronously, and do not prevent the delete
action. Any messages sent after the delete action, but before close of producers might not be
discarded. Depending on the options set, the messages might be moved to the exception
destination. For more information see “Configuring exception destination processing for a bus
destination” on page 2063 and Exception destinations.

About this task

To delete a destination, use the administrative console to complete the following steps.

Procedure

1. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations.

2. Select the check box next to the destination name.

3. Check for and resolve any locked messages. Messages that are locked, as part of in-flight transactions
or as indoubt messages, are not deleted.

4. To clear all messages from the destination, click Clear. This action deletes all of the messages that it
can access. Messages that are locked, part of in-flight transactions or are in doubt are not deleted. If
there are messages that cannot be deleted, they are skipped and the operation indicates that it was
partially successful.

5. To delete the empty destination, click Delete.

6. To confirm that you want to delete the destination click OK.

Results

The bus destination is deleted.

What to do next

Monitor the exception queue for the messaging engine to which the destination was assigned, to see if
there are any in-transit messages that were not handled by clearing the destination before it was deleted.

Deleting a topic space:

Use this task to delete, from a service integration bus, a topic space.

Before you begin

Before you can delete a topic space, you must ensure that the publication points are empty. A delete
action is rejected if there are any indoubt or uncommitted publications for a publication point.

Note: Any attached producers are closed asynchronously, and do not prevent the delete action. However,
any messages sent after the delete action, but before close of producers are discarded.

The service integration bus topic space is the primary messaging object upon which WS-Notification
depends at run time. For information about the effect that deleting a topic space has upon new and
existing WS-Notification applications, see Failures as a result of changes in topic space and topic
namespace configurations.

About this task

To delete a topic space, use the administrative console to complete the following steps.

Chapter 20. Welcome to administering Service integration 2081



Procedure

1. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations.

2. Select the check box next to the destination name.

3. Check for and resolve any undelivered publications (indoubt or uncommitted) for the topic space.
Messages that are locked, as part of in-flight transactions or as indoubt messages, are not deleted.

4. To delete the empty topic space, click Delete.

5. To confirm that you want to delete the topic space, click OK.

6. Save your changes to the master configuration.

Results

The topic space is deleted.

Resetting a destination
Use this task to reset a bus destination.

About this task

You might need to reset a destination if, for example, it has become corrupt. To reset a destination, use a
wsadmin AdminControl command.

Note: If a destination becomes corrupt, a CWSIK0027E message is reported, which indicates a serious
error. If you see this message, refer to Diagnosing problems (using diagnosis tools) for advice
about gathering and reviewing information that might be useful in diagnosing this error. Also refer to
the MustGather: Collect troubleshooting data for a Service Integration Bus (SIB) problems
document on the Must gather website before opening a PMR.

Procedure
1. Set the name of the messaging engine by using a wsadmin AdminControl command of the following

form:

v Using Jython:
me = AdminControl.queryNames("type=SIBMessagingEngine,name=messaging_engine_name,*" )

v Using Jacl:
set me [$AdminControl queryNames type=SIBMessagingEngine,name=messaging_engine_name,*]

where messaging_engine_name is the name of the messaging engine.

2. Ensure that the messaging engine is running. Start the messaging engine if it is not already running.
Read “Starting a messaging engine” on page 2033 for more information.

3. Reset the destination by using a wsadmin AdminControl command of the following form:

v Using Jython:
AdminControl.invoke(me, "resetDestination", ["destination"] )

v Using Jacl:
$AdminControl invoke $me resetDestination {"destination"}

where destination is the name of the destination.

4. To complete the resetting of the destination, restart the server that is hosting the messaging engine on
which the destination is localized.

Results

The bus destination is reset ready for use.

2082 Administering WebSphere applications

http://www.ibm.com/support/search.wss?rs=180&q=mustgather


Managing bus destinations with administrative commands
You can use these commands to manage bus destinations.

About this task

These commands provide an alternative to using the administrative console or using the more complex
syntax of wsadmin and JACL.

Procedure
1. Open a wsadmin command session in local mode For example:

wsadmin -conntype none -lang jython

Note: The wsadmin scripting client is run from Qshell. For more information, see
Configuring Qshell to run WebSphere scripts using wsadmin scripting.

2. Type AdminTask.command

Where command is the command format as indicated in the related reference topics; for example:

wsadmin>AdminTask.listSIBDestinations(["-bus", "abus"])
’(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBTopicSpace_1098181446388)
(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBQueue_1098181503600)
(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBQueue_1098184221748)’

wsadmin>AdminTask.listSIBDestinations(["-bus", "abus", "-type", "TopicSpace"])
’(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBTopicSpace_1098181446388)’

Configuring message points
Use the following tasks to configure message points on service integration buses.

About this task

A message point is the location (for example, queue point or publication point) at which messages for a
bus destination are held in a messaging engine. The runtime state of the message point represents a
runtime instance of the destination.

When you define a new bus destination, its message point is created. You can then configure some
properties of the message point to override the general properties defined for the destination.

You can also administer the messages on the runtime view of the message point.

Procedure
v “Listing message points for a messaging engine”

v “Listing message points for a bus destination” on page 2084

v “Configuring a message point” on page 2084

Listing message points for a messaging engine
Use this task to list the message points for bus destinations on a selected messaging engine.

About this task

To display a list of message points for a messaging engine, use the administrative console to complete the
following steps.

Procedure
1. Click Service integration -> Buses -> bus_name -> [Topology] Messaging engines. This displays a

list of messaging engines on the bus.

Chapter 20. Welcome to administering Service integration 2083



2. Click the name of the messaging engine.

3. Under Message Points, click the link for the type of point you want to list.

Results

A list of message points for the selected messaging engine is displayed in the content pane.

Listing message points for a bus destination
Use this task to list the message points for a selected bus destination.

About this task

To display a list of message points for a bus destination, use the administrative console to complete the
following steps.

Procedure
1. Display the bus destination.

2. In the content pane, under Message Points, click the link for the type of point you want to list.

Results

A list of message points for the selected bus destination is displayed in the content pane.

Configuring a message point
Use this task to browse or change the configuration properties of a message point for a bus destination.

About this task

You can configure some properties of the message point to override the general properties defined for the
destination.

To browse or change the properties of a message point, use the administrative console to complete the
following steps:

Procedure
1. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->

destination_name.

2. Under Message Points, click the link for the type of message point:

v Queue points, for a queue

v Publication points, for a topic space

v Mediation points, for a mediated queue or topic space

3. In the content pane, click the name of the message point.

4. Optional: Change the message point settings.

5. Click OK.

6. Save your changes to the master configuration.

Managing messages on message points
Use these tasks to list and act on runtime messages that exist on message points in a service integration
bus.

2084 Administering WebSphere applications



About this task

You can list the message points for bus destinations and messaging engines, and list the messages on a
selected message point. You can use the list of messages as part of a troubleshooting task to find
messages that need to be deleted.

Procedure
v “Listing messages on a message point” on page 567

v “Deleting messages on a message point” on page 567

Listing messages on a message point
Use this task to list the messages that exist on a message point for a selected bus destination or
messaging engine.

About this task

To display a list of messages on a message point, use the administrative console to complete the following
steps:

Procedure
1. In the navigation pane, click Service integration -> Buses.

2. In the content pane, click the name of the service integration bus.

3. Optional: To list the message points for a bus destination, complete the following steps:

a. In the content pane, under Destination resources, click Destinations.

b. Click the destination name.

4. Optional: To list the message points for a messaging engine, complete the following steps:

a. In the content pane, under Topology, click Messaging engines.

b. Click the messaging engine name.

5. Under Additional Properties, click Message points. This displays a list of message points in the
content pane.

6. Click the message point name. This displays the properties of the destination localization in the content
pane.

7. Click the Runtime tab.

8. Under Additional Properties, click Messages.

Results

A list of messages on the selected message point is displayed in the content pane.

What to do next

You can select one or more messages to act on; for example, to display the message content, delete
messages.

Deleting messages on a message point
Use this task to delete one or more messages that exist on a message point for a selected bus destination
or messaging engine.

About this task

You should not usually have to delete messages on a message point. This task is intended as part of a
troubleshooting procedure.

Chapter 20. Welcome to administering Service integration 2085



To delete one or messages on a message point, use the administrative console to complete the following
steps:

Procedure
1. List the messages on the message point.

2. In the content pane, select the check box next to each message that you want to delete. Alternatively,

you can select all messages in the list by clicking Select all items .

3. Click Delete.

Results

The selected messages are removed from the list.

Administering durable subscriptions
Use the following tasks to display the durable subscriptions that exist, to enable a subscription to be
changed, or to delete a subscription.

About this task

The default messaging provider supports the use of durable subscriptions to topics. This enables a
subscriber to receive a copy of all messages published to a topic, even messages published during
periods of time when the subscriber is not connected to the server.

If an application creates a durable subscription, it is added to the list that administrators can display and
act upon by using the administrative console. Each durable subscription is created with a unique
subscription identifier, clientID##subName where:

clientID
The client identifier used to associate a connection and its objects with the messages maintained
for applications (as clients of the JMS provider). You should use a naming convention that helps
you identify the applications, in case you have to relate durable subscriptions to the associated
applications for runtime administration. For more information about client identifiers, see section
4.3.2 of the JMS 1.1 specification.

subName
The JMS durable subscription name used to uniquely identify a durable subscription within a given
client identifier. For more information about JMS durable subscription names, see section 6.11.1 of
the JMS 1.1 specification.

For durable subscriptions created by message-driven beans, the subscription name value is set on the
JMS activation specification. For other durable subscriptions, the value is set by the administrator on the
JMS connection factory and by the JMS application on the createDurableSubscriber operation.

Note: The server_name-durableSubscriptions.ser file in the WAS_HOME/temp directory is used by the
messaging service to keep track of durable subscriptions for message-driven beans. If you uninstall
an application that contains a message-driven bean, this file is used to unsubscribe the durable
subscription. If you have to delete the WAS_HOME/temp directory or other files in it, ensure that you
preserve this file.

Procedure
v “Listing subscriptions” on page 2087.

v “Stopping active subscribers for durable subscriptions” on page 2087.

v “Deleting durable subscriptions” on page 2088.

2086 Administering WebSphere applications



Listing subscriptions
Use this task to list the subscriptions that exist at runtime for a topic space.

About this task

The runtime state of a subscription is linked to the publication point for the messaging engine that is used
to store messages delivered to the subscription. You can list subscriptions by first displaying the
publication point, either from the messaging engine panel or the list of all publication points for a service
integration bus.

To display a list of subscriptions for a publication point, use the administrative console to complete the
following steps:

Procedure
1. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations. This

displays any existing destinations in the content pane.

2. Click the name of the topic space.

3. Under Message Points, click Publication points. This displays the publication points for the topic
space.

4. Click the name of the publication point.

5. Click the Runtime tab.

6. Under Additional Properties, click Subscriptions

Results

The list of subscriptions for the selected topic space is displayed in the content pane. For more information
about the list of subscriptions, see “Subscriptions [Collection]” on page 2260.

Each subscription has a unique subscription identifier that has the form, clientID##subName where:

clientID
The client identifier used to associate a connection and its objects with the messages maintained
for applications (as clients of the JMS provider). You should use a naming convention that helps
you identify the applications, in case you have to relate subscriptions to the associated
applications for runtime administration. For more information about client identifiers, see section
4.3.2 of the JMS 1.1 specification.

subName
The JMS subscription name used to uniquely identify a durable subscription within a given client
identifier. For more information about JMS subscription names, see section 6.11.1 of the JMS 1.1
specification.

What to do next

To display details of a subscription, click the name of the subscription in the list. To delete one or more
subscriptions, select the check box next to the subscription names then click Delete.

Stopping active subscribers for durable subscriptions
Use this task to enable applications to change a cloned durable subscription. This task enables
applications to connect to an existing cloned durable subscription, and to specify parameters that differ
from those that were used to create the existing subscription.

Chapter 20. Welcome to administering Service integration 2087



About this task

When an application connects to an existing durable subscription, but specifies parameters that differ from
those that were used to create the existing subscription, the subscription is deleted then recreated with
the new parameters. A durable subscription can be changed in this way only when it has no active
consumers.

Note: The server_name-durableSubscriptions.ser file in the WAS_HOME/temp directory is used by the
messaging service to keep track of durable subscriptions for message-driven beans. If you uninstall
an application that contains a message-driven bean, this file is used to unsubscribe the durable
subscription. If you have to delete the WAS_HOME/temp directory or other files in it, ensure that you
preserve this file.

To stop active subscribers for one or more durable subscriptions, complete the following steps:

Procedure
1. Use the administrative console to list the durable subscriptions

2. From the list, identify the client identifier of the durable subscription. The name column lists the unique
subscription name for each durable subscription, in the form clientID##subName where:

clientID
The client identifier used to associate a connection and its objects with the messages
maintained for the client by the JMS provider.

subName
The name used to uniquely identify a durable subscription within a given client identifier.

3. Use your client identifier naming convention to identify the application assigned to the client identifier.

4. List the applications that have active consumers for the durable subscription. In the navigation pane of
the administrative console, click Applications -> Application Types -> WebSphere enterprise
applications.

5. In the console pane, select the check box next to the name of each application that you want to stop.

6. Click Stop

Results

This stops the active consumers created by the applications, so applications can reconnect to the durable
subscriptions with different parameters from those that were used to create the previous subscriptions.

Deleting durable subscriptions
Use this task to delete a durable subscription.

About this task

To delete one or more durable subscriptions, complete the following steps:

Procedure
1. Display the durable subscriptions

2. Select the check box for each subscription you want to delete.

3. Click Delete

Results

The selected durable subscriptions are deleted.

2088 Administering WebSphere applications



Administering mediations
These topics provide information about mediations, which are used to change how messages are handled
at destinations on a service integration bus.

Procedure
v “Securing mediations”

v “Configuring mediations” on page 2091

v “Configuring mediation points” on page 2102

v “Managing mediations with administrative commands” on page 2103

v “Operating mediations at mediation points” on page 2104

v “Administering messages on mediation points” on page 2106

v “Example: Using mediations to trace, monitor and log messages” on page 2107

Securing mediations
Use the following tasks to secure mediations at an operations level. For example, a mediation inherits its
identity from a the messaging engine, but you might want to specify an alternative identity for the
mediation to use.

Configuring an alternative mediation identity for a mediation handler
Use this task to configure an alternative mediation identity for a mediation handler

About this task

By default, a mediation inherits the identity used by the messaging engine. In some cases, you might want
to specify an alternative identity for a mediation handler to use. For example, for a single mediation that
sends messages to a destination. To do this, you specify a "run-as" identity for the mediation handler at
deployment, and map the mediation handler to an identity other than the default mediation identity by
using a role name. Follow the steps below to specify an alternative mediation identity:

Procedure
1. Package your mediation handler as an EAR file.

2. Edit the deployment descriptor file to define the roles. For more information, see Configuring
programmatic logins for Java Authentication and Authorization Service.

3. Assign users to the role. For more information, see Mapping users to RunAs roles using an assembly
tool and Securing applications during assembly and deployment.

4. Deploy the mediation handler in WebSphere Application Server, and assign users to the RunAs role.
For more information, see Assigning users to RunAs roles. You can confirm the mappings of users to
roles, add new users and groups, and modify existing information during this step. For more
information, see Deploying secured applications.

Example

What to do next

Next, you are ready to authorize mediations to access destinations. For more information, see
Administering authorization permissions.

Configuring the bus to access secured mediations
Use this task to ensure that the service integration bus is authorized to access secured mediations.

Chapter 20. Welcome to administering Service integration 2089



Before you begin

The mediation is secured by using a Java Platform, Enterprise Edition (Java EE) Connector Architecture
authentication alias. For information about creating a Java EE authentication alias, see Managing Java 2
Connector Architecture authentication data entries for JAAS.

About this task

To configure the bus to access a secured mediation, you must add the mediation authentication alias for
the secured mediation to the properties for the bus:

v If the bus has a Version 6 bus member, you must provide the principal and its associated password.

v If the bus has WebSphere Application Server Version 7.0 or later bus members only, you need only
provide the principal.

Procedure
1. Log into the navigation pane.

2. Click Service integration -> Buses -> security_value. The bus security configuration panel is
displayed.

3. In the Mediations authentication alias field, select the principal for the mediation, and its associated
password if required.

4. Click OK.

5. Save your changes to the master configuration.

Results

The selected bus is configured to access secured mediations.

What to do next

You can assign security roles to your mediation handlers to protect them from use by unauthorized users.
For more information, see Deploying secured applications.

Configuring a bus to run mediations in a multiple security domain environment
Use this task to configure a secured bus so that it can run mediations successfully on bus members in
different security domains.

Before you begin

The secured bus must be configured to use a non-global security domain. For more information about
securing buses by using multiple security domains, refer to Securing buses.

About this task

If your bus topology has bus members in different security domains, you can configure the bus to allow
mediations to run under the server identity. This means that a mediation can run on any server in any
domain. You do not have to add a dedicated user ID for each mediation to the user repository, or maintain
a mediation authentication alias.

Use the administrative console to configure a secured bus to run mediations successfully as follows:

Procedure
1. In the navigation pane, click Service integration -> Buses -> security_value. The security settings

for the selected bus are displayed.

2. Check the option Use the Server ID when running mediations.

2090 Administering WebSphere applications



3. Click Apply.

4. Save your changes to the master configuration.

Results

You have configured the bus to run mediations successfully across servers in multiple security domains.

What to do next

You can use the administrative console to control access to the bus by administering users and groups in
the bus connector role.

Configuring mediations
Use the following tasks if you want to modify the behavior of a mediation, control which messages are
mediated, or influence how messages are processed.

Installing a mediation
You can install an enterprise application (EAR file) containing a mediation on a server.

Before you begin
v You have an EAR file that you can deploy into WebSphere Application Server (base). The EAR file

contains a mediation handler enterprise bean. You can use the tooling provided with IBM Rational
Application Developer to assemble EAR files.

v For guidance on selecting the target application server for your mediation, see Mediation application
installation.

About this task

In this task, you use the administrative console to install a mediation application into WebSphere
Application Server (base). For additional information about installing enterprise applications, see Installing
enterprise application files with the console. For information about installing a secure mediation handler,
see Deploying secured applications.

Procedure
1. Click Applications -> New Application -> New Enterprise Application.

2. On the first Preparing for application install page, specify the full path name of your EAR file, and click
Next.

3. On the second Preparing for application install page, choose to generate default bindings.

a. Expand Choose to generate default bindings and mappings.

b. Select Generate default bindings. Using the default bindings causes any incomplete bindings in
the application to be completed with default values. The product does not change existing bindings.

c. Click Next. The Select Installation options page is displayed.

4. Type the name of your EAR file in the Application name field, if it not already specified, and click
Next. The Map modules to servers page is displayed.

5. Select the target application server where you want to install the modules that are contained in your
application, and click Next.

6. Optional: If the panel Deploy enterprise beans is displayed, clickApply, and click Next.

7. Review the summary of the installation options you have chosen:

a. If you want to make changes, click Previous to return to the appropriate page.

b. When you are ready, click Finish to confirm your installation options.

8. Save your changes to the master configuration.

Chapter 20. Welcome to administering Service integration 2091



Results

Your mediation application is installed on your chosen server or cluster.

What to do next

You can configure the properties for the mediation in the administrative console. For more information, see
“Configuring a new mediation.”

Configuring a new mediation
Use this task to configure a mediation in the administrative console.

Before you begin

This task assumes that you have installed a mediation application on the server where you want to run the
mediation. For more information, see “Installing a mediation” on page 2091.

About this task

Configuring a new mediation makes it available for use in mediating one or more destinations.

In this task, you use the administrative console to configure a mediation:

Procedure
1. Click Service integration -> Buses -> bus_name -> [Destination resources] Mediations.

2. In the content pane, click New.

3. Specify the following properties for the mediation:

Mediation name
Type a name for the mediation that is unique to the service integration bus. This name is used
to identify the mediation for administrative purposes.

Description
Optionally, type a description for the mediation.

Handler list name
Type the handler list name. This is the name that was used when the mediation handler was
deployed. Handler list names are unique within the WebSphere Application Server
administrative cell.

Global transaction
Optionally, select this option (setting it to true) if you want to start a global transaction for each
message mediated by the mediation. By default, Global transaction is set to false, and a global
transaction is not started when a message is mediated.

Allow concurrent mediation
Optionally, select this option (setting it to true) if you want to mediate multiple messages at the
mediated destination.

By default, Allow concurrent mediation is set to false, and concurrent mediations are not
allowed.

Note: Do not allow concurrent mediation if message ordering is important.

Selector
Optionally, type a message selector to control which messages are mediated by the mediation.
The selector operates on the content of the message header. The syntax of the message
selector is defined by the JMS specification.

2092 Administering WebSphere applications



If the message content meets the conditions of the selector, the message is mediated.
Otherwise, the message is not mediated.

Discriminator
Optionally, type a message discriminator to control which messages are mediated by the
mediation. Message discriminators conform to the publish/subscribe topicspace syntax.

If the message meets the conditions of the discriminator, the message is mediated. Otherwise,
the message is not mediated.

4. Click OK.

5. Save your changes to the master configuration.

Results

You have configured a new mediation.

What to do next

You can use the mediation to mediate a destination. For more information, see “Mediating a destination”
on page 2100.

Deleting a mediation
Use this task to delete a selected mediation in the administrative console.

Before you begin

Before deleting a mediation, you must ensure that it is not in use at a bus destination. You cannot delete a
mediation that is in use at a destination; you must first unmediate the destination. For more information,
see “Unmediating a destination” on page 2101.

About this task

Deleting a mediation removes it from the administrative console. To delete a mediation, use the
administrative console to complete the following steps

Procedure
1. Click Service integration -> Buses -> bus_name -> [Destination resources] Mediations.

2. Select the mediations that you want to delete.

3. Click Delete.

4. Save your changes to the master configuration.

Results

The mediations are deleted.

Modifying the properties of a mediation
Use this task to set properties to control some aspects of the runtime behavior of an existing mediation.

Before you begin

You should ensure that the mediation exists. If you want to configure a new mediation, see “Configuring a
new mediation” on page 2092.

Chapter 20. Welcome to administering Service integration 2093



About this task

Using the administrative console, you can specify the following options for a selected mediation:

v Each message processed by the mediation runs within a global transaction.

v The mediation processes messages concurrently.

v The mediation processes only those messages that meet some selection criteria.

Procedure
1. Click Service integration -> Buses -> bus_name -> [Destination resources] Mediations ->

mediation_name.

2. Select any of the following properties for the mediation:

Description
Optionally, type a description of the behavior of the mediation, taking into account any
properties specified for the mediation.

Handler list name
Type the name of the handler list that was defined when the mediation was deployed. Handler
list names start with an uppercase letter, and are unique within the service integration bus.

Global transaction
Optionally, select this option (setting it to true) if you want to start a global transaction for each
message mediated by the mediation.

By default, Global transaction is set to false, and a global transaction is not started when a
message is mediated.

Allow concurrent mediation
Optionally, select this option (setting it to true) if you want to mediate multiple messages at the
mediated destination.

By default, Allow concurrent mediation is set to false, and concurrent mediations are not
allowed.

Note: Do not allow concurrent mediation if message ordering is important.

Selector
Optionally, type a message selector to control which messages are mediated by the mediation.
The selector operates on the content of the message header. The syntax of the message
selector is defined by the JMS specification.

If the message meets the conditions of the selector, the message is mediated. Otherwise, the
message is not mediated.

For information about the properties that can be used in selectors, see “Message properties
support for mediations” on page 2530.

Discriminator
Optionally, type a message discriminator to control which messages are mediated by the
mediation. Message discriminators conform to the publish/subscribe topic space syntax.

If the message meets the conditions of the discriminator, the message is mediated. Otherwise,
the message is not mediated.

3. Optional: Specify any additional properties.

4. Click OK.

5. Save your changes to the master configuration.

2094 Administering WebSphere applications



Results

You have changed the properties for the selected mediation.

What to do next
v If you want to configure the mediation context information, see “Configuring mediation context

properties” on page 2097.

v To use the mediation to mediate a destination, see “Mediating a destination” on page 2100.

Adding mediation context information
Use this task to add a mediation context property for a selected mediation.

Before you begin

The mediation for which you want to add context information must exist in the administrative console. To
create a mediation, see “Configuring a new mediation” on page 2092.

About this task

Mediation context information is used, in addition to the message header information, to determine how a
message is processed at run time. New context information is defined by adding a mediation context
property. A destination can also have context properties. If you add a context property for a mediation that
has the same name as a destination context property, the property on the destination takes precedence.

You can add the following mediation context properties:

Property name Description Value Additional information

sib:SkipWellFormedCheck Omits the well formed check that
is performed on messages after
they have been processed by the
mediation.

True or
false

This property is overridden by the
message delivery option assured
persistent. A well formed check is
always performed for messages
that have the delivery option
assured persistent.

sib:GlobalTransactionLPSEnabled Allows a mediation to contain
resources for which Last
Participant Support (LPS) is
enabled. This enables a
one-phase commit resource to
participate in a global transaction
that has two-phase commit
resources.

True or
false

To add new mediation context information for a selected mediation, use the administrative console to
complete the following steps:

Procedure
1. Display the Context Properties panel for a selected mediation: click Service integration -> Buses ->

bus_name -> [Destination resources] Mediations -> mediation_name -> [Additional Properties]
Context properties. Any mediation context properties that have already been defined for the selected
mediation are displayed.

2. Click New in the content pane.

3. Specify the following information for the mediation context property:

Name Type a name for the mediation context property. You must type the name exactly as it appears
in the table above.

Chapter 20. Welcome to administering Service integration 2095



Context type
Select the type Boolean for the mediation context property.

Context value
Type True to set the property. The value is not case sensitive.

4. Click OK.

5. Save your changes to the master configuration.

Results

You have added new mediation context information for the selected mediation.

What to do next

You can repeat this task to add another mediation context property.

Listing mediation context properties
Use this task to list context properties for a selected mediation.

About this task

Mediation context information is used, in addition to the message header information, to determine how a
message is processed at run time. The context information is provided by one or more of the following
mediation context properties:

Property name Description Value Additional information

sib:SkipWellFormedCheck Omits the well formed check that
is performed on messages after
they have been processed by the
mediation.

True or
false

This property is overridden by the
message delivery option assured
persistent. A well formed check is
always performed for messages
that have the delivery option
assured persistent.

sib:GlobalTransactionLPSEnabled Allows a mediation to contain
resources for which Last
Participant Support (LPS) is
enabled. This enables a
one-phase commit resource to
participate in a global transaction
that has two-phase commit
resources.

True or
false

In this task, you use the administrative console to list the mediation context properties for a selected
mediation, as follows:

Procedure
1. Log in to the administrative console.

2. Click Service integration -> Buses -> bus_name -> [Destination resources] Mediations ->
mediation_name -> [Additional Properties] Context properties.

Results

The mediation context properties for the selected mediation are displayed.

What to do next

You can configure or delete the context information, or add a new context property for the selected
mediation.

2096 Administering WebSphere applications



Configuring mediation context properties
Use this task to configure context properties for a selected mediation.

Before you begin

The mediation context property you want to configure must exist in the administrative console. To add a
new mediation context property, see “Configuring a new mediation” on page 2092.

About this task

Mediation context information is used, in addition to the message header information, to determine how a
message is processed at run time. By configuring the mediation context properties, you ensure that
messages are processed correctly. A destination can also have context properties. If a context property is
configured for both a destination and a mediation, with the same name for the property, the property on
the destination takes precedence.

You can configure the following mediation context properties:

Property name Description Value Additional information

sib:SkipWellFormedCheck Omits the well formed check that
is performed on messages after
they have been processed by the
mediation.

True or
false

This property is overridden by the
message delivery option assured
persistent. A well formed check is
always performed for messages
that have the delivery option
assured persistent.

sib:GlobalTransactionLPSEnabled Allows a mediation to contain
resources for which Last
Participant Support (LPS) is
enabled. This enables a
one-phase commit resource to
participate in a global transaction
that has two-phase commit
resources.

True or
false

To configure an existing mediation context property, use the administrative console to complete the
following steps:

Procedure
1. Display the mediation context property for a selected mediation: click Service integration -> Buses ->

bus_name -> [Destination resources] Mediations -> mediation_name -> [Additional Properties]
Context properties. The mediation context properties for the selected mediation are displayed.

2. Select the mediation context property you want to configure.

3. Specify the following information for the mediation context property:

Name Type a name for the mediation context property. You must type the name exactly as it appears
in the table above.

Context type
Select the type Boolean for the mediation context property.

Context value
Type a value for the mediation context property: either True to set the property, or False to
unset it. The value is not case sensitive.

4. Click OK.

5. Save your changes to the master configuration.

Chapter 20. Welcome to administering Service integration 2097



Results

The context property is configured for the selected mediation.

What to do next

You can repeat this task to configure additional mediation context properties.

Deleting mediation context information
Use this task to delete a mediation context property for a selected mediation.

About this task

In this task, you delete a mediation context property. The mediation context information provided by the
property is no longer used at runtime to process messages.

You can delete the following mediation context properties:

Property name Description Value Additional information

sib:SkipWellFormedCheck Omits the well formed check that
is performed on messages after
they have been processed by the
mediation.

True or
false

This property is overridden by the
message delivery option assured
persistent. A well formed check is
always performed for messages
that have the delivery option
assured persistent.

sib:GlobalTransactionLPSEnabled Allows a mediation to contain
resources for which Last
Participant Support (LPS) is
enabled. This enables a
one-phase commit resource to
participate in a global transaction
that has two-phase commit
resources.

True or
false

To delete mediation context information for a selected mediation, use the administrative console to
complete the following steps:

Procedure
1. Display the Context Properties panel for a selected mediation: click Service integration -> Buses ->

bus_name -> [Destination resources] Mediations -> mediation_name -> [Additional Properties]
Context properties. The mediation context properties for the selected mediation are displayed.

2. Select the property you want to delete, and click Delete.

3. Click OK.

4. Save your changes to the master configuration.

Results

Your chosen mediation context property is deleted for the selected mediation.

What to do next

You can repeat this task to delete another mediation context property.

Configuring the mediation thread pool
Use this task to configure the mediation thread pool.

2098 Administering WebSphere applications



Before you begin

The wsadmin tool must be running. For more information, see Starting the wsadmin scripting client using
wsadmin scripting.

About this task

You configure the mediation thread pool if you want to change the number of threads used when running
mediations concurrently. The maximum size of the thread pool determines the maximum number of
messages that can be mediated concurrently for a messaging engine.

The mediations thread pool, attribute name mediationsThreadPool, is an attribute of the messaging
engine. By default, mediationsThreadPool does not exist, and a default thread pool is created and used at
run time. In this task, use the wsadmin tool to create a thread pool object, and then modify its properties
using JACL, as shown in the examples below:

Note: You use the wsadmin tool from within Qshell. For more information, see Configuring
Qshell to run WebSphere scripts using wsadmin scripting.

Procedure
1. Use this example to create a mediationThreadPool object:

AdminConfig.create("ThreadPool" , messagingEngine,
[["name" , "stitch.server1-bus2-mediationThreadPool"]] ,
"mediationThreadPool")

Tip: In this case, the thread pool name is based on the name of the messaging engine. Although it is
not required to do this, it makes it easier to find the thread pool name when using Performance
Monitoring Infrastructure (PMI).

2. Use this example to modify a mediationThreadPool object:

AdminConfig.modify(AdminConfig.showAttribute(messagingEngine,
"mediationThreadPool"), [["maximumSize" , "10"]])

maximumSize can contain any of the mediationsThreadPool properties. To add additional parameters,
insert [attribute_name attribute_value] within the outer brackets ([]).

Tip: There is a space between attribute_name and attribute_value.

Setting tuning properties for a mediation
Use this task to tune a mediation for performance by using the administrative console.

Before you begin

Review the guidance on when it is appropriate to tune a mediation for performance in the topic
Performance tuning for mediations.

About this task

You can set the following tuning property in the administrative console to improve the performance of a
mediation:

sib:SkipWellFormedCheck
Whether you want to omit the well formed check that is performed on messages after they have been
processed by the mediation. Either true or false.

Note: This property is overridden for messages that have the delivery option assured persistent, and
a well formed check is always performed.

Chapter 20. Welcome to administering Service integration 2099



To set, or unset, one or more tuning properties for a mediation, use the administrative console to complete
the following steps:

Procedure
1. Display the mediation context information:

a. Click Service integration -> Buses -> bus_name -> [Destination resources] Mediations.

b. In the content pane, select the name of the mediation for which you want to configure tuning
information.

c. Click [Additional Properties] Context information.

2. In the content pane, click New.

3. Type the name of the property in the Name field.

4. Select the type Boolean from the drop-down list.

5. Type true in the Context Value field to set the property, or type false to unset the property.

6. Click OK.

7. Save your changes to the master configuration.

Mediating a destination
Use the administrative console to mediate a service integration destination with a mediation hosted by
service integration. A mediation point is created for the mediated destination on the bus member where
you want the mediation to run, and is used to process messages at runtime.

Before you begin

Ensure that the following resources exist:

v The mediation you want to apply to the destination. For more information, see “Configuring a new
mediation” on page 2092.

v The bus member where the mediation point is to be created.

About this task

You can mediate a destination with a single mediation only, but you can associate the same mediation with
more than one destination. This scenario mediates a destination with a service integration mediation point,
and a service integration mediation. If you want to mediate a destination by using an WebSphere MQ
program, or assign it to an WebSphere MQ queue point, see “Mediating a destination by using a
WebSphere MQ queue as the mediation point” on page 562.

Procedure
1. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations. The bus

destinations for the selected bus are displayed.

2. Select the destination you want to mediate, and click Mediate. A list of available mediations is
displayed.

3. Select the mediation to associate with the destination, and click Next.

4. Select the bus member where you want the mediation to run, and click Next.

5. Click Finish to mediate the destination, or Previous to make any changes to your selections.

6. Save your changes to the master configuration.

Results

Your chosen destination is mediated with your chosen mediation, and a mediation point is created for the
destination on the bus member.

2100 Administering WebSphere applications



What to do next

You can control some aspects of how the mediation processes messages at the mediation point. For
example, whether the mediation run within a global transaction, or processes multiple messages
concurrently. For more information, see “Modifying the properties of a mediation” on page 2093.

Unmediating a destination
Use this task to unmediate a selected bus destination.

Before you begin

Before you start this task, you should consider whether you want to preserve message ordering at the bus
destination you intend to unmediate.

About this task

Unmediating a selected bus destination breaks the association between the bus destination and the
mediation, and the mediation stops processing messages at the bus destination at run time. This task
unmediates a bus destination, and optionally preserves message ordering at the bus destination.

To unmediate a bus destination use the administrative console to complete the following steps:

Tip: If you want to preserve message ordering, complete all the following steps. If message ordering is
not important, you can omit steps 2 and 4:

Procedure
1. Display the bus destination you want to unmediate. Click Service integration -> Buses -> bus_name

-> [Destination resources] Destinations -> destination_name.

2. Optional: If you want to preserve message ordering at the destination, take the following steps:

a. Clear the Send Allowed check box (setting it to false) to stop sending messages to the message
points for this destination.

b. Wait until there are no messages listed for the mediation points.

c. Stop all the mediation points, and wait for all the mediation points to enter the stopped state.

d. Optional: If it is not already selected, select the bus destination you want to unmediate.

3. Click Unmediate to unmediate the destination.

4. Optional: Select the Send Allowed check box (setting it to true) to resume sending messages to the
mediation points for this destination.

5. Save your changes to the master configuration.

Results

The destination is unmediated, and the mediation point is deleted from the destination.

If you did not preserve message ordering, any messages that remain on the mediation point after you
have unmediated the destination are processed as for a non-mediated destination. Messages with an
empty forward routing path are placed on the next appropriate message point for the destination.
Messages with a non-empty forward routing path are sent to the destination specified in the forward
routing path.

The unmediated destination now operates as a non-mediated destination, and new messages are sent to
a message point on the destination.

Chapter 20. Welcome to administering Service integration 2101



Configuring mediation points
In service integration technologies, messages are held at specialized message points called mediation
points before they are processed by a mediation. Use the following tasks to set properties at mediation
points to route messages and start and stop mediations:

Configuring a mediation point
You can use the administrative console to browse or change the configuration properties for a selected
mediation point for a selected bus destination.

Before you begin

You must first create a mediation point on a bus destination. For more information, see “Mediating a
destination” on page 2100.

About this task

A mediation point is a specialized message point on a bus location where messages are stored and
mediated. Configuring the properties of a mediation point enables you to control some aspects of how
messages are sent to and received from a bus destination. In this task you use the administrative console
to configure the properties for a selected mediation point for a selected bus destination.

Note: You should be aware that the mediation point properties Send allowed and Initial state override the
general properties defined for the bus destination.

To browse or change the properties for a selected mediation point, use the administrative console to
complete the following steps:

Procedure
1. Start the administrative console, and click Service integration -> Buses -> bus_name -> [Topology]

Messaging engines -> engine_name -> [Message points] Mediation points ->
mediation_point_name. The properties for the selected mediation point are displayed.

2. Optional: Browse or change the following properties for the mediation point:

Identifier
The identifier by which this message point is known for administrative purposes. This field is
for display purposes only.

UUID The universal unique identifier assigned to this mediation point for administrative purposes.
This field is for display purposes only.

High message threshold
The maximum total number of messages that can be placed on this mediation point. This field
is for display purposes only.

Send allowed
This property specifies whether messages are sent to this mediation point. By default, True is
selected, and messages are sent to this mediation point. Select False to prevent messages
from being sent to this mediation point.

Initial state
This property specifies the state of the mediation point when the host messaging engine is
started for the first time. Permitted values are Started or Stopped. The default state is Started.
The mediation does not start mediating messages until Initial state is Started.

Target UUID
The UUID of the bus destination where this mediation point is created. This field is for display
purposes only.

3. Click OK.

2102 Administering WebSphere applications



4. Save your changes to the master configuration.

Results

You have browsed or changed the configuation properties for the selected mediation point.

Listing mediation points for a bus destination
Use this task to list mediation points for a selected bus destination.

About this task

This task lists the mediation points for a selected bus destination. You might want to do this, for example,
to check that a destination is mediated.

To display a list of mediation points for a bus destination, use the administrative console to complete the
following steps:

Procedure
1. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->

destination_name.

2. Click [Message Points] Mediation Points.

Results

All the mediation points for the selected bus destination are displayed.

Listing mediation points for a messaging engine
You can use the administrative console to list all the known mediation points for a selected messaging
engine. You can then view the properties for a mediation point, administer messages for a mediation point,
or operate mediations at a mediation point.

About this task

To list the mediation points for a selected messaging engine, use the administrative console to complete
the following steps:

Procedure

Start the administrative console, and click Service integration -> Buses -> bus_name -> [Topology]
Messaging engines -> engine_name -> [Message points] Mediation points.

Results

The Mediation points panel displays a list of all the mediation points for the selected messaging engine.

What to do next

You can click the name of a mediation point in the list to work with its properties, administer its messages
or operate mediations.

Managing mediations with administrative commands
You can use wsadmin commands to administer service integration technologies mediations. For example
you can create, delete and view mediations, configure mediation properties and mediate destinations.

Chapter 20. Welcome to administering Service integration 2103



About this task

These commands provide an alternative to using the administrative console.

Procedure
1. Open a wsadmin command session in local mode For example:

wsadmin -conntype none -lang jython

Note: The wsadmin scripting client is run from Qshell. For more information, see
Configuring Qshell to run WebSphere scripts using wsadmin scripting.

2. Type AdminTask.command where command is the command format as indicated in the related reference
topics. For example:

wsadmin>AdminTask.listSIBMediations("-bus abus")
(cells/9994GKCCell01/buses/abus|sib-mediations.xml#SIBDestinationMediation_1098217858584)
(cells/9994GKCCell01/buses/abus|sib-mediations.xml#SIBDestinationMediation_1098220051588)

Operating mediations at mediation points
Use these tasks to start, stop and restart mediations at runtime at specialized message points called
mediation points.

Before you begin

These tasks assume that mediations are configured in the administrative console. For more information,
see “Configuring mediations” on page 2091.

Starting a mediation
Use this task when you want a mediation to apply its message processing to messages at a selected
specialized message point on a destination, at runtime.

Before you begin

The mediation you want to start must be associated with a destination. For more information, see
“Mediating a destination” on page 2100.

About this task

Starting (and stopping) a mediation is a runtime operation. All mediation runtime operations are performed
on specialized destination message points called mediation points. When you start a mediation, the
mediation begins operating on messages at a selected mediation point. You can start a mediation after the
server has started. A mediation cannot operate on new messages at a mediation point after server
shutdown begins.

Tip: To ensure that a mediation operates on a specific message at a mediation point, remove all existing
messages from the mediation point before you start the mediation. For more information, see
“Deleting messages on a mediation point” on page 2107.

To start a mediation, complete the following steps in the administrative console:

Procedure
1. List the mediation points by using the administrative console:

v To list the mediation points for a bus destination, click Service integration -> Buses -> bus_name
-> [Destination resources] Destinations -> destination_name -> [Message Points] Mediation
points.

2104 Administering WebSphere applications



v To list the mediation points for a messaging engine, click Service integration -> Buses ->
bus_name -> [Topology] Messaging engines -> engine_name -> [Message points] Mediation
points.

2. Select the mediation name.

3. Click Start.

Results

The mediation starts operating on messages at the selected mediation point.

What to do next

To list or delete messages at selected mediation points, see “Administering messages on mediation points”
on page 2106. To restart a mediation, refer to “Restarting a mediation that has stopped on error” on page
2106.

Stopping a mediation
Use this task to stop a selected mediation at a mediation point.

Before you begin

Before you can operate a mediation, it must be associated with a destination. For more information, see
“Mediating a destination” on page 2100.

About this task

Stopping a mediation, as with all runtime operations on mediations, is carried out at a specialized
message point on the destination, called a mediation point. By stopping a mediation, you stop any further
messages from being delivered to the mediation point. Messages sent to the destination are held at the
pre-mediated part of the destination. The messages are not mediated and are not made available to
message consumers until the mediation is restarted. Note that mediations starts operating on messages
after the server has started and no new messages are mediated after server shutdown begins.

To stop a selected mediation, use the administrative console to complete the following steps:

Procedure
1. List the mediation points.

v To list the mediation points for a bus destination, click Service integration -> Buses -> bus_name
-> [Destination resources] Destinations -> destination_name -> [Message Points] Mediation
points.

v To list the mediation points for a messaging engine, click Service integration -> Buses ->
bus_name -> [Topology] Messaging engines -> engine_name -> [Message points] Mediation
points.

2. Select the mediation name.

3. Click Stop.

Results

The mediation is stopped at the mediation point. Messages arriving at the mediation point are not
processed by the mediation. The messages are stored at the mediation point until the mediation is
restarted.

Chapter 20. Welcome to administering Service integration 2105



Restarting a mediation that has stopped on error
You must restart a mediation that has stopped on error so that the mediation can continue processing
messages. When the mediation is restarted, the mediation resumes mediating messages on the
pre-mediated part of the destination.

About this task

Changes in the state of a mediation usually occur as the result of operations performed by the
administrator. If the state of a mediation moves from Started to Stopped on error, and you have not
stopped it intentionally, you should investigate the cause of the problem, and resolve it before attempting
to restart the mediation.

To restart a mediation that has stopped on error, use the administrative console to complete the following
steps:

Procedure
1. List the mediation points.

v To list the mediation points for a bus destination, click Service integration -> Buses -> bus_name
-> [Destination resources] Destinations -> destination_name -> [Message Points] Mediation
points.

v To list the mediation points for a messaging engine, click Service integration -> Buses ->
bus_name -> [Topology] Messaging engines -> engine_name -> [Message points] Mediation
points.

2. In the content pane, select the mediation name.

3. Click the Runtime tab.

4. Under General Properties, view the information in the Reason field.

5. Resolve the problem.

6. Restart the mediation so that it can continue processing messages.

Administering messages on mediation points
Use these tasks to list and delete runtime messages held at mediation points in a service integration bus.

Listing messages at a mediation point
Use this topic to list messages at a mediation point.

About this task

The mediation point is a specialized message point that defines the association between a mediation and
a destination. You can browse and delete messages on a mediation point for a selected bus destination or
messaging engine.

To display a list of messages on a selected mediation point, use the administrative console to complete
the following steps:

Procedure
1. List the mediation points.

v To list the mediation points for a bus destination, click Service integration -> Buses -> bus_name
-> [Destination resources] Destinations -> destination_name -> [Message Points] Mediation
points.

v To list the mediation points for a messaging engine, click Service integration -> Buses ->
bus_name -> [Topology] Messaging engines -> engine_name -> [Message points] Mediation
points.

2106 Administering WebSphere applications



2. Click the mediation point name. This displays the properties of the mediation point.

3. Click the Runtime tab.

4. Click [Additional Properties] Messages.

Results

A list of messages on the selected mediation point is displayed in the content pane.

Deleting messages on a mediation point
Use this topic to delete messages that exist on a mediation point for a selected bus destination.

About this task

The mediation point is a specialized message point that defines the association between a mediation and
a destination. As with other message points, you can delete messages on a mediation point for a selected
bus destination or messaging engine. For example, if you want to preserve message ordering at a
destination before it is unmediated, you can delete all the messages at that destination.

Procedure
1. List the messages at the mediation point. For more information, see “Listing messages at a mediation

point” on page 2106.

2. In the content pane, select the check box next to each message you want to delete. Alternatively,
select all the messages in the list by clicking Select All Items.

3. Click Delete.

Results

The selected messages are removed from the destination.

Example: Using mediations to trace, monitor and log messages
The most straightforward use of a mediation is for tracing, monitoring or logging messages that pass
through a destination or topics spaces. This type of mediation does not modify the message; it only
extracts information from the message and saves or displays the information elsewhere.

For example, the following mediation handler displays the API message and correlation IDs for each
message it is sent:

public boolean(MessageContext context)
{
SIMessageContext msgCtx = (SIMessageContext)context;
SIMediationSession session = msgCtx.getSession();
SIMessage msg = msgCtx.getMessage();
String msgId = msg.getApiMessageId();
String corrId = msg.getCorrelationId();
String dest = session.getDestinationName();

System.out.println(msgId+" (correlation id="+corrid) is passing through "+dest+".");

return true;
}

SIB service [Settings]
The service that provides service integration functions.

To view this page in the console, click the following path:

Chapter 20. Welcome to administering Service integration 2107



Servers -> Server Types -> WebSphere application servers -> server_name -> [Server messaging]
SIB service.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Enable service at server startup:

Specifies whether or not the server attempts to start the specified service when the server starts.

If you want applications to use service integration technologies provided by this application server,
including JMS resources of the default messaging provider of this application server, this option must be
selected. The SIB Service is enabled automatically when you add a server to a service integration bus.
You can choose to disable the SIB service, for example if you have removed the only bus member for a
server.

For information about using service integration technologies, see Administering service integration.

Information Value
Required No
Data type Boolean

Configuration reload enabled:

Select this option to enable the dynamic reloading of the SIB configuration files for this server.

The information that defines the configuration of service integration buses and their resources is saved in
a set of configuration files. When a server starts up, it uses the current information about service
integration read from those configuration files. When a messaging engine is started, it uses the information
in the server that it is running in.

If the information in the configuration files is changed while the server is running, the server must either be
dynamically updated or restarted to use the updated information.

With dynamic reloading of configuration files, any updates to the configuration information are dynamically
passed to the server, and therefore made available to messaging engines whether or not they are started.
You can enable dynamic reloading of configuration files for servers and for service integration buses.

If you choose not to enable dynamic reloading of configuration files, you must restart the server to pick up
any changes to the configuration files.

In a cluster deployment with failover, the configuration information is likely to be updated between the
initialization and start up of a messaging engine (A messaging engine is initialized when the server starts,
but might not get started for a long time after that). Therefore you should enable dynamic reloading of
configuration files in a cluster deployment with failover, because restarting a server to pick up configuration
changes causes a failover. To get predictable behavior on failover, you must ensure that the standby
(inactive) servers had been updated and recycled before the active server.

Information Value
Required No
Data type Boolean

2108 Administering WebSphere applications



Add a transport to the list of permitted transports [Settings]
Add a transport to the list of permitted transports.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Additional Properties] Permitted transports ->
member_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Transport chain name:

Select the transport name from the list of chain names.

You can manage inbound chains through the administrative console by selecting either Servers -> Server
Types -> WebSphere application servers -> server_name -> [Server messaging] Messaging engine
inbound transports or Servers -> Server Types -> WebSphere application servers -> server_name ->
[Server messaging] WebSphere MQ link inbound transports. You can also use these administrative
console panels to define new transport chains from a set of templates.

The outbound chains that an application server uses for bootstrap operations are defined when the server
is defined. They can be altered, or new bootstrap chains can be defined, by using the wsadmin tool.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2109



Information Value
Range

InboundBasicMessaging
This transport chain allows communication
through the TCP protocol. The default port used
by this chain for the first server on the node is
7276. You should verify that the selected port is
not already used, for example if you are
configuring a second server with the same name
as the first server. Messaging engines hosted in
other application servers and JMS applications
running in a client container can communicate
with the messaging engines of the server by
using this transport chain.

InboundSecureMessaging
This transport chain provides secure
communication by using the secure sockets layer
(SSL) based encryption protocol over a TCP
network. The default port used by this chain for
the first server on the node is 7286. You should
verify that the selected port is not already used,
for example if you are configuring a second
server with the same name as the first server.
The SSL configuration information for this chain
is based on the default SSL repertoire for the
application server. Messaging engines hosted in
other application servers and JMS applications
running in the client container can communicate
using this transport chain.

InboundBasicMQLink
This transport chain supports WebSphere MQ
queue manager sender channels and
applications by using the WebSphere MQ JMS
provider connecting over a TCP network. The
default port used by this chain is 5558, although
this can be automatically adjusted to avoid
conflicts.

InboundSecureMQLink
This transport chain enables WebSphere MQ
queue manager sender channels and
applications by using the WebSphere MQ JMS
provider to establish SSL based encrypted
connections over a TCP network. The default port
used by this chain is 5578, although this is
automatically adjusted to avoid conflicts.

2110 Administering WebSphere applications



Information Value
Range (continued)

BootstrapBasicMessaging
This transport chain is used to establish
bootstrap connections to inbound chains
configured for TCP-only connections to an
application server, such as the
InboundBasicMessaging chain.

BootstrapSecureMessaging
This transport chain is used to establish secure
connections by using secure sockets layer (SSL)
based encryption. The SSL configuration used is
taken from the default SSL repertoire when used
in an application server environment or from a
configuration file when used by the client
container. This chain can be used for establishing
bootstrap connections to inbound chains that are
configured to use SSL, for example, the
InboundSecureMessaging chain. Success in
establishing such a connection depends on a
compatible set of SSL credentials being
associated with both this bootstrap outbound
chain and also with the inbound chain to which
the connection is being made.

BootstrapTunneledMessaging
This transport chain is used to establish
bootstrapping connections that are tunneled
through HTTP. This transport chain tunnels JFAP
and uses HTTP wrappers. Before you can use
this bootstrap transport chain, you must define a
corresponding server transport chain on the
bootstrap server. (See Servers -> Server Types
-> WebSphere application servers ->
server_name -> [Server messaging]
Messaging engine inbound transports.)

BootstrapTunneledSecureMessaging
This transport chain tunnels JFAP and uses
HTTP wrappers. Used to establish bootstrapping
connections that are tunneled through secure
HTTP (HTTPS). Like the
BootstrapSecureMessaging outbound chain, this
chain also derives its SSL configuration from the
default SSL repertoire when used in an
application server or from a configuration file
when used in the client container.

Chapter 20. Welcome to administering Service integration 2111



Information Value
Range (continued)

OutboundBasicMQLink
This transport chain is used to establish
connections with WebSphere MQ queue
manager receiver channels. It is used when
communicating with WebSphere MQ through a
WebSphere MQ link.

OutboundSecureMQLink
This transport chain is used to establish
connections with WebSphere MQ queue
manager receiver channels that have been
secured by using SSL. It is used when
communicating with WebSphere MQ through a
WebSphere MQ link. The SSL configuration used
is taken from the default SSL repertoire for the
application server being used to contact the
queue manager.

OutboundBasicWMQClient
This transport chain is used when communicating
with WebSphere MQ receiver channels. It is used
when communicating with WebSphere MQ
through a WebSphere MQ server.

OutboundSecureWMQClient
This transport chain is used when communicating
with WebSphere MQ receiver channels that have
been secured by using SSL. It is used when
communicating with WebSphere MQ through a
WebSphere MQ server.

Alias destination [Settings]
An alias destination makes a destination available by another name and, optionally, overrides the
parameters of the destination.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
destination_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Identifier:

The identifier by which this destination is known for administrative purposes.

The identifier and bus are used to identify this destination to applications.

Information Value
Required No
Data type String

2112 Administering WebSphere applications



Bus:

The name of the bus on which this destination is known to applications.

The identifier and bus are used to identify this destination to applications.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to this destination for administrative purposes.

Information Value
Required No
Data type String

Type:

Whether this bus destination is for a queue, topic space, or some other type of destination.

Information Value
Required No
Data type String

Description:

An optional description for the bus destination, for administrative purposes.

Information Value
Required No
Data type Text area

Target identifier:

The name of the destination for which this is an alias.

Note: The targetIdentifier field is read-only and cannot be modified; if you want to change the target of an
alias, you must delete the alias destination then re-create it.

Information Value
Required No
Data type String

Target bus:

The name of the bus on which the destination for which this is an alias exists.

If you do not specify a bus name, the target destination is assumed to be on the same bus as the alias
destination.

Chapter 20. Welcome to administering Service integration 2113



Note: The targetBus field is read-only and cannot be modified; if you want to change the target of an
alias, you must delete the alias destination then re-create it.

Information Value
Required No
Data type String

Enable producers to override default reliability:

Select this option to enable producers to override the default reliability that is set on the destination.

v If an application is producing messages to a destination and that application does NOT specify a
reliability for the message, then the Default reliability setting is used.

v If an application is producing messages to a destination and that application specifies a reliability, then
the application reliability is ONLY applicable if the Enable producers to override default reliability
property is set to True. Otherwise, the Default reliability setting is used.

Information Value
Required No
Data type drop-down list
Range

Inherit The alias destination uses (inherits) the value of
the corresponding property on the target
destination.

True The alias destination uses the delivery option
value specified by producers.

False The alias destination uses the delivery option
value specified by the Reliability property of the
destination.

Default reliability:

The reliability assigned to a message produced to this destination when an explicit reliability has not been
set by the producer.

This reliability setting is used if a message has not set a reliability or if the “Enable producers to override
default reliability” is set to False.

v If an application is producing messages to a destination and that application does NOT specify a
reliability for the message, then the Default reliability setting is used.

v If an application is producing messages to a destination and that application specifies a reliability, then
the application reliability is ONLY applicable if the Enable producers to override default reliability
property is set to True. Otherwise, the Default reliability setting is used.

Information Value
Required No
Data type drop-down list

2114 Administering WebSphere applications



Information Value
Range

Inherit The alias destination uses (inherits) the value of
the corresponding property on the target
destination.

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Maximum reliability:

The maximum reliability of messages accepted by this destination.

Producers cannot send messages to this destination with a reliability higher than the value specified for
this property.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2115



Information Value
Range

Inherit The alias destination uses (inherits) the value of
the corresponding property on the target
destination.

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Default priority:

The default priority assigned to messages sent to this destination when a priority has not been set by the
producer.

Information Value
Required No
Data type Integer
Range -1 through 9

Send allowed:

Clear this option (setting it to false) to stop producers from being able to send messages to this
destination.

Information Value
Required No
Data type drop-down list

2116 Administering WebSphere applications



Information Value
Range

Inherit The alias destination uses (inherits) the value of
the corresponding property on the target
destination.

True The alias destination uses the delivery option
value specified by producers.

False The alias destination uses the delivery option
value specified by the Reliability property of the
destination.

Receive allowed:

Clear this option (setting it to false) to prevent consumers from being able to receive messages from this
destination.

Information Value
Required No
Data type drop-down list
Range

Inherit The alias destination uses (inherits) the value of
the corresponding property on the target
destination.

True The alias destination uses the delivery option
value specified by producers.

False The alias destination uses the delivery option
value specified by the Reliability property of the
destination.

Reply destination:

The name of a destination to be appended to any non-empty reverse routing path of messages sent to this
destination.

This property is intended for use with mediations on reply messages.

For more information about the use of this property, see “Configuring a destination reverse routing path”
on page 2073.

Information Value
Required No
Data type String

Reply destination bus:

The bus on which the reply destination exists.

This property is intended for use with mediations on reply messages.

For more information about the use of this property, see “Configuring a destination reverse routing path”
on page 2073.

Chapter 20. Welcome to administering Service integration 2117



Information Value
Required No
Data type String

Default forward routing path:

The value to which a message's forward routing path will be set if the message contains no forward
routing path. This identifies a sequential list of intermediary bus destinations that messages must pass
through to reach a target bus destination. The format of the field is a list of line-delimited bus destinations
specified as bus:name.

If you want to forward messages to one or more bus destinations, type a list of bus destinations. Type
each destination entry on a separate line, and in the form bus_name:destination_name or
:destination_name

Where

bus_name
Is the name of the service integration bus on which the destination is configured. If you do not
specify a bus name, the destination is assumed to be on the same bus as the destination for
which you are setting this property.

destination_name
is the name of a bus destination.

Information Value
Required No
Data type Text area

Delegate authorization check to target destination:

Indicates whether the authorization check is performed on the alias or the target destination.

Indicates which destination access role is checked when a user accesses the alias destination. When this
option is selected, the destination access role of the target destination is checked. When this option is not
selected, the destination access role of the alias destination is checked. If you do not want to override the
security of the target destination, select this option.

Information Value
Required No
Data type Boolean

Include an RFH2 message header when sending messages to WebSphere MQ:

If selected, messages sent to WebSphere MQ include an RFH2 header. The RFH2 header stores
additional information to that which is stored in theWebSphere MQ message header.

This property applies when the target bus is a WebSphere MQ queue manager or queue-sharing group.
When service integration converts a message from the service integration format to WebSphere MQ
format, by default it includes an MQRHF2 header in the WebSphere MQ message. This header contains
message attributes, such as JMS message attributes, that are not WebSphere MQ message attributes and
therefore do not appear in the WebSphere MQ message descriptor (MQMD). Some WebSphere MQ
applications cannot process messages that include an MQRFH2 header. If messages sent to this
destination will be processed by WebSphere MQ applications that cannot tolerate an MQRFH2, clear this
option.

2118 Administering WebSphere applications



Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type Boolean

Use all target queue points:

Whether to use all target queue points

Note: This option is only visible when an alias destination is defined to point at a destination with multiple
queue points.

Indicates whether all the queue points of the target queue can be used, including any queue points
created after the alias is configured. When selected, the Target queue points menu is disabled.

Information Value
Required Yes
Data type Boolean

Unselected queue points:

This is a list of the queue points that are not addressable by the alias definition. The list is generated from
the complete list of queue points for this queue.

Note: This option is only visible when an alias destination is defined to point at a destination with multiple
queue points.

This list is enabled only when Use all target queue points is unchecked.

Information Value
Required No
Data type drop-down list

Selected queue points:

This is a list of the queue points that are addressable by the alias definition. Messages produced to or
consumed from this alias apply to only these queue points.

Note: This option is only visible when an alias destination is defined to point at a destination with multiple
queue points.

This list is enabled only when Use all target queue points is unchecked.

Information Value
Required No
Data type drop-down list

Additional Properties
Context properties

Context information passed to the mediation.

Chapter 20. Welcome to administering Service integration 2119



Related Items
Application resources topology

A expandable tree view of all applications and messaging resources that reference the current
destination.

Application resources for this destination
This pane provides an expandable tree view of all the applications and messaging resources that
reference the current destination, both directly and indirectly. As many of the references as possible are
resolved to links to the associated configuration panel for the referenced object.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
queue_name -> [Related Items] Application resources topology

v Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
topic_space_name -> [Related Items] Application resources topology

Use this panel to inspect the configuration from the queue or topic space (destination) to the application or
other JMS resources to ensure that the configuration is correct.

Using the default messaging provider, a JMS activation specification refers to a JMS destination (either a
JMS Queue or JMS Topic) that in turn points to a service integration bus destination (either a queue
destination or a topic space destination). JMS resources are referenced through Java Naming and
Directory Interface (JNDI) names and service integration resources are referenced through bus and
resource identifiers. This panel enables you to review the dependencies within your configuration, making
it easier to detect inconsistencies, for example as a result of references being entered incorrectly, or JNDI
or resource names being changed or deleted without the associated configuration having been updated.

Problems with the configuration are usually detected in one of two ways:

v An application can no longer send or receive messages.

v A destination becomes full and can no longer receive messages because the existing messages are not
being consumed.

This panel can help you find the cause of the problem by giving you a high level view of many relevant
resources.

Note: For a related view of the JMS resources for a given application, see the following panel:
“Messaging resources for this application” on page 2220.

v “Local Topology tab”

Local Topology tab
Topology properties for this object. These properties detail how this object relates to other objects in the
system topology.

Bootstrap members [Collection]
Bus members, servers and clusters that client applications can target to bootstrap into the given bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Bootstrap members.

To browse or change the properties of a listed item, select its name in the list.

2120 Administering WebSphere applications



To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

This panel displays the bootstrap members for the selected bus. A bootstrap member is an application
server or cluster that has been configured to accept bootstrap requests into the bus. The bootstrap
member authenticates a connection request, and directs the request to a bus member. Select a bootstrap
member policy to restrict which of the following types of server can service requests to bootstrap into the
bus:

All members of the cell with the Service Integration Bus Service enabled
This the default policy. Use any server in the cell that has the Service Integration Bus Service
enabled to service bootstrap requests.

Bus members and nominated bootstrap members
Use bus members and nominated cell members to service bootstrap requests.

Bus members only
Use bus members only to service bootstrap requests.

Click Apply for the policy to take effect.

Name The server or cluster name for the bootstrap member.

Type The type of bootstrap member. Values are Bus member, Nominated member or SIB Service enabled.

SIB Service
Whether SIB Service is enabled on this member. Values are Enabled or Disabled.

Host The host name for the node on which the bootstrap member is located.

Ports The ports from which the server can accept bootstrap requests.

Buttons

Button Description
New This button is only displayed if you have applied the

bootstrap member policy option “Bus members and
nominated bootstrap members”. Click to start the Add
bootstrap member wizard.

Delete Click to remove the selected bootstrap member. This
button is only displayed if you have applied the bootstrap
member policy option “Bus members and nominated
bootstrap members”. You cannot remove bus members, or
members for which SIB Service is enabled.

Bus members [Settings]
Bus members are the servers, WebSphere MQ servers and clusters that have been added to the bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Bus members -> bus_member_name.

Use this pane to view or change messaging engine settings for a cluster when you are using messaging
engine policy assistance.

Chapter 20. Welcome to administering Service integration 2121



You can change the currently selected messaging engine policy assistance, view the configuration diagram
for the cluster, undertake further messaging engine configuration steps by using the links available in
Additional Properties, or disable messaging engine policy assistance.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the bus member.

This field is read-only.

Information Value
Required No
Data type String

Type:

The resource type of the bus member (Server, Server Cluster, or WebSphere MQ Server).

This field is read-only.

Information Value
Required No
Data type String

Enable messaging engine policy assistance:

A value that shows whether messaging engine policy assistance is set for the server cluster. This option is
always selected when you first view this pane. To disable messaging engine policy assistance, deselect
this option. The list of messaging engine policy assistance types and the configuration diagram are no
longer displayed.

Policy name:

A value that shows the currently selected messaging engine policy assistance type for the server cluster.
To change the selection, click the required radio button in the Select column, then click Apply or OK. For
each messaging engine policy assistance type, except Custom, the Is further configuration required?
column shows No if the number of messaging engines and their behavior are correctly configured.
Otherwise, this column shows one or more messages with suggested actions to achieve the number of
messaging engines and the required messaging engine behavior for each messaging engine policy
assistance type. A diagram shows the servers, the currently configured messaging engines, and an
indication of messaging engine behavior in the cluster. It also shows any changes required to support the
currently selected messaging engine policy assistance type.

Additional Properties
Messaging engines

Use the Messaging engines option to view or change the messaging engines in this cluster. For
example, you can add, remove, start or stop a messaging engine.

2122 Administering WebSphere applications



Messaging engine policy maintenance
Use the Messaging engine policy maintenance option to view or correct the policy settings for
the messaging engines in this cluster, that is, the settings that affect messaging engine behavior.

Redundant core group policies
Use the Redundant core group policies option to view or delete any core group policies that are
associated with this cluster, but that are not associated with any messaging engine in this cluster.
When you use messaging engine policy assistance, you do not have to create or manage core
group policies directly. A redundant core group policy might occur if messaging engine policy
assistance is not enabled and you remove a messaging engine without deleting its associated
core group policy, or create a core group policy that is not associated with a messaging engine.

Bus members [Collection]
Bus members are the servers, WebSphere MQ servers and clusters that have been added to the bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Bus members.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Server clusters can be used as bus members only in WebSphere Application Server environments that
support server clusters.

Name The name of the bus member.

Type The resource type of the bus member (Server, Server Cluster, or WebSphere MQ Server)

Messaging engine policy assistance
A value that shows whether messaging engine policy assistance is set for the bus member when
the bus member is a server cluster. If the Type is Server or WebSphere MQ Server, the value is
Not applicable. For a Type of Cluster, the value can be Disabled, Enabled (High availability),
Enabled (Scalability), Enabled (Scalability with high availability), or Enabled (Custom).
The words in parentheses show the type of messaging engine policy assistance that is set. If the
current configuration of the cluster is either not suitable or not complete for the type of messaging
engine policy assistance that is set, a warning icon is also displayed.

Buttons

Button Description

Add Add a server, a cluster, or a WebSphere MQ server to a
bus.

Remove Remove the selected bus members from the bus.

Chapter 20. Welcome to administering Service integration 2123



Buses [Collection]
A service integration bus supports applications using message-based and service-oriented architectures. A
bus is a group of interconnected servers and clusters that have been added as members of the bus.
Applications connect to a bus at one of the messaging engines associated with its bus members.

To view this page in the console, click the following path:

Service integration -> Buses.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

A messaging engine manages messaging resources and, through destinations assigned to the messaging
engine, provides a connection point to which both local and remote applications connect to access
messaging resources on the bus. If you add an application server or a server cluster as a bus member, a
messaging engine is automatically created for this new member. If you add the same server as a member
of multiple buses, the server is associated with multiple messaging engines (one messaging engine for
each bus). You can create additional messaging engines for use with server clusters that are bus
members, for availability and scalability reasons. However, in its simplest form a bus can be realized by a
single engine.

The functions of service integration buses comprise the SIB service, which is available on each application
server in the WebSphere Application Server environment. By default, the SIB service is disabled, so when
a server starts it cannot undertake any messaging. If you add the server to a service integration bus, the
SIB service is automatically enabled. If required, you can disable the service again by configuring the
server.

The bus appears to its applications as if it were a single logical entity, which means applications only have
to connect to the bus and do not have to be aware of the bus topology. In many cases the knowledge of
how to connect to the bus and of which bus resources are defined are handled by a suitable API
abstraction, such as the administered JMS connection factory and JMS destination objects

Name The name of the service integration bus. Choose a unique name.

Note: The system is unable to differentiate between upper and lowercase characters in bus
names. For example, you will not be able to create two buses named BUS1 and bus1
because they will not be recognized as different to each other.

Description
An optional description for the bus, for administrative purposes.

Security
Security of your service integration bus can be managed from here.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

2124 Administering WebSphere applications



Buses [Settings]
A service integration bus supports applications using message-based and service-oriented architectures. A
bus is a group of interconnected servers and clusters that have been added as members of the bus.
Applications connect to a bus at one of the messaging engines associated with its bus members.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name.

Server clusters can be used as bus members only in WebSphere Application Server environments that
support server clusters.

v “Configuration tab”

v “Local Topology tab” on page 2128

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the service integration bus. Choose a unique name.

Note: The system is unable to differentiate between upper and lowercase characters in bus names. For
example, you will not be able to create two buses named BUS1 and bus1 because the names will
not be recognized as different to each other.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to this bus for administrative purposes.

Information Value
Required No
Data type String

Description:

An optional description for the bus, for administrative purposes.

Information Value
Required No
Data type Text area

Inter-engine transport chain:

The transport chain used for communication between messaging engines in this bus.

Chapter 20. Welcome to administering Service integration 2125



The transport chain must correspond to one of the transport chains defined in the Messaging engine
inbound transports settings for the server. All servers automatically have a number of transport chains
defined to them, and it is also possible to create new transport chains.

The default transport chain is InboundBasicMessaging.

For more information see Message security in a service integration bus.

Information Value
Required No
Data type String

Discard messages:

Whether messages on a deleted message point should be retained at a system exception destination or
can be discarded.

Information Value
Required No
Data type Boolean

Configuration reload enabled:

Select this option to enable certain changes to the bus configuration to be applied without requiring the
messaging engines to be restarted.

Select this option to enable automatic update of configuration information about all the messaging engines
on the bus.

Changes to bus destinations or mediations are applied when destinations or mediations are added to or
removed from the bus.

Changes to the modifiable configuration information for any foreign bus connections are also updated
automatically. The time when these changes take effect varies:

Foreign Bus Connection properties
Immediately

WebSphere MQ link properties
On channel restart, except Description (immediately), and Initial State (on messaging engine
restart)

MQ sender channel properties
On channel restart, except Initial State (on messaging engine restart or sender channel creation)

MQ receiver channel properties
On channel restart, except Initial State (on messaging engine restart or receiver channel creation)

Publish/subscribe broker profile (0 to n) properties
Immediately

Service integration bus link properties
On link restart, except Description (immediately), and Initial State (on messaging engine restart or
link creation)

The Configuration reload enabled property also needs to be set on the SIB Service of the application
server. To ensure that dynamic configuration updates are made on an application server, click Servers ->

2126 Administering WebSphere applications



Server Types -> WebSphere application servers -> server_name -> [Server messaging] SIB service
to display the Application Servers window, then select Configuration reload enabled.

To ensure that dynamic configuration updates are made to each node, click System administration ->
Console Preferences to display the Console Preferences window then select Synchronize changes with
Nodes.

Information Value
Required No
Data type Boolean

Default messaging engine high message threshold:

A threshold above which the messaging system will take action to limit the addition of more messages to a
message point.

When a messaging engine is created on this bus, the value of this property is used to set the default high
message threshold for the messaging engine.

Information Value
Required No
Data type Long
Range 1 through 9223372036854775807

Bootstrap members:

Bus members, servers and clusters that client applications can target to bootstrap into the given bus.

Select one of the following bootstrap member policies to limit the range of available bootstrap members:

All members of the cell with the Service Integration Bus Service enabled
This the default policy. Use any server in the cell that has the Service Integration Bus Service
enabled to service bootstrap requests.

Bus members and nominated bootstrap members
Use bus members and nominated cell members to service bootstrap requests.

Bus members only
Use bus members only to service bootstrap requests.

Information Value
Required No
Data type Radio button

Topology
Bus members

New bus member link

Messaging engines
A messaging engine manages bus resources and provides a connection point for applications.

Foreign bus connections
A foreign bus is another bus with which this bus can exchange messages.

Chapter 20. Welcome to administering Service integration 2127



Bootstrap members
Bus members, servers and clusters that client applications can target to bootstrap into the given
bus.

Destination resources
Destinations

A bus destination is a logical address within a service integration bus.

Mediations
Mediations define the information needed by a messaging engine to perform the mediation
processing for associated destinations.

Services
Inbound services

An inbound service describes the web service enablement of a service destination. It provides the
configuration of endpoint listeners within a port.

Outbound services
An outbound service represents a WSDL-described service.

WS-Notification services
A WS-Notification service provides access to service integration bus resources for web services
publish and subscribe clients.

Reliable messaging state
Use this page to view and manage the WS-ReliableMessaging runtime state.

Additional Properties
Custom properties

Arbitrary name-value pairs of data, where the name is a property key and the value is a string
value that can be used to set internal system configuration properties. Defining a new property
enables you to configure a setting beyond that which is available in the administrative console.

Security
Security of your service integration bus can be managed from here.

Local Topology tab
Topology properties for this object. These properties detail how this object relates to other objects in the
system topology.

Context properties [Collection]
Context information used to enable correct processing of messages. This information adds to the context
information derived from processing the message header.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Additional Properties] Destination defaults -> [Additional Properties]
Context information

v Service integration -> Buses -> bus_name -> [Destination resources] Mediations ->
mediation_name -> [Additional Properties] Context properties

v Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
destination_name -> [Additional Properties] Context information

To browse or change the properties of a listed item, select its name in the list.

2128 Administering WebSphere applications



To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Dynamic updates to this list are effective immediately.

Name The name of this context property. The mediation will retrieve the context property using this
name.

Context type
The type of the context property, for example, Boolean, Byte, or Character.

Context value
The value of the context property.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Context properties [Settings]
Context information used to enable correct processing of messages. This information adds to the context
information derived from processing the message header.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Additional Properties] Destination defaults -> [Additional Properties]
Context information -> context_information_item_name

v Service integration -> Buses -> bus_name -> [Destination resources] Mediations ->
mediation_name -> [Additional Properties] Context properties -> context_information_item_name

v Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
destination_name -> [Additional Properties] Context information ->
context_information_item_name

You can use this panel to view or change context information settings. This panel is useful for configuring
extra context information, because it is not possible to anticipate in advance all of the context information
that might be required to allow correct processing of messages.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of this context property. The mediation will retrieve the context property using this name.

Information Value
Required Yes
Data type String

Chapter 20. Welcome to administering Service integration 2129



Context type:

The type of the context property, for example, Boolean, Byte, or Character.

Information Value
Required No
Data type drop-down list
Range

Boolean
This context has a Boolean information type.

Byte This context has a byte information type.

Character
This context has a character information type.

Double This context has a double information type.

Float This context has a floating point information type.

Integer This context has an integer information type.

Long This context has a long information type.

Short This context has a short information type.

String This context has a string information type.

Context value:

The value of the context property.

Information Value
Required Yes
Data type String

Custom properties [Collection]
Use this page to specify an arbitrary name and value pair. The value that is specified for the name and
value pair is a string that can set internal system configuration properties.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Additional Properties] Custom properties.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

2130 Administering WebSphere applications



Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Custom properties [Collection]
Use this page to specify an arbitrary name and value pair. The value that is specified for the name and
value pair is a string that can set internal system configuration properties.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] Custom properties.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Custom properties [Settings]
Arbitrary name-value pairs of data, where the name is a property key and the value is a string value that
can be used to set internal system configuration properties. Defining a new property enables you to
configure a setting beyond that which is available in the administrative console.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] Custom properties -> property_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

Specifies the name of the property.

Chapter 20. Welcome to administering Service integration 2131



Information Value
Required Yes
Data type String

Value:

Specifies the value that is paired with the specified name.

Information Value
Required Yes
Data type String

Description:

Specifies a description of the name and value pair. The description should help to differentiate this pair for
other defined pairs.

Information Value
Required No
Data type Text area

Optional:

Specifies an optional attribute that determines whether this property must have a value.

Information Value
Required No
Data type Boolean

Validation Expression:

Specifies a value that the administrative console and some host tools use to validate the contents of the
value of this property.

Information Value
Required No
Data type String

Data store [Settings]
The persistent store for messages and other state managed by the messaging engine.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] Message store.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

2132 Administering WebSphere applications



General Properties

UUID:

The universal unique identifier assigned by the system to this data store for administrative purposes.

Information Value
Required No
Data type String

Data source JNDI name:

The JNDI name of the data source that the messaging engine uses to access the relational database
management system (RDBMS) for the data store.

Information Value
Required Yes
Data type Text

Schema name:

The name of the database schema used to contain the tables for the data store.

Each messaging engine stores its resources, such as tables, in a single schema. Each database schema
is used by one messaging engine only. Although every messaging engine uses the same table names, its
relationship with the schema gives each messaging engine exclusive use of its own tables.

Information Value
Required No
Data type String

Authentication alias:

The name of the authentication alias used by the messaging engine to access the data source.

Information Value
Required No
Data type drop-down list

Create tables:

If this option is selected, the messaging engine creates the database tables for the data store
automatically. Otherwise, the database administrator must create the database tables manually.

Information Value
Required No
Data type Boolean

Restrict long running locks:

This option ensures that the active messaging engine does not retain long running locks on the
SIBOWNER table in the database.

Chapter 20. Welcome to administering Service integration 2133



When this option is selected, the messaging engine establishes a lock over the database only for short
durations. In the event of the active messaging engine not responding to the database, the standby
messaging engine will be able to take ownership of the database because the active messaging engine
holds only short duration locks.

Information Value
Required No
Data type Boolean

Important: Although the property is selected, the property will not be effective until the database tables
are upgraded using the sibDBUpgrade command for WebSphere Application Server Version 8.5
and later.

Number of tables for permanent objects:

Number of database tables to use for storage of permanent objects.

Information Value
Required No
Data type Integer
Range 1 through 2147483647

Number of tables for temporary objects:

Number of database tables to use for storage of temporary objects.

Information Value
Required No
Data type Integer
Range 1 through 2147483647

Related Items
JAAS - J2C authentication data

Specifies a list of user identities and passwords for Java 2 connector security to use.

Default access roles [Settings]
This pane shows the role type assignments for the default access.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Authorization Policy] Manage default access
roles.

security_value is either Enabled if messaging security is enabled, or Disabled if messaging security is not
enabled.

This pane displays users and groups that have been assigned access roles for the default resource. Use
this pane to add users and groups to the appropriate default role or roles, and to manage users and

2134 Administering WebSphere applications



groups that have already been assigned role types for the default resource. Adding a user or group to any
of the default roles grants the user or group the authorization permissions for that role for all the local
destinations that are allowed to inherit defaults.

The information for each user and group is contained within a section that you can expand and collapse.

Expand/Collapse
Click to expand the section and display users and groups that have been assigned role types for
the default resource.

General Properties

Select A check box that you can use to select the users and groups for which you want to manage
access roles.

Name The name of the user or group that has an access role for the selected resource. If the user is a
group member, the user ID and the group name is displayed.

Type The type of the user or group. There are three types of user or group: “user”, “group” and
“member”. A user that inherits its access roles from a group has the type “member”.

Sender
Whether a user, group or member is in the sender role for a selected resource.

Receiver
Whether a user, group or member is in the receiver role for a selected resource.

Browser
Whether a user, group or member is in the browser role for a selected resource.

Creator
Whether a user, group or member is in the creator role for a selected resource.

Security access roles

In the administrative console, access role icons are used to represent whether a user or a group is in a
particular access role. You can click an icon to add or remove selected users and groups to a particular
access role for a selected resource.

An access role icon has three states:

v Access role type set.

v Access role type not set.

v Access role type inherited from group.

The following table describes how the access role icons represent these states, and how to change
between them:

Table 219. Interacting with access role icons

Access role
icon Access role assignment state User action

Role type not set.
Click to change to role type set .

Role type set. Click to change to role type not set. The icon

changes to role type not set if the user or
group does not inherit access roles, or to role

type inherited if the role type does inherit
access roles.

Chapter 20. Welcome to administering Service integration 2135



Table 219. Interacting with access role icons (continued)

Access role
icon Access role assignment state User action

Role type inherited from group.
Click to change to role type set .

Role type not set for a group. The group to
which a user belongs does not have a role type.

Read only.

Role type set for a group. The group to which a
user belongs has a role type.

Read only.

Role type not applicable. Read only.

Buttons

Button Description
Add Click to add users and groups to this resource.
Remove Click to remove selected users and groups from all the

role types for this resource.

Destinations access roles [Collection]
This pane displays a list of all destinations known by the bus: aliases, foreign destinations, ports, queues,
temporary destination prefixes, topic spaces and web services.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Authorization Policy] Manage destination access
roles.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

In the path, security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.

This pane displays the name and type of all the bus destination defined for the selected service integration
bus. Use this pane to view and change the access roles defined for selected destinations:

v To act on a single destination, click its name in the list.

v To act on more than one destination, first select the check box next to the name of each destination you
want to act on, and then click Manage Access Roles.

Destination
The name of each destination defined for the selected bus.

Type The type of destination defined for the selected bus.

2136 Administering WebSphere applications



Buttons

Button Description
Manage Access Roles Click to view and manage users and groups assigned to

the access role types for the selected resources.

Destinations access roles [Settings]
This pane displays the role type assignments for the selected destinations.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Authorization Policy] Manage destination access
roles -> destination_name > Manage access roles.

In the path, security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.

This pane lists users and groups that have been assigned role types for the destinations selected in the
Manage destination access roles panel. You can use this pane to add and remove users and groups,
and manage role type assignments and inheritance for a destination.

The information for each destination is contained within a section that you can expand and collapse. For
each destination, a section header displays the type of destination, for example whether it is a queue,
topic space, or some other type of destination and the destination name.

Expand/Collapse
Click the icon to expand the section and display the collection of users and groups that have been
assigned role types for the selected destination.

Inherit from default
Select the check box to have the selected destination inherit access roles for users and groups
from the default resource. Only access roles that apply to the selected destination can be
inherited.

General Properties

Select A check box that you can use to select the users and groups for which you want to manage
access roles.

Name The name of the user or group that has an access role for the selected resource. If the user is a
group member, the user ID and the group name is displayed.

Type The type of the user or group. There are three types of user or group: “user”, “group” and
“member”. A user that inherits its access roles from a group has the type “member”.

Sender
Whether a user, group or member is in the sender role for a selected resource.

Receiver
Whether a user, group or member is in the receiver role for a selected resource.

Browser
Whether a user, group or member is in the browser role for a selected resource.

Creator
Whether a user, group or member is in the creator role for a selected resource.

Chapter 20. Welcome to administering Service integration 2137



Security access roles

In the administrative console, access role icons are used to represent whether a user or a group is in a
particular access role. You can click an icon to add or remove selected users and groups to a particular
access role for a selected resource.

An access role icon has three states:

v Access role type set.

v Access role type not set.

v Access role type inherited from group.

The following table describes how the access role icons represent these states, and how to change
between them:

Table 220. Interacting with access role icons

Access role
icon Access role assignment state User action

Role type not set.
Click to change to role type set .

Role type set. Click to change to role type not set. The icon

changes to role type not set if the user or
group does not inherit access roles, or to role

type inherited if the role type does inherit
access roles.

Role type inherited from group.
Click to change to role type set .

Role type not set for a group. The group to
which a user belongs does not have a role type.

Read only.

Role type set for a group. The group to which a
user belongs has a role type.

Read only.

Role type not applicable. Read only.

Buttons

Button Description
Add Click to add users and groups to this resource.
Remove Click to remove selected users and groups from all the

role types for this resource.

Destinations [Collection]
A bus destination is defined on a service integration bus, and is hosted by one or more locations within the
bus. Applications can attach to the destination as producers, consumers, or both to exchange messages.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations.

To browse or change the properties of a listed item, select its name in the list.

2138 Administering WebSphere applications



To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Identifier
The identifier by which this destination is known for administrative purposes.

Bus A service integration bus supports applications using message-based and service-oriented
architectures. A bus is a group of interconnected servers and clusters that have been added as
members of the bus. Applications connect to a bus at one of the messaging engines associated
with its bus members.

Type Whether this bus destination is for a queue, topic space, or some other type of destination.

Description
An optional description for the bus destination, for administrative purposes.

Mediation
The name of the mediation that mediates this destination.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.
Mediate Apply a mediation to a destination, to modify the

destination handling of messages.
Unmediate Remove a mediation from the destination, to remove the

effect of the mediation from the destination handling of
messages.

Destination defaults [Settings]
Properties to be applied when applications use destinations on this foreign bus when there is no explicit
foreign destination definition.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Additional Properties] Destination defaults.

These properties apply when there is no explicit foreign destination or alias destination defined on the local
bus to provide destination defaults.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Default priority:

The default priority assigned to messages sent to this destination when a priority has not been set by the
producer.

Chapter 20. Welcome to administering Service integration 2139



Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type Integer
Range 0 through 9

Default reliability:

The reliability assigned to a message produced to this destination when an explicit reliability has not been
set by the producer.

This reliability setting is used if a message has not set a reliability or if the Enable producers to override
default reliability is set to False.

v If an application is producing messages to a destination and that application does NOT specify a
reliability for the message, then the Default reliability setting is used.

v If an application is producing messages to a destination and that application specifies a reliability, then
the application reliability is ONLY applicable if the Enable producers to override default reliability
property is set to True. Otherwise, the Default reliability setting is used.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type drop-down list
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Maximum reliability:

The maximum reliability of messages accepted by this destination.

2140 Administering WebSphere applications



Producers cannot send messages to this destination with a reliability higher than the value specified for
this property.

This attribute is not used for a temporary destination.

If the message exceeds the maximum reliability and the producer is local to the messaging engine, an
exception is thrown.

If the message exceeds the maximum reliability and the producer is not local to the messaging engine, the
message is sent to the exception destination that is defined for the target destination.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type drop-down list
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Send allowed:

Clear this option (setting it to false) to stop producers from being able to send messages to destinations
on this foreign bus.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type Boolean

Enable producers to override default reliability:

Select this option to enable producers to override the default reliability that is set on the destination.

v If an application is producing messages to a destination and that application does NOT specify a
reliability for the message, then the Default reliability setting is used.

Chapter 20. Welcome to administering Service integration 2141



v If an application is producing messages to a destination and that application specifies a reliability, then
the application reliability is ONLY applicable if the Enable producers to override default reliability
property is set to True. Otherwise, the Default reliability setting is used.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type Boolean

Include an RFH2 message header when sending messages to WebSphere MQ.:

If selected, messages sent to WebSphere MQ includes an RFH2 header. The RFH2 header stores
additional information to that which is stored in theWebSphere MQ message header.

This property applies when a foreign bus connection represents a WebSphere MQ queue manager or
queue-sharing group. When service integration converts a message from the service integration format to
WebSphere MQ format, by default it includes an MQRHF2 header in the WebSphere MQ message. This
header contains message attributes, such as JMS message attributes, that are not WebSphere MQ
message attributes and therefore do not appear in the WebSphere MQ message descriptor (MQMD).
Some WebSphere MQ applications cannot process messages that include an MQRFH2 header. If
messages sent to this destination will be processed by WebSphere MQ applications that cannot tolerate
an MQRFH2, clear this option.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type Boolean

Additional Properties
Context properties

Context information passed to the mediation.

File store [Settings]
The persistent store for messages and other state managed by the messaging engine.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] Message store.

If you make any changes to the properties of a file store, you must restart the messaging engine to make
those changes take effect.

For more information on the log file, permanent store file, and temporary store file and appropriate
parameter values refer to Hints and tips for configuring file store size.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

2142 Administering WebSphere applications



General Properties

UUID:

The universal unique identifier assigned by the system to this data store for administrative purposes.

Information Value
Required No
Data type String

Log size:

Size in megabytes of the log file.

Information Value
Required Yes
Data type Long
Range 10 through 9223372036854775807

Log directory path:

Name of the log files directory.

When creating a messaging engine with a file store, you can select the Default log directory path radio
button for this property. This option causes, the following default directory value to be used:
${USER_INSTALL_ROOT}/filestores/com.ibm.ws.sib/messagingEngineName-messagingEngineUuid/log
where messagingEngineName and messagingEngineUuid are substituted from the Name and UUID
properties of the messaging engine.

After you have created the file store, the Log directory path field displays the directory path used for log
files.

Important: When adding a cluster as a bus member, you must configure the log file to be on a file system
that is accessible to all members of a cluster.

Information Value
Required No
Data type Text

Minimum permanent store size:

The minimum number of megabytes reserved by each of the permanent store files. The permanent store
files are never smaller than the log file.

For more information about the store files and appropriate values for the log file parameters refer to Hints
and tips for configuring file store size.

Information Value
Required Yes
Data type Long
Range 0 through 9223372036854775807

Chapter 20. Welcome to administering Service integration 2143



Unlimited permanent store size:

Indicates whether the permanent store files are unlimited in size.

Information Value
Required No
Data type Custom

Maximum permanent store size:

The maximum size in megabytes for the permanent store files.

Information Value
Required Yes
Data type Long
Range 50 through 9223372036854775807

Permanent store directory path:

Name of the permanent store files directory.

When creating a messaging engine with a file store, you can specify a non-default directory to be used for
permanent store files. To do this, select the Permanent store directory path radio button, then type a
directory path value in the field provided.

When creating a messaging engine with a file store, you can select the Default permanent store
directory path radio button for this property. This option causes the following default directory value to be
used: ${USER_INSTALL_ROOT}/filestores/com.ibm.ws.sib/messagingEngineName-messagingEngineUuid/
store where messagingEngineName and messagingEngineUuid are substituted from the Name and UUID
properties of the messaging engine.

After you have created the file store, the Permanent store directory path field displays the directory path
used for permanent store files.

Important: When adding a cluster as a bus member, you must configure the permanent store file to be on
a file system that is accessible to all members of a cluster.

Information Value
Required No
Data type Text

Minimum temporary store size:

The minimum number of megabytes reserved by each of the temporary store files. The temporary store
files are never smaller than the log file.

Information Value
Required Yes
Data type Long
Range 0 through 9223372036854775807

2144 Administering WebSphere applications



Unlimited temporary store size:

Indicates whether the temporary store files are unlimited in size.

Information Value
Required No
Data type Boolean

Maximum temporary store size:

The maximum size in megabytes for the temporary store files.

Information Value
Required Yes
Data type Long
Range 50 through 9223372036854775807

Temporary store directory path:

Name of the temporary store files directory.

When creating a messaging engine with a file store, you can specify a non-default directory to be used for
temporary store files. To do this, select the Temporary store directory path radio button, then type a
directory path value in the field provided.

When creating a messaging engine with a file store, you can select the Default temporary store
directory path radio button for this property. This option causes the following default directory value to be
used: ${USER_INSTALL_ROOT}/filestores/com.ibm.ws.sib/messagingEngineName-messagingEngineUuid/
store where messagingEngineName and messagingEngineUuid are substituted from the Name and UUID
properties of the messaging engine.

After you have created the file store, the Temporary store directory path field displays the directory path
used for temporary store files.

Important: When adding a cluster as a bus member, you must configure the temporary store file to be on
a file system that is accessible to all members of a cluster.

Information Value
Required No
Data type Text

Foreign bus connections [Collection]
A foreign bus connection allows communication with another bus. The foreign bus can represent another
Service Integration Bus, an instance of WebSphere MQ, or an indirect connection to another foreign bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections.

To browse or change the properties of a listed item, select its name in the list.

Chapter 20. Welcome to administering Service integration 2145



To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

The physical link (also known as the routing type) between buses can be one of the following types:

v A service integration bus link from a messaging engine in the local bus to a messaging engine in the
foreign bus.

v A WebSphere MQ link from a messaging engine in the local bus to a WebSphere MQ gateway queue
manager. To the local bus the linked WebSphere MQ network appears as a foreign bus.

v An indirect link, which is a link that is made through one or more intermediate foreign buses.

Name The name of the bus with which this bus will exchange messages. This name must match exactly
the name of the existing service integration bus that is defined as the foreign bus.

Routing type
Routing type defines the type of link used to make the connection to the foreign bus. Use a
service integration bus link for a connection to a foreign service integration bus, a WebSphere MQ
link for a connection to a foreign WebSphere MQ network, or an indirect routing if the connection
to the foreign bus is via another foreign bus.

Description
An optional description for the foreign bus, for administrative purposes.

Configuration Status
Indicates that the configuration was deleted with remaining runtime data. Select this foreign bus
connection (by clicking the Name column) to resolve the remaining runtime data.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.
Test connection Test the foreign bus connection.

This button does not work if the selected foreign bus uses
a WebSphere MQ link that is running on an application
server on which WebSphere MQ has been disabled. For
more information see “Disabling WebSphere MQ
functionality in WebSphere Application Server” on page
712.

Foreign bus [Settings]
This pane shows the role type assignments for the selected foreign buses.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Authorization Policy] Manage foreign bus access
roles -> foreign_bus_name > Manage access roles.

In the path, security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.

2146 Administering WebSphere applications



This panel lists the users and groups that have been assigned access roles on the one or more selected
foreign buses. Use this panel to add and remove users and groups to foreign bus access roles, and to
manage existing role type assignments and inheritance for foreign buses.

The information for each foreign bus is contained within a section that you can expand and collapse.
When collapsed, the section header displays the foreign bus name. When expanded, in addition to the
header, the section displays an Inherit from default check box and a list of the users and groups that
have been assigned role types on the foreign bus. Note that the only permitted role type for a foreign bus
is Sender role.

Expand/Collapse
Click icon to expand the section and display a list of users and groups that have been assigned
role types for the selected foreign bus.

Inherit from default
Select check box to have the selected foreign bus inherit access roles for users and groups from
the default resource. Only access roles that apply to the selected foreign bus can be inherited.

General Properties

Select A check box that you can use to select the users and groups for which you want to manage
access roles.

Name The name of the user or group that has an access role for the selected resource. If the user is a
group member, the user ID and the group name is displayed.

Type The type of the user or group. There are three types of user or group: “user”, “group” and
“member”. A user that inherits its access roles from a group has the type “member”.

Sender
Whether a user, group or member is in the sender role for a selected resource.

Security access roles

In the administrative console, access role icons are used to represent whether a user or a group is in a
particular access role. You can click an icon to add or remove selected users and groups to a particular
access role for a selected resource.

An access role icon has three states:

v Access role type set.

v Access role type not set.

v Access role type inherited from group.

The following table describes how the access role icons represent these states, and how to change
between them:

Table 221. Interacting with access role icons

Access role
icon Access role assignment state User action

Role type not set.
Click to change to role type set .

Role type set. Click to change to role type not set. The icon

changes to role type not set if the user or
group does not inherit access roles, or to role

type inherited if the role type does inherit
access roles.

Chapter 20. Welcome to administering Service integration 2147



Table 221. Interacting with access role icons (continued)

Access role
icon Access role assignment state User action

Role type inherited from group.
Click to change to role type set .

Role type not set for a group. The group to
which a user belongs does not have a role type.

Read only.

Role type set for a group. The group to which a
user belongs has a role type.

Read only.

Role type not applicable. Read only.

Buttons

Button Description
Add Click to add users and groups to this resource.
Remove Click to remove selected users and groups from all the

role types for this resource.

Foreign bus connections [Settings]
A foreign bus connection allows communication with another bus. The foreign bus can represent another
Service Integration Bus, an instance of WebSphere MQ, or an indirect connection to another foreign bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the bus with which this bus will exchange messages. This name must match exactly the
name of the existing service integration bus that is defined as the foreign bus. Precise guidelines for
naming a foreign bus connection can be found in the related concept topic Foreign buses.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to this foreign bus for administrative purposes.

Information Value
Required No

2148 Administering WebSphere applications



Information Value
Data type String

Routing type:

Routing type defines the type of link used to make the connection to the foreign bus. Use a service
integration bus link for a connection to a foreign service integration bus, a WebSphere MQ link for a
connection to a foreign WebSphere MQ network, or an indirect routing if the connection to the foreign bus
is via another foreign bus.

Information Value
Required No
Data type String

Description:

An optional description for the foreign bus, for administrative purposes.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type Text area

Send allowed:

Clear this option (setting it to false) to stop producers from being able to send messages to this foreign
bus.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type Boolean

Additional Properties
Destination defaults

Properties to apply when applications use destinations on this foreign bus and there is no explicit
foreign destination or alias destination defined on the local bus to provide destination defaults.

Additional property for when the routing definition is not yet defined:

Create a routing definition
Select this link to define the routing definition for this foreign bus.

Additional property for direct service integration bus link foreign bus connections:

Service integration bus link routing properties
The routing properties for a service integration bus link to a foreign service integration bus.

Additional property for direct WebSphere MQ link foreign bus connections:

WebSphere MQ link routing properties
The routing properties for a link to a foreign bus that represents a WebSphere MQ network.

Chapter 20. Welcome to administering Service integration 2149



Additional property for indirect foreign bus connections:

Indirect routing properties
The routing definition for the next service integration bus in a sequence of connected buses.

Related Items

Related item for direct service integration bus link foreign bus connections:

Service integration bus links
The associated service integration bus links for this foreign bus.

Related item for direct WebSphere MQ link foreign bus connections:

WebSphere MQ links
The associated WebSphere MQ links for this foreign bus.

Foreign destination [Settings]
The name by which this foreign destination is known for administrative purposes.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
destination_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Identifier:

The identifier by which this destination is known for administrative purposes.

Type the name of the destination as configured on the foreign bus. This must match exactly the name of
the target destination that exists in the foreign bus.

Information Value
Required No
Data type String

Bus:

The name of the foreign bus on which this destination is defined.

This must match exactly the name of a foreign bus administrative object that is already defined on the bus
on which this foreign destination is being created.

Information Value
Required No
Data type String

UUID:

2150 Administering WebSphere applications



The universal unique identifier assigned by the system to this destination for administrative purposes.

Information Value
Required No
Data type String

Type:

Whether this bus destination is for a queue, topic space, or some other type of destination.

Information Value
Required No
Data type String

Description:

An optional description for the bus destination, for administrative purposes.

Information Value
Required No
Data type Text area

Enable producers to override default reliability:

Select this option to enable producers to override the default reliability that is set on the destination.

v If an application is producing messages to a destination and that application does NOT specify a
reliability for the message, then the Default reliability setting is used.

v If an application is producing messages to a destination and that application specifies a reliability, then
the application reliability is ONLY applicable if the Enable producers to override default reliability
property is set to True. Otherwise, the Default reliability setting is used.

Information Value
Required No
Data type Boolean

Default reliability:

The reliability assigned to a message produced to this destination when an explicit reliability has not been
set by the producer.

This reliability setting is used if a message has not set a reliability or if the
SIBDestination.overrideOfQOSByProducerAllowed is set to False.

v If an application is producing messages to a destination and that application does NOT specify a
reliability for the message, then the Default reliability setting is used.

v If an application is producing messages to a destination and that application specifies a reliability, then
the application reliability is ONLY applicable if the Enable producers to override default reliability
property is set to True. Otherwise, the Default reliability setting is used.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2151



Information Value
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Maximum reliability:

The maximum reliability of messages accepted by this destination.

Producers cannot send messages to this destination with a reliability higher than the value specified for
this property.

Information Value
Required No
Data type drop-down list
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

2152 Administering WebSphere applications



Default priority:

The default priority assigned to messages sent to this destination when a priority has not been set by the
producer.

Information Value
Required No
Data type Integer
Range 0 through 9

Send allowed:

Clear this option (setting it to false) to stop producers from being able to send messages to this
destination.

Information Value
Required No
Data type Boolean

Include an RFH2 message header when sending messages to WebSphere MQ:

If selected, messages sent to WebSphere MQ include an RFH2 header. The RFH2 header stores
additional information to that which is stored in theWebSphere MQ message header.

This property applies when the foreign bus that hosts the target destination is a WebSphere MQ queue
manager or queue-sharing group. When service integration converts a message from the service
integration format to WebSphere MQ format, by default it includes an MQRHF2 header in the WebSphere
MQ message. This header contains message attributes, such as JMS message attributes, that are not
WebSphere MQ message attributes and therefore do not appear in the WebSphere MQ message
descriptor (MQMD). Some WebSphere MQ applications cannot process messages that include an
MQRFH2 header. If messages sent to this destination will be processed by WebSphere MQ applications
that cannot tolerate an MQRFH2, clear this option.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type Boolean

Additional Properties
Context properties

Context information passed to the mediation.

Related Items
Application resources topology

A expandable tree view of all applications and messaging resources that reference the current
destination.

Chapter 20. Welcome to administering Service integration 2153



Inbound messages [Collection]
The inbound message streams from the remote queue point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote message points] Remote queue points -> identifier_name -> [Additional
Properties] Inbound messages.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

This is the collection of inbound message streams by quality of service (priority and reliability) for
messages being sent to this queue point from the remote messaging engine.

Priority
The stream priority.

Reliability
The stream reliability.

Number of messages
The current number of messages on the stream.

Last delivered message sequence ID
The sequence ID of the last message delivered.

Status
The status of the stream.

Messages
View the messages on the stream.

Indirect routing properties [Settings]
The routing definition for the next service integration bus in a sequence of connected buses.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Additional Properties] Indirect routing properties.

You configure an indirect link when a service integration bus needs to communicate with a foreign bus
through one or more intermediate buses.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

2154 Administering WebSphere applications



General Properties

Next bus in route:

The name of the next service integration bus in the sequence of connected buses.

An intermediate bus can be a WebSphere MQ system rather than a service integration bus.

Information Value
Required No
Data type drop-down list

JFAP inbound channel [Settings]
A channel which can be used in combination with the TCP Channel - or other channels that support the
same application interface to accept inbound connections to a WebSphere system integration bus
messaging engine.

To view this page in the console, click the following path:

Servers -> Server Types -> WebSphere application servers -> server_name -> [Server messaging]
Messaging engine inbound transports -> chain_name > JFAP inbound channel.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Transport channel name:

Specifies the unique name for a given layer in a network protocol stack.

Information Value
Required Yes
Data type String

Discrimination weight:

Specifies the discrimination weight that is used to determine the order in which the channels obtain access
to the incoming connection if the transport channels are shared amongst several transport chains. The
transport channel with the lowest discrimination weight has the first opportunity to accept the incoming
connection.

Information Value
Required No
Data type Integer
Range 0 through 2147483647

Heart beat interval:

Chapter 20. Welcome to administering Service integration 2155



The amount of idle time, in seconds, before the channel attempts to solicit a response from its peer to
check that the peer is still active. The sum of this value and the heartbeat timeout value determines the
maximum amount of time that it can take to discover that some types of network failure have occurred.

Information Value
Required No
Data type Integer
Range 0 through 2147483647

Heart beat timeout:

The amount of time, in seconds, to wait for a response from a peer after deciding to check that the peer is
still alive.

Information Value
Required No
Data type Integer
Range 0 through 2147483647

Additional Properties
Custom properties

Specifies additional custom properties for this runtime component. Some components use custom
configuration properties that can be defined here.

Known link transmitter inbound streams [Collection]
This pane displays the inbound message streams from messaging applications that are connected to the
remote messaging engine, and that are producing messages to this WebSphere MQ link sender channel
transmitter.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional properties] Sender
channel transmitters -> WebSphere_MQ_sender_channel_name -> Known link transmitters ->
messaging_engine_name

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links -> link_name -> [Additional
properties] Sender channel -> sender_channel_link_name -> Known link transmitters ->
messaging_engine_name

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Priority
The priority of the messages on the given inbound stream.

2156 Administering WebSphere applications



Reliability
The reliability of the messages on the given inbound stream.

Number of messages
The number of messages pending receipt on the given inbound stream.

Last delivered message sequence
The sequence identifier of the last message delivered from the inbound stream to the sender
channel transmitter.

Status
The runtime status of the inbound stream. Green (running), Amber (running but a problem exists),
Red (stopped).

Messages
Select this link to view the message collection for messages on the given inbound stream.

Known link transmitter stream messages [Collection]
This pane displays current messages on the inbound message stream.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional properties] Sender
channel transmitters -> WebSphere_MQ_sender_channel_name -> Known link transmitters ->
messaging_engine_name -> Messages

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links -> link_name -> [Additional
properties] Sender channel -> sender_channel_link_name -> Known link transmitters ->
messaging_engine_name -> Messages

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Maximum messages displayed
The maximum number of messages retrieved and displayed.

Position
The position on the inbound stream from the known link transmitter.

Identifier
The identifier of the message. Select this link to view the message detail panel for the selected
message.

Previous sequence identifier
The identifier of the previous message on the queue point.

State The state of the message on the inbound stream (“Awaiting delivery”).

Chapter 20. Welcome to administering Service integration 2157



Buttons

Button Description

Refresh Refresh the collection with the current set of messages
on the inbound stream. Only the number of messages up
to the specified Maximum messages displayed are
retrieved and displayed.

Known link transmitters [Collection]
This pane displays the inbound receiver queues for messaging applications connected to remote
messaging engines, that are producing messages to this WebSphere MQ link sender channel transmitter.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional properties] Sender
channel transmitters -> WebSphere_MQ_sender_channel_name -> Known link transmitters

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links -> link_name -> [Additional
properties] Sender channel -> sender_channel_link_name -> Known link transmitters

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Messaging engine
The messaging engine that has a link transmitter that is transmitting messages to this sender
channel transmitter. Select the link to view the inbound streams for the messages from the known
link transmitter.

Current inbound messages
The total number of messages currently pending receipt on the inbound streams from this known
link transmitter.

Inbound messages received
The total number of messages that have been received on the inbound streams from this known
link transmitter since the messaging engine started.

Known remote publication points [Collection]
The remote messaging engines that have remote producers connected to this publication point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Message Points] Publication points > identifier_name -> [Additional Properties] Known
remote publication points.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

2158 Administering WebSphere applications



To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

This collection represents all the remote publication points at remote messaging engines where there are
applications or clients connected that are publishing messages to this local publication point.

Messaging engine
The messaging engine where the remote publication point is located.

Current inbound messages
The current number of queued inbound messages for the publication point.

Inbound messages received
The total number of messages received on this publication point since the messaging engine
started.

Known remote publication points [Settings]
The remote messaging engines that have remote producers connected to this publication point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Message Points] Publication points > identifier_name -> [Additional Properties] Known
remote publication points -> messaging_engine_name.

v “Runtime tab”

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Messaging engine:

The messaging engine where the remote publication point is located.

Information Value
Required No
Data type String

Current inbound messages:

The current number of queued inbound messages for the publication point.

Information Value
Required No
Data type String

Inbound messages received:

The total number of messages received on this publication point since the messaging engine started.

Chapter 20. Welcome to administering Service integration 2159



Information Value
Required No
Data type String

Additional Properties
Inbound messages

The inbound message streams from the remote publication point.

Queue [Settings]
A queue for point-to-point messaging.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations -> queue_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Identifier:

The identifier by which this destination is known for administrative purposes.

Do not use an underscore character “_” as the first character, because this naming convention is reserved
for system use.

You can use a naming convention to suggest a hierarchical structure for destinations; for example, by
using dotted notation for a destination name Library.Shelf.Book1A. Such structure can be useful for
organizing queues into logical groups for ease of association, and to permit the use of wildcard notation in
filters; for example, Library.Shelf.* or *.Queue.accountXYZ.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to this destination for administrative purposes.

Information Value
Required No
Data type String

Type:

Whether this bus destination is for a queue, topic space, or some other type of destination.

A queue for point-to-point messaging.

2160 Administering WebSphere applications



Information Value
Required No
Data type String

Description:

An optional description for the bus destination, for administrative purposes.

Information Value
Required No
Data type Text area

Mediation:

The name of the mediation that mediates this destination.

Information Value
Required No
Data type String

Enable producers to override default reliability:

Select this option to enable producers to override the default reliability that is set on the destination.

Information Value
Required No
Data type Boolean

Default reliability:

The reliability assigned to a message produced to this destination when an explicit reliability has not been
set by the producer.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2161



Information Value
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Maximum reliability:

The maximum reliability of messages accepted by this destination.

Information Value
Required No
Data type drop-down list
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Default priority:

2162 Administering WebSphere applications



The default priority assigned to messages sent to this destination when a priority has not been set by the
producer.

Information Value
Required No
Data type Integer
Range 0 through 9

Exception destination:

Use these properties to define what happens to any messages that cannot be delivered to this destination.

None:

The bus destination does not use an exception destination and undeliverable messages are not rerouted
to an exception destination.

Attempts to redeliver the message continue, up to the maximum failed deliveries limit set for the bus
destination. Then, attempts to redeliver the message continue with a time interval between retry attempts.
This interval is either the Default blocked destination retry interval of the messaging engine that is
associated with this destination, or the Blocked retry timeout that is set for this destination. The Default
blocked destination retry interval value can be used by all queue and topic destinations associated with
this messaging engine. To set a time interval specifically for this destination, select Override messaging
engine blocked retry timeout default, then enter a blocked retry timeout value for this destination.

Information Value
Required No
Data type Radio button
Default Not selected

Override messaging engine blocked retry timeout default:

Override the blocked queue retry interval configured on the messaging engine owning the destination.

Select this property to set the blocked retry timeout for this destination. This property is available only
when None is selected for the exception destination.

Information Value
Required Yes, if None is selected.
Data type Boolean
Default Unchecked. The Default blocked destination retry interval

value of the associated messaging engine is used.

Blocked retry timeout in milliseconds:

When no exception destination is configured, the time interval to apply between retry attempts, after the
maximum failed deliveries limit is reached, for this destination.

This property is available only when Override messaging engine blocked retry timeout default is
selected in the exception destination properties.

Chapter 20. Welcome to administering Service integration 2163



Information Value
Required Yes, if Override messaging engine blocked retry timeout

default is checked.
Data type Integer

System:

The bus destination uses the system default exception destination.

Undeliverable messages are routed to the system default exception destination of the messaging engine
that detects the problem: _SYSTEM.Exception.Destination.messaging_engine_name.

Information Value
Required No
Data type Radio button
Default Selected

Specify:

The bus destination uses the exception destination specified in this field.

The exception destination must be a queue, on the same bus or a foreign bus, and must exist when the
exception destination processing is configured.

Information Value
Required No
Data type Radio button
Default Not selected

Maximum failed deliveries per message:

The maximum number of failed attempts to process a message. After this number of failed attempts, if an
exception destination is configured, the message is forwarded from the intended destination to its
exception destination. If an exception destination is not configured, a time interval between retry attempts
is applied.

This interval is either the Default blocked destination retry interval of the messaging engine that is
associated with this destination, or the Blocked retry timeout that is set for this destination.

Information Value
Required Yes, if an exception destination has been configured.
Data type Integer
Default 5
Range 0 through 2147483647

Keep count of failed deliveries per message:

This option persists the failed delivery counts of the messages in the message store.

Select this option to persist the failed delivery counts of JMS messages in the message store. This option
retains the count of failed deliveries even after the messaging engine is restarted.

2164 Administering WebSphere applications



Information Value
Required No
Data type Boolean
Default Not selected

Note: When the option is not selected, the history of the
failed delivery counts for the messages will be lost if the
messaging engine is restarted.

Important: Although the property is selected, the property will not be effective until the database tables
are upgraded using the sibDBUpgrade command for WebSphere Application Server Version 8.5
and later.

Send allowed:

Clear this option (setting it to false) to stop producers from being able to send messages to this
destination.

Information Value
Required No
Data type Boolean

Receive allowed:

Clear this option (setting it to false) to prevent consumers from being able to receive messages from this
destination.

Information Value
Required No
Data type Boolean

Receive exclusive:

Select this option to allow only one consumer to attach to each message point. If this option is not
selected multiple consumers will be allowed to attach and receive messages from each message point.

Information Value
Required No
Data type Boolean

Maintain strict message order:

Enabling this option will maintain the strict ordering of messages for this destination.

Information Value
Required No
Data type Boolean

Reply destination:

The name of a destination to be appended to any non-empty reverse routing path of messages sent to this
destination.

This property is intended for use with mediations on reply messages.

Chapter 20. Welcome to administering Service integration 2165



For more information about the use of this property, see “Configuring a destination reverse routing path”
on page 2073.

Information Value
Required No
Data type String

Reply destination bus:

The bus on which the reply destination exists.

This property is intended for use with mediations on reply messages.

For more information about the use of this property, see “Configuring a destination reverse routing path”
on page 2073.

Information Value
Required No
Data type String

Default forward routing path:

The value to which a message's forward routing path will be set if the message contains no forward
routing path. This identifies a sequential list of intermediary bus destinations that messages must pass
through to reach a target bus destination. The format of the field is a list of line-delimited bus destinations
specified as bus:name.

If you want to forward messages to one or more bus destinations, type a list of bus destinations. Type
each destination entry on a separate line, and in the form bus_name:destination_name or
:destination_name

Where

bus_name
Is the name of the service integration bus on which the destination is configured. If you do not
specify a bus name, the destination is assumed to be on the same bus as the destination for
which you are setting this property.

destination_name
is the name of a bus destination.

Information Value
Required No
Data type Text area

Message points
Queue points

Displays a list of queue points used to hold messages pending delivery to receiving applications.

Mediation points
Displays a list of mediation points created when a mediation is associated with a bus destination.

Additional Properties
Context properties

Context information passed to the mediation.

2166 Administering WebSphere applications



Mediation execution points
Mediation execution points for the processing of messages from mediation message points that
are on a WebSphere MQ server.

Related Items
Application resources for this destination

This pane provides an expandable tree view of all the applications and messaging resources that
reference the current destination, both directly and indirectly. As many of the references as
possible are resolved to links to the associated configuration panel for the referenced object.

Use this panel to inspect the configuration from the queue or topic space (destination) to the
application or other JMS resources to ensure that the configuration is correct.

Remote queue points [Collection]
The remote queue points that are producing or consuming messages to or from queue points on remote
messaging engines.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote message points] Remote queue points.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

This panel applies only to WebSphere Application Server Network Deployment or WebSphere Application
Server for z/OS, with multiple messaging engines.

A remote queue point represents a remote proxy for a queue point that exists on a remote messaging
engine (any other messaging engine on this bus). Messages are sent to or received from an application or
client connected to the remote messaging engine. The remote queue point manages an outbound
message stream to the queue point on the remote messaging engine, and an inbound message retrieval
request stream for messages received from the queue point.

This collection gives an indication of the applications using these remote queue points, where the
applications are connected and the associated message flow from each messaging engine.

Identifier
The remote queue point identifier.

Messaging engine
The remote messaging engine where this queue point is localized.

Current outbound messages
The current number of outbound messages queued to the queue point.

Outbound messages sent
The total number of messages sent to the queue point since the messaging engine started.

Current message requests
The current number of active message retrieval requests sent to the queue point from this remote
queue point.

Chapter 20. Welcome to administering Service integration 2167



Completed message requests
The total number of completed message retrieval requests sent to the queue point from this
remote queue point since the messaging engine started.

Buttons

Button Description

Delete all messages Delete all messages from the outbound message stream
of the selected remote queue point. Messages in
“Pending Acknowledgment” state might already have been
received at the remote queue point. You cannot delete
messages in “Committing” state; you must first commit
their transactions.

Move all messages Move all messages from the outbound message stream
of the selected remote queue point to the exception
destination configured for the destination. Messages in
“Pending Acknowledgment” state might already have been
received at the remote queue point. Moving these
messages to the exception destination results in two
copies of the message in the bus. You cannot move
messages in “Committing” state; you must first commit
their transactions.

Known remote queue points [Collection]
The remote messaging engines that have remote producers or consumers connected to this queue point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Message Points] Queue points > identifier_name -> Known remote queue points.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

This collection represents all the remote queue points at remote messaging engines that have applications
or clients connected, where those applications or clients are either sending messages to or receiving
messages from this local queue point.

Messaging engine
The messaging engine where the remote queue point is located.

Current inbound messages
The current number of queued inbound messages for the queue point.

Inbound messages received
The total number of messages received on this queue point since the messaging engine started.

Current messages requests
The current number of active message retrieval requests from the remote queue point.

2168 Administering WebSphere applications



Completed messages requests
The total number of completed message retrieval requests from the remote queue point since the
messaging engine started.

Remote queue points [Settings]
The remote queue points that are producing/consuming messages to/from queue points on remote
messaging engines.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote message points] Remote queue points -> identifier_name .

v “Runtime tab”

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Identifier:

The remote queue point identifier.

Information Value
Required No
Data type String

Messaging engine:

The remote messaging engine where this queue point is localized.

Information Value
Required No
Data type String

Current outbound messages:

The current number of outbound messages queued to the queue point.

Information Value
Required No
Data type String

Outbound messages sent:

The total number of messages sent to the queue point since the messaging engine started.

Information Value
Required No

Chapter 20. Welcome to administering Service integration 2169



Information Value
Data type String

Current message requests:

The current number of active message retrieval requests sent to the queue point from this remote queue
point.

Information Value
Required No
Data type String

Completed message requests:

The total number of completed message retrieval requests sent to the queue point from this remote queue
point since the messaging engine started.

Information Value
Required No
Data type String

Message requests issued:

The total number of active and completed message retrieval requests sent to the queue point from this
remote queue point since the messaging engine started.

Information Value
Required No
Data type String

Additional Properties
Outbound messages

The outbound message streams from this remote message point to the remote localized message
point.

Message Requests
A snapshot of the current message retrieval requests from the message point.

Known remote queue points [Settings]
The remote messaging engines that have remote producers or consumers connected to this queue point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Message Points] Queue points > identifier_name -> Known remote queue points ->
messaging_engine_name .

v “Runtime tab”

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime

2170 Administering WebSphere applications



property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Messaging engine:

The messaging engine where the remote queue point is located.

Information Value
Required No
Data type String

Current inbound messages:

The current number of queued inbound messages for the queue point.

Information Value
Required No
Data type String

Inbound messages received:

The total number of messages received on this queue point since the messaging engine started.

Information Value
Required No
Data type String

Current messages requests:

The current number of active message retrieval requests from the remote queue point.

Information Value
Required No
Data type String

Completed messages requests:

The total number of completed message retrieval requests from the remote queue point since the
messaging engine started.

Information Value
Required No
Data type String

Message requests received:

The total number of active and completed message retrieval from the remote queue point since the
messaging engine started.

Information Value
Required No

Chapter 20. Welcome to administering Service integration 2171



Information Value
Data type String

Additional Properties
Inbound messages

The inbound message streams from the remote queue point.

Message requests
The message retrieval requests from the remote queue point.

Known remote subscription points [Collection]
The remote messaging engines that have remote consumers connected to this subscription point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Message points] Publication points > identifier_name -> [Additional Properties] Known
remote subscriptions.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

This collection represents all the remote subscription points (at remote messaging engines) where there
are applications or clients connected that are receiving messages from a subscription that has its home on
this local topic space.

Messaging engine
The messaging engine where the remote subscription point is located.

Current messages requests
The current number of active message retrieval requests from the remote subscription point.

Completed messages requests
The total number of completed message retrieval requests from the remote subscription point
since the messaging engine started.

Known remote subscription points [Settings]
The remote messaging engines that have remote consumers connected to this subscription point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Message points] Publication points > identifier_name -> [Additional Properties] Known
remote subscriptions -> messaging_engine .

v “Runtime tab”

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime

2172 Administering WebSphere applications



property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Messaging engine:

The messaging engine where the remote subscription point is located.

Information Value
Required No
Data type String

Current messages requests:

The current number of active message retrieval requests from the remote subscription point.

Information Value
Required No
Data type String

Completed messages requests:

The total number of completed message retrieval requests from the remote subscription point since the
messaging engine started.

Information Value
Required No
Data type String

Message requests received:

The total number of active and completed message retrieval from the remote subscription point since the
messaging engine started.

Information Value
Required No
Data type String

Additional Properties
Message requests

The message retrieval requests from the remote subscription point.

Link receiver stream messages [Collection]
This pane displays the current messages on the link receiver stream.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] Service integration bus links -> link_name -> [Related Items]
Link receivers -> foreign_messaging_engine -> Messages

Chapter 20. Welcome to administering Service integration 2173



To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Position
The position in the queue of any pending messages that are waiting to be received.

Identifier
The identifier of this message.

Previous sequence identifier
The sequence identifier of the previous message.

State The state of the given message (“Awaiting delivery”).

Target bus
The target bus for the message.

Target destination
The target destination for the message.

Time on queue
The time since the message arrived on this messaging engine.

Link receiver streams [Collection]
This pane displays the inbound message streams from messaging applications on the foreign bus for the
link receiver.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] Service integration bus links -> link_name -> [Related
Items] Link receivers -> foreign_messaging_engine

v

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] Service integration bus link receivers

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Priority
The priority of the messages on the given stream.

Reliability
The reliability of the messages on the given stream.

Current inbound messages
The number of messages pending receipt on this message stream.

Messages received
The number of messages received on this message stream since the messaging engine started.

2174 Administering WebSphere applications



Last delivered message sequence ID
The sequence identifier of the last message to be received.

Status
The status of the link receiver stream. Green (running), Amber (running but a problem exists), Red
(stopped).

Messages
A link to view the messages on this link receiver stream.

Link receivers [Collection]
A link can have multiple link receivers. For applications that use point-to-point messaging, there is one link
receiver for each messaging engine in the foreign bus, that is, the bus that sends messages across the
link. For applications that use publish/subscribe messaging, there is one link receiver for each topic space
in the foreign bus. The link receiver acts as an inbound receiver queue for a messaging engine that has
applications attached and that is producing messages across this service integration bus link.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] Service integration bus links -> link_name -> [Related Items] Link
receivers

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] Service integration bus links -> link_name -> [Related
Items] Link receivers

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Foreign messaging engine
The name of the messaging engine in the foreign bus that sends messages across the service
integration bus link.

Type The message domain type of this link receiver, that is, point-to-point or publish/subscribe.

Topic space
For a publish/subscribe link receiver, the topic space from which this link receiver is receiving
messages across the link. This field does not apply to point-to-point link receivers.

Status
The status of the link receiver. Green (running), Amber (running but a problem exists), Red
(stopped).

Current inbound messages
The current number of messages pending receipt on the link receiver.

Messages received
The total number of messages received on the link receiver since the messaging engine started.

Time since last message received
The time since the last message was received on the link receiver or since the messaging engine
started.

Chapter 20. Welcome to administering Service integration 2175



Link transmitters [Collection]
A link can have multiple link transmitters. For applications that use point-to-point messaging, there is one
link transmitter on each messaging engine in the source bus. For applications that use publish/subscribe
messaging, there is one link transmitter for each topic space in the source bus. The link transmitter acts as
a transmission queue where produced messages are persisted before transmission across the service
integration bus link or WebSphere MQ link to the foreign bus.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] Service integration bus links -> link_name -> [Related
Items] Link transmitters

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links -> link_name -> [Related Items] Link
transmitters

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Related Items] Link transmitters

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional properties] Sender
channel -> sender_channel_link_name -> [Related Items] Link transmitters

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Messaging engine
The name of the messaging engine that hosts the link transmitter.

Type The message domain type of this link transmitter, that is, point-to-point or publish/subscribe.

Topic space
For a publish/subscribe link transmitter, the topic space to which this link transmitter is transmitting
messages across the link. This field does not apply to point-to-point link transmitters.

Status
The status of the link transmitter. Green (running), Amber (running but a problem exists), Red
(stopped).

Current outbound messages
The number of currently queued messages that are to be transmitted.

Messages sent
The number of messages sent from this link transmitter since the messaging engine started.

Time since last message sent
The time since the last message was transmitted over the link or the messaging engine was
started.

Buttons

Button Description
Delete all messages Delete all available messages that are queued for the

selected link transmitters.

2176 Administering WebSphere applications



Button Description
Move all messages Move all available messages that are queued for the

selected link transmitters to the messaging engine
exception destination that is local to the link transmitter.

Link transmitter stream messages [Collection]
This pane displays the outbound messages to the foreign bus link, on the link transmitter stream.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] Service integration bus links -> link_name -> [Related
Items] Link transmitters -> messaging_engine -> Messages

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links -> link_name -> [Related Items] Link
transmitters -> messaging_engine_name -> Messages

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Related Items] Link transmitters ->
messaging_engine_name -> Messages

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional properties] Sender
channel -> sender_channel_link_name -> [Related Items] Link transmitters ->
messaging_engine_name -> Messages

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] WebSphere MQ link transmitters -> link_name -> Messages

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Position
The position of the message in the queue on this message stream.

Identifier
The message identifier.

State The state of the queued message.

Committing
The message is currently being added under a transaction. The message will be in this
state until the transaction commits or rolls back. If this state persists, investigate the state
of the transaction. While this message is in this state, no subsequent messages will be
accepted by the queue point for which it is intended. There might be a build up of
messages on this remote queue point.

Complete
Transmission of the message to the queue point has been completed. The local copy of
the message is deleted automatically.

Pending send
The message is waiting to be sent to the queue point. Messages will be in this state if
either of the following conditions apply:

Chapter 20. Welcome to administering Service integration 2177



v The messaging engine that owns the queue point is not currently available or accepting
messages (for example, if its queue point has reached its high message threshold).

v The queue point already has a significant number of messages pending
acknowledgement.

The message is sent when the condition no longer applies.

Pending acknowledgement
The message has been transmitted to the queue point and the messaging engine is
waiting for an acknowledgement that the queue point has received the message correctly.
If this state persists, the messaging engine to which the message was transmitted might
not be reachable or a previous message on the remote queue point is still committing, and
needs resolving.

Transaction ID
The transaction identifier if the message is locked within a transaction.

Target bus
The name of the target bus.

Target destination
The name of the target bus destination.

Approximate message length (bytes)
The approximate length of the message in bytes.

Buttons

Button Description
Move Move the selected messages to the local exception

destination of the link transmitter.
Delete Delete the selected messages.

Link transmitter streams [Collection]
This pane displays the outbound message streams, by quality of service, for the link transmitter.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] Service integration bus links -> link_name -> [Related
Items] Link transmitters -> messaging_engine

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links -> link_name -> [Related Items] Link
transmitters -> messaging_engine_name

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Related Items] Link transmitters ->
messaging_engine_name

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional properties] Sender
channel -> sender_channel_link_name -> [Related Items] Link transmitters ->
messaging_engine_name

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

2178 Administering WebSphere applications



To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Priority
The priority of the messages on the given stream.

Reliability
The reliability of the messages on the given stream.

Number of messages queued
The number of messages on this message stream.

Number of messages sent
The number of messages sent from this message stream since the messaging engine started.

Status
The status of the message stream. Green (running), Amber (running but a problem exists), Red
(stopped).

Messages
A link to view the messages on this message stream.

Manage foreign bus access roles [Collection]
A foreign bus is another bus with which this bus can exchange messages.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Authorization Policy] Manage foreign bus access
roles.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

In the path, security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.

This pane displays the names of all the foreign buses defined on the selected bus. Use this pane to view
and change the access roles defined for selected buses:

v To view and change the access roles defined for a single foreign bus, click the foreign bus name.

v To view and change the access roles defined for more than one foreign bus, select the check box in the
Select column for each foreign bus, and click Manage Access Roles.

Foreign bus
The name of each foreign bus defined for the selected bus.

Buttons

Button Description
Manage Access Roles Click to view and manage users and groups assigned to

the access role types for the selected resources.

Chapter 20. Welcome to administering Service integration 2179



Mediation points [Collection]
Bus member (server or cluster) where the mediations for the destination run.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Message points] Mediation points.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Identifier
The system-generated name by which this message point is known.

Status
The runtime status of the mediation point.

Reason

Buttons

Button Description
Start Start selected items.
Stop Stop selected items.

Mediation points [Collection]
Bus member (server or cluster) where the mediations for the destination run.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Message points] Mediation points -> Runtime.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Identifier
The system-generated name by which this message point is known.

Status
The runtime status of the mediation point.

Reason

2180 Administering WebSphere applications



Buttons

Button Description

Start Start selected items.

Stop Stop selected items.

Mediation points [Settings]
Bus member (server or cluster) where the mediations for the destination run.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Message points] Mediation points -> mediation_point_name.

v “Configuration tab”

v “Runtime tab” on page 2182

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

Buttons

Button Description
Refresh Refresh the number of messages.

General Properties

Identifier:

The system-generated name by which this message point is known.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to this message point for administrative purposes.

Information Value
Required No
Data type String

High message threshold:

A threshold above which the messaging system will take action to limit the addition of more messages to
this message point.

Information Value
Required No

Chapter 20. Welcome to administering Service integration 2181



Information Value
Data type Long
Range 1 through 9223372036854775807

Send allowed:

Clear this option (setting it to false) to stop messages from being put onto this message point. This value
will be overridden by the parent destination if that destination has sendAllowed disabled, which stops
messages from being put onto all its message points.

Information Value
Required No
Data type Boolean

Initial state:

Whether the mediation point is started or stopped when the hosting messaging engine is first started. Until
started, the mediation point is unavailable.

Information Value
Required No
Data type drop-down list
Range

Started
When the associated messaging engine is
started, the mediation is started and is available
to process messages.

Stopped
When the associated messaging engine is
started, the mediation is stopped and is not
available to process messages.

Target UUID:

The UUID of the bus destination for which this is a message point.

Information Value
Required No
Data type String

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

2182 Administering WebSphere applications



Buttons

Button Description
Refresh Refresh the number of messages.

General Properties

Identifier:

The system-generated name by which this message point is known.

Information Value
Required No
Data type String

Run-time ID:

The internal runtime identifier assigned to this message point.

Information Value
Required No
Data type String

High message threshold:

A threshold above which the messaging system will take action to limit the addition of more messages to
this message point.

Information Value
Required No
Data type String

Send allowed:

Clear this option (setting it to false) to stop messages from being put onto this message point. This value
will be overridden by the parent destination if that destination has sendAllowed disabled, which stops
messages from being put onto all its message points.

Information Value
Required No
Data type Boolean

Status:

The runtime status of the mediation point.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2183



Information Value
Range

Waiting
The mediation is waiting to start. This might be
because the application server is not yet open for
e-business, or because a previous instance of
the mediation has not yet been deleted.

Started
The mediation is started and is available to
process messages.

Stopping
The mediation is in the process of stopping.

Stopped
The mediation is stopped. The reason why the
mediation is stopped is shown in the Reason
attribute.

Deleting
The mediation is in the process of being deleted.

Reason:

Information Value
Required No
Data type Text area

Current message depth:

The number of messages on the message point.

Information Value
Required No
Data type String

Additional Properties
Messages

Messages queued on the mediation point.

Mediation thread pool [Settings]
The thread pool used to allocate threads for the execution of mediation handlers.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] Mediation thread pool.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

2184 Administering WebSphere applications



General Properties

Minimum size:

Minimum size of thread pool.

Information Value
Required No
Data type Integer
Range 0 through 2147483647

Maximum size:

Maximum size of thread pool.

Information Value
Required No
Data type Integer
Range 0 through 2147483647

Thread inactivity timeout:

Specifies the number of milliseconds of inactivity that should elapse before a thread is reclaimed.

Information Value
Required No
Data type Integer
Range 0 through 2147483647

Allow thread allocation beyond maximum thread pool size:

Specifies whether the number of threads can increase beyond the maximum number configured for the
thread pool.

Information Value
Required No
Data type Boolean

Mediations [Collection]
A mediation that is associated with a bus destination to apply processing to messages on that destination.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Mediations.

To browse or change the properties of a listed item, select its name in the list.

Chapter 20. Welcome to administering Service integration 2185



To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Mediation name
The name by which this mediation is known for administrative purposes.

Handler list name
The name of the handler list that was defined when the mediation was deployed.

Description
An optional description for the mediation, for administrative purposes.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Mediations [Settings]
A mediation that is associated with a bus destination to apply processing to messages on that destination.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Mediations ->
mediation_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Mediation name:

The name by which this mediation is known for administrative purposes.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to this mediation for administrative purposes.

Information Value
Required No
Data type String

Description:

An optional description for the mediation, for administrative purposes.

2186 Administering WebSphere applications



Information Value
Required No
Data type Text area

Handler list name:

The name of the handler list that was defined when the mediation was deployed.

Information Value
Required Yes
Data type String

Global transaction:

Whether or not a global transaction is started for each message processed.

Cleared
A local transaction is started for each message processed. You only need to select this option for
mediations that access other resource managers such as databases, or interact with Enterprise
JavaBeans that require a global transaction.

Selected
A global transaction is started for each message processed.

Information Value
Required No
Data type Boolean

Allow concurrent mediation:

Select this option (setting it to true) to apply the mediation to multiple messages concurrently. Message
ordering is not preserved. The default option is false.

Selected
Apply the mediation to multiple messages concurrently, and preserve message ordering.

Cleared
Apply the mediation to a single message at a time. This setting is required to ensure that message
ordering is preserved.

Information Value
Required No
Data type Boolean

Selector:

Controls which messages are sent to the mediation. If a message matches the rule defined by the selector
text string, then the mediation is applied to the message.

If the message does not match the rule defined by the selector text string, then the message is not
mediated. If a message contains both Selector and Discriminator, it must match both rules for the
message to be mediated. If either the Selector or the Discriminator rule does not match, the message is
not mediated.

Chapter 20. Welcome to administering Service integration 2187



You should base the content of the selector text string on an understanding of which messages should be
processed by the mediation. The format of the selector string is the same as for JMS selectors.

Information Value
Required No
Data type String

Discriminator:

Controls which messages have the mediation applied to them. If the topic of a message matches the rule
specified by the discriminator text string, then the mediation is applied to the message. If both the selector
and discriminator are specified, the message must match both rules for the mediation to be applied to the
message.

Compare this property with the Selector property. The rule specified by the Selector examines the header
and properties of the message, whereas the discriminator examines the topic of the message. If a
message contains both Selector and Discriminator, it must match both rules for the message to be
mediated. If either the Selector or the Discriminator rule does not match, the message is not mediated.

You should base the content of the discriminator text string on an understanding of which message topics
should be processed by the mediation. The format of the discriminator is the same as the topic
discriminator specification.

Information Value
Required No
Data type String

Additional Properties
Context properties

Context information passed to the mediation.

Message body [Settings]
The contents of the message body.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations -> queue_name
-> [Message points] Queue points -> queue_point_name -> Runtime > Messages -> message_name
-> Message body.

Message points [Collection]
Queue points and publication points for the messaging engine.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] Message points.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

2188 Administering WebSphere applications



To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Identifier
The system-generated name by which this message point is known.

Destination type
Whether the message point is a queue or topic space.

Message Requests [Collection]
A snapshot of the current message retrieval requests from the message point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote Message Points] Remote publication points > identifier_name -> [Inbound
Properties] Remote subscriptions -> subscription_name -> [Additional Properties] Message
requests.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

The collection represents the currently active message retrieval requests by applications or clients
connected to this messaging engine, for messages on the message point at the remote messaging engine.
A message retrieval request represents a request from a client or application connected to one messaging
engine, for a message from a queue point or a subscription on a different messaging engine. When the
remote messaging engine has satisfied the message retrieval request, the application or client receives the
message for processing.

Request ID
The request identifier.

Times out at
The time at which the message retrieval request will timeout.

Selector
The retrieval request message selection criteria.

Status
The state of the message retrieval request.

Message requests [Collection]
A snapshot of the current message retrieval requests from the remote message point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote message points] Remote queue points -> identifier_name -> [Additional
Properties] Message requests.

To browse or change the properties of a listed item, select its name in the list.

Chapter 20. Welcome to administering Service integration 2189



To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

The collection represents the currently active message retrieval requests for messages on this message
point, by applications or clients connected to the remote messaging engine. When a message satisfying a
message retrieval request becomes available on this message point, the message is exclusively assigned
to the request and sent to the remote messaging engine to be delivered to the requesting application. If
the requesting application accepts the message, the local message is deleted from the message point. If
the message is rejected, the local message is made available again for other applications to request.

Request ID
The request identifier.

Times out at
The time at which the message retrieval request will timeout.

Selector
The retrieval request message selection criteria.

State The state of the message retrieval request.

Buttons

Button Description
Cancel request Cancel the selected message retrieval request and make

any message that is allocated to the request available to
other application requests.

Cancel request and delete message Cancel the selected message retrieval request and delete
any message that is allocated to the request.

Messages [Collection]
A snapshot of the current outbound messages for the message point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote message points] Remote queue points -> identifier_name -> [Additional
Properties] Outbound messages.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Sequence ID
The message sequence identifier.

API message ID
The API message identifier.

Time produced
The time the message was produced.

2190 Administering WebSphere applications



State The state of the queued message.

Committing
The message is currently being added under a transaction. The message will be in this
state until the transaction commits or rolls back. If this state persists, investigate the state
of the transaction. While this message is in this state, no subsequent messages will be
accepted by the queue point for which it is intended. There might be a build up of
messages on this remote queue point.

Complete
Transmission of the message to the queue point has been completed. The local copy of
the message is deleted automatically.

Pending send
The message is waiting to be sent to the queue point. Messages will be in this state if
either of the following conditions apply:

v The messaging engine that owns the queue point is not currently available or accepting
messages (for example, if its queue point has reached its high message threshold).

v The queue point already has a significant number of messages pending
acknowledgement.

The message is sent when the condition no longer applies.

Pending acknowledgement
The message has been transmitted to the queue point and the messaging engine is
waiting for an acknowledgement that the queue point has received the message correctly.
If this state persists, the messaging engine to which the message was transmitted might
not be reachable or a previous message on the remote queue point is still committing, and
needs resolving.

Buttons

Button Description

Delete Delete the selected items.

Move Move the selected outbound messages to the exception
destination configured for the destination. Messages in
“Pending Acknowledgment” state might already have been
accepted to the remote queue point. Moving these
messages to the exception destination results in two
copies of the message in the bus. You cannot move
messages in “Committing” state; you must first commit
their transaction.

Messages [Collection]
A snapshot of the current outbound messages for the message point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote message points] Remote publication points -> identifier_name -> [Outbound
Properties] Messages.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

Chapter 20. Welcome to administering Service integration 2191



To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Sequence ID
The message sequence identifier.

API message ID
The API message identifier.

Time produced
The time the message was produced.

State The state of the queued message.

Committing
The message is currently being added under a transaction. The message will be in this
state until the transaction commits or rolls back. If this state persists, investigate the state
of the transaction. While this message is in this state, no subsequent messages will be
accepted by the queue point for which it is intended. There might be a build up of
messages on this remote queue point.

Complete
Transmission of the message to the queue point has been completed. The local copy of
the message is deleted automatically.

Pending send
The message is waiting to be sent to the queue point. Messages will be in this state if
either of the following conditions apply:

v The messaging engine that owns the queue point is not currently available or accepting
messages (for example, if its queue point has reached its high message threshold).

v The queue point already has a significant number of messages pending
acknowledgement.

The message is sent when the condition no longer applies.

Pending acknowledgement
The message has been transmitted to the queue point and the messaging engine is
waiting for an acknowledgement that the queue point has received the message correctly.
If this state persists, the messaging engine to which the message was transmitted might
not be reachable or a previous message on the remote queue point is still committing, and
needs resolving.

Buttons

Button Description

Delete Delete the selected items.

Messages [Collection]
The messages on the message point.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
queue_name -> [Message points] Queue points -> queue_point_name -> Runtime > Messages

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Message points] Mediation points -> mediation_point_name -> Runtime > Messages

To browse or change the properties of a listed item, select its name in the list.

2192 Administering WebSphere applications



To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

A snapshot of the set of messages queued on the message point. You can display or remove selected
messages from the list.

Because this is a snapshot of the message point, a message listed might no longer exist when you
attempt to display it or act on it.

Position
The position of the message on the message point list.

Messaging engine message identifier
Messaging engine message identifier.

State The current state of the message related to a transaction that the message is part of. If the
message is part of a transaction, the transaction identifier is shown in the Transaction ID field. The
possible states are:

Available
The message is available for consumption.

Locked
The message is currently unavailable. The message is in this state temporarily, possibly
because it is being consumed by a non-transacted consumer.

Remote lock
The message is currently locked to a consumer attached to another, remote, messaging
engine in the bus. The message will remain locked until the remote messaging engine
responds with a decision on the message. If the remote messaging engine is stopped, the
message will remain locked until the messaging engine is restarted. A corresponding
message request for a “known remote queue point” will identify the remote messaging
engine that is making the request.

Removing
The message is currently being removed under a transaction. The message will be in this
state until the transaction commits or rolls back. If this state persists, investigate the state
of the transaction identified by Transaction ID.

Committing
The message is currently being added under a transaction. The message will be in this
state until the transaction commits or rolls back. If this state persists, investigate the state
of the transaction identified by Transaction ID.

Pending retry
The message is currently unavailable before being eligible for a retry. This might be
because a message-driven bean is configured to delay failing message retries.

Blocked
This message is currently unavailable because the message point is blocked by the first
message on the queue. The first message has reached its maximum failed delivery limit
but no exception destination is configured. Identify the first message and resolve the
problem that is preventing it from being consumed.

Transaction ID
The local transaction identifier of the transaction that this message is currently part of.

Chapter 20. Welcome to administering Service integration 2193



Buttons

Button Description
Delete Delete the selected items.
Delete all Delete all items in the list.
Refresh Refresh the number of messages.

Messages [Settings]
The properties for a message on the message point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations -> queue_name
-> [Message points] Queue points -> queue_point_name -> Runtime > Messages -> message_name.

v “Runtime tab”

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Messaging engine message identifier:

Messaging engine message identifier.

Information Value
Required No
Data type String

State:

The current state of the message related to a transaction that the message is part of. If the message is
part of a transaction, the transaction identifier is shown in the Transaction ID field.

Table 222. Message transaction state.. The first column of the table lists the transaction state of the messages. The
second column provides the transaction identifier if the message is part of a transaction. The third column provides
the comments.

State Transaction ID Comments

Locked An identifier is shown. The message is locked as part of the
transaction identified. The message
has not been consumed and the
transaction is still in progress.

Locked An identifier is not shown. The message is locked, but the
transaction has completed, so the
message might not have been
consumed. This indicates that some
error might have occurred.

2194 Administering WebSphere applications



Information Value
Required No
Data type drop-down list
Range

Available
The message is available for consumption.

Locked
The message is currently unavailable. The
message is in this state temporarily, possibly
because it is being consumed by a
non-transacted consumer.

Remote lock
The message is currently locked to a consumer
attached to another, remote, messaging engine in
the bus. The message will remain locked until the
remote messaging engine responds with a
decision on the message. If the remote
messaging engine is stopped, the message will
remain locked until the messaging engine is
restarted. A corresponding message request for a
“known remote queue point” will identify the
remote messaging engine that is making the
request.

Removing
The message is currently being removed under a
transaction. The message will be in this state
until the transaction commits or rolls back. If this
state persists, investigate the state of the
transaction identified by Transaction ID.

Committing
The message is currently being added under a
transaction. The message will be in this state
until the transaction commits or rolls back. If this
state persists, investigate the state of the
transaction identified by Transaction ID.

Pending retry
The message is currently unavailable before
being eligible for a retry. This might be because a
message-driven bean is configured to delay
failing message retries.

Blocked
This message is currently unavailable because
the message point is blocked by the first
message on the queue. The first message has
reached its maximum failed delivery limit but no
exception destination is configured. Identify the
first message and resolve the problem that is
preventing it from being consumed.

Transaction ID:

The local transaction identifier of the transaction that this message is currently part of.

This field combined with the State field shows the state of the message related to the transaction. For
more information about the combination of these fields, see Table 222 on page 2194.

Chapter 20. Welcome to administering Service integration 2195



Information Value
Required No
Data type String

Run-time message properties:

Message type:

The type of the message (JMS, SDO, SUBSCRIPTION, TRM, BROKER_CONTROL,
BROKER_RESPONSE, BROKER_ADMIN).

Information Value
Required No
Data type String

Approximate length:

The approximate length of the message.

Information Value
Required No
Data type String

Time stamp:

The time stamp of when the message was originally sent.

Information Value
Required No
Data type String

Message wait time:

The time the message has been waiting to be consumed.

Information Value
Required No
Data type String

Current messaging engine arrival time:

The time that the message arrived on the current messaging engine.

Information Value
Required No
Data type String

Redelivered count:

The number of times that the message has been redelivered.

2196 Administering WebSphere applications



Information Value
Required No
Data type String

Security user ID:

The security user ID.

Information Value
Required No
Data type String

Producer type:

The producer type (API, Core, TRM).

Information Value
Required No
Data type String

Exception destination timestamp:

The timestamp at which the message was put to the exception destination.

Information Value
Required No
Data type String

Exception destination reason:

The reason the message was put to the exception destination.

Information Value
Required No
Data type Text area

API Message properties:

Message ID:

The message ID.

Information Value
Required No
Data type String

Correlation ID:

The API correlation ID for request/response correlation.

Information Value
Required No

Chapter 20. Welcome to administering Service integration 2197



Information Value
Data type String

User ID:

The user ID.

Information Value
Required No
Data type String

Format:

The Format of the message.

Information Value
Required No
Data type String

JMS Message properties:

JMS delivery mode:

The JMS delivery mode (Persistent, Non-persistent).

Information Value
Required No
Data type String

JMS expiration:

The JMS expiration.

Information Value
Required No
Data type String

JMS destination:

The JMS destination.

Information Value
Required No
Data type String

JMS reply to destination:

The JMS reply to destination.

Information Value
Required No
Data type String

2198 Administering WebSphere applications



JMS redelivered:

The JMS redelivered flag.

Information Value
Required No
Data type String

JMS type:

The JMS type field (Text, Byte, Stream, Object, Map).

Information Value
Required No
Data type String

JMSX delivery count:

The JMSX delivery count.

Information Value
Required No
Data type String

JMSX application ID:

The JMSX application ID.

Information Value
Required No
Data type String

Bus message properties:

Topic:

The bus discriminator.

Information Value
Required No
Data type String

Priority:

The bus priority (0-9).

Information Value
Required No
Data type String

Reliability:

Chapter 20. Welcome to administering Service integration 2199



The bus reliability (Assured persistent, Reliable persistent, Reliable non-persistent, Express non-persistent,
Best effort non-persistent).

Information Value
Required No
Data type String

Time to live:

The time to live of the message.

Information Value
Required No
Data type String

Reply discriminator:

The reply discriminator value of the bus.

Information Value
Required No
Data type String

Reply priority:

The reply priority value of the bus (0-9).

Information Value
Required No
Data type String

Reply reliability:

The reply reliability value of the bus (Assured persistent, Reliable persistent, Reliable non-persistent,
Express non-persistent, Best effort non-persistent).

Information Value
Required No
Data type String

Reply time to live:

The reply time to live value of the bus.

Information Value
Required No
Data type String

System message ID:

The unique id of the message, assigned by the bus.

2200 Administering WebSphere applications



Information Value
Required No
Data type String

Additional Properties
Message body

The contents of the message body.

Messages [Settings]
The properties for a message on the message point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations -> queue_name
-> [Message points] Queue points -> queue_point_name -> Runtime > Messages -> message_name.

v “Runtime tab”

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Messaging engine message identifier:

Messaging engine message identifier.

Information Value
Required No
Data type String

State:

The current state of the message related to a transaction that the message is part of. If the message is
part of a transaction, the transaction identifier is shown in the Transaction ID field.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2201



Information Value
Range

Available
The message is available for consumption.

Locked
The message is currently unavailable. The
message is in this state temporarily, possibly
because it is being consumed by a
non-transacted consumer.

Remote lock
The message is currently locked to a consumer
attached to another, remote, messaging engine in
the bus. The message will remain locked until the
remote messaging engine responds with a
decision on the message. If the remote
messaging engine is stopped, the message will
remain locked until the messaging engine is
restarted. A corresponding message request for a
“known remote queue point” will identify the
remote messaging engine that is making the
request.

Removing
The message is currently being removed under a
transaction. The message will be in this state
until the transaction commits or rolls back. If this
state persists, investigate the state of the
transaction identified by Transaction ID.

Committing
The message is currently being added under a
transaction. The message will be in this state
until the transaction commits or rolls back. If this
state persists, investigate the state of the
transaction identified by Transaction ID.

Pending retry
The message is currently unavailable before
being eligible for a retry. This might be because a
message-driven bean is configured to delay
failing message retries.

Blocked
This message is currently unavailable because
the message point is blocked by the first
message on the queue. The first message has
reached its maximum failed delivery limit but no
exception destination is configured. Identify the
first message and resolve the problem that is
preventing it from being consumed.

Transaction ID:

The local transaction identifier of the transaction that this message is currently part of.

Information Value
Required No
Data type String

Run-time message properties:

2202 Administering WebSphere applications



Message type:

The type of the message (JMS, SDO, SUBSCRIPTION, TRM, BROKER_CONTROL,
BROKER_RESPONSE, BROKER_ADMIN).

Information Value
Required No
Data type String

Approximate length:

The approximate length of the message.

Information Value
Required No
Data type String

Time stamp:

The time stamp of when the message was originally sent.

Information Value
Required No
Data type String

Message wait time:

The time the message has been waiting to be consumed.

Information Value
Required No
Data type String

Current messaging engine arrival time:

The time that the message arrived on the current messaging engine.

Information Value
Required No
Data type String

Redelivered count:

The number of times that the message has been redelivered.

Information Value
Required No
Data type String

Security user ID:

The security user ID.

Chapter 20. Welcome to administering Service integration 2203



Information Value
Required No
Data type String

Producer type:

The producer type (API, Core, TRM).

Information Value
Required No
Data type String

Exception destination timestamp:

The timestamp at which the message was put to the exception destination.

Information Value
Required No
Data type String

Exception destination reason:

The reason the message was put to the exception destination.

Information Value
Required No
Data type Text area

API Message properties:

Message ID:

The message ID.

Information Value
Required No
Data type String

Correlation ID:

The API correlation ID for request/response correlation.

Information Value
Required No
Data type String

User ID:

The user ID.

Information Value
Required No

2204 Administering WebSphere applications



Information Value
Data type String

Format:

The Format of the message.

Information Value
Required No
Data type String

JMS Message properties:

JMS delivery mode:

The JMS delivery mode (Persistent, Non-persistent).

Information Value
Required No
Data type String

JMS expiration:

The JMS expiration.

Information Value
Required No
Data type String

JMS destination:

The JMS destination.

Information Value
Required No
Data type String

JMS reply to destination:

The JMS reply to destination.

Information Value
Required No
Data type String

JMS redelivered:

The JMS redelivered flag.

Information Value
Required No
Data type String

Chapter 20. Welcome to administering Service integration 2205



JMS type:

The JMS type field (Text, Byte, Stream, Object, Map).

Information Value
Required No
Data type String

JMSX delivery count:

The JMSX delivery count.

Information Value
Required No
Data type String

JMSX application ID:

The JMSX application ID.

Information Value
Required No
Data type String

Bus message properties:

Topic:

The bus discriminator.

Information Value
Required No
Data type String

Priority:

The bus priority (0-9).

Information Value
Required No
Data type String

Reliability:

The bus reliability (Assured persistent, Reliable persistent, Reliable non-persistent, Express non-persistent,
Best effort non-persistent).

Information Value
Required No
Data type String

Time to live:

2206 Administering WebSphere applications



The time to live of the message.

Information Value
Required No
Data type String

Reply discriminator:

The reply discriminator value of the bus.

Information Value
Required No
Data type String

Reply priority:

The reply priority value of the bus (0-9).

Information Value
Required No
Data type String

Reply reliability:

The reply reliability value of the bus (Assured persistent, Reliable persistent, Reliable non-persistent,
Express non-persistent, Best effort non-persistent).

Information Value
Required No
Data type String

Reply time to live:

The reply time to live value of the bus.

Information Value
Required No
Data type String

System message ID:

The unique id of the message, assigned by the bus.

Information Value
Required No
Data type String

Additional Properties
Message body

The contents of the message body.

Chapter 20. Welcome to administering Service integration 2207



Messages [Settings]
The properties for a message on the message point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations -> queue_name
-> [Message points] Queue points -> queue_point_name -> Runtime > Messages -> message_name.

v “Runtime tab”

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Messaging engine message identifier:

Messaging engine message identifier.

Information Value
Required No
Data type String

State:

The current state of this message on the message point. If the message is part of a transaction, the
transaction identifier is shown in the Transaction ID field.

Information Value
Required No
Data type drop-down list

2208 Administering WebSphere applications



Information Value
Range

Available
The message is available for consumption.

Locked
The message is currently unavailable. The
message is in this state temporarily, possibly
because it is being consumed by a
non-transacted consumer.

Remote lock
The message is currently locked to a consumer
attached to another, remote, messaging engine in
the bus. The message will remain locked until the
remote messaging engine responds with a
decision on the message. If the remote
messaging engine is stopped, the message will
remain locked until the messaging engine is
restarted. A corresponding message request for a
“known remote queue point” will identify the
remote messaging engine that is making the
request.

Removing
The message is currently being removed under a
transaction. The message will be in this state
until the transaction commits or rolls back. If this
state persists, investigate the state of the
transaction identified by Transaction ID.

Committing
The message is currently being added under a
transaction. The message will be in this state
until the transaction commits or rolls back. If this
state persists, investigate the state of the
transaction identified by Transaction ID.

Pending retry
The message is currently unavailable before
being eligible for a retry. This might be because a
message-driven bean is configured to delay
failing message retries.

Blocked
This message is currently unavailable because
the message point is blocked by the first
message on the queue. The first message has
reached its maximum failed delivery limit but no
exception destination is configured. Identify the
first message and resolve the problem that is
preventing it from being consumed.

Transaction ID:

The local transaction identifier of the transaction that this message is currently part of.

Information Value
Required No
Data type String

Run-time message properties:

Chapter 20. Welcome to administering Service integration 2209



Message type:

The type of the message (JMS, SDO, SUBSCRIPTION, TRM, BROKER_CONTROL,
BROKER_RESPONSE, BROKER_ADMIN).

Information Value
Required No
Data type String

Approximate length:

The approximate length of the message.

Information Value
Required No
Data type String

Time stamp:

The time stamp of when the message was originally sent.

Information Value
Required No
Data type String

Message wait time:

The time the message has been waiting to be consumed.

Information Value
Required No
Data type String

Current messaging engine arrival time:

The time that the message arrived on the current messaging engine.

Information Value
Required No
Data type String

Redelivered count:

The number of times that the message has been redelivered.

Information Value
Required No
Data type String

Security user ID:

The security user ID.

2210 Administering WebSphere applications



Information Value
Required No
Data type String

Producer type:

The producer type (API, Core, TRM).

Information Value
Required No
Data type String

Exception destination timestamp:

The timestamp at which the message was put to the exception destination.

Information Value
Required No
Data type String

Exception destination reason:

The reason the message was put to the exception destination.

Information Value
Required No
Data type Text area

API Message properties:

Message ID:

The message ID.

Information Value
Required No
Data type String

Correlation ID:

The API correlation ID for request/response correlation.

Information Value
Required No
Data type String

User ID:

The user ID.

Information Value
Required No

Chapter 20. Welcome to administering Service integration 2211



Information Value
Data type String

Format:

The Format of the message.

Information Value
Required No
Data type String

Bus message properties:

Topic:

The bus discriminator.

Information Value
Required No
Data type String

Priority:

The bus priority (0-9).

Information Value
Required No
Data type String

Reliability:

The bus reliability (Assured persistent, Reliable persistent, Reliable non-persistent, Express non-persistent,
Best effort non-persistent).

Information Value
Required No
Data type String

Time to live:

The time to live of the message.

Information Value
Required No
Data type String

Reply discriminator:

The reply discriminator value of the bus.

Information Value
Required No

2212 Administering WebSphere applications



Information Value
Data type String

Reply priority:

The reply priority value of the bus (0-9).

Information Value
Required No
Data type String

Reply reliability:

The reply reliability value of the bus (Assured persistent, Reliable persistent, Reliable non-persistent,
Express non-persistent, Best effort non-persistent).

Information Value
Required No
Data type String

Reply time to live:

The reply time to live value of the bus.

Information Value
Required No
Data type String

System message ID:

The unique id of the message, assigned by the bus.

Information Value
Required No
Data type String

Additional Properties
Message body

The contents of the message body.

Messaging engines [Collection]
A messaging engine is a component, running inside a server, that manages messaging resources for a
bus member. Applications are connected to a messaging engine when they access a service integration
bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines.

To browse or change the properties of a listed item, select its name in the list.

Chapter 20. Welcome to administering Service integration 2213



To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the messaging engine.

Description
An optional description for the messaging engine, for administrative purposes.

Status
The current status of the messaging engine. Status settings are started or stopped.

Buttons

Button Description

Enable policy assistance This button only applies to messaging engines in a
clustered environment.

Start the wizard that provides messaging engine policy
assistance, that is, guidance about creating one or more
messaging engines for the cluster and configuring the
messaging engine behavior. This button is available only
when messaging engine policy assistance is not enabled
already.

Add messaging engine This button only applies to messaging engines in a
clustered environment.

Add a new messaging engine to the server cluster.

Remove messaging engine This button only applies to messaging engines in a
clustered environment.

Remove the selected messaging engines from the server
cluster.

Start Start selected items.

2214 Administering WebSphere applications



Button Description

Stop Stop the selected messaging engines. You must first
select the messaging engines to be stopped. You can
select a Stop mode:

Immediate
The messaging engine stops after all messaging
operations that are occurring at the time of the
stop request have completed. After a stop
request is issued, no new messaging operations
can start.

For each existing connection, the messaging
engine waits for the current operation to
complete, unless the operation is one that blocks
processing in the messaging engine, such as a
receive operation. In this case, the operation is
interrupted. Asynchronous consumers can
complete, even though they might take an
arbitrary amount of time to process the current
message. The messaging engine then backs out
of active transactions and disallows any further
operations on that connection. When all
connections are in this invalidated state, the
messaging engine stops.

Force The messaging engine stops without allowing
messaging operations to complete. Applications
are forcefully disconnected.

This mode completes the shutdown of the
messaging engine in as short a time as possible.
When a messaging engine that was stopped by
using force mode is restarted, the restart might
take longer than if it was stopped using
immediate mode, because more recovery
actions are needed. For example, messages
might be left in an indoubt state and you must
deal with these messages to resolve any indoubt
transactions.

Tip: If an immediate stop takes too long, you can select
the Force option to escalate it to a force stop. This
overrides your previous selection of the Immediate option.

Messaging engines [Settings]
A messaging engine is a component, running inside a server, that manages messaging resources for a
bus member. Applications are connected to a messaging engine when they access a service integration
bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name.

v “Configuration tab” on page 2216

v “Runtime tab” on page 2219

Chapter 20. Welcome to administering Service integration 2215



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the messaging engine.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to this messaging engine for administrative
purposes.

Information Value
Required No
Data type String

Description:

An optional description for the messaging engine, for administrative purposes.

Information Value
Required No
Data type Text area

Initial state:

The initial state determines whether the messaging engine is started automatically.

If this property is selected, the messaging engine starts automatically when its associated application
server is started. Until the messaging engine starts, it is unavailable.

Information Value
Required No
Data type drop-down list
Range

Stopped
When the associated application server is
started, the messaging engine is stopped and is
not available to process messages.

Started
When the associated application server is
started, the messaging engine is started and is
available to process messages.

Message store type:

2216 Administering WebSphere applications



The type of message store used. Either file store or data store. Once the messaging engine has been
created this cannot be changed, only configured.

Information Value
Required No
Data type drop-down list
Range

File store
A file store is a type of message store that
directly uses files in a file system through the
operating system.

Data store
A data store consists of the set of tables that a
messaging engine uses to store persistent data
in a database.

High message threshold per message point:

The number of messages queued on a message point on this messaging engine, at which point new
messages are not accepted on the message point. However, certain messages that are already in the bus
and that are being transmitted to this messaging engine might be accepted.

When the messaging engine is created, the high message threshold of the bus is used to set the default
value for this property. When a message point is created on this messaging engine, the value of this
property is used to set the default high message threshold for the message point.

Information Value
Required No
Data type Integer
Range 1 through 9223372036854775807

Note: There are implications for the Java Virtual Machine
(JVM) heap size when using a high message threshold, if
large numbers of messages are held on a queue (each
message consumes approximately 200 bytes of storage).
Therefore if you increase the high message threshold
because you are expecting large numbers of messages
on your queues, you should also modify the JVM heap
size of the server as appropriate.

Default blocked destination retry interval:

The time delay, in milliseconds, that is introduced by the system under certain circumstances before a
failed message delivery to an application will be retried. This delay can be overridden by individual Queue
destination configurations.

When you configure a bus destination, you can specify an associated exception destination and a
maximum number of times that an individual message fails to be consumed before it is put on that
exception destination. Alternatively, if you do not specify an associated exception destination, the system
continues to try to deliver the message. In this situation, the system attempts to deliver the message,
without applying any delay, until it reaches the maximum failed deliveries limit set for the bus destination (a
queue or a topic space). After the maximum failed deliveries limit is reached, the default blocked
destination retry interval is applied before the message is retried.

Chapter 20. Welcome to administering Service integration 2217



The Default blocked destination retry interval specifies the time interval between retry attempts, which will
be used by all queue and topic destinations that are associated with this messaging engine. You can
override this default value when you configure an individual queue or topic destination.

Information Value
Required No
Data type Integer (milliseconds)
Default The value taken from the

sib.processor.blockedRetryTimeout custom property, if set.
Otherwise it is set to 5000.

Range 1 through 9223372036854775807

Target groups:

A list of names of target groups with which the messaging engine will register.

Custom target groups are a type of target group used by JMS connection factories. When an application
creates a connection to a service integration bus, it uses connection factory properties to specify suitable
messaging engines to connect to. When a target type of “Custom” is specified in the connection factory
targetType property, the application is connected to one of the messaging engines in the specified custom
target group. A particular messaging engine is selected from the group according to the other connection
factory properties that are specified.

Information Value
Required No
Data type Text area

Bus name:

The name of the service integration bus on which the messaging engine is configured.

Information Value
Required No
Data type String

Bus UUID:

The universal unique identifier of the service integration bus on which the messaging engine is configured.

Information Value
Required No
Data type String

Message points
Mediation points

A mediation point is created on each messaging engine to which the mediation of a mediated
destination is assigned. It is used to hold messages pending delivery to the mediation.

Queue points
A queue point is created on each messaging engine to which a point-to-point destination is
assigned. It is used to hold messages pending delivery to receiving applications.

2218 Administering WebSphere applications



Publication points
A publication point is created on each messaging engine in the bus when a publish/subscribe
destination is created. The publication point on a messaging engine is used to hold messages
published by applications connected to that messaging engine until they are delivered to
subscribers.

Additional Properties
Mediation execution points

Mediation execution points for the processing of messages from mediation message points that
are on a WebSphere MQ server.

Service integration bus links
A communications link between this messaging engine and a messaging engine in a foreign
service integration bus.

Mediation thread pool
The thread pool for allocating mediation handler threads.

Message store
The properties for the message store in use by this messaging engine as determined by the
message store type field. The message store can be either a file store or a data store.

WebSphere MQ client links
A WebSphere MQ client link enables JMS client applications to connect, via this messaging
engine, to the service integration bus, as though it were a WebSphere MQ queue manager.

WebSphere MQ links
Links between the messaging engine and WebSphere MQ networks. Each WebSphere MQ link
connects the messaging engine as a queue manager to WebSphere MQ, providing a bridge
between the bus and a WebSphere MQ network.

Custom properties
Arbitrary name-value pairs of data, where the name is a property key and the value is a string
value that can be used to set internal system configuration properties. Defining a new property
enables you to configure a setting beyond that which is available in the administrative console.

Reliable messaging state
Use this page to view and manage the WS-ReliableMessaging runtime state.

Related Items
Bus member

The bus member associated with this messaging engine.

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Status:

The current status of the messaging engine. Status settings are started or stopped.

To be able to retrieve the status of messaging engines, you must be logged into the administrative console
with at least monitor authority. If you do not have this authority, the messaging engine status is displayed
as "Unavailable", even if the messaging engine has started.

Chapter 20. Welcome to administering Service integration 2219



Information Value
Required No
Data type String

Message points
Queue points

A queue point is created on each messaging engine to which a point-to-point destination is
assigned. It is used to hold messages pending delivery to receiving applications.

Publication points
A publication point is created on each messaging engine in the bus when a publish/subscribe
destination is created. The publication point on a messaging engine is used to hold messages
published by applications connected to that messaging engine until they are delivered to
subscribers.

Mediation points
A mediation point is created on each messaging engine to which the mediation of a mediated
destination is assigned. It is used to hold messages pending delivery to the mediation.

Remote message points
Remote queue points

The remote queue points that are producing/consuming messages to/from queue points on remote
messaging engines.

Remote mediation points
The remote mediation points that are producing messages for mediation points on remote
messaging engines.

Remote publication points
The remote publication points that are producing messages for publication points on remote
messaging engines.

Messaging resources for this application
This pane provides an expandable tree view of all the references to messaging resources declared in the
deployment descriptors for the current application. As many of the references as possible are resolved to
links to the associated configuration panel for the referenced object.

To view this page in the console, click the following path:

Applications -> Application Types -> WebSphere enterprise applications -> application_name ->
[Enterprise Java Bean Properties] Default messaging provider references.

Use this panel to inspect the configuration from the application to the queue (destination) to ensure that
the configuration is correct.

Using the default messaging provider, a JMS activation specification refers to a JMS destination (either a
JMS Queue or JMS Topic) that in turn points to a service integration bus destination (either a queue
destination or a topic space destination). JMS resources are referenced through Java Naming and
Directory Interface (JNDI) names and service integration resources are referenced through bus and
resource identifiers. This panel enables you to review the dependencies within your configuration, making
it easier to detect inconsistencies, for example as a result of references being entered incorrectly, or JNDI
or resource names being changed or deleted without the associated configuration having been updated.

Problems with the configuration are usually detected in one of two ways:

v An application can no longer send or receive messages.

2220 Administering WebSphere applications



v A destination becomes full and can no longer receive messages because the existing messages are not
being consumed.

This panel can help you find the cause of the problem by giving you a high level view of many relevant
resources.

Note: For a related view of the applications and JMS resources for a given destination, see the following
panel: “Application resources for this destination” on page 2120.

v “Local Topology tab”

Local Topology tab
Topology properties for this object. These properties detail how this object relates to other objects in the
system topology.

Permitted transports [Collection]
A permitted transport is a transport mechanism that this bus will allow remote clients to use.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Additional Properties] Permitted transports.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Transport Name
The name of the permitted transport.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Port [Settings]

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations -> port_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

Chapter 20. Welcome to administering Service integration 2221



General Properties

Identifier:

The identifier by which this destination is known for administrative purposes.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to this destination for administrative purposes.

Information Value
Required No
Data type String

Type:

Whether this bus destination is for a queue, topic space, or some other type of destination.

Information Value
Required No
Data type String

Description:

An optional description for the bus destination, for administrative purposes.

Information Value
Required No
Data type Text area

Mediation:

The name of the mediation that mediates this destination.

Information Value
Required No
Data type String

Default reliability:

The reliability assigned to a message produced to this destination when an explicit reliability has not been
set by the producer.

Information Value
Required No
Data type drop-down list

2222 Administering WebSphere applications



Information Value
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Maximum reliability:

The maximum reliability of messages accepted by this destination.

Information Value
Required No
Data type drop-down list
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Enable producers to override default reliability:

Chapter 20. Welcome to administering Service integration 2223



Select this option to enable producers to override the default reliability that is set on the destination.

Information Value
Required No
Data type Boolean

Default priority:

The default priority assigned to messages sent to this destination when a priority has not been set by the
producer.

Information Value
Required No
Data type Custom

Exception destination:

Use these properties to define what happens to any messages that cannot be delivered to this destination.

Use this property to define what happens to any messages that cannot be delivered to this destination.

By default, such messages are routed to the system default exception destination of the messaging engine
that discovers the problem: _SYSTEM.Exception.Destination.engine_name.

If you want messages to be sent to another exception destination, select Specify then type the exception
destination name. The exception destination must be a queue, on the same bus or a foreign bus, and
must exist when the destination is created.

If you do not want undeliverable messages to be sent to an exception destination, select None.

Information Value
Required No
Data type String and Boolean

Send allowed:

Clear this option (setting it to false) to stop producers from being able to send messages to this
destination.

Information Value
Required No
Data type Boolean

Receive allowed:

Clear this option (setting it to false) to prevent consumers from being able to receive messages from this
destination.

Information Value
Required No
Data type Boolean

Receive exclusive:

2224 Administering WebSphere applications



Select this option to allow only one consumer to attach to each message point. If this option is not
selected multiple consumers will be allowed to attach and receive messages from each message point.

Information Value
Required No
Data type Boolean

Maintain strict message order:

Enabling this option will maintain the strict ordering of messages for this destination.

Information Value
Required No
Data type Custom

Additional Properties
Context properties

Context information passed to the mediation.

Message points
Queue points

A queue point is created on each messaging engine to which a point-to-point destination is
assigned. It is used to hold messages pending delivery to receiving applications.

Mediation points
A mediation point is a location in a messaging engine at which messages are mediated. A
mediation point is created when a mediation is associated with a bus destination.

Property [Settings]
Use this page to specify an arbitrary name and value pair. The value that is specified for the name and
value pair is a string that can set internal system configuration properties.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Additional Properties] Custom properties ->
property_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

Specifies the name of the property.

Information Value
Required Yes
Data type String

Value:

Chapter 20. Welcome to administering Service integration 2225



Specifies the value that is paired with the specified name.

Information Value
Required Yes
Data type String

Description:

Specifies a description of the name and value pair. The description should help to differentiate this pair for
other defined pairs.

Information Value
Required No
Data type Text area

Optional:

Specifies an optional attribute that determines whether this property must have a value.

Information Value
Required No
Data type Boolean

Validation Expression:

Specifies a value that the administrative console and some host tools use to validate the contents of the
value of this property.

Information Value
Required No
Data type String

Publication points [Collection]
The message point for a topic space, for publish/subscribe messaging.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
topic_space_name -> [Message points] Publication points.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Identifier
The system-generated name by which this message point is known.

Queue Depth
The total set of messages currently queued by the publication point for the attached subscriptions.

2226 Administering WebSphere applications



These messages can be:

v Shared across multiple local subscriptions

v Queued for a single subscription

v Queued for transmission to one or more remote publication points

Investigate the reason for queued messages, as follows:

v Display the runtime collection of subscriptions for this publication point and identify the
subscriptions with non-zero queue depths.

v Also display the Remote publication point collection panel for this messaging engine and identify
any remote publication points for the same topic space as this publication point that have a
non-zero current outbound message value. If these exist, ensure that the target messaging
engines are started.

Publication points [Collection]
The message point for a topic space, for publish/subscribe messaging.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
topic_space_name -> [Message points] Publication points -> Runtime.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Identifier
The system-generated name by which this message point is known.

Publication points [Settings]
The message point for a topic space, for publish/subscribe messaging.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
topic_space_name -> [Message points] Publication points -> publication_point_name.

v “Configuration tab”

v “Runtime tab” on page 2229

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Identifier:

The system-generated name by which this message point is known.

Chapter 20. Welcome to administering Service integration 2227



Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to this message point for administrative purposes.

Information Value
Required No
Data type String

Destination type:

Whether the message point is a queue or topic space.

Information Value
Required No
Data type String

High message threshold:

A threshold above which the messaging system will take action to limit the addition of more messages to
this message point.

A publication point stores a single copy of each message that is currently queued to a subscription on this
publication point. Multiple subscriptions that are queueing the same message will result in a single copy of
the message on the publication point. A publication point can reach its high message threshold because a
single subscription has many messages queued to it or because many subscriptions have a few, different
messages queued to them. If the high message threshold is reached, investigate the state of the individual
subscriptions on this publication point to identify the cause.

Information Value
Required No
Data type Long
Range 1 through 9223372036854775807

Send allowed:

Clear this option (setting it to false) to stop messages from being put onto this message point. This value
will be overridden by the parent destination if that destination has sendAllowed disabled, which stops
messages from being put onto all its message points.

Information Value
Required No
Data type Boolean

Target UUID:

The UUID of the bus destination for which this is a message point.

2228 Administering WebSphere applications



Information Value
Required No
Data type String

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Identifier:

The system-generated name by which this message point is known.

Information Value
Required No
Data type String

Run-time ID:

The internal runtime identifier assigned to this message point.

Information Value
Required No
Data type String

High message threshold:

A threshold above which the messaging system will take action to limit the addition of more messages to
this message point.

Information Value
Required No
Data type String

Send allowed:

Clear this option (setting it to false) to stop messages from being put onto this message point. This value
will be overridden by the parent destination if that destination has sendAllowed disabled, which stops
messages from being put onto all its message points.

Information Value
Required No
Data type Boolean

Additional Properties
Subscriptions

The active subscriptions for the topic space.

Chapter 20. Welcome to administering Service integration 2229



Known remote publication points
The remote messaging engines that have remote producers connected to this publication point.

Publish/subscribe broker profiles [Collection]
Profiles used to define the topic mappings and transactionality for publishing and receiving (by
subscription) topics across the publish/subscribe bridge between WebSphere Application Server and a
message broker in a WebSphere MQ network.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties]
Publish/subscribe broker profiles.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the publish/subscribe broker profile.

Description
An optional description for the publish/subscribe broker profile, for administrative purposes.

Broker queue manager
The name of the queue manager for the WebSphere MQ broker.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Publish/subscribe broker profiles [Settings]
Profiles used to define the topic mappings and transactionality for publishing and receiving (by
subscription) topics across the publish/subscribe bridge between WebSphere Application Server and a
message broker in a WebSphere MQ network.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties]
Publish/subscribe broker profiles -> profile_name.

v “Runtime tab”

v “Configuration tab” on page 2231

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime

2230 Administering WebSphere applications



property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Number of subscriptions:

The current number of broker subscriptions for this broker profile.

Information Value
Required No
Data type String

Additional Properties
Subscriptions

The list of current broker subscriptions for this broker profile.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the publish/subscribe broker profile.

This name is only for administrative purposes. If you created this broker profile by using the foreign bus
connection wizard, then this name is generated automatically by adding “_broker_profile” to the end of the
broker queue manager name.

Information Value
Required Yes
Data type String

Description:

An optional description for the publish/subscribe broker profile, for administrative purposes.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type Text area

Broker queue manager:

The name of the queue manager for the WebSphere MQ broker.

This identifies the queue manager to which the message broker is connected in the WebSphere MQ
network. It does not have to be the WebSphere MQ gateway queue manager.

Chapter 20. Welcome to administering Service integration 2231



Information Value
Required No
Data type String

Additional Properties
Topic mappings

Topic mappings for publishing and receiving (by subscription) messages across the
publish/subscribe bridge between WebSphere Application Server and a message broker in a
WebSphere MQ network.

Queue points [Collection]
The message point for a queue, for point-to-point messaging.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations -> queue_name
-> [Message points] Queue points.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Identifier
The system-generated name by which this message point is known.

Queue points [Collection]
The message point for a queue, for point-to-point messaging.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations -> queue_name
-> [Message points] Queue points -> Runtime.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Identifier
The system-generated name by which this message point is known.

Queue points [Settings]
The message point for a queue, for point-to-point messaging.

To view this page in the console, click the following path:

2232 Administering WebSphere applications



Service integration -> Buses -> bus_name -> [Destination resources] Destinations -> queue_name
-> [Message points] Queue points -> queue_point_name.

v “Configuration tab”

v “Runtime tab” on page 2234

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

Buttons

Button Description

Refresh Refresh the number of messages.

General Properties

Identifier:

The system-generated name by which this message point is known.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to this message point for administrative purposes.

Information Value
Required No
Data type String

Destination type:

Whether the message point is a queue or topic space.

Information Value
Required No
Data type String

High message threshold:

A threshold above which the messaging system will take action to limit the addition of more messages to
this message point.

Information Value
Required No
Data type Long
Range 1 through 9223372036854775807

Chapter 20. Welcome to administering Service integration 2233



Send allowed:

Clear this option (setting it to false) to stop messages from being put onto this message point. This value
will be overridden by the parent destination if that destination has sendAllowed disabled, which stops
messages from being put onto all its message points.

Information Value
Required No
Data type Boolean

Target UUID:

The UUID of the bus destination for which this is a message point.

Information Value
Required No
Data type String

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

Buttons

Button Description

Refresh Refresh the number of messages.

General Properties

Identifier:

The system-generated name by which this message point is known.

Information Value
Required No
Data type String

Run-time ID:

The internal runtime identifier assigned to this message point.

Information Value
Required No
Data type String

High message threshold:

A threshold above which the messaging system will take action to limit the addition of more messages to
this message point.

2234 Administering WebSphere applications



Information Value
Required No
Data type String

Send allowed:

Clear this option (setting it to false) to stop messages from being put onto this message point. This value
will be overridden by the parent destination if that destination has sendAllowed disabled, which stops
messages from being put onto all its message points.

Information Value
Required No
Data type Boolean

Current message depth:

The number of messages on the message point.

Information Value
Required No
Data type String

Additional Properties
Messages

Messages queued on the queue point.

Known remote queue points
The remote messaging engines that have remote producers or consumers connected to this
queue point.

Remote mediation points [Collection]
The remote mediation points that are producing messages to mediation points on remote messaging
engines.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote message points] Remote mediation points.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

A remote mediation point represents a remote proxy for a mediation point that exists at a remote
messaging engine to which messages are sent by an application or client connected to this messaging
engine. The remote mediation point manages an outbound message stream to the mediation point at the
remote messaging engine.

Identifier
The remote mediation point identifier.

Chapter 20. Welcome to administering Service integration 2235



Messaging engine
The remote messaging engine where this mediation point is localized.

Current outbound messages
The current number of outbound messages queued to the mediation point.

Outbound messages sent
The total number of messages sent to the mediation point since the messaging engine started.

Buttons

Button Description

Delete all messages Delete all messages from the outbound message stream
of the selected remote queue point. Messages in
“Pending Acknowledgment” state might already have been
received at the remote queue point. You cannot delete
messages in “Committing” state; you must first commit
their transactions.

Move all messages Move all messages from the outbound message stream
of the selected remote queue point to the exception
destination configured for the destination. Messages in
“Pending Acknowledgment” state might already have been
received at the remote queue point. Moving these
messages to the exception destination results in two
copies of the message in the bus. You cannot move
messages in “Committing” state; you must first commit
their transactions.

Remote mediation points [Settings]
The remote mediation points that are producing messages to mediation points on remote messaging
engines.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote message points] Remote mediation points -> identifier_name .

v “Runtime tab”

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Identifier:

The remote mediation point identifier.

Information Value
Required No
Data type String

2236 Administering WebSphere applications



Messaging engine:

The remote messaging engine where this mediation point is localized.

Information Value
Required No
Data type String

Current outbound messages:

The current number of outbound messages queued to the mediation point.

Information Value
Required No
Data type String

Outbound messages sent:

The total number of messages sent to the mediation point since the messaging engine started.

Information Value
Required No
Data type String

Additional Properties
Outbound messages

The outbound message streams from this remote message point to the remote localized message
point.

Outbound messages [Collection]
The outbound message streams from this remote message point to the remote localized message point.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote message points] Remote queue points -> identifier_name -> [Additional
Properties] Outbound messages.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

The collection of outbound message streams ordered by quality of service (priority and reliability) for
messages sent to a message point on a remote messaging engine.

Priority
The stream priority.

Reliability
The stream reliability.

Chapter 20. Welcome to administering Service integration 2237



Number of messages
The current number of messages on the stream.

Status
The status of the stream.

Messages
View the messages on the selected stream.

Remote Publication Points [Collection]
The remote publication points that are producing messages to publication points on remote messaging
engines.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote message points] Remote publication points.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

A remote publication point represents a remote proxy for a publication point that exists at a remote
messaging engine, for which publications are published to by an application or client connected to this
messaging engine. The remote publication point manages an outbound message stream to the publication
point at the remote messaging engine

Identifier
The remote publication point identifier.

Message engine
The remote messaging engine where this publication point is localized.

Current outbound messages
The current number of outbound messages queued to the publication point.

Outbound messages sent
The total number of messages sent to the publication point since the messaging engine started.

Buttons

Button Description

Delete all messages Delete all messages from the outbound message stream
of the selected remote queue point. Messages in
“Pending Acknowledgment” state might already have been
received at the remote queue point. You cannot delete
messages in “Committing” state; you must first commit
their transactions.

2238 Administering WebSphere applications



Remote Publication Points [Settings]
The remote publication points that are producing messages to publication points on remote messaging
engines.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote message points] Remote publication points -> identifier_name .

v “Runtime tab”

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Identifier:

The remote publication point identifier.

Information Value
Required No
Data type String

Message engine:

The remote messaging engine where this publication point is localized.

Information Value
Required No
Data type Text area

Current outbound messages:

The current number of outbound messages queued to the publication point.

Information Value
Required No
Data type String

Outbound messages sent:

The total number of messages sent to the publication point since the messaging engine started.

Information Value
Required No
Data type String

Chapter 20. Welcome to administering Service integration 2239



Outbound properties
Messages

The messages queued outbound to the publication point on the remote messaging engine.

Topics
The topics that have been subscribed to from this remote messaging engine.

Inbound properties
Remote subscriptions

The subscriptions that have been made from this messaging engine to subscription homes on
remote messaging engines.

Remote subscription [Collection]
The subscription that has been made from this messaging engine to a subscription home on a remote
messaging engine.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote Message Points] Remote publication points > identifier_name -> [Inbound
Properties] Remote subscriptions.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

The subscriptions that have been made by subscribing applications, or clients connected to this messaging
engine, to the remote messaging engine where the subscriptions' "Homes" exist.

Name The name of the remote subscription.

Current message requests
The current number of active message retrieval requests sent to the publication point from this
remote subscription point.

Completed message requests
The total number of completed message retrieval requests sent to the publication point from this
remote subscription point since the messaging engine started.

Remote subscription [Settings]
The subscription that has been made from this messaging engine to a subscription home on a remote
messaging engine.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote Message Points] Remote publication points > identifier_name -> [Inbound
Properties] Remote subscriptions -> subscription_name .

v “Runtime tab” on page 2241

2240 Administering WebSphere applications



Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Name:

The name of the remote subscription.

Information Value
Required No
Data type String

Current message requests:

The current number of active message retrieval requests sent to the publication point from this remote
subscription point.

Information Value
Required No
Data type String

Completed message requests:

The total number of completed message retrieval requests sent to the publication point from this remote
subscription point since the messaging engine started.

Information Value
Required No
Data type String

Additional Properties
Message requests

The total number of active and completed message retrieval requests sent to the publication point
from this remote subscription point since the messaging engine started.

WebSphere MQ sender channel saved batch status [Collection]
The saved status of message batches for the sender channel saved for transmission to WebSphere MQ.
You can choose to commit or rollback each batch.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties] Sender channel
-> channel_name -> Runtime > Saved batch status.

To browse or change the properties of a listed item, select its name in the list.

Chapter 20. Welcome to administering Service integration 2241



To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Virtual queue manager name
The virtual queue manager name by which the local bus is known to a WebSphere MQ network.

MQ channel name
The name of the channel used for the WebSphere MQ link sender channel.

In doubt
Whether or not the saved batch is in doubt.

Current LUWID
The current logical unit-of-work identifier for the saved batch.

Current sequence number
The current sequence number for the saved batch.

Last LUWID
The last logical unit-of-work identifier for the saved batch.

Last sequence number
The last sequence number for the saved batch.

Buttons

Button Description

Commit Commit the logical unit-of-work for the message batch.

Roll back Roll back the logical unit-of-work for the message batch.

WebSphere MQ receiver channel saved batch status [Collection]
The runtime status of message batches for the receiver channel of the WebSphere MQ link.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties] Receiver
channel -> channel_name -> Runtime > Saved batch status.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

WebSphere MQ Queue Manager name
The name of the WebSphere MQ queue manager from which the message batch was received.

MQ channel name
The name of the WebSphere MQ sender channel from which the message batch was received.

Last LUWID
The last unit of work identifier for the message batch.

2242 Administering WebSphere applications



Last sequence number
The last sequence number for the message batch.

Security domain configuration. [Settings]
Configure the security settings for the security domain to which your service integration bus is assigned.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Bus security domain] Configure security domain.

In the path, security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.

Use this pane to create a customized security domain for the selected bus. By having a customized
security domain for each bus in your bus topology, you can configure different security attributes for each
bus within a cell. You can view the current security settings for the security domain to which the selected
service integration bus is assigned, and to make changes to the existing domain configuration.

v “Configuration tab”

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Domain name:

The unique name for this security domain.

You must type a unique name for the security domain.

Information Value
Required No
Data type String

Domain description:

A description of this security domain.

Information Value
Required No
Data type String

User Realm::

Specifies the settings for the user realm.

Click the Expand icon to display the options for configuring the user realm.

You can use existing global security settings, or customize a user realm specifically for this domain. If you
customize a user realm, you must select the type of realm, and you might have to configure the user
registry.

Chapter 20. Welcome to administering Service integration 2243



Information Value
Required No
Data type Expand

JAAS System Logins::

Specifies the settings for the JAAS system logins.

Click the Expand icon to display the options for configuring JAAS system logins.

Information Value
Required No
Data type Expand

JAAS J2C Authentication Data::

Specifies the settings for the JAAS J2C authentication data.

Click the Expand icon to display the options for configuring authentication data for JAAS Java Platform
Enterprise Edition (Java EE) Connector Architecture authentication data.

Information Value
Required No
Data type Expand

Security for bus bus_name [Settings]
Configure the security settings for your service integration bus.

To view this pane in the console, click one of the following paths:

Service integration -> Buses -> bus_name > [Additional Properties] Security.

Service integration -> Buses -> security_value.

The value of security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

Launch Bus Security Wizard
Click to start a wizard to configure the security settings bus for a bus. If the wizard detects that bus
security is disabled, you are prompted to enable it.

General Properties

Enable bus security:

Select this option to inherit the secure administration setting of the cell. Deselect this option if you always
wish to disable bus security.

2244 Administering WebSphere applications



Information Value
Required No
Data type Boolean

Inter-engine authentication alias:

The name of the authentication alias used to authorize communication between messaging engines on the
bus.

You must specify an inter-engine authentication alias if the bus contains a WebSphere Application Server
Version 6 bus member. When bus security is enabled, the bus uses the inter-engine authentication alias to
authenticate incoming connections from other messaging engines. An unauthorized messaging engine
cannot connect to the bus.

Information Value
Required No
Data type drop-down list

Permitted transports:

Select the type of allowed permitted transports.

Allow the use of all defined transport channel chains

Restrict the use of defined transport channel chains to those protected by SSL

Restrict the use of defined transport channel chains to the list of permitted transports

To ensure that all ports used by the bus are secure, select Restrict the use of defined transport
channel chains to those protected by SSL , or if your permitted transport chains are secure, select
Restrict the use of defined transport channel chains to the list of permitted transports. This
prevents the InboundBasicMessaging port being opened. Changes to this setting are effective when the
server is restarted.

Information Value
Required No
Data type Radio button

Use the Server ID when running mediations:

Check this option if you want to run mediations using the server identity, instead of using a mediation
authentication alias.

Select this option if you want to run mediations on multiple servers in different domains. Using the server
identity enables you to run mediations successfully across multiple security domains without having to
specify a mediation authentication alias for each domain. You can also use this option when multiple
domains are not in use.

Information Value
Required No
Data type Boolean

Mediations authentication alias:

The name of the authentication alias used to authorize mediations to access the bus.

Chapter 20. Welcome to administering Service integration 2245



You must specify a mediation authentication alias if the bus contains a WebSphere Application Server
Version 6 bus member. The mediations authentication alias ensures that the bus operates securely. If a
mediation authentication alias is specified for a bus that contains no Version 6 bus members, it is ignored.

Information Value
Required No
Data type drop-down list

Bus security domain:

Select one of the following options to assign the bus to a security domain:

Use the global security domain
Select this option to assign the bus to the global security domain. If you have a mixed-version bus,
you must assign it to the global security domain.

Information Value
Required No
Data type Radio button

Inherit the cell level security domain
Select this option to let the bus inherit the cell level security domain. If no cell level domain is
specified then the global security domain will be used.

Information Value
Required No
Data type Radio button

Use the selected domain
Select a custom security domain for this bus. This domain will be used for authentication and
determining other security information.

Information Value
Required No
Data type Radio button

Configure Security Domain...
Select this link to configure security settings for a custom security domain. This link becomes
active only after you have applied or saved the option to use a non-global domain.

Performance:

Group cache timeout:

The length of time, in minutes, that a security group will be cached for.

Increasing the timeout decreases the load on the user registry and improves performance but makes the
system less responsive to changes in a user's group membership. To tune the user's group cache to the
optimum setting, you have to balance the need for responsiveness with the registry load. The default value
is 120 minutes. If the system must respond quickly to changes in a user's group membership, specify a
timeout of approximately 15 minutes. If it is acceptable to update a user's group membership only once a
day, for example, as an overnight process, specify a timeout of 1440 minutes (24 hours). With a setting of
0, entries in the cache do not timeout, and so remain until the server is next restarted.

A change to this value is effective immediately and only affects the group cache of the bus for which the
configuration was changed.

2246 Administering WebSphere applications



Information Value
Required No
Data type Long
Range 0 through 99999

Audit:

Enable the auditing service for this bus:

Information Value
Required No
Data type Boolean

Authorization Policy
Users and groups in the bus connector role

The list of users and groups in the bus connector role.

Manage default access roles
Manage the assignment of default role types to users and groups

Manage destination access roles
Manage the assignment of destination role types to users and groups

Manage foreign bus access roles
Manage the assignment of foreign bus role types to users and groups

Manage temporary destination prefix access roles
Manage the assignment of temporary destination prefix role types to users and groups

Manage topic access roles
Manage the assignment of topic role types to users and groups

Manage users and groups not known to the user repository
Manage users and groups not known to the user repository

Additional Properties
Permitted transports

The list of permitted transports.

Related Items
JAAS - J2C authentication data

Specifies a list of user identities and passwords for Java 2 connector security to use.

Secure Administration and Applications
Link to configure WebSphere global security settings.

Security domains
Security domain configuration.

Audit Service
Configure the global audit settings

Chapter 20. Welcome to administering Service integration 2247



Sender channel transmitters [Collection]
This pane displays the transmission queue for a WebSphere MQ link sender channel.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links -> link_name -> [Additional
properties] Sender channel transmitters

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional properties] Sender
channel transmitters

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

WebSphere MQ link sender channel
The name of the WebSphere MQ link sender channel for which this is the channel transmitter.
Select this link to view the message collection panel for the messages on the sender channel
transmitter.

Status
The runtime status of the WebSphere MQ link sender channel transmitter. Green (running), Amber
(running but a problem exists), Red (stopped).

Current outbound messages
The current number of messages on the sender channel transmitter.

Outbound messages sent
The current number of messages on the sender channel transmitter.

Time since last message sent
The amount of time since the last message was sent across the sender channel or since the
messaging engine started.

Known link transmitters
Select this link to view the known link transmitters for the sender channel transmitter.

Buttons

Button Description

Move all messages Move all messages on the selected WebSphere MQ link
sender channel to the link exception destination.

Delete all messages Delete all messages on the selected WebSphere MQ link
sender channel.

WebSphere MQ link sender channel transmitter messages [Collection]
This pane displays the messages queued for transmission across the WebSphere MQ link sender channel.

To view this page in the console, click one of the following paths:

2248 Administering WebSphere applications



v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional properties] Sender
channel transmitters -> WebSphere_MQ_sender_channel_name

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional properties] Sender
channel -> sender_channel_link_name -> Sender channel transmitter ->
WebSphere_MQ_sender_channel_name

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links -> link_name -> [Additional
properties] Sender channel transmitters -> WebSphere_MQ_link_sender_channel_name

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links -> link_name -> [Additional
properties] Sender channel -> sender_channel_link_name -> Sender channel transmitter ->
WebSphere_MQ_link_sender_channel_name

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Maximum messages displayed
The maximum number of messages retrieved and displayed.

Position
The position in the queue of the sender channel transmitter messages.

Identifier
The identifier of the message. Select this link to view the message detail panel for the selected
message.

State The transaction state of the message (“Pending send”, “Pending acknowledgement”, “Committing”).

Transaction ID
The transaction identifier, if the message is locked under a transaction.

Target bus
The bus to which the message is targeted.

Target destination
The destination in the bus to which the message is targeted.

Approximate message length (bytes)
The approximate length of the message in bytes.

Buttons

Button Description

Move Move the selected available messages to the link
exception destination. Only messages with a State of
“Pending send” are moved.

Delete Delete the selected available messages. Only messages
with a State of “Pending send” are deleted.

Commit Pending Acknowledge Batch Commit the pending acknowledgement message batch as
being received successfully by the WebSphere MQ
network. The messages are removed from the sender
channel transmitter.

Chapter 20. Welcome to administering Service integration 2249



Button Description

Rollback Pending Acknowledge Batch Roll back the pending acknowledgement message batch
as not being received successfully by the WebSphere MQ
network. The messages are restored to the sender
channel transmitter.

Refresh Refresh the collection with the current set of messages
on the sender channel transmitter. Only the number of
messages up to the specified “Maximum displayed
messages” are retrieved and displayed.

Service integration bus link routing properties [Settings]
The routing properties for a service integration bus link to a foreign service integration bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Additional Properties] Service integration bus link routing properties.

After a routing definition is configured, service integration bus links must be created between messaging
engines in the services integration buses to be connected.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name by which the routing definition is known.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to the routing definition (virtual link) for
administrative purposes.

Information Value
Required No
Data type String

Inbound user ID:

The user ID applied to messages arriving from the foreign bus and used to authorize their access to
destinations.

2250 Administering WebSphere applications



The inbound user ID is used to authorize individual messages arriving from the foreign bus to destinations
in this bus. If this is not a secure bus, this property has no affect on messages. You might want to specify
an inbound user ID:

v if the foreign bus is in a different security domain from this bus and user IDs from the foreign bus are
not recognized in this bus

v to locally-control access of inbound messages to this bus.

If this is a secure bus and the foreign bus is not secure, and no inbound user ID is set, any inbound
messages from the foreign bus will only be authorized to destinations that allow unauthenticated users
access.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type String

Outbound user ID:

The user ID applied to messages sent to the foreign bus.

The outbound user ID replaces the user ID that identifies the source of a message in all messages being
sent to the foreign bus. This user ID is also be used by the foreign bus to authorize the message to its
destination if both buses are secure buses and the foreign bus has not overridden the user ID with its own
inbound user ID.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type String

Additional Properties
Topic space mapping

The mapping between topic spaces in the local bus and topic spaces in the foreign bus.

Service integration bus links [Collection]
This pane displays links between this messaging engine and messaging engines in foreign service
integration buses.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] Service integration bus links

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Chapter 20. Welcome to administering Service integration 2251



An individual messaging engine can have links to messaging engines in a number of different foreign
buses. However, you can have only one service integration bus link between a pair of buses.

Status can take the following values:

Table 223. Status values and definitions. The first column of the table lists the status values of the service
integration bus link. The second column contains a brief definition of the status.

Status Definition

Starting The service integration bus link is started on the local messaging engine
but has no connection to the foreign bus. The service integration bus link is
attempting to activate a connection to the foreign bus. The service
integration bus link on the foreign bus must also be started to enable the
successful activation of a connection between the buses.

Started The service integration bus link is started on the local messaging engine
and has an active connection to the foreign bus.

Stopped The service integration bus link is stopped on the local messaging engine
and there is no connection to the foreign bus.

Unknown The administrative console cannot contact the server to determine the
status.

Name The name of the service integration bus link. In order to work, the name must be the same as the
name of the corresponding service integration bus link configured on the target foreign bus.

Description
An optional description for the service integration bus link, for administrative purposes.

UUID The universal unique identifier assigned by the system to the service integration bus link for
administrative purposes.

Local messaging engine
The local messaging engine that this service integration bus link is hosted on.

Foreign messaging engine
The messaging engine on the foreign bus to which this service integration bus link connects.

Status
The runtime status of the service integration bus link.

Current outbound messages
The current total number of messages queued on the link transmitters to this service integration
bus link.

Messages sent
The total number of messages sent on the link transmitters to this service integration bus link
since the messaging engine was started.

Current inbound messages
The current total number of messages queued pending receipt on the link receivers for this service
integration bus link.

Messages received
The total number of messages received on the link receivers for this service integration bus link
since the messaging engine was started.

Buttons

Button Description
Start Start selected items.
Stop Stop selected items.

2252 Administering WebSphere applications



Service integration bus links [Settings]
This pane displays links between this messaging engine and messaging engines in foreign service
integration buses.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] Service integration bus links -> link_name

The messaging engine in the foreign bus must also have a service integration bus link to the local bus.
For a connection to be active, the service integration bus links at both ends must be started.

v “Configuration tab”

v “Runtime tab” on page 2255

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the service integration bus link. In order to work, the name must be the same as the name of
the corresponding service integration bus link configured on the target foreign bus.

Information Value
Required Yes
Data type String

UUID:

The universal unique identifier assigned by the system to the service integration bus link for administrative
purposes.

Information Value
Required No
Data type String

Description:

An optional description for the service integration bus link, for administrative purposes.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type Text area

UUID:

The universal unique identifier assigned by the system to the service integration bus link for administrative
purposes.

Chapter 20. Welcome to administering Service integration 2253



Information Value
Required Yes
Data type drop-down list

Local messaging engine:

The local messaging engine that this service integration bus link is hosted on.

Information Value
Required Yes
Data type drop-down list

Foreign messaging engine:

The messaging engine on the foreign bus to which this service integration bus link connects.

Information Value
Required Yes
Data type String

Initial state:

The initial state of the link, which shows whether the link is started automatically when the messaging
engine is started.

Dynamic updates to this property are effective when the messaging engine is restarted or the service
integration bus link is created. Use the Runtime tab to check the current state.

Information Value
Required No
Data type drop-down list
Range

Stopped
When the associated messaging engine is
started, the gateway link is in a stopped state
and cannot process any new requests for
connections.

Started
When the associated messaging engine is
started, the gateway link is in a started state and
can process any new requests for connections.

Exception destination:

The destination for an inbound message when the service integration bus link cannot deliver the message
to its target bus destination, or to the exception destination that is configured for that target destination, or
when the target destination does not exist.

Dynamic updates to this property are effective immediately.

Select a radio button as required to configure the exception destination that this service integration bus link
uses:

2254 Administering WebSphere applications



v Select None to specify that the service integration bus link does not use an exception destination.
Undeliverable messages are not rerouted to an exception destination and can block the processing of
other messages waiting for delivery to the same destination. This option can be used to preserve
message ordering.

v Select System to use the default exception destination. Messages that cannot be delivered to the bus
destination are rerouted to the system default exception destination for the messaging engine that this
link is assigned to: _SYSTEM.Exception.Destinationmessaging_engine_name.

v Select Specify and enter an exception destination to use the exception destination specified here. If the
service integration bus link cannot use this exception destination, it uses the system exception
destination.

Information Value
Required No
Data type Radio button
Default System

Prefer queue points local to this link's messaging engine:

When this check box is selected, the link prefers to send inbound messages to available queue points of
target destinations that are located on the messaging engine on which the link is hosted.

When this check box is not selected, or if no local queue point is available for a target destination, the link
workload balances the messages across all available queue points of the target destination. By default the
check box is selected.

This option is supported on links running on WebSphere Application Server Version 7.0 or later. If you are
running on an earlier version, the default behavior of preferring local queue points is applied.

Information Value
Required Yes
Data type Boolean

Related Items
JAAS - J2C authentication data .

Specifies a list of user identities and passwords for Java 2 connector security to use. Refer to
Java 2 Connector authentication data entry settings.

Foreign bus connection
The associated foreign bus connection for this service integration bus link.

Messaging engine
The remote messaging engine where this queue point is localized.

Link transmitters
For applications that use point-to-point messaging, there is one link transmission message point
located on each messaging engine in the source bus. For applications that use publish/subscribe
messaging, there is one link transmission message point located on each topic space in the
source bus. The link transmitter acts as a transmission queue where produced messages are
persisted before transmission across the inter-bus link to the foreign bus.

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime

Chapter 20. Welcome to administering Service integration 2255



property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Status:

The runtime status of the service integration bus link.

Status can take the following values:

Table 224. Status values and definitions. The first column of the table lists the status values of the service
integration bus link. The second column contains a brief definition of the status.

Status Definition

Starting The service integration bus link is started on the local messaging engine
but has no connection to the foreign bus. The service integration bus link is
attempting to activate a connection to the foreign bus. The service
integration bus link on the foreign bus must also be started to enable the
successful activation of a connection between the buses.

Started The service integration bus link is started on the local messaging engine
and has an active connection to the foreign bus.

Stopped The service integration bus link is stopped on the local messaging engine
and there is no connection to the foreign bus.

Unknown The administrative console cannot contact the server to determine the
status.

Information Value
Required No
Data type String

Transmitter/Receiver Queues
Link receivers

For applications that use point-to-point messaging, there is one link receiver for each messaging
engine in the foreign bus. For applications that use publish/subscribe messaging, there is one link
receiver for each topic space in the foreign bus. The link receiver acts as an inbound receiver
queue for a message engine that has applications attached and that is producing messages
across this service integration bus link.

Link transmitters
For applications that use point-to-point messaging, there is one link transmission message point
located on each messaging engine in the source bus. For applications that use publish/subscribe
messaging, there is one link transmission message point located on each topic space in the
source bus. The link transmitter acts as a transmission queue where produced messages are
persisted before transmission across the inter-bus link to the foreign bus.

Target inbound transport chain
The type of transport chain used for communication with the foreign bus.

The transport chain name must be the name of the transport chain as defined on the server on which the
target messaging engine is hosted.

Dynamic updates to this property are effective when the link is restarted. Use the Runtime tab to check the
current state.

2256 Administering WebSphere applications



Information Value
Required No
Data type String

Bootstrap endpoints
A comma-separated list of endpoint triplets, with the syntax hostName:portNumber:chainName, used to
connect to a bootstrap server. For example
Merlin:7276:BootstrapBasicMessaging,Gandalf:5557:BootstrapSecureMessaging. If hostName is not
specified, the default is localhost. If portNumber is not specified, the default is 7276. If chainName is not
specified, the default is BootstrapBasicMessaging. Refer to the information center for more information.

This property is set in the same way as the Provider endpoint property in the JMS connection factory
settings.

The port for the bootstrap endpoint is the port defined on the service integration bus endpoint address that
is configured on the target application server on the foreign bus.

Dynamic updates to this property are effective when the link is restarted. Use the Runtime tab to check the
current state.

You only have to modify this property if you have client applications running outside of an application
server, or applications on a server in another cell, that want to use this connection factory to connect to
the target service integration bus specified on the connection factory.

To use JMS destinations of the default messaging provider, an application connects to a messaging engine
on the target service integration bus to which the destinations are assigned. For example, a JMS queue is
assigned to a queue destination on a service integration bus.

Client applications running outside of an application server - for example, running in a client container or
outside the WebSphere Application Server environment - cannot locate directly a suitable messaging
engine to connect to in the target bus. Similarly, an application running on a server in one cell to connect
to a target bus in another cell cannot locate directly a suitable messaging engine to connect to in the
target bus.

In these scenarios, the clients (or servers in another bus) must complete a bootstrap process through a
bootstrap server that is a member of the target bus. A bootstrap server is an application server running the
SIB Service, but does not have to be running any messaging engines. The bootstrap server selects a
messaging engine that is running in an application server that supports the required target transport chain.
For the bootstrap process to be possible, you must configure one or more provider end points in the
connection factory used by the client.

A bootstrap server uses a specific port and bootstrap transport chain. The port is the
SIB_ENDPOINT_ADDRESS (or SIB_ENDPOINT_SECURE_ADDRESS if security is enabled), of the messaging engine
that hosts the remote end of the link. Together with host name, these form the endpoint address of the
bootstrap server.

The properties of a JMS connection factory used by an application control the selection of a suitable
messaging engine and how the application connects to the selected messaging engine.

v If no security credentials are provided, then by default

– If no host is specified then localhost is used

– If no port is specified then port 7276 is used

– If no bootstrap channel chain is specified then bootstrap transport chain called
BootstrapBasicMessaging is used

v If security credentials are provided, then by default

Chapter 20. Welcome to administering Service integration 2257



– If no host is specified then localhost is used

– If no port is specified then port 7286 is used

– If no bootstrap channel chain is specified then bootstrap transport chain called
BootstrapBasicMessaging is used

Note: For the IBM i platform, you must (at least) change the default host name from
localhost to your.server.name.

If you want an application to use a bootstrap server with a different endpoint address, you must specify the
required endpoint address on the Provider endpoints property of the JMS connection factories that the
client application uses. You can specify one or more endpoint addresses of bootstrap servers.

The endpoint addresses for bootstrap servers must be specified in every JMS connection factory that is
used by applications outside of an application server. To avoid having to specify a long list of bootstrap
servers, you can provide a few highly-available servers as dedicated bootstrap servers. Then you only
have to specify a short list of bootstrap servers on each connection factory.

Note: When configuring a connection to a non-default bootstrap server, specify the required values for the
endpoint address and use colons as separators.

For example: for a server assigned non-secure port 7278, on host boothost1, that uses the default
transport chain BootstrapBasicMessaging:
boothost1:7278:BootstrapBasicMessaging
or
boothost1:7278

and for a server assigned secure port 7289, on host boothost2, that uses the predefined transport chain
BootstrapTunneledSecureMessaging:
boothost2:7289:BootstrapTunneledSecureMessaging

The syntax for an endpoint address is as follows:
[ [host_name] [ “:” [port_number] [ “:” chain_name] ] ]

where:

host_name
is the name of the host on which the server runs. It can be an IP address. For an IPv6 address,
put square braces ([]) around host_name as shown in the example below:
[2002:914:fc12:179:9:20:141:42]:7276:BootstrapBasicMessaging

. If a value is not specified, the default is localhost.

Note: For the IBM i platform, you must (at least) change the default host name from
localhost to your.server.name.

port_number
where specified, is one of the following addresses of the messaging engine that hosts the remote
end of the link:

v SIB_ENDPOINT_ADDRESS if security is not enabled

v For secure connections, SIB_ENDPOINT_SECURE_ADDRESS if security is enabled.

If port_number is not specified, the default is 7276.

To find either of these values by using the administrative console, click Servers -> Server Types
-> WebSphere application servers -> server_name -> [Communications] Ports.

2258 Administering WebSphere applications



chain_name
is the name of a predefined bootstrap transport chain used to connect to the bootstrap server. If
not specified, the default is BootstrapBasicMessaging.

The following predefined bootstrap transport chains are provided:

BootstrapBasicMessaging
This corresponds to the server transport chain InboundBasicMessaging (JFAP-TCP/IP)

BootstrapSecureMessaging
This corresponds to the server transport chain InboundSecureMessaging
(JFAP-SSL-TCP/IP)

BootstrapTunneledMessaging
Before you can use this bootstrap transport chain, you must define a corresponding server
transport chain on the bootstrap server. (See Servers -> Server Types -> WebSphere
application servers -> server_name -> [Server messaging] Messaging engine
inbound transports.) This transport chain tunnels JFAP and uses HTTP wrappers.

BootstrapTunneledSecureMessaging
Before you can use this bootstrap transport chain, you must define a corresponding server
transport chain on the bootstrap server. (SeeServers -> Server Types -> WebSphere
application servers -> server_name -> [Server messaging] Messaging engine
inbound transports.) This transport chain tunnels JFAP and uses HTTP wrappers.

Specifying host_name : chain_name instead of host_name : : chain_name (with two colons) is incorrect. It
is valid to enter nothing, or to enter any of the following: “a”, “a:”, “:7276”, “::chain”, and so on. The
default value applies if you do not specify a value, but you must separate the fields with “:”.

If you want to provide more than one bootstrap server, identify all the required endpoint addresses.
Separate each endpoint address by a comma character. For example, to use the servers from the earlier
example:
boothost1:7278:BootstrapBasicMessaging,

boothost2:7289:BootstrapTunneledSecureMessaging,
[2002:914:fc12:179:9:20:141:42]:7276:BootstrapBasicMessaging

Information Value
Required No
Data type Text area

Authentication alias
The name of the authentication alias, used to authenticate access to the foreign bus.

You must have predefined a Java Platform, Enterprise Edition (Java EE) Connector Architecture (JCA)
authentication alias.

Dynamic updates to this property are effective when the link is restarted. Use the Runtime tab to check the
current state.

Modified aliases are only visible after a server restart.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2259



Subscriptions [Collection]
The active subscriptions for the topic space.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
topic_space_name -> [Message points] Publication points -> publication_point_name -> Runtime ->
Subscriptions.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name by which the active subscription is known for administrative purposes.

Identifier
The identifier by which this destination is known for administrative purposes.

Topic The name of the topic that this subscription is for.

Queue Depth
The number of messages currently associated with this subscription.

Buttons

Button Description

Delete Delete the selected items.

Broker profile subscriptions [Collection]
The list of current broker subscriptions for this broker profile.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties]
Publish/subscribe broker profiles -> profile_name -> Runtime > Subscriptions.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Topic name
The topic name for this subscription.

Topic space
The topic space for this subscription.

2260 Administering WebSphere applications



Direction
Whether the subscription is for message flows to or from WebSphere MQ.

Broker stream queue
The name of the WebSphere MQ broker stream queue that the topic publishes messages to.

Subscription point
The name of the WebSphere MQ broker subscription point that the topic consumes messages
from.

Message count
The count of messages for this subscription.

Status
The current status of this subscription.

Buttons

Button Description

Unsubscribe Cancel all subscriptions.

Subscriptions [Settings]
The active subscriptions for the topic space.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
topic_space_name -> [Message points] Publication points -> publication_point_name -> Runtime ->
Subscriptions -> subscription_name.

v “Runtime tab”

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

Buttons

Button Description

Refresh Refresh the number of messages.

General Properties

Name:

The name by which the active subscription is known for administrative purposes.

Information Value
Required No
Data type String

Identifier:

Chapter 20. Welcome to administering Service integration 2261



The identifier by which this destination is known for administrative purposes.

Information Value
Required No
Data type String

Topic:

The name of the topic that this subscription is for.

Information Value
Required No
Data type Text area

Selector:

The text string that must be present in a message for the mediation to process the message.

Information Value
Required No
Data type String

Current message depth:

The number of messages on the message point.

Information Value
Required No
Data type String

Subscriber ID:

Information Value
Required No
Data type String

Additional Properties
Messages

Messages being handled by this subscription.

Known remote subscription points
The remote messaging engines that have remote consumers connected to this subscription point.

Temporary destination prefixes [Collection]
A temporary destination prefix is a user-defined string that is used to create a temporary destination. When
messaging security is enabled, users and groups require authority to create messages and send them to
temporary destinations. The authority is configured in the temporary destination prefix.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Authorization Policy] Manage temporary
destination prefix access roles

2262 Administering WebSphere applications



To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

In the path, security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.

A list of all the temporary destination prefixes defined for the selected service integration bus is displayed.
By default, the list is empty. Use this pane to create a new temporary destination prefix, and define its role
type assignments, or remove existing temporary destination prefixes. You can also manage the role type
assignments for existing temporary destination prefixes:

v To act on a single temporary destination prefix, click its name in the list.

v To act on more than one temporary destination prefix, select the check box next to the name of each
destination you want to act on, then click Manage Access Roles.

Temporary destination prefix
The name of each temporary destination prefix defined for the selected bus.

Buttons

Button Description

Manage Access Roles Click to view and manage users and groups assigned to
the access role types for the selected resources.

Add Click to create a temporary destination prefix, and add
users and groups to it.

Remove Click to remove selected users and groups from all the
role types for this resource.

Temporary destination prefixes [Settings]
This pane displays the role type assignments for the selected temporary destination prefixes.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Authorization Policy] Manage temporary
destination prefix access roles -> temporary_destination_prefix > Manage access roles

In the path, security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.

A list of users and groups that have been added to access roles for the selected temporary destination
prefixes is displayed. The access role information for the selected temporary destination prefix is contained
within an expandable section. The access roles for temporary destination prefixes are creator and receiver.
Users and groups in the creator role can create a new temporary destination prefix. You cannot remove
users and groups from the creator role.

Use this pane to complete the following tasks:

v View users and groups that have creator and sender roles for a selected temporary destination prefix.

v Add or remove users and groups in the sender role for a selected temporary destination prefix.

Chapter 20. Welcome to administering Service integration 2263



General Properties

Select A check box that you can use to select the users and groups for which you want to manage
access roles.

Name The name of the user or group that has an access role for the selected resource. If the user is a
group member, the user ID and the group name is displayed.

Type The type of the user or group. There are three types of user or group: “user”, “group” and
“member”. A user that inherits its access roles from a group has the type “member”.

Sender
Whether a user, group or member is in the sender role for a selected resource.

Creator
Read only. The user or group is in the creator role for a selected temporary destination prefix. You
cannot change this role type assignment.

Security access roles

In the administrative console, access role icons are used to represent whether a user or a group is in a
particular access role. You can click an icon to add or remove selected users and groups to a particular
access role for a selected resource.

An access role icon has three states:

v Access role type set.

v Access role type not set.

v Access role type inherited from group.

The following table describes how the access role icons represent these states, and how to change
between them:

Table 225. Interacting with access role icons

Access role
icon Access role assignment state User action

Role type not set.
Click to change to role type set .

Role type set. Click to change to role type not set. The icon

changes to role type not set if the user or
group does not inherit access roles, or to role

type inherited if the role type does inherit
access roles.

Role type inherited from group.
Click to change to role type set .

Role type not set for a group. The group to
which a user belongs does not have a role type.

Read only.

Role type set for a group. The group to which a
user belongs has a role type.

Read only.

Role type not applicable. Read only.

2264 Administering WebSphere applications



Topic Mapping [Collection]
The mapping between a topic on the service integration bus and a stream queue and subscription point
provided by a WebSphere MQ broker.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties]
Publish/subscribe broker profiles -> profile_name -> [Additional Properties] Topic mappings.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Dynamic updates to this list are effective immediately.

Topic name
The name of the topic on the service integration bus. The name must be the same as the topic
name on the message broker in a WebSphere MQ network.

Topic space
The name of the topic space that contains the topic.

Direction
Whether the mapping is for publishing message flows in both directions, or only to, or only from,
WebSphere MQ.

Broker stream queue
The name of the stream queue at the message broker in a WebSphere MQ network.

Subscription point
The name of the WebSphere MQ broker subscription point that the topic consumes messages
from.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Topic Mapping [Settings]
The mapping between a topic on the service integration bus and a stream queue and subscription point
provided by a WebSphere MQ broker.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties]
Publish/subscribe broker profiles -> profile_name -> [Additional Properties] Topic mappings ->
mapping_name.

Chapter 20. Welcome to administering Service integration 2265



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Topic name:

The name of the topic on the service integration bus. The name must be the same as the topic name on
the message broker in a WebSphere MQ network.

You can specify wildcard characters in topic name strings.

Information Value
Required Yes
Data type String

Topic space:

The name of the topic space that contains the topic.

Information Value
Required No
Data type drop-down list

Direction:

Whether the mapping is for publishing message flows in both directions, or only to, or only from,
WebSphere MQ.

Information Value
Required No
Data type drop-down list
Range

Bi-directional
Messages flow in both directions between the
bus and WebSphere MQ.

To WebSphere MQ
Messages flow only from the bus to WebSphere
MQ.

That is, from WebSphere Application Server to a
message broker in the WebSphere MQ network.

auto_help_sib_entities.dita#help-terms/SIBPSBF

Topic [Settings]
This pane displays the role type assignments for a topic. You can use this pane to add new assignments,
and to modify and remove existing assignments.

To view this page in the console, click the following path:

2266 Administering WebSphere applications



Service integration -> Buses -> security_value -> [Authorization Policy] Manage topic access roles
-> topic_space_name > topic_name.

In the path, security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.

This pane lists users and groups that have been assigned role types on the selected topic. The permitted
access roles for topics are sender and receiver. Use this panel to view existing topic role assignments, add
new users and groups to topic access roles, and remove users and groups from topic access roles.

The information for the selected topic is contained within a section that you can expand to display all the
users and groups that have been assigned role types for the topic. The following options are available:

Inherit sender role from parent topic
Select the check box if you want the topic to inherit sender role assignments from the parent topic.

Inherit receiver role from parent topic
Select the check box if you want the topic to inherit receiver role assignments from the parent
topic.

General Properties

Select A check box that you can use to select the users and groups for which you want to manage
access roles.

Name The name of the user or group that has an access role for the selected resource. If the user is a
group member, the user ID and the group name is displayed.

Type The type of the user or group. There are three types of user or group: “user”, “group” and
“member”. A user that inherits its access roles from a group has the type “member”.

Sender
Whether a user, group or member is in the sender role for a selected resource.

Receiver
Whether a user, group or member is in the receiver role for a selected resource.

Security access roles

In the administrative console, access role icons are used to represent whether a user or a group is in a
particular access role. You can click an icon to add or remove selected users and groups to a particular
access role for a selected resource.

An access role icon has three states:

v Access role type set.

v Access role type not set.

v Access role type inherited from group.

The following table describes how the access role icons represent these states, and how to change
between them:

Table 226. Interacting with access role icons

Access role
icon Access role assignment state User action

Role type not set.
Click to change to role type set .

Chapter 20. Welcome to administering Service integration 2267



Table 226. Interacting with access role icons (continued)

Access role
icon Access role assignment state User action

Role type set. Click to change to role type not set. The icon

changes to role type not set if the user or
group does not inherit access roles, or to role

type inherited if the role type does inherit
access roles.

Role type inherited from group.
Click to change to role type set .

Role type not set for a group. The group to
which a user belongs does not have a role type.

Read only.

Role type set for a group. The group to which a
user belongs has a role type.

Read only.

Role type not applicable. Read only.

Buttons

Button Description

Add Click to add users and groups to this resource.

Remove Click to remove selected users and groups from all the
role types for this resource.

Topic space map entries [Collection]
The mapping between a topic space in the local bus and a topic space in the foreign bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Additional Properties] Service integration bus link routing properties ->
[Additional Properties] Topic space map entries.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

A topic space mapping allows subscribers on the local topic space to receive messages published in the
foreign topic space. For publications to flow from the local topic space into the foreign bus, an equivalent
topic space mapping is required by the foreign bus.

Dynamic updates to this list are effective immediately.

Local topic space
The name of the topic space on this (local) bus that is mapped to the remote topic space on the
foreign bus.

2268 Administering WebSphere applications



Remote topic space
The name of the topic space on the foreign bus that is mapped to the local topic space.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Topic space map entries [Settings]
The mapping between a topic space in the local bus and a topic space in the foreign bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Additional Properties] Service integration bus link routing properties ->
[Additional Properties] Topic space map entries -> map_entry_name.

A topic space mapping allows subscribers on the local topic space to receive messages published in the
foreign topic space. For publications to flow from the local topic space into the foreign bus an equivalent
topic space mapping is required by the foreign bus.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Local topic space:

The name of the topic space on this (local) bus that is mapped to the remote topic space on the foreign
bus.

Information Value
Required Yes
Data type Custom

Remote topic space:

The name of the topic space on the foreign bus that is mapped to the local topic space.

Information Value
Required Yes
Data type String

Topic space mapping [Settings]
The mapping between topic spaces in the local bus and topic spaces in the foreign bus.

To view this page in the console, click the following path:

Chapter 20. Welcome to administering Service integration 2269



Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties]
Publish/subscribe broker profiles -> profile_name -> [Additional Properties] Topic space mapping.

A topic space mapping allows subscribers on the local topic space to receive messages published in the
foreign topic space. For publications to flow from the local topic space into the foreign bus an equivalent
topic space mapping is required by the foreign bus.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Description:

An optional description for the topic space mapping, for administrative purposes.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type Text area

Additional Properties
Topic space map entries

The mapping between topic spaces in the local bus and topic spaces in the foreign bus.

Topic space [Settings]
A topic space is a location for publish/subscribe messaging.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
topic_space_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Identifier:

The identifier by which this destination is known for administrative purposes.

Information Value
Required No
Data type String

UUID:

2270 Administering WebSphere applications



The universal unique identifier assigned by the system to this destination for administrative purposes.

Information Value
Required No
Data type String

Type:

Whether this bus destination is for a queue, topic space, or some other type of destination.

A topic space for publish/subscribe messaging.

Information Value
Required No
Data type String

Description:

An optional description for the bus destination, for administrative purposes.

Information Value
Required No
Data type Text area

Mediation:

The name of the mediation that mediates this destination.

Information Value
Required No
Data type String

Enable producers to override default reliability:

Select this option to enable producers to override the default reliability that is set on the destination.

Information Value
Required No
Data type Boolean

Default reliability:

The reliability assigned to a message produced to this destination when an explicit reliability has not been
set by the producer.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2271



Information Value
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Maximum reliability:

The maximum reliability of messages accepted by this destination.

Information Value
Required No
Data type drop-down list
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Default priority:

2272 Administering WebSphere applications



The default priority assigned to messages sent to this destination when a priority has not been set by the
producer.

Information Value
Required No
Data type Integer
Range 0 through 9

Exception destination:

Use these properties to define what happens to any messages that cannot be delivered to this destination.

None:

The bus destination does not use an exception destination and undeliverable messages are not rerouted
to an exception destination.

Attempts to redeliver the message continue, up to the maximum failed deliveries limit set for the bus
destination. Then, attempts to redeliver the message continue with a time interval between retry attempts.
This interval is either the Default blocked destination retry interval of the messaging engine that is
associated with this destination, or the Blocked retry timeout that is set for this destination. The Default
blocked destination retry interval value can be used by all queue and topic destinations associated with
this messaging engine. To set a time interval specifically for this destination, select Override messaging
engine blocked retry timeout default, then enter a blocked retry timeout value for this destination.

Information Value
Required No
Data type Radio button
Default Not selected

Override messaging engine blocked retry timeout default:

Override the blocked queue retry interval configured on the messaging engine owning the destination.

Select this property to set the blocked retry timeout for this destination. This property is available only
when None is selected for the exception destination.

Information Value
Required Yes, if None is selected.
Data type Boolean
Default Unchecked. The Default blocked destination retry interval

value of the associated messaging engine is used.

Blocked retry timeout in milliseconds:

When no exception destination is configured, the time interval to apply between retry attempts, after the
maximum failed deliveries limit is reached, for this destination.

This property is available only when Override messaging engine blocked retry timeout default is
selected in the exception destination properties.

Chapter 20. Welcome to administering Service integration 2273



Information Value
Required Yes, if Override messaging engine blocked retry timeout

default is checked.
Data type Integer

System:

The bus destination uses the system default exception destination.

Undeliverable messages are routed to the system default exception destination of the messaging engine
that detects the problem: _SYSTEM.Exception.Destination.messaging_engine_name.

Information Value
Required No
Data type Radio button
Default Selected

Specify:

Select this property to configure a specific exception destination.

The exception destination must be a queue, on the same bus or a foreign bus, and must exist when the
exception destination processing is configured.

Information Value
Required No
Data type Radio button
Default Not selected

Maximum failed deliveries per message:

The maximum number of failed attempts to process a message. After this number of failed attempts, if an
exception destination is configured, the message is forwarded from the intended destination to its
exception destination. If an exception destination is not configured, a time interval between retry attempts
is applied.

This interval is either the Default blocked destination retry interval of the messaging engine that is
associated with this destination, or the Blocked retry timeout that is set for this destination.

Information Value
Required Yes, if an exception destination has been configured.
Data type Integer
Default 5
Range 0 through 2147483647

Keep count of failed deliveries per message:

This option persists the failed delivery counts of the messages in the message store.

Select this option to persist the failed delivery counts of JMS messages in the message store. This option
retains the count of failed deliveries even after the messaging engine is restarted.

2274 Administering WebSphere applications



Information Value
Required No
Data type Boolean
Default Not selected

Note: When the option is not selected, the history of the
failed delivery counts for the messages will be lost if the
messaging engine is restarted.

Important: Although the property is selected, the property will not be effective until the database tables
are upgraded using the sibDBUpgrade command for WebSphere Application Server Version 8.5
and later.

Send allowed:

Clear this option (setting it to false) to stop producers from being able to send messages to this
destination.

Information Value
Required No
Data type Boolean

Receive allowed:

Clear this option (setting it to false) to prevent consumers from being able to receive messages from this
destination.

Information Value
Required No
Data type Boolean

Maintain strict message order:

Enabling this option will maintain the strict ordering of messages for this destination.

Information Value
Required No
Data type Custom

Reply destination:

The name of a destination to be appended to any non-empty reverse routing path of messages sent to this
destination.

Information Value
Required No
Data type String

Reply destination bus:

The bus on which the reply destination exists.

Information Value
Required No

Chapter 20. Welcome to administering Service integration 2275



Information Value
Data type String

Allow auditing of Topic access checks:

This option is only available if bus and cell level auditing are enabled. Check to enable auditing of Topic
access checks.

Information Value
Required No
Data type Boolean

Topic access check required
Whether or not authorization checks are required for access to topics.

When security is on, authorization checks are always performed at the topic space level. To add additional
control, you can select this property to enable authorization checks at the topic level.

Information Value
Required No
Data type Boolean

Message points
Publication points

A publication point is created on each messaging engine in the bus when a publish/subscribe
destination is created. The publication point on a messaging engine is used to hold messages
published by applications connected to that messaging engine until they are delivered to
subscribers.

Mediation points
The mediation points for the topic space. The locations in the messaging engine at which
messages on the topic space are mediated.

Additional Properties
Context properties

Context information passed to the mediation.

Related Items
Application resources topology

A expandable tree view of all applications and messaging resources that reference the current
destination.

Audit Service
Configure the global audit settings

Topic spaces [Collection]
Topics are defined hierarchically within topic spaces. To view the access roles for a topic, first select the
topic space that contains the topic to be viewed.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Authorization Policy] Manage topic access roles.

2276 Administering WebSphere applications



In the path, security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.

The Topic spaces pane displays a list of topic spaces defined on the selected bus. A topic space is a
hierarchy of topics used for publish/subscribe messaging. Use this pane to select the topic space that
contain the topics for which you want to add, remove or modify role type assignments.

Topic space
The name of each topic space defined for the selected bus.

Topics [Collection]
Topics are defined hierarchically within topic spaces. To view a topic's access roles, select the topic from
the hierarchical list of topics below.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Authorization Policy] Manage topic access roles

In the path, security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.The Topics pane displays a list of topics defined for the selected topic space. The
topics are displayed hierarchically beneath the root (/) topic. You can expand the topic space name to
display all the topics, or collapse it to display the root topic only. By default, a topic space does not contain
any topics. Use Add to add a new topic to the selected topic space, and to define its role type
assignments.

Topic The name of each topic defined in the selected topic space.

Buttons

Button Description

Add Click to create a topic, and add users and groups to it.

Show all Click to expand a section to display a hierarchical list of
all the topics defined in the topic space, starting with the
root (/) topic.

Hide all Click to collapse a section to display the root (/) topic
only.

Topics [Collection]
The topics that have been subscribed to from this remote messaging engine.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Remote message points] Remote publication points > > identifier_name -> [Outbound
properties] Topics.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Chapter 20. Welcome to administering Service integration 2277



Topic View the outbound topics for this publication point.

Buttons

Button Description

Clear all Clear all messages from this message point.

Unknown user or group [Settings]
This panel lists users and groups that do not exist in the user repository but have access role definitions.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Authorization Policy] Manage users and groups
not known to the user repository -> user_name > Remove roles

The Unknown users and groups pane lists access roles for bus resources that have been assigned to
selected unknown users and groups.

The access role information for each unknown user or group is contained within an expandable section.

General Properties

Resource
The selected unknown user or group has access roles for this bus resource.

Sender
Whether a user, group or member is in the sender role for a selected resource.

Receiver
Whether a user, group or member is in the receiver role for a selected resource.

Browser
Whether a user, group or member is in the browser role for a selected resource.

Creator
Whether a user, group or member is in the creator role for a selected resource.

Bus connector
Whether a user, group or member is in the bus connector role for a selected resource.

Security access roles

In the administrative console, access role icons are used to represent whether a user or a group is in a
particular access role. You can click an icon to add or remove selected users and groups to a particular
access role for a selected resource.

An access role icon has three states:

v Access role type set.

v Access role type not set.

v Access role type inherited from group.

The following table describes how the access role icons represent these states, and how to change
between them:

2278 Administering WebSphere applications



Table 227. Interacting with access role icons

Access role
icon Access role assignment state User action

Role type not set.
Click to change to role type set .

Role type set. Click to change to role type not set. The icon

changes to role type not set if the user or
group does not inherit access roles, or to role

type inherited if the role type does inherit
access roles.

Role type inherited from group.
Click to change to role type set .

Role type not set for a group. The group to
which a user belongs does not have a role type.

Read only.

Role type set for a group. The group to which a
user belongs has a role type.

Read only.

Role type not applicable. Read only.

Buttons

Button Description
Remove Click to remove access roles from the selected user or

group.

Unknown users and groups [Collection]
The users and groups displayed here are not defined in the user registry, but do have roles defined. This
could be because they were removed from the user repository after the role assignments were made.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Authorization Policy] Manage users and groups
not known to the user repository

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

In the path, security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.

This pane displays a list of user and group names that were previously created in the user repository, and
granted access roles to selected resources, but the user and group names have since been removed from
the user repository. Use this pane to remove the role type assignments from one or more users and
groups that no longer exist in the user repository:

v To work with a single unknown user or group name, click the user or group name.

Chapter 20. Welcome to administering Service integration 2279



v To work with more than one unknown user or group name, select the check box in the Select column
for each unknown user or group name, and click Remove roles.

Name The name of a user that has an access role definition, but is not defined in the user registry.

Type Whether the user is a user, a group, or a group member.

Buttons

Button Description
Remove roles Click to remove access roles from the selected user or

group.

Users and groups in the bus connector role [Collection]
Users in the bus connector role are able to connect to the bus to perform messaging operations. Users
can have this role either by specifically having that role, or because they are in a group with that role.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Authorization Policy] Users and groups in the
bus connector role.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

In the path, security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.

Name The name of the user or group in the bus connector role.

Type The type of the user or group in the bus connector role.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Add a user or group to the bus connector role [Settings]
Create a user or group in the bus connector role.

To view this page in the console, click the following path:

Service integration -> Buses -> security_value -> [Authorization Policy] Users and groups in the
bus connector role -> member_name.

In the path, security_value is either Enabled if messaging security is enabled, or Disabled if messaging
security is not enabled.

2280 Administering WebSphere applications



When messaging security is enabled, users must be authorized to connect to a local service integration
bus before they can carry out messaging operations. To authorize a user or a group to connect to a local
bus, you add the user or group name to the bus connector role for the bus. After the user connects to the
bus, then can access local bus destinations, and send messages to destinations on foreign buses.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Bus Connector Role:

The bus connector role. Users in this role are able to connect to the bus to perform messaging operations.

Select one of the options provided to choose the bus connector role. A user in the bus connector role has
the authority to connect to the local service integration bus, and can carry out messaging operations at
destinations on the bus.

Information Value
Required No
Data type Custom
Range

Group name
Give a specific group the bus connector role. All
users in the group can connect to the bus, and
use it to undertake messaging operations. Type
the name of the group in the field provided.

User name
Give a user the bus connector role. Users with
the specified user ID can connect to the bus, and
use it to perform messaging operations. Type the
user ID in the field provided.

Server - Allow servers to connect to the bus
Give all application servers the bus connector
role. This represents the identity of a WebSphere
Application Server. This can be used by
message-driven beans that want message
delivery, without specifying an authentication
alias, in a secured bus.

All Authenticated - Allow all authenticated users to
connect to the bus

Give only authenticated users the bus connector
role. All users that have authenticated to the bus
can use it to undertake messaging operations.
This results in the group “AllAuthenticated” being
added to the authorization model.

Everyone - Allow unauthenticated users to connect to
the bus

Give all users the bus connector role. All users
that have connected to the bus can use it to
undertake messaging operations. If this option is
selected, then users are able to connect to the
bus without authenticating. These users are
treated as anonymous users.

Chapter 20. Welcome to administering Service integration 2281



Web service [Settings]

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Destination resources] Destinations ->
web_service_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Identifier:

The identifier by which this destination is known for administrative purposes.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to this destination for administrative purposes.

Information Value
Required No
Data type String

Type:

Whether this bus destination is for a queue, topic space, or some other type of destination.

Information Value
Required No
Data type String

Description:

An optional description for the bus destination, for administrative purposes.

Information Value
Required No
Data type Text area

Mediation:

The name of the mediation that mediates this destination.

Information Value
Required No
Data type String

2282 Administering WebSphere applications



Default reliability:

The reliability assigned to a message produced to this destination when an explicit reliability has not been
set by the producer.

Information Value
Required No
Data type drop-down list
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Maximum reliability:

The maximum reliability of messages accepted by this destination.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2283



Information Value
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Enable producers to override default reliability:

Select this option to enable producers to override the default reliability that is set on the destination.

Information Value
Required No
Data type Boolean

Default priority:

The default priority assigned to messages sent to this destination when a priority has not been set by the
producer.

Information Value
Required No
Data type Custom

Exception destination:

Use these properties to define what happens to any messages that cannot be delivered to this destination.

Use this property to define what happens to any messages that cannot be delivered to this destination.

By default, such messages are routed to the system default exception destination of the messaging engine
that discovers the problem: _SYSTEM.Exception.Destination.engine_name.

If you want messages to be sent to another exception destination, select Specify then type the exception
destination name. The exception destination must be a queue, on the same bus or a foreign bus, and
must exist when the destination is created.

2284 Administering WebSphere applications



If you do not want undeliverable messages to be sent to an exception destination, select None.

Information Value
Required No
Data type String and Boolean

Send allowed:

Clear this option (setting it to false) to stop producers from being able to send messages to this
destination.

Information Value
Required No
Data type Boolean

Receive allowed:

Clear this option (setting it to false) to prevent consumers from being able to receive messages from this
destination.

Information Value
Required No
Data type Boolean

Receive exclusive:

Select this option to allow only one consumer to attach to each message point. If this option is not
selected multiple consumers will be allowed to attach and receive messages from each message point.

Information Value
Required No
Data type Boolean

Maintain strict message order:

Enabling this option will maintain the strict ordering of messages for this destination.

Information Value
Required No
Data type Custom

Additional Properties
Context properties

Context information passed to the mediation.

Message points
Mediation points

A mediation point is a location in a messaging engine at which messages are mediated. A
mediation point is created when a mediation is associated with a bus destination.

Chapter 20. Welcome to administering Service integration 2285



Client connections [Collection]
The connection between a WebSphere MQ client and the bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] WebSphere MQ client links -> link_name [Additional Properties] Client
connections.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

This panel lists all the connections for clients that use the related WebSphere MQ client link. You can
select one or more connections to display more detail about their runtime status, or to stop them while
leaving other connections active.

IP address
The TCP/IP IP address of the WebSphere MQ client.

Status
The runtime status of the WebSphere MQ client connection.

WebSphere MQ client connection [Settings]
The connection between a WebSphere MQ client and the bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] WebSphere MQ client links -> link_name [Additional Properties] Client
connections -> connection_name.

v “Runtime tab”

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

IP address:

The TCP/IP IP address of the WebSphere MQ client.

Information Value
Required No
Data type String

2286 Administering WebSphere applications



Status:

The runtime status of the WebSphere MQ client connection.

Information Value
Required No
Data type drop-down list
Range

Inactive
The WebSphere MQ client link is ready and
enabled to receive inbound connections from
clients, but no client connections have yet been
established.

Stopped
The WebSphere MQ client link is in a stopped
state and cannot process any new requests for
inbound connections from clients.

Starting
The WebSphere MQ client link has received an
inbound connection from a client, and is in the
process of starting this connection.

Binding
The WebSphere MQ client link is performing
channel negotiation and is not yet ready to
transfer messages.

Running
The WebSphere MQ client link has an active
session with a client, and data can be flowing
between the client and the WebSphere MQ client
link.

Stopping
The WebSphere MQ client link, or a connection
with that link, is in the process of being stopped.

Multiple
The WebSphere MQ client link has established
sessions with several clients, and the sessions
can be in different states: Starting, Running,
Stopping, or Stopped.

Number of messages sent:

The number of messages sent on the WebSphere MQ client link over the connection to a specific client.

Information Value
Required No
Data type String

Number of messages received:

The number of messages received on the WebSphere MQ client link over the connection from a specific
client.

Chapter 20. Welcome to administering Service integration 2287



Information Value
Required No
Data type String

Number of buffers sent:

The number of message buffers sent on the WebSphere MQ client link over the connection to a specific
client.

Information Value
Required No
Data type String

Number of buffers received:

The number of message buffers received on the WebSphere MQ client link over the connection from a
specific client.

Information Value
Required No
Data type String

Number of bytes sent:

The number of bytes sent on the WebSphere MQ client link over the connection to a specific client.

Information Value
Required No
Data type String

Number of bytes received:

The number of bytes received on the WebSphere MQ client link over the connection from a specific client.

Information Value
Required No
Data type String

Channel start time:

The time at which the client connection channel was started.

Information Value
Required No
Data type String

Channel start date:

The date on which the client connection channel was started.

Information Value
Required No

2288 Administering WebSphere applications



Information Value
Data type String

Last message send time:

The time at which the last message was sent on the client connection channel.

Information Value
Required No
Data type String

Last message send date:

The date on which the last message was sent on the client connection channel.

Information Value
Required No
Data type String

Last message receive time:

The time at which the last message was received on the client connection channel.

Information Value
Required No
Data type String

Last message receive date:

The date on which the last message was received on the client connection channel.

Information Value
Required No
Data type String

Heartbeat interval:

The time, in seconds, between heartbeat flows passed from the WebSphere MQ client link to the
WebSphere MQ classes for JMS that process JMS requests issued by the client application. This allows
the WebSphere MQ client link to handle situations where the client connection created by the WebSphere
MQ classes for JMS fails during a request.

Information Value
Required No
Data type String

Maximum message length:

The maximum message length, in bytes, that can be transmitted using the WebSphere MQ client link. This
is compared with the value for the partner WebSphere MQ client channel and the actual maximum used is
the lower of the two values.

Chapter 20. Welcome to administering Service integration 2289



Information Value
Required No
Data type String

Stop requested:

Whether or not a manual stop request has been made for the WebSphere MQ client link connection.

Information Value
Required No
Data type drop-down list
Range

true The channel is in doubt about which messages
have been committed by WebSphere MQ for the
unit of work that it has sent.

false The channel is not in doubt about which
messages have been committed by WebSphere
MQ.

Local address:

The local address of the WebSphere MQ client connection.

Information Value
Required No
Data type String

Number of API calls serviced:

The number of API calls serviced for the WebSphere MQ client connection.

Information Value
Required No
Data type String

WebSphere MQ client link advanced properties [Settings]
Advanced configurable properties, such as message reliability and broker queue names, for the
WebSphere MQ client link.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] WebSphere MQ client links -> link_name -> [Advanced properties] >
property_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

2290 Administering WebSphere applications



General Properties

Inbound persistent message reliability:

The acceptable reliability of message delivery for inbound persistent message flows from WebSphere MQ
through this WebSphere MQ client link, from Reliable to Assured, in order of increasing reliability.

Information Value
Required No
Data type drop-down list
Range

Reliable
Messages might be discarded when a messaging
engine fails.

Assured
Messages are not discarded.

Inbound nonpersistent message reliability:

The acceptable reliability of message delivery for inbound nonpersistent message flows from WebSphere
MQ through this WebSphere MQ link, from Reliable to Assured, in order of increasing reliability.

Information Value
Required No
Data type drop-down list
Range

Best effort
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable
Messages are discarded when a messaging
engine stops or fails.

Broker control queue:

The name of the message broker control queue to which all command messages (except publications and
requests to delete publications) are sent.

Publisher and subscriber applications, and other brokers, send all command messages (except
publications and requests to delete publications) to this queue.

Information Value
Required No
Data type Text

Chapter 20. Welcome to administering Service integration 2291



Broker publication queue:

The name of the message broker publication queue to which all publication messages for the default
stream are sent.

This is the name of the broker input queue (stream queue) that receives all publication messages for the
default stream. Applications can also send requests to delete publications on the default stream to this
queue.

Information Value
Required No
Data type Text

Broker subscription queue:

The name of the message broker subscription queue from which nondurable subscription messages are
retrieved.

This is the broker queue from which nondurable subscription messages are retrieved. The subscriber
specifies the name of the queue when it registers a subscription.

Information Value
Required No
Data type Text

Broker durable subscription queue:

The name of the message broker durable subscription queue from which durable subscription messages
are retrieved.

This is the broker queue from which durable subscription messages are retrieved. The subscriber specifies
the name of the queue when it registers a durable subscription.

Information Value
Required No
Data type Text

Broker connection consumer subscription queue:

The name of the message broker connection consumer subscription queue from which nondurable
subscription messages are retrieved for a connection consumer request.

This is the name of the broker queue from which nondurable subscription messages are retrieved for a
ConnectionConsumer request.

Information Value
Required No
Data type Text

Broker connection consumer durable subscription queue:

The name of the message broker connection consumer durable subscription queue from which nondurable
subscription messages are retrieved for a connection consumer request.

2292 Administering WebSphere applications



This is the name of the broker queue from which durable subscription messages are retrieved for a
ConnectionConsumer request.

Information Value
Required No
Data type Text

Default topic space:

The name of the default topic space for the WebSphere MQ client link.

This topic space is used for publish/subscribe messages sent to Version 5.1 JMS topics for which the JMS
topic connection factory connects to the node on which this WebSphere MQ client link is configured.

Information Value
Required No
Data type Text

WebSphere MQ client links [Collection]
A WebSphere MQ client link presents the messaging engine, and therefore the bus, as a WebSphere MQ
queue manager to which WebSphere MQ clients can attach. This behavior enables WebSphere
Application Server Version 5 JMS clients to use messaging resources on the bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] WebSphere MQ client links.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

If WebSphere MQ functionality has been disabled at any scope, an informational message indicating that
WebSphere MQ has been disabled is displayed. In a single server environment this informational message
is only displayed when the server is restarted after WebSphere MQ functionality has been disabled. For
more information see “Disabling WebSphere MQ functionality in WebSphere Application Server” on page
712.

Name The name of the WebSphere MQ client link.

Description
An optional description for the WebSphere MQ client link, for administrative purposes.

MQ channel name
The name of the channel for the WebSphere MQ client link, used to flow messages between
WebSphere MQ clients and the bus.

Queue manager name
The name of the WebSphere MQ queue manager on which the WebSphere MQ sender channel,
that is connected to this MQ link receiver channel connection instance, is running.

Chapter 20. Welcome to administering Service integration 2293



Default queue manager
Whether or not this is the default queue manager for the WebSphere MQ clients.

Status
The runtime status of the WebSphere MQ client link.

Buttons

Information Value

New Create a new administrative object of this type.

Delete Delete the selected items.

Start Start selected items.

This button does not work if the selected WebSphere MQ
client link is running on an application server on which
WebSphere MQ has been disabled. For more information
see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

Table 228. Stop modes. The table contains information about the target states and the corresponding stop mode
behavior. There are two target states such as inactive and stopped, and there are two stop modes such as quiesce
and force. The two rows in the table represent the two target states, and the two columns describes the two stop
mode behaviors for each of the target state.

Target state Quiesce stop mode Force stop mode

Inactive The sender channel becomes inactive
either when it has finished processing
its current batch, or when it reaches a
heartbeat interval.

The sender channel immediately
becomes inactive.

Stopped The sender channel becomes
stopped either when it has finished
processing its current batch, or when
it reaches a heartbeat interval.

The sender channel immediately
becomes stopped.

This button does not work if the selected WebSphere MQ client link is running on an application server on
which WebSphere MQ has been disabled. For more information see “Disabling WebSphere MQ
functionality in WebSphere Application Server” on page 712.

WebSphere MQ client link [Settings]
A WebSphere MQ client link presents the messaging engine, and therefore the bus, as a WebSphere MQ
queue manager to which WebSphere MQ clients can attach. This behavior enables WebSphere
Application Server Version 5 JMS clients to use messaging resources on the bus.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional Properties] WebSphere MQ client links -> link_name.

If WebSphere MQ functionality has been disabled at any scope, an informational message indicating that
WebSphere MQ has been disabled is displayed. In a single server environment this informational message
is only displayed when the server is restarted after WebSphere MQ functionality has been disabled. For
more information see “Disabling WebSphere MQ functionality in WebSphere Application Server” on page
712.

v “Runtime tab” on page 2295

2294 Administering WebSphere applications



v “Configuration tab” on page 2296

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Status:

The runtime status of the WebSphere MQ client link.

Information Value
Required No
Data type drop-down list
Range

Inactive
The WebSphere MQ client link is ready and
enabled to receive inbound connections from
clients, but no client connections have yet been
established.

Stopped
The WebSphere MQ client link is in a stopped
state and cannot process any new requests for
inbound connections from clients.

Starting
The WebSphere MQ client link has received an
inbound connection from a client, and is in the
process of starting this connection.

Binding
The WebSphere MQ client link is performing
channel negotiation and is not yet ready to
transfer messages.

Running
The WebSphere MQ client link has an active
session with a client, and data can be flowing
between the client and the WebSphere MQ client
link.

Stopping
The WebSphere MQ client link, or a connection
with that link, is in the process of being stopped.

Multiple
The WebSphere MQ client link has established
sessions with several clients, and the sessions
can be in different states: Starting, Running,
Stopping, or Stopped.

Additional Properties
Client connections

The client connections that exist on the WebSphere MQ client link.

Chapter 20. Welcome to administering Service integration 2295



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the WebSphere MQ client link.

Information Value
Required Yes
Data type String

UUID:

The universal unique identifier assigned by the system to this WebSphere MQ client link for administrative
purposes.

Information Value
Required No
Data type String

Description:

An optional description for the WebSphere MQ client link, for administrative purposes.

Information Value
Required No
Data type Text area

MQ channel name:

The name of the channel for the WebSphere MQ client link, used to flow messages between WebSphere
MQ clients and the bus.

The name of the WebSphere MQ server connection channel that this client link will use to represent itself
to clients. It must exactly match the value specified by the client for a connection to be established. For
Version 5 embedded messaging clients a value of "WAS.JMS.SVRCONN" must be specified. You should
not define two MQ client links that share both channel name and queue manager name. However , it is
possible to have client links with identical channel names if they specify different queue manager names.

.

Information Value
Required Yes
Data type String

Queue manager name:

The name of the WebSphere MQ queue manager on which the WebSphere MQ sender channel, that is
connected to this MQ link receiver channel connection instance, is running.

2296 Administering WebSphere applications



The WebSphere MQ client link for use by JMS applications on WebSphere Application Server Version 5.1
has the queue manager name WAS_nodeName_jmsserver. You should not use this name on any other
WebSphere MQ client link that is assigned to a messaging engine on the same node.

Information Value
Required Yes
Data type String

Default queue manager:

Whether or not this is the default queue manager for the WebSphere MQ clients.

If a client does not specify the name of the queue manager it is to connect to, it will be connected to an
MQ client link with a matching channel name that has been marked as being the default, if one matching
this criterion can be found.

Information Value
Required No
Data type Boolean

Maximum message size:

The maximum message length, in bytes, that can be transmitted using the WebSphere MQ client link.

Information Value
Required No
Data type Long
Range 0 through 104857600

Heartbeat interval:

The time, in seconds, to wait before checking that a client requesting an operation is still active.

This heartbeat interval allows a sending channel to verify that the receiving channel is still active just
before committing a batch of messages. If the receiving channel is not active, the batch can be backed out
rather than becoming indoubt, as would otherwise be the case. By backing out the batch, the messages
remain available for processing so they can, for example, be redirected to another channel.

If the sending channel has had a communication from the receiving channel within the batch heartbeat
interval, the receiving channel is assumed to be still active, otherwise a “heartbeat” signal is sent to the
receiving channel to check.

Information Value
Required No
Data type Integer
Range 0 through 999999

A value of 0 (zero) indicates that the heartbeat mechanism
is not used.

Initial state:

Chapter 20. Welcome to administering Service integration 2297



Whether the WebSphere MQ client link is started or stopped when the associated messaging engine is
first started. Until started, the WebSphere MQ client link is unavailable.

Information Value
Required No
Data type drop-down list
Range

Stopped
When the associated messaging engine is
started, the WebSphere MQ client link is in a
stopped state and cannot process any new
requests for inbound connections from clients.

Started
When the associated messaging engine is
started, the WebSphere MQ client link is ready
and enabled to receive inbound connections.

Additional Properties
Advanced properties

Advanced configurable properties, such as message reliability and broker queue names, for the
WebSphere MQ client link.

WebSphere MQ links [Collection]
The WebSphere MQ link connects the messaging engine as a queue manager to WebSphere MQ,
providing a bridge between the bus and a WebSphere MQ network.

To view this page in the console, click one of the following paths:

v Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> [Related Items] WebSphere MQ links

v Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

If WebSphere MQ functionality has been disabled at any scope, an informational message indicating that
WebSphere MQ has been disabled is displayed. In a single server environment this informational message
is only displayed when the server is restarted after WebSphere MQ functionality has been disabled. For
more information see “Disabling WebSphere MQ functionality in WebSphere Application Server” on page
712.

Name The name of the WebSphere MQ link, used for administrative purposes.

Description
An optional description for the WebSphere MQ link, for administrative purposes.

Local messaging engine
The local messaging engine that this WebSphere MQ link is hosted on.

2298 Administering WebSphere applications



Virtual queue manager name
The virtual queue manager name by which the local bus is to be known to a WebSphere MQ
network. It is generally recommended that you set the virtual queue manager name to match the
name of the local bus. As WebSphere MQ queue manager names can be no longer than 48
characters, you must ensure that the length of the local bus name does not exceed 48 characters.

Status
The runtime status of the WebSphere MQ link.

Status can take the following values:

Table 229. Status definitions. The first column of the table lists the status values of WebSphere MQ link. The
second column contains a brief definition of the status.

Status Meaning

Running The WebSphere MQ link is running.

Stopped The WebSphere MQ link is stopped.

Current outbound messages
The current total number of messages queued on the sender channel transmitter and link
transmitters for this WebSphere MQ link.

Messages sent
The total number of messages sent, since the start of the messaging engine, on the sender
channel transmitter to the foreign bus.

Messages received
The total number of messages received, since the start of the messaging engine, on the link
receiver connections for this WebSphere MQ link.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Start Start selected items.

This button does not work if the selected WebSphere MQ
link is running on an application server on which
WebSphere MQ has been disabled. For more information
see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

Chapter 20. Welcome to administering Service integration 2299



Button Description

Stop Stop a selected WebSphere MQ link. You must first have
selected the link to be stopped.

You can choose the mode of stop action and the required
state when the link has been stopped:

Stop mode:

Force Stop the link immediately. You should
only use this mode if a quiesce action
does not work.

Quiesce
Stop the link in a controlled manner.

Target state:

Inactive
Stop the link and set its state to
Inactive. If an application tries to use
the link, the link is started again.

Stopped
Stop the link and set its state to
Stopped. The link can only be started
again by administrator action.

This button does not work if the selected WebSphere MQ
link is running on an application server on which
WebSphere MQ has been disabled. For more information
see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

WebSphere MQ link MQFAP inbound channel [Settings]
A channel that can be used in combination with the TCP Channel or other channels within the confines of
WebSphere MQ support to facilitate communications between a WebSphere system integration bus and a
WebSphere MQ client or queue manager.

To view this page in the console, click the following path:

Servers -> Server Types -> WebSphere application servers -> server_name -> [Server messaging]
WebSphere MQ link inbound transports -> chain_name -> MQFAP inbound channel.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Transport channel name:

Specifies the unique name for a given layer in a network protocol stack.

Information Value
Required Yes
Data type String

2300 Administering WebSphere applications



Discrimination weight:

Specifies the discrimination weight that is used to determine the order in which the channels obtain access
to the incoming connection if the transport channels are shared amongst several transport chains. The
transport channel with the lowest discrimination weight has the first opportunity to accept the incoming
connection.

Information Value
Required No
Data type Integer
Range 0 through 2147483647

Additional Properties
Custom properties

Specifies additional custom properties for this runtime component. Some components use custom
configuration properties that can be defined here.

WebSphere MQ link receiver channel [Collection]
The receiver channel that receives messages from the gateway WebSphere MQ queue manager. The
receiver channel communicates with a WebSphere MQ sender channel on the gateway queue manager,
and converts MQ format messages to service integration bus messages.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties] Receiver
channel.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

WebSphere MQ link receiver channel name
The name of the receiver channel for the WebSphere MQ link, used to receive messages from
WebSphere MQ onto the bus.

Status
The runtime status of the receiver channel.

Buttons

Button Description

Start Start selected items.

This button does not work if the selected WebSphere MQ
link is running on an application server on which
WebSphere MQ has been disabled. For more information
see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

Chapter 20. Welcome to administering Service integration 2301



Button Description

Stop Stop a selected channel on this link. You must first have
selected the channel to be stopped.

You can choose the mode of stop action and the required
state when the channel has been stopped:

Stop mode:

Force Stop the channel immediately. You
should only use this mode if a quiesce
action does not work.

Quiesce
Stop the channel in a controlled
manner.

Target state:

Inactive
Stop the channel and set its state to
Inactive. If an application tries to use
the link, the channel is started again.

Stopped
Stop the channel and set its state to
Stopped. The channel can only be
started again by administrator action.

This button does not work if the selected WebSphere MQ
link is running on an application server on which
WebSphere MQ has been disabled. For more information
see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

WebSphere MQ link receiver channel [Settings]
The receiver channel that receives messages from the gateway WebSphere MQ queue manager. The
receiver channel communicates with a WebSphere MQ sender channel on the gateway queue manager,
and converts MQ format messages to service integration bus messages.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties] Receiver
channel -> channel_name.

v “Configuration tab”

v “Runtime tab” on page 2304

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

WebSphere MQ link receiver channel name:

2302 Administering WebSphere applications



The name of the receiver channel for the WebSphere MQ link, used to receive messages from
WebSphere MQ onto the bus.

This name must be the same as the name of the sender channel on WebSphere MQ.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type String

Inbound nonpersistent message reliability:

The acceptable reliability of message delivery for nonpersistent message flows from WebSphere MQ
through this WebSphere MQ link, from Best effort to Reliable, in order of increasing reliability.

This reliability delivery option is assigned to all WebSphere MQ nonpersistent messages flowing over this
receiver channel.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type drop-down list
Range

Best effort
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable
Messages are discarded when a messaging
engine stops or fails.

Inbound persistent message reliability:

The acceptable reliability of message delivery for inbound persistent message flows from WebSphere MQ
through this WebSphere MQ link, from Reliable to Assured, in order of increasing reliability.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2303



Information Value
Range

Reliable
Messages might be discarded when a messaging
engine fails.

Assured
Messages are not discarded.

Prefer queue points local to this link's messaging engine:

When this check box is selected, the link prefers to send inbound messages to available queue points of
target destinations that are located on the messaging engine on which the link is hosted.

When this check box is not selected, or if no local queue point is available for a target destination, the link
workload balances the messages across all available queue points of the target destination. By default the
check box is selected.

This option is supported on links running on WebSphere Application Server Version 7.0 or later. If you are
running on an earlier version, the default behavior of preferring local queue points is applied.

Information Value
Required Yes
Data type Boolean

Initial state:

Whether the receiver channel is started or stopped when the associated WebSphere MQ link is first
started. Until started, the channel is unavailable.

Dynamic updates to this property are effective on messaging engine restart or receiver channel creation.
Use the Runtime tab to check the current state.

Information Value
Required No
Data type drop-down list
Range

Stopped
When the associated messaging engine is
started, the WebSphere MQ link is in a stopped
state and cannot communicate with the
WebSphere MQ network.

Started
When the associated messaging engine is
started, the WebSphere MQ link is started
automatically and is enabled for communication
with the WebSphere MQ network.

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime

2304 Administering WebSphere applications



property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Status:

The runtime status of the receiver channel.

This shows the overall status for all receiver channels for the link.

Information Value
Required No
Data type drop-down list
Range

Inactive
The WebSphere MQ link is ready and enabled to
create connections, but no connections have yet
been established.

Stopped
The WebSphere MQ link is in a stopped state
and cannot process any new requests for
connections.

Multiple
The WebSphere MQ link has established several
sessions with WebSphere MQ, and the sessions
can be in different states: Starting, Running,
Stopping, or Stopped.

Additional Properties
Receiver channel connections

The connections that exist on the receiver channel of the WebSphere MQ link.

Saved batch status
The runtime status of message batches for the receiver channel of the WebSphere MQ link.

WebSphere MQ link routing properties [Settings]
The routing properties for a link to a foreign bus that represents a WebSphere MQ network.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Foreign bus connections ->
foreign_bus_name -> link_name.

You must create one of these routing definitions before you can create a WebSphere MQ link.

For information about setting up communication with WebSphere MQ, see the Intercommunication section
of the WebSphere MQ information center.

Chapter 20. Welcome to administering Service integration 2305



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name by which the routing definition is known.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to the routing definition (virtual link) for
administrative purposes.

Information Value
Required No
Data type String

Inbound user ID:

The user ID applied to messages arriving from the foreign bus and used to authorize their access to
destinations.

If you to want to authenticate messages entering this bus, this user ID replaces the user ID in the inbound
messages. You can specify an inbound user ID if this bus is to assign its own user IDs for all messages
received from the foreign bus. If you do not authenticate inbound messages, all messages can enter this
bus.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type String

Outbound user ID:

The user ID applied to messages sent to the foreign bus.

The definitive check for access to the destination on the foreign bus takes place when the message enters
the foreign bus. The check is against the permissions defined on the foreign bus by its administrator. The
check is based on the user ID that is stored in the message. That user ID starts off as the user ID of the
sender, but this bus might want to assign the same outbound user ID for all messages sent to the foreign
bus.

Dynamic updates to this property are effective immediately.

Information Value
Required No

2306 Administering WebSphere applications



Information Value
Data type String

WebSphere MQ link sender channel [Collection]
This pane displays the sender channel that sends messages to the gateway queue manager. The sender
channel communicates with a WebSphere MQ receiver channel on the gateway queue manager, and
converts service integration bus messages to MQ format messages.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties] Sender
channel.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

WebSphere MQ link sender channel name
The name of the sender channel for the WebSphere MQ link, used to send messages from the
bus to WebSphere MQ.

Host name
The hostname or TCP/IP IP address for the gateway queue manager that is used to connect into
the WebSphere MQ network.

Port The TCP/IP port number on which the gateway queue manager is listening for the WebSphere MQ
link.

Status
The runtime status of the sender channel.

Buttons

Button Description

Reset Reset a selected channel sequence number to 1. If the
channel is running, the reset request will take effect only
when the channel has been stopped and restarted.

This button does not work if the selected WebSphere MQ
link is running on an application server on which
WebSphere MQ has been disabled. For more information
see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

Start Start selected items.

This button does not work if the selected WebSphere MQ
link is running on an application server on which
WebSphere MQ has been disabled. For more information
see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

Chapter 20. Welcome to administering Service integration 2307



Button Description

Stop Stop a selected channel on this link. You must first have
selected the channel to be stopped.

You can choose the mode of stop action and the required
state when the channel has been stopped:

Stop mode:

Force Stop the channel immediately. You
should only use this mode if a quiesce
action does not work.

Quiesce
Stop the channel in a controlled
manner.

Target state:

Inactive
Stop the channel and set its state to
Inactive. If an application tries to use
the link, the channel is started again.

Stopped
Stop the channel and set its state to
Stopped. The channel can only be
started again by administrator action.

This button does not work if the selected WebSphere MQ
link is running on an application server on which
WebSphere MQ has been disabled. For more information
see “Disabling WebSphere MQ functionality in
WebSphere Application Server” on page 712.

WebSphere MQ link sender channel [Settings]
This pane displays the sender channel that sends messages to the gateway queue manager. The sender
channel communicates with a WebSphere MQ receiver channel on the gateway queue manager, and
converts service integration bus messages to MQ format messages.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties] Sender channel
-> channel_name.

v “Configuration tab”

v “Runtime tab” on page 2313

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

WebSphere MQ link sender channel name:

2308 Administering WebSphere applications



The name of the sender channel for the WebSphere MQ link, used to send messages from the bus to
WebSphere MQ.

This name must be the same as the name of the receiver channel on WebSphere MQ.

For information about choosing channel names, see the description of the Channel name (CHANNEL)
property in the Intercommunication section of the WebSphere MQ information center.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

If the previous channel is unknown, restart is delayed until the uncertainty is resolved.

Information Value
Required No
Data type String

Single Connection:

Use Single connection for the gateway queue manager that is used to connect into the WebSphere MQ
network.

Select Single Connection to specify the host name and port for one target queue manager. If you have a
high availability configuration, with one or more failover gateway queue managers available in the
WebSphere MQ network in addition to the target queue manager, select Multiple Connection Names List
instead.

If you do not specify any host names, either as a single connection or in a list of multiple connections, the
gateway queue manager is assumed to be running on the same host as the messaging engine on which
the WebSphere MQ link is defined.

Information Value
Required No
Data type Radio button

Host name:

The hostname or TCP/IP IP address for the gateway queue manager that is used to connect into the
WebSphere MQ network.

This is the host name or IP address of the target queue manager in the WebSphere MQ network.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type String

Port:

The TCP/IP port number on which the gateway queue manager is listening for the WebSphere MQ link.

Chapter 20. Welcome to administering Service integration 2309



This is the port number on which the gateway queue manager is listening for the inbound communication
requests.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Integer
Range 0 through 65535
Default 1414

Multiple Connection Names List:

Select Multiple Connection Names List if you have one or more failover gateway queue managers
available in the WebSphere MQ network in addition to the target queue manager. If no failover gateway
queue manager is available, you can select Single Connection instead.

If you do not specify any host names, either as a single connection or in a list of multiple connections, the
gateway queue manager is assumed to be running on the same host as the messaging engine on which
the WebSphere MQ link is defined.

Information Value
Required No
Data type Radio button

Connection Names List:

List of hostnames or TCP/IP IP address for the gateway queue manager that is used to connect into the
WebSphere MQ network.

Specify a list of host names, or IP addresses, and ports for the active and standby WebSphere MQ queue
managers in a high availability configuration. You may also use this field to specify a single host name and
port.

Specify the host names, or IP addresses, and ports in the format hostname1(nnnn),hostname2(nnnn)
separating each pair with a comma. Specify IP addresses in IPv4 format.

If you specify a port alone as an entry in the list, WebSphere Application Server uses the default host
name localhost with the port. If you specify a host name alone as an entry in the list, WebSphere
Application Server uses the default port number 1414 with the host name. For example, a connection
names list consisting of the values (1422),example.com is interpreted as
localhost(1422),example.com(1414).

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Custom

Transport chain:

The type of channel chain used for communication with the foreign bus.

2310 Administering WebSphere applications



This must be one of the outbound transport chains in the application server, to be used when establishing
a network connection to a WebSphere MQ queue manager receiver channel.

By default, this property can take one of the following values:

OutboundBasicMQLink
Used to establish connections with WebSphere MQ queue manager receiver channels.

OutboundSecureMQLink
Used to establish connections with WebSphere MQ queue manager receiver channels that have
been secured by using SSL. The SSL configuration used is taken from the default SSL repertoire
for the application server being used to contact the queue manager.

You can also choose to specify another outbound transport chain that you have defined separately on the
TransportChannelService object of the application server used for WebSphere MQ interoperation.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Modified transport chains are visible only after a server restart.

Information Value
Required Yes
Data type Custom

Disconnect interval:

The time in seconds for which the sender channel waits for new messages to arrive on the transmission
queue after sending a batch of messages. The channel disconnects after this interval, and must be
restarted manually or by triggering.

The default value is a reasonable interval. Change this value only if you understand the implications for
performance, and you need a different value for the requirements of the traffic flowing down your
channels.

Performance is affected by the value specified for the disconnect interval. A very low value (a few
seconds) can cause an unacceptable amount of processing in constantly starting up the channel. A very
large value (more than an hour) might mean that system resources are unnecessarily held up.

If you want your channels to be active only when there are messages for them to transmit, you should set
the disconnect interval to a fairly low value. Note that the default setting is quite high and so is not
recommended for channels where this level of control is required. Because it is difficult to interrupt the
receiving channel, the most economical option is to have the channel automatically disconnect and
reconnect as the workload demands. For most channels, the appropriate setting of the disconnect interval
can be established heuristically.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Integer
Range 0 through 999999

A value of 0 (zero) means never disconnect; the channel
waits indefinitely for messages.

Chapter 20. Welcome to administering Service integration 2311



Short retry count:

The maximum number of times that the sender channel tries to restart after a communication or partner
failure. If the connection name list is provided, during each retry the connections are tried in the order in
which they are specified in the connection list until a connection is successfully established. If the count of
remaining retries reaches zero, and the channel has not restarted, then the long retry mechanism is
invoked.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Integer
Range 0 through 999999999

Short retry interval:

The number of seconds between attempts by the sender channel to restart after a communication or
partner failure.

For more information about using retry mechanisms with WebSphere MQ, see the Intercommunication
section of the WebSphere MQ information center.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Integer
Range 0 through 999999999

Long retry count:

The maximum number of times that the sender channel tries to restart after the short retry mechanism did
not recover from a communication or partner failure. If the connection name list is provided, during each
retry the connections are tried in the order in which they are specified in the connection list until a
connection is successfully established. If the count of remaining retries reaches zero, and the channel has
not restarted, then an error is logged and the channel is stopped.

For more information about about using retry mechanisms with WebSphere MQ, see the
Intercommunication section of the WebSphere MQ information center.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Long
Range 0 through 999999999

2312 Administering WebSphere applications



Long retry interval:

The number of seconds between attempts by the sender channel to restart after the short retry mechanism
did not recover from a communication or partner failure.

For more information about using retry mechanisms with WebSphere MQ, see the Intercommunication
section of the WebSphere MQ information center.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Long
Range 0 through 999999999

Initial state:

Whether the sender channel is started or stopped when the associated WebSphere MQ link is first started.
Until started, the channel is unavailable.

Dynamic updates to this property are effective on messaging engine restart or sender channel creation.
Use the Runtime tab to check the current state.

Information Value
Required No
Data type drop-down list
Range

Stopped
When the associated messaging engine is
started, the WebSphere MQ link is in a stopped
state and cannot communicate with the
WebSphere MQ network.

Started
When the associated messaging engine is
started, the WebSphere MQ link is started
automatically and is enabled for communication
with the WebSphere MQ network.

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

WebSphere MQ link sender channel name:

The name of the sender channel for the WebSphere MQ link, used to send messages from the bus to
WebSphere MQ.

Chapter 20. Welcome to administering Service integration 2313



For more information, see the description of this property for the Configuration tab.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

If the previous channel is unknown, restart is delayed until the uncertainty is resolved.

Virtual queue manager name:

The virtual queue manager name by which the local bus is to be known to a WebSphere MQ network. It is
generally recommended that you set the virtual queue manager name to match the name of the local bus.
As WebSphere MQ queue manager names can be no longer than 48 characters, you must ensure that the
length of the local bus name does not exceed 48 characters.

The bus appears to WebSphere MQ as if it is a WebSphere MQ queue manager or queue-sharing group.
This field gives the queue manager name that WebSphere MQ uses to address the virtual queue manager
represented by this bus.

Information Value
Required No
Data type String

I/P address:

The TCP/IP IP address of the host on which the target queue manager runs.

Information Value
Required No
Data type String

Status:

The runtime status of the sender channel.

Information Value
Required No
Data type drop-down list

2314 Administering WebSphere applications



Information Value
Range

Inactive
The WebSphere MQ link is ready and enabled to
create connections, but no connections have yet
been established.

Starting
The WebSphere MQ link has received a
connection request, and is in the process of
starting this connection.

Binding
The WebSphere MQ link is performing channel
negotiation and is not yet ready to transfer
messages.

Initializing
The WebSphere MQ link is initializing the session
for a connection and is not yet ready to transfer
messages.

Retrying
The WebSphere MQ link is retrying a failed
connection.

Standby
The channel is being used for standby purposes.
Messages can be transferred only when the
channel is active.

Running
The WebSphere MQ link has an active session
with WebSphere MQ, and data can be flowing
between WebSphere MQ and the WebSphere
MQ link.

Stopping
The WebSphere MQ link, or a connection with
that link, is in the process of being stopped.

Paused
The channel is waiting for the message-retry
interval to finish.

Stopped
The WebSphere MQ link is in a stopped state
and cannot process any new requests for
connections.

Multiple
The WebSphere MQ link has established several
sessions with WebSphere MQ, and the sessions
can be in different states: Starting, Running,
Stopping, or Stopped.

Host name:

The hostname or TCP/IP IP address for the gateway queue manager that is used to connect into the
WebSphere MQ network.

For more information, see the description of this property for the Configuration tab.

Chapter 20. Welcome to administering Service integration 2315



Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Port:

The TCP/IP port number on which the gateway queue manager is listening for the WebSphere MQ link.

For more information, see the description of this property for the Configuration tab.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Transport chain:

The type of channel chain used for communication with the foreign bus.

This must be one of the outbound transport chains in the application server, to be used when establishing
a network connection to a WebSphere MQ queue manager receiver channel. For more information, see
the description of this property for the Configuration tab.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Modified transport chains are visible only after a server restart.

Disconnect interval:

The time in seconds for which the sender channel waits for new messages to arrive on the transmission
queue after sending a batch of messages. The channel disconnects after this interval, and must be
restarted manually or by triggering.

For more information, see the description of this property for the Configuration tab.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Short retry count:

The maximum number of times that the sender channel tries to restart after a communication or partner
failure. If the connection name list is provided, during each retry the connections are tried in the order in
which they are specified in the connection list until a connection is successfully established. If the count of
remaining retries reaches zero, and the channel has not restarted, then the long retry mechanism is
invoked.

For more information, see the description of this property for the Configuration tab.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Short retry interval:

The number of seconds between attempts by the sender channel to restart after a communication or
partner failure.

For more information, see the description of this property for the Configuration tab.

2316 Administering WebSphere applications



Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Long retry count:

The maximum number of times that the sender channel tries to restart after the short retry mechanism did
not recover from a communication or partner failure. If the connection name list is provided, during each
retry the connections are tried in the order in which they are specified in the connection list until a
connection is successfully established. If the count of remaining retries reaches zero, and the channel has
not restarted, then an error is logged and the channel is stopped.

For more information, see the description of this property for the Configuration tab.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Long retry interval:

The number of seconds between attempts by the sender channel to restart after the short retry mechanism
did not recover from a communication or partner failure.

For more information, see the description of this property for the Configuration tab.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Batch size:

The maximum number of messages that a batch can contain.

Information Value
Required No
Data type String

Channel start time:

The time at which the channel was last started.

Information Value
Required No
Data type String

Channel start date:

The date on which the channel was last started.

Information Value
Required No
Data type String

Heartbeat interval:

The negotiated time, in seconds, between heartbeat flows passed from the WebSphere MQ link sender
channel to the WebSphere MQ receiver channel when there are no messages on the transmission queue.

Chapter 20. Welcome to administering Service integration 2317



Information Value
Required No
Data type Integer

Sequence wrap:

The value at which message sequence numbers wrap to start again at 1.

This is the highest number the message sequence number reaches before it restarts at 1. The default
value is 999999999.

For more information about choosing the value for this property, see the description of the Sequence
Number wrap (SEQWRAP) property in the Intercommunication section of the WebSphere MQ information
center.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Long
Range 100 through 999999999

Maximum message length:

The negotiated maximum message length, in bytes, that can be transmitted on the channel. This value is
compared with the value from the partner WebSphere MQ receiver channel, and the maximum message
length used is the lower of the two values.

Information Value
Required No
Data type Integer

Stop requested:

Whether or not a manual stop request has been made for the sender channel.

To make a stop request, use the buttons provided on the WebSphere MQ link sender channel collection
panel.

Information Value
Required No
Data type drop-down list
Range

true The channel is in doubt about which messages
have been committed by WebSphere MQ for the
unit of work that it has sent.

false The channel is not in doubt about which
messages have been committed by WebSphere
MQ.

Current LUWID:

2318 Administering WebSphere applications



The current logical unit-of-work identifier for the message on the channel.

Indoubt channel problems are usually resolved automatically. Sequence number and logical unit of work ID
(LUWID) records are kept to help resolve indoubt channel problems when communication has been
re-established. For information resolving indoubt channels, see the Intercommunication section of the
WebSphere MQ information center.

Information Value
Required No
Data type String

Current sequence number:

The current sequence number for the message on the channel.

Indoubt channel problems are usually resolved automatically. Sequence number and logical unit of work ID
(LUWID) records are kept to help resolve indoubt channel problems when communication has been
re-established. For information resolving indoubt channels, see the Intercommunication section of the
WebSphere MQ information center.

Information Value
Required No
Data type String

In doubt:

Whether the message on the channel is in an indoubt state.

Problems with a channel that is in an indoubt state are usually resolved automatically. Sequence number
and logical unit of work ID (LUWID) records are kept to help resolve problems with an indoubt channel
when communication has been re-established. For information about resolving indoubt channels, see the
Intercommunication section of the WebSphere MQ information center.

Information Value
Required No
Data type drop-down list
Range

true The channel is in doubt about which messages
have been committed by WebSphere MQ for the
unit of work that it has sent.

false The channel is not in doubt about which
messages have been committed by WebSphere
MQ.

Last LUWID:

The last logical unit-of-work identifier for a message on the channel.

To determine the last-committed logical unit of work ID (LUWID) for the channel, compare this value to the
last-committed LUWID for the receiving side of the channel.

v If the two LUWIDs are the same, the receiving side has committed the unit of work that the sender
considers to be in doubt. The sending side can now remove the indoubt messages from the
transmission queue and re-enable it.

Chapter 20. Welcome to administering Service integration 2319



v If the two LUWIDs are different, the receiving side has not committed the unit of work that the sender
considers to be in doubt. The sending side needs to retain the indoubt messages on the transmission
queue and re-send them.

Information Value
Required No
Data type String

Last sequence number:

The last sequence number for a message on the channel.

WebSphere MQ channels cannot initialize successfully if the channel negotiation detects that the message
sequence number is different at each end. You might have to reset this manually.

To be effective, the sequence number must be reset in both the sender and the receiver channel
definitions. The starting sequence number is not negotiated when a channel starts up, nor is there a
default provided.

Information Value
Required No
Data type String

Messages in current batch:

The number of messages in the current batch on the channel.

Information Value
Required No
Data type String

Number of batches sent:

The number of batches that have been sent on the channel.

Information Value
Required No
Data type String

Number of messages sent:

The number of messages that have been sent on the channel.

Information Value
Required No
Data type String

Buffers sent:

The number of message buffers sent.

Information Value
Required No

2320 Administering WebSphere applications



Information Value
Data type String

Buffers received:

The number of message buffers received.

Information Value
Required No
Data type String

Bytes sent:

The number of bytes sent.

Information Value
Required No
Data type String

Bytes received:

The number of bytes received.

Information Value
Required No
Data type String

Last message send time:

The time at which the last message was sent on the channel.

Information Value
Required No
Data type String

Last message send date:

The date on which the last message was sent on the channel.

Information Value
Required No
Data type String

Remaining short retry starts:

The remaining number of short retry attempts that can be used to start the sender channel. If the count of
remaining retries reaches zero, and the channel has not restarted, then the long retry mechanism is
invoked.

Information Value
Required No
Data type String

Chapter 20. Welcome to administering Service integration 2321



Remaining long retry starts:

The remaining number of long retry attempts that can be used to start the sender channel. If the count of
remaining retries reaches zero, and the channel has not restarted, then an error is logged and the channel
is stopped.

Information Value
Required No
Data type String

Nonpersistent message speed:

The class of service for nonpersistent messages on the sender channel.

Information Value
Required No
Data type drop-down list
Range

Fast Nonpersistent messages can be lost if there is a
transmission failure or if the channel stops when
the messages are in transit.

Normal
Nonpersistent messages are not lost if there is a
transmission failure or if the channel stops when
the messages are in transit.

Additional Properties
Saved batch status

The runtime status of message batches for the sender channel of the WebSphere MQ link. You
can choose to commit or roll back each batch.

WebSphere MQ link [Settings]
The WebSphere MQ link connects the messaging engine as a queue manager to WebSphere MQ,
providing a bridge between the bus and a WebSphere MQ network.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name

For more information about choosing settings, see the Intercommunication section of the WebSphere MQ
information center.

If WebSphere MQ functionality has been disabled at any scope, an informational message indicating that
WebSphere MQ has been disabled is displayed. In a single server environment this informational message
is only displayed when the server is restarted after WebSphere MQ functionality has been disabled. For
more information see “Disabling WebSphere MQ functionality in WebSphere Application Server” on page
712.

v “Configuration tab” on page 2323

v “Runtime tab” on page 2327

2322 Administering WebSphere applications



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the WebSphere MQ link, used for administrative purposes.

Information Value
Required Yes
Data type String

UUID:

The universal unique identifier assigned by the system to this WebSphere MQ link for administrative
purposes.

Information Value
Required No
Data type String

Description:

An optional description for the WebSphere MQ link, for administrative purposes.

Dynamic updates to this property are effective immediately.

Information Value
Required No
Data type Text area

Foreign bus connection name:

The foreign bus to which this link connects.

If you do not see the foreign bus connection name that you expected to see, you must create a new
foreign bus connection.

Information Value
Required Yes
Data type drop-down list

Local messaging engine:

The local messaging engine that this WebSphere MQ link is hosted on.

Information Value
Required Yes
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2323



Virtual queue manager name:

The virtual queue manager name by which the local bus is to be known to a WebSphere MQ network. It is
generally recommended that you set the virtual queue manager name to match the name of the local bus.
As WebSphere MQ queue manager names can be no longer than 48 characters, you must ensure that the
length of the local bus name does not exceed 48 characters.

The bus appears to WebSphere MQ as if it is a WebSphere MQ queue manager or queue-sharing group.
This field gives the queue manager name that WebSphere MQ uses to address the virtual queue manager
represented by this bus. Any value that you specify must meet the following criteria:

v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the Rules for naming WebSphere MQ
objects topic in the WebSphere MQ information center).

Information Value
Required Yes
Data type String

Batch size:

The maximum number of messages that can be sent through a channel before taking a checkpoint.

The batch size does not affect the way the sender and receiver channels for this link transfer messages;
messages are always transferred individually, but are committed or backed out as a batch.

For information about choosing the batch size, see the description of the Batch size (BATCHSZ) property
in the Intercommunication section of the WebSphere MQ information center.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Integer
Range 1 through 9999

Maximum message size:

The maximum message length, in bytes, that can be transmitted on any channel for the WebSphere MQ
link. This is compared with the value for the corresponding partner WebSphere MQ channel and the actual
maximum used is the lower of the two values.

For more information about choosing a value for the maximum message size, see the description of the
Maximum message length (MAXMSGL) property in the Intercommunication section of the WebSphere MQ
information center.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Integer

2324 Administering WebSphere applications



Information Value
Range 0 through 104857600

Heartbeat interval:

The negotiated time, in seconds, between heartbeat flows passed from the WebSphere MQ link sender
channel to the WebSphere MQ receiver channel when there are no messages on the transmission point
being served by the WebSphere MQ link sender channel.

Heartbeats give the receiving channel the opportunity to quiesce the channel connection.

For more information about choosing a value for this property, see the Intercommunication section of the
WebSphere MQ information center.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Integer
Range 0 through 999999

Sequence wrap:

The value at which message sequence numbers wrap to start again at 1.

For more information about choosing a value for this property, see the description of the Sequence
Numberwrap (SEQWRAP) property in the Intercommunication section of the WebSphere MQ information
center.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Long
Range 100 through 999999999

Adoptable:

Whether or not a running instance of a WebSphere MQ link receiver channel (associated with this MQ
link) should be adopted or not. In the event of a communications failure, it is possible for a running
instance of a WebSphere MQ link receiver channel to be left waiting for messages. When communication
is re-established, and the partner WebSphere MQ sender channel next attempts to establish a session
with the WebSphere MQ link receiver channel, the request will fail as there is already a running instance
of the WebSphere MQ link receiver channel that believes it is in session with the partner WebSphere MQ
sender channel. You can overcome this problem by selecting this option, which causes the already running
instance of the WebSphere MQ link receiver channel to be stopped and a new instance to be started.

Chapter 20. Welcome to administering Service integration 2325



Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Boolean

Exception destination:

The destination for an inbound message when the WebSphere MQ link cannot deliver the message to its
target bus destination, or to the exception destination that is configured for that target destination, or when
the target destination does not exist.

Select a radio button as required to configure the exception destination that this WebSphere MQ link uses:

v Select None to specify that the WebSphere MQ link does not use an exception destination.
Undeliverable messages are not rerouted to an exception destination and can block the processing of
other messages waiting for delivery through that link to the same bus. This option can be used to
preserve message ordering.

v Select System to use the default exception destination. Messages that cannot be delivered to the bus
destination are rerouted to the system default exception destination for the messaging engine that this
link is assigned to: _SYSTEM.Exception.Destinationmessaging_engine_name.

v Select Specify and enter an exception destination to use the exception destination specified here. If the
WebSphere MQ link cannot use this exception destination, it uses the system exception destination.

Information Value
Required No
Data type Custom
Default System

Initial state:

Whether the WebSphere MQ link is started or stopped when the hosting messaging engine is first started.
Until it is started, the WebSphere MQ link is unavailable.

Dynamic updates to this property are effective when the messaging engine restarts. Use the Runtime tab
to check the current state.

Information Value
Required No
Data type drop-down list
Range

Stopped
When the associated messaging engine is
started, the WebSphere MQ link is in a stopped
state and cannot communicate with the
WebSphere MQ network.

Started
When the associated messaging engine is
started, the WebSphere MQ link is started
automatically and is enabled for communication
with the WebSphere MQ network.

Nonpersistent message speed:

2326 Administering WebSphere applications



The class of service for nonpersistent messages on channels of this WebSphere MQ link.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type drop-down list
Range

Fast Nonpersistent messages can be lost if there is a
transmission failure or if the channel stops when
the messages are in transit.

Normal
Nonpersistent messages are not lost if there is a
transmission failure or if the channel stops when
the messages are in transit.

Additional Properties
Publish/subscribe broker profiles

Profiles used to define the topic mappings and transactionality for publishing and receiving (by
subscription) topics across the publish/subscribe bridge between WebSphere Application Server
and a WebSphere MQ network.

Receiver channel
The receiver channel that receives messages from the gateway queue manager. The receiver
channel communicates with a WebSphere MQ sender channel on the gateway queue manager,
and converts MQ format messages to service integration bus messages.

Sender channel
The sender channel that sends messages to the gateway queue manager. The sender channel
communicates with a WebSphere MQ receiver channel on the gateway queue manager, and
converts service integration bus messages to MQ format messages.

Sender channel transmitters
The sender channel transmitters for the queueing of messages across the WebSphere MQ link.

Related Items
Foreign bus connection

The associated foreign bus for this WebSphere MQ link.

Link transmitters
For applications that use point-to-point messaging, there is one link transmission message point
located on each messaging engine in the source bus. For applications that use publish/subscribe
messaging, there is one link transmission message point located on each topic space in the
source bus. The link transmitter acts as a transmission queue where produced messages are
persisted before transmission across the inter-bus link to the foreign bus.

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

Chapter 20. Welcome to administering Service integration 2327



General Properties

Status:

The runtime status of the WebSphere MQ link.

Information Value
Required No
Data type drop-down list
Range

Inactive
The WebSphere MQ link is ready and enabled to
create connections, but no connections have yet
been established.

Starting
The WebSphere MQ link has received a
connection request, and is in the process of
starting this connection.

Binding
The WebSphere MQ link is performing channel
negotiation and is not yet ready to transfer
messages.

Initializing
The WebSphere MQ link is initializing the session
for a connection and is not yet ready to transfer
messages.

Retrying
The WebSphere MQ link is retrying a failed
connection.

Standby
The channel is being used for standby purposes.
Messages can be transferred only when the
channel is active.

Running
The WebSphere MQ link has an active session
with WebSphere MQ, and data can be flowing
between WebSphere MQ and the WebSphere
MQ link.

Stopping
The WebSphere MQ link, or a connection with
that link, is in the process of being stopped.

Paused
The channel is waiting for the message-retry
interval to finish.

Stopped
The WebSphere MQ link is in a stopped state
and cannot process any new requests for
connections.

Multiple
The WebSphere MQ link has established several
sessions with WebSphere MQ, and the sessions
can be in different states: Starting, Running,
Stopping, or Stopped.

2328 Administering WebSphere applications



Additional Properties
Sender channel transmitters

The sender channel transmitters for the queueing of messages across the WebSphere MQ link.

Related Items
Link transmitters

For applications that use point-to-point messaging, there is one link transmission message point
located on each messaging engine in the source bus. For applications that use publish/subscribe
messaging, there is one link transmission message point located on each topic space in the
source bus. The link transmitter acts as a transmission queue where produced messages are
persisted before transmission across the inter-bus link to the foreign bus.

Mediation execution points [Collection]
Mediation execution points for the processing of messages from mediation message points that are on a
WebSphere MQ server.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Remote message points] WebSphere MQ Mediation Execution points.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Identifier
The system-generated name by which this message point is known.

Status
The runtime status of the mediation point.

Buttons

Button Description

Start Start selected items.

Stop Stop selected items.

Mediation points [Collection]
Bus member (server or cluster) where the mediations for the destination run.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Message points] WebSphere MQ Mediation Execution points.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

Chapter 20. Welcome to administering Service integration 2329



To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Buttons

Button Description

Start Start selected items.

Stop Stop selected items.

Mediation points [Settings]
Bus member (server or cluster) where the mediations for the destination run.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Remote message points] WebSphere MQ Mediation Execution points -> mediation_name .

v “Configuration tab”

v “Runtime tab” on page 2331

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Identifier:

The system-generated name by which this message point is known.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to this message point for administrative purposes.

Information Value
Required No
Data type String

Initial state:

Whether the mediation point is started or stopped when the hosting messaging engine is first started. Until
started, the mediation point is unavailable.

Information Value
Required No
Data type drop-down list

2330 Administering WebSphere applications



Information Value
Range

Started
When the associated messaging engine is
started, the mediation is started and is available
to process messages.

Stopped
When the associated messaging engine is
started, the mediation is stopped and is not
available to process messages.

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

General Properties

Identifier:

The system-generated name by which this message point is known.

Information Value
Required No
Data type String

Run-time ID:

The internal runtime identifier assigned to this message point.

Information Value
Required No
Data type String

Status:

The runtime status of the mediation point.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2331



Information Value
Range

Waiting
The mediation is waiting to start. This might be
because the application server is not yet open for
e-business, or because a previous instance of
the mediation has not yet been deleted.

Started
The mediation is started and is available to
process messages.

Stopping
The mediation is in the process of stopping.

Stopped
The mediation is stopped. The reason why the
mediation is stopped is shown in the Reason
attribute.

Deleting
The mediation is in the process of being deleted.

WebSphere MQ mediation points [Collection]
A WebSphere MQ mediation point is a location from which a mediation takes messages.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Message points] WebSphere MQ Mediation points.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Identifier
The system-generated name by which this message point is known.

WebSphere MQ mediation points [Settings]
A WebSphere MQ mediation point is a location from which a mediation takes messages.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Message points] WebSphere MQ Mediation points -> mediation_name .

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

2332 Administering WebSphere applications



General Properties

Identifier:

The system-generated name by which this message point is known.

Information Value
Required No
Data type String

UUID:

The universal unique identifier assigned by the system to this message point for administrative purposes.

Information Value
Required No
Data type String

Target UUID:

The UUID of the bus destination for which this is a message point.

Information Value
Required No
Data type String

WebSphere MQ queue name :

The WebSphere MQ queue name as defined in WebSphere MQ.

Information Value
Required Yes
Data type String
Data type String

Inbound nonpersistent reliability :

The level of reliability to apply when a nonpersistent WebSphere MQ message is received.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2333



Information Value
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Inbound persistent reliability :

The level of reliability to apply when a persistent WebSphere MQ message is received.

Information Value
Required No
Data type drop-down list
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Include an RFH2 message header when sending messages to WebSphere MQ :

2334 Administering WebSphere applications



If selected, messages sent to WebSphere MQ will include an RFH2 header. The RFH2 header stores
additional information to that which is stored in the WebSphere MQ message header.

Information Value
Required No
Data type Boolean
Data type Boolean

WebSphere MQ queue points [Collection]
A WebSphere MQ queue point is used when sending messages to and receiving messages from a
WebSphere MQ queue.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Message points] WebSphere MQ Queue points.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Identifier
The system-generated name by which this message point is known.

WebSphere MQ queue points [Settings]
A WebSphere MQ queue point is used when sending messages to and receiving messages from a
WebSphere MQ queue.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
Runtime > [Message points] WebSphere MQ Queue points -> queue_point_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Identifier:

The system-generated name by which this message point is known.

Information Value
Required No
Data type String

UUID:

Chapter 20. Welcome to administering Service integration 2335



The universal unique identifier assigned by the system to this message point for administrative purposes.

Information Value
Required No
Data type String

Target UUID:

The UUID of the bus destination for which this is a message point.

Information Value
Required No
Data type String

WebSphere MQ queue name :

The WebSphere MQ queue name as defined in WebSphere MQ.

Information Value
Required Yes
Data type String

Inbound nonpersistent reliability :

The level of reliability to apply when a nonpersistent WebSphere MQ message is received.

The messages in a WebSphere MQ network have their own quality of service level. This is either
persistent or non-persistent. When these messages are received by a service integration application,
they are assigned a service integration quality of service level that depends on their WebSphere MQ
quality of service level.

For nonpersistent WebSphere MQ messages received, you will probably choose one of the nonpersistent
service integration qualities of service, that is reliable nonpersistent, best effort nonpersistent or express
nonpersistent. However, you can choose any of the five possible service integration qualities of service:

Best effort nonpersistent

Express nonpersistent

Reliable nonpersistent

Reliable persistent

Assured persistent

For more information, see Mapping the JMS delivery option and message reliability to and from the
WebSphere MQ persistence value.

Information Value
Required No
Data type drop-down list

2336 Administering WebSphere applications



Information Value
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Inbound persistent reliability :

The level of reliability to apply when a persistent WebSphere MQ message is received.

The messages in a WebSphere MQ network have their own quality of service level. This is either
persistent or non-persistent. When these messages are received by a service integration application,
they are assigned a service integration quality of service level that depends on their WebSphere MQ
quality of service level.

For persistent WebSphere MQ messages received, you will probably choose one of the persistent service
integration qualities of service, that is either assured persistent or reliable persistent. However, you can
choose any of the five possible service integration qualities of service:

Best effort nonpersistent

Express nonpersistent

Reliable nonpersistent

Reliable persistent

Assured persistent

For more information, see Mapping the JMS delivery option and message reliability to and from the
WebSphere MQ persistence value.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2337



Information Value
Range

Best effort nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express nonpersistent
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable nonpersistent
Messages are discarded when a messaging
engine stops or fails.

Reliable persistent
Messages might be discarded when a messaging
engine fails.

Assured persistent
Messages are not discarded.

Include an RFH2 message header when sending messages to WebSphere MQ :

If selected, messages sent to WebSphere MQ will include an RFH2 header. The RFH2 header stores
additional information to that which is stored in the WebSphere MQ message header.

Information Value
Required No
Data type Boolean

WebSphere MQ link receiver channel connections [Collection]
A connection that exists on the receiver channel of the WebSphere MQ link.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties] Receiver
channel -> channel_name -> Runtime > Receiver channel connections.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

WebSphere MQ Queue Manager name
The name of the WebSphere MQ queue manager on which the WebSphere MQ sender channel,
that is connected to this MQ link receiver channel connection instance, is running.

2338 Administering WebSphere applications



IP address
The IP address of the queue manager for the WebSphere MQ link receiver channel connection.

Status
The runtime status of the WebSphere MQ link receiver channel connection.

WebSphere MQ link receiver channel connections [Settings]
A connection that exists on the receiver channel of the WebSphere MQ link.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Messaging engines -> engine_name ->
[Additional properties] WebSphere MQ links -> link_name -> [Additional Properties] Receiver
channel -> channel_name -> Runtime > Receiver channel connections ->
channel_connection_name.

Runtime tab
The Runtime tab shows runtime properties and current runtime state for this MQ link receiver channel
connection. These properties are not preserved when the current runtime environment is stopped.

General Properties

WebSphere MQ link receiver channel name:

The name of the receiver channel for the WebSphere MQ link, used to receive messages from
WebSphere MQ onto the bus.

This name must be the same as the name of the sender channel on WebSphere MQ.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type String

WebSphere MQ Queue Manager name:

The name of the WebSphere MQ queue manager on which the WebSphere MQ sender channel, that is
connected to this MQ link receiver channel connection instance, is running.

Information Value
Required No
Data type String

IP address:

The IP address of the queue manager for the WebSphere MQ link receiver channel connection.

Information Value
Required No
Data type String

Status:

Chapter 20. Welcome to administering Service integration 2339



The runtime status of the WebSphere MQ link receiver channel connection.

Information Value
Required No
Data type drop-down list
Range

Inactive
The WebSphere MQ link is ready and enabled to
create connections, but no connections have yet
been established.

Starting
The WebSphere MQ link has received a
connection request, and is in the process of
starting this connection.

Binding
The WebSphere MQ link is performing channel
negotiation and is not yet ready to transfer
messages.

Initializing
The WebSphere MQ link is initializing the session
for a connection and is not yet ready to transfer
messages.

Retrying
The WebSphere MQ link is retrying a failed
connection.

Standby
The channel is being used for standby purposes.
Messages can be transferred only when the
channel is active.

Running
The WebSphere MQ link has an active session
with WebSphere MQ, and data can be flowing
between WebSphere MQ and the WebSphere
MQ link.

Stopping
The WebSphere MQ link, or a connection with
that link, is in the process of being stopped.

Paused
The channel is waiting for the message-retry
interval to finish.

Stopped
The WebSphere MQ link is in a stopped state
and cannot process any new requests for
connections.

Multiple
The WebSphere MQ link has established several
sessions with WebSphere MQ, and the sessions
can be in different states: Starting, Running,
Stopping, or Stopped.

Batch size:

The maximum number of messages that a batch can contain.

2340 Administering WebSphere applications



Information Value
Required No
Data type String

Channel start time:

The time at which the channel was last started.

Information Value
Required No
Data type String

Channel start date:

The date on which the channel was last started.

Information Value
Required No
Data type String

Heartbeat interval:

The negotiated time, in seconds, between heartbeat flows passed from the WebSphere MQ sender
channel to the WebSphere MQ link receiver channel when there are no messages on the transmission
queue being served by the WebSphere MQ sender channel.

Information Value
Required No
Data type String

Sequence wrap:

The value at which message sequence numbers wrap to start again at 1.

This is the highest number the message sequence number reaches before it restarts at 1. The default
value is 999999999.

For information about how to choose an appropriate value for this property, see the description of the
Sequence Numberwrap (SEQWRAP) property in the WebSphere MQ Intercommunication book.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type Long
Range 100 through 999999999

Adoptable:

Chapter 20. Welcome to administering Service integration 2341



Whether or not a running instance of a WebSphere MQ link receiver channel (associated with this MQ
link) should be adopted or not. In the event of a communications failure, it is possible for a running
instance of a WebSphere MQ link receiver channel to be left waiting for messages. When communication
is re-established, and the partner WebSphere MQ sender channel next attempts to establish a session
with the WebSphere MQ link receiver channel, the request will fail as there is already a running instance
of the WebSphere MQ link receiver channel that believes it is in session with the partner WebSphere MQ
sender channel. You can overcome this problem by selecting this option, which causes the already running
instance of the WebSphere MQ link receiver channel to be stopped and a new instance to be started.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type drop-down list
Range

true

false

Maximum message length:

The maximum message length, in bytes, that can be transmitted on the channel. This is compared with
the value from the partner Websphere MQ sender channel and the actual maximum used is the lower of
the two values.

Information Value
Required No
Data type String

Stop requested:

Whether or not a manual stop request has been made for the receiver channel.

Information Value
Required No
Data type drop-down list
Range

true The channel is in doubt about which messages
have been committed by WebSphere MQ for the
unit of work that it has sent.

false The channel is not in doubt about which
messages have been committed by WebSphere
MQ.

Current LUWID:

The current logical unit-of-work identifier of the WebSphere MQ link receiver channel connection.

Information Value
Required No
Data type String

Current sequence number:

2342 Administering WebSphere applications



The current sequence number for the message on the channel.

You can reset the sequence number of an MQLinkReceiver channel by resetting the sequence number of
the partner WebSphere MQ sender channel. For details of how to reset the sequence number of a
WebSphere MQ sender channel, see the WebSphere MQ Intercommunications Guide section of the
WebSphere MQ library.

Information Value
Required No
Data type String

Last LUWID:

The last logical unit-of-work identifier for a message on the channel.

Information Value
Required No
Data type String

Last Sequence number:

The last sequence number for a message on the channel.

Information Value
Required No
Data type String

Messages in current batch:

The number of messages in the current batch on the channel.

Information Value
Required No
Data type String

Number of batches received:

The number of batches received on the channel.

Information Value
Required No
Data type String

Number of messages received:

The number of messages received on the channel.

Information Value
Required No
Data type String

Buffers sent:

Chapter 20. Welcome to administering Service integration 2343

http://www.ibm.com/software/integration/wmq/library/


The number of buffers sent on the channel.

Information Value
Required No
Data type String

Buffers received:

The number of buffers received on the channel.

Information Value
Required No
Data type String

Bytes sent:

The number of bytes sent on the channel.

Information Value
Required No
Data type String

Bytes received:

The number of bytes received on the channel.

Information Value
Required No
Data type String

Last message receive time:

The time at which the last message was received on the receiver channel connection.

Information Value
Required No
Data type String

Last message receive date:

The date on which the last message was received on the receiver channel connection.

Information Value
Required No
Data type String

nonpersistent message speed:

The class of service for nonpersistent messages on the receiver channel.

Information Value
Required No
Data type drop-down list

2344 Administering WebSphere applications



Information Value
Range

Fast Nonpersistent messages can be lost if there is a
transmission failure or if the channel stops when
the messages are in transit.

Normal
Nonpersistent messages are not lost if there is a
transmission failure or if the channel stops when
the messages are in transit.

Inbound nonpersistent message reliability:

The acceptable reliability of message delivery for nonpersistent message flows from WebSphere MQ
through this WebSphere MQ link, from Best effort to Reliable, in order of increasing reliability.

This reliability delivery option is assigned to all WebSphere MQ nonpersistent messages flowing over this
receiver channel.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type drop-down list
Range

Best effort
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable
Messages are discarded when a messaging
engine stops or fails.

Inbound persistent message reliability:

The acceptable reliability of message delivery for inbound persistent message flows from WebSphere MQ
through this WebSphere MQ link, from Reliable to Assured, in order of increasing reliability.

Dynamic updates to this property are effective when the channel restarts. Use the Runtime tab to check
the current state.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2345



Information Value
Range

Reliable
Messages might be discarded when a messaging
engine fails.

Assured
Messages are not discarded.

WebSphere MQ server bus member [Settings]
A WebSphere MQ server bus member is used for assigning queue points and mediation points to
WebSphere MQ queues.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Topology] Bus members -> member_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The administrative name of the WebSphere MQ server bus member.

Information Value
Required No
Data type String

UUID:

The universal unique identifier is assigned automatically, for administrative purposes, when you create a
new WebSphere MQ server definition.

Information Value
Required No
Data type String

Connection settings

Virtual queue manager name:

When sending messages to WebSphere MQ, the WebSphere MQ gateway queue manager sees the bus
as a remote queue manager. The virtual queue manager name is passed to WebSphere MQ as the name
of the remote queue manager.

The default value is the name of the Service Integration bus. If this bus name is not a valid name for a
WebSphere MQ queue manager, or if another WebSphere MQ queue manager already has the same
name, replace the default value with a unique, valid name for a WebSphere MQ queue manager.

2346 Administering WebSphere applications



v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the Rules for naming WebSphere MQ
objects topic in the WebSphere MQ information center).

Information Value
Required Yes
Data type String

Override WebSphere MQ Server connection properties:

When you select this checkbox, the bus-specific properties override the WebSphere MQ server connection
properties. To reset the connection settings to the WebSphere MQ server default values, deselect this
checkbox and apply the change.

Information Value
Required No
Data type Boolean

WebSphere MQ Host:

The name of the WebSphere MQ server's host.

This is either the symbolic name or the IP address of the host to which a connection is established for
communicating with the queue manager or queue-sharing group that this WebSphere MQ server
represents. The value is a string and must be one of the following:

v Symbolic host name

v IPv4 address

v IPv6 address

Information Value
Required No
Data type String

Port:

The WebSphere MQ server port. This value is the TCP/IP port number on which the queue manager or
queue-sharing group that this WebSphere MQ server represents listens. This value is used when
attempting to establish client transport mode connections to WebSphere MQ. The default value is 1414

Information Value
Required No
Data type Integer

Transport chain name:

The name of the WebSphere MQ server transport chain. This is the transport chain that is used to
establish an outbound network connection to the WebSphere MQ server.

Information Value
Required No
Data type drop-down list

Chapter 20. Welcome to administering Service integration 2347



WebSphere MQ channel:

The name of the WebSphere MQ server's channel. This value is the WebSphere MQ client channel name
to use when connecting to the queue manager or queue-sharing group that this WebSphere MQ server
represents. The default value is SYSTEM.DEF.SVRCONN

Information Value
Required No
Data type String

Messaging authentication alias:

The name of WebSphere MQ server's authentication alias. This is the name that is used for exchanging
messages with WebSphere MQ.

Information Value
Required No
Data type drop-down list

Trust user identifiers received in messages:

The WebSphere MQ server's trust user identifier setting. This value determines whether user identifiers
that are received in messages from WebSphere MQ are propagated into the message (that is, whether
user identifiers that are received as part of message data are used in the service integration bus).

If you select this checkbox, user identifiers that are received as part of WebSphere MQ messages are
propagated into messages and used for security purposes within the bus. If you do not select this
checkbox, the user identifier is overwritten with the WebSphere MQ server name.

Information Value
Required No
Data type Boolean

Test connection:

After you have configured the Connection properties, click this button to test the connection to WebSphere
MQ.

Message points
WebSphere MQ mediation points

Displays a list of WebSphere MQ mediation points assigned to this WebSphere MQ server bus
member.

WebSphere MQ queue points
Displays a list of WebSphere MQ queue points assigned to this WebSphere MQ server bus
member.

Related Items
WebSphere MQ server

The WebSphere MQ server that was used to create this bus member.

JAAS - J2C authentication data
Specifies a list of user identities and passwords for Java 2 connector security to use.

2348 Administering WebSphere applications



WebSphere MQ servers [Collection]
A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group.

To view this page in the console, click the following path:

Servers -> Server Types -> WebSphere MQ servers.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

If WebSphere MQ functionality has been disabled at any scope, an informational message indicating that
WebSphere MQ has been disabled is displayed. In a single server environment this informational message
is only displayed when the server is restarted after WebSphere MQ functionality has been disabled. For
more information see “Disabling WebSphere MQ functionality in WebSphere Application Server” on page
712.

Name The administrative name of the WebSphere MQ Server.

Description
An optional description for the WebSphere MQ server, for administrative purposes.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Test connection Test the connection to WebSphere MQ.

In a single server environment, any attempt to test the
connection fails if WebSphere MQ functionality has been
disabled. . For more information see “Disabling
WebSphere MQ functionality in WebSphere Application
Server” on page 712.

WebSphere MQ server [Settings]
A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. Use this panel to view or modify the details of a WebSphere MQ server definition.

To view this page in the console, click one of the following paths:

v Servers -> New server, choose a server type of “WebSphere MQ server”, then click Next.

v Servers -> Server Types -> WebSphere MQ servers -> New

v Servers -> Server Types -> WebSphere MQ servers -> server_name

v Service integration -> Buses -> bus_name -> [Topology] Bus members -> member_name ->
[Related Items] WebSphere MQ server

If WebSphere MQ functionality has been disabled at any scope, an informational message indicating that
WebSphere MQ has been disabled is displayed. In a single server environment this informational message

Chapter 20. Welcome to administering Service integration 2349



is only displayed when the server is restarted after WebSphere MQ functionality has been disabled. For
more information see “Disabling WebSphere MQ functionality in WebSphere Application Server” on page
712.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The administrative name of the WebSphere MQ Server.

The name that you use for this WebSphere MQ server definition must be unique.

Information Value
Required Yes
Data type String

UUID:

The universal unique identifier assigned by the system to this WebSphere MQ server for administrative
purposes.

This identifier is assigned automatically when you create a new WebSphere MQ server definition.

Information Value
Required No
Data type String

Description:

An optional description for the WebSphere MQ server, for administrative purposes.

Information Value
Required No
Data type Text area

WebSphere MQ server name:

The name of the WebSphere MQ queue manager or queue sharing group, as defined in WebSphere MQ.

Information Value
Required Yes
Data type String

Server Type:

A server can be either a queue manager or queue sharing group. Select the appropriate type for the
server you want to establish a connection to.

2350 Administering WebSphere applications



Information Value
Required No
Data type Radio button
Range

Queue manager
A WebSphere MQ queue manager on the
WebSphere MQ network with which WebSphere
Application Server applications undertake
messaging.

Queue sharing group
A WebSphere MQ for z/OS queue-sharing group
on the WebSphere MQ network with which
WebSphere Application Server applications
undertake messaging.

Use bindings transport mode if available:

When selected, bindings transport mode will be used in preference to client transport mode when
establishing connections to the WebSphere MQ server. Otherwise client transport mode will always be
used.

To connect to a WebSphere MQ queue manager or queue-sharing group in bindings mode, WebSphere
Application Server needs to know where to load native libraries from. This information is stored in the
Native library path property of the WebSphere MQ messaging provider. If you want to use a direct
binding to WebSphere MQ, rather than a TCP/IP network connection, select this option and configure the
Native library path property as described in “Configuring the WebSphere MQ messaging provider with
native libraries information” on page 692.

Note: If you are using Resource Access Control Facility (RACF) as the security manager on your
WebSphere MQ for z/OS system, and using bindings transport mode, you must specify in
uppercase characters the user names and passwords for authentication aliases. If you are using
RACF and client transport mode, you can specify the user names and passwords in either upper or
lowercase characters.

Information Value
Required No
Data type Boolean

WebSphere MQ host:

WebSphere MQ server host defined by either its symbolic host name or an IP address.

Information Value
Required Yes
Data type String

WebSphere MQ port:

This is the port that will be used when attempting to establish client transport mode connections to
WebSphere MQ.

Information Value
Required Yes

Chapter 20. Welcome to administering Service integration 2351



Information Value
Data type Integer
Range 0 through 65535

Transport chain name:

The transport chain used to establish an outbound network connection to the WebSphere MQ server.

Information Value
Required Yes
Data type Custom

WebSphere MQ channel:

The WebSphere MQ server connection channel, as defined in WebSphere MQ.

Information Value
Required Yes
Data type String

Test connection:

Test the connection to WebSphere MQ.

In a single server environment, any attempt to test the connection fails if WebSphere MQ functionality has
been disabled. . For more information see “Disabling WebSphere MQ functionality in WebSphere
Application Server” on page 712.

Messaging authentication alias:

WebSphere MQ server authentication alias name used when exchanging messages with WebSphere MQ.

Information Value
Required No
Data type drop-down list

Trust user identifiers received in messages:

If selected user identifiers received as part of WebSphere MQ messages will be used for security
purposes within the bus.

Select this option if you do not want the user IDs in messages to be overwritten with the administrative
name of the WebSphere MQ server.

Information Value
Required No
Data type Boolean

Automatic discovery of resources :

When selected this enables the discovery of WebSphere MQ queue names to assist the administrator.

2352 Administering WebSphere applications



Information Value
Required No
Data type Boolean

Resource discovery authentication alias:

WebSphere MQ server authentication alias used for WebSphere MQ resource discovery.

Information Value
Required No
Data type drop-down list

Reply-to queue :

WebSphere MQ queue name used by the system to obtain messages used in the resource discovery
process.

Information Value
Required No
Data type Text

Related Items
JAAS - J2C authentication data

Specifies a list of user identities and passwords for Java 2 connector security to use.

This item is not available until after the WebSphere MQ server definition has been created.

Service integration custom properties
Use custom properties to configure advanced settings for service integration objects such as messaging
engines.

You can use the custom properties page to define the following service integration properties:

v “sib.msgstore.cachedDataBufferSize”

v “sib.msgstore.discardableDataBufferSize” on page 2354

v “sib.msgstore.jdbcFailoverOnDBConnectionLoss” on page 2354

v “sib.msgstore.jdbcInitialDatasourceWaitTimeout” on page 2355

v “sib.msgstore.jdbcResAuthForConnections” on page 2355

v “sib.msgstore.jdbcStaleConnectionRetryDelay” on page 2355

v “sib.meEnableInstanceOnFailure” on page 2355

v “sib.processor.maxReconstituteThreadpoolSize” on page 2356

v “sib.msgstore.storeFullWaitForCheckPoint” on page 2356

v “sib.msgstore.transactionSendLimit” on page 2356

v “sib.trm.retry” on page 2357

v “sib.wsrm.tokenLockTimeout” on page 2357

sib.msgstore.cachedDataBufferSize

The size in bytes of the data buffer that the messaging engine uses to contain data for which the quality of
service attribute is better than best effort nonpersistent and that is held in the data store. The default
value is 320000, which is approximately 320 kilobytes.

Chapter 20. Welcome to administering Service integration 2353



The purpose of the cached data buffer is to optimize the performance of the messaging engine by caching
in memory the data that the messaging engine might otherwise have to read from the data store. As it
writes data to the data store and reads from the data store, the messaging engine attempts to add that
data to the cached data buffer. The messaging engine might discard data already in the buffer to make
space.

Data type Default

Bytes 40000000

sib.msgstore.discardableDataBufferSize

The size in bytes of the data buffer that the messaging engine uses to contain data for which the quality of
service attribute is best effort nonpersistent. The default value is 320000, which is approximately 320
kilobytes.

The discardable data buffer contains all data for which the quality of service attribute is best effort
nonpersistent. That data comprises both data that is involved in active transactions, and any other best
effort nonpersistent data that the messaging engine has neither discarded nor consumed. The messaging
engine holds this data entirely within this memory buffer and never writes the data to the data store. When
the messaging engine adds data to the discardable data buffer, for example when the messaging engine
receives a best effort nonpersistent message from a client, the messaging engine might discard data
already in the buffer to make space. The messaging engine can discard only data that is not involved in
active transactions. This behavior enables the messaging engine to discard best effort nonpersistent
messages.

Increasing the size of the discardable data buffer allows more best effort nonpersistent data to be handled
before the messaging engine begins to discard messages.

If the messaging engine attempts to add data to the discardable data buffer when insufficient space
remains after discarding all the data that is not involved in active transactions, the messaging engine
throws a com.ibm.ws.sib.msgstore.OutOfCacheSpace exception. Client applications can catch this
exception, wrapped inside API-specific exceptions such as javax.jms.JMSException.

Data type Default

Bytes 1280000

sib.msgstore.jdbcFailoverOnDBConnectionLoss

The property determines the behavior of the messaging engine and its hosting server in the event that the
connection to the data store is lost.

Property value Behavior when the data store connection is lost

true (default) The server shuts down and must be manually restarted.

2354 Administering WebSphere applications



Property value Behavior when the data store connection is lost

false The messaging engine continues to run and accept work,
and periodically attempts to regain the connection to the
data store. If work continues to be submitted to the
messaging engine while the data store is unavailable, the
results can be unpredictable, and the messaging engine
can be in an inconsistent state when the data store
connection is restored.
Note: If work continues to be submitted to the messaging
engine, even nonpersistent messaging can fail because
the messaging engine might need to use the data store,
for example to allocate a unique ID to a message, or to
move nonpersistent messages out of memory.

sib.msgstore.jdbcInitialDatasourceWaitTimeout

The time, in milliseconds, to wait for the data store to become available. This time includes the time
required to establish a connection to the database and to obtain the required table locks.

Data type Default

Milliseconds 900000 (15 minutes)

sib.msgstore.jdbcResAuthForConnections

The messaging engine resource authorization mechanism used when sharing connections. Default value is
Container.

Data type Default

String Container

sib.msgstore.jdbcStaleConnectionRetryDelay

The time, in milliseconds, to wait between attempts to connect to the data store.

For example, if you set the sib.msgstore.jdbcInitialDatasourceWaitTimeout property to 600000, and the
sib.msgstore.jdbcStaleConnectionRetryDelay property to 3000, the messaging engine will attempt to
connect every 3 seconds for 10 minutes.

Information Value

Data type Milliseconds

Default 2000 (2 seconds)

sib.meEnableInstanceOnFailure

The property determines whether the disabled messaging engine must be enabled again automatically in
case the messaging engine loses connectivity to the data store.

For example, if you set the sib.meEnableInstanceOnFailure property value to true, the disabled messaging
engine will attempt to enable itself after 30 seconds.

Information Value

Data type Boolean

Chapter 20. Welcome to administering Service integration 2355



Information Value

Default True

sib.processor.maxReconstituteThreadpoolSize

Specifies the number of threads used to load destinations concurrently when the messaging engine is
started. In case your database does not support parallel multiple reads by multiple threads, then you might
set the property value to 1, so that contention among threads could be avoided.

Information Value

Data type Integer

Default The number of cores present in the system.

sib.msgstore.storeFullWaitForCheckPoint

This property determines the action a messaging engine takes when a file store is full and applications try
to send further messages.

When a file store is full, the messaging engine carries out a checkpoint of the log file to reconcile all
message sends and receives since the last checkpoint. This process might take some time to complete.
Between the time when the file store becomes full and the time when the checkpoint is complete, if
applications try to send a message, the messaging engine throws the exception ObjectStoreFullException
and issues message CWSOM1042E.

When an application thread that is sending a message finds that the file store is full, it requests a
checkpoint. The default behavior, with the property value set to false, is that the application thread then
throws the exception ObjectStoreFullException to the application immediately and returns. You can select
an alternative behavior by setting the property value to true. With this property value, the application
thread does not throw the exception, but waits until the checkpoint has completed. If the checkpoint frees
space in the file store, the application thread proceeds and sends the messages before returning. If the file
store is still full after the checkpoint, the application thread throws the exception to the application.

Set the property value to true, and make application threads wait for the checkpoint to be completed, if
your applications delete all the messages in the file store, and so they logically know that the file store is
no longer full. Although the applications must still wait until the checkpoint is complete, they do not receive
exceptions while the checkpoint is being carried out, and they do not have to retry the send.

Information Value
Data type Boolean
Default False

sib.msgstore.transactionSendLimit

The maximum number of operations that the messaging engine includes in each transaction. For example,
each JMS send or receive is an operation that counts towards the transaction send limit. The default value
is 100.

Data type Default

Integer 100

2356 Administering WebSphere applications



sib.trm.retry

The messaging engine to messaging engine connection retry interval, in seconds. The retry interval is the
time delay left between attempts to contact neighboring messaging engines with which communications
exist. The default retry interval is 30 seconds.

Data type Default

Seconds 30

sib.wsrm.tokenLockTimeout

This property affects WS-ReliableMessaging managed qualities of service. Set this property on the
messaging engine that is specified in the policy binding for the WS-ReliableMessaging application.

This property is the amount of time, in milliseconds, that a lock is held on a WS-ReliableMessaging
message. If a server fails while processing a message, the lock is released at the end of this timeout
period, so that other servers can continue the processing. If the original server recovers before the timeout
period ends, it continues processing the message. The lock is released at the end of the timeout period
even if the message is still being processed.

If your system is processing large messages, you might want to increase the value of this property. For
example, if a message takes 12 minutes to process, the lock is released 2 minutes before processing is
complete. To avoid this situation, change the property to a value that is greater than 12 minutes.

If your system is processing small messages, you might want to decrease the value of this property, so
that if a failure occurs the lock is released more quickly, and other servers can continue the processing
without delay.

Information Value
Data type Milliseconds
Default 600000 (10 minutes)

SIBAdminCommands: Bus administrative commands for the
AdminTask object
You can use these administrative commands to manage service integration buses.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Chapter 20. Welcome to administering Service integration 2357



createSIBus command
Use the createSIBus command to create a new service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command creates a new service integration bus.

Target object

None

Required parameters

-bus busname
The name by which you want the service integration bus to be known. Choose a unique name.

Conditional parameters

None.

Optional parameters

-description text
An optional description for the bus, for administrative purposes.

-secure TRUE | FALSE
This parameter is deprecated for this version.

interEngineAuthAlias name
The name of the authentication alias used to authorize communication between messaging engines on
the bus.

You must specify an inter-engine authentication alias if the bus contains a WebSphere Application
Server Version 6.x bus member. When bus security is enabled, the bus uses the inter-engine
authentication alias to authenticate incoming connections from other messaging engines. An
unauthorized messaging engine cannot connect to the bus.

-mediationsAuthAlias name
The name of the authentication alias used to authorize mediations to access the bus.

2358 Administering WebSphere applications



-securityGroupCacheTimeout timeout_value
The length of time, in minutes, that a security group will be cached for. timeout_value can be in the
range 0 through 99999. The default value is 120.

Increasing the timeout decreases the load on the user registry and improves performance but makes
the system less responsive to changes in a user's group membership. To tune the group cache to the
optimum setting, you need to balance the need for responsiveness with the registry load. For example,
if the system must respond quickly to changes in a user's group membership, specify a timeout of 15
minutes. If the system needs to respond less frequently, for example to respond to overnight changes,
specify a timeout of 1440 minutes (24 hours). With a setting of 0, entries in the cache do not timeout,
and so remain until the server is next restarted.

A change to this value is effective immediately and only affects the group cache of the bus for which
the configuration was changed.

-protocol protocol
The transport chain used for communication between messaging engines in this bus.

The transport chain must correspond to one of the transport chains defined in the Messaging engine
inbound transports settings for the server. All servers automatically have a number of transport chains
defined to them, and it is also possible to create new transport chains.

The default transport chain is InboundBasicMessaging.

-discardOnDelete TRUE | FALSE
Set this option to TRUE if messages on a deleted message point can be discarded. Set this option to
FALSE if messages on a deleted message point should be retained at a system exception destination.

highMessageThreshold number
The maximum total number of messages that any messaging engine on the bus can place on its
message points.

This value is used to set the default high message threshold for a messaging engine when the
messaging engine is created.

configurationReloadEnabled TRUE | FALSE
Set this option to TRUE to dynamically reload configuration files for this bus.

When this option is TRUE, certain changes to the bus configuration are applied without requiring the
messaging engines to be restarted. These changes are applied when destinations or mediations are
added to, or removed from, the bus. This option also controls whether automatic updates occur on all
the messaging engines on the bus.

-busSecurity TRUE | FALSE
Set this option to TRUE to enforce the authorization policy for the bus, which also requires
administrative security to be enabled. Set this option to FALSE if you always want to disable bus
security. If administrative security is disabled, the bus is insecure.

-bootstrapPolicy SIBSERVICE_ENABLED | MEMBERS_AND_NOMINATED | MEMBERS_ONLY
Set one of three options to enforce a bus members policy for the bus.

SIBSERVICE_ENABLED
Any server in the cell that has the SIB service enabled can service bootstrap requests.

MEMBERS_AND_NOMINATED
Only bus members or a nominated bootstrap server can service bootstrap requests.

MEMBERS_ONLY
Only bus members can service bootstrap requests.

-useServerIdForMediations TRUE | FALSE
Set this option to TRUE if you want to run mediations using a single server identity for the bus. This
option enables you to run mediations across multiple security domains without the need to specify a

Chapter 20. Welcome to administering Service integration 2359



mediation authentication alias for each domain. You can use a server identity to run mediations on the
global domain. Set this option to FALSE if you want to run mediations using a mediations authentication
alias.

-auditAllowed TRUE | FALSE
Set this option to be TRUE to enable security auditing for the bus. Set this option to be FALSE to disable
security auditing for the bus. The default value is TRUE. You must have Audit Administrator privileges to
use this parameter.

Example
AdminTask.createSIBus(’[-bus bus1 -description [A new bus] -busSecurity false ]’)
’bus1(cells/cell01/buses/bus1|sib-bus.xml#SIBus_1213019988044)’

deleteSIBus command
Use the deleteSIBus command to delete a specified service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command deletes a specified service integration bus, and deletes the artifacts that are related to the
bus including queue points, publication points, and mediation points. This command also deletes the new
artifacts that are created when queues are assigned or mediated to a WebSphere MQ server bus member,
including the WebSphere MQ server bus members. This command does not delete the following:

v Queue managers that are associated with the bus through WebSphere MQ server definitions.

v Messages residing on WebSphere MQ queue managers.

v WebSphere MQ queues.

CAUTION:
This command deletes everything on and related to the bus. There is no confirmation prompt
before deleting the bus.

Target object

The specified service integration bus.

2360 Administering WebSphere applications



Required parameters

-bus busname
The name by which the service integration bus is known. You can use the listSIBuses command to
list the names of existing buses.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.deleteSIBus(’[-bus bus1 ]’)

listSIBuses command
Use the listSIBuses command to list all service integration buses for a given scope.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists the names of all service integration buses for a given scope.

Target object

A given scope.

Required parameters

None.

Conditional parameters

None.

Optional parameters

None.

Chapter 20. Welcome to administering Service integration 2361



Example
AdminTask.listSIBuses()
’bus1(cells/cell01/buses/bus1|sib-bus.xml)
bus2(cells/cell01/buses/bus2|sib-bus.xml)’

modifySIBus command
Use the modifySIBus command to modify the properties of a service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command modifies the properties of a service integration bus.

Target object

A bus.

Required parameters

-bus busname
The name by which the service integration bus is known. You can use the listSIBuses command to
list the names of existing buses.

Conditional parameters

None.

Optional parameters

-description text
An optional description for the bus, for administrative purposes.

-secure TRUE | FALSE
This parameter is deprecated for this version.

-mediationsAuthAlias name
The name of the authentication alias used to authorize mediations to access the bus.

-securityGroupCacheTimeout timeout_value
The length of time, in minutes, that a security group will be cached for. timeout_value can be in the
range 0 through 99999. The default value is 120.

2362 Administering WebSphere applications



Increasing the timeout decreases the load on the user registry and improves performance but makes
the system less responsive to changes in a user's group membership. To tune the group cache to the
optimum setting, you need to balance the need for responsiveness with the registry load. For example,
if the system must respond quickly to changes in a user's group membership, specify a timeout of 15
minutes. If the system needs to respond less frequently, for example to respond to overnight changes,
specify a timeout of 1440 minutes (24 hours). With a setting of 0, entries in the cache do not timeout,
and so remain until the server is next restarted.

A change to this value is effective immediately and only affects the group cache of the bus for which
the configuration was changed.

-protocol protocol
The transport chain used for communication between messaging engines in this bus.

-discardOnDelete TRUE | FALSE
Set this option to TRUE if messages on a deleted message point can be discarded. Set this option to
FALSE if messages on a deleted message point should be retained at a system exception destination.

-busSecurity TRUE | FALSE
Set this option to TRUE to enforce the authorization policy for the bus, which also requires
administrative security to be enabled. Set this option to FALSE if you always want to disable bus
security. If administrative security is disabled the bus is not secured.

-permittedChains ALL | SSL_ENABLED | LISTED
Set one of three options to enforce a transport policy for the bus.

ALL Allow the use of all defined transport channel chains.

SSL_ENABLED
Restrict the use of defined transport channel chains to those protected by SSL.

LISTED Restrict the use of defined transport channel chains to the list of protected transports.

-bootstrapPolicy SIBSERVICE_ENABLED | MEMBERS_AND_NOMINATED | MEMBERS_ONLY
Set one of three options to enforce a bus members policy for the bus.

SIBSERVICE_ENABLED
Any server in the cell that has the SIB service enabled can service bootstrap requests.

MEMBERS_AND_NOMINATED
Only bus members or a nominated bootstrap server can service bootstrap requests.

MEMBERS_ONLY
Only bus members can service bootstrap requests.

-useServerIdForMediations TRUE | FALSE
Set this option to TRUE if you want to run mediations using a single server identity for the bus. This
option enables you to run mediations across multiple security domains without the need to specify a
mediation authentication alias for each domain. You can use a server identity to run mediations on the
global domain. Set this option to FALSE if you want to run mediations using a mediations authentication
alias.

-auditAllowed TRUE | FALSE
Set this option to be TRUE to enable security auditing for the bus. Set this option to be FALSE to disable
security auditing for the bus. The default value is TRUE. You must have Audit Administrator privileges to
use this parameter.

Example
AdminTask.modifySIBus(’[-bus bus1 -description [A new description of the bus]]’)
’bus1(cells/cell01/buses/bus1|sib-bus.xml)’

Chapter 20. Welcome to administering Service integration 2363



showSIBus command
Use the showSIBus command to show the properties of a service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists details about the properties of a service integration bus.

Target object

A bus.

Required parameters

-bus busname
The name by which the service integration bus is known. You can use the listSIBuses command to
list the names of existing buses.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.showSIBus(’[-bus bus1]’)
’{secure=false, useServerIdForMediations=false, discardOnDelete=false,
auditAllowed=true, highMessageThreshold=50000, busName=bus1,
securityGroupCacheTimeout=120, configurationReloadEnabled=true,
bootstrapPolicy=SIBSERVICE_ENABLED, permittedChains=ALL}’

addSIBusMember command
Use the addSIBusMember command to add a member to a service integration bus by using the wsadmin
tool. A bus member can be an application server or a WebSphere MQ server.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

2364 Administering WebSphere applications



v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The addSIBusMember command adds a new member to a service integration bus. When an application
server is added as a member of a bus, a messaging engine with default settings is created automatically.

When a WebSphere MQ server is added as a member of a bus, a server proxy is created that can
override the parent connection properties (host, port, channel, and SSL security configuration alias) that
are defined in the WebSphere MQ server. By this means, a different set of connection properties can be
assigned to each bus membership.

Target object

None.

A bus member object is created. If the bus member is a server, a messaging engine is also created.

Required parameters

-bus bus_name
The name by which the service integration bus is known. You can use the listSIBuses command to
list the names of existing buses.

Conditional parameters

-node node_name
-server server_name

To add an application server as a bus member, specify both the name of the node on which the server
runs, and the name of the server.

If you specify these parameters, do not specify the -wmqServer parameter.

-wmqServer
To add a WebSphere MQ server as a bus member, specify the name of the WebSphere MQ server.
This is the name that was specified in the -name parameter when the WebSphere MQ server was
created.

If you specify this parameter, do not specify the -node or -server parameters.

Optional parameters

-description text
An optional description for the bus member, for administrative purposes.

-virtualQueueManagerName
The override value for the name of the WebSphere MQ server virtual queue manager. When sending
messages to WebSphere MQ, the WebSphere MQ gateway queue manager sees the bus as a remote
queue manager. The virtual queue manager name is the name that is passed to WebSphere MQ as
the name of this remote queue manager. The default value is the name of the bus. If this value is not
a valid name for a WebSphere MQ queue manager, or if another WebSphere MQ queue manager

Chapter 20. Welcome to administering Service integration 2365



already exists that has the same name, then replace the default value with another value that is a
valid and unique name for a WebSphere MQ queue manager. To be valid, the name must meet the
following criteria:

v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the Rules for naming WebSphere
MQ objects topic in the WebSphere MQ information center).

-host
The override value for the WebSphere MQ server bus member host attribute. This value is the host
name or IP address of the host to which a connection is established to communicate with a queue
manager or queue-sharing group. Use this parameter if the -wmqServer parameter is specified.

-port
The override value for the WebSphere MQ server bus member port attribute. The port number is
monitored by a queue manager listener or queue-sharing group listener, which is listening for
connections. The default value is 1414. Use this parameter if the -wmqServer parameter is specified.

-channel
The override value for the WebSphere MQ server bus member channel attribute. This is the name of
the server connection channel that is used to establish a connection to the WebSphere MQ queue
manager or WebSphere MQ for z/OS queue sharing group. The default value is SYSTEM.DEF.SVRCONN.
Use this parameter if the -wmqServer parameter is specified.

-securityAuthAlias
The override value for the WebSphere MQ server bus member securityAuthAlias attribute. This is
the authentication alias that is supplied when connecting to the WebSphere MQ server. This parameter
has no default. Use this parameter if the -wmqServer parameter is specified.

-transportChain
The override value for the WebSphere MQ server bus member transportChain attribute. This is the
name of the transport chain to use when communicating with WebSphere MQ. The default value is
OutboundBasicWMQClient. Use this parameter if the -wmqServer parameter is specified.

-trustUserIds TRUE | FALSE
The override value for the WebSphere MQ server bus member trustUserIds attribute. This
determines whether user IDs that are received in messages from WebSphere MQ are propagated into
messages. The application user ID is always set from the jsAppUserIdRFH2 value. If this is not present
(either because the key/value pair is not present in the <sib> folder of the RFH2 header, or because
the message does not have a RFH2 header), this field is not set. This parameter has two possible
values:

TRUE User IDs are propagated into messages.

FALSE User IDs are not propagated into messages.

The default value is TRUE. Use this parameter if the -wmqServer parameter is specified.

-fileStore
Create a file store to use as a message store for the messaging engine. A file store is a type of
message store that directly uses files in a file system through the operating system. The alternative is
to use a data store. For more information, see the related links.

-logSize logsize
The size of the log file in MB. Use this parameter if the -fileStore parameter is specified.

-logDirectory logdirectoryname
The name of the log file directory if you do not want to use the default log directory. Use this
parameter if the -fileStore parameter is specified.

-minPermanentStoreSize minpermanentstoresize
The minimum size of the permanent store file in MB. Use this parameter if the -fileStore parameter
is specified.

2366 Administering WebSphere applications



-minTemporaryStoreSize mintemporarystoresize
The minimum size of the temporary store file in MB. Use this parameter if the -fileStore parameter is
specified.

-maxPermanentStoreSize maxpermanentstoresize
The maximum size of the permanent store file in MB. Use this parameter if the -fileStore parameter
is specified.

-maxTemporaryStoreSize maxtemporarystoresize
The maximum size of the temporary store file in MB. Use this parameter if the -fileStore parameter
is specified.

-unlimitedPermanentStoreSize TRUE | FALSE
A parameter that specifies whether the permanent store size is unlimited. This parameter has two
possible values:

TRUE The permanent store size is unlimited.

FALSE The permanent store size is limited. If you use this option, supply a -maxPermanentStoreSize
parameter.

Use this parameter if the -fileStore parameter is specified.

-unlimitedTemporaryStoreSize TRUE | FALSE
A parameter that specifies whether the temporary store size is unlimited. This parameter has two
possible values:

TRUE The temporary store size is unlimited.

FALSE The temporary store size is limited. If you use this option, supply a -maxTemporaryStoreSize
parameter.

Use this parameter if the -fileStore parameter is specified.

-permanentStoreDirectory permanentstoredirectoryname
The name of the permanent store directory if you do not want to use the default permanent store
directory. Use this parameter if the -fileStore parameter is specified.

-temporaryStoreDirectory temporarystoredirectoryname
The name of the temporary store directory if you do not want to use the default temporary store
directory. Use this parameter if the -fileStore parameter is specified.

-dataStore
Create a data store to use as a message store for the messaging engine.

A data store consists of the set of tables that a messaging engine uses to store persistent data in a
database. See “Data store tables” on page 2050 for a list of the tables that comprise a data store. All
the tables in a data store are held in the same database schema. You can create multiple data stores
in the same database, provided that you use a different schema name for each data store. The
alternative is to use file store (the default). For more information, see the related links.

-createDefaultDatasource TRUE | FALSE
A parameter that specifies whether to create a default data source when the messaging engine is
created. This parameter has two possible values:

TRUE Create a default data source.

FALSE Do not create a default data source.

Use this parameter if the -dataStore parameter is specified. Do not use this parameter if the -cluster
parameter is specified.

Chapter 20. Welcome to administering Service integration 2367



-datasourceJndiName jndiname
The JNDI name of the data source that the messaging engine uses to access the relational database
management system (RDBMS) for the data store. Use this parameter if the -dataStore parameter is
specified.

-authAlias authalias
The name of the authentication alias that the messaging engine uses to connect to the database in its
data store. Use this parameter if the -dataStore parameter is specified.

-createTables datasource
Create the database tables for the specified data source automatically. If this option is not specified,
the database administrator must create the tables. Use this parameter if the -dataStore parameter is
specified.

-restrictLongDBLock TRUE | FALSE
A parameter that specifies whether the active messaging engine must retain long running locks on the
SIBOWNER table in the database. When this option is selected, the messaging engine establishes a
lock over the database only for short durations. In the event of the active messaging engine not
responding to the database, the standby messaging engine will be able to take ownership of the
database because the active messaging engine only holds short duration locks. This parameter has
two possible values:

TRUE Restrict long running locks on the database.

FALSE Do not restrict long running locks on the database.

Use this parameter if the -dataStore parameter is specified.

Important: Although the property is selected, the property will not be effective until the database
tables are upgraded using the sibDBUpgrade command for WebSphere Application Server
Version 8.5 and later.

-schemaName schemaname
The name of the database schema that contains the tables for the data store, if you do not want to
use the default schema name. For details about the default schema, see “Creating users and schemas
in the database” on page 2041. Use this parameter if the -dataStore parameter is specified.

-initialHeapSize size
The initial Java virtual machine (JVM) heap size, in megabytes, of the server or of each server in a
cluster. There is no default value. If this parameter is not specified, no change is made. If this
parameter is specified, the supplied value must be greater than or equal to zero and less than or
equal to 2048. If the parameter is supplied without a value, an error message is generated.

-maxHeapSize size
The maximum JVM heap size, in megabytes, of the server or of each server in a cluster. There is no
default value. If this parameter is not specified, no change is made. If this parameter is specified, the
supplied value must be greater than or equal to zero and less than or equal to 2048. If the parameter
is supplied without a value, an error message is generated.

Examples

Add a server1 on node1 as a member of bus1 with a default file store.
AdminTask.addSIBusMember(’[-bus bus1 -node node1 -server server1 ]’)

Add server1 as a member of bus1, and use a file store to save messages.
AdminTask.addSIBusMember(’[-bus bus1 -node node1 -server server1 -fileStore ]’)

Add server1 as a member of bus1, and use a file store to save messages, with options.
AdminTask.addSIBusMember(’[-bus bus1 -node node1 -server server1 -fileStore
-logSize 100 -logDirectory C:\\filestore1 ]’)

2368 Administering WebSphere applications



Add server1 as a member of bus1, and use a data store to save messages.
AdminTask.addSIBusMember(’[-bus bus1 -node node1 -server server1 -dataStore ]’)

Add server1 as a member of bus1, and use a data store to save messages, with options.
AdminTask.addSIBusMember(’[-bus bus1 -node node1 -server server1 -dataStore
-createDefaultDatasource true -datasourceJndiName myjndi]’)

Change the initial JVM heap size to 256 and the maximum JVM heap size to 512.
AdminTask.addSIBusMember(’[-bus bus1 -node node1 -server server1
-initialHeapSize 256 -maxHeapSize 512]’)

listSIBusMembers command
Use the listSIBusMembers command to list the members of a service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists the names of all members in a service integration bus. The list includes all WebSphere
MQ servers that are bus members.

Target object

A service integration bus.

Required parameters

-bus busname
The name by which the service integration bus is known. You can use the listSIBuses command to
list the names of existing buses.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.listSIBusMembers(’[-bus Bus1 ]’)

[cells/9994GKCCell/buses/Bus1|sib-bus.xml#SIBusMember_1092155259869]
[cells/9994GKCCell/buses/Bus1|sib-bus.xml#SIBusMember_1092159844593]
[cells/9994GKCCell/buses/Bus1|sib-bus.xml#SIBusMember_1092160253751]

Chapter 20. Welcome to administering Service integration 2369



removeSIBusMember command
Use the removeSIBusMember command to remove a member from a service integration bus by using the
wsadmin tool. A bus member can be an application server or a WebSphere MQ server.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The removeSIBusMember command removes a bus member from the named bus. It cleans up artifacts that
are associated with the removed membership, for example, associated WebSphere MQ server bus
member artifacts, mediation execution points, or core group policies for messaging engines that are
associated with the bus member. To remove a bus member by using this command, specify one of the
following resources:

v The server and the node on which that server runs

v The WebSphere MQ server

This command does not delete messages from the associated WebSphere MQ queues, and it does not
delete the queues.

Target object

A service integration bus.

Required parameters

-bus bus_name
The name by which the service integration bus is known. You can use the listSIBuses command to
list the names of existing buses.

Conditional parameters

-node node_name
-server server_name

To remove an application server from a bus, specify both the name of the node on which the server
runs and the name of the server.

If you specify these parameters, do not specify the -wmqServer parameter.

-wmqServer mqservername
To remove a WebSphere MQ server from a bus, specify the name of the WebSphere MQ server. This
is the name that was specified in the -name parameter when the WebSphere MQ server was created.

2370 Administering WebSphere applications



If you specify this parameter, do not specify the -node or -server parameters.

Optional parameters

None.

Example

Remove server1 from bus1.
AdminTask.removeSIBusMember(’[-bus bus1 -node node1 -server server1 ]’)

showSIBusMember command
Use the showSIBusMember command to show the properties of a service integration bus member.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists the details of a specified member of a service integration bus. You can also use this
command to list the details of a WebSphere MQ server bus member.

Target object

A bus member.

Required parameters

-bus busname
The name by which the service integration bus is known. You can use the listSIBuses command to
list the names of existing buses.

-wmqServer
The name of the WebSphere MQ server bus member.

Conditional parameters

-node nodename -server servername
To list details of an application server as a bus member, specify both the name of the node on which
the server runs and the name of the server.

-cluster cluster
To list details of a server cluster, specify the name of the cluster.

Use this option only in WebSphere Application Server environments that support server clusters.

Chapter 20. Welcome to administering Service integration 2371



Optional parameters

None.

Example
AdminTask.showSIBusMember([’-bus bus1 -node node1 -server server1’])
’{node=node1, server=server1}’

listAllSIBBootstrapMembers command
Use the listAllSIBBootstrapMembers command to list all the bootstrap members that can bootstrap into a
selected bus.

You can use this command to list all the bootstrap members for a specified bus, or you can use the
administrative console, see “Listing the bootstrap members for a bus” on page 1977.

This command requires the name of the bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The listAllSIBBootstrapMembers command lists all the servers and clusters that can bootstrap into a
selected bus.

Target object

Bootstrap members for a selected bus.

Required parameters

-bus
The name of the bus for which you want to list all the bootstrap members. The data type is string.
There is no default value.

Conditional parameters

None

2372 Administering WebSphere applications



Optional parameters

None

Example

The following example lists all the bootstrap members of bus1:
AdminTask.listAllSIBBootstrapMembers(’[-bus bus1]’)

listSIBNominatedBootstrapMembers command
Use the listSIBNominatedBootstrapMembers command to list all the nominated bootstrap members for a
specified bus.

You can use this command to list all the nominated bootstrap members for a specified bus, or you can use
the administrative console, see “Listing the bootstrap members for a bus” on page 1977.

This command requires the name of the bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The listSIBNominatedBootstrapMembers command lists all the nominated bootstrap members for a
specified bus.

Target object

Nominated bootstrap members.

Required parameters

-bus
The name of the bus for which you want to list all nominated bootstrap members. The data type is
string. There is no default value.

Chapter 20. Welcome to administering Service integration 2373



Conditional parameters

None

Optional parameters

None

Example

The following example lists the nominated bootstrap members for bus1:
AdminTask.listSIBBootstrapMembers(’[-bus bus1]’)

addSIBBootstrapMember command
Use the addSIBBootstrapMember command to add a nominated bootstrap member to a specified bus.

You can use this command to add a nominated bootstrap member to a specified bus, or you can use the
administrative console: “Nominating bootstrap members for a bus” on page 1978.

This command requires the name of a bus, and a node and server name, or a cluster name.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The addSIBBootstrapMember command adds a nominated bootstrap member to the specified bus.

Target object

A nominated bootstrap member.

Required parameters

-bus
The name of the bus to which the nominated bootstrap member is added.

2374 Administering WebSphere applications



Conditional parameters

None

Optional parameters

-node
The name of the node on which the server you want to add exists. The data type is string. You must
specify either the node or the cluster parameter. If you specify the node parameter, you must also
specify the server parameter.

-server
The name of the server that you want to add as a nominated bootstrap member. The data type is
string. You must only use this parameter with the node parameter, not with the cluster parameter.

-cluster
The name of the cluster that you want to add as a nominated bootstrap member. The data type is
string. You must specify either the cluster or the node parameter. You cannot use the cluster
parameter with the node or the server parameter.

Example

The following example adds server1 on node1 as a nominated bootstrap member of bus1:
AdminTask.addSIBBootstrapMember(’[-bus bus1 -node node1 -server server 1]’)

removeSIBBootstrapMember command
Use the removeSIBBootstrapMember command to remove a nominated bootstrap member from a selected
bus.

You can use this command to remove a nominated bootstrap member from a selected bus, or you can use
the administrative console: “Deleting nominated bootstrap members from a bus” on page 1978.

This command requires the name of a bus, and either the node and server name, or the cluster name, of
an existing bootstrap member.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Chapter 20. Welcome to administering Service integration 2375



Purpose

The removeSIBBootstrapMember command removes a nominated bootstrap member from a selected bus.

Target object

The nominated bootstrap member is removed from the selected bus.

Required parameters

-bus
The name of the bus from which you want to remove the nominated bootstrap member. The data type
is string.

Conditional parameters

None

Optional parameters

-node
The name of the node where the server you want to remove exists. The data type is string. You must
specify either the node or the cluster parameter. If you specify the node parameter, you must also
specify the server parameter.

-server
The name of the server that you want to remove. The data type is string. You must only use this
parameter with the node parameter, not with the cluster parameter.

-cluster
The name of the cluster that you want to remove. The data type is string. You must specify either the
cluster or the node parameter. You cannot use the cluster parameter with the node or the server
parameter.

Examples

The following example removes a nominated bootstrap member cluster1 from bus1:
AdminTask.removeSIBBootstrapMember(’[-bus bus1 -cluster cluster1]’)

SIBAdminCommands: Foreign bus administrative commands for the
AdminTask object
You can use these administrative commands to manage foreign buses. A foreign bus represents a service
integration bus with which another service integration bus can exchange messages.

These commands provide an alternative to using the administrative console or using the more complex
syntax of wsadmin and Jython.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

2376 Administering WebSphere applications



v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

createSIBForeignBus command
Use the createSIBForeignBus command to create a new service integration foreign bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command creates a new foreign bus for a specified service integration bus. A foreign bus represents
a bus with which another bus can exchange messages.

Target object

A specified service integration bus.

Required parameters

-bus busname
The name of the service integration bus for which you want to create the foreign bus. You can use the
listSIBuses command to list the names of existing buses.

-name busname
The name by which you want the foreign bus to be known.

Notes:

v When you create a foreign bus that represents another service integration bus, the name of
the foreign bus must match the name of the other service integration bus.

v When you intend to link two buses directly, you must assign them unique names.

v You must not change the name of a foreign bus name after it has been configured.

-routingType Direct | Indirect
Create a foreign bus with the physical link (also known as the routing type) specified:

Direct A service integration bus link from a messaging engine in the local bus to a messaging engine
in the foreign bus.

Chapter 20. Welcome to administering Service integration 2377



Indirect
An indirect link, that is, a link that is made through one or more intermediate foreign buses.

Conditional parameters

None.

Optional parameters

-description text
An optional description for the bus, for administrative purposes.

-type MQ | SIBus
Create a foreign bus with the type specified:

MQ Create a foreign bus to link the service integration bus to a WebSphere MQ network.

SIBus Create a foreign bus to link the service integration bus to another service integration bus.

-sendAllowed True | False
(Default: True) Whether producers can send messages to the foreign bus.

False Producers cannot send messages to the foreign bus.

True Producers can send messages to the foreign bus.

-inboundUserid userID
The inbound user ID is used to authorize inbound messages sent from a foreign bus to destinations in
a secure service integration bus. If the bus is not secure, the inbound user ID property has no affect
on messages. You might want to specify an inbound user ID for use in the following scenarios:

v The foreign bus and the secure service integration bus are in different security domains, and the
foreign bus user IDs are not recognized by the secure bus.

v You want local control over access to the secure bus by inbound messages.

Note that if the receiving service integration bus is secure but the foreign bus is not secure, and an
inbound user ID is not set, an inbound message from the foreign bus is only authorized to destinations
that allow unauthenticated users access.

-outboundUserid userID
The outbound user ID replaces the user ID that identifies the source of a message in all messages
being sent to the foreign bus. This user ID is also used by the foreign bus to authorize the message to
its destination if both buses are secure buses and the foreign bus has not overridden the user ID with
its own inbound user ID.

-nextHopBus bus_name
(If -routingType is Indirect) The name of the next service integration bus in the sequence of
connected buses. An intermediate bus can be a WebSphere MQ system rather than a service
integration bus.

-topicSpaceMappings local topicSpace_name : remote topicSpace_name
A topic space mapping allows subscribers on the local topic space to receive messages published in
the foreign topic space. For publications to flow from the local topic space into the foreign bus, an
equivalent topic space mapping is required by the foreign bus. Topic space names for the local bus
are mapped to topic space names defined on the foreign bus. It is common for these two names to
match. Note that mapping two topic spaces implies that the topics within them are the same. You can
specify multiple pairs of topic spaces.

Example
AdminTask.createSIBForeignBus(’[-bus bus1 -name foreignbus1 -routingType Direct
-type SIBus]’)
’foreignbus1(cells/cell01/buses/bus1|sib-bus.xml#SIBForeignBus_1213023645293)’

2378 Administering WebSphere applications



deleteSIBForeignBus command
Use the deleteSIBForeignBus command to delete a foreign bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command deletes a foreign bus. The command does not affect the service integration bus for which
the foreign bus was created.

CAUTION:
This command deletes the foreign bus and its additional property configuration. Although there is
no confirmation prompt before deleting the bus, the bus is not deleted from the master
configuration until you save your changes.

Target object

A foreign bus.

Required parameters

-bus busname
The name of the service integration bus for which you want to delete a foreign bus. You can use the
listSIBuses command to list the names of existing buses.

-name busname
The name of the foreign bus that you want to delete. You can use the listSIBForeignBuses command
to list the names of existing buses.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.deleteSIBForeignBus(’[-bus bus1 -name foreignbus1]’)

Chapter 20. Welcome to administering Service integration 2379



listSIBForeignBuses command
Use the listSIBForeignBuses command to list all foreign buses for a specified service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists the names of all foreign buses for a specified service integration bus. A foreign bus
represents a bus in another cell (or within the same cell) or a WebSphere MQ network, with which a
service integration bus can exchange messages.

Target object

A bus.

Required parameters

-bus busname
The name of the service integration bus for which you want to list foreign buses.

Conditional parameters

None.

Optional parameters

-routingType Direct | Indirect
List the foreign buses with the physical link (also known as the routing type) specified:

Direct A service integration bus link from a messaging engine in the local bus to a messaging engine
in the foreign bus.

Indirect
An indirect link, that is, a link that is made through one or more intermediate foreign buses.

-type MQ | SIBus
List the foreign buses with the type specified:

MQ List the foreign buses that link the service integration bus to a WebSphere MQ network.

SIBus List the foreign buses that link the service integration bus to another service integration bus.

Example
AdminTask.listSIBForeignBuses(’[-bus Bus1]’)

2380 Administering WebSphere applications



modifySIBForeignBus command
Use the modifySIBForeignBus command to modify the properties of a foreign bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command modifies the properties of a foreign bus. A foreign bus represents a bus in another cell (or
within the same cell) or a WebSphere MQ network, with which a service integration bus can exchange
messages.

Target object

A foreign bus.

Required parameters

-bus busname
The name of the service integration bus for which you want to modify a foreign bus. You can use the
listSIBuses command to list the names of existing buses.

-name busname
The name of the foreign bus that you want to modify. You can use the listSIBForeignBuses command
to list the names of existing buses.

Conditional parameters

None.

Optional parameters

-description text
An optional description for the bus, for administrative purposes.

-sendAllowed False | False
(Default: True) Whether producers can send messages to the foreign bus.

False Producers cannot send messages to the foreign bus.

True Producers can send messages to the foreign bus.

-inboundUserid userID
The inbound user ID is used to authorize individual messages arriving from the foreign bus to

Chapter 20. Welcome to administering Service integration 2381



destinations in the service integration bus. If this is not a secure bus, this property has no affect on
messages. You might want to specify an inbound user ID:

v if the foreign bus is in a different security domain from this bus and user IDs from the foreign bus
are not recognized in this bus

v to locally-control access of inbound messages to this bus.

If this is a secure bus and the foreign bus is not secure, and no inbound user ID is set, any inbound
messages from the foreign bus are only authorized to destinations that allow unauthenticated users
access.

-outboundUserid userID
The outbound user ID replaces the user ID that identifies the source of a message in all messages
being sent to the foreign bus. This user ID is also used by the foreign bus to authorize the message to
its destination if both buses are secure buses and the foreign bus has not overridden the user ID with
its own inbound user ID.

-nextHopBus bus_name
(If -routingType is Indirect) The name of the next service integration bus in the sequence of
connected buses. An intermediate bus can be a WebSphere MQ system rather than a service
integration bus.

-topicSpaceMappings local topicSpace_name : remote topicSpace_name
A topic space mapping allows subscribers on the local topic space to receive messages published in
the foreign topic space. For publications to flow from the local topic space into the foreign bus, an
equivalent topic space mapping is required by the foreign bus. Topic space names for the local bus
are mapped to topic space names defined on the foreign bus. It is common for these two names to
match. Note that mapping two topic spaces implies that the topics within them are the same. You can
specify multiple pairs of topic spaces.

Example

The following example specifies additional optional properties for an existing foreign bus called
foreignbus1:

v An inbound user identity called iuserid to authorize messages sent from foreignbus1 to the local bus,
when security is enabled on foreignbus1, and the local bus.

v An outbound user identity called ouserid to authorize messages sent from the local bus to foreignbus1,
when security is enabled on foreignbus1, and the local bus.

v A topic space mapping between Topic.Space1 on the local bus and Topic.Space2 on foreignbus1. The
mapping allows subscribers on Topic.Space1 on the local bus to receive messages published in
Topic.Space2 on foreignbus1.

AdminTask.modifySIBForeignBus(’[-bus bus1 -name foreignbus1 -inboundUserid iuserid
-outboundUserid ouserid -topicSpaceMappings [[Topic.Space1 Topic.Space2]]]’)
’foreignbus1(cells/cell01/buses/bus1|sib-bus.xml#SIBForeignBus_1213023645293)’

showSIBForeignBus command
Use the showSIBForeignBus command to show the properties of a foreign bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

2382 Administering WebSphere applications



v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists details about the properties of a foreign bus. A foreign bus represents a bus in another
cell (or within the same cell) or a WebSphere MQ network, with which a service integration bus can
exchange messages.

Target object

A foreign bus.

Required parameters

-bus busname
The name of the service integration bus for which you want to show a foreign bus. You can use the
listSIBuses command to list the names of existing buses.

-name busname
The name of the foreign bus that you want to show. You can use the listSIBForeignBuses command
to list the names of existing buses.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.showSIBForeignBus(’[-bus bus1 -name foreignbus1]’)
’Foreign Bus Name = foreignbus1
Foreign Bus Uuid = 17B07B718182CDF6A73E75D2
Foreign Bus Description = A new foreign bus
Foreign Bus Send Allowed = true
mqRfh2 Allowed = false’

SIBAdminCommands: WebSphere MQ link administrative commands
for the AdminTask object
You can use these administrative commands to manage WebSphere MQ links. A WebSphere MQ link
connects a messaging engine as a queue manager to WebSphere MQ, thereby providing a bridge
between a service integration bus and a WebSphere MQ network.

These commands provide an alternative to using the administrative console or using the more complex
syntax of wsadmin and Jython.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

Chapter 20. Welcome to administering Service integration 2383



v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

createSIBMQLink command
Use the createSIBMQLink command to create a new WebSphere MQ link for a specified service integration
bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The createSIBMQLink command creates a new WebSphere MQ link for a specified service integration bus.
The WebSphere MQ link connects a messaging engine as a queue manager to WebSphere MQ, thereby
providing a bridge between a service integration bus and a WebSphere MQ network.

Target object

A bus.

Required parameters

-bus
The name of the service integration bus for which you want to create the WebSphere MQ link. You
can use the listSIBuses command to list the names of existing buses.

-messagingEngine
The name of the messaging engine for which you want to create the WebSphere MQ link. The
WebSphere MQ link connects a messaging engine as a queue manager to WebSphere MQ, thereby
providing a bridge between a service integration bus and a WebSphere MQ network.

-name
The name by which you want the WebSphere MQ link to be known.

-foreignBusName
The name of the foreign bus that defines the WebSphere MQ network for the WebSphere MQ link.
You can use the listSIBForeignBuses command to list the names of existing foreign buses.

2384 Administering WebSphere applications



-queueManagerName
The name of the virtual queue manager associated with the messaging engine, and by which the
messaging engine is known to a remote WebSphere MQ network.

The queue manager name must conform to the WebSphere MQ naming conventions; for example, the
name must be a maximum of 48 characters.

-senderChannelTransportChain OutboundBasicMQLink | OutboundSecureMQLink
The name of the sender channel that sends messages to the gateway queue manager. The sender
channel communicates with a WebSphere MQ receiver channel on the gateway queue manager, and
converts service integration bus messages to MQ format messages.

Conditional parameters

None.

Optional parameters

WebSphere MQ link configuration parameters:

-description
An optional description for the bus, for administrative purposes.

-exceptionDestination
The destination for an inbound message when the WebSphere MQ link cannot deliver the message to
its target bus destination, or to the exception destination that is configured for that target destination,
or when the target destination does not exist.

System
The WebSphere MQ link uses the default exception destination. All messages that cannot be
delivered to the bus destination are rerouted automatically to the system default exception
destination for the messaging engine that this link is assigned to:
_SYSTEM.Exception.Destinationmessaging_engine_name.

None The WebSphere MQ link has no exception destination. Undeliverable messages are not
rerouted to an exception destination and can block the processing of other messages waiting
for delivery through the link to the same bus. This option can be used to preserve message
ordering.

Specify
The WebSphere MQ link uses the exception destination specified here. If this is not possible, it
uses the system exception destination.

-batchSize
The maximum number of messages that can be sent through a channel before taking a checkpoint.

The batch size does not affect the way the sender and receiver channels for this link transfer
messages. Messages are always transferred individually, but are committed or backed out as a batch.

For more information about choosing the batch size, see the description of the batch size (BATCHSZ)
property in the Intercommunication section of the WebSphere MQ information center.

Information Value
Default 50
Range 1 through 9999

-maxMsgSize
The maximum message length, in bytes, that can be transmitted on any channel for the WebSphere
MQ link. This is compared with the value for the corresponding partner WebSphere MQ channel and
the actual maximum used is the lower of the two values.

Chapter 20. Welcome to administering Service integration 2385



For information about how to choose an appropriate number, see the description of the Maximum
message length (MAXMSGL) property in the Intercommunication section of the WebSphere MQ
information center.

Information Value
Default 4194304 bytes (4MB)
Range 0 through 104857600

Specify 0 to use the largest value that the target queue
manager will honor.

-heartBeat
The negotiated time, in seconds, between heartbeat flows passed from the WebSphere MQ link
sender channel to the WebSphere MQ receiver channel when there are no messages on the
transmission point being served by the WebSphere MQ link sender channel.

Heartbeats give the receiving channel the opportunity to quiesce the channel connection.

For more information about choosing the value for this property, see the Intercommunication section of
the WebSphere MQ information center.

Information Value
Default 300 seconds
Range 0 through 999999

-sequenceWrap
The value at which message sequence numbers wrap to start again at 1. For example, if you specify a
value of 1000, when the message sequence number reaches 1001 it will restart at 1.

For more information about choosing the value for this property, see the description of the Sequence
Number wrap (SEQWRAP) property in the Intercommunication section of the WebSphere MQ information
center.

Information Value
Default 999999999
Range 1 through 999999999

-nonPersistentMessageSpeed Fast | Normal
The class of service for nonpersistent messages on channels of this WebSphere MQ link.

Information Value
Default Fast
Range

Fast Nonpersistent messages can be lost if there is a
transmission failure or if the channel stops when
the messages are in transit.

Normal
Nonpersistent messages are not lost if there is a
transmission failure or if the channel stops when
the messages are in transit.

-adoptable True | False
A property of the WebSphere MQ link, which shows whether a running instance of a WebSphere MQ
link receiver channel (associated with this WebSphere MQ link) should be adopted. In the event of a
communications failure, a running instance of a WebSphere MQ link receiver channel might be left
waiting for messages. When communication is reestablished, and the partner WebSphere MQ sender
channel next attempts to establish a session with the WebSphere MQ link receiver channel, the
request will fail as there is already a running instance of the WebSphere MQ link receiver channel that

2386 Administering WebSphere applications



believes it is in session with the partner WebSphere MQ sender channel. You can overcome this
problem by selecting this option, which causes the already running instance of the WebSphere MQ link
receiver channel to be stopped and a new instance to be started.

If you set this option to True, the WebSphere MQ sender channels might reestablish a connection to
this WebSphere MQ link in the event that a communications failure has occurred and the link has not
yet detected the failure condition.

Information Value
Default True

-initialState Started | Stopped
The state of the WebSphere MQ link, which shows whether the link is started or stopped when the
hosting messaging engine is first started. Until it is started, the WebSphere MQ link is unavailable.

Information Value
Default Started
Range

Stopped
When the associated messaging engine is
started, the WebSphere MQ link is in a stopped
state and cannot communicate with the
WebSphere MQ network.

Started
When the associated messaging engine is
started, the WebSphere MQ link is started
automatically and is enabled for communication
with the WebSphere MQ network.

WebSphere MQ link sender channel parameters:

-senderChannelName
The sender channel that sends messages to the gateway queue manager. The sender channel
communicates with a WebSphere MQ receiver channel on the gateway queue manager, and converts
service integration bus messages to MQ format messages.

This name must be the same as the name of the receiver channel on WebSphere MQ.

For more information about choosing channel names, see the description of the channel name
(CHANNEL) property in the Intercommunication section of the WebSphere MQ information center.

-hostName
The host name or TCP/IP address for the gateway queue manager that is used to connect into the
WebSphere MQ network.

Type the host name or IP address of the host on which the gateway queue manager runs.

If this field is blank, the gateway queue manager is assumed to be running on the same host as the
messaging engine on which the WebSphere MQ link is defined.

-port
The TCP/IP port number on which the gateway queue manager is listening for the WebSphere MQ
link.

Information Value
Default 1414
Range 0 through 65535

-connameList
The connection name list for the gateway queue manager which is used to connect to the WebSphere

Chapter 20. Welcome to administering Service integration 2387



MQ network. The connections are tried in the order in which they are specified in the connection name
list until a connection is successfully established. If no connection is successful, the channel starts
retry processing.

The connection names must be given as a comma separated list in the following format:
Dnsname1(portnumber1) , Dnsname2(portnumber2)

Type the DNS name or the IP address of the host on which the gateway queue manager is running.
Type the port number in the range 0 through 65535.

If you do not specify the connection name list parameter, the gateway queue manager is assumed to
be running on the same host as the messaging engine on which the WebSphere MQ link is defined.

If you do specify the connection name list parameter, you must have already specified a value for the
sender channel name parameter, otherwise the value that you specify for the connection name list
parameter is ignored.

If you specify the host name and port parameter as well as the connection name list parameter, then
at runtime the connection name list takes precedence and host name and port values are ignored.

-discInterval
The time in seconds for which the sender channel waits for new messages to arrive on the
transmission queue after sending a batch of messages. The channel disconnects after this interval,
and must be restarted manually or by triggering.

The default value is a reasonable interval. Change this value only if you understand the implications
for performance, and you need a different value for the requirements of the traffic flowing down your
channels.

Performance is affected by the value specified for the disconnect interval. A very low value (a few
seconds) can cause an unacceptable amount of processing in constantly starting up the channel. A
very large value (more than an hour) might mean that system resources are unnecessarily held up.

If you want your channels to be active only when there are messages for them to transmit, you should
set the disconnect interval to a fairly low value. Note that the default setting is quite high and so is not
recommended for channels where this level of control is required. Because it is difficult to interrupt the
receiving channel, the most economical option is to have the channel automatically disconnect and
reconnect as the workload demands. For most channels, the appropriate setting of the disconnect
interval can be established heuristically.

Information Value
Default 900 seconds
Range 0 through 999999

A value of 0 (zero) means never disconnect; the channel
waits indefinitely for messages.

-shortRetryCount
The maximum number of times that the sender channel tries to restart after a communication or
partner failure. If the connection name list is provided, during each retry the connections are tried in
the order in which they are specified in the connection list until a connection is successfully
established. If the count of remaining retries reaches zero, and the channel has not restarted, then the
long retry mechanism is invoked.

For more information about using retry mechanisms with WebSphere MQ, see the Intercommunication
section of the WebSphere MQ information center.

Information Value
Default 10
Range 0 through 999999999

2388 Administering WebSphere applications



-shortRetryInterval
The number of seconds between attempts by the sender channel to restart after a communication or
partner failure.

For more information about using retry mechanisms with WebSphere MQ, see the Intercommunication
section of the WebSphere MQ information center.

Information Value
Default 60 seconds
Range 0 through 999999

-longRetryCount
The maximum number of times that the sender channel tries to restart after the short retry mechanism
did not recover from a communication or partner failure. If the connection name list is provided, during
each retry the connections are tried in the order in which they are specified in the connection list until
a connection is successfully established. If the count of remaining retries reaches zero, and the
channel has not restarted, then an error is logged and the channel is stopped.

For more information about using retry mechanisms with WebSphere MQ, see the Intercommunication
section of the WebSphere MQ information center.

Information Value
Default 999999999
Range 0 through 999999999

-longRetryInterval
The number of seconds between attempts by the sender channel to restart after the short retry
mechanism did not recover from a communication or partner failure.

For more information about using retry mechanisms with WebSphere MQ, see the Intercommunication
section of the WebSphere MQ information center.

Information Value
Default 1200 seconds
Range 0 through 999999

-senderChannelInitialState Started | Stopped
The state of the WebSphere MQ link, which shows whether the sender channel is started or stopped
when the associated WebSphere MQ link is first started. Until it is started, the channel is unavailable.

Information Value
Default Started
Range

Stopped
When the associated messaging engine is
started, the WebSphere MQ link is in a stopped
state and cannot communicate with the
WebSphere MQ network.

Started
When the associated messaging engine is
started, the WebSphere MQ link is started
automatically and is enabled for communication
with the WebSphere MQ network.

WebSphere MQ link receiver channel parameters:

Chapter 20. Welcome to administering Service integration 2389



-receiverChannelName
The name of the receiver channel for the WebSphere MQ link, used to receive messages from
WebSphere MQ onto the bus.

This name must be the same as the name of the sender channel on WebSphere MQ.

-inboundNonPersistentReliability Best effort | Express | Reliable
The acceptable reliability of message delivery for nonpersistent message flows from WebSphere MQ
through this WebSphere MQ link, from Best effort to Reliable, in order of increasing reliability.

This reliability delivery option is assigned to all WebSphere MQ nonpersistent messages flowing over
this receiver channel.

Information Value
Default Reliable
Range

Best effort
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable
Messages are discarded when a messaging
engine stops or fails.

-inboundPersistentReliability Reliable | Assured
The acceptable reliability of message delivery for inbound persistent message flows from WebSphere
MQ through this WebSphere MQ link, from Reliable to Assured, in order of increasing reliability.

Information Value
Default Assured
Range

Reliable
Messages might be discarded when a messaging
engine fails.

Assured
Messages are not discarded.

-receiverChannelInitialState Started | Stopped
The state of the WebSphere MQ link, which shows whether the receiver channel is started or stopped
when the associated WebSphere MQ link is first started. Until it is started, the channel is unavailable.

Information Value
Default Started

2390 Administering WebSphere applications



Information Value
Range

Stopped
When the associated messaging engine is
started, the WebSphere MQ link is in a stopped
state and cannot communicate with the
WebSphere MQ network.

Started
When the associated messaging engine is
started, the WebSphere MQ link is started
automatically and is enabled for communication
with the WebSphere MQ network.

-preferLocal TRUE | FALSE
This option indicates that the link prefers to send incoming messages to the queue point of the target
destination that is located on the same messaging engine as the link, if available. The link must be
owned by a messaging engine running on a WebSphere Application Server Version 7.0 or later server.

This option is supported only when used by a JMS application that is running with a WebSphere
Application Server Version 7.0 or later server or client, and that is connected to a messaging engine
running on WebSphere Application Server Version 7.0 or later server. Use on previous versions of
WebSphere Application Server will result in an exception to the application.

Information Value
Default TRUE
Range

TRUE Send each incoming message to the queue point
of the target destination that is located on the
same messaging engine as the link, if available.

FALSE Send incoming messages to any queue points of
the target destinations.

Examples
AdminTask.createSIBMQLink(’[-bus bus1 -messagingEngine cluster1.000-bus1
-name myMQLink2 -foreignBusName MQNetwork2 -queueManagerName MQMgrIPL
-senderChannelTransportChain OutboundBasicMQLink]’)
’myMQLink2(cells/cell01/nodes/node01/servers/server1|sib-engines.xml#
SIBMQLink_1132607756126)’

Create a SIBMQLink that uses queue points on the same messaging engine as the target destination,
whenever possible.
AdminTask.createSIBMQLink(’[-bus bus1 -messagingEngine cluster1.000-bus1
-name MyMQLink -foreignBusName -MQQMgr1 -queueManagerName bus1
-senderChannelTransportChain OutboundBasicMQLink -preferLocal TRUE]’)

deleteSIBMQLink command
Use the deleteSIBMQLink command to delete a WebSphere MQ link from a service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

Chapter 20. Welcome to administering Service integration 2391



print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The deleteSIBMQLink command deletes a WebSphere MQ link from a bus.

CAUTION:
This command deletes the WebSphere MQ link and its additional property configuration. Although
there is no confirmation prompt before deleting the WebSphere MQ link, the link is not deleted
from the master configuration until you save your changes.

Target object

A bus.

Required parameters

-bus
The name of the service integration bus for which you want to delete a WebSphere MQ link. You can
use the listSIBuses command to list the names of existing buses.

-messagingEngine
The name of the messaging engine to which the WebSphere MQ link was assigned when it was
created. You can use the listSIBEngines command to list the names of existing messaging engines.

-mqLink
The name of the WebSphere MQ link that you want to delete.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.deleteSIBMQLink(’[-bus bus1 -messagingEngine cluster1.000-bus1
-mqLink myMQLink2]’)

listSIBMQLinks command
Use the listSIBMQLinks command to list all WebSphere MQ links for a specified service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

2392 Administering WebSphere applications



v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

The listSIBMQLinks command lists the names of all WebSphere MQ links for a specified service
integration bus. A WebSphere MQ link connects a messaging engine as a queue manager to WebSphere
MQ, thereby providing a bridge between a service integration bus and a WebSphere MQ network.

Target object

A specified service integration bus.

Required parameters

-bus
The name of the service integration bus for which you want to list WebSphere MQ links.

Conditional parameters

None.

Optional parameters

-node
The name of the node for which you want to list WebSphere MQ links. This option restricts the list of
WebSphere MQ links to those links assigned to the node.

-server
The name of the server for which you want to list WebSphere MQ links. This option restricts the list of
WebSphere MQ links to those links assigned to the server.

-cluster
The name of the server cluster for which you want to list WebSphere MQ links. This option restricts
the list of WebSphere MQ links to those links assigned to the server cluster.

-messagingEngine
The name of the messaging engine for which you want to list WebSphere MQ links. This option
restricts the list of WebSphere MQ links to those links assigned to the messaging engine.

Example
AdminTask.listSIBMQLinks(’[-bus bus1 -foreignBus foreignbus1 ]’)
’foreignbus1(cells/cell01/nodes/node01/servers/server1|sib-engines.xml#
SIBMQLink_1213002780841)’

modifySIBMQLink command
Use the modifySIBMQLink command to modify the properties of a WebSphere MQ link.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

Chapter 20. Welcome to administering Service integration 2393



v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The modifySIBMQLink command modifies the properties of a WebSphere MQ link.

Target object

A WebSphere MQ link.

Required parameters

-bus
The name of the service integration bus for which you created the WebSphere MQ link. You can use
the listSIBuses command to list the names of existing buses.

-messagingEngine
The name of the messaging engine for which you created the WebSphere MQ link. You can use the
listSIBEngines command to list the names of existing messaging engines.

-name
The name of the WebSphere MQ link.

Conditional parameters

None.

Optional parameters

WebSphere MQ link configuration parameters:

-queueManagerName
The name of the virtual queue manager associated with the messaging engine, and by which the
messaging engine is known to a remote WebSphere MQ network.

The queue manager name must conform to the WebSphere MQ naming conventions; for example, the
name must be a maximum of 48 characters.

-description
An optional description for the bus, for administrative purposes.

-exceptionDestination
The destination for an inbound message when the WebSphere MQ link cannot deliver the message to
its target bus destination, or to the exception destination that is configured for that target destination,
or when the target destination does not exist.

System
The WebSphere MQ link uses the default exception destination. All messages that cannot be
delivered to the bus destination are rerouted automatically to the system default exception
destination for the messaging engine that this link is assigned to:
_SYSTEM.Exception.Destinationmessaging_engine_name.

2394 Administering WebSphere applications



None The WebSphere MQ link has no exception destination. Undeliverable messages are not
rerouted to an exception destination and can block the processing of other messages waiting
for delivery through the link to the same bus. This option can be used to preserve message
ordering.

Specify
The WebSphere MQ link uses the exception destination specified here. If this is not possible, it
uses the system exception destination.

-batchSize
The maximum number of messages that can be sent through a channel before taking a checkpoint.

The batch size does not affect the way the sender and receiver channels for this link transfer
messages. Messages are always transferred individually, but are committed or backed out as a batch.

For more information about choosing the batch size, see the description of the batch size (BATCHSZ)
property in the Intercommunication section of the WebSphere MQ information center.

Information Value
Default 50
Range 1 through 9999

-maxMsgSize
The maximum message length, in bytes, that can be transmitted on any channel for the WebSphere
MQ link. This is compared with the value for the corresponding partner WebSphere MQ channel and
the actual maximum used is the lower of the two values.

For information about how to choose an appropriate number, see the description of the Maximum
message length (MAXMSGL) property in the Intercommunication section of the WebSphere MQ
information center.

Information Value
Default 4194304 bytes (4MB)
Range 0 through 104857600

Specify 0 to use the largest value that the target queue
manager will honor.

-heartBeat
The negotiated time, in seconds, between heartbeat flows passed from the WebSphere MQ link
sender channel to the WebSphere MQ receiver channel when there are no messages on the
transmission point being served by the WebSphere MQ link sender channel.

Heartbeats give the receiving channel the opportunity to quiesce the channel connection.

For more information about choosing the value for this property, see the Intercommunication section of
the WebSphere MQ information center.

Information Value
Default 300 seconds
Range 0 through 999999

-sequenceWrap
The value at which message sequence numbers wrap to start again at 1. For example, if you specify a
value of 1000, when the message sequence number reaches 1001 it will restart at 1.

For more information about choosing the value for this property, see the description of the Sequence
Number wrap (SEQWRAP) property in the Intercommunication section of the WebSphere MQ information
center.

Chapter 20. Welcome to administering Service integration 2395



Information Value
Default 999999999
Range 100 through 999999999

-nonPersistentMessageSpeed Fast | Normal
The class of service for nonpersistent messages on channels of this WebSphere MQ link.

Information Value
Default Fast
Range

Fast Nonpersistent messages can be lost if there is a
transmission failure or if the channel stops when
the messages are in transit.

Normal
Nonpersistent messages are not lost if there is a
transmission failure or if the channel stops when
the messages are in transit.

-adoptable True | False
A property of the WebSphere MQ link, which shows whether a running instance of a WebSphere MQ
link receiver channel (associated with this WebSphere MQ link) should be adopted. In the event of a
communications failure, a running instance of a WebSphere MQ link receiver channel might be left
waiting for messages. When communication is reestablished, and the partner WebSphere MQ sender
channel next attempts to establish a session with the WebSphere MQ link receiver channel, the
request will fail as there is already a running instance of the WebSphere MQ link receiver channel that
believes it is in session with the partner WebSphere MQ sender channel. You can overcome this
problem by selecting this option, which causes the already running instance of the WebSphere MQ link
receiver channel to be stopped and a new instance to be started.

If you set this option to True, the WebSphere MQ sender channels might reestablish a connection to
this WebSphere MQ link in the event that a communications failure has occurred and the link has not
yet detected the failure condition.

Information Value
Default True

-initialState Started | Stopped
The state of the WebSphere MQ link, which shows whether the link is started or stopped when the
hosting messaging engine is first started. Until it is started, the WebSphere MQ link is unavailable.

Information Value
Default Started
Range

Stopped
When the associated messaging engine is
started, the WebSphere MQ link is in a stopped
state and cannot communicate with the
WebSphere MQ network.

Started
When the associated messaging engine is
started, the WebSphere MQ link is started
automatically and is enabled for communication
with the WebSphere MQ network.

WebSphere MQ link sender channel parameters:

2396 Administering WebSphere applications



-senderChannelName
The sender channel that sends messages to the gateway queue manager. The sender channel
communicates with a WebSphere MQ receiver channel on the gateway queue manager, and converts
service integration bus messages to MQ format messages.

This name must be the same as the name of the receiver channel on WebSphere MQ.

For more information about choosing channel names, see the description of the channel name
(CHANNEL) property in the Intercommunication section of the WebSphere MQ information center.

-hostName
The host name or TCP/IP address for the gateway queue manager that is used to connect into the
WebSphere MQ network.

Type the host name or IP address of the host on which the gateway queue manager runs.

If this field is blank, the gateway queue manager is assumed to be running on the same host as the
messaging engine on which the WebSphere MQ link is defined.

-port
The TCP/IP port number on which the gateway queue manager is listening for the WebSphere MQ
link.

Information Value
Default 1414
Range 0 through 65535

-connameList
The connection name list for the gateway queue manager which is used to connect to the WebSphere
MQ network. The connections are tried in the order in which they are specified in the connection name
list until a connection is successfully established. If no connection is successful, the channel starts
retry processing.

The connection names must be given as a comma separated list in the following format:
Dnsname1(portnumber1) , Dnsname2(portnumber2)

Type the DNS name or the IP address of the host on which the gateway queue manager is running.
Type the port number in the range 0 through 65535.

If you do not specify the connection name list parameter, the gateway queue manager is assumed to
be running on the same host as the messaging engine on which the WebSphere MQ link is defined.

If you do specify the connection list parameter, you must have already specified a value for the sender
channel name parameter, otherwise the value that you specify for the connection name list parameter
is ignored.

If you specify the host name and port parameter as well as the connection name list parameter, then
at runtime the connection name list takes precedence and host name and port values are ignored.

-discInterval
The time in seconds for which the sender channel waits for new messages to arrive on the
transmission queue after sending a batch of messages. The channel disconnects after this interval,
and must be restarted manually or by triggering.

The default value is a reasonable interval. Change this value only if you understand the implications
for performance, and you need a different value for the requirements of the traffic flowing down your
channels.

Performance is affected by the value specified for the disconnect interval. A very low value (a few
seconds) can cause an unacceptable amount of processing in constantly starting up the channel. A
very large value (more than an hour) might mean that system resources are unnecessarily held up.

Chapter 20. Welcome to administering Service integration 2397



If you want your channels to be active only when there are messages for them to transmit, you should
set the disconnect interval to a fairly low value. Note that the default setting is quite high and so is not
recommended for channels where this level of control is required. Because it is difficult to interrupt the
receiving channel, the most economical option is to have the channel automatically disconnect and
reconnect as the workload demands. For most channels, the appropriate setting of the disconnect
interval can be established heuristically.

Information Value
Default 900 seconds
Range 0 through 999999

A value of 0 (zero) means never disconnect; the channel
waits indefinitely for messages.

-shortRetryCount
The maximum number of times that the sender channel tries to restart after a communication or
partner failure. If the connection name list is provided, during each retry the connections are tried in
the order in which they are specified in the connection list until a connection is successfully
established. If the count of remaining retries reaches zero, and the channel has not restarted, then the
long retry mechanism is invoked.

Information Value
Default 10
Range 0 through 999999999

-shortRetryInterval
The number of seconds between attempts by the sender channel to restart after a communication or
partner failure.

For more information about using retry mechanisms with WebSphere MQ, see the Intercommunication
section of the WebSphere MQ information center.

Information Value
Default 60 seconds
Range 0 through 999999

-longRetryCount
The maximum number of times that the sender channel tries to restart after the short retry mechanism
did not recover from a communication or partner failure. If the connection name list is provided, during
each retry the connections are tried in the order in which they are specified in the connection list until
a connection is successfully established. If the count of remaining retries reaches zero, and the
channel has not restarted, then an error is logged and the channel is stopped.

For more information about using retry mechanisms with WebSphere MQ, see the Intercommunication
section of the WebSphere MQ information center.

Information Value
Default 999999999
Range 0 through 999999999

-longRetryInterval
The number of seconds between attempts by the sender channel to restart after the short retry
mechanism did not recover from a communication or partner failure.

For more information about using retry mechanisms with WebSphere MQ, see the Intercommunication
section of the WebSphere MQ information center.

2398 Administering WebSphere applications



Information Value
Default 1200 seconds
Range 0 through 999999

-senderChannelInitialState Started | Stopped
The state of the WebSphere MQ link, which shows whether the sender channel is started or stopped
when the associated WebSphere MQ link is first started. Until it is started, the channel is unavailable.

Information Value
Default Started
Range

Stopped
When the associated messaging engine is
started, the WebSphere MQ link is in a stopped
state and cannot communicate with the
WebSphere MQ network.

Started
When the associated messaging engine is
started, the WebSphere MQ link is started
automatically and is enabled for communication
with the WebSphere MQ network.

WebSphere MQ link receiver channel parameters:

-receiverChannelName
The name of the receiver channel for the WebSphere MQ link, used to receive messages from
WebSphere MQ onto the bus.

This name must be the same as the name of the sender channel on WebSphere MQ.

-inboundNonPersistentReliability Best effort | Express | Reliable
The acceptable reliability of message delivery for nonpersistent message flows from WebSphere MQ
through this WebSphere MQ link, from Best effort to Reliable, in order of increasing reliability.

This reliability delivery option is assigned to all WebSphere MQ nonpersistent messages flowing over
this receiver channel.

Information Value
Default Reliable
Range

Best effort
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable or as a result of
constrained system resources.

Express
Messages are discarded when a messaging
engine stops or fails. Messages might also be
discarded if a connection used to send them
becomes unavailable.

Reliable
Messages are discarded when a messaging
engine stops or fails.

-inboundPersistentReliability Reliable | Assured
The acceptable reliability of message delivery for inbound persistent message flows from WebSphere
MQ through this WebSphere MQ link, from Reliable to Assured, in order of increasing reliability.

Chapter 20. Welcome to administering Service integration 2399



Information Value
Default Assured
Range

Reliable
Messages might be discarded when a messaging
engine fails.

Assured
Messages are not discarded.

-receiverChannelInitialState Started | Stopped
The state of the WebSphere MQ link, which shows whether the receiver channel is started or stopped
when the associated WebSphere MQ link is first started. Until it is started, the channel is unavailable.

Information Value
Default Started
Range

Stopped
When the associated messaging engine is
started, the WebSphere MQ link is in a stopped
state and cannot communicate with the
WebSphere MQ network.

Started
When the associated messaging engine is
started, the WebSphere MQ link is started
automatically and is enabled for communication
with the WebSphere MQ network.

-preferLocal TRUE | FALSE
This option indicates that the link prefers to send incoming messages to the queue point of the target
destination that is located on the same messaging engine as the link, if available. The link must be
owned by a messaging engine running on a WebSphere Application Server Version 7.0 or later server.

This option is supported only when used by a JMS application that is running with a WebSphere
Application ServerVersion 7.0 or later server or client, and that is connected to a messaging engine
running on WebSphere Application ServerVersion 7.0 or later server. Use on previous versions of
WebSphere Application Server will result in an exception to the application.

Information Value
Default TRUE
Range

TRUE Send each incoming message to the queue point
of the target destination that is located on the
same messaging engine as the link, if available.

FALSE Send incoming messages to any queue points of
the target destinations.

Examples

Show the properties of a WebSphere MQ link, modify the link to change the batch size, then show the
properties of the link again.
wsadmin>AdminTask.showSIBMQLink(’[-bus myBus -messagingEngine myHostNode01.server1-myBus
-mqLink myMQLink]’)
’{nonPersistentMessageSpeed=FAST, qmName=myBus, adoptable=false, sequenceWrap=999999999,
name=myMQLink, targetUuid=738AE126B908E5451A3D4691, initialState=STARTED,
senderChannel=null, brokerProfile=[], receiverChannel=null, preferLocalQueuePoints=true,
batchSize=50, uuid=6B89C4F08AB072C5, heartBeat=300, description=null, maxMsgSize=4194304,
exceptionDestination=_SYSTEM.Exception.Destination.myHostNode01.server1-myBus}’
wsadmin>
wsadmin>AdminTask.modifySIBMQLink(’[-bus myBus -messagingEngine myHostNode01.server1-myBus

2400 Administering WebSphere applications



-name myMQLink -batchSize 100]’)
’myMQLink(cells/cell01/nodes/node01/servers/server1|sib-engines.xml#SIBMQLink_1132608724468)’

wsadmin>AdminTask.showSIBMQLink(’[-bus myBus -messagingEngine myHostNode01.server1-myBus
-mqLink myMQLink]’)
’{nonPersistentMessageSpeed=FAST, qmName=myBus, adoptable=false, sequenceWrap=999999999,
name=myMQLink, targetUuid=738AE126B908E5451A3D4691, initialState=STARTED,
senderChannel=null, brokerProfile=[], receiverChannel=null, preferLocalQueuePoints=true,
batchSize=100, uuid=6B89C4F08AB072C5, heartBeat=300, description=null, maxMsgSize=4194304,
exceptionDestination=_SYSTEM.Exception.Destination.myHostNode01.server1-myBus}’
wsadmin>

Modify a WebSphere MQ link so that the link has no preference for which queue points to use.
wsadmin>AdminTask.modifySIBMQLink(’[-bus Bus1 -messagingEngine
node1.node1server1-Bus1 -name MQLink -queueManagerName QM2 -preferLocal FALSE]’)
wsadmin>

showSIBMQLink command
Use the showSIBMQLink command to show the properties of a WebSphere MQ link.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

The showSIBMQLink command lists details about the properties of a WebSphere MQ link.

Target object

A WebSphere MQ link.

Required parameters

-bus
The name of the service integration bus for which you created the WebSphere MQ link. You can use
the listSIBuses command to list the names of existing buses.

-messagingEngine
The name of the messaging engine for which you created the WebSphere MQ link. You can use the
listSIBEngines command to list the names of existing messaging engines.

-name
The name of the WebSphere MQ link.

Conditional parameters

None.

Chapter 20. Welcome to administering Service integration 2401



Optional parameters

javaFormat
The output from the command is a format suitable for Java program clients.

Example
wsadmin>AdminTask.showSIBMQLink(’[-bus myBus -messagingEngine myHostNode01.server1-myBus
-mqLink myMQLink]’)
’{nonPersistentMessageSpeed=FAST, qmName=myBus, adoptable=false, sequenceWrap=999999999,
name=myMQLink, targetUuid=738AE126B908E5451A3D4691, initialState=STARTED,
senderChannel=null, brokerProfile=[], receiverChannel=null, preferLocalQueuePoints=true,
batchSize=50, uuid=6B89C4F08AB072C5, heartBeat=300, description=null, maxMsgSize=4194304,
exceptionDestination=_SYSTEM.Exception.Destination.myHostNode01.server1-myBus}’
wsadmin>

SIBAdminCommands: Bus link administrative commands for the
AdminTask object
You can use these administrative commands to manage service integration bus links. A service integration
bus link defines a link between a messaging engine in one service integration bus and a messaging
engine in a foreign service integration bus.

These commands provide an alternative to using the administrative console or using the more complex
syntax of wsadmin and Jython.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

createSIBLink command
Use the createSIBLink command to create a new service integration bus link.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

2402 Administering WebSphere applications



After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The createSIBLink command creates a new bus link for a specified bus. A bus link defines a link between
a messaging engine in one bus and a messaging engine in a foreign bus.

Target object

None.

Required parameters

-bus
The name of the service integration bus for which you want to create the service integration bus link.
You can use the listSIBuses command to list the names of existing buses.

-messagingEngine
The name of the messaging engine for which you want to create the service integration bus link. The
service integration bus link connects a messaging engine to another messaging engine in a different
service integration bus, thereby providing a bridge between two service integration buses.

-name
The name by which you want the service integration bus link to be known.

-foreignBusName
The name of the foreign bus that defines the remote service integration bus for the service integration
bus link. You can use the listSIBForeignBuses command to list the names of existing foreign buses.

-bootstrapEndpoints
The comma-separated list of endpoints used to connect to a bootstrap server.

This property is set in the same way as the Provider endpoint property in the JMS connection factory
settings. For more information, see the steps relating to setting bootstrap endpoints in “Configuring a
connection to a non-default bootstrap server” on page 511.

The port for the bootstrap endpoint is the port defined on the SIB endpoint address that is configured
on the target application server on the foreign bus.

-remoteMessagingEngineName
The messaging engine on the foreign bus to which this link connects.

Conditional parameters

None.

Optional parameters

-description
An optional description for the bus, for administrative purposes.

-protocolName
The type of transport chain used for communication with the foreign bus.

The transport chain name must be the name of the transport chain as defined on the server on which
the target messaging engine is hosted.

-authAlias
The name of the authentication alias, used to authenticate access to the foreign bus.

Chapter 20. Welcome to administering Service integration 2403



You must have predefined a J2C authentication alias.

-exceptionDestination
The destination for an inbound message when the service integration bus link cannot deliver the
message to its target bus destination, or to the exception destination that is configured for that target
destination, or when the target destination does not exist.

System
The service integration bus link uses the default exception destination. All messages that
cannot be delivered to the bus destination are rerouted automatically to the system default
exception destination for the messaging engine that this link is assigned to:
_SYSTEM.Exception.Destination.messaging_engine_name.

None The service integration bus link has no exception destination. Undeliverable messages are not
rerouted to an exception destination and can block the processing of other messages waiting
for delivery to the same destination. This option can be used to preserve message ordering.

Specify
The service integration bus link uses the exception destination specified here. If this is not
possible, it uses the system exception destination.

-initialState Started | Stopped
The state of the gateway link, which shows whether the link is started automatically when the
messaging engine is started.

Information Value
Default Started
Range

Stopped
When the associated messaging engine is
started, the gateway link is in a stopped state
and cannot process any new requests for
connections.

Started
When the associated messaging engine is
started, the gateway link is in a started state and
can process any new requests for connections.

-preferLocal TRUE | FALSE
Indicates that the link prefers to send incoming messages to the queue point of the target destination
that is located on the same messaging engine as the link, if available. The link must be owned by a
messaging engine running on a WebSphere Application Server Version 7.0 or later server.

This option is supported only when used by a JMS application that is running with a WebSphere
Application ServerVersion 7.0 or later server or client, and that is connected to a messaging engine
running on WebSphere Application ServerVersion 7.0 or later server. Use on previous versions of
WebSphere Application Server will result in an exception to the application.

Information Value
Default TRUE
Range

TRUE Send each incoming message to the queue point
of the target destination that is located on the
same messaging engine as the link, if available.

FALSE Send incoming messages to any queue points of
the target destinations.

2404 Administering WebSphere applications



Examples
AdminTask.createSIBLink(’[-bus bus1 -messagingEngine node01.server1-myBus
-name mySIBLink -foreignBusName bus2 -bootstrapEndpoints host1:1111:chain1
-remoteMessagingEngineName node02.server2-bus2]’)

Create a service integration bus link that uses a queue point on the same messaging engine as the link,
whenever possible.
AdminTask.createSIBLink(’[-bus bus1 -messagingEngine node01.server1-bus1
-name mySIBLink -foreignBusName bus2 -bootstrapEndpoints host1:1111:chain1
-remoteMessagingEngineName node02.server2-bus2 -preferLocal TRUE]’)

deleteSIBLink command
Use the deleteSIBLink command to delete a service integration bus link from a bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The deleteSIBLink command deletes a bus link from a bus.

CAUTION:
This command deletes the service integration bus link and its additional property configuration.
Although there is no confirmation prompt before deleting the service integration bus link, the link
is not deleted from the master configuration until you save your changes.

Target object

A bus.

Required parameters

-bus
The name of the service integration bus for which you want to delete a service integration bus link.
You can use the listSIBuses command to list the names of existing buses.

-messagingEngine
The name of the messaging engine to which the service integration bus link was assigned when
created. You can use the listSIBEngines command to list the names of existing messaging engines.

-sibLink
The name of the service integration bus link that you want to delete.

Chapter 20. Welcome to administering Service integration 2405



Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.deleteSIBLink(’[-bus bus1 -messagingEngine node01.server1-bus1 -sibLink mySIBLink]’)

listSIBLinks command
Use the listSIBLinks command to list all service integration bus links for a given bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

The listSIBLinks command lists the names of all service integration bus links for a specified service
integration bus. A service integration bus link defines a link between a messaging engine in one service
integration bus and a messaging engine in a foreign service integration bus.

Target object

A bus.

Required parameters

-bus
The name of the service integration bus for which you want to list service integration bus links.

Conditional parameters

None.

Optional parameters

-node
The name of the node for which you want to list service integration bus links. This option restricts the
list of service integration bus links to those links assigned to the node.

-server
The name of the server for which you want to list service integration bus links. This option restricts the
list of service integration bus links to those links assigned to the server.

2406 Administering WebSphere applications



-messagingEngine
The name of the messaging engine for which you want to list service integration bus links. This option
restricts the list of service integration bus links to those links assigned to the messaging engine.

Example
AdminTask.listSIBLinks(’[-bus bus1 -foreignBus bus2]’)
’mySIBLink(cells/cell01/nodes/node01/servers/server1|sib-engines.xml#
SIBLink_1212163147845)’
wsadmin>

modifySIBLink command
Use the modifySIBLink command to modify the properties of a service integration bus link.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The modifySIBLink command modifies the properties of a service integration bus link.

Target object

None.

Required parameters

-bus
The name of the service integration bus for which you want to modify the service integration bus link.
You can use the listSIBuses command to list the names of existing buses.

-messagingEngine
The name of the messaging engine for which you want to modify the service integration bus link. The
service integration bus link connects a messaging engine to another messaging engine in a different
service integration bus, thereby providing a bridge between two service integration buses.

-name
The name by which you want the service integration bus link to be known.

-foreignBusName
The name of the foreign bus that defines the remote service integration bus for the service integration
bus link. You can use the listSIBForeignBuses command to list the names of existing foreign buses.

Chapter 20. Welcome to administering Service integration 2407



Conditional parameters

None.

Optional parameters

-bootstrapEndpoints
The comma-separated list of endpoints used to connect to a bootstrap server. This property is set in
the same way as the Provider endpoint property in the JMS connection factory settings. For more
information, see the steps relating to setting bootstrap endpoints in “Configuring a connection to a
non-default bootstrap server” on page 511.

The port for the bootstrap endpoint is the port defined on the SIB endpoint address that is configured
on the target application server on the foreign bus.

-remoteMessagingEngineName
The messaging engine on the foreign bus to which this link connects.

-description
An optional description for the bus, for administrative purposes.

-protocolName
The type of transport chain used for communication with the foreign bus.

The transport chain name must be the name of the transport chain as defined on the server on which
the target messaging engine is hosted.

-authAlias
The name of the authentication alias, used to authenticate access to the foreign bus.

You must have predefined a J2C authentication alias.

-exceptionDestination
The destination for an inbound message when the service integration bus link cannot deliver the
message to its target destination, or to the exception destination that is configured for that target
destination, or when the target destination does not exist.

System
The service integration bus link uses the default exception destination. All messages that
cannot be delivered to the bus destination are rerouted automatically to the system default
exception destination for the messaging engine that this link is assigned to:
_SYSTEM.Exception.Destination.messaging_engine_name.

None The service integration bus link has no exception destination. Undeliverable messages are not
rerouted to an exception destination and can block the processing of other messages waiting
for delivery to the same destination. This option can be used to preserve message ordering.

Specify
The service integration bus link uses the exception destination specified here. If this is not
possible, it uses the system exception destination.

-initialState Started | Stopped
The state of the gateway link, which shows whether the link is started automatically when the
messaging engine is started.

Information Value
Default Started

2408 Administering WebSphere applications



Information Value
Range

Stopped
When the associated messaging engine is
started, the gateway link is in a stopped state
and cannot process any new requests for
connections.

Started
When the associated messaging engine is
started, the gateway link is in a started state and
can process any new requests for connections.

-preferLocal TRUE | FALSE
Indicates whether the link prefers to send incoming messages to the queue point of the target
destination that is located on the same messaging engine as the link, if available. The link must be
owned by a messaging engine running on a WebSphere Application Server Version 7.0 or later server.

This option is supported only when used by a JMS application that is running with a WebSphere
Application ServerVersion 7.0 or later server or client, and that is connected to a messaging engine
running on WebSphere Application ServerVersion 7.0 or later server. Use on previous versions of
WebSphere Application Server will result in an exception to the application.

Information Value
Default TRUE
Range

TRUE Send each incoming message to the queue point
of the target destination that is located on the
same messaging engine as the link, if available.

FALSE Send incoming messages to any queue points of
the target destinations.

Examples
wsadmin>AdminTask.showSIBLink(’[-bus bus1 -messagingEngine node01.server1-bus1 -sibLink
mySIBLink]’)
’{bootstrapEndpoints=host1:1111:chain1, protocolName=null, authAlias=null,
preferLocalQueuePoints=true, name=mySIBLink, uuid=34647E59163B253D,
remoteMessagingEngineName=node02.server2-bus2, description=null,
targetUuid=BAD49BA75CD36D740E366978, initialState=STARTED,
exceptionDestination=$DEFAULT_EXCEPTION_DESTINATION}’

wsadmin>AdminTask.modifySIBLink(’[-bus bus1 -messagingEngine node01.server1-bus1
-name MySIBLink -foreignBusName -bus2
-bootstrapEndpoints anotherhost:2222:BootstrapBasicMessaging]’)

wsadmin>AdminTask.showSIBLink(’[-bus bus1 -messagingEngine node01.server1-bus1 -sibLink
mySIBLink]’)
’{bootstrapEndpoints=anotherhost:2222:BootstrapBasicMessaging, protocolName=null,
authAlias=null, preferLocalQueuePoints=true, name=mySIBLink, uuid=34647E59163B253D,
remoteMessagingEngineName=node02.server2-bus2, description=null,
targetUuid=BAD49BA75CD36D740E366978, initialState=STARTED,
exceptionDestination=$DEFAULT_EXCEPTION_DESTINATION}’

Modify a service integration bus link so that there is no preference for which queue points to use.
AdminTask.modifySIBLink(’[-bus bus1 -messagingEngine cluster1.000-bus1 -name MyLink
-foreignBusName -FB1 bootstrapEndpoints host1:1111:chain1 -remoteMessagingEngineName
-cluster2.000-FB1 -preferLocal FALSE]’)

showSIBLink command
Use the showSIBLink command to show the properties of a service integration bus link.

To run the command, use the AdminTask object of the wsadmin scripting client.

Chapter 20. Welcome to administering Service integration 2409



The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

The showSIBLink command lists details about the properties of a service integration bus link.

Target object

A bus link.

Required parameters

-bus
The name of the service integration bus for which you created the service integration bus link. You can
use the listSIBuses command to list the names of existing buses.

-messagingEngine
The name of the messaging engine for which you created the service integration bus link. You can use
the listSIBEngines command to list the names of existing messaging engines.

-sibLink
The name of the service integration bus link.

Conditional parameters

None.

Optional parameters

None.

Example
AdminTask.showSIBLink(’[-bus bus1 -messagingEngine node01.server1-bus1
-sibLink mySIBLink]’)
’{bootstrapEndpoints=host1:1111:chain1, protocolName=null, authAlias=null,
preferLocalQueuePoints=true, name=aSIBLink, uuid=34647E59163B253D,
remoteMessagingEngineName=wasinstallNode01.server1-MQServerBus, description=null,
targetUuid=BAD49BA75CD36D740E366978, initialState=STARTED,
exceptionDestination=_SYSTEM.Exception.Destination.node01.server1-bus1}’

SIBAdminCommands: Messaging engine administrative commands for
the AdminTask object
You can use these administrative commands to manage messaging engines.

These commands provide an alternative to using the administrative console or using the more complex
syntax of wsadmin and Jython.

2410 Administering WebSphere applications



To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

listSIBEngines command
Use the listSIBEngines command to list the messaging engines for a service integration bus member.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists all the messaging engines on a bus member.

Target object

A bus member.

Required parameters

-bus busname
The name of the service integration bus on which the bus member is configured. You can use the
listSIBuses command to list the names of existing buses.

Conditional parameters

-node nodename -server servername
To list the messaging engines for an application server as a bus member, specify both the name of the
node on which the server runs and the name of the server.

-cluster cluster
To list the messaging engines for a server cluster as a bus member, specify the name of the cluster.

This option should be used only in WebSphere Application Server environments that support server
clusters.

Chapter 20. Welcome to administering Service integration 2411



Optional parameters

None.

Example
AdminTask.listSIBEngines(’[-bus bus1 ]’)
’node01.server1-bus1(cells/cell01/nodes/node01/servers/server1|sib-engines.xml#
SIBMessagingEngine_1212163145962)\r\n
node02.server2-bus2(cells/cell01/nodes/node02/servers/server2|sib-engines.xml#
SIBMessagingEngine_1212163146273)’

modifySIBEngine command
Use the modifySIBEngine command to modify the properties of a messaging engine for a service
integration bus member.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command modifies the properties of a messaging engine.

Target object

A messaging engine.

Required parameters

-bus busname
The name of the service integration bus on which the bus member is configured. You can use the
listSIBuses command to list the names of existing buses.

Conditional parameters

-node nodename -server servername
To change properties of a messaging engine for an application server as a bus member, specify both
the name of the node on which the server runs and the name of the server.

-cluster cluster
To change properties of a messaging engine for a server cluster as a bus member, specify the name
of the cluster.

This option should be used only in WebSphere Application Server environments that support server
clusters.

2412 Administering WebSphere applications



-engine enginename
If the bus member has only one messaging engine, you do not need to specify the engine name. If the
bus member has several messaging engines, you must specify the name of the engine for which you
want to change properties.

Optional parameters

-description text
An optional description for the messaging engine, for administrative purposes.

-initialState STARTED | STOPPED
The initial state determines whether the messaging engine is started automatically when the server is
started.

Stopped
When the associated application server is started, the messaging engine is stopped and is not
available to process messages.

Started
When the associated application server is started, the messaging engine is started and is
available to process messages.

-highMessageThreshold number
The maximum total number of messages that the messaging engine can place on its message points.

When the messaging engine is created, the high message threshold of the bus is used to set the
default value for this property. When a message point is created on this messaging engine, the value
of this property is used to set the default high message threshold for the message point.

-restrictLongDBLock TRUE | FALSE
A parameter that specifies whether the active messaging engine must retain long running locks on the
SIBOWNER table in the database. When this option is selected, the messaging engine establishes a
lock over the database only for short durations. In the event of the active messaging engine not
responding to the database, the standby messaging engine will be able to take ownership of the
database because the active messaging engine only holds short duration locks. This parameter has
two possible values:

TRUE Restrict long running locks on the database.

FALSE Do not restrict long running locks on the database.

Use this parameter if the -dataStore parameter is specified.

Important: Although the property is selected, the property will not be effective until the database
tables are upgraded using the sibDBUpgrade command for WebSphere Application Server
Version 8.5 and later.

Example
wsadmin>AdminTask.showSIBEngine(’[-bus bus1 -node node01 -server server1
-engine node01.server1-bus1 ]’)
’{initialState=STARTED, targetGroups=[], name=node01.server1-bus1,
highMessageThreshold=50000, messageStoreType=FILESTORE, uuid=56F8FE11AB84188D,
busName=bus1, busUuid=6DF19B02BC879BD1}’

wsadmin>AdminTask.modifySIBEngine(’[-bus bus1 -node node01 -server server1
-engine node01.server1-bus1 -initialState STOPPED ]’)

wsadmin>AdminTask.showSIBEngine(’[-bus bus1 -node node01 -server server1
-engine node01.server1-bus1 ]’)
’{initialState=STOPPED, targetGroups=[], name=node01.server1-bus1,
highMessageThreshold=50000, messageStoreType=FILESTORE, uuid=56F8FE11AB84188D,
busName=bus1, busUuid=6DF19B02BC879BD1}’

Chapter 20. Welcome to administering Service integration 2413



showSIBEngine command
Use the showSIBEngine command to list properties of a messaging engine for a service integration bus
member.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists details about properties of a messaging engine.

Target object

A bus member.

Required parameters

-bus busname
The name of the service integration bus on which the bus member is configured. You can use the
listSIBuses command to list the names of existing buses.

Conditional parameters

-node nodename -server servername
To list properties of a messaging engine for an application server as a bus member, specify both the
name of the node on which the server runs and the name of the server.

-cluster cluster
To list properties of a messaging engine for a server cluster as a bus member, specify the name of the
cluster.

This option should be used only in WebSphere Application Server environments that support server
clusters.

-engine enginename
If the bus member has only one messaging engine, you do not need to specify the engine name. If the
bus member has several messaging engines, you must specify the name of the engine for which you
want to display details.

Optional parameters

None.

2414 Administering WebSphere applications



Example
AdminTask.showSIBEngine(’[-bus bus1 -node node01 -server server1
-engine node01.server1-bus1 ]’)
’{initialState=STARTED, targetGroups=[], name=node01.server1-bus1,
highMessageThreshold=50000, messageStoreType=FILESTORE, uuid=56F8FE11AB84188D,
busName=bus1, busUuid=6DF19B02BC879BD1}’

deleteSIBEngine command
Use the deleteSIBEngine command to delete a messaging engine from a service integration bus member.

You should be wary of deleting and recreating messaging engines on bus members for which
WS-Notification-administered subscribers have been configured, because in some cases this can leave the
remote web service subscription active (and passing notification messages to the local server) even
though there is no longer any record of it. For more information, see the WS-Notification troubleshooting
tip Problems can occur when deleting administered subscribers and messaging engines.

If you promote a server bus member to a cluster that is not a member of the bus, do not delete then
recreate the messaging engine. Use the migrateServerMEtoCluster command instead.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command deletes a messaging engine from a bus member. Any associated configurations of the
messaging engine, such as core group policies or destinations, are also deleted. If the messaging engine
uses a data store for the message store, objects in the data stores remain so that you can still access
them. If you recreate the same messaging engine, you must remove any old data store tables before you
start the new messaging engine.

This command also cleans up any mediation execution points that are on the messaging engine as the
result of mediating a destination to a WebSphere MQ server bus member. The command unmediates the
destination to which the mediation execution point corresponds.

Target object

A messaging engine.

Chapter 20. Welcome to administering Service integration 2415



Required parameters

-bus bus_name
The name of the service integration bus on which the bus member is configured. You can use the
listSIBuses command to list the names of existing buses.

Conditional parameters

-node node_name
-server server_name

To delete a messaging engine from an application server that is a bus member, specify both the name
of the node on which the server runs and the name of the server.

-engine engine_name
If the bus member has only one messaging engine, you do not need to specify the engine name. If the
bus member has several messaging engines, you must specify the name of the engine that you want
to delete.

Optional parameters

None.

Example

Delete the messaging engine from server1 on node1 that is a member of a bus1.
AdminTask.deleteSIBEngine (’[-bus bus1 -node node1 -server server1]’)

recoverMEConfig command
Use the recoverMEConfig command to recover the configuration data of the failed or crashed messaging
engine from the message store if there is no backup available. The message store could either be a
database or file store system to which the previous messaging engine was connected to.

Note: This command recovers the configuration data of the messaging engine of queues and topics from
the message store.

Recovery of the persistent data of the messaging engine from the message store is not possible if the
configuration data on which the previous messaging engine was running is not available. This is because
when a server is added as a new service integration bus member, the bus creates a new messaging
engine UUID which does not match with the UUID of the previous messaging engine stored in the
message store. Use this command to recover the stored UUID of the messaging engine and its
configuration data of queues and topics only. The UUID of the queues and topics are recovered with
default values for all other configuration properties. After the recovery of the configuration data, the
persisted messages from the crashed messaging engine can be recovered and processed further.

Note: You must ensure that there is no recoverMEConfig command running before starting a new
command.

The following trace messages can be used to determine whether any previous command is running:

v CWSJA0166E: The Messaging Engine configuration recovery has started for Database : using schema :
<schemaname> for jndiname: <jndiname>

This trace message marks the start of the recovery command using database. This is the entry trace
line that the user should use to confirm the start of recovery command.

v CWSJA0166E: The Messaging Engine configuration recovery has started for File system : using
logDirectory : <logDirectory> permLogDirectory : <permLogDirectory > tempLogDirectory :
<tempLogDirectory>

2416 Administering WebSphere applications



This trace message marks the start of the recovery command using the file system.

v CWSJA0167E: The Messaging Engine configuration recovery for Database : using schema :
<schemaname> for jndiname: <jndiname> is complete.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

When a bus member (such as a server or a cluster) of the messaging engine fails or crashes, the
messaging engine still has the persistent messages in the message store that can be recovered. Using
this command you can recover the configuration data of the crashed or lost messaging engine in the
queues and topic spaces, if the backup of the configuration data is not available.

Note: Use this command only if the backup of the configuration data of the failed or crashed messaging
engine is not available.

Target object

None.

Required Parameters

-busName bus_name
The name of the service integration bus under which the previously crashed messaging engine
existed. You can use the listSIBuses command to list the names of existing buses. If the bus name
does not exist, then a new bus is created with the same bus name.

-messageStore messageStore type
Specify the type of the message store from which the messaging engine data must be recovered.
Specify FILE to recover from file system or DB to recover from database.

If value is FILE, then the user must provide the -logDirectory, -permLogDirectory,
-tempLogDirectory, -nodeName, and -serverName or -clusterName parameters.

If value is DB, then the user must provide the -dataSource, -schema, -nodeName, and -serverName or
-clusterName parameters.

-nodeName nodename
Specify the name of the node on which the previous messaging engine was running. The configuration
data of the previous messaging engine will be recovered under the same node name.

-serverName servername
Specify the name of the server on which the previous messaging engine was running.

Chapter 20. Welcome to administering Service integration 2417



If you specify the nodeName and serverName parameters, do not specify the -clusterName parameters.

-clusterName clustername
To add a server cluster as a bus member, specify the name of the cluster.

If you specify this parameter, do not specify the -nodeName and -serverName parameters.

-logDirectory logdirectoryname
The fully qualified path of the logging file directory used by message store of the perviously crashed
ME. Use this parameter if the -messageStore parameter value is specified as FILE.

-permLogDirectory permanentlogdirectoryname
The fully qualified path of the permanent logging directory used by message store of the previous
messaging engine to store permanent objects. Use this parameter if the -messageStore parameter
value is specified as FILE.

-tempLogDirectory temporarylogdirectoryname
The fully qualified path of the temporary logging directory used by message store of the previous
messaging engine to store permanent objects. Use this parameter if the -messageStore parameter
value is specified as FILE.

-dataSource datasource Name
The name of the data source that the messaging engine uses to access the relational database
management system (RDBMS) for the data store. Use this parameter if the -messageStore parameter
value is specified as DB.

You can use $AdminConfig list DataSource to get the list of names of the DataSource objects.

Note: The -dataSource used to recover messaging engine data can be defined at sever or cell level,
and if any existing recovery command is running, the user needs to ensure that it is completed
before starting a new command.

-schemaName schemaname
The schema name of the database from which the messaging engine data is to be recovered. Use this
parameter if the -messageStore parameter value is specified as DB.

Example

To recover the persistent data of a file system from the message store at the server level.
$AdminTask recoverMEConfig {-busName Bus01 -messageStore FILE
-logDirectory "c:\FileStoreLogs" -permLogDirectory "c:\PermFileStoreLogs"
-tempLogDirectory "c:\TempFileStoreLogs" -nodeName node1 -serverName server1}

To recover the persistent data of a database system from the message store at the server level.
$AdminTask recoverMEConfig {-busName bus55 -messageStore DB
-dataSource "MyDataSource" -schemaName "server6"
-nodeName node01 -serverName server01}

To recover the persistent data of a database system from the message store at the cluster level.
$AdminTask recoverMEConfig {-busName bus55 -messageStore DB
-dataSource "MyDataSource"
-schemaName "server6" -clusterName cluster01}

SIBAdminCommands: Destination administrative commands for the
AdminTask object
You can use these administrative commands to manage bus destinations.

These commands provide an alternative to using the administrative console or using the more complex
syntax of wsadmin and JACL.

2418 Administering WebSphere applications



To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

createSIBDestination command
Use the createSIBDestination command to create a new bus destination for a service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The createSIBDestination command creates a new bus destination for a service integration bus. With this
command, a messaging destination can also be localized to a WebSphere MQ server bus member.

Target object

A service integration bus.

Required parameters

-bus
The name of the service integration bus on which to create the bus destination. To list the names of
existing buses, use the listSIBuses command.

-name
The identifier by which this destination is known for administrative purposes.

-type
Indicates the type of bus destination that you want to create:

Chapter 20. Welcome to administering Service integration 2419



Alias An alias destination, that provides a level of abstraction between applications and the
underlying target bus destinations that hold messages. Applications interact with the alias
destination, so the target bus destination can be changed without changing the application.

Foreign
A foreign destination, which identifies a destination on another bus, and enables applications
on one bus to access the destination on another bus directly.

Port Represents a particular message and transport binding for an outbound service that
communicates with an externally-hosted target web service.

Queue A queue, for point-to-point messaging.

TopicSpace
A topic space, for publish/subscribe messaging.

WebService
Represents an externally-hosted target web service.

Conditional parameters

None.

Optional parameters

-cluster
To assign the bus destination to a cluster bus member, specify the name of the cluster. Do not specify
the -node, -server or -wmqServer parameters.

-node
To assign the bus destination to a server bus member, specify both the name of the node on which
the server runs and the name of the server. Do not specify the -cluster or -wmqServer parameters.

-server
To assign the bus destination to a server bus member, specify both the name of the node on which
the server runs and the name of the server. Do not specify the -cluster or -wmqServer parameters.

-wmqServer
To assign the bus destination to a WebSphere MQ queue, specify both the name of the WebSphere
MQ server bus member where the destination is assigned (this parameter), and the name of the
WebSphere MQ queue used to store messages sent to the destination (the -wmqQueueName parameter).
Set the-wmqServer parameter to the name you gave when you created the WebSphere MQ server. Set
the -wmqQueueName parameter to the name allocated to the WebSphere MQ queue by WebSphere MQ
administration. Do not specify the -cluster, -node or -server parameters.

-aliasBus
If you are creating an alias destination, specify the source bus name of the alias mapping.

-targetBus
If you are creating an alias destination, specify the name of the bus to which the alias destination is
mapped.

-targetName
If you are creating an alias destination, specify the name of the destination to which the alias
destination is mapped.

-foreignBus
If you are creating a foreign destination, specify the name of the foreign bus.

-description
Specify a description for the bus destination, for administrative purposes.

2420 Administering WebSphere applications



-reliability
Specify the default reliability level to assign to a message produced to this destination when an explicit
reliability has not been set by the producer application. Service integration supports five reliability
levels (also known as delivery options or qualities of service):

BEST_EFFORT_NONPERSISTENT
Messages are discarded when a messaging engine stops or fails. Messages might also be
discarded if a connection used to send them becomes unavailable or as a result of
constrained system resources.

EXPRESS_NONPERSISTENT
Messages are discarded when a messaging engine stops or fails. Messages might also be
discarded if a connection used to send them becomes unavailable.

RELIABLE_NONPERSISTENT
Messages are discarded when a messaging engine stops or fails.

RELIABLE_PERSISTENT
Messages might be discarded when a messaging engine fails.

ASSURED_PERSISTENT
Messages are not discarded.

Note: Higher levels of reliability have higher impacts on performance.

For more information about service integration reliability levels, see Message reliability levels - JMS
delivery mode and service integration quality of service.

-maxReliability
Specify the maximum reliability level that is accepted for values specified by producer applications.
Service integration supports five reliability levels (also known as delivery options or qualities of
service):

BEST_EFFORT_NONPERSISTENT

EXPRESS_NONPERSISTENT

RELIABLE_NONPERSISTENT

RELIABLE_PERSISTENT

ASSURED_PERSISTENT

For more information about service integration reliability levels, see Message reliability levels - JMS
delivery mode and service integration quality of service.

-nonPersistentReliability

Specify the service integration quality of service to use with nonpersistent WebSphere MQ messages
that are received by service integration from a WebSphere MQ network. The messages in a
WebSphere MQ network have their own quality of service level. This is either persistent or
non-persistent. When these messages are received by a service integration application, they are
assigned a service integration quality of service level that depends on their WebSphere MQ quality of
service level.

For nonpersistent WebSphere MQ messages received, the default service integration quality of service
is RELIABLE_NONPERSISTENT. If you choose to override this default, you will probably choose one of the
other nonpersistent service integration qualities of service BEST_EFFORT_NONPERSISTENT or
EXPRESS_NONPERSISTENT. However, you can choose any of the five possible service integration qualities
of service:

BEST_EFFORT_NONPERSISTENT

EXPRESS_NONPERSISTENT

Chapter 20. Welcome to administering Service integration 2421



RELIABLE_NONPERSISTENT

RELIABLE_PERSISTENT

ASSURED_PERSISTENT

For more information, see Mapping the JMS delivery option and message reliability to and from the
WebSphere MQ persistence value.

-persistentReliability

Specify the service integration quality of service to use with persistent WebSphere MQ messages that
are received by service integration from a WebSphere MQ network. The messages in a WebSphere
MQ network have their own quality of service level. This is either persistent or non-persistent. When
these messages are received by a service integration application, they are assigned a service
integration quality of service level that depends on their WebSphere MQ quality of service level.

For persistent WebSphere MQ messages received, the default service integration quality of service is
ASSURED_PERSISTENT. If you choose to override this default, you will probably choose the other
persistent service integration quality of service RELIABLE_PERSISTENT. However, you can choose any of
the five possible service integration qualities of service:

BEST_EFFORT_NONPERSISTENT

EXPRESS_NONPERSISTENT

RELIABLE_NONPERSISTENT

RELIABLE_PERSISTENT

ASSURED_PERSISTENT

For more information, see Mapping the JMS delivery option and message reliability to and from the
WebSphere MQ persistence value.

-overrideOfQOSByProducerAllowed TRUE | FALSE
Controls the quality of service for message flows between producers and the destination. Select this
option to use the quality of service specified by producers instead of the quality defined for the
destination.

-defaultPriority number
The default priority assigned to messages sent to this destination when a priority has not been set by
the producer.

-maxFailedDeliveries number
The maximum number of failed attempts to process a message. After this number of failed attempts,
the message is forwarded from the intended destination to its exception destination. Specify a value in
the range 0 through 2147483647. A value of 0 (zero) means that if a message cannot be delivered on
the first attempt, it is either forwarded to the exception destination or discarded, as defined by the
-exceptionDestination parameter.

-exceptionDestination value
Use these properties to define what happens to any messages that cannot be delivered to this
destination.

By default, all messages that cannot be delivered to this destination are rerouted to the system default
exception destination for the messaging engine to which this destination is assigned
(_SYSTEM.Exception.Destination.messaging_engine_name). Use this parameter to override the
default value. You can set a specific exception destination for this destination, or you can specify that
undeliverable messages are not rerouted to an exception destination by entering an empty string (""),
in which case the maximum failed deliveries count has no effect.

Note: An undeliverable message can block the processing of other messages waiting for delivery to
the same destination.

2422 Administering WebSphere applications



You can use this option and specify no exception destination to preserve message ordering.

-sendAllowed TRUE | FALSE
Clear this option (setting it to FALSE) to stop producers from being able to send messages to this
destination.

v For a queue point of a non-mediated destination, or a mediation point of a mediated destination, if
you clear this option then new messages (from attached producers or forwarded from another
destination) are redirected to any available message point. If no message points are available, then
messages that have already been accepted onto the bus, and new messages from attached
producers, are preserved by the bus until a message point becomes available. The only exception
to this is the case of a destination with only one message point (queue point or mediation point
depending on whether the destination is mediated or non-mediated), where the producer is attached
to the same messaging engine. In this case, an exception message is generated on each send call.
The exception message indicates that the only extant localization has been disabled for send. The
producer remains open as usual, and any more send calls succeed if the Send allowed property of
the localization is reselected (reset to TRUE).

v For a queue point of a mediated destination, if you clear this option then messages from mediation
instances are redirected to any available message point. If no message points are available, then
the messages are preserved by the bus until a message point becomes available. For any
mediation instance (that is, on any server that has a mediation point), if the same server hosts a
queue point, and that queue point is the only queue point for the destination, then the mediation
changes to the “stopped on error” state.

-receiveAllowed TRUE | FALSE
Clear this option (setting it to false) to prevent consumers from being able to receive messages from
this destination. For the message point, if you clear this option then any open consumers change state
and an exception is generated if the consumer requests a message. Messages can continue to be
sent, and accumulate on the message point.

-receiveExclusive TRUE | FALSE
Select this option (setting it to TRUE) to allow only one consumer to attach to a destination. If you select
this option, only a single consumer can be attached to each queue point of a queue destination at any
one time. Subsequent consumers attempting to attach to a queue point with a consumer already
attached are rejected.

-maintainStrictMessageOrder TRUE | FALSE
Select this option (setting it to TRUE) to maintain the order in which a producer sends messages to the
destination.

At run time, this property has priority over other configuration property values. For information about
the configuration properties that are overridden at run time, see Strict message ordering for bus
destinations.

-topicAccessCheckRequired
Include this option if authorization checks are required for access to topics.

-replyDestination
The name of a destination to be appended to any non-empty reverse routing path of messages sent to
this destination. This property is intended for use with mediations on reply messages. For more
information about the use of this property, see “Configuring a destination reverse routing path” on page
2073.

-replyDestinationBus
The name of the bus on which the reply destination is configured. This property is intended for use
with mediations on reply messages. For more information about the use of this property, see
“Configuring a destination reverse routing path” on page 2073.

-delegateAuthorizationCheckToTarget
Indicates whether the authorization check is performed on the alias or the target destination. Include
this option if you want the authorization check to be performed on the target destination.

Chapter 20. Welcome to administering Service integration 2423



-wmqQueueName
To assign the bus destination to a WebSphere MQ queue, specify both the name of the WebSphere
MQ server bus member where the destination is assigned (the -wmqServer parameter), and the name
of the WebSphere MQ queue used to store messages sent to the destination (this parameter). Set
the-wmqServer parameter to the name you gave when you created the WebSphere MQ server. Set the
-wmqQueueName parameter to the name allocated to the WebSphere MQ queue by WebSphere MQ
administration. Do not specify the -cluster, -node or -server parameters.

-useRFH2 or -mqRfh2Allowed TRUE | FALSE
Determines whether messages sent to the destination have an MQRFH2 header.

When service integration converts a message from the service integration format to WebSphere MQ
format, by default it includes an MQRHF2 header in the WebSphere MQ message. This header
contains message attributes, such as JMS message attributes, which are not WebSphere MQ
message attributes and therefore do not appear in the WebSphere MQ message descriptor (MQMD).
Some WebSphere MQ applications cannot process messages that include an MQRFH2 header. If
messages sent to this destination will be processed by WebSphere MQ applications that cannot
tolerate an MQRFH2, clear this option (setting it to FALSE).

If you are assigning a queue-type destination to a WebSphere MQ server bus member, use the
-useRFH2 parameter. If you are creating an alias destination or a foreign destination, use the
-mqRfh2Allowed parameter.

-auditAllowed TRUE | FALSE
Clear this option (setting it to FALSE) to prevent the bus from auditing topic level authorization checks
when the bus and application server have auditing enabled. The default value is TRUE. You must have
Audit Administrator privileges to use this parameter. The parameter is ignored if it is used in the
creation of other types of destination.

-defaultForwardRoutingPath
The value to which a message forward routing path is set if the message contains no forward routing
path. This identifies a sequential list of intermediary bus destinations that messages must pass through
to reach a target bus destination. The format of the field is a list of bus destinations specified as
bus_name:destination_name.

-queuePoints
A list of the queue points used by users of the alias destination. If no specific queue points are
supplied, all queue points can be used. The target destination must be a queue destination in the
same bus as the alias destination definition. The target destination must also be a queue destination
with multiple queue points.

A queue point is specified in the following form: destination_name@messaging_engine_name

-mediationPoints
A list of the mediation points used by users of the alias destination. If no specific mediation points are
supplied, all mediation points can be used. The target destination must be a mediated queue
destination in the same bus as the alias destination definition. The target destination must also be a
queue destination with multiple mediation points.

A mediation point is specified in the following form: destination_name@messaging_engine_name

-persistRedeliveryCount TRUE | FALSE
Select this option (setting it to TRUE) to persist the failed delivery counts of JMS messages in the
message store. The value for the option is set to FALSE by default.

Important: Although the property is selected, the property will not be effective until the database
tables are upgraded using the sibDBUpgrade command for WebSphere Application Server
Version 8.5 and later.

Example
v Using Jython:

2424 Administering WebSphere applications



wsadmin>AdminTask.createSIBDestination(“[-bus bus1 -name myqueue -type QUEUE
-node node1 -server server1]”)
“(cells/9994GKCCell01/buses/bus1|sib-destinations.xml#SIBQueue_1098215169998)”

v Using Jacl:
wsadmin>$AdminTask createSIBDestination {-bus bus1 -name myqueue -type QUEUE
-node node1 -server server1}
(cells/9994GKCCell01/buses/bus1|sib-destinations.xml#SIBQueue_1098215169998)

Example: Create a destination alias for “MyDestination1” called “MyAlias1” that
can use two queue points:
v Using Jython:

wsadmin>AdminTask.createSIBDestination(“[-bus bus1 -type ALIAS
-name MyAlias1 -aliasBus bus1 -targetName MyDestination1
-reliability INHERIT -maxReliability INHERIT
-overrideOfQOSByProducerAllowed INHERIT -sendAllowed INHERIT
-receiveAllowed INHERIT
-queuePoints [[MyDestination1@cluster1.001-bus1]
[MyDestination1@cluster1.002-bus1]]]”)

v Using Jacl:
wsadmin>$AdminTask createSIBDestination {-bus bus1 -type ALIAS
-name MyAlias1 -aliasBus bus1 -targetName MyDestination1
-reliability INHERIT -maxReliability INHERIT
-overrideOfQOSByProducerAllowed INHERIT -sendAllowed INHERIT
-receiveAllowed INHERIT
-queuePoints {{“MyDestination1@cluster1.001-bus1”}
{“MyDestination1@cluster1.002-bus1”}}}

createSIBDestinations command
Use the createSIBDestinations command to create new bus destinations for a service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The createSIBDestinations command creates multiple new bus destinations for a service integration bus,
all with the same properties. If the destinations created are alias destinations, they all target the same
destination. With this command, the new bus destinations can also be localized to a WebSphere MQ
server bus member.

Chapter 20. Welcome to administering Service integration 2425



Target object

A service integration bus.

Required parameters

-bus
The name of the service integration bus on which to create the bus destinations. To list the names of
existing buses, use the listSIBuses command.

-nameList
The list of identifiers by which these destinations are known for administrative purposes.

-type
Indicates the type of bus destination that you want to create:

Alias An alias destination, that provides a level of abstraction between applications and the
underlying target bus destinations that hold messages. Applications interact with the alias
destination, so the target bus destination can be changed without changing the application.

Foreign
A foreign destination, which identifies a destination on another bus, and enables applications
on one bus to access the destination on another bus directly.

Port Represents a particular message and transport binding for an outbound service that
communicates with an externally-hosted target web service.

Queue A queue, for point-to-point messaging.

TopicSpace
A topic space, for publish/subscribe messaging.

WebService
Represents an externally-hosted target web service.

Conditional parameters

None.

Optional parameters

-cluster
To assign the bus destinations to a cluster bus member, specify the name of the cluster. Do not
specify the -node, -server or -wmqServer parameters.

-node
To assign the bus destinations to a server bus member, specify both the name of the node on which
the server runs and the name of the server. Do not specify the -cluster or -wmqServer parameters.

-server
To assign the bus destinations to a server bus member, specify both the name of the node on which
the server runs and the name of the server. Do not specify the -cluster or -wmqServer parameters.

-wmqServer
To assign the bus destinations to a WebSphere MQ queue, specify both the name of the WebSphere
MQ server bus member where the destination is assigned (this parameter), and the name of the
WebSphere MQ queue used to store messages sent to the destinations (the -wmqQueueName
parameter). Set the-wmqServer parameter to the name you gave when you created the WebSphere
MQ server. Set the -wmqQueueName parameter to the name allocated to the WebSphere MQ queue by
WebSphere MQ administration. Do not specify the -cluster, -node or -server parameters.

-aliasBus
If you are creating alias destinations, specify the source bus name of the alias mapping.

2426 Administering WebSphere applications



-targetBus
If you are creating alias destinations, specify the name of the bus to which the alias destinations are
mapped.

-targetName
If you are creating alias destinations, specify the name of the destination to which the alias
destinations are mapped.

-foreignBus
If you are creating foreign destinations specify the name of the foreign bus.

-description
Specify a description for the bus destinations for administrative purposes.

-reliability
Specify the default reliability level to assign to messages produced to these destinations when an
explicit reliability has not been set by the producer application. Service integration supports five
reliability levels (also known as delivery options or qualities of service):

BEST_EFFORT_NONPERSISTENT
Messages are discarded when a messaging engine stops or fails. Messages might also be
discarded if a connection used to send them becomes unavailable or as a result of
constrained system resources.

EXPRESS_NONPERSISTENT
Messages are discarded when a messaging engine stops or fails. Messages might also be
discarded if a connection used to send them becomes unavailable.

RELIABLE_NONPERSISTENT
Messages are discarded when a messaging engine stops or fails.

RELIABLE_PERSISTENT
Messages might be discarded when a messaging engine fails.

ASSURED_PERSISTENT
Messages are not discarded.

Note: Higher levels of reliability have higher impacts on performance.

For more information about service integration reliability levels, see Message reliability levels - JMS
delivery mode and service integration quality of service.

-maxReliability
Specify the maximum reliability level that is accepted for values specified by producer applications.
Service integration supports five reliability levels (also known as delivery options or qualities of
service):

BEST_EFFORT_NONPERSISTENT

EXPRESS_NONPERSISTENT

RELIABLE_NONPERSISTENT

RELIABLE_PERSISTENT

ASSURED_PERSISTENT

For more information about service integration reliability levels, see Message reliability levels - JMS
delivery mode and service integration quality of service.

-nonPersistentReliability

Specify the service integration quality of service to use with nonpersistent WebSphere MQ messages
that are received by service integration from a WebSphere MQ network. The messages in a
WebSphere MQ network have their own quality of service level. This is either persistent or

Chapter 20. Welcome to administering Service integration 2427



non-persistent. When these messages are received by a service integration application, they are
assigned a service integration quality of service level that depends on their WebSphere MQ quality of
service level.

For nonpersistent WebSphere MQ messages received, the default service integration quality of service
is RELIABLE_NONPERSISTENT. If you choose to override this default, you will probably choose one of the
other nonpersistent service integration qualities of service BEST_EFFORT_NONPERSISTENT or
EXPRESS_NONPERSISTENT. However, you can choose any of the five possible service integration qualities
of service:

BEST_EFFORT_NONPERSISTENT

EXPRESS_NONPERSISTENT

RELIABLE_NONPERSISTENT

RELIABLE_PERSISTENT

ASSURED_PERSISTENT

For more information, see Mapping the JMS delivery option and message reliability to and from the
WebSphere MQ persistence value.

-persistentReliability

Specify the service integration quality of service to use with persistent WebSphere MQ messages that
are received by service integration from a WebSphere MQ network. The messages in a WebSphere
MQ network have their own quality of service level. This is either persistent or non-persistent. When
these messages are received by a service integration application, they are assigned a service
integration quality of service level that depends on their WebSphere MQ quality of service level.

For persistent WebSphere MQ messages received, the default service integration quality of service is
ASSURED_PERSISTENT. If you choose to override this default, you will probably choose the other
persistent service integration quality of service RELIABLE_PERSISTENT. However, you can choose any of
the five possible service integration qualities of service:

BEST_EFFORT_NONPERSISTENT

EXPRESS_NONPERSISTENT

RELIABLE_NONPERSISTENT

RELIABLE_PERSISTENT

ASSURED_PERSISTENT

For more information, see Mapping the JMS delivery option and message reliability to and from the
WebSphere MQ persistence value.

-overrideOfQOSByProducerAllowed TRUE | FALSE
Controls the quality of service for message flows between producers and the destination. Select this
option to use the quality of service specified by producers instead of the quality defined for the
destination.

-defaultPriority number
The default priority assigned to messages sent to this destination when a priority has not been set by
the producer.

-maxFailedDeliveries number
The maximum number of failed attempts to process a message. After this number of failed attempts,
the message is forwarded from the intended destination to its exception destination. Specify a value in
the range 0 through 2147483647. A value of 0 (zero) means that if a message cannot be delivered on
the first attempt, it is either forwarded to the exception destination or discarded, as defined by the
-exceptionDestination parameter.

2428 Administering WebSphere applications



-exceptionDestination value
Use these properties to define what happens to any messages that cannot be delivered to this
destination.

By default, all messages that cannot be delivered to this destination are rerouted to the system default
exception destination for the messaging engine to which this destination is assigned
(_SYSTEM.Exception.Destination.messaging_engine_name). Use this parameter to override the
default value. You can set a specific exception destination for this destination, or you can specify that
undeliverable messages are not rerouted to an exception destination by entering an empty string (""),
in which case the maximum failed deliveries count has no effect.

Note: An undeliverable message can block the processing of other messages waiting for delivery to
the same destination.

You can use this option and specify no exception destination to preserve message ordering.

-sendAllowed TRUE | FALSE
Clear this option (setting it to FALSE) to stop producers from being able to send messages to these
destinations.

v For a queue point of a non-mediated destination, or a mediation point of a mediated destination, if
you clear this option then new messages (from attached producers or forwarded from another
destination) are redirected to any available message point. If no message points are available, then
messages that have already been accepted onto the bus, and new messages from attached
producers, are preserved by the bus until a message point becomes available. The only exception
to this is the case of a destination with only one message point (queue point or mediation point
depending on whether the destination is mediated or non-mediated), where the producer is attached
to the same messaging engine. In this case, an exception message is generated on each send call.
The exception message indicates that the only extant localization has been disabled for send. The
producer remains open as usual, and any more send calls succeed if the Send allowed property of
the localization is reselected (reset to TRUE).

v For a queue point of a mediated destination, if you clear this option then messages from mediation
instances are redirected to any available message point. If no message points are available, then
the messages are preserved by the bus until a message point becomes available. For any
mediation instance (that is, on any server that has a mediation point), if the same server hosts a
queue point, and that queue point is the only queue point for the destination, then the mediation
changes to the “stopped on error” state.

-receiveAllowed TRUE | FALSE
Clear this option (setting it to false) to prevent consumers from being able to receive messages from
this destination. For the message point, if you clear this option then any open consumers change state
and an exception is generated if the consumer requests a message. Messages can continue to be
sent, and accumulate on the message point.

-receiveExclusive TRUE | FALSE
Select this option (setting it to true) to allow only one consumer to attach to a destination. If you select
this option, only a single consumer can be attached to each queue point of a queue destination at any
one time. Subsequent consumers attempting to attach to a queue point with a consumer already
attached are rejected.

-maintainStrictMessageOrder TRUE | FALSE
Select this option (setting it to TRUE) to maintain the order in which a producer sends messages to a
destination.

At run time, this property has priority over other configuration property values. For information about
the configuration properties that are overridden at run time, see Strict message ordering for bus
destinations.

-topicAccessCheckRequired
Include this option if authorization checks are required for access to topics.

Chapter 20. Welcome to administering Service integration 2429



-replyDestination
The name of a destination to be appended to any non-empty reverse routing path of messages sent to
this destination. This property is intended for use with mediations on reply messages. For more
information about the use of this property, see “Configuring a destination reverse routing path” on page
2073.

-replyDestinationBus
The name of the bus on which the reply destination is configured. This property is intended for use
with mediations on reply messages. For more information about the use of this property, see
“Configuring a destination reverse routing path” on page 2073.

-delegateAuthorizationCheckToTarget
Indicates whether the authorization check is performed on the alias or the target destination. Include
this option if you want the authorization check to be performed on the target destination.

-wmqQueueName
To assign these bus destinations to a WebSphere MQ queue, specify both the name of the
WebSphere MQ server bus member where the destinations are assigned (the -wmqServer parameter),
and the name of the WebSphere MQ queue used to store messages sent to these destinations (this
parameter). Set the-wmqServer parameter to the name you gave when you created the WebSphere
MQ server. Set the -wmqQueueName parameter to the name allocated to the WebSphere MQ queue by
WebSphere MQ administration. Do not specify the -cluster, -node or -server parameters.

-useRFH2 or -mqRfh2Allowed TRUE | FALSE
Determines whether messages sent to these destinations have an MQRFH2 header.

When service integration converts a message from the service integration format to WebSphere MQ
format, by default it includes an MQRHF2 header in the WebSphere MQ message. This header
contains message attributes, such as JMS message attributes, which are not WebSphere MQ
message attributes and therefore do not appear in the WebSphere MQ message descriptor (MQMD).
Some WebSphere MQ applications cannot process messages that include an MQRFH2 header. If
messages sent to this destination will be processed by WebSphere MQ applications that cannot
tolerate an MQRFH2, clear this option (setting it to FALSE).

If you are assigning queue-type destinations to a WebSphere MQ server bus member, use the
-useRFH2 parameter. If you are creating alias destinations or foreign destinations, use the
-mqRfh2Allowed parameter.

-auditAllowed TRUE | FALSE
Clear this option (setting it to FALSE) to prevent the bus from auditing topic level authorization checks
when the bus and application server have auditing enabled. The default value is TRUE. You must have
Audit Administrator privileges to use this parameter. The parameter is ignored if it is used in the
creation of other types of destination.

-defaultForwardRoutingPath
The value to which a message forward routing path is set if the message contains no forward routing
path. This identifies a sequential list of intermediary bus destinations that messages must pass through
to reach a target bus destination. The format of the field is a list of bus destinations specified as
bus_name:destination_name.

-queuePoints
A list of the queue points used by users of the alias destination. If no specific queue points are
supplied, all queue points can be used. The target destination must be a queue destination in the
same bus as the alias destination definition. The target destination must also be a queue destination
with multiple queue points.

A queue point is specified in the form destination_name@messaging_engine_name.

-mediationPoints
A list of the mediation points used by users of the alias destination. If no specific mediation points are

2430 Administering WebSphere applications



supplied, all mediation points can be used. The target destination must be a mediated queue
destination in the same bus as the alias destination definition. The target destination must also be a
queue destination with multiple mediation points.

A mediation point is specified in the form destination_name@messaging_engine_name.

-persistRedeliveryCount TRUE | FALSE
Select this option (setting it to TRUE) to persist the failed delivery counts of JMS messages in the
message store. The value for the option is set to FALSE by default.

Important: Although the property is selected, the property will not be effective until the database
tables are upgraded using the sibDBUpgrade command for WebSphere Application Server
Version 8.5 and later.

Example 1
v Using Jython:

wsadmin>AdminTask.createSIBDestinations("[-bus bus1 -type QUEUE
-cluster cluster1 -nameList [[-identifier myqueue1][-identifier myqueue2]]]")
"(cells/9994GKCCell01/buses/bus1|sib-destinations.xml#SIBQueue_1098215169998)"

v Using Jacl:
wsadmin>$AdminTask createSIBDestinations {-bus bus1 -type QUEUE
-cluster cluster1 -nameList {{myqueue1} {myqueue2}}}
(cells/9994GKCCell01/buses/bus1|sib-destinations.xml#SIBQueue_1098215169998)

Example 2:

Create aliases for “MyDestination1” called “MyAlias1” and “MyAlias2”. These alias destinations give access
to a single queue point of the target destination:

v Using Jython:
wsadmin>AdminTask.createSIBDestinations(“[-bus bus1 -type ALIAS
-nameList [[MyAlias1][MyAlias2]] -aliasBus bus1
-targetName MyDestination1 -reliability INHERIT -maxReliability INHERIT
-overrideOfOQSByProducerAllowed INHERIT -sendAllowed INHERIT
-receiveAllowed INHERIT -queuePoints [[MyDestination1@cluster1.001-bus1]
[MyDestination1@cluster1.002-bus1]]]”)

v Using Jacl:
wsadmin>set cluster [ lindex [ $AdminConfig list ServerCluster ] 1 ]
wsadmin>$AdminTask createSIBDestinations {-bus bus1 -type ALIAS
-nameList {{MyAlias1} {MyAlias2}} -aliasBus bus1
-targetName MyDestination1 -reliability INHERIT -maxReliability INHERIT
-overrideOfOQSByProducerAllowed INHERIT -sendAllowed INHERIT
-receiveAllowed INHERIT -queuePoints {{“MyDestination1@cluster1.001-bus1”}
{"MyDestination1@cluster1.002-bus1}}}

deleteSIBDestination command
Use the deleteSIBDestination command to delete a bus destination.

This command deletes the named destination on the named bus, and deletes all related message points.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

Chapter 20. Welcome to administering Service integration 2431



v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The deleteSIBDestination command deletes the named destination on the named bus, and deletes all
related message points. This command also finds and cleans up all destinations that are assigned to
WebSphere MQ server bus members, and all destinations that are mediated to a WebSphere MQ queue.
This command does not delete messages from WebSphere MQ queues, and it does not delete the
queues.

Target object

A bus destination.

Required parameters

-bus
The name of the service integration bus on which the bus destination is configured. You can use the
listSIBuses command to list the names of existing buses.

-name
The identifier by which this destination is known for administrative purposes.

-aliasBus
If the destination to be deleted is an alias destination and was created with the aliasBus parameter,
then the same value must be used to delete the destination.

-foreignBus
If the destination to be deleted is a foreign destination, then the foreign destination parameter must be
supplied.

Conditional parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminTask.deleteSIBDestination("-bus abus -name myqueue")

wsadmin>AdminConfig.save()

v Using Jacl:
wsadmin>$AdminTask deleteSIBDestination {-bus abus -name myqueue}

wsadmin>$AdminConfig save

2432 Administering WebSphere applications



deleteSIBDestinations command
Use the deleteSIBDestinations command to delete bus destinations.

This command deletes the named destinations on the named bus, and deletes all related message points.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when it is used with WebSphere Application Server Version 6.1.0 (Fix Pack
15) or later. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The deleteSIBDestinations command deletes the named destinations on the named bus, and deletes all
related message points. This command also finds and cleans up all destinations that are assigned to
WebSphere MQ server bus members, and all destinations that are mediated to a WebSphere MQ queue.
This command does not delete messages from WebSphere MQ queues, and it does not delete the
queues.

Target object

Bus destinations.

Required parameters

-bus
The name of the service integration bus on which the bus destination is configured. You can use the
listSIBuses command to list the names of existing buses.

-nameList
The identifiers by which these destinations are known for administrative purposes.

-aliasBus
If the destination to be deleted is an alias destination and was created with the aliasBus parameter,
then the same value must be used to delete the destination.

-foreignBus
If the destination to be deleted is a foreign destination, then the foreign destination parameter must be
supplied.

Conditional parameters

None.

Chapter 20. Welcome to administering Service integration 2433



Optional parameters

None.

Example
v Using Jython:
wsadmin>AdminTask.deleteSIBDestinations(["-bus" , "abus" , "-nameList" , [["myqueue1"] ,["myqueue2"]]])

wsadmin>$AdminConfig save

v Using Jacl:
wsadmin>$AdminTask deleteSIBDestinations {-bus myBus -nameList {{myqueue1} {myqueue2}} }

wsadmin>$AdminConfig save

listSIBDestinations command
Use the listSIBDestinations command to list the bus destinations for a service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists all the bus destinations on a bus.

Target object

A bus.

Required parameters

-bus busname
The name of the service integration bus on which the bus destinations are configured. You can use
the listSIBuses command to list the names of existing buses.

Conditional parameters

None.

Optional parameters

-type Queue | TopicSpace | WebService | Port
To list destinations of the specified type.

Example
v Using Jython:

2434 Administering WebSphere applications



wsadmin>AdminTask.listSIBDestinations("-bus abus")
’(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBTopicSpace_1098181446388)
(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBQueue_1098181503600)
(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBQueue_1098184221748)’

AdminTask.listSIBDestinations("-bus abus -type TopicSpace")
’(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBTopicSpace_1098181446388)’

v Using Jacl:
wsadmin>$AdminTask listSIBDestinations {-bus abus}
(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBTopicSpace_1098181446388)
(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBQueue_1098181503600)
(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBQueue_1098184221748)

wsadmin>$AdminTask listSIBDestinations {-bus abus -type TopicSpace}
(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBTopicSpace_1098181446388)

mediateSIBDestination command
Use the mediateSIBDestination command to mediate a bus destination for a service integration bus.

Mediating a destination associates a mediation with a selected bus destination. At run time, the mediation
applies some message processing to the messages handled by the bus destination. Note that you can
only mediate a destination with a single mediation at a time. You can mediate more than one destination
with the same mediation.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command mediates a bus destination for a service integration bus. There are parameters that you
can use to create a mediation queue point on a WebSphere MQ server, and create the corresponding
mediation execution point on a cluster or a server.

You should only use the node, server, and cluster parameters in WebSphere Application Server
environments that support server clusters.

Note: If you are mediating a destination where the mediation point is a queue on a WebSphere MQ
server (using the wmqServer parameter), you must specify where the mediation code runs. If the
mediation code runs in a service integration bus member, you must specify a mediation execution
point by using the node, server, and cluster parameters. If the mediation code runs externally, you
must omit the node, server, and cluster parameters.

Chapter 20. Welcome to administering Service integration 2435



v If you are not using a mediation point that is a queue on a WebSphere MQ server, use the node,
server, and cluster parameters to specify where the mediation point is located. This is also where the
mediation runs. If you omit these parameters, the mediation point defaults to the bus member to which
the destination being mediated is assigned.

v If you are using a mediation point that is a queue on a WebSphere MQ server, use the wqmServer and
wmqQueueName parameters to specify the mediation point.

– If you omit the node, server, and cluster parameters, the service integration bus assumes that the
mediation process is performed by an external WebSphere MQ application.

– If you want to assign the mediation point to a WebSphere MQ server bus member, use the
wmqServer and wmqQueueName parameters to specify a WebSphere MQ queue. In this situation,
because you have omitted the node, server, and cluster parameters, an external WebSphere MQ
application can run the mediation. The node, server, and cluster parameters are used for
nominating the bus member where the mediation code runs.

Target object

None.

Required parameters

-bus bus_name -destinationName destination_name
The destination to be mediated.

-mediationName mediation_name
The name of the mediation to be applied to the bus destination. This mediation must exist before this
command can be used.

Conditional parameters

-wmqServer mq_server_name -wmqQueueName mq_queue_name
[Queue or web service destination] To assign the mediation point to a WebSphere MQ queue, specify
both the name of the WebSphere MQ server bus member where the mediation point is to be assigned,
and the name of the WebSphere MQ queue to be used to store messages ready for mediation.
mq_server_name is the name of the WebSphere MQ server as specified in the -name parameter when
creating the WebSphere MQ server. mq_queue_name is the name allocated to the WebSphere MQ
queue by WebSphere MQ administration.

-node node_name -server server_name
[Not topic space] To mediate the bus destination to a server bus member, specify both the name of the
node on which the server runs and the name of the server.

-cluster cluster_name
[Not topic space] To mediate the bus destination to a cluster bus member, specify the name of the
cluster.

This option should be used only in WebSphere Application Server environments that support server
clusters.

Optional parameters

-nonPersistentReliability

Specify the service integration quality of service to use with nonpersistent WebSphere MQ messages
that are received by service integration from a WebSphere MQ network. The messages in a
WebSphere MQ network have their own quality of service level. This is either persistent or
non-persistent. When these messages are received by a service integration application, they are
assigned a service integration quality of service level that depends on their WebSphere MQ quality of
service level.

2436 Administering WebSphere applications



For nonpersistent WebSphere MQ messages received, the default service integration quality of service
is RELIABLE_NONPERSISTENT. If you choose to override this default, you will probably choose one of the
other nonpersistent service integration qualities of service BEST_EFFORT_NONPERSISTENT or
EXPRESS_NONPERSISTENT. However, you can choose any of the five possible service integration qualities
of service:

BEST_EFFORT_NONPERSISTENT
Messages are discarded when a messaging engine stops or fails. Messages might also be
discarded if a connection used to send them becomes unavailable or as a result of
constrained system resources.

EXPRESS_NONPERSISTENT
Messages are discarded when a messaging engine stops or fails. Messages might also be
discarded if a connection used to send them becomes unavailable.

RELIABLE_NONPERSISTENT
Messages are discarded when a messaging engine stops or fails.

RELIABLE_PERSISTENT
Messages might be discarded when a messaging engine fails.

ASSURED_PERSISTENT
Messages are not discarded.

Note: Higher levels of reliability have higher impacts on performance.

For more information, see Mapping the JMS delivery option and message reliability to and from the
WebSphere MQ persistence value.

-persistentReliability

Specify the service integration quality of service to use with persistent WebSphere MQ messages that
are received by service integration from a WebSphere MQ network. The messages in a WebSphere
MQ network have their own quality of service level. This is either persistent or non-persistent. When
these messages are received by a service integration application, they are assigned a service
integration quality of service level that depends on their WebSphere MQ quality of service level.

For persistent WebSphere MQ messages received, the default service integration quality of service is
ASSURED_PERSISTENT. If you choose to override this default, you will probably choose the other
persistent service integration quality of service RELIABLE_PERSISTENT. However, you can choose any of
the five possible service integration qualities of service:

BEST_EFFORT_NONPERSISTENT

EXPRESS_NONPERSISTENT

RELIABLE_NONPERSISTENT

RELIABLE_PERSISTENT

ASSURED_PERSISTENT

For more information, see Mapping the JMS delivery option and message reliability to and from the
WebSphere MQ persistence value.

-useRFH2
Determines whether service integration technologies includes an RFH2 header in messages it places
on the mediation point. Possible values are:

TRUE

FALSE

The default value is TRUE.

Chapter 20. Welcome to administering Service integration 2437



-maintainStrictMessageOrder
Maintain strict message order. Possible values are:

Selected
Maintains the order in which a producer sends messages to the destination.

At run time, this property has priority over other configuration property values. For information
on the configuration properties that are overridden at run time, see Strict message ordering for
bus destinations.

Cleared
Message order is not preserved for this destination.

Example
v Using Jython:

wsadmin>AdminTask.mediateSIBDestination("-bus abus -destinationName myqueue
-mediationName filterMed -cluster cluster1")

v Using Jacl:
wsadmin>$AdminTask mediateSIBDestination {-bus abus -destinationName myqueue
-mediationName filterMed -cluster cluster1}

modifySIBDestination command
Use the modifySIBDestination command to change properties of a bus destination for a service
integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The modifySIBDestination changes properties of a bus destination for a service integration bus.

Target object

A bus destination.

Required parameters

-bus
The name of the service integration bus on which the bus destination is configured. You can use the
listSIBuses command to list the names of existing buses.

2438 Administering WebSphere applications



-name
The identifier by which this destination is known for administrative purposes.

Conditional parameters

None.

Optional parameters

-description
Specify a description for the bus destination, for administrative purposes.

-reliability
Specify the default reliability level to assign to a message produced to this destination when an explicit
reliability has not been set by the producer application. Service integration supports five reliability
levels (also known as delivery options or qualities of service):

BEST_EFFORT_NONPERSISTENT
Messages are discarded when a messaging engine stops or fails. Messages might also be
discarded if a connection used to send them becomes unavailable or as a result of
constrained system resources.

EXPRESS_NONPERSISTENT
Messages are discarded when a messaging engine stops or fails. Messages might also be
discarded if a connection used to send them becomes unavailable.

RELIABLE_NONPERSISTENT
Messages are discarded when a messaging engine stops or fails.

RELIABLE_PERSISTENT
Messages might be discarded when a messaging engine fails.

ASSURED_PERSISTENT
Messages are not discarded.

Note: Higher levels of reliability have higher impacts on performance.

For more information about service integration reliability levels, see Message reliability levels - JMS
delivery mode and service integration quality of service.

-overrideOfQOSByProducerAllowed TRUE | FALSE
Controls the quality of service for message flows between producers and the destination. Select this
option to use the quality of service specified by producers instead of the quality defined for the
destination.

-defaultPriority number
The default priority assigned to messages sent to this destination when a priority has not been set by
the producer.

-maxFailedDeliveries number
The maximum number of failed attempts to process a message. After this number of failed attempts,
the message is forwarded from the intended destination to its exception destination. Specify a value in
the range 0 through 2147483647. A value of 0 (zero) means that if a message cannot be delivered on
the first attempt, it is either forwarded to the exception destination or discarded, as defined by the
-exceptionDestination parameter.

-exceptionDestination value
Use these properties to define what happens to any messages that cannot be delivered to this
destination.

By default, all messages that cannot be delivered to this destination are rerouted to the system default
exception destination for the messaging engine to which this destination is assigned

Chapter 20. Welcome to administering Service integration 2439



(_SYSTEM.Exception.Destination.messaging_engine_name). Use this parameter to override the
default value. You can set a specific exception destination for this destination, or you can specify that
undeliverable messages are not rerouted to an exception destination by entering an empty string (""),
in which case the maximum failed deliveries count has no effect.

Note: An undeliverable message can block the processing of other messages waiting for delivery to
the same destination.

You can use this option and specify no exception destination to preserve message ordering.

-sendAllowed TRUE | FALSE
Clear this option (setting it to FALSE) to stop producers from being able to send messages to this
destination.

v For a queue point of a non-mediated destination, or a mediation point of a mediated destination, if
you clear this option then new messages (from attached producers or forwarded from another
destination) are redirected to any available message point. If no message points are available, then
messages that have already been accepted onto the bus, and new messages from attached
producers, are preserved by the bus until a message point becomes available. The only exception
to this is the case of a destination with only one message point (queue point or mediation point
depending on whether the destination is mediated or non-mediated), where the producer is attached
to the same messaging engine. In this case, an exception message is generated on each send call.
The exception message indicates that the only extant localization has been disabled for send. The
producer remains open as usual, and any more send calls succeed if the Send allowed property of
the localization is reselected (reset to TRUE).

v For a queue point of a mediated destination, if you clear this option then messages from mediation
instances are redirected to any available message point. If no message points are available, then
the messages are preserved by the bus until a message point becomes available. For any
mediation instance (that is, on any server that has a mediation point), if the same server hosts a
queue point, and that queue point is the only queue point for the destination, then the mediation
changes to the “stopped on error” state.

-receiveAllowed TRUE | FALSE
Clear this option (setting it to false) to prevent consumers from being able to receive messages from
this destination. For the message point, if you clear this option then any open consumers change state
and an exception is generated if the consumer requests a message. Messages can continue to be
sent, and accumulate on the message point.

-receiveExclusive TRUE | FALSE
Select this option (setting it to true) to allow only one consumer to attach to a destination. If you select
this option, only a single consumer can be attached to each queue point of a queue destination at any
one time. Subsequent consumers attempting to attach to a queue point with a consumer already
attached are rejected.

-maintainStrictMessageOrder TRUE | FALSE
Select this option (setting it to TRUE) to maintain the order in which a producer sends messages to the
destination.

At run time, this property has priority over other configuration property values. For information about
the configuration properties that are overridden at run time, see Strict message ordering for bus
destinations.

-topicAccessCheckRequired
Include this option if authorization checks are required for access to topics.

-replyDestination
The name of a destination to be appended to any non-empty reverse routing path of messages sent to
this destination. This property is intended for use with mediations on reply messages. For more
information about the use of this property, see “Configuring a destination reverse routing path” on page
2073.

2440 Administering WebSphere applications



-replyDestinationBus
The name of the bus on which the reply destination is configured. This property is intended for use
with mediations on reply messages. For more information about the use of this property, see
“Configuring a destination reverse routing path” on page 2073.

-delegateAuthorizationCheckToTarget
Indicates whether the authorization check is performed on the alias or the target destination. Include
this option if you want the authorization check to be performed on the target destination.

-auditAllowed TRUE | FALSE
Clear this option (setting it to FALSE) to prevent the bus from auditing topic level authorization checks
when the bus and application server have auditing enabled. The default value is TRUE. You must have
Audit Administrator privileges to use this parameter. The parameter is ignored if it is used in the
creation of other types of destination.

-defaultForwardRoutingPath
The value to which a message forward routing path is set if the message contains no forward routing
path. This identifies a sequential list of intermediary bus destinations that messages must pass through
to reach a target bus destination. The format of the field is a list of bus destinations specified as
bus_name:destination_name.

-queuePoints
A list of the queue points used by users of the alias destination. If no specific queue points are
supplied, all queue points can be used. The target destination must be a queue destination in the
same bus as the alias destination definition. The target destination must also be a queue destination
with multiple queue points.

A queue point is specified in the following form: destination_name@messaging_engine_name

-useAllQueuePoints TRUE | FALSE
If you set this option to TRUE all available queue points are used whereas, if you set this option to
FALSE, only those queue points in the list specified by the -queuePoints option are used.

-mediationPoints
A list of the mediation points used by users of the alias destination. If no specific mediation points are
supplied, all mediation points can be used. The target destination must be a mediated queue
destination in the same bus as the alias destination definition. The target destination must also be a
queue destination with multiple mediation points.

A mediation point is specified in the following form: destination_name@messaging_engine_name

-useAllMediationPoints TRUE | FALSE
If you set this option to TRUE all available queue points are used whereas, if you set this option to
FALSE, only those queue points in the list specified by the -mediationPoints option are used.

-persistRedeliveryCount TRUE | FALSE
Select this option (setting it to TRUE) to persist the failed delivery counts of JMS messages in the
message store. The value for the option is set to FALSE by default.

Important: Although the property is selected, the property will not be effective until the database
tables are upgraded using the sibDBUpgrade command for WebSphere Application Server
Version 8.5 and later.

Example
v Using Jython:

wsadmin>AdminTask.showSIBDestination([“-bus”, “abus”, “-name”, “myqueue”])
“{receiveExclusive=false, defaultForwardRoutingPath=[], defaultPriority=0,
exceptionDestination=_SYSTEM.Exception.Destination.node01.aserver-abus,
uuid=97CC75AC71E5932CAB3417AC, overrideOfQOSByProducerAllowed=true,
sendAllowed=true, maxFailedDeliveries=5,
maxReliability=ASSURED_PERSISTENT, reliability=ASSURED_PERSISTENT,
receiveAllowed=true, identifier=myqueue}”

Chapter 20. Welcome to administering Service integration 2441



wsadmin>AdminTask.modifySIBDestination([“-bus”, “abus”, “-name”, “myqueue”,
“-receiveAllowed”, “FALSE”])

wsadmin>AdminTask.showSIBDestination([“-bus”, “abus”, “-name”, “myqueue”])
“{receiveExclusive=false, defaultForwardRoutingPath=[], defaultPriority=0,
exceptionDestination=_SYSTEM.Exception.Destination.node01.aserver-abus,
uuid=97CC75AC71E5932CAB3417AC, overrideOfQOSByProducerAllowed=true,
sendAllowed=true, maxFailedDeliveries=5,
maxReliability=ASSURED_PERSISTENT, reliability=ASSURED_PERSISTENT,
receiveAllowed=false, identifier=myqueue}”

v Using Jacl:
wsadmin>$AdminTask showSIBDestination {-bus abus -name myqueue}
{receiveExclusive=false, defaultForwardRoutingPath=[], defaultPriority=0,
exceptionDestination=_SYSTEM.Exception.Destination.node01.aserver-abus,
uuid=97CC75AC71E5932CAB3417AC, overrideOfQOSByProducerAllowed=true,
sendAllowed=true, maxFailedDeliveries=5,
maxReliability=ASSURED_PERSISTENT, reliability=ASSURED_PERSISTENT,
receiveAllowed=true, identifier=myqueue}

wsadmin>$AdminTask modifySIBDestination {-bus abus -name myqueue
-receiveAllowed FALSE}
(cells/9994GKCCell01/buses/abus|sib-destinations.xml#SIBQueue_1098215169998)

wsadmin>$AdminTask showSIBDestination {-bus abus -name myqueue}
{receiveExclusive=false, defaultForwardRoutingPath=[], defaultPriority=0,
exceptionDestination=_SYSTEM.Exception.Destination.node01.aserver-abus,
uuid=97CC75AC71E5932CAB3417AC, overrideOfQOSByProducerAllowed=true,
sendAllowed=true, maxFailedDeliveries=5,
maxReliability=ASSURED_PERSISTENT, reliability=ASSURED_PERSISTENT,
receiveAllowed=false, identifier=myqueue}

Example: Modify a destination alias “MyAlias2” to use a subset of the available
queue points and mediation points:
v Using Jython:

cluster=AdminConfig.list(“ServerCluster”).splitlines()[0]
Qp1=AdminConfig.list(“SIBQueueLocalizationPoint” , cluster).splitlines()[0]
Mp1=AdminConfig.list(“SIBMediationLocalizationPoint”).splitlines()[0]
AdminTask.modifySIBDestination([“-bus” , “bus1” , “-name” , “MyAlias2”,
“-queuePoints”, [[Qp1]], “-mediationPoints” , [[Mp1]]])

v Using Jacl:
set cluster [ lindex [ $AdminConfig list ServerCluster ] 1 ]
set Qp1 [ lindex [ $AdminConfig list SIBQueueLocalizationPoint $cluster ] 0 ]
set Mp1 [ lindex [ $AdminConfig list SIBMediationLocalizationPoint ] 0 ]
$AdminTask modifySIBDestination {-bus bus1 -name MyAlias2
-queuePoints [[$Qp1]]-mediationPoints [[$Mp1]]}

Example: Modify a destination alias to remove any limitation on the queue points
used:
v Using Jython:

AdminTask.modifySIBDestination([“-bus” , “bus1” , “-name” , “MyAlias2”,
“-queuePoints”, [[]]])

v Using Jacl:
$AdminTask modifySIBDestination {-bus bus1 -name MyAlias2
-useAllQueuePoints=true -useAllMediationPoints=true}

2442 Administering WebSphere applications



showSIBDestination command
Use the showSIBDestination command to list the property values for a bus destination.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists details about properties of a bus destination.

Target object

A bus destination.

Required parameters

-bus busname
The name of the service integration bus on which the bus destination is configured. You can use the
listSIBuses command to list the names of existing buses.

-name destname
The identifier by which this destination is known for administrative purposes.

Conditional parameters

None.

Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminTask.showSIBDestination("-bus abus -name myqueue")
’{receiveExclusive=false, defaultForwardRoutingPath=[], defaultPriority=0,
exceptionDestination=_SYSTEM.Exception.Destination.node01.server1-abus,
uuid=97CC75AC71E5932CAB3417AC, overrideOfQOSByProducerAllowed=true,
sendAllowed=true, maxFailedDeliveries=5,
maxReliability=ASSURED_PERSISTENT, reliability=ASSURED_PERSISTENT,
receiveAllowed=true, identifier=myqueue}’

v Using Jacl:
wsadmin>$AdminTask showSIBDestination {-bus abus -name myqueue}
{receiveExclusive=false, defaultForwardRoutingPath=[], defaultPriority=0,
exceptionDestination=_SYSTEM.Exception.Destination.node01.server1-abus,

Chapter 20. Welcome to administering Service integration 2443



uuid=97CC75AC71E5932CAB3417AC, overrideOfQOSByProducerAllowed=true,
sendAllowed=true, maxFailedDeliveries=5,
maxReliability=ASSURED_PERSISTENT, reliability=ASSURED_PERSISTENT,
receiveAllowed=true, identifier=myqueue}

unmediateSIBDestination command
Use the unmediateSIBDestination command to remove a mediation from a service integration bus
destination.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes a mediation from a bus destination for a service integration bus. The mediation
remains on the bus, in case it is needed to mediate other bus destinations.

If you unmediate a destination that is assigned to a WebSphere MQ server bus member, or a destination
that has a mediation point on a WebSphere MQ server bus member, the mediation process stops, and
messages already queued on the mediation point are not mediated.

Target object

None.

Required parameters

-bus busname
The name of the service integration bus on which the bus destination is to be created. You can use
the listSIBuses command to list the names of existing buses.

-destinationName destname
The identifier by which this destination is known for administrative purposes.

Conditional parameters

None.

Optional parameters

None.

2444 Administering WebSphere applications



Example
v Using Jython:
wsadmin>AdminTask.listSIBMediations(["-bus", "abus"])
’(cells/9994GKCCell01/buses/abus|sib-mediations.xml#
SIBDestinationMediation_1098217858584)’

wsadmin>AdminTask.unmediateSIBDestination(["-bus", "abus", "-destinationName", "myqueue"])

v Using Jacl:
wsadmin>$AdminTask listSIBMediations {-bus abus}
(cells/9994GKCCell01/buses/abus|sib-mediations.xml#SIBDestinationMediation_1098217858584)

wsadmin>$AdminTask unmediateSIBDestination {-bus abus -destinationName myqueue}

SIBAdminCommands: Mediation administrative commands for the
AdminTask object
You can use these administrative commands to manage mediations.

These commands provide an alternative to using the administrative console or using the more complex
syntax of wsadmin and JACL.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

createSIBMediation command
Use the createSIBMediation command to create a new mediation.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

Chapter 20. Welcome to administering Service integration 2445



AdminConfig.save()

Purpose

This command creates a new mediation.

Target object

None.

Required parameters

-bus busname
The name of the service integration bus on which the mediation is to be created. You can use the
listSIBuses command to list the names of existing buses.

-mediationName mediation_name
The name by which this mediation is known for administrative purposes.

-handlerListName
The name of the handler list that was defined when the mediation was deployed.

Conditional parameters

None.

Optional parameters

-description text
An optional description for the mediation, for administrative purposes.

-globalTransaction TRUE | FALSE
Whether or not a global transaction is started for each message processed.

FALSE A local transaction is started for each message processed. You only have to select this option
for mediations that access other resource managers such as databases, or interact with
enterprise beans that require a global transaction.

TRUE A global transaction is started for each message processed.

-allowConcurrentMediation TRUE | FALSE
Select this option (setting it to true) to apply the mediation to multiple messages concurrently. Message
ordering is not preserved. The default option is false.

TRUE Apply the mediation to multiple messages concurrently, and preserve message ordering.

FALSE Apply the mediation to a single message at a time. This setting is required to ensure that
message ordering is preserved.

-selector text
Controls which messages are sent to the mediation. If a message matches the rule defined by
the selector text string, then the mediation is applied to the message.

If the message does not match the rule defined by the selector text string, then the message
is not mediated. If a message contains both Selector and Discriminator, it must match both
rules for the message to be mediated. If either the Selector or the Discriminator rule does not
match, the message is not mediated.

-discriminator text
Discriminator

Compare this property with the selector property. The rule specified by the selector examines
the header and properties of the message, whereas the discriminator examines the topic of

2446 Administering WebSphere applications



the message. If a message contains both selector and discriminator, it must match both rules
for the message to be mediated. If either the selector or the discriminator rule does not match,
the message is not mediated.

Example
v Using Jython:
wsadmin>AdminTask.createSIBMediation("-bus abus -mediationName switchMed
-handlerListName switchHandler")
’(cells/9994GKCCell01/buses/abus|sib-mediations.xml#SIBDestinationMediation_1098219493014)’

v Using Jacl:
wsadmin>$AdminTask createSIBMediation {-bus abus -mediationName switchMed
-handlerListName switchHandler}
(cells/9994GKCCell01/buses/abus|sib-mediations.xml#SIBDestinationMediation_1098219493014)

deleteSIBMediation command
Use the deleteSIBMediation command to delete a mediation.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command deletes a mediation. If the mediation point relates to a WebSphere MQ queue, the contents
of the mediation point are not deleted.

Target object

None.

Required parameters

-bus busname
The name of the service integration bus on which the mediation is to be created. You can use the
listSIBuses command to list the names of existing buses.

-mediationName mediation_name
The name by which this mediation is known for administrative purposes.

Conditional parameters

None.

Chapter 20. Welcome to administering Service integration 2447



Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminTask.deleteSIBMediation(["-bus", "abus", "-mediationName", "switchMed"])

v Using Jacl:

wsadmin>$AdminTask deleteSIBMediation {-bus abus -mediationName switchMed}

listSIBMediations command
Use the listSIBMediations command to list mediations on a service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists all mediations on a service integration bus.

Target object

A service integration bus

Required parameters

-bus busname
The name of the service integration bus on which the mediations are configured. You can use the
listSIBuses command to list the names of existing buses.

Conditional parameters

None.

Optional parameters

None.

Example
v Using Jython:
wsadmin>AdminTask.listSIBMediations("-bus abus")
(cells/9994GKCCell01/buses/abus|sib-mediations.xml#SIBDestinationMediation_1098217858584)
(cells/9994GKCCell01/buses/abus|sib-mediations.xml#SIBDestinationMediation_1098220051588)

v Using Jacl:

2448 Administering WebSphere applications



wsadmin>$AdminTask listSIBMediations {-bus abus}
(cells/9994GKCCell01/buses/abus|sib-mediations.xml#SIBDestinationMediation_1098217858584)
(cells/9994GKCCell01/buses/abus|sib-mediations.xml#SIBDestinationMediation_1098220051588)

modifySIBMediation command
Use the modifySIBMediation command to change the properties of a mediation.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command changes properties of a mediation.

Target object

A mediation.

Required parameters

-bus busname
The name of the service integration bus on which the mediation is to be created. You can use the
listSIBuses command to list the names of existing buses.

-mediationName mediation_name
The name by which this mediation is known for administrative purposes.

Conditional parameters

None.

Optional parameters

-description text
An optional description for the mediation, for administrative purposes.

-handlerListName
The name of the handler list that was defined when the mediation was deployed.

-globalTransaction TRUE | FALSE
Whether or not a global transaction is started for each message processed.

FALSE A local transaction is started for each message processed. You only have to select this option

Chapter 20. Welcome to administering Service integration 2449



for mediations that access other resource managers such as databases, or interact with
enterprise beans that require a global transaction.

TRUE A global transaction is started for each message processed.

-allowConcurrentMediation TRUE | FALSE
Select this option (setting it to true) to apply the mediation to multiple messages concurrently. Message
ordering is not preserved. The default option is false.

TRUE Apply the mediation to multiple messages concurrently, and preserve message ordering.

FALSE Apply the mediation to a single message at a time. This setting is required to ensure that
message ordering is preserved.

-selector text
Controls which messages are sent to the mediation. If a message matches the rule defined by
the selector text string, then the mediation is applied to the message.

If the message does not match the rule defined by the selector text string, then the message
is not mediated. If a message contains both Selector and Discriminator, it must match both
rules for the message to be mediated. If either the Selector or the Discriminator rule does not
match, the message is not mediated.

-discriminator text
Discriminator

Compare this property with the selector property. The rule specified by the selector examines
the header and properties of the message, whereas the discriminator examines the topic of
the message. If a message contains both selector and discriminator, it must match both rules
for the message to be mediated. If either the selector or the discriminator rule does not match,
the message is not mediated.

Example
v Using Jython:

wsadmin>AdminTask.showSIBMediation("-bus abus -mediationName switchMed")
{uuid 39588C4821BB046E}
{selector {}}
{contextInfo {}}
{discriminator {}}
{allowConcurrentMediation false}
{globalTransaction false}
{mediationName switchMed}
{handlerListName switchHandler}
{description {}}

wsadmin>AdminTask.modifySIBMediation(["-bus", "abus",
"-mediationName", "switchMed",
"-selector", ["JMSXDeliveryCount > 1000"]] )

wsadmin>AdminTask.showSIBMediation("-bus abus
-mediationName switchMed")
{uuid 39588C4821BB046E}
{selector {JMSXDeliveryCount > 1000}}
{contextInfo {}}
{discriminator {}}
{allowConcurrentMediation false}
{globalTransaction false}
{mediationName switchMed}
{handlerListName switchHandler}
{description {}}

v Using Jacl:
wsadmin>$AdminTask showSIBMediation {-bus abus -mediationName switchMed}
{uuid 39588C4821BB046E}
{selector {}}

2450 Administering WebSphere applications



{contextInfo {}}
{discriminator {}}
{allowConcurrentMediation false}
{globalTransaction false}
{mediationName switchMed}
{handlerListName switchHandler}
{description {}}

wsadmin>$AdminTask modifySIBMediation {-bus abus -mediationName switchMed
-selector {JMSXDeliveryCount > 1000}}

wsadmin>$AdminTask showSIBMediation {-bus abus -mediationName switchMed}
{uuid 39588C4821BB046E}
{selector {JMSXDeliveryCount > 1000}}
{contextInfo {}}
{discriminator {}}
{allowConcurrentMediation false}
{globalTransaction false}
{mediationName switchMed}
{handlerListName switchHandler}
{description {}}

showSIBMediation command
Use the showSIBMediation command to list the property values for a mediation.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command changes properties of a mediation.

Target object

A mediation.

Required parameters

-bus busname
The name of the service integration bus on which the mediation is to be created. You can use the
listSIBuses command to list the names of existing buses.

-mediationName mediation_name
The name by which this mediation is known for administrative purposes.

Conditional parameters

None.

Chapter 20. Welcome to administering Service integration 2451



Optional parameters

None.

Example
v Using Jython:

wsadmin>AdminTask.showSIBMediation("-bus abus -mediationName switchMed")
{uuid 39588C4821BB046E}
{selector {JMSXDeliveryCount > 1000}}
{contextInfo {}}
{discriminator {}}
{allowConcurrentMediation false}
{globalTransaction false}
{mediationName switchMed}
{handlerListName switchHandler}
{description {}}

v Using Jacl:
wsadmin>$AdminTask showSIBMediation {-bus abus -mediationName switchMed}
{uuid 39588C4821BB046E}
{selector {JMSXDeliveryCount > 1000}}
{contextInfo {}}
{discriminator {}}
{allowConcurrentMediation false}
{globalTransaction false}
{mediationName switchMed}
{handlerListName switchHandler}
{description {}}

SIBAdminCommands: WebSphere MQ server administrative
commands for the AdminTask object
Use command scripts to create, modify, list, show and delete WebSphere MQ servers and server bus
members. These commands do not support the automatic resource discovery feature provided by the
administrative console.

Decide which method to use to configure these resources. You can configure WebSphere MQ server
resources by using the wsadmin tool as described in this topic, or by using the administrative console as
described in “Using a WebSphere MQ server to integrate WebSphere MQ queues into a bus” on page
555.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Note: To add a WebSphere MQ server as a bus member, use the addSIBusMember command.

2452 Administering WebSphere applications



createSIBWMQServer command
Use the createSIBWMQServer command to create a new WebSphere MQ server at cell scope.

You can create a new WebSphere MQ server by using the wsadmin tool as described in this topic, or by
using the administrative console as described in “Creating a WebSphere MQ server definition” on page
555.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. This command creates a new WebSphere MQ server at cell scope, and uses the
supplied values to populate its parameters.

Note: When creating a WebSphere MQ server, it is important to understand the significance of the -name
and -serverName parameters. For example, if WebSphere Application Server administration created
a WebSphere MQ server object with the name “My European area server” that represented a
WebSphere MQ queue manager with the serverName QM1. WebSphere Application Server
administration could then create a second WebSphere MQ server object with the name “My UK
country server”, that also represented the same WebSphere MQ queue manager with the
serverName QM1.

Target object

A WebSphere Application Server cell.

Required parameters

-name
The name of the WebSphere MQ server. This value is for administrative purposes only and can be
decided by the administrator. The name is only meaningful inside WebSphere Application Server
administration, and must be unique at cell level. There is no default value. This parameter cannot be
modified.

-serverName
The name of the queue manager or queue-sharing group. This value is the name by which the queue
manager or queue-sharing group is identified, and is allocated by WebSphere MQ administration to
that WebSphere MQ object. The WebSphere Application Server administrator must always use the
name allocated by WebSphere MQ administration.

Chapter 20. Welcome to administering Service integration 2453



-host
The host to which a connection is established for communicating with a queue manager or
queue-sharing group. This value is the host name or the IP address of the queue manager or
queue-sharing group, that this WebSphere MQ server represents. The value is a string and must be
one of the following:

v symbolic host name

v IPv4 address

v IPv6 address

-transportChain
The channel framework outbound transport chain to use when establishing a connection with
WebSphere MQ. If you do not specify this option, a default value of OutboundBasicWMQClient is
assumed.

Conditional parameters

None

Optional parameters

The optional host, port, channel, and authentication alias attributes together specify the connection access
path to this WebSphere MQ server, for messaging applications running in service integration. For more
information, see WebSphere MQ server: Connection and authentication.

-port
The TCP/IP port number on which the queue manager or queue-sharing group that this WebSphere
MQ server represents listens. The default value is 1414.

-channel
The WebSphere MQ client channel name to use when connecting to the queue manager or
queue-sharing group that this WebSphere MQ server represents. This value is the name allocated by
WebSphere MQ administration to the WebSphere MQ object, and must always be used by
WebSphere Application Server administration. The default value is SYSTEM.DEF.SVRCONN.

-description
A short description of the WebSphere MQ server. This value is used for administrative purposes only.

-securityAuthAlias
The authentication alias to use when connecting to a queue manager or queue-sharing group. This
parameter should not be confused with the discovery authentication alias.

-trustUserIds
Determines whether user IDs received in messages from WebSphere MQ are passed on with the
messages by the service integration bus. The application user ID is always set from the jsAppUserId
RFH2 value. If this is not present (either because the key/value pair is not present in the RFH2
header, or because the message does not have a RFH2 header), this field is not set. If you set this
value to FALSE, the user ID is overwritten with the WebSphere MQ server name. This parameter has
two possible values:

TRUE User IDs are propagated into messages.

FALSE User IDs are not propagated into messages.

The default is TRUE.

-allowDiscovery
Determines whether automated discovery of WebSphere MQ resources is performed. This parameter
has two possible values:

TRUE Automated discovery is used.

2454 Administering WebSphere applications



FALSE Automated discovery is not used.

The default is TRUE.

-discoveryAuthAlias
The authentication alias to use when establishing a resource discovery connection to the queue
manager or queue-sharing group. This value should not be confused with the security authentication
alias.

-replyToQueue
The reply-to queue to use for resource discovery. This value is the name allocated by WebSphere MQ
administration to the WebSphere MQ object, and must be the name of a model queue for a temporary
dynamic queue. The WebSphere Application Server administrator must always use the name allocated
by WebSphere MQ administration. The default is SYSTEM.DEFAULT.MODEL.QUEUE.

-type
Determines whether the WebSphere MQ server object is either a queue manager or a queue-sharing
group, as determined by WebSphere Application Server administration. This parameter had two
possible values:

MQ_QUEUE_MANAGER
The WebSphere MQ server represents a queue manager. If you select this value, the resource
discovery process retrieves queue names that belong to queue managers.

MQ_QUEUE_SHARING_GROUP
The WebSphere MQ server represents a queue-sharing group. If you select this value, the
resource discovery process retrieves queue names that belong to queue-sharing groups.

-bindingsMode
Determines whether bindings transport mode connections are used when connecting to a queue
manager or queue-sharing group. Bindings mode connection is available if the application server and
the queue manager are on the same node. It is only possible to connect to a single queue manager in
bindings mode, even if multiple queue managers exist on the same node. This parameter has two
possible values:

TRUE Bindings mode is used if available. If you select this option and bindings mode is not available,
the connections mechanism defaults to client transport mode.

FALSE Client mode is always used.

Example
v Using Jython:

wsadmin>AdminTask.createSIBWMQServer(["-name", "Finance dept QM",
"-serverName", "FDQM", "-type", "MQ_QUEUE_MANAGER", "-bindingsMode", "true",
"-host", "findep01.ibm.com", "-port", 1414,
"-transportChain", "OutboundSecureWMQClient"])

v Using Jacl:
wsadmin>$AdminTask createSIBWMQServer {-name "Finance dept QM"
-serverName FDQM -type MQ_QUEUE_MANAGER -bindingsMode true
-host findep01.ibm.com -port 1414
-transportChain OutboundSecureWMQClient}

modifySIBWMQServer command
Use the modifySIBWMQServer command to modify a WebSphere MQ server.

You can modify a WebSphere MQ server by using the wsadmin tool as described in this topic, or by using
the administrative console as described in “Modifying a WebSphere MQ server definition” on page 557.

To run the command, use the AdminTask object of the wsadmin scripting client.

Chapter 20. Welcome to administering Service integration 2455



The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. This command modifies a WebSphere MQ server. It is not possible to modify the
name or type attributes by using this command.

Note: When modifying a WebSphere MQ server, it is important to understand the significance of the name
and serverName attributes. For example, if a WebSphere Application Server administrator creates a
WebSphere MQ server called “My European Area Server” that represents a WebSphere MQ queue
manager with the serverName QM1, it would then be possible for the administrator to create a second
WebSphere MQ server called “My UK Country Server”, which also represents the same queue
manager.

Target object

A selected WebSphere MQ server.

Required parameters

-name
The name of the WebSphere MQ server. The name is specified when creating the WebSphere MQ
server definition.

Conditional parameters

None

Optional parameters

-serverName
Name of the queue manager or queue-sharing group. This is the name by which the queue manager
or queue-sharing group is identified. The value is allocated by WebSphere MQ administration to that
WebSphere MQ resource. The administrator always uses the name that is allocated by WebSphere
MQ administration.

-host
New value for the host attribute. This value is the name or the IP address of the host to which a
connection is established when communicating with a queue manager or queue-sharing group that this
WebSphere MQ server represents. The value is a string and must be one of the following:

v Symbolic host name

v IPv4 address

v IPv6 address

2456 Administering WebSphere applications



-bindingsMode
New value for the bindingsMode attribute. This value determines whether bindings transport mode
connections are used when connecting to a queue manager or queue-sharing group. Bindings mode
connection is possible if the application server and the queue manager are on the same node, but
connection is only allowed to a single queue manager, even if multiple queue managers exist on the
same node. This parameter has two possible values:

TRUE Bindings mode is used if available. If you select this option and bindings mode is not available,
the connections mechanism defaults to client transport mode.

FALSE Client mode is always used.

The default is TRUE.

-port
New value for the WebSphere MQ port attribute. This value is the TCP/IP port number on which the
queue manager or queue-sharing group that this WebSphere MQ server represents listens. The
default value is 1414.

-channel
New value for the WebSphere MQ channel attribute. This value is the WebSphere MQ client channel
name to use when connecting to the queue manager or queue sharing group that this WebSphere MQ
server represents. This name is allocated by WebSphere MQ administration to the WebSphere MQ
object, and must always be used by the WebSphere Application Server administrator. The default
value is SYSTEM.DEF.SVRCONN.

-description
New value for the description attribute. This value is a short description of the WebSphere MQ
server, and is used for administrative purposes only.

-securityAuthAlias
New value for the securityAuthorizationAlias attribute. This value is the authentication alias to use
when connecting to a queue manager or queue-sharing group. This parameter is not the same as the
discovery authentication alias.

-transportChain
New value for the transportChain attribute. This value is the outbound transport chain to use when
establishing a connection with WebSphere MQ. The default value is OutboundBasicWMQClient.

-trustUserIds
New value for the trustUserIds attribute. Determines whether user IDs received in messages from
WebSphere MQ are propagated into the message or not (that is, whether user IDs received as part of
message data are used in the service integration bus). The application user ID is always set from the
jsAppUserId RFH2 value. If this is not present (either because the key/value pair is not present in the
RFH2 header, or because the message does not have a RFH2 header), this field is not set. If you set
this value to FALSE, the user ID is overwritten with the WebSphere MQ server name. This parameter
has two possible values:

TRUE User IDs are propagated into messages.

FALSE User IDs are not propagated into messages.

The default is TRUE.

-allowDiscovery
New value for the allowDiscovery attribute. This value determines whether automated discovery of
WebSphere MQ resources is performed. This parameter has two possible values:

TRUE Automatic resource discovery is enabled.

FALSE Automatic resource discovery is disabled.

Chapter 20. Welcome to administering Service integration 2457



The default is TRUE.

-discoveryAuthAlias
New value for the discoveryAuthAlias attribute. This value is the authentication alias to use when
establishing a resource discovery connection to a queue manager or queue-sharing group, and is not
the same as the security authentication alias parameter.

-replyToQueue
New value for the replyToQueue attribute. This value is the reply-to queue to use for resource
discovery, is the name allocated by WebSphere MQ administration to the WebSphere MQ object, and
must be the name of a model queue for a temporary dynamic queue. WebSphere Application Server
administration must always use the name that is agreed with WebSphere MQ administration. The
default is SYSTEM.DEFAULT.MODEL.QUEUE.

Example
v Using Jython:

wsadmin>AdminTask.modifySIBWMQServer(["-name", "Finance dept QM",
"-allowDiscovery", "false"] )

v Using Jacl:
wsadmin>$AdminTask modifySIBWMQServer {-name "Finance dept QM"
-allowDiscovery false}

listSIBWMQServers command
Use the listSIBWMQServers command to list the WebSphere MQ servers known to a cell.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. This command lists the WebSphere MQ servers known to the cell.

Target object

The current cell.

Required parameters

None

Conditional parameters

None

2458 Administering WebSphere applications



Optional parameters

None

Example
v Using Jython:

wsadmin>AdminTask.listSIBWMQServers()

v Using Jacl:
wsadmin>$AdminTask listSIBWMQServers

showSIBWMQServer command
Use the showSIBWMQServer command to show details of a WebSphere MQ server.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. This command shows the details of a WebSphere MQ server.

Target object

A selected WebSphere MQ server.

Required parameters

-name
The name of the WebSphere MQ server. This value is the name that you specified in the -name
parameter when creating the WebSphere MQ server.

Conditional parameters

None

Optional parameters

None

Example
v Using Jython:

AdminTask.showSIBWMQServer(["-name", "Finance dept QM"])

v Using Jacl:
$AdminTask showSIBWMQServer {-name "Finance dept QM"}

Chapter 20. Welcome to administering Service integration 2459



deleteSIBWMQServer command
Use the deleteSIBWMQServer command to delete a specified WebSphere MQ server and remove the
associated WebSphere MQ server bus members, assigned queue points and mediation points.

You can delete a WebSphere MQ server by using the wsadmin tool as described in this topic, or by using
the administrative console as described in “Deleting a WebSphere MQ server definition” on page 558.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. This command deletes a specified WebSphere MQ server and removes any
associated WebSphere MQ server bus members, assigned queue points and mediation points. This
operation does not remove the corresponding WebSphere MQ queue manager or queue-sharing group,
and it does not remove messages from any queues that are assigned to corresponding WebSphere MQ
server bus members. The bus members for a given WebSphere MQ server are those created when the
server is added to a bus.

Target object

A selected WebSphere MQ server.

Required parameters

-name
The name of the WebSphere MQ server to delete. This value is specified for the -name parameter (not
the -serverName parameter), when the WebSphere MQ server is created, and is the name of the
WebSphere Application Server administrative object, not the name of the WebSphere MQ object. If
you issue the delete command, it is the WebSphere Application Server administrative object that is
deleted, not the WebSphere MQ resource.

Conditional parameters

None

Optional parameters

None

2460 Administering WebSphere applications



Example
v Using Jython:

AdminTask.deleteSIBWMQServer(["-name", "Finance dept QM"])

v Using Jacl:
$AdminTask deleteSIBWMQServer {-name "Finance dept QM"}

modifySIBWMQServerBusMember command
Use the modifySIBWMQServerBusMember command to modify the attributes of a WebSphere MQ server bus
member.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

A WebSphere MQ server bus member is used for assigning queue points and mediation points to
WebSphere MQ queues. This command modifies the attributes of a WebSphere MQ server bus member.

Target object

A selected WebSphere MQ server bus member.

Required parameters

-name
The administrative name of the WebSphere MQ server bus member. This value is the name specified
in the -name parameter when creating the WebSphere MQ server definition.

-bus
The name of the service integration bus of which the WebSphere MQ server is a member.

Conditional parameters

None

Optional parameters

-virtualQueueManagerName
When sending messages to WebSphere MQ, the WebSphere MQ gateway queue manager sees the
bus as a remote queue manager. The virtual queue manager name is the name that is passed to
WebSphere MQ as the name of this remote queue manager.

Chapter 20. Welcome to administering Service integration 2461



The default value is the name of the Service Integration bus. If this bus name is not a valid name for a
WebSphere MQ queue manager, or if another WebSphere MQ queue manager already has the same
name, replace the default value with a unique, valid name for a WebSphere MQ queue manager.

v It must contain between 1 and 48 characters.

v It must conform to the WebSphere MQ queue naming rules (see the Rules for naming WebSphere
MQ objects topic in the WebSphere MQ information center).

-host
The new value for the overridden host attribute. This value is the name or the IP address of the host
to which a connection is established for communicating with a queue manager or queue-sharing group
that this WebSphere MQ server represents. The value is a string and must be one of the following:

v Symbolic host name

v IPv4 address

v IPv6 address

-port
The new value for the overridden port attribute. This value is the TCP/IP port number on which the
queue manager or queue-sharing group that this WebSphere MQ server represents listens. The
default value is 1414.

-channel
The new value for the overridden channel attribute. This value is the WebSphere MQ client channel
name to use when connecting to the queue manager or queue-sharing group that this WebSphere MQ
server represents. The default value is SYSTEM.DEF.SVRCONN.

-securityAuthAlias
The new value for the overridden securityAuthAlias attribute. This value is the authentication alias to
use when connecting to a queue manager or queue-sharing group. This parameter is not the same as
the discovery authentication alias.

-transportChain
The new value for the overridden transportChain attribute. This value is the outbound transport chain
to use when establishing a connection with WebSphere MQ. The default value is
OutboundBasicWMQClient.

-trustUserIds TRUE | FALSE
The new value for the overridden trustUserIds attribute. This value determines whether user
identifiers that are received in messages from WebSphere MQ are propagated into the message (that
is, whether user identifiers that are received as part of message data are used in the service
integration bus). The application user identifier is always set from the jsAppUserId RFH2 value. If this
is not present (either because the key/value pair is not present in the RFH2 header, or because the
message does not have a RFH2 header), this field is not set. If you set this value to FALSE, the user
identifier is overwritten with the WebSphere MQ server name. This parameter has two possible values:

TRUE User identifiers are propagated into messages.

FALSE User identifiers are not propagated into messages.

The default is TRUE.

Example
v Using Jython:

wsadmin>AdminTask.modifySIBWMQServerBusMember(["-name", "Finance dept QM-Bus1",
"-bus", "Bus1", "-trustUserIds", "false"])

v Using Jacl:
wsadmin>$AdminTask modifySIBWMQServerBusMember {-name "Finance dept QM-Bus1"
-bus Bus1 -trustUserIds false}

2462 Administering WebSphere applications



listSIBWMQServerBusMembers command
Use the listSIBWMQServerBusMembers command to list the WebSphere MQ server bus members known to
the bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. This command lists the WebSphere MQ server bus members known to the bus.

Target object

The current cell.

Required parameters

-bus
The name of the service integration bus of which the WebSphere MQ server is a member.

Conditional parameters

None

Optional parameters

None

Example
v Using Jython:

AdminTask.listSIBWMQServerBusMembers(["-bus", "Bus1"])

v Using Jacl:
$AdminTask listSIBWMQServerBusMembers {-bus Bus1}

showSIBWMQServerBusMember command
Use the showSIBWMQServerBusMember command to show a list of attributes for a WebSphere MQ server bus
member.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Chapter 20. Welcome to administering Service integration 2463



Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

A WebSphere MQ server represents a WebSphere MQ queue manager or (for WebSphere MQ for z/OS)
queue-sharing group. This command shows details of a WebSphere MQ server bus member as a set of
key/value pairs. The command shows details for those attributes that have a value.

Target object

A selected WebSphere MQ server.

Required parameters

-name
The name of the WebSphere MQ server bus member. This value is the name specified in the -name
parameter when creating the WebSphere MQ server definition.

-bus
The name of the bus for which the WebSphere MQ server is a member.

Conditional parameters

None

Optional parameters

None

Example
v Using Jython:

wsadmin>AdminTask.showSIBWMQServerBusMember(["-name", "Finance Dept. QM-Bus1",
"-bus", "Bus1"])

v Using Jacl:
wsadmin>$AdminTask showSIBWMQServerBusMember {-name "Finance Dept. QM-Bus1"
-bus Bus1}

SIBAdminBusSecurityCommands command group for the AdminTask
object
You can use these administrative commands to manage service integration bus security.

These commands provide an alternative to using the administrative console or using the more complex
syntax of wsadmin and JACL.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

2464 Administering WebSphere applications



The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus commands in Jython and a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

populateUniqueNames command
Use the populateUniqueNames command to add missing unique names to the authorization policy for a
service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The populateUniqueNames command queries the user repository for missing unique names, and adds the
missing unique names to the authorization policy for a selected service integration bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

Conditional parameters

None.

Chapter 20. Welcome to administering Service integration 2465



Optional parameters

-force TRUE | FALSE
Whether to update all unique names, or only those that are missing in the authorization policy. This
parameter has two possible values:

TRUE All unique names are updated.

FALSE Missing unique names only are updated.

The default is FALSE.

Example

The following example queries the user repository for Bus1 for unique names, and updates all the unique
names in the authorization policy.
AdminTask.populateUniqueNames(’[-bus Bus1 -force TRUE]’)

listGroupsInBusConnectorRole command
Use the listGroupsInBusConnectorRole command to list all the groups in the connector role for a local
bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the listGroupsInBusConnectorRole command to list the groups in the bus connector role for a local
bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

2466 Administering WebSphere applications



Conditional parameters

None.

Optional parameters

-showUniqueNames TRUE | FALSE
Whether to display unique names. This parameter has two possible values:

TRUE Unique names are displayed.

FALSE Security names are displayed.

The default is FALSE.

Example

The following example lists all the groups in the bus connector role for a bus called Bus1.
AdminTask.listGroupsInBusConnectorRole (’[-bus Bus1]’)

addGroupToBusConnectorRole command
Use the addGroupToBusConnectorRole command to add a group to the connector role for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the addGroupToBusConnectorRole command to add a group to the bus connector role for a local bus.
This command grants the group permission to connect to local destinations.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

Chapter 20. Welcome to administering Service integration 2467



-group groupName
The name of a group you want to add to the bus connector role for the local bus. You can type a
specific group name, or use one of the following specialized group names:

Server This group contains application servers.

AllAuthenticated
This group contains authenticated users only.

Everyone
This group contains all users. Each user is anonymous.

Conditional parameters

None.

Optional parameters

-uniqueName uniqueName
Specify the name that uniquely defines the group in the user registry. If an LDAP user registry is in
use, the unique name is the distinguished name (DN) for the group. You can specify values for both
-uniqueName and -group, but you must ensure that they identify the same group. The command does
not check that the values match.

Examples

The following example adds a group with the group name Group1, and the unique name Group1 to the bus
connector role for a bus called Bus1.
AdminTask.addGroupToBusConnectorRole (’[-bus Bus1 -group Group1 -uniqueName SalesGroup]’)

The following example adds the Server group to the bus connector role for a bus called Bus1.
AdminTask.addGroupToBusConnectorRole (’[-bus Bus1 -group Server]’)

The following example adds the AllAuthenticated group to the bus connector role for a bus called Bus1.
AdminTask.addGroupToBusConnectorRole (’[-bus Bus1 -group AllAuthenticated]’)

The following example adds the Everyone group to the bus connector role for a bus called Bus1.
AdminTask.addGroupToBusConnectorRole (’[-bus Bus1 -group Everyone]’)

removeGroupFromBusConnectorRole command
Use the removeGroupFromBusConnectorRole command to remove a group from the connector role for a
local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

2468 Administering WebSphere applications



v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the removeGroupFromBusConnectorRole command to remove a group from the bus connector role for a
local bus. Removing a group from this role prevents the group from accessing local destinations, or
sending messages to destinations on foreign buses.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-group groupName | uniqueName
The name of a group you want to remove from the bus connector role for the local bus. You can type
one of the following names:

v A security group name, or one of the following specialized group names:

Server This group contains application servers.

AllAuthenticated
This group contains authenticated users only.

Everyone
This group contains all users. Each user is anonymous.

v A unique group name.

Conditional parameters

None.

Optional parameters

None.

Examples

The following example removes a group called Group1 from the bus connector role for a bus called Bus1.
AdminTask.removeGroupFromBusConnectorRole (’[-bus Bus1 -group Group1]’)

The following example removes the Server group from the bus connector role for a bus called Bus1.
AdminTask.removeGroupFromBusConnectorRole (’[-bus Bus1 -group Server]’)

listUsersInBusConnectorRole command
Use the listUsersInBusConnectorRole command to list users in the connector role for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

Chapter 20. Welcome to administering Service integration 2469



The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the listUsersInBusConnectorRole command to list all the users in the bus connector role for a
selected local bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

Conditional parameters

None.

Optional parameters

-showUniqueNames TRUE | FALSE
Whether to display unique names. This parameter has two possible values:

TRUE Unique names are displayed.

FALSE Security names are displayed.

The default is FALSE.

Example

The following example lists users in the bus connector role for a bus called Bus1.
AdminTask.listUsersInBusConnectorRole (’[-bus Bus1]’)

addUserToBusConnectorRole command
Use the addUserToBusConnectorRole command to add a user to the connector role for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

2470 Administering WebSphere applications



The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the addUserToBusConnectorRole command to add a user to the bus connector role for a local bus.
This command grants the user permission to connect to local destinations.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-user userName
The name of a user you want to add to the bus connector role for the local bus.

Conditional parameters

None.

Optional parameters

-uniqueName uniqueName
Specify the name that uniquely defines the user in the user registry. If an LDAP user registry is in use,
the unique name is the distinguished name (DN) for the user. You can specify values for both
-uniqueName and -user, but you must ensure that they identify the same user. The command does not
check that the values match.

Examples

The following example adds a user called User1 to the bus connector role for a bus called Bus1.
AdminTask.addUserToBusConnectorRole (’[-bus Bus1 -user User1]’)

Chapter 20. Welcome to administering Service integration 2471



removeUserFromBusConnectorRole command
Use the removeUserFromBusConnectorRole command to remove a user from the connector role for a local
bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the removeUserFromBusConnectorRole command to remove a user from the bus connector role for a
local bus. Removing a user from this role prevents the user from accessing local destinations, or sending
messages to destinations on foreign buses.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-user userName or uniqueName
The name of a user you want to remove from the bus connector role for the local bus. You can type
one of the following names:

v A security user name.

v A unique user name.

Conditional parameters

None.

Optional parameters

None.

2472 Administering WebSphere applications



Examples

The following example removes a user called User1 from the bus connector role for a bus called Bus1.
AdminTask.removeUserFromBusConnectorRole (’[-bus Bus1 -user User1]’)

The following example removes the Server user from the bus connector role for a bus called Bus1.
AdminTask.removeUserFromBusConnectorRole (’[-bus Bus1 -user Server]’)

listGroupsInDefaultRole command
Use the listGroupsInDefaultRole command to list the groups in the default roles for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the listGroupsInDefaultRole command to list the groups in the default roles for a selected local bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-role roleType
The role type for which you want to list groups.

Sender This role type is authorized to send messages to destinations on the local bus.

Receiver
This role type is authorized to receive messages from destinations on the local bus.

Browser
This role type is authorized to browse messages on destinations on the local bus.

Creator
This role type is authorized to create messages on destinations on the local bus.

Chapter 20. Welcome to administering Service integration 2473



Conditional parameters

None.

Optional parameters

-showUniqueNames TRUE | FALSE
Whether to display unique names. This parameter has two possible values:

TRUE Unique names are displayed.

FALSE Security names are displayed.

The default is FALSE.

Examples

The following example lists the groups in the Sender role for a bus called Bus1.
AdminTask.listGroupsInDefaultRole (’[-bus Bus1 -role Sender]’)

addGroupToDefaultRole command
Use the addGroupToDefaultRole command to add a group to the default roles for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the addGroupToDefaultRole command to grant a group default access to all local bus destinations for
the specified roles. Adding a group to the default role does not grant access to local destinations where
the inheritance of default access is disallowed. To grant access to a local destination where inheritance is
disallowed, you must add the group to a destination role. For more information, see
“addGroupToDestinationRole command” on page 2497.

You can use this command to define the access control policy for a messaging resource that does not yet
exist. This approach ensures that the messaging resource is secure from the moment it is created.

2474 Administering WebSphere applications



Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-role roleType
The role type to which you want to assign the group. You can assign a group to the following role
types:

Sender This role type is authorized to send messages to destinations on the local bus.

Receiver
This role type is authorized to receive messages from destinations on the local bus.

Browser
This role type is authorized to browse messages on destinations on the local bus.

Creator
This role type is authorized to create messages on destinations on the local bus.

-group groupName
The name of a group you want to add to default roles for the local bus. You can type a specific group
name, or use one of the following specialized group names:

Server This group contains application servers.

AllAuthenticated
This group contains authenticated users only.

Everyone
This group contains all users. Each user is anonymous.

Conditional parameters

None.

Optional parameters

-uniqueName uniqueName
Specify the name that uniquely defines the group in the user registry. If an LDAP user registry is in
use, the unique name is the distinguished name (DN) for the group. You can specify values for both
-uniqueName and -group, but you must ensure that they identify the same group. The command does
not check that the values match.

Examples

The following example adds a group with the group name Group1, and the unique name SalesGroup, to the
sender role type for a bus called Bus1.
AdminTask.addGroupToDefaultRole (’[-bus Bus1 -role Sender -group Group1 uniqueName SalesGroup]’)

The following example adds the AllAuthenticated group to the browser role for a bus called Bus1.
AdminTask.addGroupToDefaultRole (’[-bus Bus1 -role Browser -group AllAuthenticated]’)

Chapter 20. Welcome to administering Service integration 2475



removeGroupfromDefaultRole command
Use the removeGroupFromDefaultRole command to remove a group from the default roles for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the removeGroupFromDefaultRole command to remove a group from the default roles for a local bus.
Removing a group from the default roles prevents access to the local bus in the default roles.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-role roleType
The role type from which you want to remove the group.

Sender This role type is authorized to send messages to destinations on the local bus.

Receiver
This role type is authorized to receive messages from destinations on the local bus.

Browser
This role type is authorized to browse messages on destinations on the local bus.

Creator
This role type is authorized to create messages on destinations on the local bus.

-group groupName or uniqueName
The name of a group you want to remove from the default roles for the local bus. You can type one of
the following names:

v A security group name, or one of the following specialized group names:

Server This group contains application servers.

2476 Administering WebSphere applications



AllAuthenticated
This group contains authenticated users only.

Everyone
This group contains all users. Each user is anonymous.

v A unique group name.

Conditional parameters

None.

Optional parameters

None.

Examples

The following example removes a group called Group1 from the default Sender role type for a bus called
Bus1.
AdminTask.removeGroupFromDefaultRole (’[-bus Bus1 -role Sender -group Group1]’)

The following example removes the AllAuthenticated group from the default browser role for a bus called
Bus1.
AdminTask.removeGroupFromDefaultRole (’[-bus Bus1 -role Browser -group AllAuthenticated]’)

listUsersInDefaultRole command
Use the listUsersInDefaultRole command to list users in the default roles for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the listUsersInDefaultRole command to list all the users in the default roles for a selected local bus.

Target object

None.

Chapter 20. Welcome to administering Service integration 2477



Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-role roleType
The role type for which you want to list users. You can specify the following role types:

Sender This role type is authorized to send messages to destinations on the local bus.

Receiver
This role type is authorized to receive messages from destinations on the local bus.

Browser
This role type is authorized to browse messages on destinations on the local bus.

Creator
This role type is authorized to create messages on destinations on the local bus.

Conditional parameters

None.

Optional parameters

-showUniqueNames TRUE | FALSE
Whether to display unique names. This parameter has two possible values:

TRUE Unique names are displayed.

FALSE Security names are displayed.

The default value is FALSE.

Example

The following example lists users in the Sender role type for a bus called Bus1.
AdminTask.listUsersInDefaultRole (’[-bus Bus1 -role Sender]’)

addUserToDefaultRole command
Use the addUserToDefaultRole command to add a user to the default roles for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

2478 Administering WebSphere applications



AdminConfig.save()

Purpose

Use the addUserToDefaultRole command to grant a user default access to all local bus destinations for the
specified roles. Adding a user to the default role does not grant access to local destinations where the
inheritance of default access is disallowed. To grant access to a local destination where inheritance is
disallowed, you must add the user to a destination role. For more information, see
“addUserToDestinationRole command” on page 2502.

You can use this command to define the access control policy for a messaging resource that does not yet
exist. This approach ensures that the messaging resource is secure from the moment it is created.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-role roleType
The role type to which you want to assign the user. You can assign a user to the following role types:

Sender This role type is authorized to send messages to destinations on the local bus.

Receiver
This role type is authorized to receive messages from destinations on the local bus.

Browser
This role type is authorized to browse messages on destinations on the local bus.

Creator
This role type is authorized to create messages on destinations on the local bus.

-user userName
The name of a user you want to add to the bus connector role for the local bus.

Conditional parameters

None.

Optional parameters

-uniqueName uniqueName
Specify the name that uniquely defines the user in the user registry. If an LDAP user registry is in use,
the unique name is the distinguished name (DN) for the user. You can specify values for both
-uniqueName and -user, but you must ensure that they identify the same user. The command does not
check that the values match.

Examples

The following example adds a user called User1 to the sender role type for a bus called Bus1.
AdminTask.addUserToDefaultRole (’[-bus Bus1 -role Sender -user User1]’)

Chapter 20. Welcome to administering Service integration 2479



removeUserfromDefaultRole command
Use the removeGroupFromDefaultRole command from remove a user from the default roles for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the removeUserFromDefaultRole command to remove user from default roles for a local bus.
Removing a user from the default roles prevents access to the local bus in the default roles.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-role roleType
The role type you want to remove the user from. You can remove a user from the following role types:

Sender This role type is authorized to send messages to destinations on the local bus.

Receiver
This role type is authorized to receive messages from destinations on the local bus.

Browser
This role type is authorized to browse messages on destinations on the local bus.

Creator
This role type is authorized to create messages on destinations on the local bus.

-user userName or uniqueName
The name of a user you want to remove from the default roles for the local bus. You can type one of
the following names:

v A security user name.

v A unique user name.

2480 Administering WebSphere applications



Conditional parameters

None.

Optional parameters

None.

Examples

The following example removes a user called User1 from the Sender role type for a bus called Bus1.
AdminTask removeUserFromDefaultRole (’[-bus Bus1 -role Sender -User User1]’)

listGroupsInTopicRole command
Use the listGroupsInTopicRole command to list the groups in topic roles for a topic space on a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the listGroupsInTopicRole command to list the groups in topic roles for a selected topic in the topic
hierarchy for a selected local bus.

You can use this command to define the access control policy for a topic that does not yet exist.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-topicSpace topicSpaceName
The name of the topic space.

Chapter 20. Welcome to administering Service integration 2481



-topic topicName
The name of the topic.

-role roleType
You can specify the Sender or Receiver roles for a topic.

Conditional parameters

None.

Optional parameters

-showUniqueNames TRUE | FALSE
Whether to display unique names. This parameter has two possible values:

TRUE Unique names are displayed.

FALSE Security names are displayed.

The default value is FALSE.

Examples

The following example lists the groups in the Sender role for a topic called football, in the topic space
called Sport, on a local bus called Bus1.
listGroupsInTopicRole { -bus Bus1 -topicSpace Sport -topic football -role Sender}

addGroupToTopicRole command
Use the addGroupToTopicRole command to add a group to a topic role within a specified topic space.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the addGroupToTopicRole command to add a group to the sender or receiver roles for a topic
anywhere in the topic hierarchy for a local bus. The roles that you specify for the topic are additional to
any roles that the topic inherits from its parent in the topic hierarchy.

2482 Administering WebSphere applications



You can use this command to define the access control policy for a topic that does not yet exist. By
defining the access control policy first, you ensure that the topic is secure from the moment it is created.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-topicSpace topicSpaceName
The name of the topic space.

-topic topicName
The name of the topic.

-role roleName
You can specify the Sender or Receiver roles for a topic.

-group groupName
The name of the group that you want to add to the sender or receiver roles for a topic. You can
specify a group name, or one of the following specialized group names:

Server This group contains application servers.

AllAuthenticated
This group contains authenticated users only.

Everyone
This group contains all users. Each user is anonymous.

Conditional parameters

None.

Optional parameters

-uniqueName uniqueName
Specify the name that uniquely defines the group in the user registry. If an LDAP user registry is in
use, the unique name is the distinguished name (DN) for the group. You can specify values for both
-uniqueName and -group, but you must ensure that they identify the same group. The command does
not check that the values match.

Examples

The following example adds a group with the group name Group1, and the unique name SalesGroup, to the
Sender role for a topic called football, in the topic space called Sport, on a local bus called Bus1.
AdminTask.addGroupToTopicRole (’[-bus Bus1 -topicSpace Sport
-topic football -role Sender -group Group1 -uniqueName SalesGroup]’)

removeGroupFromTopicRole command
Use the removeGroupFromTopicRole command to remove a group from a topic role within a specified topic
space.

To run the command, use the AdminTask object of the wsadmin scripting client.

Chapter 20. Welcome to administering Service integration 2483



The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the removeGroupFromTopicRole command to remove a group from the sender or receiver roles for a
topic anywhere in the topic hierarchy for a local bus. Removing a group from topic roles prevents the
group from accessing the topic space in the topic roles.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-topicSpace topicSpaceName
The name of the topic space.

-topic topicName
The name of the topic.

-role roleName
You can specify the Sender or Receiver roles for a topic.

-group groupName or uniqueName
The name of a group you want to remove from the topic roles for the local bus. You can type one of
the following names:

v A security group name, or one of the following specialized group names:

Server This group contains application servers.

AllAuthenticated
This group contains authenticated users only.

Everyone
This group contains all users. Each user is anonymous.

v A unique group name.

Conditional parameters

None.

2484 Administering WebSphere applications



Optional parameters

None.

Examples

The following example removes a group called Group1, from the Sender role for a topic called football, in
the topic space called Sport, on a local bus called Bus1.
removeGroupFromTopicRole { -bus Bus1 -topicSpace Sport -topic football -role Sender -group Group1}

listUsersInTopicRole command
Use the listUsersInTopicRole command to list users in the topic roles within a specified topic space.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the listUsersInTopicRole command to list users in the topic roles for a selected topic in the topic
hierarchy for a selected local bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-topicSpace topicSpaceName
The name of the topic space.

-topic topicName
The name of the topic.

-role roleType
You can specify the Sender or Receiver roles for a topic.

Chapter 20. Welcome to administering Service integration 2485



Conditional parameters

None.

Optional parameters

-showUniqueNames TRUE | FALSE
Whether to display unique names. This parameter has two possible values:

TRUE Unique names are displayed.

FALSE Security names are displayed.

The default is FALSE.

Example

The following example lists the users in the Sender role for a topic called football, in the topic space
called Sport, on a local bus called Bus1.
AdminTask.listUsersInTopicRole (’[-bus Bus1 -topicSpace Sport -topic football -role Sender]’)

addUserToTopicRole command
Use the addUserToTopicRole command to add a user to a topic role within a specified topic space.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the addUserToTopicRole command to add a user to the sender or receiver roles for a topic anywhere
in the topic hierarchy for a local bus. The roles that you specify for the topic are additional to any roles that
the topic inherits from its parent in the topic hierarchy.

You can use this command to define the access control policy for a topic that does not yet exist. By
defining the access control policy first, you ensure that the topic is secure from the moment it is created.

Target object

None.

2486 Administering WebSphere applications



Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-topicSpace topicSpaceName
The name of the topic space.

-topic topicName
The name of the topic.

-role roleName
You can specify the Sender or Receiver roles for a topic.

-user userName
The name of the user that you want to add to the Sender or Receiver roles for a topic.

Conditional parameters

None.

Optional parameters

-uniqueName uniqueName
Specify the name that uniquely defines the user in the user registry. If an LDAP user registry is in use,
the unique name is the distinguished name (DN) for the user. You can specify values for both
-uniqueName and -user, but you must ensure that they identify the same user. The command does not
check that the values match.

Examples

The following example adds a user called User1, to the Sender role for a topic called football, in the topic
space called Sport, on a local bus called Bus1.
Admintask.addUserToTopicRole (’[-bus Bus1 -topicSpace Sport -topic football -role Sender -user User1]’)

removeUserFromTopicRole command
Use the removeUserFromTopicRole command to remove a user from a topic role within a specified topic
space.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Chapter 20. Welcome to administering Service integration 2487



Purpose

Use the removeUserFromTopicRole command to remove a user from the sender or receiver roles for a topic
anywhere in the topic hierarchy for a local bus. Removing a user from topic roles prevents the user from
accessing the topic space in the topic roles.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-topicSpace topicSpaceName
The name of the topic space.

-topic topicName
The name of the topic.

-role roleType
You can specify the Sender or Receiver roles for a topic.

-user userName or uniqueName
The name of a user you want to remove from the topic roles for the local bus. You can type one of the
following names:

v A security user name.

v A unique user name.

Conditional parameters

None.

Optional parameters

None.

Examples

The following example removes a user called User1, from the Sender role for a topic called football, in
the topic space called Sport, on a local bus called Bus1.
AdminTask.removeUserFromTopicRole (’[-bus Bus1 -topicSpace Sport
-topic football -role Sender -user User1]’)

listGroupsInTopicSpaceRootRole command
Use the listGroupInTopicSpaceRootRole command to list all the groups in topic space roles on the topic
space root for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

2488 Administering WebSphere applications



Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the listGroupsInTopicRootSpaceRole command to list groups in topic space root roles for a selected
topic space on a selected local bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-topicSpace topicSpaceName
The name of the topic space.

-role roleType
You can specify the Sender or Receiver roles for a topic.

Conditional parameters

None.

Optional parameters

-showUniqueNames TRUE | FALSE
Whether to display unique names. This parameter has two possible values:

TRUE Unique names are displayed.

FALSE Security names are displayed.

The default is FALSE.

Examples

The following example lists groups in the Sender role for the topic space root, for a topic space called
Sport, on a local bus called Bus1.
AdminTask.listGroupsInTopicSpaceRootRole (’[-bus Bus1 -topicSpace Sport -role Sender]’)

addGroupToTopicSpaceRootRole command
Use the addGroupToTopicSpaceRootRole command to add a group to topic space roles on the topic space
root.

To run the command, use the AdminTask object of the wsadmin scripting client.

Chapter 20. Welcome to administering Service integration 2489



The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the addGroupToTopicRootSpaceRole command to grant a group permission to access the topic space
root in the sender and receiver roles. This is in addition to any access permissions granted to the topics in
the topic space.

You can use this command to define the access control policy for a topic that does not yet exist. By
defining the access control policy first, you ensure that the topic is secure from the moment it is created.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-topicSpace topicSpaceName
The name of the topic space.

-role roleName
You can specify the Sender or Receiver roles for a topic.

-group groupName
The name of the group that you want to add to the Sender or Receiver roles for the topic space root.
You can specify a group name, or one of the following specialized group names:

Server This group contains application servers.

AllAuthenticated
This group contains authenticated users only.

Everyone
This group contains all users. Each user is anonymous.

Conditional parameters

None.

2490 Administering WebSphere applications



Optional parameters

-uniqueName uniqueName
Specify the name that uniquely defines the group in the user registry. If an LDAP user registry is in
use, the unique name is the distinguished name (DN) for the group. You can specify values for both
-uniqueName and -group, but you must ensure that they identify the same group. The command does
not check that the values match.

Examples

The following example adds a group called Group1, and the unique name SalesGroup to the Sender role for
the topic space root, for a topic space called Sport, on a local bus called Bus1.
AdminTask.addGroupToTopicSpaceRootRole (’[-bus Bus1 -topicSpace Sport
-role Sender -group Group1 uniqueName SalesGroup]’)

removeGroupFromTopicSpaceRootRole command
Use the removeGroupFromTopicSpaceRootRole command to remove a group from access roles on the topic
space root.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the removeGroupFromTopicSpaceRootRole command to remove a group from the Sender and Receiver
roles for the topic space root.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-topicSpace topicSpaceName
The name of the topic space.

Chapter 20. Welcome to administering Service integration 2491



-role roleName
You can specify the Sender or Receiver roles for a topic.

-group groupName or uniqueName
The name of a group you want to remove from the topic space root roles for the local bus. You can
type one of the following names:

v A security group name, or one of the following specialized group names:

Server This group contains application servers.

AllAuthenticated
This group contains authenticated users only.

Everyone
This group contains all users. Each user is anonymous.

v A unique group name.

Conditional parameters

None.

Optional parameters

None.

Examples

The following example removes a group called Group1 from the Sender role for the topic space root, for a
topic space called Sport, on a local bus called Bus1.
AdminTask.removeGroupFromTopicSpaceRootRole (’[-bus Bus1 -topicSpace Sport -role Sender -group Group1]’)

listUsersInTopicSpaceRootRole command
Use the listUsersInTopicSpaceRootRole command to list the users in the sender and receiver roles on
the topic space root.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

2492 Administering WebSphere applications



Purpose

Use the listUsersInTopicSpaceRootRole command to list users in the topic space root roles for a selected
local bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-topicSpace topicSpaceName
The name of the topic space.

-role roleType
You can specify the Sender or Receiver roles for the topic space root.

Conditional parameters

None.

Optional parameters

-showUniqueNames TRUE | FALSE
Whether to display unique names. This parameter has two possible values:

TRUE Unique names are displayed.

FALSE Security names are displayed.

The default value is FALSE.

Example

The following example lists users in the Sender role for the topic space root, for a topic space called Sport,
on a local bus called Bus1.
Admin.TasklistUsersInTopicSpaceRootRole { -bus Bus1 -topicSpace Sport -role Sender}

addUserToTopicSpaceRootRole command
Use the addUserToTopicSpaceRootRole command to add a user to the sender and receiver roles on the
topic space root.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

Chapter 20. Welcome to administering Service integration 2493



v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the addUserToTopicSpaceRootRole command to grant a user permission to access the topic space root
in the sender and receiver roles. This is in addition to any access permissions granted to the topics in the
topic space.

You can use this command to define the access control policy for a topic that does not yet exist. By
defining the access control policy first, you ensure that the topic is secure from the moment it is created.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-topicSpace topicSpaceName
The name of the topic space.

-role roleName
You can specify the Sender or Receiver roles for the topic space root.

-user userName
The name of the user that you want to add to the Sender or Receiver roles for the topic space root.

Conditional parameters

None.

Optional parameters

-uniqueName uniqueName
Specify the name that uniquely defines the user in the user registry. If an LDAP user registry is in use,
the unique name is the distinguished name (DN) for the user. You can specify values for both
-uniqueName and -user, but you must ensure that they identify the same user. The command does not
check that the values match.

Examples

The following example adds a user called User1, to the Sender role for the topic space root, for a topic
space called Sport, on a local bus called Bus1.
AdminTask.addUserToTopicSpaceRootRole (’[-bus Bus1 -topicSpace Sport -role Sender -user User1]’)

removeUserFromTopicSpaceRootRole command
Use the removeUserFromTopicSpaceRootRole command to remove a user from access roles on the topic
space root.

To run the command, use the AdminTask object of the wsadmin scripting client.

2494 Administering WebSphere applications



The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the removeUserFromTopicSpaceRootRole command to remove a user from the Sender and Receiver
roles for the topic space root.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-topicSpace topicSpaceName
The name of the topic space.

-role roleType
You can specify the Sender or Receiver roles for a topic.

-user userName or uniqueName
The name of a user you want to remove from the topic space root roles for the local bus.

Conditional parameters

None.

Optional parameters

None.

Examples

The following example removes a user called User1 from the Sender role for the topic space root, for a
topic space called Sport, on a local bus called Bus1.
AdminTask.removeUserFromTopicSpaceRootRole (’[-bus Bus1 -topicSpace Sport -role Sender -user User1]’)

Chapter 20. Welcome to administering Service integration 2495



listGroupsInDestinationRole command
Use the listGroupsInDestinationRole command to list the groups in the destination roles for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the listGroupsInDestinationRole command to list all the groups in destination roles for a selected
local bus. The roles you can specify depend on the type of destination.

Target object

None.

Required parameters

-type destinationType
You can specify one of the following destination types:

v Queue

v Port

v TopicSpace

v ForeignDestination

v Alias

The allowed roles for a destination depend on the type of the destination as defined in “Administering
destination roles” on page 2075.

If you are specifying a destinationType that is either foreignDestination or alias, the foreign bus name
that you specify must be the name of the foreign bus hosting the destination.

If you specify a destinationType of queue or topic, the foreign bus name is ignored. The authorization
is granted against the destination in the local bus.

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-role roleType
You can specify one of the following role types, depending on the -type you have specified.

Sender This role type is authorized to send messages to destinations on the local bus.

Receiver
This role type is authorized to receive messages from destinations on the local bus.

2496 Administering WebSphere applications



Browser
This role type is authorized to browse messages on destinations on the local bus.

Conditional parameters

None.

Optional parameters

-showUniqueNames TRUE | FALSE
Whether to display unique names. This parameter has two possible values:

TRUE Unique names are displayed.

FALSE Security names are displayed.

The default value is FALSE.

Examples

The following example lists groups in the Sender role for a queue type destination called Queue1, on a local
bus called Bus1.
AdminTask.listGroupsInDestinationRole (’[-type queue -bus Bus1 -destination Queue1 -role Sender]’)

The following example lists groups in the Receiver role for a queue type destination called Queue2, on a
local bus called Bus1.
AdminTask.listGroupsInDestinationRole (’[-type queue -bus BusName -destination Queue2 -role Receiver]’)

addGroupToDestinationRole command
Use the addGroupToDestinationRole command to add a group to the destination roles for a local or foreign
bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the addGroupToDestinationRole command to grant a group access to local bus destinations for the
specified roles. The roles you can specify depend on the type of destination.

Chapter 20. Welcome to administering Service integration 2497



Target object

None.

Required parameters

-type destinationType
You can specify one of the following destination types:

v Queue

v Port

v TopicSpace

v ForeignDestination

v Alias

The allowed roles for a destination depend on the type of the destination as defined in “Administering
destination roles” on page 2075.

If you are specifying a destinationType that is either foreignDestination or alias, the foreign bus name
that you specify must be the name of the foreign bus hosting the destination.

If you specify a destinationType of queue or topic, the foreign bus name is ignored. The authorization
is granted against the destination in the local bus.

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-role roleType
You can specify one of the following role types, depending on the -type you have specified.

Sender This role type applies to alias, foreignDestination, port, queue, and topicSpace destination
types.

Receiver
This role type applies to alias, port, queue, and topicSpace destination types.

Browser
This role type applies to alias, port, and queue destination types.

-group groupName
The name of the group that you want to add to the destination role type for the local bus. You can
specify a group name, or one of the following specialized group names:

Server This group contains application servers.

AllAuthenticated
This group contains authenticated users only.

Everyone
This group contains all users. Each user is anonymous.

Conditional parameters

None.

Optional parameters

-foreignBus foreignBusName
Specify the name of the foreign bus. If you are adding a group to a destination on a foreign destination
or an alias, you must specify the name of the foreign bus that hosts the foreign destination or the
alias.

2498 Administering WebSphere applications



-uniqueName uniqueName
This parameter is valid only when used with WebSphere Application Server Version 7.0 or later
application servers. Do not use it with earlier versions. Specify the name that uniquely defines the
group in the user registry. If an LDAP user registry is in use, the unique name is the distinguished
name (DN) for the group. You can specify values for both -uniqueName and -group, but you must
ensure that they identify the same group. The command does not check that the values match.

Examples

The following example adds a group with the group name Group1, and the unique name SalesGroup to the
sender role on a queue type destination called Queue1, on a local bus called Bus1.
AdminTask.addGroupToDestinationRole (’[-type queue -bus Bus1
-destination Queue1 -role Sender -group Group1 -uniqueName SalesGroup]’)

The following example adds a group called Group2 to the receiver role on a queue type destination called
Queue2, on a local bus called Bus1.
AdminTask.addGroupToDestinationRole (’[-type queue -bus Bus1
-destination Queue2 -role Receiver -group Group2]’)

removeGroupFromDestinationRole command
Use the removeGroupFromDestinationRole command to remove a group from the destination roles for a
local or foreign bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the removeGroupFromDestinationRole command remove a group from destination roles for a selected
local bus. By removing a group from destination roles, you prevent the group from accessing the local bus.

Target object

None.

Required parameters

-type destinationType
You can specify one of the following destination types:

v Queue

v Port

Chapter 20. Welcome to administering Service integration 2499



v TopicSpace

v ForeignDestination

v Alias

The allowed roles for a destination depend on the type of the destination as defined in “Administering
destination roles” on page 2075.

If you are specifying a destinationType that is either foreignDestination or alias, the foreign bus name
that you specify must be the name of the foreign bus hosting the destination.

If you specify a destinationType of queue or topic, the foreign bus name is ignored. The authorization
is granted against the destination in the local bus.

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-role roleType
You can specify one of the following role types, depending on the destinationType you have specified.

Sender This role type is authorized to send messages to destinations on the local bus.

Receiver
This role type is authorized to receive messages from destinations on the local bus.

Browser
This role type is authorized to browse messages on destinations on the local bus.

-group groupName or uniqueName
The name of a group you want to remove from the destination roles for the local bus. You can type
one of the following names:

v A security group name, or one of the following specialized group names:

Server This group contains application servers.

AllAuthenticated
This group contains authenticated users only.

Everyone
This group contains all users. Each user is anonymous.

v A unique group name.

Conditional parameters

None.

Optional parameters

-foreignBus foreignBusName
Specify the name of the foreign bus. If you are removing a group from a destination role on a foreign
destination or an alias, you must specify the name of the foreign bus that hosts the foreign destination
or the alias.

Examples

The following example removes a group called Group1 from the Sender role for a queue type destination
called Queue1, on a local bus called Bus1.
removeGroupFromDestinationRole { -type queue -bus Bus1
-destination Queue1 -role Sender -group Group1}

The following example removes a group called Group2 from the Receiver role for a queue type destination
called Queue2, on a local bus called Bus1.

2500 Administering WebSphere applications



removeGroupFromDestinationRole { -type queue -bus Bus1
-destination Queue2 -role Receiver -group Group2}

listUsersInDestinationRole command
Use the listUsersInDestinationRole command to list users in the destination roles for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the listUsersInDestinationRole command list the users in destination roles for a selected local bus.
The roles you can specify depend on the type of destination.

Target object

None.

Required parameters

-type destinationType
You can specify one of the following destination types:

v Queue

v Port

v TopicSpace

v ForeignDestination

v Alias

The allowed roles for a destination depend on the type of the destination as defined in “Administering
destination roles” on page 2075.

If you are specifying a destinationType that is either foreignDestination or alias, the foreign bus name
that you specify must be the name of the foreign bus hosting the destination.

If you specify a destinationType of queue or topic, the foreign bus name is ignored. The authorization
is granted against the destination in the local bus.

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-role roleType
You can specify one of the following role types, depending on the -type you have specified.

Chapter 20. Welcome to administering Service integration 2501



Sender This role type applies to alias, foreignDestination, port, queue, and topicSpace destination
types.

Receiver
This role type applies to alias, port, queue, and topicSpace destination types.

Browser
This role type applies to alias, port, and queue destination types.

Conditional parameters

None.

Optional parameters

-foreignBus foreignBusName
Specify the name of the foreign bus if you have specified a ForeignDestination or Alias destination
type.

-showUniqueNames TRUE | FALSE
Whether to display unique names. This parameter has two possible values:

TRUE Unique names are displayed.

FALSE Security names are displayed.

The default is FALSE.

Example

The following example lists users in the Sender role on a queue type destination called Queue1, on a local
bus called Bus1.
AdminTask.listUsersInDestinationRole (’[-type queue -bus Bus1 -destination Queue1 -role Sender]’)

addUserToDestinationRole command
Use the addUserToDestinationRole command to add a user to the destination roles for a local or foreign
bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

2502 Administering WebSphere applications



Purpose

Use the addUserToDestinationRole command grant a user access to local bus destinations for the
specified roles. The roles you can specify depend on the type of destination.

Target object

None.

Required parameters

-type destinationType
You can specify one of the following destination types:

v Queue

v Port

v TopicSpace

v ForeignDestination

v Alias

The allowed roles for a destination depend on the type of the destination as defined in “Administering
destination roles” on page 2075.

If you are specifying a destinationType that is either foreignDestination or alias, the foreign bus name
that you specify must be the name of the foreign bus hosting the destination.

If you specify a destinationType of queue or topic, the foreign bus name is ignored. The authorization
is granted against the destination in the local bus.

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-role roleType
You can specify one of the following role types, depending on the -type you have specified.

Sender This role type is authorized to send messages to destinations on the local bus.

Receiver
This role type is authorized to receive messages from destinations on the local bus.

Browser
This role type is authorized to browse messages on destinations on the local bus.

-user userName
The name of the user that you want to add to the destination role type for the local bus.

Conditional parameters

None.

Optional parameters

-foreignBus foreignBusName
Specify the name of the foreign bus. If you are adding a user to a destination on a foreign destination
or an alias, you must specify the name of the foreign bus that hosts the foreign destination or the
alias.

-uniqueName uniqueName
This parameter is valid only when used with WebSphere Application Server Version 7.0 or later
application servers. Do not use it with earlier versions. Specify the name that uniquely defines the user
in the user registry. If an LDAP user registry is in use, the unique name is the distinguished name

Chapter 20. Welcome to administering Service integration 2503



(DN) for the user. You can specify values for both -uniqueName and -user, but you must ensure that
they identify the same user. The command does not check that the values match.

Examples

The following example adds a user called User1 to the sender role on a queue type destination called
Queue1, on a local bus called Bus1.
Admintask.addUserToDestinationRole (’[-type queue -bus Bus1
-destination Queue1 -role Sender -user User1]’)

The following example adds a user called User2 to the receiver role on a queue type destination called
Queue2, on a local bus called Bus1.
Admintask.addUserToDestinationRole (’[-type queue -bus Bus1
-destination Queue2 -role Receiver -user User2]’)

removeUserFromDestinationRole command
Use the removeUserFromDestinationRole command to remove a user from the destination roles for a local
or foreign bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the removeUserFromDestinationRole command to remove a user from destination roles for a selected
local bus. By removing a user from destination roles, you prevent the user from accessing the local bus.

Target object

None.

Required parameters

-type destinationType
You can specify one of the following destination types:

v Queue

v Port

v TopicSpace

v ForeignDestination

v Alias

2504 Administering WebSphere applications



The allowed roles for a destination depend on the type of the destination as defined in “Administering
destination roles” on page 2075.

If you are specifying a destinationType that is either foreignDestination or alias, the foreign bus name
that you specify must be the name of the foreign bus hosting the destination.

If you specify a destinationType of queue or topic, the foreign bus name is ignored. The authorization
is granted against the destination in the local bus.

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-role roleType
You can specify one of the following role types, depending on the -type you have specified.

Sender This role type is authorized to send messages to destinations on the local bus.

Receiver
This role type is authorized to receive messages from destinations on the local bus.

Browser
This role type is authorized to browse messages on destinations on the local bus.

-user userName or uniqueName
The name of a user you want to remove from the destination roles for the local bus. You can type one
of the following names:

v A security user name.

v A unique user name.

Conditional parameters

None.

Optional parameters

-foreignBus foreignBusName
Specify the name of the foreign bus. If you are removing a user from a destination role on a foreign
destination or an alias, you must specify the name of the foreign bus that hosts the foreign destination
or the alias.

Examples

The following example removes a user called User1 from the Sender role for a queue type destination
called Queue1, on a local bus called Bus1.
AdminTask.removeUserFromDestinationRole (’[-type queue -bus Bus1
-destination Queue1 -role Sender -user User1]’)

The following example removes a user called User2 from the Receiver role for a queue type destination
called Queue2, on a local bus called Bus1.
AdminTask.removeUserFromDestinationRole (’[-type queue -bus Bus1
-destination Queue2 -role Receiver -user User2]’)

listGroupsInForeignBusRole command
Use the listGroupsInForeignBusRole command to list the groups in the sender role for a foreign bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Chapter 20. Welcome to administering Service integration 2505



This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the listGroupsInForeignBusRole command to list the groups that can send messages from a local
bus to a foreign bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-foreignBus foreignBusName
The name of the foreign bus.

-role Sender
You can only specify the Sender role for a foreign bus.

Conditional parameters

None.

Optional parameters

-showUniqueNames TRUE | FALSE
Whether to display unique names. This parameter has two possible values:

TRUE Unique names are displayed.

FALSE Security names are displayed.

The default value is FALSE.

Examples

The following example lists the groups in the Sender role for a foreign bus called ForeignBus1. The local
bus is called Bus1.
AdminTask.listGroupsInForeignBusRole (’[-bus Bus1 -foreignBus ForeignBus1 -role Sender]’)

2506 Administering WebSphere applications



addGroupToForeignBusRole command
Use the addGroupToForeignBusRole command to grant a group permission to access a foreign bus from a
local bus, in the sender role.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the addGroupToForeignBusRole command to grant a group permission to send messages from a local
bus to a foreign bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-foreignBus foreignBusName
The name of the foreign bus.

-role Sender
You can only specify the Sender role for a foreign bus.

-group groupName
The name of the group that you want to add to the sender role for the foreign bus. You can specify a
group name, or one of the following specialized group names:

Server This group contains application servers.

All Authenticated
This group contains authenticated users only.

Everyone
This group contains all users. Each user is anonymous.

Chapter 20. Welcome to administering Service integration 2507



Conditional parameters

None.

Optional parameters

-uniqueName uniqueName
Specify the name that uniquely defines the group in the user registry. If an LDAP user registry is in
use, the unique name is the distinguished name (DN) for the group. You can specify values for both
-uniqueName and -group, but you must ensure that they identify the same group. The command does
not check that the values match.

Examples

The following example adds a group with the group name Group1, and the unique name SalesGroup to the
sender role for a foreign bus called ForeignBus1. The local bus is called Bus1.
AdminTask.addGroupToForeignBusRole (’[-bus Bus1 -ForeignBus ForeignBus1
-role Sender -group Group1 -uniqueName SalesGroup]’)

removeGroupFromForeignBusRole command
Use the removeGroupFromForeignBusRole command to remove a group from the sender role for a foreign
bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the removeGroupFromForeignBusRole command to remove a group from the sender role for a foreign
bus. This prevents the group from sending messages from a local bus to a foreign bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

2508 Administering WebSphere applications



-foreignBus foreignBusName
The name of the foreign bus.

-role Sender
You can only specify the Sender role for a foreign bus.

-group groupName or uniqueName
The name of a group you want to remove from the sender role for a foreign bus. You can type one of
the following names:

v A security group name, or one of the following specialized group names:

Server This group contains application servers.

AllAuthenticated
This group contains authenticated users only.

Everyone
This group contains all users. Each user is anonymous.

v A unique group name.

Conditional parameters

None.

Optional parameters

None.

Examples

The following example removes a group called Group1 from the Sender role for a foreign bus called
ForeignBus1. The local bus is called Bus1.
AdminTask.removeGroupFromForeignBusRole (’[-bus Bus1 -ForeignBus ForeignBus1 -role Sender -group Group1]’)

listUsersInForeignBusRole command
Use the listUsersInForeignBusRole command to list users that can send messages from a local bus to a
foreign bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Chapter 20. Welcome to administering Service integration 2509



Purpose

Use the listUsersInForeignBusRole command to list all the users that can send messages from a
selected local bus to a selected foreign bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-foreignBus foreignBusName
The name of the foreign bus.

-role Sender
You can specify the Sender role only for a foreign bus.

Conditional parameters

None.

Optional parameters

-showUniqueNames TRUE | FALSE
Whether to display unique names. This parameter has two possible values:

TRUE Unique names are displayed.

FALSE Security names are displayed.

The default value is FALSE.

Example

The following example lists users in the Sender role for a foreign bus called ForeignBus1. The local bus is
called Bus1.
AdminTask.listUsersInForeignBusRole (’[-bus Bus1 -foreignBus ForeignBus1 -role Sender],)

addUserToForeignBusRole command
Use the addUserToForeignBusRole command to grant a user permission to access a foreign bus from a
local bus, in the sender role.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

2510 Administering WebSphere applications



v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the addUserToForeignBusRole command grant a user permission to send messages from a local bus
to a foreign bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-foreignBus foreignBusName
The name of the foreign bus.

-role Sender
You can specify the Sender role only for a foreign bus.

-user userName
The name of the user that you want to add to the Sender role for the foreign bus.

Conditional parameters

None.

Optional parameters

-uniqueName uniqueName
Specify the name that uniquely defines the user in the user registry. If an LDAP user registry is in use,
the unique name is the distinguished name (DN) for the user. You can specify values for both
-uniqueName and -user, but you must ensure that they identify the same user. The command does not
check that the values match.

Examples

The following example adds a user called User1 to the Sender role for a foreign bus called ForeignBus1.
The local bus is called Bus1.
AdminTask.addUserToForeignBusRole (’[-bus Bus1 -foreignBus ForeignBus1 -role Sender -user User1]’)

removeUserFromForeignBusRole command
Use the removeUserFromForeignBusRole command to remove a user from the sender role for a foreign bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Chapter 20. Welcome to administering Service integration 2511



This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the removeUserFromForeignBusRole command to remove a user from the sender role for a foreign bus.
This prevents the user from sending messages from a local bus to a foreign bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-foreignBus foreignBusName
The name of the foreign bus.

-role Sender
You can only specify the Sender role for a foreign bus.

-user userName or uniqueName
The name of a user you want to remove from the sender role for a foreign bus. You can type one of
the following names:

v A security user name

v A unique user name.

Conditional parameters

None.

Optional parameters

None.

Examples

The following example removes a user called User1 from the Sender role for a foreign bus called
ForeignBus1. The local bus is called Bus1.
AdminTask.removeUserFromForeignBusRole (’[-bus Bus1 -ForeignBus ForeignBus1 -role Sender -user User1]’)

2512 Administering WebSphere applications



removeGroupFromAllRoles command
Use the removeGroupFromAllRoles command to remove a group from all access roles for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the removeGroupFromAllRoles command to remove a group from all access roles for a local bus. This
prevents the group from accessing the local bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-group groupName
The name of the group that you want to remove from all roles for the bus. You can specify a group
name, or one of the following specialized group names:

Server This group contains application servers.

AllAuthenticated
This group contains authenticated users only.

Everyone
This group contains all users. Each user is anonymous.

Conditional parameters

None.

Optional parameters

None.

Chapter 20. Welcome to administering Service integration 2513



Examples

The following example removes a group called Group1 from all roles for a local bus called Bus1.
removeGroupFromAllRoles { -bus Bus1 -group Group1}

removeUserFromAllRoles command
Use the removeUserFromAllRoles command to remove a user from all access roles for a local bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

Use the removeUserFromAllRoles command to remove a user from all access roles for a local bus. This
prevents the user from accessing the local bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-user userName or uniqueName
The name of a user you want to remove from the bus connector role for the local bus. You can type
one of the following names:

v A security group name.

v A unique group name.

Conditional parameters

None.

Optional parameters

None.

2514 Administering WebSphere applications



Examples

The following example removes a user called User1 from all roles for a local bus called Bus1.
AdminTask.removeUserFromAllRoles (’[-bus Bus1 -user User1]’)

Determining destination defaults inheritance by using the wsadmin
tool
By default, the inheritance of default permissions by destinations is allowed for all local destinations. Use
this command to determine whether the inheritance of default permissions is enabled or disabled for a
local destination.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Command

To determine whether a specified destination inherits default destination user roles, use the following
command:

v Using Jython:
AdminTask.isInheritDefaultsForDestination("-type destinationType -bus busName
-destination destinationName")

v Using Jacl:
$AdminTask isInheritDefaultsForDestination {-type destinationType -bus busName
-destination destinationName}

This command will return either True or False.

Defining destination defaults inheritance by using the wsadmin tool
By default, the inheritance of default permissions by destinations is allowed for all local destinations. Use
this command to override inheritance for an individual destination, or to restore default inheritance in cases
where you have previously overridden it.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

Chapter 20. Welcome to administering Service integration 2515



print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Command

Note: When a user or group tries to access a destination for which you have overridden default
inheritance, the default permissions are not checked. Only the permissions that you specify for the
destination itself are checked.

To override or restore the inheritance of default permissions for a destination, use the following command:

v Using Jython:
AdminTask.setInheritDefaultsForDestination("-type destinationType -bus busName
-destination destinationName -inherit <true|false>")

v Using Jacl:
$AdminTask setInheritDefaultsForDestination {-type destinationType -bus busName
-destination destinationName -inherit <true|false>}

The destinationType must be a local destination type: foreignDestination is not allowed.

Set -inherit to false to override defaults inheritance, or to true to restore defaults inheritance.

Defining topic role inheritance by using the wsadmin tool
Use these commands to define the inheritance of topic roles by child topics within a topic hierarchy.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Commands

Defining Sender role inheritance
To set or disable Sender role inheritance for a topic within the specified topic space, use the
following command:

v Using Jython:

2516 Administering WebSphere applications



AdminTask.setInheritSenderForTopic("-bus busName
-topicSpace topicSpaceName
-topic topicName -inherit <true|false>")

v Using Jacl:
$AdminTask setInheritSenderForTopic {-bus busName
-topicSpace topicSpaceName
-topic topicName -inherit <true|false>}

Defining Receiver role inheritance
To set or disable Receiver role inheritance for a topic within the specified topic space, use the
following command:

v Using Jython:
AdminTask.setInheritReceiverForTopic("-bus busName
-topicSpace topicSpaceName -topic topicName
-inherit <true|false>")

v Using Jacl:
$AdminTask setInheritReceiverForTopic {-bus busName
-topicSpace topicSpaceName
-topic topicName -inherit <true|false>}

Determining topic role inheritance by using the wsadmin tool
Use these commands to list whether the child topics within a topic hierarchy currently have inheritance set
or disabled.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Commands

Determining Inherit Receiver for Topic
To determine whether a role is inheritance Receiver for a topic within the specified topic space,
use the following command:

v Using Jython:
AdminTask.isInheritReceiverForTopic("-bus busName -type typeName
-destination destinationName")

v Using Jacl:
$AdminTask isInheritReceiverForTopic {-bus busName -type typeName
-destination destinationName}

Determining Inherit Sender for Topic
To determine whether a role is inheritance Sender for a topic within the specified topic space, use
the following command:

v Using Jython:

Chapter 20. Welcome to administering Service integration 2517



AdminTask.isInheritSenderForTopic("-bus busName -type typeName
-destination destinationName")

v Using Jacl:
$AdminTask isInheritSenderForTopic {-bus busName -type typeName
-destination destinationName}

Listing security roles for service integration by using the wsadmin tool
When you are administering messaging security, use these commands to list the security roles that are
associated with service integration bus destinations, foreign buses, topics within a topic space, users and
groups.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Commands

Listing all destinations with roles
To list all destinations that have roles defined for them, use the following command:

v Using Jython:
AdminTask.listAllDestinationsWithRoles("-bus busname
-type destinationType")

v Using Jacl:
$AdminTask listAllDestinationsWithRoles {-bus busname
-type destinationType}

Listing all foreign buses with roles
To list all foreign buses that have roles defined for them, use the following command:

v Using Jython:
AdminTask.listAllForeignBusesWithRoles("-bus busname")

v Using Jacl:
$AdminTask listAllForeignBusesWithRoles {-bus busname}

Listing all topics within a topic space with roles
To list all topics within a topic space that have roles defined for them, use the following command:

v Using Jython:
AdminTask.listAllTopicsWithRoles("-bus busname
-topicSpace topicSpaceName")

v Using Jacl:
$AdminTask listAllTopicsWithRoles {-bus busname
-topicSpace topicSpaceName}

2518 Administering WebSphere applications



Listing user roles
To list all the roles that a user belongs to, use the following command in wsadmin:

v Using Jython:
AdminTask.listAllRolesForUser("-bus busname -user userName")

v Using Jacl:
$AdminTask listAllRolesForUser {-bus busname -user userName}

Listing group roles
To list all the roles that a group belongs to, use the following command in wsadmin:

v Using Jython:
AdminTask.listAllRolesForGroup("-bus busname -group groupName")

v Using Jacl:
$AdminTask listAllRolesForGroup {-bus busname -group groupName}

Removing users and groups by using the wsadmin tool
Use these commands to remove a user or group. Removing a user or group withdraws the authorization
permissions for all roles to which they have previously been added.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Commands

Removing a user
To remove a user from all the roles that they belong to, use the following command:

v Using Jython:
AdminTask.removeUserFromAllRoles("-bus busname -user userName")

v Using Jacl:
$AdminTask removeUserFromAllRoles {-bus busname -user userName}

Removing a group
To remove a group from all the roles that it belongs to, use the following command:

v Using Jython:
AdminTask.removeGroupFromAllRoles("-bus busname -group groupName")

v Using Jacl:
$AdminTask removeGroupFromAllRoles {-bus busname -group groupName}

Chapter 20. Welcome to administering Service integration 2519



After using these commands, save your changes to the master configuration; for example, by using the
following command:

AdminConfig.save()

Removing authorization data by using the wsadmin tool
Use these commands to remove authorization data for the default roles, or for a destination or a foreign
bus.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Commands

Removing authorization data for the defaults
To remove all users and groups from every role (sender, receiver and so on) in the defaults, use
the following command:

v Using Jython:
AdminTask.removeDefaultRoles("-bus busname")

v Using Jacl:
$AdminTask removeDefaultRoles {-bus busname}

Removing all authorization data for a destination
To delete all authorization data for a destination, use the following command:

v Using Jython:
AdminTask.removeDestinationRoles("-type destinationType -bus busname
-foreignBus foreignBusName -destination destinationName")

v Using Jacl:
AdminTask.removeDestinationRoles("-type destinationType -bus busname
-foreignBus foreignBusName -destination destinationName")

Notes:

v This command deletes all authorization data for the specified destination. If the
destination is a topic space, the command removes all authorization data for the virtual
root and for the topics within the topic space, as well as for the topic space itself.

v You can use this command if you are deleting the destination and want to remove all
associated authorization permissions, or if you want to block all access to a destination

2520 Administering WebSphere applications



by removing all authorization permissions for it. In this second case a user might still be
able to access the destination if they have been granted default authorization
permissions. If you have specified default authorization permissions and you want to
block all access to the destination, you must stop the destination inheriting the default
permissions by using the command setInheritDefaultsForDestinations (see “Defining
destination defaults inheritance by using the wsadmin tool” on page 2515). You should
use the removeDestinationRoles command first, followed by the
setInheritDefaultsForDestinations command.

Removing all authorization data for a foreign bus
To delete all authorization data for the specified foreign bus, use the following command:

v Using Jython:
AdminTask.removeForeignBusRoles("-bus busname
-foreignBus foreignBusName")

v Using Jacl:
$AdminTask removeForeignBusRoles {-bus busname
-foreignBus foreignBusName}

After using these commands, save your changes to the master configuration; for example, by using the
following command:

AdminConfig.save()

listSIBPermittedChain command
Use the listSIBPermittedChain command to list the permitted transport chains for a service integration
bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The listSIBPermittedChain command lists the permitted transport chains for a selected service integration
bus.

Target object

None.

Chapter 20. Welcome to administering Service integration 2521



Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

Conditional parameters

None.

Optional parameters

None.

Example

The following example lists the permitted transport chains for a bus called Bus1.
AdminTask.listSIBPermittedChain(’[-bus Bus1]’)

addSIBPermittedChain command
Use the addSIBPermittedChain command to add a new transport mechanism to the list of permitted
transports for a service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The addSIBPermittedChain command add a new transport chain to the list of permitted transports for a
selected service integration bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

2522 Administering WebSphere applications



-chain chainName
The name of the transport chain you want to add to the list of permitted transports.

Conditional parameters

None.

Optional parameters

None.

Example

The following example adds the transport chain MyTransportChain to a bus called Bus1.
AdminTask.addSIBPermittedChain(’[-bus Bus1 -chain MyTransportChain]’)

removeSIBPermittedChain command
Use the removeSIBPermittedChain command to remove a selected transport chain from the list of
permitted transport chains for a selected service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

This command is valid only when used with WebSphere Application Server Version 7.0 or later application
servers. Do not use it with earlier versions.

Command-line help is provided for service integration bus commands:

v For a list of the available service integration bus security commands in Jython and a brief description of
each command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBAdminBusSecurityCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The removeSIBPermittedChain command removes a selected transport chains from the list of permitted
transport chains for a selected service integration bus.

Target object

None.

Required parameters

-bus busName
The name of the local bus. You can use the listSIBuses command to list the names of existing buses.

-chain chainName
The name of the transport chain you want to remove from the list of permitted transports.

Chapter 20. Welcome to administering Service integration 2523



Conditional parameters

None.

Optional parameters

None.

Example

The following example removes the transport chain called MyTransportChain from the list of permitted
transport chains for a bus called Bus1.
AdminTask.removeSIBPermittedChain(’[-bus Bus1 -chain MyTransportChain]’)

sibDDLGenerator command
A messaging engine needs data definition language (DDL) statements to create the DBMS (Database
Management System) resources. These DBMS resources are generated by the sibDDLGenerator
command.

Syntax
�� sibDDLGenerator

-system DBMS name -version DBMS version
�

�
-platform DBMS platform -schema schema name -user user name -create

-drop

�

�
-database database -createdbstmt true/false -tablespaceprefix tablespace prefix

�

�
-storagegroup storage group -catalog high level qualifier -bufferpool buffer pool

�

�
-statementend statement end -nolinebreaks -noblanklines -firstline first line

�

�
-lastline last line -permanent number -temporary number

��

Purpose

A messaging engine needs DBMS resources, such as database tables, which it can create when starting.
If your installation has a policy that only a database administrator has the authority to create database
tables, use the sibDDLGenerator command to enable your database administrator to create the DBMS
resources that the messaging engine needs. The sibDDLGenerator command generates the DDL
statements that your database administrator can save, and later process, to create the DBMS resources
that are listed in “Data store tables” on page 2050.

The command also generates DDL statements that grant the appropriate authorities to allow a messaging
engine use these tables.

To access the IBM i command line, use the STRQSH command to start a Qshell session. For
more information, see Configuring Qshell to run WebSphere scripts using wsadmin scripting.

2524 Administering WebSphere applications



Note: The sibDDLGenerator command is able to generate the DDL statements for creating or dropping all
of the data store tables. It is less well suited for adding more item tables to an existing data store.
However, it is possible to reissue the DDL statements to create existing tables without harming the
data store.

Optional parameters

Tip: The sibDDLGenerator command is case-sensitive. For example, the parameter value Oracle is not
the same as the parameter value oracle.

Some parameters apply to a specific DBMS only, as indicated in the parameter list; for example:
-database [Applies only to DB2 for z/OS]

-system
Identifies the type of DBMS on which the administrator will process the DDL statements. Valid values
are:

v db2

v oracle

v sqlserver

v sybase

v informix

v derby

v cloudscape

If you do not supply a -system parameter, the default value is derby.

-version
The version number of the DBMS identified by the -system parameter. The following table shows the
default value that is used if you do not supply a -version parameter.

If you receive a CWSIS1595E or CWSIS1503E error when you run the tool, consult the notes after the
table to determine whether an alternative -version parameter value can be used for your database
version.

Table 230. Values for the -version parameter. The first column of the table lists the -system parameter values. The
second column of the table lists the -platform parameter values. The third column of the table lists the default values
of the -version parameters. The fourth column of the table lists the other accepted values of the -version parameters.

-system parameter value -platform parameter value
Default value for the
-version parameter

Other accepted -version
parameter values

db2 zos 7.1 8.1, 9.1 (see Note 1)

db2 unix, windows 8.1 9.1 (see Note 1)

db2 iseries 5.2 (see Note 2) 5.3 (see Note 2)

oracle 8i 9i, 10g, 11g (see Note 3)

sqlserver 2000 2005

sybase 12.0 12.5, 15.0

informix 9.3 7.3, 9.4, 10.0, 11.0 (see
Note 4)

derby 10.1

Notes:

1. The DDL generated for DB2 for UNIX or Windows by using -version parameter values
8.1, and 9.1 is identical. The DDL generated for DB2 for z/OS by using -version
parameter values 7.1, 8.1, and 9.1 is identical.

Chapter 20. Welcome to administering Service integration 2525



2. For IBM i, the DB2 database is part of the operating system, so the version number given
is for the OS/400 version.

3. The DDL generated for Oracle by using -version parameter values 9i, 10g, and 11g is
identical.

4. The DDL generated for Informix by using -version parameter values 9.4, 10.0, and 11.0
is identical.

-platform
The operating system platform on which the DBMS runs. Valid values are:

v iseries

v unix

v windows

v zos

-schema
The name of the schema that contains all the objects used by the messaging engine. If you do not
supply a -schema parameter, the default value is IBMWSSIB.

-user
The name of the user ID that is used to interact with the DBMS. If you do not supply a -user
parameter, the default value is IBMUSER.

-create | -drop
Indicates whether the DDL statements create the DBMS resources or delete them. If you do not
supply either parameter, the default value is -create.

-database [Applies only to DB2 for z/OS]
The name of the database that is allocated for the messaging engine tables. If you do not supply a
-database parameter, the default value is SIBDB.

-createdbstmt true/false [Applies only to DB2 for z/OS]
Specifies whether the CREATE DATABASE DDL statement must be generated. The sibDDLGenerator
command generates the CREATE DATABASE DDL statement by default. If you specify false as the value
for the -createdbstmt parameter, then the CREATE DATABASE DDL statement will not be generated.

-tablespaceprefix [Applies only to DB2 for z/OS]
The table space prefix used to generate the table space name. The prefix can have a maximum of 5
characters. If you do not specify the -tablespaceprefix parameter, table spaces are created using the
predefined table space names.

-storagegroup [Applies only to DB2 for z/OS]
The name of the storage group that is allocated for the messaging engine tables.

v If you supply both the -storagegroup and the -catalog parameters, the sibDDLGenerator command
includes both values in the CREATE STOGROUP statement.

v If you supply only a -storagegroup parameter, the sibDDLGenerator command uses the storage
group name in other statements but does not create a CREATE STOGROUP statement.

v If you supply only a -catalog parameter, the sibDDLGenerator command displays the usage
statement and then terminates.

v If you omit both parameters, the sibDDLGenerator command uses the default value SIBSG for the
storage group name in other statements but does not create a CREATE STOGROUP statement.

-catalog [Applies only to DB2 for z/OS]
The name of the high level qualifier for the storage group that is allocated for the messaging engine
tables. For information about defaults, refer to the -storagegroup parameter.

-bufferpool [Applies only to DB2 for z/OS]
The name of the buffer pool that is allocated for the messaging engine tables. If you do not supply a
-bufferpool parameter, the default value is BP1.

2526 Administering WebSphere applications



-statementend
Appends statement_end to each DDL statement. For example, you can use ; to append a semicolon
to each DDL statement. By default, the sibDDLGenerator command appends nothing to each
statement.

Tip: On UNIX platforms, escape the semicolon to prevent the shell from interpreting it.

-nolinebreaks
Places each statement on a single line, with no line breaks. By default, the sibDDLGenerator command
breaks statements across lines to improve readability.

-noblanklines
Omits blank lines between each statement. By default, the sibDDLGenerator command inserts a blank
line between each statement to improve readability.

-firstline
Generates first_line as the first line of output. For example, you can use first_line to identify the target
database. By default, the sibDDLGenerator command does not generate a first line.

-lastline
Generates last_line as the last line of output. For example, you can use last_line to invoke a command
that executes the commands in the script. By default, the sibDDLGenerator command does not
generate a last line.

Tip: The optional parameters that control the format of the DDL statements, for example -statementend,
enable you to generate output that is suitable for particular scripting tools, for example the DB2 CLP.
By default, the sibDDLGenerator command generates blank lines between each DDL statement but
does not append a semicolon at the end of each DDL statement.

The following two optional parameters are used for spreading the data store across multiple tables:

-permanent
The number of permanent tables, with

v Default value: 1

v Minimum value: 1

v Maximum value: see Note

-temporary
The number of temporary tables, with

v Default value: 1

v Minimum value: 1

v Maximum value: see Note

Note: The maximum number of SIBnnn tables that can be used by a messaging engine is 32. This
includes all stream, permanent and temporary tables.

Examples
v sibDDLGenerator -system db2 -version 8.1 -platform zos

Generates DDL statements for DB2 8.1, running on z/OS, with a default schema, user ID, database,
storage group, and buffer pool.

v sibDDLGenerator -system db2 -version 8.1 -platform windows -statementend ;

Generates DDL statements for DB2 8.1, running on Windows, with a default schema, user ID, and
database. You can input the statements directly to the DB2 CLP, which requires that each statement is
terminated with a semicolon.

v sibDDLGenerator -system oracle -version 8i -schema SIB -user fred

Generates DDL statements for Oracle 8i.

Chapter 20. Welcome to administering Service integration 2527



v sibDDLGenerator -system oracle -schema SIB -user fred

A concise version of the preceding example.

v sibDDLGenerator -system db2 -version 9.1 -platform zos -createdbstmt false

Generates DDL statements for DB2 9.1, running on z/OS, with a default schema, user ID, database,
storage group, table space, and buffer pool without the CREATE DATABASE statement.

v sibDDLGenerator -system db2 -version 9.1 -platform zos -tablespaceprefix SIBTS

Generates DDL statements for DB2 9.1, running on z/OS, with a default schema, user ID, database,
storage group, buffer pool, and table space name generated with the specified table space prefix.

sibDBUpgrade command
A messaging engine needs data definition language (DDL) statements to alter the existing database
management system (DBMS) resources. The DBMS resources can be altered using the sibDBUpgrade
command.

The modification to the tables using the sibDBUpgrade command is required for the new functions such as
the “Keep count of failed deliveries per message” on page 2164 and “Restrict long running locks” on page
2133. The sibDBUpgrade command can be used to migrate a messaging engine from the previous version
of WebSphere Application Server to Version 8.5.

Syntax

Purpose

The database administrator can use the sibDBUpgrade utility command to alter the DBMS resources of the
messaging engine. The sibDBUpgrade command generates the DDL statements which the database
administrator can save and later process to alter the DBMS resources that are listed in the “Altered
database tables” on page 2051. Besides the database administrator, users who have the authority to alter
the database tables can also use the same utility to alter the database tables.

To access the IBM i command line, use the STRQSH command to start a Qshell session. For
more information, see Configuring Qshell to run WebSphere scripts using wsadmin scripting.

Required parameters

Tip: The sibDBUpgrade command is case-sensitive. For example, the parameter value Oracle is not the
same as the parameter value oracle.

-runUpgrade true or false
The command to alter the database resources. Specify the parameter value as true to alter the
database resources and false to generate the DDL scripts only.

-dbUser
The name of the user ID that is used to interact with the DBMS.

-dbSchema
The name of the schema that contains all the objects used by the messaging engine.

-dbName
The name of the database that is allocated for the messaging engine tables. The-dbName parameter is
mandatory if the value for the runUpgrade parameter is specified as true.

Optional parameters

-dbType
Identifies the type of DBMS. Valid values are:

v DB2

2528 Administering WebSphere applications



v Oracle

v SqlServer

v Sybase

v Informix

v Derby

Table 231. Values for the -dbType parameter. The first column of the table lists the -dbType parameter values. The
second column of the table lists the -platform parameter values.

-dbType parameter value Supported platform

DB2 zos

DB2 unix, windows

DB2 iseries

Oracle

SqlServer

Sybase

Informix

Derby

-serverName
The name of the server that is used to interact with the DBMS. If you do not supply a -serverName
parameter, the default value is IBMUSER.

-dbPassword
The password for the user ID that is used to interact with the DBMS.

-dbNode
The name of the database node.

-oracleHome
The path to the Oracle Home directory if the -dbType parameter value is Oracle.

-scripDir
The name of the directory in which the DDL scripts must be generated. If you do not specify a
directory, the scripts are generated into <current_directory>/SIBusUpgradeDatabase directory where
current_directory is the active directory.

Examples
v sibDBUpgrade.sh -runUpgrade false -dbUser db2inst1 -dbSchema SIBusMESchema-dbType DB2

v sibDBUpgrade.sh -runUpgrade true -dbName SIBus -dbUser db2inst1 -dbSchema
SIBusMESchema-dbType DB2

v sibDBUpgrade runUpgrade=false dbUser=db2inst1 dbSchema=SIBusMESchema dbType=DB2

v sibDBUpgrade runUpgrade=true dbName=SIBus dbUser=db2inst1
dbSchema=SIBusMESchemadbType=DB2

Access role assignments for bus security resources
Icons are used in the administrative console to represent users and groups that have access roles for
service integration bus resources.

Chapter 20. Welcome to administering Service integration 2529



Security access roles

In the administrative console, access role icons are used to represent whether a user or a group is in a
particular access role. You can click an icon to add or remove selected users and groups to a particular
access role for a selected resource.

An access role icon has three states:

v Access role type set.

v Access role type not set.

v Access role type inherited from group.

The following table describes how the access role icons represent these states, and how to change
between them:

Table 232. Interacting with access role icons

Access role
icon Access role assignment state User action

Role type not set.
Click to change to role type set .

Role type set. Click to change to role type not set. The icon

changes to role type not set if the user or
group does not inherit access roles, or to role

type inherited if the role type does inherit
access roles.

Role type inherited from group.
Click to change to role type set .

Role type not set for a group. The group to
which a user belongs does not have a role type.

Read only.

Role type set for a group. The group to which a
user belongs has a role type.

Read only.

Role type not applicable. Read only.

Message properties support for mediations
The SIMessage metadata properties enable the main data types, and are supported by JMS Message
Selectors.

Syntax

The selector syntax is the same as for JMS Message Selectors. For more information, refer to the JMS
specification.

Supported types

Support is provided for the following data types:

v Boolean

v Byte and byte[]

v Integer

v Long

v Float

2530 Administering WebSphere applications



v Double

v String

The data types previously listed are supported by JMS Message Selectors with the exception of byte[].

Properties

For more information about each property, refer to “JMS_IBM properties and equivalent SI_system
properties” on page 2532.

SIMessage metadata properties
The SIMessage metadata properties contain message metadata that you can use in mediation
configuration selectors. You can work with these properties by using the SIMessage interface.

You can access and modify the SIMessage metadata properties using individual SIMessage get and set
methods. You cannot set or access these properties by using the methods getMessageProperty(),
setMessageProperty(), or deleteMessageProperty().

The method clearMessageProperty() does not clear these properties.

Property name Data type Comments

SI_NextDestination String Name of the first destination in the
Forward Routing Path.

SI_Reliability String Value of getReliability.toString().

SI_Priority Integer

SI_TimeToLive Long

SI_Discriminator String

SI_ReplyPriority Integer

SI_ReplyReliability String Value of getReliability.toString().

SI_ReplyTimeToLive Long

SI_ReplyDiscriminator String

SI_RedeliveredCount Integer

SI_MessageID String

SI_CorrelationID String

SI_Userid String

SI_Format String

JMS headers
Support is provided by the SIMessage interface and the mediation configuration selector for JMS headers
properties. JMS headers properties match in the SIMessage interface in the same way as they do for the
JMS API, but you can only modify properties that map to SIMessage metadata.

The method getMessageProperty() method supports all of these properties.

The methods setMessageProperty() and deleteMessageProperty() only support JMSType.

The method clearMessageProperties() only clears JMSType.

Chapter 20. Welcome to administering Service integration 2531



Property name Can be matched? Can be modified? Data type Comments

JMSDestination No Indirectly Byte array getMessageProperty()
returns opaque byte
array.

JMSDeliveryMode Yes Yes, by using
setReliability.

String String value, as for JMS.

JMSMessageID Yes Yes, by using
setMessageID.

String Equivalent to
SI_MessageID.

JMSTimestamp Yes No Long

JMSExpiration Yes Indirectly, by using
setTimeToLive or
setRemainingTimeToLive.

Long

JMSRedelivered Yes No Boolean

JMSPriority Yes Yes, by using
setPriority.

Integer Equivalent to SI_Priority.

JMSReplyTo No Indirectly Byte array getMessageProperty()
returns opaque byte
array.

JMSCorrelationID Yes Yes, by using
setCorrelationId.

String Equivalent to
SI_CorrelationID.

JMSType Yes Yes, by using
setMessageProperty().

String

JMSX properties
Support is provided by the SIMessage interface and the mediation configuration selector for JMSX
properties. You can use the SIMessage interface to match and access supported JMSX properties defined
in the JMS API. You can only use the SIMessage interface to set properties that are not defined as set by
the JMS provider.

The methods getMessageProperty(), setMessageProperty() and deleteMessageProperty() provide access
and, where supported, modification.

The method clearMessageProperties() does not clear properties that cannot be set.

Property name Can be matched? Can be modified? Data type Comments

JMSXUserID Yes Yes String

JMSXAppID Yes Yes String

JMSXProducerTXID No No Not supported

JMSXConsumerTXID No No Not supported

JMSXRcvTimestamp No No Not supported

JMSXDeliveryCount Yes No Integer

JMSXState No No Not supported

JMSXGroupID Yes Yes String

JMSXGroupSeq Yes Yes Integer

JMS_IBM properties and equivalent SI_system properties
Support is provided by the SIMessage interface and the mediation configuration selector for JMS_IBM
properties and the equivalent SI_system properties. You can access JMS_IBM_ properties through the
JMS API. Many of the values held by JMS_IBM_ properties apply to an SIMessage and have SI_
synonyms. You can access all these properties through the SIMessage interface, and can match and set
many of them. You cannot set exception properties because they are controlled by the messaging engine.

2532 Administering WebSphere applications



You can match SI_ExceptionReason, JMS_IBM_ExceptionReason and JMS_IBM_ExceptionTimestamp.
The method clearMessageProperties() does not clear properties that cannot be set.

Where the data types are different, the equivalent values are modified before being returned to the JMS
API caller. For example with JMS_IBM_Report_XXX, the JMS_IBM_Report... and JMS_IBM_Feedback
values are modified before being returned to the JMS API caller. The values used by service integration
and WebSphere Application Server are different, however they are modified before being returned by the
JMS API caller, so that they can then be passed to WebSphere MQ.

For information about the mapping of message fields and properties between WebSphere MQ and JMS
see Mapping the message header fields and properties to and from WebSphere MQ format.

In the following table, the SIMessage API data type column indicates the data type of the property if
accessed by a mediation handler, or when specifying the selectors for a mediation handler. The JMS API
data type column indicates the data type of the property if accessed by a JMS application, either when
specifying selectors or when using the get and set property methods:

Table 233. JMS_IBM properties and SIMessage properties. The first column of the table provides the JMS_IBM
property names. The second column provides the equivalent SIMessage property names if available. The third
column indicates if the properties can be matched. The fourth column indicates the state of setMessageProperty. The
fifth column contains the data type of the SIMessage API property if accessed by a mediation handler or when
specifying the selectors for the mediation handler. The sixth column contains the data type of the JMS API property if
accessed by a JMS application.

JMS_IBM property name Equivalent
SIMessage property

Can be
matched?

setMessageProperty SIMessage
API data type

JMS API data
type

JMS_IBM_Format Yes Yes String String

JMS_IBM_MsgType Yes Yes Integer Integer

JMS_IBM_Feedback SI_ReportFeedback Yes Yes Integer Integer

JMS_IBM_PutApplType Yes Yes Integer Integer

JMS_IBM_Report_Exception SI_ReportException Yes Yes Byte Integer

JMS_IBM_Report_Expiration SI_ReportExpiry Yes Yes Byte Integer

JMS_IBM_Report_COA SI_ReportCOA Yes Yes Byte Integer

JMS_IBM_Report_COD SI_ReportCOD Yes Yes Byte Integer

JMS_IBM_Report_PAN SI_ReportPAN Yes Yes Boolean Integer

JMS_IBM_Report_NAN SI_ReportNAN Yes Yes Boolean Integer

JMS_IBM_Report_Pass_Msg_ID SI_ReportPassMsgID Yes Yes Boolean Integer

JMS_IBM_Report_Pass_Correl_ID SI_ReportPassCorrelID Yes Yes Boolean Integer

JMS_IBM_Report_Discard_Msg SI_ReportDiscardMsg Yes Yes Boolean Integer

JMS_IBM_Last_Msg_In_Group Yes Yes Boolean Boolean

JMS_IBM_PutDate Yes Yes String String

JMS_IBM_PutTime Yes Yes String String

JMS_IBM_Encoding Yes Yes Integer Integer

JMS_IBM_Character_Set Yes Yes String String

JMS_IBM_ExceptionMessage No No String String

JMS_IBM_ExceptionTimestamp SI_ExceptionTimestampYes No Long Long

JMS_IBM_ExceptionReason SI_ExceptionReason Yes No Integer Integer

JMS_IBM_
ExceptionProblemDestination

SI_Exception
ProblemDestination

Yes No String String

N/A SI_ExceptionInserts No No List of strings n/a

JMS_IBM_System_MessageID SI_SystemMessageID Yes No String String

Chapter 20. Welcome to administering Service integration 2533



Using the JMS_IBM Feedback property
The JMS_IBM_Feedback property identifies the type of report a message contains.

Property Type Values

JMS_IBM_Feedback Integer v REPORT_EXPIRY=3

v REPORT_EXCEPTION=4

v REPORT_COA=5

v REPORT_COD=6

If a report message is generated as a result of a message expiry, the value of the JMS_IBM_Feedback
property is 3.

User properties
Support for user properties is provided by the SIMessage interface and the mediation configuration
selector. The JMS API supports user properties of primitive wrapper or string types. The property name
can be any valid Java identifier providing it does not have the prefix JMS. The SIMessage API also
supports user properties of primitive wrapper or string types, and additionally supports byte[] and
serializable types. Arbitrary serializable objects are stored as byte arrays, and are selected on as byte
arrays only (using equals only).

User properties supported by the SIMessage API must have the prefix user. You can set and access these
properties using getMessageProperty, setMessageProperty and deleteMessageProperty.

Interaction with JMS

Alternatively, you can set and access user properties by using xxxUserProperty methods. In this case, the
prefix user must be omitted. The property name, excluding the prefix user, exists in the same namespace
as the JMS user properties.

For example, a JMS application calls a property as follows:
setStringProperty("color", "green");

A mediation can access the property by making one of the following calls:
v getMessageProperty("user.color");
v getUserProperty("color");

Note: Mediation message selectors must contain the user prefix.
JMS property methods only affect user properties that have types supported by the JMS API:

v clearProperties() clears only those properties supported by JMS.

v propertyExists() returns true only when the property type is supported by JMS.

v getPropertyNames() includes only those properties with types supported by JMS.

v setObjectProperty("xxxx", null); clears a property only if it is supported by JMS.

Note that setxxxxProperty("xxxx", value) overrides a user property of any type when the value is
non-null.

2534 Administering WebSphere applications



Error handling in mediations
The actions taken in the event of an error occurring during mediation processing are summarized in the
following table:

Table 234. Actions and errors in mediation processing. The first column of the table lists the errors that occur during
the mediation processing. The second column describes the actions to be taken when the errors occur.

Error Action taken

Unchecked runtime exception v The message is sent to the exception destination.

v Any transaction is rolled back.

Checked message context exception v The message is sent to the exception destination.

v Any transaction is committed.

Enterprise JavaBeans (EJB) exception v Message is eligible for re-mediation.

An error occurs in the process of calling a mediation. v The mediation is not called.

v The message is eligible for re-mediation.

The mediation returns true, and the message is not well
formed.

v The original pre-mediated message is sent to the
exception destination.

v Any transaction is committed.

WebSphere MQ naming restrictions
The naming restrictions for WebSphere MQ queues, queue managers, and queue-sharing groups are
more restrictive than those that apply to equivalent objects in WebSphere Application Server. Use this
information to help you administer the WebSphere Application Server objects, so that the names of these
objects can be passed successfully to and from WebSphere MQ.

Rules for naming WebSphere MQ objects
v A WebSphere MQ object cannot have the same name as any other object of the same type.

v Names in WebSphere MQ are case sensitive.

v In WebSphere MQ, the names of queues can have up to 48 characters. The names of queue managers
can have also have up to 48 characters, except in the case of WebSphere MQ for z/OS, where both
queue manager and queue sharing group names are limited to four non-blank characters.

v The character set to use for naming all WebSphere MQ objects is as follows:

– Uppercase A-Z

– Lowercase a-z (but there are restrictions on the use of lowercase letters for z/OS console support)

– Numerics 0-9

– Period (.)

– Forward slash (/).

– Underscore (_)

– Percent sign (%).

v Leading or embedded blanks are not allowed.

v Any structure to the names (for example, the use of the period or underscore) is not significant to the
queue manager.

For further details, see the WebSphere MQ information center.

Chapter 20. Welcome to administering Service integration 2535



Mediation thread pool properties
The following table describes the default thread pool properties for the mediationsThreadPool object for a
messaging engine.

Property name Description Data type Comment

minimumSize Specifies the minimum
number of threads to allow
in the pool.

integer Default value is 1.

maximumSize Specifies the maximum
number of threads to allow
in the pool.

integer Default value is 5.

isGrowable Can the pool grow beyond
the maximumSize

boolean true or false. Default is
false.

inactivityTimeout Specifies the number of
milliseconds of inactivity
that should elapse before a
thread is reclaimed. A value
of 0 indicates not to wait
and a negative value (less
than 0) means to wait
forever.

integer, units milliseconds. Default value: 3500

2536 Administering WebSphere applications



Chapter 21. Administering Session Initiation Protocol (SIP)
applications

This page provides a starting point for finding information about SIP applications, which are Java programs
that use at least one Session Initiation Protocol (SIP) servlet written to the JSR 116 specification.

SIP is used to establish, modify, and terminate multimedia IP sessions including IP telephony, presence,
and instant messaging.

Deploying SIP applications
Use the administrative console to customize your Session Initiation Protocol (SIP) application installation

About this task

When you deploy a Session Initiation Protocol (SIP) application, you can perform various tasks such as
installing, starting, stopping, upgrading, and uninstalling the application.

SIP applications are installed as Java Platform, Enterprise Edition (Java EE) applications. You can deploy
a SIP application from a graphical interface or from a command line.

Deploying SIP applications through the console
You can deploy a Session Initiation Protocol (SIP) application through the administrative console.

Before you begin

SIP applications are deployed as Java 2 Platform Enterprise Edition (J2EE) applications. In order to
process requests, a virtual host must be defined when deploying the SIP application. If there is no virtual
host defined for the configured SIP container listen port, the installed application will be inaccessible.

Procedure
1. Open the administrative console.

In a browser, go to URL http://hostname:9090/admin, where hostname is the name of the host
computer. Enter the appropriate login information, and click OK.

2. In the left frame click Applications > Install New Application.

3. Browse and select a SAR file. Specify the context root, beginning with a slash (/), in the Context
Root field. For example, if your application is named ThisApplication, type /ThisApplication.

4. Click Next (under the Context Root field not beside the WebSphere Status title). If the SAR file has
been assembled correctly, the screen will still have the title “Preparing for the application installation”,
but the content will change. If an error message appears, check the contents of the SAR file; in
particular, verify the web.xml file contents, and try to reload the SAR file.

5. Click Next. If you see a screen indicating “Application Security Warnings”, click Continue.

6. The Install New Application screen should appear with “Step 1: Select application options”
highlighted. Select the options you need and click Next.

7. “Step 2: Map modules to servers” should appear highlighted now. You can choose the cluster or
server where you want to install the application's modules.

v If you are installing the application in a stand-alone system, click Next.

v If you are installing the application in a clustered system, select
WebSphere:cell=cellname,cluster=cluster_name in the Clusters and Servers field, select the
check box beside the web module that you want to install, and click Apply and Next.

© Copyright IBM Corp. 2012 2537



8. Now “Step 3: Map virtual hosts for web modules” should appear highlighted. To the right of the
application name there should be a drop-down labeled Virtual Host.

v If you are installing the application in a stand-alone system, set the value of the drop-down to
default_host, and click Next.

v If you are installing the application in a clustered system, set the value of the drop-down to the
name of the virtual host that was chosen during setup, and click Next.

Remember: You must define a virtual host for your configured SIP container listen port or else you
will not be able to access the application.

9. You should now see “Step 4: Summary” highlighted. In the right panel you will see a Summary of
installation options table that details your selected options and their values. If you need to change
an option, click Previous to return to the section where you can make your change. Click Finish to
install the application with your settings. The screen should display, Application appname_sar
installed successfully, where appname is the name of the application.

10. Click the Save to Master Configuration link. A Save to Master Configuration window appears.

11. In the Save to Master Configuration window, click Save. The application has now been saved in the
current configuration.

12. To confirm that the installation succeeded, in the left frame click Applications > Enterprise
Applications. The newly installed application should appear in the list of installed applications as
appname_sar.

13. To start the application so that it can service SIP requests, check the box beside appname_sar, and
click Start. You might also want to look at the logs for a successful startup message.

Results

The application can service SIP requests now.

Deploying SIP applications through scripting
You can deploy a Session Initiation Protocol (SIP) application not only from the administrative console but
also from a command line.

About this task

Note: To deploy a SIP application, the application must exist with an enterprise archive (EAR) file, a
Session Initiation Protocol (SIP) module (SAR file), or a web application archive (WAR) file.

Use the wsadmin scripting tool to deploy applications from a command line.

Procedure
v Launch a scripting client.

For more information, see AdminApp object for scripted administration.

v List applications.

For more information, see Listing applications using the wsadmin scripting tool.

v Install stand-alone archive files.

For more information about installation, see Installing enterprise applications using wsadmin scripting
and Installation options for the AdminApp object.

v Edit application configurations.

For more information, see Editing application configurations using the wsadmin scripting tool.

v Uninstall applications.

For more information, see Uninstalling enterprise applications using the wsadmin scripting tool.

2538 Administering WebSphere applications



Administering SIP applications

Configuring the SIP container
Configure the Session Initiation Protocol (SIP) container to adjust message response times or set a
custom property.

About this task

Use the administrative console to configure SIP container settings. Complete the following steps to find
and configure the SIP container settings.

Procedure
1. Start WebSphere Application Server.

2. From the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

3. From Container Settings, expand SIP Container Settings, and click SIP Container. Select the
container settings that you want to change.

v From General Properties, you can configure session, message, and response time maximums. See
Session Initiation Protocol container settings and SIP container custom properties.

v From Additional Properties, you can define custom properties, manage transport chains or
inbound channel settings, or configure the session manager.

4. After configuring the SIP container, click Apply to save the changes.

5. Restart WebSphere Application Server.

Results

Changes to the SIP container settings take effect after you restart WebSphere Application Server.

gotcha: As the number of SIP containers grow in a deployment, the larger the heap settings need to be
on the SIP proxy server. For example, a deployment of 20 containers requires a minimum heap
size of 60 MB, so a -Xmo60m parameter should be added to the Generic JVM arguments field
on the Java virtual machine panel of the admin console. However, a deployment of 70 containers
requires a larger value such as 200 MB (-Xmo200m). See the information center topic Java
virtual machine settings for more information about Generic JVM arguments.

Enabling Session Initiation Protocol (SIP) flow token security
The Session Initiation Protocol (SIP) container supports client-initiated connection reuse. SIP flow token
security enables you to establish communication between a server and SIP clients in situations where the
SIP clients can create a connection to the server, but are not prepared to accept connections from the
server.

About this task

Managing client-initiated connections in the SIP container involves generating flow tokens, as described in
the SIP standard RFC 5626. When the SIP container delivers a flow token to the network, it encodes the
token in a way that prevents anyone from modifying this token. When the container receives a flow token
that it previously generated, it decodes the flow token and verifies its integrity.

WebSphere Application Server SIP flow token security implements the outbound SIP protocol extension,
as defined in RFC 5626, with the following exceptions:

v Only TCP and TLS stream transports are supported.

v UDP flows are not reused.

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2539



v TCP keepalives are supported, but STUN keepalives are not.

v Support of this protocol extension is provided for SIP applications that act as a proxy/registrar, as
described in RFC 5626, but not as a user agent, as described in this RFC.

Encoding and decoding the flow token requires a pre-defined key. The SIP container obtains this security
key from your SIP container settings. Complete the following steps to configure the SIP container to
support flow token security.

Procedure
1. Create a key set, if one does not already exist.

If you already have a key set configured, you can use that key set as the key set for SIP flow token
security.

If you need to create a new key set, the scope of the key set must be at the cell level. See the topic
Creating a key set configuration for a description of how to create a new key set.

2. Add the com.ibm.ws.sip.key.set custom property to the SIP container settings.

a. In the administrative console, expand Servers > Server Types > WebSphere application servers
> server_name to open the configuration tab for the server.

b. From Container settings, expand SIP Container settings, and click SIP container.

c. From Additional properties, select Custom Properties > New.

d. On the settings page, specify com.ibm.ws.sip.key.set in the Name field, and the name of the key
set to use for flow token security in the Value field.

e. Click Apply or OK.

f. Click Save on the console task bar to save your configuration changes.

g. Restart the server.

Results

SIP flow token security is enabled for the SIP container.

SIP container custom properties
You can add any of the following custom properties to the configuration settings for a Session Initiation
Protocol (SIP) container.

To specify custom properties for a specific SIP container, navigate to the custom properties page, and then
specify a value for the custom property.

Important: The custom properties are supported as the primary method of configuration. Therefore, if a
custom property is set and then you set the corresponding setting in the administrative
console, the custom property value is used.

1. In the administrative console, expand Servers > Server Types > WebSphere application servers >
server_name to open the configuration tab for the server.

2. From Container settings, expand SIP Container settings, and click SIP container.

3. From Additional properties, select Custom Properties > New.

4. On the settings page, type the custom property to configure in the Name field, and then type the value
of the custom property in the Value field.

5. Click Apply or OK.

6. Click Save on the console task bar to save your configuration changes.

7. Restart the server.

The following list of SIP container custom properties is provided with the product. These properties are not
shown on the settings page for the container.

2540 Administering WebSphere applications



You can define the following SIP container custom properties that are provided with the product. These
properties are not shown on the settings page for the container.

v “auth.int.enable” on page 2542

v “com.ibm.sip.sm.lnm.size” on page 2542

v “com.ibm.webspehere.sip.security.digest.ldap.cachecleanperiod” on page 2542

v “com.ibm.websphere.sip.security.tai.usercachecleanperiod” on page 2542

v “com.ibm.ws.sip.key.set” on page 2542

v “com.ibm.ws.sip.tai.DisableSIPBasicAuth” on page 2543

v “DigestPasswordServerClass” on page 2543

v “enable.system.headers.modify” on page 2543

v “end.of.service.replication” on page 2543

v “immediate.replication” on page 2543

v “javax.servlet.sip.ar.dar.configuration” on page 2543

v “javax.servlet.sip.ar.spi.SipApplicationRouterProvider” on page 2544

v “javax.sip.bind.retries” on page 2544

v “javax.sip.bind.retry.delay” on page 2544

v “javax.sip.detect.pre.escaped.params” on page 2544

v “javax.sip.force.connection.reuse” on page 2545

v “javax.sip.hide.message.body” on page 2545

v “javax.sip.hide.message.headers” on page 2545

v “javax.sip.hide.request.uri” on page 2546

v “javax.sip.OUTBOUND_PROXY” on page 2546

v “javax.sip.PATH_MTU” on page 2546

v “javax.sip.stat.report.interval” on page 2546

v “javax.sip.trace.msg.in” on page 2547

v “javax.sip.trace.msg.out” on page 2547

v “javax.sip.transaction.invite.auto100” on page 2547

v “javax.sip.transaction.timer.a” on page 2547

v “javax.sip.transaction.timer.b” on page 2547

v “javax.sip.transaction.timer.cancel” on page 2548

v “javax.sip.transaction.timer.d” on page 2548

v “javax.sip.transaction.timer.e” on page 2548

v “javax.sip.transaction.timer.f” on page 2549

v “javax.sip.transaction.timer.g” on page 2549

v “javax.sip.transaction.timer.h” on page 2549

v “javax.sip.transaction.timer.i” on page 2549

v “javax.sip.transaction.timer.invite.server” on page 2550

v “javax.sip.transaction.timer.j” on page 2550

v “javax.sip.transaction.timer.k” on page 2550

v “javax.sip.transaction.timer.non.invite.server” on page 2551

v “javax.sip.transaction.timer.t1” on page 2551

v “javax.sip.transaction.timer.t2” on page 2551

v “javax.sip.transaction.timer.t4” on page 2551

v “on.outgoing.message.replication” on page 2552

v “pws_atr_name” on page 2552

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2541



v “replicate.with.confirmed.dialog.only” on page 2552

v “sip.container.heartbeat.enabled” on page 2552

v “sip.jsr289.parse.address” on page 2552

v “SIP_RFC3263_nameserver” on page 2553

v “thread.message.queue.max.size” on page 2553

v “weight.overload.watermark” on page 2554

auth.int.enable:

Specifies the auth-int quality of protection (QOP) for digest authentication. Digest authentication defines
two types of QOP: auth and auth-int. By default, auth is used. When this custom property is set to True,
the highest level of protection is used, which is the auth-int QOP.

Information Value
Data type String
Default False

com.ibm.sip.sm.lnm.size:

Specifies the number of logical names in the application server. Each SIP object that can be replicated,
such as a SIP session, is associated with a logical name. All objects with the same logical name are
replicated to the same back-up container. The proxy can route messages to the correct container using the
logical name found in the message. The value must be greater than 1.

Information Value
Data type String
Default 10

com.ibm.webspehere.sip.security.digest.ldap.cachecleanperiod:

Specifies the clean Lightweight Directory Access Protocol (LDAP) cache period in minutes.

Information Value
Data type String
Default 120

com.ibm.websphere.sip.security.tai.usercachecleanperiod:

Specifies the clean security subject cache period in minutes.

Information Value
Data type String
Default 15

com.ibm.ws.sip.key.set:

Specifies the key to use for SIP flow token security. When a value is specified for this property, SIP flow
token security is automatically enabled.

Information Value
Data type String
Default There is no default value

2542 Administering WebSphere applications



com.ibm.ws.sip.tai.DisableSIPBasicAuth:

Specifies whether to allow basic authentication for SIP.

Information Value
Data type String
Default False

DigestPasswordServerClass:

Specifies types of user registries that are supported, except LDAP. To configure DigestTAI without the
LDAP user registry, complete the following steps.

1. Create a class that implements this interface: com.ibm.ws.sip.security.digest.DigestPasswordServer

2. Add the following property to the SIP container custom property:

Default LdapPasswordServer

3. Ensure that all users declared by the impl class are declared in the user registry configured for the
product security.

Information Value
Data type String
Default impl

enable.system.headers.modify:

Specifies whether the application has access to headers that are otherwise restricted.

Information Value
Data type String
Default False

end.of.service.replication: Specifies whether changes are buffered until the thread for a siplet is about
to end. If the value is set to true, then each change is buffered until the thread for the siplet is about to
end.

Information Value
Data type Boolean
Default true

immediate.replication: Specifies whether each change is immediately sent to the Data Replication
Service. When this property is set to true, when replication is issued from a non-SIP container thread, the
replication is immediately performed on the calling thread. When this property is set to false, the changes
are buffered, and replication does not occur until all changes are made.

Setting this property to true might have a negative impact on performance.

Information Value
Data type Boolean
Default false

javax.servlet.sip.ar.dar.configuration:

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2543



Specifies the location of the default application router (DAR) properties file. The properties file defines the
order in which the application router sends SIP requests to applications as described in Appendix C of the
JSR 289 specification.

Information Value
Data type String
Default Null

javax.servlet.sip.ar.spi.SipApplicationRouterProvider:

Specifies the custom application router implementation fully qualified class name as described in section
15.4.2 of the JSR 289 specification. The custom application router implementation class defines the order
in which the application router sends SIP requests to applications.

Information Value
Data type String
Default Null

javax.sip.bind.retries:

Specifies the amount of time, in milliseconds, between attempts to start the SIP channel if the SIP port is
busy with another process during server startup.

Information Value
Data type String
Default 60

javax.sip.bind.retry.delay:

Specifies the delay, in milliseconds, between attempts to start the SIP channel if the SIP port is busy with
another process during server startup.

Information Value
Data type String
Default 5000

javax.sip.detect.pre.escaped.params:

Specifies whether to prevent the container from re-escaping Uniform Resource Identifier (URI) parameters
that were pre-escaped by the application.

Enabling this property provides the application with more control over escaping URI parameters, when
calling the javax.servlet.sip.SipFactory.createURI() and the
javax.servlet.sip.SipURI.setParameter() parameters.

By default, the container only escapes characters that it must encode according to the RFC 3261 25.1
specification. In some cases, however, escaping additional characters might be required. Due to a
limitation in the JSR 116 (5.2.1) specification, the application cannot perform its own escaping. Because of
this limitation, attempts by the application to encode URI parameters causes the container to re-encode
the percent sign. If the value of this property is set to true, the container cannot re-encode the percent
sign.

2544 Administering WebSphere applications



Setting the value to true is not in compliance with the JSR 116 (5.2.1) specification, but provides the
application with greater control over URI parameter escaping. APAR PK37192 describes the problem and
the workaround.

Information Value
Data type String
Default False

javax.sip.force.connection.reuse:

Specifies whether to force reuse of inbound connections for outbound requests. This custom property is
only relevant for stream transports, such as Transmission Control Protocol (TCP) and Transport Layer
Security (TLS). Disabling this property causes the container to create a separate connection for outbound
requests, even if an existing connection is already established to the same peer address. The connection
is automatically reused if the top Via header in the inbound request contains an alias parameter.
(http://www.ietf.org/internet-drafts/draft-ietf-sip-connect-reuse-07.txt)

Information Value
Data type String
Default False

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.hide.message.body:

Specifies to hide message content in logs. Set the value of this property to true to remove the message
body text from SIP messages printed in the log files. This property only affects the representation of the
messages in log files.

Information Value
Data type String
Default False

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.hide.message.headers:

Specifies to hide the specified message header field names in log files. The value of this property is a
comma-separated list of header field names that you want removed from SIP messages printed in the log
files. This property only affects the representation of the messages in log files.

Information Value
Data type String
Default None

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2545



javax.sip.hide.request.uri:

Specifies to hide request URIs in log files. Set the value of this property to true to remove request URIs
from SIP messages printed in the log files. This property only affects the representation of the messages
in log files.

Information Value
Data type Boolean
Default False

javax.sip.OUTBOUND_PROXY:

Specifies the fixed address for routing all outbound SIP messages. The format is address:port/transport,
such as 1.2.3.4:5065/tcp.

Note: Do not use this property if the container is fronted by an application server SIP proxy.

Information Value
Data type String
Default null

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.PATH_MTU:

Specifies the maximum transmission unit, in bytes, for outbound User Datagram Protocol (UDP) requests.
The SIP stack measures the size of a request prior to sending it out on the UDP channel. If the request is
larger than the value specified for PATH_MTU-200 (1300 bytes by default), then the transport is switched
from UDP to TCP prior to transmission. Increase this value to send larger requests over the UDP channel;
however, messages might be truncated or dropped. See the RFC 3261-18.1.1 specification for details.

Information Value
Data type String
Default 1500

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.stat.report.interval:

Specifies the amount of time, in milliseconds, for reporting dispatch and timer statistics to a system.out file.
A value of zero indicates no report.

Information Value
Data type String

2546 Administering WebSphere applications



Information Value
Default 0

javax.sip.trace.msg.in:

Specifies whether to print incoming messages to a system.out file.

Information Value
Data type String
Default False

javax.sip.trace.msg.out:

Specifies whether to print outbound messages to a system.out file.

Information Value
Data type String
Default False

javax.sip.transaction.invite.auto100:

Specifies whether to automatically reply to invite requests with a 100 Trying response. Disabling this
property might increase the number of invite retransmissions.

Information Value
Data type String
Default True

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.a:

Specifies, for UDP only, the amount of time, in milliseconds, prior to retransmitting invite requests for timer
A for the RFC 3261 specification. This property is relevant for the invite client transaction.

Information Value
Data type String
Default javax.sip.transaction.timer.t1

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.b:

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2547



Specifies the amount of time, in milliseconds, for the invite client transaction timeout timer (timer B) for the
RFC 3261 specification.

Information Value
Data type String
Default 64*javax.sip.transaction.timer.t1

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.cancel:

Specifies the amount of timer, in milliseconds, for the timer to keep the cancelled client transaction in the
proceeding state prior to completing the cancelled transaction for the RFC 3261 9.1 specification. This
property is relevant for the invite client transaction.

Information Value
Data type String
Default 64*javax.sip.transaction.timer.t1

javax.sip.transaction.timer.d:

Specifies the wait time, in milliseconds, prior to retransmission of the invite response for timer D for the
RFC 3261 specification. This property is relevant for the invite client transaction.

Information Value
Data type String
Default 32000

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.e:

Specifies, for UDP only, the amount of time, in milliseconds, prior to the retransmission of the initial
non-invite request for timer E for the RFC 3261 specification. This property is relevant for the non-invite
client transaction.

Information Value
Data type String
Default javax.sip.transaction.timer.t1

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

2548 Administering WebSphere applications



mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.f:

Specifies the amount of time, in milliseconds, for the non-invite transaction timeout timer (timer F) for the
RFC 3261 specification. This property is relevant for the non-invite client transaction.

Information Value
Data type String
Default 64*javax.sip.transaction.timer.t1

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.g:

Specifies the amount of time, in milliseconds, prior to retransmission of an initial invite response for timer
G for the RFC 3261 specification. This property is relevant for the invite server transaction.

Information Value
Data type String
Default javax.sip.transaction.timer.t1

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.h:

Specifies the amount of time, in milliseconds, to wait for an acknowledgement (ACK) receipt for timer H for
the RFC 3261 specification. This property is relevant for the invite server transaction.

Information Value
Data type String
Default 64*javax.sip.transaction.timer.t1

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.i:

Specifies the amount of time in milliseconds to wait for an ACK retransmission for timer I for the RFC 3261
specification. This property is relevant for the invite server transaction.

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2549



Information Value
Data type String
Default javax.sip.transaction.timer.t4

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.invite.server:

Specifies the amount of time, in milliseconds, for the timer to keep the invite server transaction in the
complete state. This timer is not defined in the RFC specification.

To avoid creating a new server transaction when a client retransmits an invite request, keep the completed
server transaction for a period of time prior to removing invite retransmissions. This timer is started when
the transaction changes to the terminated state. When the timer completes, the transaction is removed.

Information Value
Data type String
Default 32000

javax.sip.transaction.timer.j:

Specifies the amount of time in milliseconds to wait for non-invite request retransmission for timer J for the
RFC 3261 specification. This property is relevant for the non-invite server transaction.

Information Value
Data type String
Default 64*javax.sip.transaction.timer.t1

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.k:

Specifies the amount of time, in milliseconds, to wait for non-INVITE response retransmissions for timer K
for the RFC 3261 specification. This property is relevant for the non-invite client transaction.

Information Value
Data type String
Default javax.sip.transaction.timer.t4

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

2550 Administering WebSphere applications



mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.non.invite.server:

Specifies the amount of time, in milliseconds, for an Application Programming Interface (API) timer for the
application to respond to a non-invite request. This property is relevant for non-invite server transactions.

This timer is not defined in the RFC specification. This property is needed to stop the transaction if the
application does not generate a final response to the request. The timer starts when the request arrives in
the stack and stops when a response is generated by the application. If no response is generated prior to
the timer stopping, then the transaction completes.

Information Value
Data type String
Default 34000

javax.sip.transaction.timer.t1:

Specifies the amount of time, in milliseconds, for a network round trip delay for timer T1 for the RFC 3261
specification. The value is used as a base for calculating some timers and is relevant for all types of
transactions, such as client, server, invite, and non-invite transactions.

Information Value
Data type String
Default 500

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.t2:

Specifies the maximum time in milliseconds prior to retransmitting non-invite requests and invite responses
for timer T2 for the RFC 3261 specification.

Information Value
Data type String
Default 4000

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.t4:

Specifies the maximum amount of time, in milliseconds, for a message to remain in the network. This
value is used as a base for calculating other timers for timer T4 for the RFC 3261 specification.

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2551



Information Value
Data type String
Default 5000

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

on.outgoing.message.replication: Specifies whether changes are buffered until a siplet issues a
request.send() or response.send() call. If the value is set to true, then each change is buffered until a
siplet issues a request.send() or response.send() call.

Information Value
Data type Boolean
Default false

pws_atr_name:

Specifies the LDAP attribute name that stores the user password.

Information Value
Data type String
Default userpassword

replicate.with.confirmed.dialog.only:

Specifies whether to replicate the application session, even when no dialogs are confirmed. If the value is
set to false, then the application session is replicated immediately after the session is created. Otherwise,
the application session is only replicated when an associated dialog is confirmed.

Information Value
Data type String
Default False

sip.container.heartbeat.enabled:

Specifies whether or not SIP network outage detection is enabled for the SIP container. SIP network
outage detection allows the SIP proxy to send keepalive messages to the SIP container if the value of this
property is set to true.

If the value is set to false for the SIP container, then this property has no effect on the SIP proxy.
However, if the value is set to true for the SIP container, the value should also be set to true for the SIP
proxy to ensure that keepalive messages are answered at the SIP container and not presented to the
application.

Information Value
Data type String
Default true

sip.jsr289.parse.address:

2552 Administering WebSphere applications



Specifies to use the SIP Servlet Specification 1.1, JSR 289 required format for createRequest() and
createAddress() methods.

Note: The JSR 289 API requires that for any SIP URI that contains address parameters, you must
enclose the SIP URI in angle brackets. The default behavior of the sip.jsr289.parse.address
property is compliant with JSR 289 and correctly parses the address parameter as if it belongs to
the SIP address. For example, when the property is set to false, the SIP address,
sip:fred@acme.com;param1=1, is converted to <sip:fred@acme.com;param1=1>. When the property is
set to true, the SIP address sip:fred@acme.com;param1=1, is converted to
<sip:fred@acme.com;>param1=1.

Information Value
Data type String
Default True

SIP_RFC3263_nameserver:

Specifies whether to allow a SIP URI to be resolved through Domain Name System (DNS) into the IP
address, port, and transport protocol of the next hop.

The value of the property is a string containing one or two address and port tuples, where two tuples are
separated by a space. The following examples specify a one address and port tuple or a two address and
port tuple.

dottedDecimalAddress@.port

hostname.domain@port

IPV6address@port

The following example values represent a single tuple.

v 1.2.3.4@53

v example.com@53

v a:b:c::d@53

The following example values represent two tuples separated by a space.

v 1.2.3.4@53 example.com@53

v a:b:c::d@53 9.32.211.14@53

Information Value
Data type String
Default null

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

thread.message.queue.max.size:

Specifies the maximum number of events allowed in the container threads queue. When this number is
exceeded, the proxy server is notified that the container is overloaded and requests for new sessions are
not accepted. Instead, the container returns an error message that indicates that the container is
temporarily unavailable.

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2553



This value represents the total number of messages for all queues and reflects the state of the CPU.
When the CPU approaches 100%, the maximum value for this custom property is reached quickly.
Configure your system to limit the queue size and prevent the queue from reaching this threshold.

Information Value
Data type String
Default 1000

weight.overload.watermark:

Specifies the threshold value for the internal weight calculated by the container. When the container
calculates the internal weight to be higher than the value specified, an overloaded container becomes
available for service again.

This custom property represents a percentage of the maximum internal weight, such as 30 percent when
the default value is set. When the high-water mark, or maximum threshold, is exceeded, the container
waits until the weight drops beneath the maximum weight. This value cannot exceed 10.

Information Value
Data type String
Default 3

Using DNS procedures to locate SIP servers
The Session Initiation Protocol (SIP) can use Domain Name Server (DNS) procedures for a client to
resolve a SIP Uniform Resource Identifier (URI).

About this task

WebSphere Application Server provides support for the RFC 3263 standard. This allows a SIP URI to be
resolved through DNS into the IP address, port, and transport protocol of the next hop to contact.

Note: SIP does not support use of DNS procedures for a server to send a response to a back-up client if
the primary client fails.

Complete these steps to configure WebSphere Application Server to support the RFC 3263 standard.

Procedure
1. Start WebSphere Application Server.

2. From the administrative console, expand Servers, and click Application servers > serverName.

3. Under General Properties, check the Enable locating SIP servers using DNS NAPTR records
checkbox, then fill in the Primary DNS server name and Secondary DNS server name fields.

4. Click Apply to save your changes.

5. Restart WebSphere Application Server.

What to do next

You must configure your DNS server in order for RFC 3263 support to work for the SIP container. The
following example is a BIND db file for configuring RFC 3263 support on a DNS server.
; Copyright (C) 2004 Internet Systems Consortium, Inc. ("ISC")
; Copyright (C) 2001 Internet Software Consortium.
;
; Permission to use, copy, modify, and distribute this software for any
; purpose with or without fee is hereby granted, provided that the above
; copyright notice and this permission notice appear in all copies.
;

2554 Administering WebSphere applications

http://www.ietf.org/rfc/rfc3263.txt


; THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
; REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
; AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
; INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
; LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
; OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
; PERFORMANCE OF THIS SOFTWARE.

; $Id: include.db,v 1.2.206.1 2004/03/06 10:22:13 marka Exp $

; Test $INCLUDE current domain name and origin semantics

example.com. 43200 IN SOA ns.example.com. email.example.com. ( 2003032001 10800 3600 604800 86400 )
;
example.com. 43200 IN NS ns.example.com.
;
ns.example.com. 43200 IN A 10.0.0.20
sipserver1.example.com. 43200 IN A 10.0.0.21
sipserver2.example.com. 43200 IN A 10.0.0.22
sipserver3.example.com. 43200 IN A 10.0.0.23
;
router.example.com. 43200 IN CNAME sipserver3
;
sipserver1.example.com. 43200 IN AAAA fec0:0:0:0:0:0:0:abcd
sipserver2.example.com. 43200 IN AAAA fec0:0:0:0:0:0:0:abba
;
_sip._udp.example.com. 43200 IN SRV 2 0 5060 sipserver1.example.com.
_sip._udp.example.com. 43200 IN SRV 2 0 5060 sipserver2.example.com.
_sip._tcp.example.com. 43200 IN SRV 1 4 5060 sipserver1.example.com.
_sip._tcp.example.com. 43200 IN SRV 1 2 5060 sipserver2.example.com.
_sips._tcp.example.com. 43200 IN SRV 0 1 5061 sipserver1.example.com.
_sips._tcp.example.com. 43200 IN SRV 0 0 5061 sipserver2.example.com.
;
example.com. 43200 IN NAPTR 0 0 "s" "SIPS+D2T" "" _sips._tcp.example.com.
example.com. 43200 IN NAPTR 1 0 "s" "SIP+D2T" "" _sip._tcp.example.com.
example.com. 43200 IN NAPTR 2 0 "s" "SIP+D2U" "" _sip._udp.example.com.

SIP container settings
Use this page to configure the SIP container settings for Session Initiation Protocol (SIP).

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > SIP container settings > SIP container.

Maximum application sessions:

Specifies the maximum number of SIP application sessions that the container manages. When the
maximum is reached, no new SIP conversations are started. When the maximum is exceeded in a
clustered environment, the server does not forward new dialogs until the number of application sessions
no longer exceeds the maximum.

Application sessions are typically created by new incoming calls, but can also be created by other events.
The application session count does not impact failover, but applies only to new sessions that are created
as a result of incoming calls.

When application sessions are transferred from one application server to another due to failover, the active
application server inherits the sessions created on the failed server. In addition, the servlet might create a
new application session in the SIP container by calling SipFactory.createApplicationSession().

New application sessions created for events other than starting SIP conversations are not controlled by
this setting. But all new application sessions are included when computing the maximum number of
application sessions allowed. Thus, all active application sessions, including those not related to starting
SIP conversations, can cause the maximum to be exceeded.

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2555



Information Value
Data type Integer
Default 120000 (recommended)
Range 1 <= n <= java.lang.Integer.MAX_VALUE

Maximum messages per averaging period:

Specifies the maximum amount of SIP messages processed per averaging period. The averaging period is
the period of time during which the average number of messages received by the container is calculated.

This average is used to determine the load for the container and to determine if the number of messages
is approaching the maximum. When the maximum is exceeded, the stand-alone server or the proxy server
continues to handle all in-dialog messages. Other non-dialog requests are rejected. When a container is in
an overloaded state, the proxy server returns a 503 error.

Information Value
Data type Integer
Default 5000 (recommended)
Range 1 <= n <= java.lang.Integer.MAX_VALUE

Maximum dispatch queue size:

Specifies the size of the internal dispatch queue. When the maximum queue size threshold is reached, the
container queue becomes overloaded and begins to drop requests for new sessions. In this case, the
container does not report its overloaded state to the proxy server.

Configure your system to limit the queue size to prevent the queue from reaching this threshold. If the
internal queue reaches the overloaded state, incoming UDP packets are dropped until the queue is no
longer in an overloaded state. Limiting the queue size enables better recovery if the CPU is used by other
processes or threads and prevents the container from reaching out-of-memory conditions. When the value
is set to 0, the queue size is unlimited.

Information Value
Data type Integer
Default 3200 (recommended)
Range 0 <= n <= java.lang.Integer.MAX_VALUE

Maximum response time:

Specifies the maximum response time, in milliseconds, for an application. When the amount of time is
exceeded, the container notifies the clustering framework that it is unavailable. You can disable this feature
in the administrative console by deselecting the check box and specifying a value of 0.

Use the maximum SIP response time setting cautiously because the calculated response time does not
match the behavior of all applications. For requests, such as INVITE requests, where the responses are
generated as a result of a user interaction, the calculated response time is extensive. However, the
extensive response time is not caused by a delay in the SIP container. Therefore, you should not calculate
the response time as a load factor. The recommended applications for effective calculation of response
time are applications that respond immediately without a user interaction. The subscribe and register
applications are relevant examples.

Information Value
Data type Integer
Default 0

2556 Administering WebSphere applications



Information Value
Range 1 <= n <= java.lang.Integer.MAX_VALUE

Averaging period in milliseconds:

Specifies the amount of time, in milliseconds, to use for calculating the maximum messages per averaging
period. This setting is the sliding window during which the SIP container counts the number of messages
sent to the container.

Information Value
Data type Integer
Default 1000 (recommended)
Range 1000 <= n <= java.lang.Integer.MAX_VALUE

Statistic update rate:

Specifies control over the interval for which the container calculates averages and publishes statistics to
Performance Monitoring Infrastructure.

Information Value
Data type Integer
Default 10000 (recommended)
Range 1000 <= n <= java.lang.Integer.MAX_VALUE

Locating SIP servers using DNS:

Specifies whether to enable locating SIP servers using DNS (Directory Name Service).

A SIP Uniform Resource Identifier (URI) can be resolved through DNS into the Internet Protocol (IP)
address, port, and transport protocol of the next hop.

The value for the Primary DNS server name or Secondary DNS server name fields is a string
containing one address and port tuple. The following examples specify an address and port tuple.

Note: The container contacts the primary DNS server first; however, if the primary DNS server is
unavailable, then the container contacts the secondary DNS server. If the secondary DNS server
remains responsive, the container does not attempt to contact the primary DNS server.

dottedDecimalAddress@.port

hostname.domain@port

IPV6address@port

Information Value
Data type Boolean
Default False

Primary DNS server name
Specifies an IP address and port tuple for the primary DNS server. If this server is not available, then
the container sends a response to the secondary DNS server.

Information Value
Data type String
Default empty string.

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2557



Secondary DNS server name
Specifies an IP address and port tuple for the secondary DNS server.

Information Value
Data type String
Default empty string.

Thread pool:

Specifies the thread pool to use for the SIP container.

If you do not choose a thread pool, the SIP container creates a new thread pool with maximum size of 15.

SIP stack settings
Use this page to configure values for the Session Initiation Protocol (SIP) stack settings that are different
from those specified in RFC 3261. The default values are the same as those specified for RFC 3261.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > SIP container settings > SIP container > SIP stack.

Automatically reply to INVITE with "100 Trying" response:

Specifies whether to automatically reply to INVITE requests with a 100 Trying response. Disabling this
setting might increase the number of INVITE retransmissions.

Information Value
Data type Boolean
Default True

Hide message body:

Specifies whether to hide message content in log files. Set the value to True to remove the message body
text from SIP messages printed in the log files. This setting only affects the representation of the
messages in log files.

Information Value
Data type Boolean
Default False

Enable outbound connection timeout:

Specifies whether to enable the outbound connection timeout.

Information Value
Data type Boolean
Default False

Outbound connection timeout:

Specifies the amount of time, in milliseconds, for creating outbound connections. This setting is relevant
only for stream transports, such as Transmission Control Protocol (TCP) and Transport Layer Security
(TLS). The default value of 0 provides an infinite amount of time.

2558 Administering WebSphere applications



Information Value
Data type Integer
Default 0

Maximum transmission unit:

Specifies the maximum transmission unit, in bytes, for outbound User Datagram Protocol (UDP) requests.
The SIP stack measures the size of a request before sending it out on the UDP channel. If the request is
higher than the value specified for PATH_MTU-200, 1300 bytes by default, then the transport is switched
from UDP to TCP before transmission.

Increase this value to send larger requests over the UDP channel; however, messages might be truncated
or discarded. See the RFC 3261-18.1.1 specification for details.

Information Value
Data type Integer
Default 1500

Outbound proxy:

Specifies the fixed address for routing all outbound SIP messages. The format is address:port/transport,
such as 1.2.3.4:5065/tcp.

Best Practice: Do not use this setting if the container is fronted by an application server SIP proxy.

Information Value
Data type String
Default empty string

SIP timers settings
Use this page to set values for the Session Initiation Protocol (SIP) timers that are different from those
specified in RFC 3261. SIP timers provide a mechanism for session expiration.The default values are the
same as those specified for RFC 3261.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > SIP container settings > SIP container > SIP stack > SIP timers.

The following SIP timers can be configured from the administrative console.

T1:

Specifies the amount of time, in milliseconds, for a network round trip delay for timer T1 for the RFC 3261
specification. The value is used as a base for calculating some timers and is relevant for all types of
transactions, such as client, server, invite, and non-invite transactions.

Information Value
Data type Integer
Default 500

A Specifies, for UDP only, the amount of time, in milliseconds, before retransmitting invite requests for
timer A for the RFC 3261 specification. This setting is relevant for the invite client transaction.

Information Value
Data type Integer

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2559



Information Value
Default T1

B Specifies the amount of time, in milliseconds, for the invite client transaction timeout timer (timer B) for
the RFC 3261 specification.

Information Value
Data type Integer
Default T1*64

E Specifies, for UDP only, the amount of time, in milliseconds, before the retransmission of the initial
non-invite request for timer E for the RFC 3261 specification. This setting is relevant for the non-invite
client transaction.

Information Value
Data type Integer
Default T1

F Specifies the amount of time, in milliseconds, for the non-invite transaction timeout timer (timer F) for
the RFC 3261 specification. This setting is relevant for the non-invite client transaction.

Information Value
Data type Integer
Default T1*64

G Specifies the amount of time, in milliseconds, before retransmission of an initial invite response for
timer G for the RFC 3261 specification. This setting is relevant for the invite server transaction.

Information Value
Data type Integer
Default T1

H Specifies the amount of time, in milliseconds, to wait for an acknowledgement (ACK) receipt for timer
H for the RFC 3261 specification. This setting is relevant for the invite server transaction.

Information Value
Data type Integer
Default T1*64

J Specifies the amount of time, in milliseconds, to wait for non-invite request retransmission for timer J
for the RFC 3261 specification. This setting is relevant for the non-invite server transaction.

Information Value
Data type Integer
Default T1*64

T2:

Specifies the maximum amount of time, in milliseconds, before retransmitting non-invite requests and invite
responses for timer T2 for the RFC 3261 specification.

Information Value
Data type Integer
Default 4000

2560 Administering WebSphere applications



T4:

Specifies the maximum amount of time, in milliseconds, for a message to remain in the network. This
value is used as a base for calculating other timers for timer T4 for the RFC 3261 specification.

Information Value
Data type Integer
Default 5000

I Specifies the amount of time, in milliseconds, to wait for an ACK retransmission for timer I for the RFC
3261 specification. This setting is relevant for the invite server transaction.

Information Value
Data type Integer
Default T4

K Specifies the amount of time, in milliseconds, to wait for non-INVITE response retransmissions for
timer K for the RFC 3261 specification. This setting is relevant for the non-invite client transaction.

Information Value
Data type Integer
Default T4

D:

Specifies the amount of time to wait, in milliseconds, before retransmission of the invite response for timer
D for the RFC 3261 specification. This setting is relevant for the invite client transaction.

Information Value
Data type Integer
Default 32000

Configuring SIP timers
You can configure SIP timers to set values for the Session Initiation Protocol (SIP) timers that are different
from default values specified in RFC 3261. SIP timers provide a mechanism for session expiration. The
default values are the same as those specified for RFC 3261.

Before you begin

About this task

You can set values for the SIP timers from the administrative console.

Note: If you have already used the custom properties to specify a value for a SIP timer, the custom
property value is the primary value. Therefore, the SIP timer value specified from the administrative
console is not used.

Procedure
1. From the administrative console, click Servers > server_name > SIP container > SIP stack > SIP

timers.

2. Specify a value for a timer by clicking the Use Custom Value check box beside the timer.

3. Specify a value for the timer in the Value column.

4. Click OK.

5. Restart the application server.

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2561



Results

The container uses the times specified in the administrative console and not the RFC defaults.

SIP timer summary:

Request for Comments (RFC) 3261, “SIP: Session Initiation Protocol,” specifies various timers that SIP
uses.

Table 235 summarizes for each SIP timer the default value, the section of RFC 3261 that describes the
timer, and the meaning of the timer.

Table 235. Summary of SIP timers. This table lists a summary of SIP timers.

Timer Default value Section Meaning

T1 500 ms 17.1.1.1 Round-trip time (RTT) estimate

T2 4 sec. 17.1.2.2 Maximum retransmission interval for non-INVITE requests and
INVITE responses

T4 5 sec. 17.1.2.2 Maximum duration that a message can remain in the network

Timer A initially T1 17.1.1.2 INVITE request retransmission interval, for UDP only

Timer B 64*T1 17.1.1.2 INVITE transaction timeout timer

Timer D > 32 sec. for UDP 17.1.1.2 Wait time for response retransmissions

0 sec. for TCP and
SCTP

Timer E initially T1 17.1.2.2 Non-INVITE request retransmission interval, UDP only

Timer F 64*T1 17.1.2.2 Non-INVITE transaction timeout timer

Timer G initially T1 17.2.1 INVITE response retransmission interval

Timer H 64*T1 17.2.1 Wait time for ACK receipt

Timer I T4 for UDP 17.2.1 Wait time for ACK retransmissions

0 sec. for TCP and
SCTP

Timer J 64*T1 for UDP 17.2.2 Wait time for retransmissions of non-INVITE requests

0 sec. for TCP and
SCTP

Timer K T4 for UDP 17.1.2.2 Wait time for response retransmissions

0 sec. for TCP and
SCTP

Performing controlled failover of SIP applications
You can take an active application out of the loop using a controlled failover.

About this task

SipContainerMBean is used to initiate a server quiesce through wsadmin (command line interface). This
MBean is used to set the container's weight to 0, which prevents new messages from being routed to it.

WebSphere Application Server PMI is used to monitor the server's active sessions. The remaining active
sessions can be watched by enabling a counter on the server being quiesced. The server can be shut
down once the number of active sessions reaches an acceptable level. A script can be written to monitor
active sessions and shut down the server when an acceptable threshold is achieved.

2562 Administering WebSphere applications

http://www.ietf.org/rfc/rfc3261.txt


Procedure
v To quiesce single server, complete the following steps:

1. On an ND machine, start the wsadmin utility.

a. Go to <nd_installation_path>/bin

b. Run the command: ./setupCmdLine.sh

c. Run the command: ./wsadmin.sh

d. Verify that received: wsadmin>

2. Run the command: set scBean [$AdminControl queryNames
type=SipContainerMBean,process=<server name>,*]

3. Run the command: $AdminControl invoke $scBean quiesce true

v To stop application servers from the admin console, command line or scripts, use the following
commands:

1. Stop: Quiesces the application server. The sessions will failover to another server. It is important to
manually quiesce the server on shutdown.

2. Immediate Stop: Stops the server, but bypasses the normal server quiesce process that supports
in-flight requests to complete before shutting down the entire server process. This shutdown mode is
faster than the normal server stop processing, but some application clients can receive exceptions.

3. Terminate: Deletes the application server process. Use this if immediate stop fails to stop the
server.

Configuring SIP application routers
Use the Session Initiation Protocol (SIP) application router to select the order in which SIP applications are
triggered. When configuring a SIP application router, you can either use the default application router or
create a custom application router.

About this task

The SIP container provides an application router component called the Default Application Router (DAR).
The DAR component uses a configuration text file, similar to a Java properties file, that defines the order
in which the application router sends SIP requests to applications.

Restriction: WebSphere Application Server has a default way of sorting the order of SIP applications
invocation using the Startup behavior settings. The sorting order is based on the application
weight. This weighting policy only applies if you do not specify a DAR configuration file, or if
a custom application router has not been associated with the server or cluster.

You can either use the DAR or a custom application router to perform application routing, as described in
the procedure.

Use the following procedure to select the best method to implement the SIP application router for your
configuration.

Procedure
v Use the DAR component with a DAR configuration file.

1. In the administrative console, click Environment > SIP application routers. The table displays a
list of available application routers, including the DAR component.

2. Click the DefaultSIPApplicationRouter link.

3. View the list of server and cluster targets that are associated with the application router in the
Targets table.

4. Targets may or may not be available. To change the target of an application router, go back to the
SIP application routers panel, click on a router name, and check to see if a target is listed. If a

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2563



target is listed, select a target and then click the Move to Application Router button. The
drop-down menu lets you select another application router.

5. For the DefaultSIPApplicationRouter, click a target link name to set the application routing
configuration for the target.

6. Click Advanced application routing rules (DAR configuration) to use a DAR configuration file,
and click Apply.

7. Click Configure routing rules to view or edit the routing rules.

8. If you have an existing DAR configuration file, you can click the Import... button to upload the new
DAR configuration file. The File Import window is displayed, which allows you to browse to the file
and upload it; then click the Import button.

9. Use the New, Delete, Move up, and Move down buttons on the DAR Configuration File page to
create and modify routing rules.

10. Click Save directly to the master configuration and then restart server or cluster to pick up the
changes.

v Use the DAR component with manual application ordering.

1. In the administrative console, click Environment > SIP application routers. The table displays a
list of available application routers, including the DAR component.

2. Click the DefaultSIPApplicationRouter link.

3. View the list of server and cluster targets that are associated with the application router in the
Targets table.

4. Targets may or may not be available. To change the target of an application router, go back to the
SIP application routers panel, click on a router name, and check to see if a target is listed. If a
target is listed, select a target and then click the Move to Application Router button. The
drop-down menu lets you select another application router.

5. For the DefaultSIPApplicationRouter, click a target link name to set the application routing
configuration for the target.

6. Click Basic application startup order to use the application order from the target; then click
Apply.

7. Click Configure application startup order to view the application startup order weights for the
applications on this target.

8. Enter a numerical value in the Startup order weight column for the application. The startup order
weight determines the order in which the SIP application router sends SIP requests to applications.
These values also determine the startup order of applications after a server restart. Applications
with lower startup values start first.

Restriction: If there are two or more SIP applications bundled inside one enterprise archive (EAR)
application file, the bundled SIP applications will have the same weight. If more
complex routing rules are needed, a different application router method must be
used.

9. Click Update.

10. Click Save directly to the master configuration and then restart server or cluster to pick up the
changes.

Attention: The CEA samples package includes a wsadmin (Jython) script library that you can use to
simplify the development and testing of scripts that automate configuration changes. For further
information, see the wsadmin (Jython) scripting procedures for CEA information.

v Use a custom application router.

1. In the administrative console, click Environment > SIP application routers. The table displays a
list of available application routers, including the DAR component.

2564 Administering WebSphere applications



2. Select a custom SIP application router from the list, or click New to create a new one. The
Configuration tab shows the name of the application router and the provider name of the application
router. The provider name of the application router must be set to the custom application router
implementation fully qualified class name.

3. Place the Java archive (JAR) file in the server class path. For example, place the JAR file in the
java_home/lib/ext directory, and ensure this directory is included in the class path for the server.

gotcha: Do not add this path to the Servers > Server Types > Websphere application servers >
server_name > Sip Container > Java and Process Management > Process Definition
> Java Virtual Machine > Classpath entry, because this can cause conflicts.

4. Enter or edit the information in the required fields as needed. The required fields are identified with
an asterisk (*).

5. Click Apply and then click Save directly to the master configuration.

6. To change the target of an application router, click on a router name, and check to see if a target is
listed. If a target is listed, select a target and then click the Move to Application Router button. The
drop-down menu lets you select another application router.

7. Click Save directly to the master configuration and then restart server or cluster to pick up the
changes.

Attention: The CEA samples package includes a wsadmin (Jython) script library that you can use to
simplify the development and testing of scripts that automate configuration changes. For further
information, see the wsadmin (Jython) scripting procedures for CEA information.

v Use custom properties to configure the SIP application router. You can use the following custom
properties to configure a DAR or a custom application router. These custom properties override the
administrative console settings.

1. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name.

2. Under Container Settings, expand SIP Container Settings and click SIP container.

3. Under Additional Properties, click Custom properties, then click New.

4. For the DAR, use the javax.servlet.sip.ar.dar.configuration custom property. This property
specifies the location of the DAR properties file that defines the order in which the application router
sends SIP requests to applications as described in Appendix C of the JSR 289 specification.

5. For the custom application router, use the javax.servlet.sip.ar.spi.SipApplicationRouterProvider
custom property. This property specifies the custom application router implementation fully qualified
class name as described in section 15.4.2 of the JSR 289 specification. The custom application
router implementation class defines the order in which the application router sends SIP requests to
applications.

6. Click Save directly to the master configuration and then restart server or cluster to pick up the
changes.

Results

You have successfully configured a SIP application router.

SIP application router collection
Use this page to create and delete SIP application routers. The Session Initiation Protocol (SIP)
application router allows you to select the order in which SIP applications are run at an initial SIP request.

To view this administrative console page, click Environment > SIP application routers. The table
displays a list of available application routers, including the default application router (DAR).

New:

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2565



Click New to create a new SIP application router.

On the Configuation tab, specify the following required fields. Click Apply to save the entry or Reset to
clear.

v SIP application router name – Specify a logical name for the application router.

v SIP application router provider name – Specifies the provider name of the application router. This is
defined in the custom application router jar file, which must be in the application server's classpath.

Delete:

To delete a listed application router, select it, then click Delete. The DefaultSIPApplicationRouter cannot be
deleted.

SIP Application Router Name:

Specifies the SIP application router name that you entered on the Configuration tab or the Default SIP
Application Router.

SIP application router settings
Use this page to configure SIP application router container settings. The Session Initiation Protocol (SIP)
application router allows you to select the order in which SIP applications are triggered. You can use the
default application router (DAR) or specify a custom application router adhering to the SIP Servlet
specification.

To view this administrative console page, click Environment > SIP application routers, then click
SIP_application_router_name from the list displayed.

SIP application router name:

Enter a logical name representing the application router. If you selected the default application router, this
field cannot be edited.

SIP application router provider name:

Specifies the provider name of the application router. This is defined in the custom application router jar
file, which must be in the application server's classpath. This field is not visible when you edit the DAR.

Targets:

Specifies a list of server and cluster targets that are associated with an application router. By default, all
servers and clusters defined in the system are listed as targets of the DAR. Each target can only be
associated with one application router. For the DAR, you can also set the order in which the applications
are run on each target.

Move to Application Router:

Specifies the Move to Application Router button, which allows you to change the targets of an
application router. Each application router can have a set of targets to choose from. Click this button to
move the selected target to another application router.

Target:

Specifies the target associated with an application router. Click the target name to view more information
about the target server, such as whether to use a DAR configuration file or to specify the application order.

Full name:

2566 Administering WebSphere applications



Specifies the full name of the target. This can be helpful to distinguish each target. For example, if you
have multiple targets named "server1" on different nodes, you can tell them apart by looking at the node=
part of the Full Name.

Application routing order settings:

Use this page to specify whether the Default SIP Application Router (DAR) must rely on the basic
application startup order or advanced application routing rules (DAR configuration).

To view this administrative console page, click Environment > SIP application routers >
DefaultSIPApplicationRouter > target.

Basic application startup order:

Specifies to use application startup order weights to determine the application routing order.

Click the link to go to the Startup order page where you can specify the application order weight for each
application on the target server. Lower weighted values take precedence.

Advanced application routing rules (DAR configuration):

Specifies to use routing rules when determining the application routing order.

Click the link to go to the DAR configuration file rules page where you can edit, import, or view the rules to
be used by the SIP application router for this target server.

Application startup order settings:

Use this page to define the order in which Session Initiation Protocol (SIP) requests are routed to
applications.

To view this administrative console page, click Environment > SIP application routers >
DefaultSIPApplicationRouter > target > Configure application startup order.

Startup order weight:

Specifies to manually order the installed applications using the Startup Weight column in the Application
order table.

The Startup order weight determines the order in which the SIP application router sends SIP requests to
applications. These values also determine the startup order of applications after a server restart. The lower
values start first.

Application name:

Specifies the name of the SIP application whose startup order weight you can modify.

SIP container custom properties:

You can add any of the following custom properties to the configuration settings for a Session Initiation
Protocol (SIP) container.

To specify custom properties for a specific SIP container, navigate to the custom properties page, and then
specify a value for the custom property.

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2567



Important: The custom properties are supported as the primary method of configuration. Therefore, if a
custom property is set and then you set the corresponding setting in the administrative
console, the custom property value is used.

1. In the administrative console, expand Servers > Server Types > WebSphere application servers >
server_name to open the configuration tab for the server.

2. From Container settings, expand SIP Container settings, and click SIP container.

3. From Additional properties, select Custom Properties > New.

4. On the settings page, type the custom property to configure in the Name field, and then type the value
of the custom property in the Value field.

5. Click Apply or OK.

6. Click Save on the console task bar to save your configuration changes.

7. Restart the server.

The following list of SIP container custom properties is provided with the product. These properties are not
shown on the settings page for the container.

You can define the following SIP container custom properties that are provided with the product. These
properties are not shown on the settings page for the container.

v “auth.int.enable” on page 2542

v “com.ibm.sip.sm.lnm.size” on page 2542

v “com.ibm.webspehere.sip.security.digest.ldap.cachecleanperiod” on page 2542

v “com.ibm.websphere.sip.security.tai.usercachecleanperiod” on page 2542

v “com.ibm.ws.sip.key.set” on page 2542

v “com.ibm.ws.sip.tai.DisableSIPBasicAuth” on page 2543

v “DigestPasswordServerClass” on page 2543

v “enable.system.headers.modify” on page 2543

v “end.of.service.replication” on page 2543

v “immediate.replication” on page 2543

v “javax.servlet.sip.ar.dar.configuration” on page 2543

v “javax.servlet.sip.ar.spi.SipApplicationRouterProvider” on page 2544

v “javax.sip.bind.retries” on page 2544

v “javax.sip.bind.retry.delay” on page 2544

v “javax.sip.detect.pre.escaped.params” on page 2544

v “javax.sip.force.connection.reuse” on page 2545

v “javax.sip.hide.message.body” on page 2545

v “javax.sip.hide.message.headers” on page 2545

v “javax.sip.hide.request.uri” on page 2546

v “javax.sip.OUTBOUND_PROXY” on page 2546

v “javax.sip.PATH_MTU” on page 2546

v “javax.sip.stat.report.interval” on page 2546

v “javax.sip.trace.msg.in” on page 2547

v “javax.sip.trace.msg.out” on page 2547

v “javax.sip.transaction.invite.auto100” on page 2547

v “javax.sip.transaction.timer.a” on page 2547

v “javax.sip.transaction.timer.b” on page 2547

v “javax.sip.transaction.timer.cancel” on page 2548

v “javax.sip.transaction.timer.d” on page 2548

2568 Administering WebSphere applications



v “javax.sip.transaction.timer.e” on page 2548

v “javax.sip.transaction.timer.f” on page 2549

v “javax.sip.transaction.timer.g” on page 2549

v “javax.sip.transaction.timer.h” on page 2549

v “javax.sip.transaction.timer.i” on page 2549

v “javax.sip.transaction.timer.invite.server” on page 2550

v “javax.sip.transaction.timer.j” on page 2550

v “javax.sip.transaction.timer.k” on page 2550

v “javax.sip.transaction.timer.non.invite.server” on page 2551

v “javax.sip.transaction.timer.t1” on page 2551

v “javax.sip.transaction.timer.t2” on page 2551

v “javax.sip.transaction.timer.t4” on page 2551

v “on.outgoing.message.replication” on page 2552

v “pws_atr_name” on page 2552

v “replicate.with.confirmed.dialog.only” on page 2552

v “sip.container.heartbeat.enabled” on page 2552

v “sip.jsr289.parse.address” on page 2552

v “SIP_RFC3263_nameserver” on page 2553

v “thread.message.queue.max.size” on page 2553

v “weight.overload.watermark” on page 2554

auth.int.enable:

Specifies the auth-int quality of protection (QOP) for digest authentication. Digest authentication defines
two types of QOP: auth and auth-int. By default, auth is used. When this custom property is set to True,
the highest level of protection is used, which is the auth-int QOP.

Information Value
Data type String
Default False

com.ibm.sip.sm.lnm.size:

Specifies the number of logical names in the application server. Each SIP object that can be replicated,
such as a SIP session, is associated with a logical name. All objects with the same logical name are
replicated to the same back-up container. The proxy can route messages to the correct container using the
logical name found in the message. The value must be greater than 1.

Information Value
Data type String
Default 10

com.ibm.webspehere.sip.security.digest.ldap.cachecleanperiod:

Specifies the clean Lightweight Directory Access Protocol (LDAP) cache period in minutes.

Information Value
Data type String
Default 120

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2569



com.ibm.websphere.sip.security.tai.usercachecleanperiod:

Specifies the clean security subject cache period in minutes.

Information Value
Data type String
Default 15

com.ibm.ws.sip.key.set:

Specifies the key to use for SIP flow token security. When a value is specified for this property, SIP flow
token security is automatically enabled.

Information Value
Data type String
Default There is no default value

com.ibm.ws.sip.tai.DisableSIPBasicAuth:

Specifies whether to allow basic authentication for SIP.

Information Value
Data type String
Default False

DigestPasswordServerClass:

Specifies types of user registries that are supported, except LDAP. To configure DigestTAI without the
LDAP user registry, complete the following steps.

1. Create a class that implements this interface: com.ibm.ws.sip.security.digest.DigestPasswordServer

2. Add the following property to the SIP container custom property:

Default LdapPasswordServer

3. Ensure that all users declared by the impl class are declared in the user registry configured for the
product security.

Information Value
Data type String
Default impl

enable.system.headers.modify:

Specifies whether the application has access to headers that are otherwise restricted.

Information Value
Data type String
Default False

end.of.service.replication: Specifies whether changes are buffered until the thread for a siplet is about to
end. If the value is set to true, then each change is buffered until the thread for the siplet is about to end.

Information Value
Data type Boolean

2570 Administering WebSphere applications



Information Value
Default true

immediate.replication: Specifies whether each change is immediately sent to the Data Replication
Service. When this property is set to true, when replication is issued from a non-SIP container thread, the
replication is immediately performed on the calling thread. When this property is set to false, the changes
are buffered, and replication does not occur until all changes are made.

Setting this property to true might have a negative impact on performance.

Information Value
Data type Boolean
Default false

javax.servlet.sip.ar.dar.configuration:

Specifies the location of the default application router (DAR) properties file. The properties file defines the
order in which the application router sends SIP requests to applications as described in Appendix C of the
JSR 289 specification.

Information Value
Data type String
Default Null

javax.servlet.sip.ar.spi.SipApplicationRouterProvider:

Specifies the custom application router implementation fully qualified class name as described in section
15.4.2 of the JSR 289 specification. The custom application router implementation class defines the order
in which the application router sends SIP requests to applications.

Information Value
Data type String
Default Null

javax.sip.bind.retries:

Specifies the amount of time, in milliseconds, between attempts to start the SIP channel if the SIP port is
busy with another process during server startup.

Information Value
Data type String
Default 60

javax.sip.bind.retry.delay:

Specifies the delay, in milliseconds, between attempts to start the SIP channel if the SIP port is busy with
another process during server startup.

Information Value
Data type String
Default 5000

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2571



javax.sip.detect.pre.escaped.params:

Specifies whether to prevent the container from re-escaping Uniform Resource Identifier (URI) parameters
that were pre-escaped by the application.

Enabling this property provides the application with more control over escaping URI parameters, when
calling the javax.servlet.sip.SipFactory.createURI() and the
javax.servlet.sip.SipURI.setParameter() parameters.

By default, the container only escapes characters that it must encode according to the RFC 3261 25.1
specification. In some cases, however, escaping additional characters might be required. Due to a
limitation in the JSR 116 (5.2.1) specification, the application cannot perform its own escaping. Because of
this limitation, attempts by the application to encode URI parameters causes the container to re-encode
the percent sign. If the value of this property is set to true, the container cannot re-encode the percent
sign.

Setting the value to true is not in compliance with the JSR 116 (5.2.1) specification, but provides the
application with greater control over URI parameter escaping. APAR PK37192 describes the problem and
the workaround.

Information Value
Data type String
Default False

javax.sip.force.connection.reuse:

Specifies whether to force reuse of inbound connections for outbound requests. This custom property is
only relevant for stream transports, such as Transmission Control Protocol (TCP) and Transport Layer
Security (TLS). Disabling this property causes the container to create a separate connection for outbound
requests, even if an existing connection is already established to the same peer address. The connection
is automatically reused if the top Via header in the inbound request contains an alias parameter.
(http://www.ietf.org/internet-drafts/draft-ietf-sip-connect-reuse-07.txt)

Information Value
Data type String
Default False

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.hide.message.body:

Specifies to hide message content in logs. Set the value of this property to true to remove the message
body text from SIP messages printed in the log files. This property only affects the representation of the
messages in log files.

Information Value
Data type String
Default False

2572 Administering WebSphere applications



depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.hide.message.headers:

Specifies to hide the specified message header field names in log files. The value of this property is a
comma-separated list of header field names that you want removed from SIP messages printed in the log
files. This property only affects the representation of the messages in log files.

Information Value
Data type String
Default None

javax.sip.hide.request.uri:

Specifies to hide request URIs in log files. Set the value of this property to true to remove request URIs
from SIP messages printed in the log files. This property only affects the representation of the messages
in log files.

Information Value
Data type Boolean
Default False

javax.sip.OUTBOUND_PROXY:

Specifies the fixed address for routing all outbound SIP messages. The format is address:port/transport,
such as 1.2.3.4:5065/tcp.

Note: Do not use this property if the container is fronted by an application server SIP proxy.

Information Value
Data type String
Default null

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.PATH_MTU:

Specifies the maximum transmission unit, in bytes, for outbound User Datagram Protocol (UDP) requests.
The SIP stack measures the size of a request prior to sending it out on the UDP channel. If the request is
larger than the value specified for PATH_MTU-200 (1300 bytes by default), then the transport is switched
from UDP to TCP prior to transmission. Increase this value to send larger requests over the UDP channel;
however, messages might be truncated or dropped. See the RFC 3261-18.1.1 specification for details.

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2573



Information Value
Data type String
Default 1500

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.stat.report.interval:

Specifies the amount of time, in milliseconds, for reporting dispatch and timer statistics to a system.out file.
A value of zero indicates no report.

Information Value
Data type String
Default 0

javax.sip.trace.msg.in:

Specifies whether to print incoming messages to a system.out file.

Information Value
Data type String
Default False

javax.sip.trace.msg.out:

Specifies whether to print outbound messages to a system.out file.

Information Value
Data type String
Default False

javax.sip.transaction.invite.auto100:

Specifies whether to automatically reply to invite requests with a 100 Trying response. Disabling this
property might increase the number of invite retransmissions.

Information Value
Data type String
Default True

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.a:

2574 Administering WebSphere applications



Specifies, for UDP only, the amount of time, in milliseconds, prior to retransmitting invite requests for timer
A for the RFC 3261 specification. This property is relevant for the invite client transaction.

Information Value
Data type String
Default javax.sip.transaction.timer.t1

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.b:

Specifies the amount of time, in milliseconds, for the invite client transaction timeout timer (timer B) for the
RFC 3261 specification.

Information Value
Data type String
Default 64*javax.sip.transaction.timer.t1

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.cancel:

Specifies the amount of timer, in milliseconds, for the timer to keep the cancelled client transaction in the
proceeding state prior to completing the cancelled transaction for the RFC 3261 9.1 specification. This
property is relevant for the invite client transaction.

Information Value
Data type String
Default 64*javax.sip.transaction.timer.t1

javax.sip.transaction.timer.d:

Specifies the wait time, in milliseconds, prior to retransmission of the invite response for timer D for the
RFC 3261 specification. This property is relevant for the invite client transaction.

Information Value
Data type String
Default 32000

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2575



mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.e:

Specifies, for UDP only, the amount of time, in milliseconds, prior to the retransmission of the initial
non-invite request for timer E for the RFC 3261 specification. This property is relevant for the non-invite
client transaction.

Information Value
Data type String
Default javax.sip.transaction.timer.t1

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.f:

Specifies the amount of time, in milliseconds, for the non-invite transaction timeout timer (timer F) for the
RFC 3261 specification. This property is relevant for the non-invite client transaction.

Information Value
Data type String
Default 64*javax.sip.transaction.timer.t1

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.g:

Specifies the amount of time, in milliseconds, prior to retransmission of an initial invite response for timer
G for the RFC 3261 specification. This property is relevant for the invite server transaction.

Information Value
Data type String
Default javax.sip.transaction.timer.t1

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.h:

2576 Administering WebSphere applications



Specifies the amount of time, in milliseconds, to wait for an acknowledgement (ACK) receipt for timer H for
the RFC 3261 specification. This property is relevant for the invite server transaction.

Information Value
Data type String
Default 64*javax.sip.transaction.timer.t1

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.i:

Specifies the amount of time in milliseconds to wait for an ACK retransmission for timer I for the RFC 3261
specification. This property is relevant for the invite server transaction.

Information Value
Data type String
Default javax.sip.transaction.timer.t4

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.invite.server:

Specifies the amount of time, in milliseconds, for the timer to keep the invite server transaction in the
complete state. This timer is not defined in the RFC specification.

To avoid creating a new server transaction when a client retransmits an invite request, keep the completed
server transaction for a period of time prior to removing invite retransmissions. This timer is started when
the transaction changes to the terminated state. When the timer completes, the transaction is removed.

Information Value
Data type String
Default 32000

javax.sip.transaction.timer.j:

Specifies the amount of time in milliseconds to wait for non-invite request retransmission for timer J for the
RFC 3261 specification. This property is relevant for the non-invite server transaction.

Information Value
Data type String
Default 64*javax.sip.transaction.timer.t1

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2577



depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.k:

Specifies the amount of time, in milliseconds, to wait for non-INVITE response retransmissions for timer K
for the RFC 3261 specification. This property is relevant for the non-invite client transaction.

Information Value
Data type String
Default javax.sip.transaction.timer.t4

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.non.invite.server:

Specifies the amount of time, in milliseconds, for an Application Programming Interface (API) timer for the
application to respond to a non-invite request. This property is relevant for non-invite server transactions.

This timer is not defined in the RFC specification. This property is needed to stop the transaction if the
application does not generate a final response to the request. The timer starts when the request arrives in
the stack and stops when a response is generated by the application. If no response is generated prior to
the timer stopping, then the transaction completes.

Information Value
Data type String
Default 34000

javax.sip.transaction.timer.t1:

Specifies the amount of time, in milliseconds, for a network round trip delay for timer T1 for the RFC 3261
specification. The value is used as a base for calculating some timers and is relevant for all types of
transactions, such as client, server, invite, and non-invite transactions.

Information Value
Data type String
Default 500

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.t2:

2578 Administering WebSphere applications



Specifies the maximum time in milliseconds prior to retransmitting non-invite requests and invite responses
for timer T2 for the RFC 3261 specification.

Information Value
Data type String
Default 4000

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

javax.sip.transaction.timer.t4:

Specifies the maximum amount of time, in milliseconds, for a message to remain in the network. This
value is used as a base for calculating other timers for timer T4 for the RFC 3261 specification.

Information Value
Data type String
Default 5000

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

on.outgoing.message.replication: Specifies whether changes are buffered until a siplet issues a
request.send() or response.send() call. If the value is set to true, then each change is buffered until a
siplet issues a request.send() or response.send() call.

Information Value
Data type Boolean
Default false

pws_atr_name:

Specifies the LDAP attribute name that stores the user password.

Information Value
Data type String
Default userpassword

replicate.with.confirmed.dialog.only:

Specifies whether to replicate the application session, even when no dialogs are confirmed. If the value is
set to false, then the application session is replicated immediately after the session is created. Otherwise,
the application session is only replicated when an associated dialog is confirmed.

Information Value
Data type String

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2579



Information Value
Default False

sip.container.heartbeat.enabled:

Specifies whether or not SIP network outage detection is enabled for the SIP container. SIP network
outage detection allows the SIP proxy to send keepalive messages to the SIP container if the value of this
property is set to true.

If the value is set to false for the SIP container, then this property has no effect on the SIP proxy.
However, if the value is set to true for the SIP container, the value should also be set to true for the SIP
proxy to ensure that keepalive messages are answered at the SIP container and not presented to the
application.

Information Value
Data type String
Default true

sip.jsr289.parse.address:

Specifies to use the SIP Servlet Specification 1.1, JSR 289 required format for createRequest() and
createAddress() methods.

Note: The JSR 289 API requires that for any SIP URI that contains address parameters, you must
enclose the SIP URI in angle brackets. The default behavior of the sip.jsr289.parse.address
property is compliant with JSR 289 and correctly parses the address parameter as if it belongs to
the SIP address. For example, when the property is set to false, the SIP address,
sip:fred@acme.com;param1=1, is converted to <sip:fred@acme.com;param1=1>. When the property is
set to true, the SIP address sip:fred@acme.com;param1=1, is converted to
<sip:fred@acme.com;>param1=1.

Information Value
Data type String
Default True

SIP_RFC3263_nameserver:

Specifies whether to allow a SIP URI to be resolved through Domain Name System (DNS) into the IP
address, port, and transport protocol of the next hop.

The value of the property is a string containing one or two address and port tuples, where two tuples are
separated by a space. The following examples specify a one address and port tuple or a two address and
port tuple.

dottedDecimalAddress@.port

hostname.domain@port

IPV6address@port

The following example values represent a single tuple.

v 1.2.3.4@53

v example.com@53

v a:b:c::d@53

2580 Administering WebSphere applications



The following example values represent two tuples separated by a space.

v 1.2.3.4@53 example.com@53

v a:b:c::d@53 9.32.211.14@53

Information Value
Data type String
Default null

depfeat: This custom property is deprecated. Do not use this custom property unless you are running in a
mixed cell environment that includes at least one core group that contains a mixture of Version
7.0 and Version 6.x processes.

mixv: If you are running in a mixed cell environment, and you have core groups that contain a mixture of
Version 7.0 and Version 6.x processes, you must continue to use this custom property.

thread.message.queue.max.size:

Specifies the maximum number of events allowed in the container threads queue. When this number is
exceeded, the proxy server is notified that the container is overloaded and requests for new sessions are
not accepted. Instead, the container returns an error message that indicates that the container is
temporarily unavailable.

This value represents the total number of messages for all queues and reflects the state of the CPU.
When the CPU approaches 100%, the maximum value for this custom property is reached quickly.
Configure your system to limit the queue size and prevent the queue from reaching this threshold.

Information Value
Data type String
Default 1000

weight.overload.watermark:

Specifies the threshold value for the internal weight calculated by the container. When the container
calculates the internal weight to be higher than the value specified, an overloaded container becomes
available for service again.

This custom property represents a percentage of the maximum internal weight, such as 30 percent when
the default value is set. When the high-water mark, or maximum threshold, is exceeded, the container
waits until the weight drops beneath the maximum weight. This value cannot exceed 10.

Information Value
Data type String
Default 3

Default application router rule collection:

Use this page to view or modify default application router (DAR) routing rules or import a new DAR
configuration file. The DAR is a Session Initiation Protocol (SIP) application router that you can use to
select the order in which SIP applications are triggered.

To view this administrative console page, click Environment > SIP application routers >
DefaultSIPApplicationRouter > target > Configure routing rules.

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2581



The DAR configuration file contains the routing definitions for the application routing order of the DAR. You
can upload a new DAR configuration file and view the definitions in the existing DAR configuration file. You
can also use the New, Delete, Move up, and Move down buttons to edit rules individually. Use the Method
menu list to filter the list of displayed rules by method name. Select All Methods to view all rules currently
in the DAR configuration file.

Table 236. Button descriptions. This table shows button descriptions.

Button Resulting action

New Click to add a new DAR rule.

Delete Click to delete the selected rules.

Move Up / Move
Down

Click to move the selected rule up or down in the list of rules. Rules must remain grouped by the
method name; rules only move up or down within the method group. For example, if you try to
move up an INVITE method, but the previous method is an ACK method, then this INVITE
method is already at the top of the INVITE method group, and cannot move any higher.

Import Click to open the file import window. Browse to the new DAR configuration file.

Attention: Importing a new configuration file overwrites all existing rules.

Method:

Specifies the name of the SIP method used in the request.

Application:

Specifies the name of the application that the application router sends the SIP request to.

Subscriber identifier:

Specifies the identity of the subscriber that the DAR returns. The DAR can return any header in the SIP
request. For example, if you specify DAR:From , the SIP URI is returned in the From header. The DAR can
also return any string.

Routing region:

Specifies the routing region, which can be any of the following strings:

v ORIGINATING

v TERMINATING

v NEUTRAL

Route modifier:

Specifies the route modifier, which can be any of the following values:

v ROUTE

v ROUTE_BACK

v NO_ROUTE

Default application router rule settings
Use this page to edit the details of an application router rule.

To view this administrative console page, click Environment > SIP application routers >
DefaultSIPApplicationRouter > target > Configure routing rules. Select a routing rule to edit or click
New.

2582 Administering WebSphere applications



Routing rules are used to determine how the default SIP application router routes SIP requests to the
installed applications.

Method:

Specifies the name of the SIP method in the request.

Select a method from the existing method list, or specify a new method name.

Application:

Specifies the name of the application that the application router sends the request to.

Subscriber identifier:

Specifies the identity of the subscriber that the DAR returns. The DAR can return any header in the SIP
request. For example, if you specify DAR:From , the SIP URI is returned in the From header. The DAR can
also return any string.

Select a subscriber identifier from the list of existing identifiers, or specify a new subscriber identifier name.

Routing region:

Specifies the routing region, which can be any of the following strings:

v ORIGINATING

v TERMINATING

v NEUTRAL

SIP URI:

Specifies the SIP URI that indicates the route as returned by the application router. This value can be an
empty string.

Route modifier:

Specifies the route modifier, which can be any of the following values:

v ROUTE

v ROUTE_BACK

v NO_ROUTE

State info:

Specifies the stateInfo object, which the application router uses internally. For more information about this
value, see the SIP servlet specification.

Configuring multihomed hosting
The SIP container can accept from the SIP proxy a list of outbound interfaces and expose it to any SIP
application.

Before you begin

Multihomed hosting is configured at the WebSphere SIP proxy after the multihomed environment is set up.
The multihome topology may include setting up multiple networks (routers, switches, etc.), multiple load
balancers (if more than one proxy server needs to be configured for each virtual IP), and multiple network

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2583



cards on each of the available proxy servers. After you install the network cards and configure the
loopback addresses, set up a separate SIP proxy channel chain in each SIP proxy for each available
network interface.

Attention: You can only configure the SIP proxy server to support multiple interfaces. The SIP container
does not support this capability.

About this task

Multihoming allows you to have a single application communicate with different user agent clients (UAC)
and user agent servers (UAS) on different networks.

The application queries the SIP container to determine the list of available outbound interfaces using
standard procedures defined by JSR 289. This is done through a context attribute that is maintained in the
container (through protocol exchanges with all the available SIP proxies). This attribute is
javax.servlet.sip.SipServlet.OUTBOUND_INTERFACES, which is defined to be
javax.servlet.sip.outboundInterfaces. This attribute contains all the available interfaces. The sample
code in the Example section shows how to access the attribute from the application.

After the interfaces on each SIP proxy are configured, follow the steps in the procedure to control the
routing of outbound messages. If more than one proxy is being used, it is important that each proxy be
configured identically.

When an application does not specify an interface to use for sending outbound requests, the default
interfaces are used by the proxy. It is recommended that you set the default interfaces for every protocol.
See step 5 for more information.

The administrator can optionally set three SIP proxy custom properties that define the chain name that
define the appropriate interface to use if the SIP application does not call the setOutboundInterface
method. If these custom properties are not set and the setOutboundInterface method is not used, the
interface that will be used for outbound requests cannot be definitively determined.

The following procedure applies to a topology that contains a single proxy setup for multihomed hosting
with more than one network interface.

Procedure
1. In the administrative console, expand Servers > Server Types and click WebSphere proxy servers >

proxy_name.

2. Under Proxy Settings, expand SIP Proxy Server Settings and click SIP proxy server transports.

3. On the Transport Chain panel, delete existing transport chain or chains that contain proxy host names
that use an asterisk (*).

4. Add new transport chain names and specify the IP address or host name associated with the interface
that the chain is configured to use. Proxy multihomed configurations require you to configure a
transport for each proxy interface. When using proxy servers with a load balancer, ensure a transport
for TCP exists along with the desired transport type for SIP traffic. For example, when a proxy server
uses two interfaces, then a minimum of six proxy transport chains are required. Each proxy interface
will have a UDP transport chain (2) configured using the load balancer cluster alias IP address, TCP
transport chain (2), and specific transport chain (2) of desired protocol (UDP, TLS, etc.) to run SIP
traffic.

a. On the Transport chain panel, click New. The Create New Transport Chain wizard initializes.
During the transport chain creation process, add a unique Transport chain name and select the
proxy protocol template (UDP, TCP, or Secure) from the Transport chain template menu.

b. Click Next.

2584 Administering WebSphere applications



c. Select the Use existing port or Create a new port option. For new ports, provide the port name,
host name, and port number. For the Host value, specify the IP address or specific host name. Do
not use an asterisk (*) for the Host value.

d. Click Next for Step 2.

e. Review the summary of actions and click Finish for Step 3.

f. At the top of the panel, click Save to save the changes to the master configuration and
resynchronize with the nodes, if applicable.

5. Specify the default chain name to use on the proxy server. From the SIP proxy settings panel, custom
properties can be set up to specify the appropriate default interface for each protocol. These interfaces
are used to send outbound requests when an application does not specify which interface to use.

a. In the administrative console, expand Servers > Server Types and click WebSphere proxy
servers > proxy_name.

b. Under Proxy Settings , expand SIP Proxy Server Settings and click SIP proxy settings >
Custom properties.

c. Enter the appropriate chain name previously configured in step 4 (not the interface or host name)
to configure the transports section of the SIP proxy settings. There is one custom property for each
transport type.

Custom Property Name Description

defaultUDPChainName The default UDP chain name to use when
setOutboundInterface is not called.

defaultTCPChainName The default TCP chain name to use when
setOutboundInterface is not called.

defaultTLSChainName The default TLS chain name to use when
setOutboundInterface is not called.

6. Recycle the proxy server.

Results

You have successfully configured SIP multihomed hosting, which enables your applications to route
outbound SIP requests through more than a single outbound interface.

Example

The following sample code demonstrates how to acquire the available outbound interfaces and set the
appropriate outbound interface on the session object.
....
import javax.servlet.sip.SipServlet;
import javax.servlet.sip.SipSession;
....

protected void doInvite(SipServletRequest req1) throws ServletException, IOException
{
...
// This block of code handles setting of the outbound interface.

SipSession sipSession = req1.getSession();
javax.servlet.ServletContext context = getServletContext();
java.util.List list = (java.util.List)context.getAttribute(javax.servlet.sip.SipServlet.
OUTBOUND_INTERFACES);
SipURI uri = getProtocolInterface ("udp", list);

if (uri != null)
{
InetSocketAddress inetSocketAddr = new InetSocketAddress(uri.getHost(), uri.getPort());
sipSession .setOutboundInterface(inetSocketAddr);
}

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2585



...
}

// This method simply pulls out the first interface in the list for the specified protocol
private SipURI getProtocolInterface(String transport, List outboundInterfaceList)
{
SipURI uri = null;
Iterator iterator = outboundInterfaceList.iterator();

while (iterator.hasNext())
{
SipURI tempUri = (SipURI)iterator.next();

if (tempUri.getTransportParam().equals(transport) == true)
{
uri = tempUri;
break;
}
}

return (uri);
}

Multihomed hosting
SIP can support the ability to route outbound SIP requests through more than a single interface with the
multihomed host feature of JSR 289.

In a multihomed host environment, the SIP container has the ability to select a particular outbound
interface for routing messages. The SIP container can accept from the SIP proxy a list of outbound
interfaces and expose it to any SIP application. This functionality is for applications that require tighter
control over the outgoing request flow.

The following two methods can be used to select the outbound interface to use when sending requests, as
defined in section 14.2 of the JSR 289 specification:

v setOutboundInterface(java.net.InetAddress address)

v setOutboundInterface(java.net.InetSocketAddress address)

A SIP application can obtain a list of available of SIP URIs it can send outbound requests on from the
ServletContext attribute "javax.servlet.sip.outboundInterfaces," which is defined with the static string
javax.servlet.sip.SipServlet.OUTBOUND_INTERFACES.

The application must set the interface on the Proxy, the ProxyBranch, or the SipSession objects before
any outbound requests are sent. The interface is passed back in the attribute for outbound interfaces. The
container then notifies the proxy which interface to send the outbound request on. Routing of non-request
messages is controlled by other means, such as headers. For instance, a response message always flows
through the same interface that the request arrived on.

Modifying the outbound routing of a request can affect all of the following SIP headers that are inserted
into the outgoing SIP request, and subsequent responses in the dialog:

v Via header

v Contact headers

v Record-Route and Route headers

v Path header

Three SIP proxy custom properties specify the default chain names that define the appropriate interface to
use for outbound requests. See the information on configuring multihomed hosting.

2586 Administering WebSphere applications



SIP with multihomed host is only supported in a distributed environment and must be configured at the
WebSphere SIP proxy. A stand-alone SIP container does not support this capability.

Configuring multiple proxy servers using a load balancer in a
multihomed environment
You can configure multiple proxy servers with multiple network interfaces using a load balancer in a
multihomed environment.

Before you begin

Communications Enabled Applications (CEA) enables you to have multiple network interfaces on multiple
proxy servers using a load balancer.

In a multihome environment, you need to define multiple virtual IP (VIP) alias addresses at the proxy
server, and you need to define the proxy transport chains for each VIP alias address.

Note: Do not use an asterisk (*) for the transport chain names. Instead, use host names and IP
addresses for the transport chains.

About this task

The following setup includes configuring a load balancer with two clusters, and two proxy servers with two
VIP alias addresses defined. Ensure that the following steps are repeated for both proxy servers.

Procedure
1. In the administrative console, expand Servers > Server Types and click WebSphere proxy servers >

proxy_name.

2. Under Proxy Settings, expand SIP Proxy Server Settings and click SIP proxy settings.

3. Under Load balancer health checking, set the Load balancer members for IP address 1 and IP
address 2. The IP address of the load balancer is used to source the SIP health checks.

4. Under Container facing network interface, specify the User Datagram Protocol (UDP) interface. The
UDP interface specifies the network interface for all UDP data that goes to and from the backend SIP
containers.

5. Click Custom properties and set the default protocol chain name types for each protocol type (UDP,
TCP, and TLS). Specify the default chain name to use on the proxy server. From the SIP proxy
settings panel, custom properties can be set up to specify the appropriate default interface for each
protocol. These interfaces are used to send outbound requests when an application does not specify
which interface to use.

a. In the administrative console, expand Servers > Server Types and click WebSphere proxy
servers > proxy_name.

b. Under Proxy Settings , expand SIP Proxy Server Settings and click SIP proxy settings >
Custom properties.

c. Enter the appropriate chain name to configure the transports section of the SIP proxy settings.
There is one custom property for each transport type.

Custom Property Name Description

defaultUDPChainName The default UDP chain name to use when
setOutboundInterface is not called.

defaultTCPChainName The default TCP chain name to use when
setOutboundInterface is not called.

defaultTLSChainName The default TLS chain name to use when
setOutboundInterface is not called.

Chapter 21. Welcome to administering Session Initiation Protocol (SIP) applications 2587



6. In the administrative console, expand Servers > Server Types and click WebSphere proxy servers >
proxy_name.

7. Under Proxy Settings, expand SIP Proxy Server Settings and click SIP proxy server transports.

8. On the Transport Chain panel:

a. Add two TCP transport chains using the host name or IP address for each network interface.

b. Add two UDP transport chains using the host name or IP address for each network interface.

c. Add two UDP transport chains using the VIP alias addresses of the proxy servers so that the load
balancer can communicate with the proxy servers. These two unique VIP alias addresses must be
the same on both proxy servers.

9. Recycle the proxy server.

Results

You have successfully configured multihomed network interfaces for two proxy servers using a load
balancer.

2588 Administering WebSphere applications



Chapter 22. Administering Startup beans

This page provides a starting point for finding information about startup beans.

Startup beans allow business logic to run when an application starts or stops.

Using startup beans
There are two types of startup beans: application startup beans and Module startup beans.

About this task

Note: The capabilities provided with startup singleton session beans (EJB 3.1 specification) causes the
WebSphere Application Server proprietary startup beans function to be deprecated.

A module startup bean is a session bean that is loaded when an EJB Jar file starts. Module startup beans
enable Java Platform Enterprise Edition (Java EE) applications to run business logic automatically,
whenever an EJB module starts or stops normally. An application startup bean is a session bean that is
loaded when an application starts. Application startup beans enable Java EE applications to run business
logic automatically, whenever an application starts or stops normally.

Startup beans are especially useful when used with asynchronous bean features. For example, a startup
bean might create an alarm object that uses the Java Message Service (JMS) to periodically publish
heartbeat messages on a well-known topic. This enables clients or other server applications to determine
whether the application is available. Refer to the Enabling an application to wait for a messaging engine to
start article if you are using the default JMS provider.

Procedure
1. For Application startup beans, use the home interface,

com.ibm.websphere.startupservice.AppStartUpHome, to designate a bean as an Application startup
bean. For Module startup beans, use the home interface,
com.ibm.websphere.startupservice.ModStartUpHome, to designate a bean as a Module startup bean.

2. For Application startup beans, use the remote interface,
com.ibm.websphere.startupservice.AppStartUp, to define start() and stop() methods on the bean. For
Module startup beans, use the remote interface, com.ibm.websphere.startupservice.ModStartUp, to
define start() and stop() methods on the bean.

The startup bean start() method is called when the module or application starts and contains business
logic to be run at module or application start time.

The start() method returns a boolean value. True indicates that the business logic within the start()
method ran successfully. Conversely, False indicates that the business logic within the start() method
failed to run completely. A return value of False also indicates to the Application server that application
startup is aborted.

The startup bean stop() methods are called when the module or application stops and contains
business logic to be run at module or application stop time. Any exception thrown by a stop() method
is logged only. No other action is taken.

The start() and stop() methods must never use the TX_MANDATORY transaction attribute. A global
transaction does not exist on the thread when the start() or stop() methods are invoked. Any other
TX_* attribute can be used. If TX_MANDATORY is used, an exception is logged, and the application
start is aborted.

The start() and stop() methods on the remote interface use Run-As mode. Run-As mode specifies the
credential information to be used by the security service to determine the permissions that a principal
has on various resources. If security is on, the Run-As mode needs to be defined on all of the
methods called. The identity of the bean without this setting is undefined.

© IBM Corporation 2009 2589



There are no restrictions on what code the start() and stop() methods can run, since the full Application
Server programming model is available to these methods.

3. Use an optional environment property integer, wasStartupPriority, to specify the start order of multiple
startup beans in the same Java Archive (JAR) file. If the environment property is found and is the
wrong type, application startup is aborted. If no priority value is specified, a default priority of 0 is used.
It is recommended that you specify the priority property. Beans that have specified a priority are sorted
using this property. Beans with numerically lower priorities are run first. Beans that have the same
priority are run in an undefined order. All priorities must be positive integers. Beans are stopped in the
opposite order to their start priority. The priority values for module startup beans and application
startup beans are mutually exclusive. All modules will be started prior to the application being declared
as "started" and therefore the start() methods for module startup beans within an application will be
invoked prior to the start() methods for any application startup beans. Likewise, all application startup
bean stop() methods for a specific Java Archive (JAR) file will be invoked prior to any module startup
bean stop() methods for that JAR.

Note: The wasStartupPriority environment property integer cannot be set through either a command
or the administrative console. This environment property integer is an EJB environment entry
that is to be set by an application developer not an administrator. You set the integer value in
the ejb-jar.xml file as shown in the example below:
<env-entry>

<env-entry-name>wasStartupPriority</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>3</env-entry-value>

</env-entry>

As with any other EJB environment entry, you set a separate wasStartupPriority value for
each EJB.

4. For module startup beans, the order in which EJB modules are started can be adjusted via the
"Starting weight" value associated with each module

5. To control who can invoke startup bean methods via WebSphere Security do the following:

a. Define the method permissions for the Start() and Stop() methods as you would for any EJB
module. (See "Defining method permissions for EJB modules".)

b. Ensure that the user that is mapped to the Security Role defined for the startup bean methods is
the same user that is defined as the Server user ID within the User Registry.

What to do next

View the startup beans service settings.

Enabling startup beans in the administrative console
Enabling startup beans in the administrative console enables Java 2 Platform Enterprise Edition (J2EE)
applications to run business logic automatically, whenever an application starts or stops normally.

About this task

Use the following steps to enable startup beans in the administrative console.

Procedure
1. Start the administrative console.

2. Select Servers > Application Servers > server_name > Container Services > Startup beans
service.

3. Select the Enable service at server startup check box.

4. Click Apply to save the configuration.

2590 Administering WebSphere applications



What to do next

View the startup beans service settings.

Startup beans service settings
Use this page to enable startup beans that control whether application-defined startup beans function on
this server. Startup beans are session beans that run business logic through the invocation of start and
stop methods when applications start and stop. If the startup beans service is disabled, then the automatic
invocation of the start and stop methods does not occur for deployed startup beans when the parent
application starts or stops. This service is disabled by default. Enable this service only when you want to
use startup beans. Startup beans are especially useful when used with asynchronous beans.

Note: The capabilities provided with startup singleton session beans (EJB 3.1 specification) causes the
WebSphere Application Server proprietary startup beans function to be deprecated.

To view this administrative console page, click Servers > Server types > WebSphere application
servers > server_name. Under Container Settings, expand Container Services then click Startup
beans service.

Enable service at server startup
Specifies whether the server attempts to initiate the startup beans service.

Information Value
Default Cleared
Range Selected

When the application server starts, it attempts to
initiate the startup bean service automatically.

Cleared
The server does not try to initiate the startup
beans service. All startup beans do not start or
stop with the application. If you use startup beans
on this server, then the system administrator
must start the startup beans service manually or
select this property, and then restart the server.

Chapter 22. Welcome to administering Startup beans 2591



2592 Administering WebSphere applications



Chapter 23. Administering Transactions

This page provides a starting point for finding information about Java Transaction API (JTA) support.
Applications running on the server can use transactions to coordinate multiple updates to resources as
one unit of work, such that all or none of the updates are made permanent.

The product provides advanced transactional capabilities to help application developers avoid custom
coding. It provides support for the many challenges related to integrating existing software assets with a
Java EE environment.

More introduction...

Administering the transaction service
You can view or change settings for the transaction service and manage active and prepared transactions.
You can configure transaction properties to enable peer recovery of failed application servers in a cluster.

Procedure
v “Configuring transaction properties for an application server”

v “Managing active and prepared transactions” on page 2608

v “Managing transaction logging for optimum server availability” on page 2613

v “Displaying transaction recovery audit messages” on page 2616

v “Delaying the cancelling of transaction timeout alarms” on page 2617

v “Removing entries from the transaction partner log” on page 2617

Configuring transaction properties for an application server
You can view or change settings for the transaction service. For example, you can change the location or
default file size of the transaction log files, change transaction timeout properties, or change
heuristic-related properties.

About this task

The transaction service is a server runtime component that can coordinate updates to multiple resource
managers to ensure atomic updates of data. Transactions are started and ended by applications or the
container in which the applications are deployed.

You might undertake this task when you want to move the transaction logs to a different storage device, or
when you have to change the transaction service settings. You must restart the application server to make
configuration changes take effect.

Procedure
1. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name. The properties of the application server, server_name, are displayed in the content
pane.

2. Click [Container Settings] Container Services > Transaction Service. The Transaction Service
settings page is displayed.

3. Ensure that the Configuration tab is displayed.

4. Optional: To change the directory in which transaction logs are written, type the full path
name of the directory in the Transaction log directory field. You can check the current runtime value
of Transaction log directory by clicking the Runtime tab.

If you do not enter a value for the Transaction log directory, the application server assumes a
default location in the appropriate profile directory.

© Copyright IBM Corp. 2012 2593



Note: If you change the transaction log directory, apply the change and restart the application server
as soon as possible, to minimize the risk of problems occurring before the application server is
restarted. For example, if there is a problem and the server fails with in-flight transactions,
when the server restarts, it uses the new log directory and cannot automatically resolve
in-flight transactions that were recorded in the old log directory.

You can also specify a size for the transaction logs, as described in the following step.

5. Optional: To change the size of transaction log files, modify the Transaction log directory field to
include a file size setting. Use one of the following formats, where directory_name is the name of the
transaction log directory and file_size is the disk space allocation for the transaction log files,
specified in kilobytes (nK) or megabytes (nM). The minimum transaction log file size that you can
specify is 64K. If you specify a value that is less than 64K, or you do not specify a value for the file
size, the default value of 1M is used.

;file_size <!-- This format keeps the default directory -->

directory_name;file_size

dir://directory_name/directory_name;file_size

/directory_name/directory_name;file_size

In a non-production environment, you can turn transaction logging off by entering ;0 in the
Transaction log directory field (do not enter a directory name). Do not turn transaction logging off in
a production environment because this prevents recovery after a system failure, and therefore data
integrity cannot be guaranteed.

For more information about transaction log sizes, see “Managing transaction logging for
optimum server availability” on page 2613.

6. Optional: Review or change the value of transaction timeout properties:

Total transaction lifetime timeout
The number of seconds to allow for a transaction that is started on this server, before the
transaction service initiates timeout completion. If a transaction does not begin completion
processing before this timeout occurs, it is rolled back. A value of 0 (zero) indicates that this
timeout does not apply, and therefore the maximum transaction timeout is used instead.
Application components can override the total transaction lifetime timeout for their
transactions by setting their own timeout value.

If you are running your messaging system in non-ASF mode, you must make sure
that this property is correctly configured with the NON.ASF.RECEIVE.TIMEOUT message listener
service custom property so that unwanted transaction timeouts are avoided. See the related
links for more details.

Maximum transaction timeout
The number of seconds a transaction that is propagated into this application server can
remain inactive before it is ended by the transaction service. This value also applies to
transactions that are started in this server, if their associated applications do not set a
transaction timeout and the total transaction lifetime timeout is set to 0 (zero).

This value must be equal to, or greater than, the total transaction lifetime timeout. A value of
0 (zero) indicates that this timeout does not apply. In this situation, transactions that are
affected by this timeout never time out.

Client inactivity timeout
The number of seconds after which a client is considered inactive and the transaction service
ends any transactions associated with that client. A value of 0 (zero) indicates that there is no
timeout limit.

7. Optional: Review or change heuristic-related properties:

Heuristic retry limit
The number of times that the application server retries a completion signal, such as commit
or rollback. Retries occur after a transient exception from a resource manager or remote

2594 Administering WebSphere applications



partner, or if the configured asynchronous response timeout expires before all Web Services
Atomic Transaction (WS-AT) partners have responded.

Heuristic retry wait
The number of seconds that the application server waits before retrying a completion signal,
such as commit or rollback, after a transient exception from a resource manager or remote
partner.

Enable logging for heuristic reporting
Select this option to enable the application server to log “about to commit one-phase
resource” events from transactions that involve a one-phase commit resource and two-phase
commit resources.

Heuristic completion direction
Select the direction used to complete a transaction that has a heuristic outcome; either the
application server commits or rolls back the transaction, or depends on manual completion by
the administrator.

The heuristic completion direction property specifies how a transaction is completed in the
following situations:

v The transaction manager reports a heuristic outcome for a last participant support (LPS)
resource.

v The heuristic retry limit is exceeded during the recovery of a subordinate server in a
distributed transaction.

v The transaction is imported from a Java EE Connector Architecture (JCA) provider.

This property applies only to transactions that are in the situations just described.

Accept heuristic hazard
Select this option to specify that all applications on this server accept the possibility of a
heuristic hazard occurring in a two-phase transaction that contains a one-phase resource.
This setting configures last participant support (LPS) for the server. If you do not select this
option, you must configure applications individually to accept the heuristic hazard.

8. Optional: To change the default WS-Transaction specification level to use for outbound requests that
include a web Services Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA)
coordination context, select the specification level from the Default WS-Transaction specification
level list.

9. Review or change other configuration properties, to suit your requirements. For more information
about the properties of the transaction service, see the topic about Transaction service settings.

10. Click OK, then save your changes to the master configuration.

11. Stop, then restart, the application server.

What to do next

If you change the transaction log directory configuration property to an incorrect directory name, the
application server restarts, but cannot open the transaction logs. Change the configuration property to a
valid directory name, then restart the application server.

If you are running the application server as non-root, modify the permissions on the new transaction log
location. To use peer recovery of transactions on a shared device with non-root users, make sure that your
non-root users and groups have matching identification numbers across machines.

Transaction service settings
Use this page to specify settings for the transaction service. The transaction service is a server runtime
component that can coordinate updates to multiple resource managers to ensure atomic updates of data.
Transactions are started and ended by applications or the container in which the applications are
deployed.

Chapter 23. Welcome to administering Transactions 2595



To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > [Container Settings] Container Services > Transaction Service.

Transaction log directory:

Specifies the name of a directory for this server where the transaction service stores log files for recovery.
Optionally, you can specify the size of transaction log files.

Set this property to change the transaction log file directory for an application server only if the
applications use distributed resources or XA transactions; for example, multiple databases and resources
are accessed in a single transaction.

If you do not specify this directory during server configuration, the transaction service uses a default
directory that is based on the installation directory: app_server_root/ tranlog/cell_ name/node_
name/server_ name.

When an application that runs on the application server accesses more than one resource, the application
server stores transaction information in the product directory so that it can coordinate and manage the
distributed transaction correctly. When there is a higher transaction load, storing persistent information in
this way can slow the performance of the application server because it depends on the operating system
and the underlying storage systems. To achieve better performance, designate a new directory for the log
files on a separate, physically larger, storage system.

If your application server demonstrates one or more of the following symptoms, change the transaction log
directory:
v CPU use remains low despite an increase in transactions
v Transactions fail with several timeouts
v Transaction rollbacks occur with the exception “Unable to enlist transaction”
v The application server stops in the middle of a run and must be restarted
v The disk that the application server is running on shows higher use

There are the following recommendations for a storage system for the log files:

v Store log files on a redundant array of independent disks (RAID)

In RAID configurations, the task of writing data to the physical media is shared across the multiple
drives. This technique yields more concurrent access to storage for persisting transaction information,
and faster access to that data from the logs. Depending on the design of the application and storage
subsystem, performance gains can range from 10% to 100%, or more in some cases.

v Do not store log files with the operation system I/O mode set to concurrent I/O (CIO)

When you designate a transaction log directory, ensure that the file system uses only synchronous
write-through and write serialization operations. Some operating systems, such as AIX JFS2, support an
optional concurrent I/O (CIO) mode, where the file system does not enforce serialization of write
operations. On these systems, do not use CIO mode for application server transaction recovery log
files.

To specify the size of transaction log files, include a file size setting. Use one of the following formats,
where directory_name is the name of the transaction log directory and file_size is the new disk space
allocation for the transaction log files, specified in KB (nK) or MB (nM). The minimum transaction log file
size that you can specify is 64K. If you specify a value that is less than 64K, or you do not specify a value
for the file size, the default value of 1M is used.
;file_size <!-- This format keeps the default directory -->

directory_name;file_size

dir://directory_name/directory_name;file_size

/directory_name/directory_name;file_size

2596 Administering WebSphere applications



For more information about transaction log sizes, see “Managing transaction logging for
optimum server availability” on page 2613.

Information Value
Data type String
Default Directory name: app_server_root/tranlog/cell_name/

node_name/server_name

File size: 1MB
Recommended Create a file system with at least three to four disk drives

raided together in a RAID-0 configuration. Then, create
the transaction log on this file system with the default size.
When the server is running under load, check the disk
input and output. If disk input and output time is more then
5%, consider adding more physical disks to lower the
value.

Total transaction lifetime timeout:

The default maximum time, in seconds, allowed for a transaction that is started on this server before the
transaction service initiates timeout completion. Any transaction that does not begin completion processing
before this timeout occurs is rolled back.

This timeout is used only if the application component does not set its own transaction timeout.

The upper limit of this timeout is constrained by the maximum transaction timeout. For example, if you set
a value of 500 for the total transaction lifetime timeout, and a value of 300 for the maximum transaction
timeout, transactions will time out after 300 seconds.

If you set this timeout to 0, the timeout does not apply and the value of the maximum transaction timeout
is used instead.

Information Value
Data type Integer
Units Seconds
Default 120

Range 0 to 2 147 483 647

Asynchronous response timeout:

Specifies the amount of time, in seconds, that the server waits for an inbound Web Services Atomic
Transaction (WS-AT) protocol response before resending the previous WS-AT protocol message.

Information Value
Data type Integer
Units Seconds
Default 30
Range 0 to 2 147 483 647

Client inactivity timeout:

Specifies the maximum duration, in seconds, between transactional requests from a remote client. Any
period of client inactivity that exceeds this timeout results in the transaction being rolled back in this
application server.

Chapter 23. Welcome to administering Transactions 2597



If you set this value to 0, there is no timeout limit.

Information Value
Data type Integer
Units Seconds
Default 60
Range 0 to 2 147 483 647

Maximum transaction timeout:

Specifies, in seconds, the upper limit of the transaction timeout for transactions that run in this server. This
value should be greater than or equal to the value specified for the total transaction timeout.Specifies the
maximum time to complete, in seconds, for transactions that run in this server. This value should be
greater than or equal to the total transaction lifetime timeout AND greater than or equal to the application
component timeout. If the maximum transaction timeout is set to a value less than either the total
transaction lifetime timeout or the application component timeout, application component transactions that
may require more time will timeout when the maximum transaction timeout is reached.

This timeout constrains the upper limit of all other transaction timeout periods.

Table 237. Transaction timeout settings. The table shows how the different timeout settings apply to transactions
running in the server.

Timeout setting Transactions affected

Maximum transaction timeout All transactions running in this server that are not affected by the total transaction lifetime timeout or
an application component timeout. These transactions include transactions imported from outside
this server, such as those imported from a client.

Total transaction lifetime
timeout

All transactions that originated in this server that are not affected by an application component
timeout, in other words, the associated application component does not set its own timeout.

Application component
timeout

Transactions that are specific to an application component.

You cannot set this transaction timeout using the administrative console.

If the component is a container-managed bean, set this timeout in the deployment descriptor for the
component. For example, you can use an assembly tool, such as the Rational Application
Developer.

If the component is a bean-managed bean, set this timeout programmatically by using the
UserTransaction.setTransactionTimeout method.

If you set a timeout to 0, that timeout does not apply, and is effectively disabled. If you set all timeouts to
0, transactions never time out.

For example, consider the following timeout values:

Table 238. Example timeout values. The table lists different
timeout settings and their values.

Timeout setting Value

Maximum transaction timeout 360

Total transaction lifetime timeout 240

Application component timeout 60

In this example, transactions that are specific to the application component time out after 60 seconds.
Other local transactions time out after 240 seconds, and any transactions that are imported from outside
this server time out after 360 seconds. If you then change the application component timeout to 500,
application component transactions time out after 360 seconds, the value of the maximum transaction
timeout. If you set the maximum transaction timeout to 0, application component transactions time out after
500 seconds. If you remove the application component timeout, application component transactions time
out after 240 seconds.

2598 Administering WebSphere applications



To determine the occurrence of a timeout quickly, and to prevent further resource locking, the application
server prevents further transactional work on the transactional path where the timeout condition has taken
place. This applies equally to attempting to undertake work under the current transaction context and to
attempting to perform work under a different transactional context.

Information Value
Data type Integer
Units Seconds
Default 300

Range 0 to 2 147 483 647

Heuristic retry limit:

Specifies the number of times that the application server retries a completion signal, such as commit or
rollback. Retries occur after a transient exception from a resource manager or remote partner, or if the
configured asynchronous response timeout expires before all Web Services Atomic Transaction (WS-AT)
partners have responded.

If the application server abandons the retries, the resource manager or remote partner is responsible for
ensuring that the resource or partner branch of the transaction is completed appropriately. The application
server raises (on behalf of the resource or partner) an exception that indicates a heuristic hazard. If a
commit request was made, the transaction originator receives an exception on the commit operation; if the
transaction is container-initiated, the container returns a remote exception or Enterprise JavaBeans (EJB)
exception to the EJB client.

During recovery of a subordinate server in a distributed transaction, when the number of heuristic retries is
exceeded, the heuristic completion direction property specifies how the transaction is completed.

Information Value
Data type Integer
Default 0
Range 0 to 2 147 483 647

A value of 0 (the default) means try again indefinitely.

Heuristic retry wait:

Specifies the number of seconds that the application server waits before retrying a completion signal, such
as commit or rollback, after a transient exception from a resource manager or remote partner.

Information Value
Data type Integer
Default 0
Range 0 to 2 147 483 647

A value of 0 means that the application server
determines the retry wait; the server doubles the retry wait
after every 10 failed retries.

Enable logging for heuristic reporting:

Specifies whether the application server logs about-to-commit-one-phase-resource events from
transactions that involve both a one-phase commit resource and two-phase commit resources.

Chapter 23. Welcome to administering Transactions 2599



This property enables logging for heuristic reporting. If applications are configured to allow one-phase
commit resources to participate in two-phase commit transactions, reporting of heuristic outcomes that
occur at application server failure requires extra information to be written to the transaction log. If enabled,
one additional log write is performed for any transaction that involves both one-phase and two-phase
commit resources. No additional records are written for transactions that do not involve a one-phase
commit resource.

Information Value
Data type Check box
Default Cleared
Range

Cleared
The application server does not log “about to
commit one-phase resource” events from
transactions that involve a one-phase commit
resource and two-phase commit resources.

Selected
The application server does log “about to commit
one-phase resource” events from transactions
that involve a one-phase commit resource and
two-phase commit resources.

Heuristic completion direction:

Specifies the direction that is used to complete a transaction that has a heuristic outcome; either the
application server commits or rolls back the transaction, or depends on manual completion by the
administrator.

The heuristic completion direction property specifies how a transaction is completed in the following
situations:

v The transaction manager reports a heuristic outcome for a last participant support (LPS) resource.

v The heuristic retry limit is exceeded during the recovery of a subordinate server in a distributed
transaction.

v The transaction is imported from a Java EE Connector Architecture (JCA) provider.

This property applies only to transactions that are in the situations just described.

Information Value
Data type Drop-down list
Default ROLLBACK
Range

COMMIT
The application server heuristically commits the
transaction.

ROLLBACK
The application server heuristically rolls back the
transaction.

MANUAL
The application server depends on an
administrator to manually complete or roll back
transactions with heuristic outcomes.

Accept heuristic hazard:

2600 Administering WebSphere applications



Specifies whether all applications on this server accept the possibility of a heuristic hazard occurring in a
two-phase transaction that contains a one-phase resource. This setting configures last participant support
(LPS) for the server. Last participant support is an extension to the transaction service that enables a
single one-phase resource to participate in a two-phase transaction with one or more two-phase
resources.

If the Accept heuristic hazard option is not selected, you must configure applications individually to accept
the heuristic hazard. You can configure applications either when they are assembled, or following
deployment by using the Last participant support extension pane.

Information Value
Data type Check box
Default Cleared
Range

Selected
All applications deployed on the server accept
the increased risk of an heuristic outcome.

Cleared
Applications must be individually configured to
accept the increased risk of an heuristic outcome.

Enable file locking:

Specifies whether the use of file locks is enabled when opening the transaction service recovery log.

If you enable this setting, a file lock will be obtained before accessing the transaction service recovery log
files. File locking is used to ensure that, in a highly available WebSphere Application Server deployment,
only one application server can access a particular transaction service recovery log at any one time. This
setting has no effect in a standard deployment where you have not configured high availability support.

Attention: This setting requires a compatible network file system, such as Network File System (NFS)
version 4, to operate correctly.

Information Value
Data type Check box
Default Selected

Enable transaction coordination authorization:

Specifies whether the secure exchange of transaction service protocol messages is enabled.

When transaction coordination authorization is enabled, the transaction service verifies the caller is
permitted to the administrator role before handling the transaction.

This setting has no effect unless you enable WebSphere Application Server security on the server.

Information Value
Data type Check box
Default Selected

Default WS-Transaction specification level:

Specifies the default WS-Transaction specification level to use for outbound requests that include a Web
Services Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA) coordination context.

Chapter 23. Welcome to administering Transactions 2601



You can choose from WS-Transaction 1.0, WS-Transaction 1.1 or WS-Transaction 1.2. For details of these
specifications, see the topics about WS-AT support or WS-BA support in the application server.

The default WS-Transaction specification level is used if a level cannot be determined from the provider
policy (the WS-Transaction WS-Policy assertion). This could be, for example, if the policy assertion is not
available either from the WSDL of the target web service or from the WS-Transaction policy type of the
client, or if the policy assertion is available but more than one specification level is applicable.

Information Value
Data type Drop-down list
Default 1.0

External WS-Transaction HTTP(S) URL prefix:

Select or specify the external WS-Transaction HTTP(S) URL prefix.

Select or specify one of these fields if you are using an intermediary node, such as an HTTP server or
Proxy Server for WebSphere, to send requests that comply with the Web Services Atomic Transaction
(WS-AT) or Web Services Business Activity (WS-BA) protocols.

If WebSphere Application Server security is enabled and transaction coordination authorization is enabled,
the HTTPS prefix is used. Otherwise, the HTTP prefix is used.

If the intermediary node is not a Proxy Server, the prefix must be unique for each server.

Select prefix:

Select this option to select the external endpoint URL information to use for WS-AT and WS-BA service
endpoints from the list.

Information Value
Data type Drop-down list
Default None

Specify custom prefix:

Select this option to specify the external endpoint URL information to use for WS-AT and WS-BA service
endpoints in the field.

Use one of the following formats for the prefix, where host_name and port represent the intermediary node
that is an HTTP or HTTPS proxy for the server.
http://host_name:port

https://host_name:port

Information Value
Data type String
Default None

Manual transactions:

Specifies the number of transactions that await manual completion by an administrator.

If there are transactions awaiting manual completion, you can click the Review link to display a list of
those transactions on the Transactions needing manual completion panel.

2602 Administering WebSphere applications



Information Value
Data type Integer
Default 0

Retry transactions:

Specifies the number of transactions with some resources being retried.

If there are transactions with resources being retried, you can click the Review link to display a list of
those transactions on the Transactions retrying resources panel.

Information Value
Data type Integer
Default 0

Heuristic transactions:

Specifies the number of transactions that have completed heuristically.

If there are transactions that have completed heuristically, you can click the Review link to display a list of
those transactions on the Transactions with heuristic outcome panel.

Information Value
Data type Integer
Default 0

Imported prepared transactions:

Specifies the number of transactions that are imported and prepared but not yet committed.

If there are transactions that have been imported and prepared but not yet committed, you can click the
Review link to display a list of those transactions on the Transactions imported and prepared panel.

Information Value
Data type Integer
Default 0

Additional Properties:

Under Additional Properties you can click the Custom properties link to display or change custom
properties for your WebSphere Application Server transaction service.

You use Custom properties to specify whether or not information messages are displayed on the
administrative console and written to the SystemOut.log file upon transaction service recovery.

To find out more about WebSphere Application Server transaction service custom properties, see the
related link.

Transactions needing manual completion:

Use this page to review transactions that need manual completion.

It is unusual for transactions to require manual completion. A transaction needs manual completion in the
following circumstances:

Chapter 23. Welcome to administering Transactions 2603



1. An application was exploiting the last participant support to coordinate a single one-phase capable
resource and one or more two-phase capable resources.

2. A failure occurred during the commit of the one-phase capable resource.

3. The transaction service heuristic completion direction is set to Manual, in the transaction service
settings.

An administrator reviewing transactions in this state can review the outcome of any one-phase resources,
by using facilities provided by the specific resource manager, then use this page to complete the
transaction accordingly.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > [Content pane] server_name > [Container Settings] Container Services > Transaction
Service > Runtime > Manual transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, select the check boxes next to the transactions that you
want to act on, then use the buttons provided.

Local ID
The local identifier of the transaction.

Global ID
The global identifier of the transaction.

Buttons

Commit
Heuristically commit the selected transactions.

Rollback
Heuristically roll back the selected transactions.

Transactions retrying resources:

Use this page to review transactions with resources being retried.

If the transaction manager has prepared resources, but has lost contact with the resource managers
before committing them or aborting them, then the transaction manager retries the commit or rollback
requests to the affected resource managers. The number of times and frequency that the transaction
manager retries such commit or rollback requests is configured on the Heuristic retry limit and Heuristic
retry wait properties of the transaction service settings.

An administrator can use this page to make the transaction service abandon the retries of one or more
transactions. If a resource manager cannot be contacted, WebSphere Application Server relegates that
resource manager to an in-doubt (prepared) state. The administrator then needs to use mechanisms
specific to the resource manager to resolve the in-doubt status.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > [Content pane] server_name > [Container Settings] Container Services > Transaction
Service > Runtime > Retry transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, select the check boxes next to the transactions that you
want to act on, then use the buttons provided.

Local ID
The local identifier of the transaction.

2604 Administering WebSphere applications



Status
The status of the transaction, shown as an integer value. The values correspond to the following
status:

0 - active
1 - marked for rollback
2 - prepared
3 - committed
4 - rolled back
5 - unknown
6 - none
7 - preparing
8 - committing
9 - rolling back

Global ID
The global identifier of the transaction.

Buttons

Finish Stop retrying resources for the selected transactions.

Transactions with heuristic outcome:

Use this page to review transactions that completed with a heuristic outcome.

The page is provided for information purposes only. After you have reviewed the information in this page,
then the only action required is to remove the transactions from the list. If you do not remove a transaction
from the list, it is kept in the list for three days or until the server is shut down, whichever occurs first.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers [Content pane] server_name [Container Settings] Container Services > Transaction Service >
Runtime > Heuristic transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, select the check boxes next to the transactions that you
want to act on, then use the buttons provided.

Local ID
The local identifier of the transaction.

Heuristic outcome
The outcome of the transaction.

Global ID
The global identifier of the transaction.

Buttons

Clear Remove the selected transactions from the list.

Transactions imported and prepared:

Use this page to review transactions that have been imported and prepared but not yet committed.

Under normal circumstances no administrative action is required for any of the transactions listed on this
page. This page lists those transactions that are in a prepared state, but are being directed by an external
transaction manager (for example, another WebSphere application server) from a transaction context that
has been propagated.

Chapter 23. Welcome to administering Transactions 2605



Under aberrant circumstances, however, an administrator can configure WebSphere Application Server to
resolve the transactions listed on this page independent of the external transaction manager. (This step
might be necessary if, for example, the external transaction manager has become unavailable for an
unacceptable period of time.)

Note: If the completion direction (commit or rollback) chosen administratively differs from the eventual
direction of the external transaction manager, then the overall outcome of the transaction is not
atomic and data corruption can result.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers [Content pane] server_name > [Container Settings] Container Services > Transaction Service
> Runtime > Imported prepared transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, select the check boxes next to the transactions that you
want to act on, then use the buttons provided.

Local ID
The local identifier of the transaction.

Global ID
The global identifier of the transaction.

Buttons

Commit
Heuristically commit the selected transactions.

Rollback
Heuristically roll back the selected transactions.

Transaction resources:

Use this page to review resources used by a transaction.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers [Content pane] server_name > [Container Settings] Container Services > Transaction Service
> Runtime > transaction_type local_ID.

Where:

v transaction_type is one of:

– Manual transactions - Review

– Retry transactions - Review

– Heuristic transactions - Review

– Imported prepared transactions - Review

v local_ID is the local ID of the transaction (as an active link in the list of transactions).

The details displayed depend on the resource provider.

Transaction service custom properties
WebSphere Application Server allows you to configure a number of custom properties for transaction
services.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on

2606 Administering WebSphere applications



distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Transaction service custom properties can be specified in the administrative console. To use any of these
custom properties click on Servers > Server Types > WebSphere application servers > server_name >
[Container Settings] Container Services > Transaction Service > [Additional Properties] Custom
Properties.

You can define the following transaction service custom properties:

v DELAY_CANCELLING_ALARMS

v DISABLE_RECOVERY_AUDIT_LOGGING

v REMOVE_PARTNER_LOG_ENTRY

DELAY_CANCELLING_ALARMS: If the before completion stage of a transaction process is likely to
include processes that could either take a long time to complete or could fail, then you might want the
transaction to time out.

By default, transaction timeout alarms are cancelled prior to the before completion phase of the transaction
begins. The DELAY_CANCELLING_ALARMS custom property allows the before completion phase of the
transaction to be encompassed within the transaction timeout period. To do this, set the custom property
on the application server.

Table 239. DELAY_CANCELLING_ALARMS custom properties. The table includes the data type, acceptable values,
and default for the property.
Information Value

Data type Boolean

Acceptable values TRUE, FALSE

Default FALSE

DISABLE_RECOVERY_AUDIT_LOGGING: You can control whether information messages are displayed
on the administrative console and written to the SystemOut.log file upon transaction service recovery. To
do this, set the DISABLE_RECOVERY_AUDIT_LOGGING custom property for the transaction service for
the server.

On distributed platforms the default is for information messages to appear both on the
administrative console and in the SystemOut.log file during the recovery of transaction services. If you do
not want these messages to be displayed you can use the DISABLE_RECOVERY_AUDIT_LOGGING
custom property.

Table 240. DISABLE_RECOVERY_AUDIT_LOGGING custom properties. The table includes the data type,
acceptable values, and default for the property.
Information Value

Data type Boolean

Acceptable values TRUE, FALSE

Default
FALSE

REMOVE_PARTNER_LOG_ENTRY: You can remove entries from the transaction partner log file. To do
this, set the REMOVE_PARTNER_LOG_ENTRY custom property for the transaction service on the server
that owns the partner log.

Chapter 23. Welcome to administering Transactions 2607



As part of the transaction recovery process, the partner log is checked to establish which resources are
needed. If you want to remove certain entries from the partner log, such as a resource that no longer
exists, set this custom property on the application server that owns the transaction partner log containing
the entries you want to remove.

The REMOVE_PARTNER_LOG_ENTRY custom property is effective only when both of the following
situations apply.

v The application server is started in recovery mode.

v The application server has no transactions that currently require recovery. You can establish this by
checking the SystemOut.log file.

Table 241. REMOVE_PARTNER_LOG_ENTRY custom properties. The table includes the data type, acceptable
values, and default for the property.
Information Value

Data type Integer

Acceptable values (one or more comma-delimited integer recovery ID)

Default (null)

Managing active and prepared transactions
Use this task to manage active and prepared transactions that might need administrator action.

About this task

Under normal circumstances, transactions should run and complete (commit or roll back)
automatically, without the need for intervention. However, in some circumstances, you might have to
resolve a transaction manually. For example, you might want to roll back a transaction that has become
stuck polling a resource manager that you know will not become available again within the required
timeframe.

Note: If you choose to complete a transaction on an application server, it is recorded as having completed
in the transaction service logs for that server, so will not be eligible for recovery during server start
up. If you complete a transaction, you are responsible for cleaning up any in-doubt transactions on
the resource managers affected.

You can use the administrative console to display a snapshot of all the transactions in an application
server that are in the following states:

Manual transactions
Transactions awaiting administrative completion. For each transaction, the local id or global id is
displayed. You can choose to display information on each resource (specifically, which resource
manager it is associated with) associated with the transaction. You can also choose to commit or
roll back transactions in this state.

Retry transactions
Transactions with some resources being retried. For each transaction, the local id or global id is
displayed, and whether the transaction is committing or rolling back. You can choose to display
information on each resource (specifically, which resource manager it is associated with)
associated with the transaction. You can also choose to finish (stop retrying) transactions in this
state.

Heuristic transactions
Transactions that have completed heuristically. For each transaction, the local id or global id and
the heuristic outcome is displayed. You can choose to display information on each resource
(specifically, which resource manager it is associated with) associated with the transaction. You
can also choose to clear the transaction from the list.

2608 Administering WebSphere applications



Imported prepared transactions
Transactions that have been imported and prepared but not yet committed. For each transaction,
the local id or global id is displayed. You can choose to display information on each resource
(specifically, which resource manager it is associated with) associated with the transaction. You
can also choose to commit or roll back transactions in this state.

To manage the active and prepared transactions for an application server, use the administrative console
to complete the following steps:

Procedure
1. Display the Transaction Service runtime page for application server:

a. In the navigation pane, click Servers > Server Types > WebSphere application servers.

b. In the content pane, click the name of the application server.

c. In the content pane, click the Runtime tab.

d. Under Additional Properties, click Transaction Service.

The page displays values for the runtime properties of the transaction service, including the number of
transactions in the active and prepared states.

2. To display a snapshot of the transactions in a specific state, click Review in the field label.

3. Optional: To display information about the resources associated with a transaction, click the name of
the transaction.

4. Optional: To act on a transaction, select the check box provided on the entry for the transaction, then
click one of the buttons provided. Alternatively, to act on all transactions, select the check box in the
header of the transactions table, then click a button.

Managing active and prepared transactions by using wsadmin scripting
You can use wsadmin scripting to manage active and prepared transactions that might need administrator
action.

Before you begin

Before you start this task, the wsadmin scripting client must be running.

About this task

In normal circumstances, transactions should run and complete (commit or roll back)
automatically, without the need for intervention. However, in some circumstances, you might have to
resolve a transaction manually. For example, you might want to roll back a transaction that is stuck polling
a resource manager that you know will not become available again in the required time frame.

Note: If you choose to complete a transaction on an application server, it is recorded as having completed
in the transaction service logs for that server, so it is not eligible for recovery during server start up.
If you complete a transaction, you are responsible for cleaning up any in-doubt transactions on the
resource managers affected.

For more information about the TransactionService and Transaction MBeans, see the application
programming interface (API) documentation.

Procedure
v You can use the TransactionService Managed Bean (MBean) to list transactions in various states by

invoking one of the following methods:

listOfTransactions
Lists all non-completed transactions. Never attempt to alter the state of active transactions (for
example, by using commit or rollback).

Chapter 23. Welcome to administering Transactions 2609



listManualTransactions
Lists transactions awaiting administrative completion. You can commit or roll back transactions
in this state.

listRetryTransactions
Lists transactions with some resources being retried. You can finish (stop retrying) transactions
in this state.

listHeuristicTransactions
Lists transactions that have completed heuristically. You can clear these transactions from the
list.

listImportedPreparedTransactions
Lists transactions that have been imported and prepared but not yet committed. You can commit
or roll back transactions in this state.

Each entry in the returned list contains the following attributes:

– Local Transaction Identifier

– Status, which can be interpreted by calling getPrintableStatus on the Transaction MBean.

– Global Transaction Identifier

– Heuristic Outcome, which can take one of the following values:

- 8 (HEURISTIC_COMMIT)

- 9 (HEURISTIC_ROLLBACK)

- 10 (HEURISTIC_MIXED)

- 11 (HEURISTIC_HAZARD)

v You can use the TransactionService MBean to gather more information about the properties of the
transaction service, by obtaining the following attributes:

transactionLogDirectory
The directory for this server where the transaction service stores log files for recovery.

totalTranLifetimeTimeout
The default maximum time, in seconds, allowed for a transaction that is started on this server
before the transaction service initiates timeout completion. Any transaction that does not begin
completion processing before this timeout occurs is rolled back. This value applies only to
container-managed transaction (CMT) beans.

asyncResponseTimeout
The time, in seconds, that the server waits for an inbound Web Services Atomic Transaction
(WS-AT) protocol response before resending the previous WS-AT protocol message.

enableFileLocking
Specifies whether the use of file locks is enabled when opening the transaction service recovery
log.

enableProtocolSecurity
Specifies whether the secure exchange of transaction service protocol messages is enabled.

clientInactivityTimeout
The maximum duration, in seconds, between transactional requests from a remote client. Any
period of client inactivity that exceeds this timeout results in the transaction being rolled back in this
application server.

heuristicRetryLimit
The number of times that the application server retries a completion signal, such as commit or
rollback. Retries occur after a transient exception from a resource manager or remote partner, or if
the configured asynchronous response timeout expires before all Web Services Atomic Transaction
(WS-AT) partners have responded.

2610 Administering WebSphere applications



heuristicRetryWait
The number of seconds that the application server waits before retrying a completion signal, such
as commit or rollback, after a transient exception from a resource manager or remote partner.

propogatedOrBMTTranLifetimeTimeout
The upper limit of the transaction timeout, in seconds, for transactions that run in this server. This
value must be greater than or equal to the total transaction timeout.

LPSHeuristicCompletion
The action to use to complete a transaction that has an heuristic outcome. Either the application
server commits or rolls back the transaction, or the administrator must complete the transaction
manually.

v You can use the Transaction MBean to commit, roll back, or finish a transaction, or remove a
transaction from the list of heuristically completed transactions, depending on the state of the
transaction, by invoking one of the following methods:

commit
Heuristically commits the transaction.

rollback
Heuristically rolls back the transaction.

finish Stops retrying resources for the transaction.

removeHeuristic
Clears the transaction from the list.

v You can use the Transaction MBean to gather more information about a transaction, by invoking the
following methods:

getPrintableStatus
Return the transaction status.

getGlobalTranName
Get the global identifier for the transaction.

listResources
List the resources for the transaction.

Example

The following script is an example of how to use the TransactionService and Transaction MBeans to work
with manual transactions. Run the script only against an application server, and not against the
deployment manager or node agent.

Example Jacl script:
# get the TransactionService MBean
set servicembean [$AdminControl queryNames type=TransactionService,*]

# get the Transaction MBean
set mbean [$AdminControl queryNames type=Transaction,*]

set input 0
while {$input >= 0} {

# invoke the listManualTransactions method
set tranManualList [$AdminControl invoke $servicembean listManualTransactions]

if {[llength $tranManualList] > 0} {
puts "----Manual Transaction details---------------"
set index 0
foreach tran $tranManualList {

puts " Index= $index tran= $tran"
incr index

}
puts "----End of Manual Transactions ---------------"
puts "Select index of transaction to commit/rollback:"
set input [gets stdin]

Chapter 23. Welcome to administering Transactions 2611



if {$input < 0} {
puts "No index selected, exiting."

} else {
set tran [lindex $tranManualList $input]
set commaPos [expr [string first "," $tran ]-1]
set localTID [string range $tran 0 $commaPos]
puts "Enter c to commit or r to rollback Transaction $localTID"
set input [gets stdin]
if {$input=="c"} {

puts "Committing transaction=$localTID"
$AdminControl invoke $mbean commit $localTID

}
if {$input=="r"} {

puts "Rolling back transaction=$localTID"
$AdminControl invoke $mbean rollback $localTID

}
}

} else {
puts "No Manual transactions found, exiting"
set input -1

}
puts " "

}

Example Jython script:
import sys
def wsadminToList(inStr):

outList=[]
if (len(inStr)>0 and inStr[0]==’[’ and inStr[-1]==’]’):

tmpList = inStr[1:-1].split(" ")
else:

tmpList = inStr.split("\n") #splits for Windows or Linux
for item in tmpList:

item = item.rstrip(); #removes any Windows "\r"
if (len(item)>0):

outList.append(item)
return outList

#endDef

servicembean = AdminControl.queryNames("type=TransactionService,*" )
mbean = AdminControl.queryNames("type=Transaction,*" )
input = 0

while (input >= 0):
tranList = wsadminToList(AdminControl.invoke(servicembean, "listManualTransactions" ))

tranLength = len(tranList)
if (tranLength > 0):

print "----Manual Transaction details---------------"
index = 0
for tran in tranList:

print " Index=" , index , " tran=" , tran
index = index+1

#endFor
print "----End of Manual Transactions ---------------"
print "Select index of transaction to commit/rollback:"
input = sys.stdin.readline().strip()
if (input == ""):

print "No index selected, exiting."
input = -1

else:
tran = tranList[int(input)]
commaPos = (tran.find(",") -1)
localTID = tran[0:commaPos+1]
print "Enter c to commit or r to rollback transaction ", localTID
input = sys.stdin.readline().strip()
if (input == "c"):

print "Committing transaction=", localTID
AdminControl.invoke(mbean, "commit", localTID )

#endIf
elif (input == "r"):

print "Rolling back transaction=", localTID
AdminControl.invoke(mbean, "rollback", localTID )

#endIf
else:

input = -1

2612 Administering WebSphere applications



#endelse
#endElse

else:
print "No transactions found, exiting"
input = -1

#endElse
print " "

#endWhile

Managing transaction logging for optimum server availability
You can manage transaction logging to optimize the availability of your application servers.

About this task

The transaction service writes information to the transaction log for every global transaction that involves
two or more resources, or that is distributed across multiple servers. The transaction log is stored on disk
and is used by the transaction service for recovery after a system or server crash. The transaction log for
each application server consists of multiple subdirectories and files held in a single directory. To change
the directory that an application server uses to store the transaction log, change the transaction log
directory in the transaction service settings.

When a global transaction is completed, the information in the transaction log is no longer required, and
the information is marked for deletion. The redundant information is garbage collected and intervals, and
the space is reused by new transactions. The log files are created with a fixed size at server startup, so no
further disk space allocation is required during the lifetime of the server.

If all the log space is in use when a transaction needs to save information, the transaction is rolled back
and the message CWWTR0083W: The transaction log is full. Transaction rolled back. is reported to
the system error log. No more transactions can commit until more log space is made available when
existing active transactions complete.

The default disk space allocation for the transaction logs is 1M. For global transactions that involve only
XA resources and that are either local to an application server or are distributed between enterprise beans
running in remote application servers, the default disk space allocation is suitable for peak workloads of up
to 4000 concurrent two-phase commit transactions. For global transactions that involve Web Services
Atomic Transaction (WS-AT) transactions or interoperable OTS transactions, the default disk space
allocation is suitable for peak workloads of up to 250 concurrent two-phase commit transactions. For
higher workloads, consider using a larger transaction log. To change the disk space allocation for the
transaction log files, change the transaction log directory in the transaction service settings.

You can monitor the number of concurrent global transactions by using the performance monitoring
counters for transactions. The “Global transaction commit time” counter is a measure of how long a
transaction takes to complete and, therefore, how long the log is in use by a transaction. If this value is
high, then transactions are taking a long time to complete, which can be due to resource manager or
network failures. If you ensure that this value is low, the log is more efficiently used and unlikely to
become full.

Use the following tasks to manage transaction logging to optimize the availability of your application
servers:

Procedure
v “Configuring transaction aspects of servers for optimum availability” on page 2614. Use this task to

configure the transaction properties for an application server to help transactions to complete or recover
more quickly.

v “Moving a transaction log from one server to another” on page 2615 Use this task if you have to move a
transaction log between servers.

Chapter 23. Welcome to administering Transactions 2613



v “Restarting an application server on a different host” on page 2616 Use this task to restart the
application server if you move a transaction log between hosts.

v “Configuring transaction properties for an application server” on page 2593 Use this task to change the
directory or the disk space allocation for the transaction log files.

Configuring transaction aspects of servers for optimum availability
You can configure transaction-related aspects of application servers to optimize the availability of those
servers. This helps your transactions to complete or recover more quickly. After changing
transaction-related properties of an application server, you must restart the server.

About this task

To configure transaction-related aspects of application servers for optimum availability, complete the
following steps:

Procedure
1. Store the transaction log files on a fast disk in a highly-available file system, such as a RAID device.

The transaction log might have to be accessed by every global transaction and be used for transaction
recovery after a crash. Therefore, the disk the log files are being written to should be on a
highly-available file system, such as a RAID device.

The performance of the disk also directly affects the transaction performance. In general, a global
transaction makes two disk writes, one after the prepare phase when the outcome of the transaction is
known (this information is forced to disk) and a further disk write at transaction completion. Therefore,
the transaction logs should be placed on the fastest disks available.

In order for automatic failover of transaction log recovery to work in a WebSphere Application Server
cluster topology, network mounted devices must be used for the transaction logs, on a fast disk in a
highly-available file system, such as a RAID device, that each cluster member can access.

2. Mirror the transaction log files by using hardware disk mirroring or dual-ported disks. If log files have
been mirrored or can be recovered, these log files can be used when restarting a failed server, or they
can be moved to another machine and another server can be started to undertake recovery.

You can configure hardware disk mirroring or dual-ported disks by using the administrative console to
specify the appropriate file system directory for the transaction logs.

3. Specify the optimum location of the transaction log directory for application servers.

By default, an application server places transaction log files in a subdirectory of the installed
WebSphere Application Server, where the subdirectory name is the same as the server name.

For example, the default directory for an application server named server1 is

/QIBM/UserData/WebSphere/AppServer/was_version/Base/profiles/profile_name/tranlog/server1

where was_version indicates the version number for this installation of IBM WebSphere Application
Server. For example V6 for WebSphere Application Server Version 6.

You can define a specific location for the transaction log directory for an application server by setting
the Transaction Log Directory property for the server. If the directory for the transaction logs has not
been created at application server start up, the directory structure is created for you.

Note: If you change the transaction log directory, apply the change and restart the application server
as soon as possible, to minimize the risk of problems occurring before the application server is
restarted. For example, if a problem causes the server to fail (with in-flight transactions), the
server next starts with the new log directory and cannot automatically resolve in-flight
transactions that were recorded in the old log directory.

4. Never allow more than one application server to concurrently use the same set of log files. Because
the transaction logs record the state of global transactions within a server, if the logs become lost or
corrupt, then transactions that are in the prepared state before failure can leave resources in an

2614 Administering WebSphere applications



in-doubt state and prevent further updates or access to the resources by other users or servers. These
transactions might have to be manually resolved by either committing or rolling back the transactions
at the affected resource managers. The failed server can then be cold-started, which creates new
empty transaction logs.

If log files have been mirrored or can be recovered, these log files can be used when restarting a
failed server, or they can be moved to another machine and another server can be started to
undertake recovery, as described in the related tasks.

Never allow more than one application server to concurrently use the same set of log files, because
each server will destroy the information recorded by the other, resulting in corrupt log files that are
unusable for future recovery purposes.

5. Configure application servers to always use the same listening port address at each startup. If you are
running distributed transactions between multiple application servers, for example non-WebSphere EJB
or Corba servers, the remote object references saved in the transaction log have to be redirected to
the originating server on recovery.

You must handle the redirection of remote object references so that transaction recovery can complete.
For example, you must do this if an application server is deployed on WebSphere Application Server
and runs distributed transactions with non-WebSphere EJB or Corba servers.

In particular, the default restart action of an application server is to use a different listening port
address to the port when the server shuts down. This prevents transaction recovery from completing.
To overcome this, you must configure application servers to always use the same listening port
address at each startup (see the ORB property com.ibm.CORBA.ListenerPort in the topic about Object
Request Broker custom properties). You might have to make similar configuration changes to other
application servers involved in transactions, so that you can access those servers during recovery.

Moving a transaction log from one server to another
You can move the transaction logs for an application server to another server.

About this task

The following steps explain how to move transaction logs from one application server to another.

Note: The transaction service does not allow transaction logs to be moved from one server to another in
a high availability (HA) environment. In such scenarios, WebSphere Application Server dynamically
controls which server is assigned ownership of the recovery logs. For this reason, the following
steps are not applicable when the Enable failover of transaction log recovery option has been
set on the administrative console.

Procedure
1. Move all the transaction log files for the application server. The transaction log directory for each

server contains a number of files and subdirectories. When moving transaction logs from one server to
another you must move all of the files and subdirectories together as a single unit; otherwise recovery
might not complete resulting in data inconsistency.

2. Follow the relevant step below, depending on your server configuration:

a. Optional: For a server configuration where there are no distributed transactions, move the
transaction logs to any server that has access to the same resource managers. For a single server
or network-deployed server configuration where it is known there are no distributed transactions
present in the logs, the transaction logs can be moved to any server (on any node) that has access
to the same resource managers as the original server. For example, the server needs
communication and valid security access to databases or message queues.

If the server is in a different cell from the original server, you must ensure that there is a Java
Authentication and Authorization Service (JAAS) alias available to the server that was used by the
original server for accessing XA resources. In this case you should use wsadmin to construct the
aliases, because if you use the administrative console to create the alias, then the node name gets
prefixed to the alias.

Chapter 23. Welcome to administering Transactions 2615



All the transaction log files for the original server must be moved to a directory accessible by the
new server. This can be accomplished by either renaming the transaction log directory or copying
all the contents to the new server transaction log directory before starting the new server.

b. Optional: For a network-deployed server configuration where there are distributed transactions,
move the transaction logs to a server that has the same name and host IP address, and access to
the same resource managers. For a network-deployed server configuration, when it is known there
are distributed transactions present in the logs, there are more restrictions. Distributed transactions
that access multiple servers log information about each server involved in the transaction. This
information includes the server name and the IP address of the machine on which the server is
running. When recovery is taking place on server restart, the server uses this information to contact
the distributed servers and similarly, the distributed servers try to contact the server with the same
original name. Therefore, if a server fails and the logs have to be recovered on an alternative
server, the alternative server must have the same name and host IP address as the original server.
The alternative server also must have access to the same resource managers as the original
server. For example, the server needs communication and valid security access to databases or
message queues.

Note: All servers within a cell must have unique names.

Note: To complete transaction recovery, the application server uses the resource manager
configuration information in the transaction logs. However, for the application server to continue
to do new work with the same resource managers, the server must have an appropriate
resource manager configuration (as for the original server).

Restarting an application server on a different host
As part of restarting an application server on a different host, you move all the transaction logs to the new
host.

About this task

Moving transactions logs to a different host is similar to moving logs from one server to another, as
described in “Moving a transaction log from one server to another” on page 2615.

This involves moving an original application server on one host to an alternative server, which has access
to the same resource managers, on another host. For a network-deployed server configuration, the
alternative server must have the same name and host IP address as the original server.

Note: To complete transaction recovery, the application server uses the resource manager configuration
information in the transaction logs. However, for the application server to continue to do new work
with the same resource managers, the server must have an appropriate resource manager
configuration (as for the original server).

To restart an application server on a different host, complete the following steps:

Procedure
1. Ensure that the alternative application server is stopped.

2. Move all the transaction logs for the original server to the alternative application server, as described in
“Moving a transaction log from one server to another” on page 2615.

3. Restart the alternative application server.

Displaying transaction recovery audit messages
You can choose whether information messages are displayed on the administrative console and written to
the SystemOut.log file upon transaction service recovery. To do this, set the
DISABLE_RECOVERY_AUDIT_LOGGING custom property for the transaction service for the server.

2616 Administering WebSphere applications



About this task

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

On distributed platforms the default is for information messages to appear both on the
administrative console and in the SystemOut.log file during the recovery of transaction services. If you do
not want these messages to be displayed you can use the DISABLE_RECOVERY_AUDIT_LOGGING
custom property.

Procedure
1. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name > [Container Settings] Container Services > Transaction Service > [Additional
Properties] Custom Properties.

2. Click New.

3. Enter the values required, depending on the operating system:

v To suppress the information messages, type DISABLE_RECOVERY_AUDIT_LOGGING in the
Name field, and TRUE in the Value field.

4. Click Apply or OK.

5. Save your changes to the master configuration.

6. Restart the server in recovery mode.

Delaying the cancelling of transaction timeout alarms
If the before completion stage of a transaction process is likely to include processes that could either take
a long time to complete or could fail, then you might want the transaction to time out.

About this task

By default, transaction timeout alarms are cancelled prior to the before completion phase of the transaction
begins. The DELAY_CANCELLING_ALARMS custom property allows the before completion phase of the
transaction to be encompassed within the transaction timeout period. To do this, set the custom property
on the application server.

Procedure
1. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name > [Container Settings] Container Services > Transaction Service > [Additional
Properties] Custom Properties.

2. Click New.

3. Type DELAY_CANCELLING_ALARMS in the Name field, and TRUE in the Value field.

4. Click Apply or OK.

5. Save your changes to the master configuration.

6. Restart the server in recovery mode.

Removing entries from the transaction partner log
You can remove entries from the transaction partner log file. To do this, set the
REMOVE_PARTNER_LOG_ENTRY custom property for the transaction service on the server that owns
the partner log.

Chapter 23. Welcome to administering Transactions 2617



About this task

As part of the transaction recovery process, the partner log is checked to establish which resources are
needed. If you want to remove certain entries from the partner log, such as a resource that no longer
exists, set this custom property on the application server that owns the transaction partner log containing
the entries you want to remove.

The REMOVE_PARTNER_LOG_ENTRY custom property is effective only when both of the following
situations apply.

v The application server is started in recovery mode.

v The application server has no transactions that currently require recovery. You can establish this by
checking the SystemOut.log file.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Procedure
1. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name > [Container Settings] Container Services > Transaction Service > [Additional
Properties] Custom Properties.

2. Click New.

3. Type REMOVE_PARTNER_LOG_ENTRY in the Name field, and in the Value field, type one or more
comma-delimited integer recovery IDs to be removed.

4. Click Apply or OK.

5. Save your changes to the master configuration.

6. Restart the server in recovery mode.

2618 Administering WebSphere applications



Chapter 24. Administering web applications

This page provides a starting point for finding information about web applications, which are comprised of
one or more related files that you can manage as a unit, including:

v HTML files

v Servlets can support dynamic web page content, provide database access, serve multiple clients at one
time, and filter data.

v Java ServerPages (JSP) files enable the separation of the HTML code from the business logic in web
pages.

IBM extensions to the JSP specification make it easy for HTML authors to add the power of Java
technology to web pages, without being experts in Java programming. More introduction...

Deploying JavaServer Pages and JavaServer Faces files

JSP class loading settings
You can configure a JavaServer Pages (JSP) class to be loaded by either the JSP engine's class loader or
by the web module's class loader.

By default, a JSP class is loaded by a unique instance of the JSP engine's class loader. The JSP engine's
class loader enables reloading at runtime of a JSP class when the JSP source or one of its dependents is
modified. This allows you to reload a single JSP class when necessary, without affecting any other loaded
JSP classes.

JSP classes are loaded by the web module's class loader under either of the following scenarios.

1. The JSP engine configuration parameter useFullPackageNames is set to true, and the JSP file is
configured as a servlet in the web.xml file using the <servlet-class> scenario in the table later in this
topic.

2. The JSP engine configuration parameters useFullPackageNames and disableJspRuntimeCompilation
are both set to true. In this case, you do not need to configure a JSP file does as a servlet in the
web.xml file.

Configuring JSP files as Servlets

You can configure a JSP file as a servlet in the web.xml file. There are two ways to do this. They are
described in the table later in this section.

Before you configure a JSP file as a servlet, consider the following.

1. Reloading capability - If runtime reloading of JavaServer Pages files is desired, requests for
JavaServer Pages files must be handled by the JSP engine. The <servlet-class> scenario in the table
later in this section disables runtime JSP file reloading, while the <jsp-file> scenario is compatible with
reloading.

2. Reducing the number of class loaders - If you do not require runtime reloading of modified JSP pages
and you want to reduce the number of class loader instances, then you can use the <servlet-class>
scenario in the table that follows. Similarly, scenario 2 in section 1 can be used without having to
configure a JSP file as a servlet.

© Copyright IBM Corp. 2012 2619



Table 242. Example: Configure a JSP file as a servlet in the web.xml file.. Configure a JSP file as a servlet

Scenario Example

compatible with
runtime
reloading

multiple class
loaders used? useFullPackageNames

<jsp-file> <servlet>

<servlet-name>jspOne</servlet-name>

<jsp-file>jspOne.jsp</jsp-file>

</servlet>

Yes Yes Can be true or false

<servlet-class> <servlet>

<servlet-name>jspTwo</servlet-name>

<servlet-class>_ibmjsp.jspTwo</servlet-class>

</servlet>

No No Must be true

The JSP batch compiler tool helps you configure JavaServer Pages files as servlets. When
useFullPackageNames is true, the JSP batch compiler generates <servlet> and <servlet-mapping>
elements for each JSP file that it successfully translates and compiles. The elements are written to a
web.xml fragment file named generated_web.xml which is located in the binaries WEB-INF directory of a web
module processed by the JSP file batch compiler (this directory is located within the deployed application's
ear file). You can copy and paste all or some of these elements into the web.xml file to configure
JavaServer Pages files as servlets.

Take note of the location of the web.xml that is used by the application server. The application specific
configuration is obtained from either the application binaries (the application's ear file) or from the
configuration repository. If an application is deployed into WebSphere Application Server with the flag Use
Binary Configuration set to true, then the WEB-INF/web.xml file is looked for in a web module's binaries
directory, not in the configuration repository. Examples of these two locations follow:

v An example of a configuration repository directory is profile_root/config/cells/cellName/
applications/enterpriseAppName/deployments/deployedName/webModuleName

v An example of an application binaries directory is: profile_root/installedApps/nodeName/
EnterpriseAppName/WebModuleName/

If the JSP batch compiler is executed on a pre-deployed application then the web.xml file is in the web
module's WEB-INF directory.

JavaServer Pages (JSP) runtime reloading settings
JavaServer Pages files can be translated and compiled at run time when the JSP file or its dependencies
are modified. This is known as JSP reloading.

Note: Use an assembly tool, such as Rational Application Developer, to modify IBM extension and binding
files. You can convert extension and binding files within modules from XMI to XML using the IBM
Bindings and Extensions Conversion Tool for Multi-Platforms.

JSP reloading is enabled through the reloadEnabled JSP engine parameter in the WEB-INF/ibm-web-
ext.xmi or WEB-INF/ibm-web-ext.xml file.

ibm-web-ext.xmi example:
<jspAttributes xmi:id=“JSPAttribute_1” name=“reloadEnabled” value=“true”/>

ibm-web-ext.xml example:
<?xml version=“1.0” encoding=“UTF-8”?>
<web-ext

xmlns=“http://websphere.ibm.com/xml/ns/javaee”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

2620 Administering WebSphere applications



xsi:schemaLocation=“http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd”
version=“1.0”>

<jsp-attribute name=“trackDependencies” value=“true” />
<jsp-attribute name=“disableJspRuntimeCompilation” value=“true” />
<jsp-attribute name=“reloadEnabled” value=“true”/>

<reload-interval value=“5”/>
<auto-encode-requests value=“false”/>
<auto-encode-responses value=“false”/>
<enable-directory-browsing value=“false”/>
<enable-file-serving value=“false”/>
<pre-compile-jsps value=“false”/>
<enable-reloading value=“true”/>
<enable-serving-servlets-by-class-name value=“false” />

</web-ext>

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

The following table contains suggested reload settings for production and development environments.

Table 243. Suggested reload settings for production and development environments.. Reload settings
Configuration Attribute Production Environment setting Development Environment setting

reloadEnabled false true

reloadInterval n/a (ignored if reloadEnabled is false) approximately 5 seconds

trackDependencies n/a (ignored if reloadEnabled is false) true Alternatively, set this to false to improve
response time if dependencies are not changing

disableJspRuntimeCompilation true - Alternatively, set this to false if JSP files
are not pre-compiled and therefore need to be
compiled on the first request.

false

The default for the reloadEnabled parameter is true. If the reloadEnabled parameter is set to true, a JSP
file is reloaded at run time if the JSP file and its class file do not have the same timestamp. In addition, if
trackDependencies is set to true then the JSP file is reloaded if the timestamp of any of its dependencies
has changed since the JSP class file was last generated. If the reloadEnabled parameter is set to false, a
JSP file is still compiled if necessary on the first request to it unless the parameter
disableJspRuntimeCompilation is true. For example, when disableJspRuntimeCompilation is false and
reloadEnabled is false, a JSP file is compiled on the first request if the class file is outdated. It would not
compile on subsequent requests, even if the JSP source file is modified or the class file is deleted,, unless
reloadEnabled is true.

Reload interval

The reload interval is set through the reloadInterval JSP engine parameter.

ibm-web-ext.xmi example:
<jspAttributes xmi:id=JSPAttribute_1 name=reloadInterval value=5/>

Chapter 24. Administering web applications 2621



ibm-web-ext.xml example:
<?xml version=“1.0” encoding=“UTF-8”?>
<web-ext

xmlns=“http://websphere.ibm.com/xml/ns/javaee”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd”

version=“1.0”>

<jsp-attribute name=“trackDependencies” value=“true” />
<jsp-attribute name=“disableJspRuntimeCompilation” value=“true” />
<jsp-attribute name=“reloadInterval” value=“5”/>

<reload-interval value=“5”/>
<auto-encode-requests value=“false”/>
<auto-encode-responses value=“false”/>
<enable-directory-browsing value=“false”/>
<enable-file-serving value=“false”/>
<pre-compile-jsps value=“false”/>
<enable-reloading value=“true”/>
<enable-serving-servlets-by-class-name value=“false” />

</web-ext>

If reloading is enabled, the reloadInterval parameter value determines the delay between checks to see if
a JSP file is outdated. For example, if reloadInterval is 5, the JSP engine checks to see if a JSP file is
outdated only when the last such check was done more than five seconds prior to the current request for
the JSP file. Once the reloadInterval is exceeded, reload checking is performed and the reload interval
timer is reset to 0 for that JSP file. The larger the reloadInterval, the less frequently the JSP engine checks
for the need to reload a JSP file.

Dependency tracking

Dependency tracking is set through the trackDependencies JSP engine parameter.

ibm-web-ext.xmi example:
<jspAttributes xmi:id=“JSPAttribute_1” name=“trackDependencies” value=“true”/>

ibm-web-ext.xmi example:
<?xml version=“1.0” encoding=“UTF-8”?>
<web-ext

xmlns=“http://websphere.ibm.com/xml/ns/javaee”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd”

version=“1.0”>

<jsp-attribute name=“trackDependencies” value=“true” />
<jsp-attribute name=“disableJspRuntimeCompilation” value=“true” />
<jsp-attribute name=“reloadInterval” value=“5”/>

<reload-interval value=“5”/>
<auto-encode-requests value=“false”/>
<auto-encode-responses value=“false”/>
<enable-directory-browsing value=“false”/>
<enable-file-serving value=“false”/>
<pre-compile-jsps value=“false”/>
<enable-reloading value=“true”/>
<enable-serving-servlets-by-class-name value=“false” />

</web-ext>

If reloading is enabled, the trackDependencies parameter value determines whether the JSP engine tracks
modifications to the requested JSP file dependencies as well as to the JSP file itself. The three types of
dependencies tracked by the JSP engine are:

v files statically included in the JSP file

v tag files that are referenced in the JSP file (excluding tag files that are in JAR files)

v TLDs that are referenced in the JSP file (excluding TLDs that are in JAR files)

Dependency tracking information is always included in the generated class file even if trackDependencies
is false. The information is not used by the JSP engine or batch compiler unless the trackDependencies
parameter is true. This means that you can enable dependency tracking without having to recompile JSP
files.

2622 Administering WebSphere applications



For example, the toplevel.jsp file statically includes the footer.jspf file. When the toplevel.jsp file is
compiled, the path to the footer.jspf file and its timestamp are stored in the toplevel.jsp's class file. As
a result, the footer.jspf file is modified and the toplevel.jsp file is requested. Now that the reload
interval for the toplevel.jsp file has been exceeded, the JSP engine compares the timestamp stored in
the class file with the footer.jspf file timestamp on disk. Because the timestamps are different, the
toplevel.jsp file is compiled, picking up the modification to the footer.jspf file. In order for dependency
tracking to work, the trackDependencies value must be set to true at the time a JSP file is requested at
run time or is processed by the batch compiler.

Disabling compilation

Disablement of run time compilation of JavaServer Pages is set via the disableJspRuntimeCompilation
JSP engine parameter.

ibm-web-ext.xmi example:
<jspAttributes xmi:id=“JSPAttribute_1” name=“disableJspRuntimeCompilation” value=“true”/>

ibm-web-ext.xml example:
<?xml version=“1.0” encoding=“UTF-8”?>
<web-ext

xmlns=“http://websphere.ibm.com/xml/ns/javaee”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd”

version=1.0>

<jsp-attribute name=“trackDependencies” value=“true” />
<jsp-attribute name=“disableJspRuntimeCompilation” value=“true” />
<jsp-attribute name=“reloadInterval” value=“5”/>

<reload-interval value=“5”/>
<auto-encode-requests value=“false”/>
<auto-encode-responses value=“false”/>
<enable-directory-browsing value=“false”/>
<enable-file-serving value=“false”/>
<pre-compile-jsps value=“false”/>
<enable-reloading value=“true”/>
<enable-serving-servlets-by-class-name value=“false” />

</web-ext>

If the disableJspRuntimeCompilation parameter is set to true, the JSP engine at run time does not
translate and compile JSP files; the JSP engine loads only precompiled class files. JSP source files do not
need to be present in order for the class files to be loaded. With this option set to true, an application can
be installed without JSP source, but must have precompiled class files. There is a web container custom
property of the same name that can be used to determine the behavior of all web modules installed in a
server. If both the web container custom property and the JSP engine option are set, the JSP engine
option takes precedence. Setting the disableJspRuntimeCompilation parameter to true automatically sets
reloadEnabled to false.

Reload processing sequence

The processing sequence pertaining to JSP file reloading when trackDependencies is false is shown in
Figure 1.

Chapter 24. Administering web applications 2623



When trackDependencies is true, the JSP engine does additional file system processing to determine if
any of a JSP file's dependencies have changed since the JSP file was last translated and compiled. Figure
2 shows the additional processes that are performed on the 'No' path of flow chart labeled “is JSP class
file outdated?”. You can see that the path taken when disableJspRuntimeCompilation is true is the most
efficient path.

Figure 46. Reload processing sequence when trackDependencies is false.

2624 Administering WebSphere applications



JSP and JSF option settings
Use this page to configure the class reloading of web modules such as JavaServer Pages (JSP) files and
to select a JSF implementation to use with this application.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > JSP and JSF options. This page is the same as the
Provide JSP reloading options for web modules page on the application installation and update
wizards.

The following note applies to the files with an .xmi extension in this topic:

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Web module
Specifies the name of a web module in the installed or deployed application.

Figure 47. Additional reload processing performed when trackDependencies is true.

Chapter 24. Administering web applications 2625



URI
Specifies the location of the module that is relative to the root of the application (EAR file).

JSP enable class reloading
Specifies whether to enable class reloading when JSP files are updated.

A web container reloads JSP files only when the IBM extension reloadEnabled in the jspAttributes of the
ibm-web-ext.xmi file is set to true.

Java Platform, Enterprise Edition 5 (Java EE 5) and later applications IBM extension files are in .xml file
format. For applications versions earlier than Java EE 5, they are in the .xmi file format.

JSP reload interval in seconds
Specifies the number of seconds to scan the application file system for updated JSP files. The default is
the value of the reloading interval attribute in the IBM extension (META-INF/ibm-web-ext.xmi) file of the
web module.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). The default reload
interval is 5. To disable reloading, specify zero (0). The range is from 0 to 2147483647.

The reloading interval attribute takes effect only if class reloading is enabled.

Java EE 5 applications and later IBM extension files are in .xml file format. For applications versions
earlier than Java EE 5, they are in the .xmi file format.

Sun Reference Implementation 1.2
Select this option to use the Sun Reference Implementation 1.2 JSF implementation.

If you change the JSF implementation that you are using for your application, you must delete any
previously compiled JSP files. If you precompiled your application, you must recompile. If you did not
precompile, but have already requested JSP files from this application, you must delete the JSP files from
the temp directory of your profile.

You can set the JSF engine configuration parameter, com.ibm.ws.jsf.JSF_IMPL_CHECK, to true to
automatically mark the JSP files to recompile at application startup.

MyFaces 2.0
Select this option to use the MyFaces JSF implementation. This is the default JSF implementation.

If you change the JSF implementation that you are using for your application, you must delete any
previously compiled JSP files. If you precompiled your application, you must recompile. If you did not
precompile, but have already requested JSP files from this application, you must delete the JSP files from
the temp directory of your profile.

You can set the JSF engine configuration parameter, com.ibm.ws.jsf.JSF_IMPL_CHECK, to true to
automatically mark the JSP files to recompile at application startup.

In a mixed-version cell, a Version 7 node uses MyFaces 1.2 if the MyFaces selection is toggled, while a
Version 8 and later node uses MyFaces 2.0. For WebSphere Application Server versions before Version 7
(for example, Version 6.1 and earlier), this toggle is ineffective because JSF implementation switching was
not supported before Version 7.

2626 Administering WebSphere applications



JSP run time compilation settings
By default, the JavaServer Pages (JSP) engine translates a requested JSP file, compiles the .java file,
and loads the compiled servlet into the run time environment. You can change the JSP engine default
behavior by indicating that a JSP file must not be translated or compiled at run time, even when a .class
file does not exist.

If run time compilation is disabled, you must precompile the JSP files, which provides the following
advantages:
v Reduces compilation related disk operations.
v Minimizes disk storage requirements necessary for handling temporary .java files generated during a

run time compilation.
v Allows you to not include the JSP source files in the application.
v Allows verification that a JSP file compiled successfully before deploying and installing the application in

the product

You can disable run time JSP file compilation on a global or an individual web application basis:
v To disable the translation and compilation of JSP files for all Web applications, in the administrative

console, click Servers > Server Types > WebSphere application servers > server_name. Then, in the
Container Settings section, click Web container settings > Web container > Custom properties.

If the disableJspRuntimeCompilation property appears in the list of defined custom properties, but is set
to false, click the property name, and then set the property to true.

If this property is not included in the list of defined custom properties, click New, and then specify
disableJspRuntimeCompilation in the Name field and true in the Value field.

Valid settings for this property are true or false. When this property is set to true, translation and
compilation of the JSP files is disabled at run time for all web applications.

v To disable the translation and compilation of JSP files for a specific web application, set the JSP engine
initialization parameter disableJspRuntimeCompilation to true. This setting, if enabled, determines the
run time behavior of the JSP engine and overrides the web container custom property setting.

Set this parameter through the JavaServer Pages attribute assembly settings page when assembling
applications.

Valid values for this setting are true or false. If this parameter is set to true, then, for that specific web
application, translation and compilation of the JSP files is disabled at run time, and the JSP engine only
loads precompiled files.

v If neither the web container custom property nor the JSP parameter is set, the first request for a JSP
file results in the translation and compilation of the JSP file when the .class file does not exist or is
outdated. Subsequent requests for the file also result in translations and compilations, but only if the
following conditions are met:
– Translations are required because the .class file is outdated.
– Reloading is enabled for the web module.
– Reload interval is exceeded.

If you disable run time compilation and a request arrives for a JSP file that does not have a matching
.class file, the JSP engine returns the following 404 error to the browser:
Error 404: SRVE0200E: Servlet [org.apache.jsp._jsp1]: Could not find required servlet class - _jsp1.class

In this case, an exception is written to the System Out (SYSOUT) and First Failure Data Capture (FFDC)
logs. .

If a JSP file has a matching .class file but that file is out of date, the JSP engine still loads the .class file
into memory.

Provide options to compile JavaServer Pages settings
Use this page to specify options to be used by the JavaServer Pages (JSP) compiler.

Chapter 24. Administering web applications 2627



This administrative console page is a step in the application installation and update wizards. To view this
page, you must select Precompile JavaServer Pages files on the Select installations options page.
Thus, to view this page, click Applications > New Application > New Enterprise Application >
application_path > Next > Detailed - Show me all installation options and parameters > Next > Next
or Continue > Precompile JavaServer Pages files > Next > Step: Provide options to compile JSPs.

You can specify the JSP compiler options on this page only when installing or updating an application that
contains web modules. After the application is installed, you must edit the JSP engine configuration
parameters of a web module WEB-INF/ibm-web-ext.xmi file to change its JSP compiler options.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

Web module
Specifies the name of a module within the application.

URI
Specifies the location of the module relative to the root of the application (EAR file).

JSP class path
Specifies a temporary class path for the JSP compiler to use when compiling JSP files during application
installation. This class path is not saved when the application installation is complete and is not used when
the application is running. This class path is used only to identify resources outside of the application
which are necessary for JSP compilation and which will be identified by other means (such as shared
libraries) after the application is installed. In network deployment configurations, this class path is specific
to the deployment manager machine.

To specify that multiple web modules use the same class path:
1. In the list of web modules, select the Select check box beside each web module that you want to use

a particular class path.
2. Expand Apply Multiple Mappings.
3. Specify the desired class path.
4. Click Apply.

Use full package names
Specifies whether the JSP engine generates and loads JSP classes using full package names.

When full package names are used, precompiled JSP class files can be configured as servlets in the
web.xml file, without having to use the jsp-file attribute. When full package names are not used, all JSP
classes are generated in the same package, which has the benefit of smaller file-system paths.

2628 Administering WebSphere applications



When the options useFullPackageNames and disableJspRuntimeCompilation are both true, a single class
loader is used to load all JSP classes, even if the JSP files are not configured as servlets in the web.xml
file.

This option is the same as the useFullPackageNames JSP engine parameter.

JDK source level
Specifies the source level at which the Java compiler compiles JSP Java sources. Valid values are 13, 14,
and 15. The default value is 13 for pre-Java EE 5 web modules, which specifies source level 1.3 and 15 for
Java EE 5 and later web modules.

Disable JSP runtime compilation
Specifies whether a JSP file should never be translated or compiled at run time, even when a .class file
does not exist.

When this option is set to true, the JSP engine does not translate and compile JSP files at run time; the
JSP engine loads only precompiled class files. JSP source files do not need to be present in order to load
class files. You can install an application without JSP source, but the application must have precompiled
class files.

For a single web application class loader to load all JSP classes, this compiler option and the Use full
package names option both must be set to true.

This option is the same as the disableJspRuntimeCompilation JSP engine parameter.

Administering web applications

Modifying the default web container configuration
A web container handles requests for servlets, JavaServer Pages (JSP) files, and other types of files that
include server-side code. The web container creates servlet instances, loads and unloads servlets, creates
and manages request and response objects, and performs other servlet management tasks. The web
server plug-ins, provided by the product, help supported web servers to pass servlet requests to web
containers.

About this task

If the property to start servlets during application server startup is enabled, part of its startup process calls
the Servlet.init method on its servlets when you start the web container. Therefore, when the web
container starts and calls the init method, other components such as Naming and Work Load Management
might not be fully started yet. As a result, application server related calls may not work because all of the
application server components might not be ready yet. Once the application server is 'ready for
e-business', it is completely ready. If application server related calls fail during Servlet.init method, you can
either:

v Start the servlet manually when the server is ready for e-business instead of starting the servlet upon
startup or

v You can choose not to make application server related calls in the servlet's init method.

The web container is created initially with default properties values suitable for simple web applications.
However, these values might not be appropriate for more complex web applications.

Your application is considered complex if it requires any of the following features:
v Additional virtual host aliases
v Servlet caching
v Persistent HTTP session support

Chapter 24. Administering web applications 2629



v Session tracking support with URL rewriting
v Special web container transport chain settings
v Asynchronous or remote dispatching
v No request or response pooling

Make the following configuration changes if you have a complex application:

Procedure
1. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name. Then under web container settings, click on one of the following:

a. Web container, if your web application requires a virtual host, other than the default_host, or
requires servlet caching.

b. Web container transport chains, if you need to reconfigure your HTTP connections.

2. If your application handles special client request loads, in the administrative console, click
Servers > Server Types > WebSphere application servers > server_name. Then under Additional
Properties, click Thread pools to modify your thread pool settings.

3. If your application requires global settings for internal servlets for web application archive (WAR) files
packaged by third-party tools, in the administrative console, click Servers > Server Types >
WebSphere application servers > server_name > Web Container Settings > Web container. Then
under Additional Properties, click Custom properties and enter the appropriate custom property.

Web container settings
Use this page to configure the web container settings.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Web Container Settings > Web container.

Default virtual host:

Specifies a virtual host that enables a single host machine to resemble multiple host machines. Resources
associated with one virtual host cannot share data with resources associated with another virtual host,
even if the virtual hosts share the same physical machine.

Select a virtual host option:
default_host

The product provides a default virtual host with some common aliases such as the machine IP
address, short host name, and fully qualified host name. The alias comprises the first part of the
path for accessing a resource such as a servlet. For example, it is localhost:9080 in the request
http://localhost:9080/myServlet.

admin_host
This virtual host option is another name for the application server; also known as server1 in the
base installation. This process supports the use of the administrative console.

proxy_host
The virtual host called proxy_host, includes default port definitions, port 80 and 443, which are
typically initialized as part of the proxy server initialization. Use this proxy host as appropriate with
routing rules associated with the proxy server.

Enable servlet caching:

Specifies that if a servlet is started once and it generates output to be cached, a cache entry is created
containing not only the output, but also side effects of the invocation. These side effects can include calls
to other servlets or JavaServer Pages (JSP) files, as well as metadata about the entry, including timeout
and entry priority information.

2630 Administering WebSphere applications



Portlet fragment caching requires that servlet caching is enabled. Therefore, enabling portlet fragment
caching automatically enables servlet caching. Disabling servlet caching automatically disables portlet
fragment caching.

Disable servlet request and response pooling:

Specifies to disable the pooling of servlet request and servlet response objects that are pooled by the web
container. When you disable pooling of servlet request and servlet response objects, new servlet request
and servlet response objects are created for each request.

When you disable pooling of servlet request and servlet response objects, new servlet request and servlet
response objects are created for each request, which can negatively affect performance, but provides
protection from any unforeseen pooling bugs.

Number of timeout threads:

Specifies the number of threads that are available to handle asynchronous servlet timeout operations per
server.

The default of two might be too low if you have many applications using asynchronous servlets that often
have timeouts.

Default timeout:

Specifies the default asynchronous servlet timeout for the server.

The default of 30 seconds can be lowered if responses are not being received quickly enough and there is
a viable fall back in the error case. You can raise the value if too many timeouts are being received and
the longer timeout produces responses in an acceptable manner to the client. The units are in millisecond,
so multiply the number by 1000 to convert to seconds. To configure at a higher granularity, you must use
the AsyncContext setTimeout method programmatically.

Use thread pool to start Runnable objects:

Select this option to use the same thread pool where the request originates. This option does not
propagate any context from the original request.

Use a work manager to start Runnable objects:

Select this option to use an Asynchronous Beans work manager to start the runnable. This option is the
default selection. The work manager option propagates any context that is configured for the selected work
manager. This option also requires selecting the JNDI name of the work manager that you will use.

Considerations when using a work manager:

v The context that is propagated is configurable under Resources > Asynchronous Beans > Work
managers. You can also create new work managers on the same panel.

v The WebSphere Application Server default Work Manger is used unless you specify otherwise. This
might not be desirable as other components might be using the work manager and effectively
decreasing the number of threads that are available at one time.

v To make changes to the work manager settings, it is recommended that you create a work manager so
changes to defaults do not affect other components.

v If you have a work manager configured to throw exceptions when the work queue is full, then an
exception of type IllegalStateException is thrown to the caller of start(Runnable) and the caller is
responsible for handling the exception.

Chapter 24. Administering web applications 2631



Programmatic session cookie configuration collection
Use this page to secure cookies by prohibiting programmatic configuration.

To view this administrative console page at the web container level, click Security > Global security >
Programmatic session cookie configuration.

Cookie domain:

Specifies the domain where the cookie is used. Use the asterisk (*) symbol as a wild card, for example,
*.ibm.com.

Cookie name:

Specifies an alphanumeric name for the cookie, for example, JSESSIONID. Use the asterisk (*) symbol as a
wild card.

Cookie path:

Specifies the directory in the domain where the cookie is valid; for example, /path_name. Use the asterisk
(*) symbol as a wild card.

Web container custom properties
You can configure name-value pairs of data, where the name is a property key and the value is a string
value that you can use to set internal system configuration properties. Defining a new property enables
you to configure a setting beyond that which is available in the administrative console. The following is a
list of some of the available web container custom properties.

To specify web container custom properties:

1. In the administrative console click Servers > Server Types > WebSphere application servers >
server_name > Web Container Settings > Web container.

2. Under Additional Properties select Custom Properties.

3. On the Custom Properties page, click New.

4. On the settings page, enter the name of the custom property that you want to configure in the Name
field and the value that you want to set it to in the Value field.

5. Click Apply or OK.

6. Click Save on the console task bar to save your configuration changes.

7. Restart the server.

The following is a list of custom properties provided with the Application Server. The topics, JavaServer
Pages specific web container custom properties and HTTP transport custom properties, are listed in a
separate topic.

You can use the Custom properties page to define the following properties for use by the Java virtual
machine.

v “BodyContentBuffSize” on page 2634

v com.ibm.ws.jsf.disablealternatefacesconfigsearch

v “com.ibm.ws.jsp.enableDefaultIsELIgnoredInTag” on page 2634

v “com.ibm.ws.jsp.expressionreturnemptystring” on page 2634

v “com.ibm.ws.jsp.getWriterOnEmptyBuffer” on page 2635

v “com.ibm.ws.jsp.limitBuffer” on page 2635

v “com.ibm.ws.jsp.throwExceptionForAddELResolver” on page 2635

v “com.ibm.ws.webcontainer.assumefiltersuccessonsecurityerror” on page 2636

2632 Administering WebSphere applications



v “com.ibm.ws.webcontainer.channelwritetype” on page 2636

v “com.ibm.ws.webcontainer.checkEDRinGetRealPath” on page 2637

v “com.ibm.ws.webcontainer.copyattributeskeyset” on page 2637

v “com.ibm.ws.webcontainer.disableSetCharacterEncodingAfterParametersRead” on page 2637

v “com.ibm.ws.webcontainer.disableSystemAppGlobalListenerLoading” on page 2637

v “com.ibm.ws.webcontainer.disablexPoweredBy” on page 2638

v “com.ibm.ws.webcontainer.disallowAllFileServing” on page 2638

v “com.ibm.ws.webcontainer.disallowserveservletsbyclassname” on page 2638

v “com.ibm.ws.webcontainer.discernUnavailableServlet” on page 2638

v “com.ibm.ws.webcontainer.dispatcherRethrowSER” on page 2639

v “com.ibm.ws.webcontainer.dispatcherRethrowSError” on page 2639

v “com.ibm.ws.webcontainer.donotservebyclassname” on page 2639

v “com.ibm.ws.webcontainer.enabledefaultservletrequestpathelements” on page 2639

v “com.ibm.ws.webcontainer.enableErrorExceptionTypeFirst” on page 2639

v “com.ibm.ws.webcontainer.enableExactMatchJSecurityCheck” on page 2640

v “com.ibm.ws.webcontainer.enableJspMappingOverride” on page 2640

v “com.ibm.ws.webcontainer.enableMultiReadOfPostData” on page 2640

v “com.ibm.ws.webcontainer.extractHostHeaderPort and trusthostheaderport” on page 2640

v “com.ibm.ws.webcontainer.finishresponseonclose” on page 2641

v “com.ibm.ws.webcontainer.ForceDifferentCookiePaths” on page 2641

v “com.ibm.ws.webcontainer.HTTPOnlyCookies” on page 2641

v “com.ibm.ws.webcontainer.ignoreinjectionfailure” on page 2642

v “com.ibm.ws.webcontainer.ignoreInvalidQueryString” on page 2642

v “com.ibm.ws.webcontainer.IgnoreSessiononStaticFileRequest” on page 2642

v “com.ibm.ws.webcontainer.invokeFilterInitAtStartup” on page 2642

v “com.ibm.ws.webcontainer.invokeFiltersCompatibility” on page 2642

v “com.ibm.ws.webcontainer.invokerequestlistenerforfilter” on page 2643

v “com.ibm.ws.webcontainer.KeepUnreadPostDataAfterResponseSentToClient” on page 2643

v “com.ibm.ws.webcontainer.logServletContainerInitializerClassloadingErrors” on page 2643

v “com.ibm.ws.webcontainer.mapFiltersToAsterisk” on page 2643

v “com.ibm.ws.webcontainer.maxParamPerRequest” on page 2644

v “com.ibm.ws.webcontainer.modifiedFileNotFoundExceptionBehavior” on page 2644

v “com.ibm.ws.webcontainer.normalizerequesturi” on page 2644

v “com.ibm.ws.webcontainer.parseUTF8PostData” on page 2644

v “com.ibm.ws.webcontainer.provideQStringToWelcomeFile” on page 2645

v “com.ibm.ws.webcontainer.SendResponseToClientAsPartOfSendRedirect” on page 2645

v “com.ibm.ws.webcontainer.SendResponseToClientWhenResponseIsComplete” on page 2645

v “com.ibm.ws.webcontainer.setcontenttypebysetheader” on page 2645

v “com.ibm.ws.webcontainer.ServeWelcomeFileFromExtendedDocumentRoot” on page 2645

v “com.ibm.ws.webcontainer.ServletDestroyWaitTime” on page 2646

v “com.ibm.ws.webcontainer.setUnencodedHTMLinsendError” on page 2646

v “com.ibm.ws.webcontainer.suppressheadersinrequest” on page 2646

v “com.ibm.ws.webcontainer.suppressHtmlRecursiveErrorOutput” on page 2646

v “com.ibm.ws.webcontainer.suppressLastZeroBytePackage” on page 2647

v “com.ibm.ws.webcontainer.suppressServletExceptionLogging” on page 2647

Chapter 24. Administering web applications 2633



v “com.ibm.ws.webcontainer.throwMissingJspException” on page 2647

v “com.ibm.ws.webcontainer.webgroupvhostnotfound” on page 2647

v “com.ibm.ws.webcontainer.xPoweredBy” on page 2648

v “com.ibm.wsspi.jsp.convertAttrValueToString” on page 2648

v “com.ibm.wsspi.jsp.disableElCache” on page 2648

v “com.ibm.wsspi.jsp.disableResourceInjection” on page 2648

v “com.ibm.wsspi.jsp.disableTldSearch” on page 2648

v “com.ibm.wsspi.jsp.enabledoublequotesdecoding” on page 2648

v “com.ibm.wsspi.jsp.removexmlnsfromoutput” on page 2649

v “DebugSessionCrossover” on page 2649

v “DecodeUrlAsUTF8” on page 2649

v “enableInProcessConnections” on page 2650

v “fileServingEnabled, directoryBrowsingEnabled, and serveServletsByClassnameEnabled” on page 2650

v “ForceSessionIdLengthCheck” on page 2650

v “ForceSessionInvalidationMultiple” on page 2651

v “httpsIndicatorHeader” on page 2651

v “HttpSessionIdReuse” on page 2651

v “listeners” on page 2652

v “prependSlashToResource” on page 2652

v “trusted” on page 2652

v

BodyContentBuffSize: The size of the body content buffer for a JavaServer Pages (JSP) file can affect
the performance of some applications. By default, the body content buffer size is 512 bytes. However, you
can use the BodyContentBuffSize custom property to set a different buffer value.

Name Default value

BodyContentBuffSize 512

com.ibm.ws.jsf.disablealternatefacesconfigsearch: Disables MyFaces searching for
META-INF/*.faces-config.xml for all web applications on a server.

Name Default value

com.ibm.ws.jsf.disablealternatefacesconfigsearch false

com.ibm.ws.jsp.enableDefaultIsELIgnoredInTag: Typically Expression Language (EL) expressions in
tag files get evaluated before the tag files a JavaServer Page (JSP) is compiled. However, under certain
conditions these EL expressions in a tag file do not get evaluated if the <el-ignored> attribute is set to
true.

To ensure that EL expressions are always evaluated, set the
com.ibm.ws.jsp.enableDefaultIsELIgnoredInTag custom property to true. The default value for this property
is false.

Name Default value

com.ibm.ws.jsp.enableDefaultIsELIgnoredInTag false

com.ibm.ws.jsp.expressionreturnemptystring: This property enables you to indicate whether you want
the JSP container to return an empty string or null for unset values in an expression.

2634 Administering WebSphere applications



An expression, such as the following expression, can return a value of null when testValue is null in the
testBean:
<input type=’text’ name=’test’ value=’<%=testBean.getTestValue()%>’maxlength=“16”>

Some applications expect an empty string to be returned in these situations rather than the value of null. If
the applications you are running expect an empty string to be returned, add this custom property to your
web container settings and set the property to true.

Name Default value

com.ibm.ws.jsp.expressionreturnemptystring false

com.ibm.ws.jsp.getWriterOnEmptyBuffer: The dynamic cache service uses flushes to determine when
one cacheable web fragment, such as a JSP include or a c:import, ends and the next web fragment
begins. If you set the com.ibm.wsspi.jsp.usecdatatrim custom property to true for your JSP engine, all of
the white space and extra lines in the generated Java code are stripped out. In this situation, there might
not be any content to write before the first flush. If the generated Java code contains text or other code
before the first flush then normal dynamic cache service processing occurs.

If you set the com.ibm.wsspi.jsp.usecdatatrim custom property to true, and are using the dynamic cache
service, you must also set the com.ibm.ws.jsp.getWriterOnEmptyBuffer custom property to true. This
custom property requires the JSP Engine to call the flush function when it reaches the end of the first
cachable web fragments even if there is not any data to flush. The default value for this property is false.

Name Default value

com.ibm.ws.jsp.getWriterOnEmptyBuffer false

com.ibm.ws.jsp.limitBuffer: The body content buffer size of the tag bodies for a JavaServer Pages
(JSP) file are reused to optimize performance. If the size of a tag body increases beyond the default body
content buffer size, the buffer is resized to accommodate the tag body. However, the buffer is not reset to
the default size after serving a request. As a result, the heap memory that is used by
org.apache.jasper.runtime.BodyContentImpl implementation might increase over time. You can configure
the body content buffer size by setting an integer value for the BodyContentBuffSize custom property. For
more information, see “BodyContentBuffSize” on page 2634.

Use the com.ibm.ws.jsp.limitBuffer custom property to deallocate large body content buffer sizes and
create a buffer with the default buffer size.

Name Default value

com.ibm.ws.jsp.limitBuffer false

com.ibm.ws.jsp.throwExceptionForAddELResolver: Set the
com.ibm.ws.jsp.throwExceptionForAddELResolver property to true if you do not want to allow an
ELResolver to be registered from a servlet or a filter after the application has received a request from the
client. When this property is set to true, an IllegalStateException is thrown as specified by the JSP (Java
Server Pages) specification for addELResolver() method of the JspApplicationContext interface.

The default value for this property is false.

Name Default value

com.ibm.ws.jsp.throwExceptionForAddELResolver false

com.ibm.ws.webcontainer.AllowQueryParamWithNoEqual: If the query parameter in a URL only
contains the string “name” instead of the expected “name=value” format, the server returns the value of
request.getParameter(“name”) query as null.

Chapter 24. Administering web applications 2635



When this property is set to true, if the query parameter in a URL only contains the string “name”, the
server returns an empty string as the value for the request.getParameter(“name”) query

Name Default value

com.ibm.ws.webcontainer.AllowQueryParamWithNoEqual false

com.ibm.ws.webcontainer.assumefiltersuccessonsecurityerror: When a request is received for a
static file which does not exist, the web container calls defined servlet filters. If the filters do no
successfully complete, a 404 error code is set. In a situation where application security is enabled, a
security check is performed as part of filter invocation. Typically if the security check fails the web
container considers the filters to have failed and still sets a 404 error code instead of the 401 error code
that indicates the failure of a security check. The 404 error code enables the requester to access the static
file without logging on.

You can set the com.ibm.ws.webcontainer.assumefiltersuccessonsecurityerror custom property to true, to
prevent the 401 error code from being replaced with a 404 error code, and ensure that a user must enter
a valid user ID and password before they can access a static file.

Name Default value

com.ibm.ws.webcontainer.assumefiltersuccessonsecurityerror false

com.ibm.ws.webcontainer.asyncmaxsizetaskpool: This custom property specifies the maximum task
queue size which is used to hold the dispatched asynchronous servlet.

Name Default Value

com.ibm.ws.webcontainer.asyncmaxsizetaskpool 5000

com.ibm.ws.webcontainer.asyncpurgeinterval: This custom property specifies the interval which the
webcontainer should purge the task queue to release the resource of the canceled tasks.

Name Default Value

com.ibm.ws.webcontainer.asyncpurgeinterval 30000

com.ibm.ws.webcontainer.channelwritetype:

By default, the web container uses asynchronous writes to write response data in chunks up to the
response buffer size. For larger responses that are greater than the response buffer size, the web
container continues to buffer response data into memory while waiting for an asynchronous write of a
response data chunk to complete. This process can result in part of a large response held in memory,
which can lead to high memory usage and potentially an out of memory error. An application server hang
might also occur when a server is simultaneously processing more requests than web container-defined
threads.

If the com.ibm.ws.webcontainer.channelwritetype property is set to sync, synchronous writing is used,
otherwise asynchronous writing is used by default. With synchronous writing, response data are written
synchronously in chunks of up to the value of responsebuffersize and no response data are buffered into
memory while waiting for a synchronous write of a response data chunk to complete. As a result, the
approximate maximum amount of response data that is held in memory is equal to the responsebuffersize
multiplied by the number of web container threads. The maximum number of requests that can be
processed simultaneously by the web container is limited by the number of web container threads.
Additional requests are queued, waiting for a request that is in process to complete.

The responsebuffersize web container custom property defines the maximum amount of response data
written by the web container in a single chunk, and is 32k by default. As a result, it is used to change the

2636 Administering WebSphere applications



number of writes needed by the web container to send complete response data. However, if an application
flushes response data, any response data held by the web container is immediately written irrespective of
the responsebuffersize.

Use the following name-value pair to write chunks of data using synchronous writes.

Name Default value

com.ibm.ws.webcontainer.channelwritetype async

com.ibm.ws.webcontainer.checkEDRinGetRealPath: The ServletContext.getRealPath() Java Servlet
API does not return the correct path for a requested resource when the resource exists in an
extendedDocumentRoot path and does not exist in the installed application path. If you want the
ServletContext.getRealPath() Java Servlet API to look for the requested resource in the
extendedDocumentRoot path if the resource is not found in the installed application path, set the
com.ibm.ws.webcontainer.checkEDRinGetRealPath custom property to true.

When this property is set to true, and the requested resource is also not found in the
extendedDocumentRoot path, a null value is returned.

Name Default value

com.ibm.ws.webcontainer.checkEDRinGetRealPath false

com.ibm.ws.webcontainer.copyattributeskeyset: This custom property addresses a situation where the
request.getAttributeNames method returns a list of values. If a servlet modifies the list using the
request.removeAttribute method, subsequent calls to the nextElement method causes a
java.util.ConcurrentModificationException exception. To enable a servlet to modify the list, set the
com.ibm.ws.webcontainer.copyattributeskeyset custom property to true. When you set this custom
property to true, a copy of the list of attributes is returned, which enables the servlet to modify the list
without resulting in a java.util.ConcurrentModificationException exception when the nextElement method is
called.

Name Default value

com.ibm.ws.webcontainer.copyattributeskeyset false

com.ibm.ws.webcontainer.disableSetCharacterEncodingAfterParametersRead: The web container
processes a setCharacterEncoding(String) method of the ServletRequest API even if it is called after the
post data is parsed. According to the Java Servlet Specification, the web container should ignore a
setCharacterEncoding(String) method if the method is called after the data is parsed.

If you want the web container to ignore a setCharacterEncoding(String) method if the method is called
after the data is parsed, add the
com.ibm.ws.webcontainer.disableSetCharacterEncodingAfterParametersRead custom property to your web
container configuration settings and set this property to true.

The default value for this property is false.

Name Default value

com.ibm.ws.webcontainer.disableSetCharacterEncodingAfterParametersRead false

com.ibm.ws.webcontainer.disableSystemAppGlobalListenerLoading:

If a system application is the first to start, and the application attempts to load a global listener in a shared
library that is associated with the server classloader, the application does not load that listener and
prevents the listener from being loaded or invoked by a later non-system application. Set the
com.ibm.ws.webcontainer.disableSystemAppGlobalListenerLoading custom property to true to prevent

Chapter 24. Administering web applications 2637



system applications from loading global listeners. When this property is set to true, the system application
does not attempt to load the global listeners and later non-system applications can load them from a
shared library associated with a server class loader.

Name Default value

com.ibm.ws.webcontainer.disableSystemAppGlobalListenerLoading false

com.ibm.ws.webcontainer.disablexPoweredBy: When you configure server security, you can turn off
the X-Powered-By header if you do not want to reveal which server you are running. Use this custom
property to disable the X-Powered-By header, which prevents the header from being sent on the HTTP
response. The default value is false. However, set this property to true, if you want to disable this header.

Name Default value

com.ibm.ws.webcontainer.disablexPoweredBy false

com.ibm.ws.webcontainer.disallowAllFileServing:

Use the com.ibm.ws.webcontainer.disallowAllFileServing custom property to disable file serving on all
applications on a specific application server.

You can enable file serving on a global level across a given application server by using the
fileServingEnabled custom property. However, the fileServingEnabled property is overridden by the specific
deployment information of each application. Therefore, the current fileServingEnabled custom property only
applies as a backup in case an application does not define the fileServingEnabled setting itself.

To globally override this setting on a specific application server to prevent the application server from
serving static files regardless of their individual deployment settings, set the
com.ibm.ws.webcontainer.disallowAllFileServing web container custom property to true using the following
name-value pair.

Name Default value

com.ibm.ws.webcontainer.disallowAllFileServing false

com.ibm.ws.webcontainer.disallowserveservletsbyclassname:

When the serveServletsByClassnameEnabled property is enabled, it is possible to access servlets directly,
resulting in a possible security exposure. Define the following custom property to disallow the use of the
serveServletsByClassnameEnabled property across the entire application server level.

Name Default value

com.ibm.ws.webcontainer.disallowserveservletsbyclassname false

com.ibm.ws.webcontainer.discernUnavailableServlet: Typically, when the web container receives an
UnavailableException, it cannot determine whether the exception was issued from a servlet or a
dispatched resource. Therefore, the web container automatically marks the servlet unavailable even if it is
the dispatched resource that is unavailable.

If you are running on Version 7.0.0.5 or later, and have set the
com.ibm.ws.webcontainer.discernUnavailableServlet custom property to true, any UnavailableException
that is issued from a dispatched resource is placed in a wrapper. This wrapper enables the web container
to determine whether the exception was issued from the servlet or a dispatched resource. If the exception
is not issued by the servlet, the web container does not mark the servlet unavailable.

Name Default value

com.ibm.ws.webcontainer.discernUnavailableServlet false

2638 Administering WebSphere applications



com.ibm.ws.webcontainer.dispatcherRethrowSER: Typically, the RequestDispatcher does not
propagate exceptions thrown from dispatched servlets, including JavaServer Pages, back to the servlet
doing the dispatching. If you want the RequestDispatcher to throw exceptions back to the servlet doing the
dispatching, add the com.ibm.ws.webcontainer.dispatcherRethrowSER custom property to the settings for
the web container, and set the property to true.

Name Default value

com.ibm.ws.webcontainer.dispatcherRethrowSER false

Note: The com.ibm.ws.webcontainer.dispatcherRethrowSError custom property supersedes the
com.ibm.ws.webcontainer.dispatcherRethrowSER custom property. When you enable the
com.ibm.ws.webcontainer.dispatcherRethrowSError custom property by setting its value to true, the
com.ibm.ws.webcontainer.dispatcherRethrowSER custom property is also set to true.

com.ibm.ws.webcontainer.dispatcherRethrowSError: When a JavaServer Page (JSP) file contains a
compilation error, the runtime error is caught and handled directly by the container. Exceptions are not
propagated and addressed by the dispatched JSP resource. With the
com.ibm.ws.webcontainer.dispatcherRethrowSError custom property, exceptions are propagated back to
the dispatched JSP resource.

Name Default value

com.ibm.ws.webcontainer.dispatcherRethrowSError false

Note: The com.ibm.ws.webcontainer.dispatcherRethrowSError custom property supersedes the
com.ibm.ws.webcontainer.dispatcherRethrowSER custom property. When you enable the
com.ibm.ws.webcontainer.dispatcherRethrowSError custom property by setting its value to true, the
com.ibm.ws.webcontainer.dispatcherRethrowSER custom property is also set to true.

com.ibm.ws.webcontainer.donotservebyclassname:

The com.ibm.ws.webcontainer.donotservebyclassname custom property specifies a list of classes that
cannot be served by the class name.

Name Default value

com.ibm.ws.webcontainer.donotservebyclassname none

com.ibm.ws.webcontainer.enabledefaultservletrequestpathelements: To correctly map a request to a
default servlet, you must determine the proper servlet path and PathInfo values. The following table shows
the affects on the Servlet Path and PathInfo values when you set the
com.ibm.ws.webcontainer.enabledefaultservletrequestpathelements custom property to a true or false
value.

Table 244. Servlet Path and PathInfo values. Values for Servlet Path and PathInfo
Value Servlet Path value PathInfo value

true Set to the contents of the URI after the
Context Path

Set to a null value

false (Default) Set to an empty string Set based on the contents of the URI after the Context Path

com.ibm.ws.webcontainer.enableErrorExceptionTypeFirst: When an exception occurs, the Web
container searches for an error page to handle that exception. The default searching order is:

1. Any matching error-code error page

2. Any matching exception-type error page

Chapter 24. Administering web applications 2639



The matched error-code page is always returned even if there is also a matching exception type error
page defined in the web.xml file. To have the Web container search and use the exception-type before the
error-code, set this property to true.

Name Default value

com.ibm.ws.webcontainer.enableErrorExceptionTypeFirst false

com.ibm.ws.webcontainer.enableExactMatchJSecurityCheck: Specify this property if you want to
allow the keyword j_security_check to be used as part of the name of a resource. Typically, if a URI
contains the keyword j_security_check the login process is initiated.

Name Default value

com.ibm.ws.webcontainer.enableExactMatchJSecurityCheck false

com.ibm.ws.webcontainer.enableJspMappingOverride: When a url-pattern is defined in the
jsp-property-group of the web.xml, file, it is typically mapped to, and handled by the JavaServer Page
(JSP) engine. If you have applications that must override this mapping so that they can handle and serve
the JSP content themselves, set the com.ibm.ws.webcontainer.enableJspMappingOverride property to
true.

Name Default value

com.ibm.ws.webcontainer.enableJspMappingOverride false

com.ibm.ws.webcontainer.enableMultiReadOfPostData: Set the
com.ibm.ws.webcontainer.enableMultiReadOfPostData custom property to true if you want to enable
multiple reads of post data. When this property is set to true, the post data can be read multiple times as
either an InputStream or Reader, and as parameters.

When the web container is enabled for multiple reads of post data, you can set up an application to
complete the following actions if you want that application to re-read post data from the beginning using
either an InputStream or Reader:

1. Obtain the InputStream or Reader

2. Read the data

3. Close the InputStrean or Reader

If either the first or third action does not occur, the next read of the post data is not reset to the beginning
of that data.

The web container automatically completes this sequence if an application re-reads the post data as
parameters.

Name Default value

com.ibm.ws.webcontainer.enableMultiReadOfPostData false

com.ibm.ws.webcontainer.extractHostHeaderPort and trusthostheaderport: The getServerPort
method relies on the getVirtualPort method of the channel, which returns a port number in the following
order:

1. Port number from the request URL

2. Port number from the request host header

This order is compliant with HTTP/1.1 RFC but not with the Java Servlet Specification Version 2.4 API,
which requires the port number from the host header to be returned first, if any, or the request URL. The
correct returned URL for the above example is: http://ProxyServer:8888. The web container was
modified to return a port number from the host header, if any, or the URL port that accepted the client

2640 Administering WebSphere applications



connection. You must set the trusthostheaderport and the com.ibm.ws.webcontainer.extractHostHeaderPort
custom property to true to return the port number from the request host header first. For example, set
these properties in the web.xml file using:
trusthostheaderport = true
com.ibm.ws.webcontainer.extractHostHeaderPort = true

Or you can set these properties as web container custom properties in the administrative console using
the following two sets of name-value pairs:

Name Default value

com.ibm.ws.webcontainer.extractHostHeaderPort false

trusthostheaderport false

com.ibm.ws.webcontainer.finishresponseonclose:

Use the com.ibm.ws.webcontainer.finishresponseonclose custom property to indicate that you want the
web container to close a connection when a servlet calls close() on a writer or output stream.

Typically, when a servlet calls close() on a writer or output stream, the web container sends the data that
has been written to the writer or output stream to the client, and then waits for the servlet service() method
to finish before it closes the connection. This delay might be interpreted as a response completion delay,
especially if a servlet service() method does not complete until sometime after the writer or output stream
is closed.

Name Default value

com.ibm.ws.webcontainer.finishresponseonclose false

com.ibm.ws.webcontainer.ForceDifferentCookiePaths: When you configure an application to use a
cookie to track the session, the default path for the cookie is set to the context root of the application.
Therefore, the cookie is only sent to requests that are made to this application. To change the default path
to be “/” (forward slash), such that the cookie is sent to requests for any application in this domain, set the
ForceDifferentCookiePaths session manager custom property.

Name Default value

com.ibm.ws.webcontainer.ForceDifferentCookiePaths false

com.ibm.ws.webcontainer.HTTPOnlyCookies: The com.ibm.ws.webcontainer.HTTPOnlyCookies
custom property provides a level of defense against a client-side script accessing a protected cookie and
acquiring its content. When you use this custom property, you can prevent Java scripts that run in a
browser from accessing all cookies or a particular list of cookies of your choosing. The HTTPOnly attribute
is added to each cookie specified in this custom property and enables protection from client-side script
access.

gotcha: Specifying com.ibm.ws.webcontainer.HTTPOnlyCookies with no operands means that the
HTTPOnly attribute will NOT be added to any cookie, and any client-side Java script running in a
browser can access the content of any cookies.

You can specify the following values for this property:

* - An asterisk value means that all cookies are given the HTTPOnly attribute.

A comma delimited list of the specific cookies that are given the HTTPOnly attribute. The HTTPOnly
attribute is only given to cookies that are on this list.

The following examples illustrate how to specify these two settings:
com.ibm.ws.webcontainer.HTTPOnlyCookies=*
com.ibm.ws.webcontainer.HTTPOnlyCookies=cookieName1,Account3Cookie,JsessionID

Chapter 24. Administering web applications 2641



Attention: Cookie names used in specifying com.ibm.ws.webcontainer.HTTPOnlyCookies are
case-insensitive.

Name Default value

com.ibm.ws.webcontainer.HTTPOnlyCookies none

com.ibm.ws.webcontainer.ignoreinjectionfailure: If a resource or Enterprise JavaBeans (EJB) injection
fails during the servlet initialization process, an error message is written to the server log files. However,
the error message is not propagated to the client. In addition, the servlet is put into service and it is not
reinitialized until its application is restarted. During this time, if a request is received that references the
resource, which previously failed to inject, a NullPointerException exception results. Similarly, this problem
can occur during the filter and listener initialization processes.

The com.ibm.ws.webcontainer.ignoreinjectionfailure custom property enables you to specify whether to
propagate these error messages and whether to put a servlet into service. By default, the custom property
is set to false, which retains the previously described behavior. To enable the propagation of these
injection exceptions to the client and to not put the servlet into service, you must leave this custom
property set to false.

Name Default value

com.ibm.ws.webcontainer.ignoreinjectionfailure false

com.ibm.ws.webcontainer.ignoreInvalidQueryString: When the web container encounters an encoding
character in a query string pair that is not valid, it throws an IllegalArgumentException exception and, by
default, ignores the entire query string. In applications where every field in the query string is an essential
resource, it might not be desirable to ignore the entire query string. If you set the
com.ibm.ws.webcontainer.ignoreInvalidQueryString custom property to true, the web container ignores
query string pairs that are not valid and continues to process valid query string pairs.

Name Default value

com.ibm.ws.webcontainer.ignoreInvalidQueryString false

com.ibm.ws.webcontainer.IgnoreSessiononStaticFileRequest: The web container accesses a session
for the static file requests involving filters. This action can result in a performance degradation, for
example, when running with database session persistence. If you set the
com.ibm.ws.webcontainer.IgnoreSessiononStaticFileRequest custom property to true, the web container
cannot access a session for the static files requests involving filters.

Name Default value

com.ibm.ws.webcontainer.IgnoreSessiononStaticFileRequest false

com.ibm.ws.webcontainer.invokeFilterInitAtStartup: The
com.ibm.ws.webcontainer.invokeFilterInitAtStartup custom property enables the web container to invoke
the init method and initialize a filter during the startup process for an application.

Name Default value

com.ibm.ws.webcontainer.invokeFilterInitAtStartup false

com.ibm.ws.webcontainer.invokeFiltersCompatibility:

You might need to use a custom servlet filter with web applications to map files from a one URI to another
URI that points to a particular resource. For example, you might map URIs that start with my_company to
the my_company/external directory. Without enabling the
com.ibm.ws.webcontainer.invokeFiltersCompatibility custom property, the web container does not call any
custom servlet filters.

2642 Administering WebSphere applications



When this custom property is set to true, the web container calls custom servlet filters before looking for
welcome files. Also, if the web container cannot find a resource, it calls the custom servlet filters before
creating a FileNotFoundException exception. This change enables the web container to verify whether the
custom servlet filters modify the path to a resource.

Name Default value

com.ibm.ws.webcontainer.invokeFiltersCompatibility false

com.ibm.ws.webcontainer.invokerequestlistenerforfilter: If a web application has defined the listener
in the web deployment descriptor xml file, then you must set the
com.ibm.ws.webcontainer.invokerequestlistenerforfilter custom property to true to have
ServletRequestListener invoked when a request is about to enter the filter for that web application.

According to the Java Servlet Specification, a ServletRequestListener should be invoked if a request is
about to enter the filter for a web application that has defined the listener in the web deployment descriptor
xml file.

Name Default value

com.ibm.ws.webcontainer.invokerequestlistenerforfilter false

com.ibm.ws.webcontainer.KeepUnreadPostDataAfterResponseSentToClient: This property indicates
whether post data is available to read after the client response is completed, following either the
completion of a forward request completes, or a return from a sendRedirect. If this property is set to true,
post data is available to read after the client response is completed either after a forward request
completes, which is the default behavior, or on a return from a sendRedirect,, which occurs when the
com.ibm.ws.webcontainer.SendResponseToClientAsPartOfSendRedirect custom property is set to true.
However, setting this property to true requires unread post data to be held in memory until the target
resource completes, and increases memory usage.

Name Default value

com.ibm.ws.webcontainer.KeepUnreadPostDataAfterResponseSentToClient false

com.ibm.ws.webcontainer.logServletContainerInitializerClassloadingErrors: When examining the
classes of an application to see if they match any of the criteria that is specified by the HandlesTypes
annotation of a ServletContainerInitializer, the container might run into class loading problems if one or
more of the optional application JAR files are missing. Because the container does not decide whether
these types of class loading failures prevent the application from working correctly, it ignores the failures
and provides a configuration option that logs them.

Setting this property to true turns on logging.

Name Default value

com.ibm.ws.webcontainer.logServletContainerInitializerClassloadingErrors false

com.ibm.ws.webcontainer.mapFiltersToAsterisk:

When processing a request, the web container recognizes servlet mappings to “*” as the same as servlet
mappings to “/*”. To provide the same behavior with filter mapping, set the
com.ibm.ws.webcontainer.mapFiltersToAsterisk custom property to true. Setting the
com.ibm.ws.webcontainer.mapFiltersToAsterisk custom property to true causes the web container to
recognize filter mappings to “*” as a filter mapping to “/*”. This custom property is not case-sensitive.

Name Default value

com.ibm.ws.webcontainer.mapFiltersToAsterisk false

Chapter 24. Administering web applications 2643



com.ibm.ws.webcontainer.maxParamPerRequest:

You can use this property to change the maximum number of parameters allowed in your inbound
requests, based on your applications and environment. The maximum number of parameters allowed per
inbound request (GET or POST) defaults to 10000.

You can set this property to -1 if you do not want to limit the number of parameters that can be included in
a request.

Name Default value

com.ibm.ws.webcontainer.maxParamPerRequest 10000

com.ibm.ws.webcontainer.modifiedFileNotFoundExceptionBehavior:

When a file does not exist and is the target of an include or forward operation for a request dispatcher, a
FileNotFoundException occurs. When this property is set to true, this exception is suppressed as well as
any logging of the failure. Also, if such a request results in a 404 exception, FFDCs are no longer created.
You enable this file not found exception behavior by setting this custom property to true.

Name Default value

com.ibm.ws.webcontainer.modifiedFileNotfFoundExceptionBehavior true

com.ibm.ws.webcontainer.ModifiedSinceLaterThanFileTimeStamp: When this property is set to true,
the web container returns a 304 response if the If-Modified-Since timestamp of the requested variant is
newer than the timestamp of the target variant.

Name Default value

com.ibm.ws.webcontainer.ModifiedSinceLaterThanFileTimeStamp false

com.ibm.ws.webcontainer.normalizerequesturi: Typically, request URI 404 errors do not occur if a
request URI is submitted from a browser, because most modern browsers automatically normalizes a
request URI before calling WebSphere Application Server. Therefore, by default, the web container does
not normalize a request URI before trying to resolve that URI to an application and servlet mapping.

A request URI, that includes /./ or /../ as part of an application context, that has not been normalized,
might fail with a 404 error. Similarly, a request URI, that includes /./" or /../ as part of a servlet path, that
has not been normalized, fails to match a servlet mapping, which also results in a 404 error, even though
the URI is normalized before resolving the URI to a JavaServer Pages (JSP) or static file.

You can set the com.ibm.ws.webcontainer.normalizerequesturi custom property to true and the web
container normalizes these types of request URIs.

Name Default value

com.ibm.ws.webcontainer.normalizerequesturi false

com.ibm.ws.webcontainer.parseUTF8PostData:

If the web container attempts to process a request that includes UTF-8 post data that is not URL encoded,
the target resource accesses the post data as parameters. However, the UTF-8 data is not decoded
correctly and the result data might be lost.

To resolve this issue, set the com.ibm.ws.webcontainer.parseUTF8PostData custom property to true. When
the web container processes parameters, it detects UTF-8 post data that is not URL encoded and includes
the data in the parameter values.

2644 Administering WebSphere applications



To use this function, you must set the value to true.

Name Default value

com.ibm.ws.webcontainer.parseUTF8PostData false

com.ibm.ws.webcontainer.provideQStringToWelcomeFile: Typically, when a request is initially sent to
the context root of the application, the request is forwarded to a welcome file. If a query string is included
in an initial request, it is unavailable to the welcome file if you included the request.getQueryString()
attribute in the welcome file. However, the query string is available to the welcome file if you included the
javax.servlet.forward.query_string attribute in the welcome file.

If you must use the request.getQueryString() attribute, instead of the javax.servlet.forward.query_string
attribute, to make the query string available to the welcome file, add the
com.ibm.ws.webcontainer.provideQStringToWelcomeFile custom property to your web container
configuration and set the property to true.

Name Default value

com.ibm.ws.webcontainer.provideQStringToWelcomeFile false

com.ibm.ws.webcontainer.SendResponseToClientAsPartOfSendRedirect: This property indicates
whether a response is completed as part of a a sendRedirect request. If this property is set to true, a
response is completed as part of a sendRedirect request, and any post data associated with the request is
not available for a read on return from sendRedirect.

The default value is false.

Name Default value

com.ibm.ws.webcontainer.SendResponseToClientAsPartOfSendRedirect false

com.ibm.ws.webcontainer.SendResponseToClientWhenResponseIsComplete: This property
indicates whether a response is completed on return from a forward request.

If this property is set to false, a response is not completed on return from a forward request. Instead, it is
delayed until the target resource completes. Post data is available for a read after the forward completes.

Name Default value

com.ibm.ws.webcontainer.SendResponseToClientAsPartOfSendRedirect true

com.ibm.ws.webcontainer.setcontenttypebysetheader: When autoResponseEncoding is enabled or
when the com.ibm.ws.webcontainer.contentTypeCompatibility property is set, the application server sets
the content type of the response using an internal method. To enable setting the content-type using the
ServletResponse.setContentType method instead, you need to set the
com.ibm.ws.webcontainer.setcontenttypebysetheader custom property to false.

Name Default value

com.ibm.ws.webcontainer.setcontenttypebysetheader true

com.ibm.ws.webcontainer.ServeWelcomeFileFromExtendedDocumentRoot: Typically, the first time
the web container handles a request for a static welcome page that is not a JavaServer Pages (JSP) file,
the web container does not search the ExtendedDocumentRoot for the welcome file unless the request for
that welcome file is fully-qualified. If the request is fully-qualified, the web container serves the welcome
file, and the context root of the application displays the welcome file. If the request for the static welcome
file is not fully-qualified, the web container returns a 404 error, which indicates that the web container did
not find the welcome file.

Chapter 24. Administering web applications 2645



After the web container successfully serves a welcome file, the web container creates a mapping for that
welcome file. The web container then uses this mapping to handle future requests for the welcome file,
thereby eliminating the need for subsequent requests to be fully-qualified.

If you want the web container to always search an application defined ExtendedDocumentRoot for a
welcome file, even if the request is not fully-qualified, you can add the
com.ibm.ws.webcontainer.ServeWelcomeFileFromExtendedDocumentRoot custom property to your web
container settings, and set this property to true.

Name Default value

com.ibm.ws.webcontainer.ServeWelcomeFileFromExtendedDocumentRoot false

com.ibm.ws.webcontainer.ServletDestroyWaitTime: By default, when an application is stopped the
web container waits up to 60 seconds for each active request for a resource of that application to
complete. You can now define the com.ibm.ws.webcontainer.ServletDestroyWaitTime web container
custom property to control the amount of time that the web container waits for an active request to
complete when the owning application is stopped.

Set the com.ibm.ws.webcontainer.ServletDestroyWaitTime custom property to an integer value, which
specifies the number of seconds to wait for a request to complete. The default value is 60 seconds.

Name Default value

com.ibm.ws.webcontainer.ServletDestroyWaitTime 60

com.ibm.ws.webcontainer.setUnencodedHTMLinsendError: Typically, the web container encodes the
specified error messages before formatting them, to prevent Cross-Site Scripting (XSS) attacks on the
client if the application does not sanitize these messages. However the Java Servlet Specification for the
sendError(int, String) method, indicates that the server should create the response to look like an
HTML-formatted server error page.

If you do not want the web container to encode the specified error messages before formatting them, add
the com.ibm.ws.webcontainer.setUnencodedHTMLinsendError custom property to your web container
configuration settings, and set the property to true.

Name Default value

com.ibm.ws.webcontainer.setUnencodedHTMLinsendError false

com.ibm.ws.webcontainer.suppressheadersinrequest: The
com.ibm.ws.webcontainer.suppressheadersinrequest custom property can be used to suppress the
inclusion of request headers that start with special characters, such as “$” or “_”. Some applications do not
handle request headers that start with special characters.

The value specified for this custom property is a delimited list of the header prefixes that you want to be
suppressed.

Example:
com.ibm.ws.webcontainer.suppressheadersinrequest=$WS,_WS

Name Default value

com.ibm.ws.webcontainer.suppressheadersinrequest none

com.ibm.ws.webcontainer.suppressHtmlRecursiveErrorOutput:

2646 Administering WebSphere applications



During a recursive error that an application-specified error page cannot handle, the stack trace and error
message are output as an HTML page. This information includes class names and program information
that the application developer does not want expose to the user.

You can set the com.ibm.ws.webcontainer.suppressHtmlRecursiveErrorOutput web container custom
property to suppress the HTML output of the error text, without changing the internal logging of the
message. Set the custom property com.ibm.ws. webcontainer.suppressHtmlRecursiveErrorOutput to true
to disable the HTML output of the error message to the user and present the user with blank page with a
500 error code.

Name Default value

com.ibm.ws.webcontainer.suppressHtmlRecursiveErrorOutput false

com.ibm.ws.webcontainer.suppressLastZeroBytePackage: Typically, the last zero byte chunk is used
to indicate, to a client, the end of the response data in a chunked encoded transmission. Some
applications use this last zero to determine when the response data is completely received, and they can
start processing it. If an error occurs in the application after the response headers are sent, the last chunk
of data is still sent to the client. The client might not realize that an error has occurred, and attempt to
process incomplete data.

If you set the com.ibm.ws.webcontainer.suppressLastZeroBytePackage custom property to true, if an error
occurs in the application after the response headers are sent, the last chunk of data is not sent to the
client.

Name Default value

com.ibm.ws.webcontainer.suppressLastZeroBytePackage false

com.ibm.ws.webcontainer.suppressServletExceptionLogging:

If a servlet creates an exception, it is logged to the system console. If you do not want the web container
to log servlet- created exceptions, add the com.ibm.ws.webcontainer.suppressServletExceptionLogging
custom property to the web container configuration settings, and set the property to true.

Name Default value

com.ibm.ws.webcontainer.suppressServletExceptionLogging false

com.ibm.ws.webcontainer.throwMissingJspException:

Set the com.ibm.ws.webcontainer.throwMissingJspException custom property to true to create a
FileNotFoundException when a resource that is included by a JSP file is missing. If this property is not set
to true, an error page displays.

Name Default value

com.ibm.ws.webcontainer.throwMissingJspException false

com.ibm.ws.webcontainer.webgroupvhostnotfound: Error message SRVE0017W states “Web Group
not found: {0}”, and error message SRVE0255 states “A WebGroup/Virtual Host to handle {0} has not been
defined”. These messages might be returned when the application that is called to process the request
serviced by IBM WebSphere Application Server is not found. You can use the
com.ibm.ws.webcontainer.webgroupvhostnotfound custom property to change the text of these messages
to text that is more suitable for your environment.

Name Default value

com.ibm.ws.webcontainer.webgroupvhostnotfound none

Chapter 24. Administering web applications 2647



com.ibm.ws.webcontainer.xPoweredBy: This custom property enables you to configure the value of
the X-Powered-By header, which supplies the implementation information of the server.

Name Default value

com.ibm.ws.webcontainer.xPoweredBy Servlet/3.0

com.ibm.wsspi.jsp.convertAttrValueToString:

Set the com.ibm.wsspi.jsp.convertAttrValueToString web container custom property to true to convert start
and end attributes of the repeat tag to strings before they are used.

Name Default value

com.ibm.wsspi.jsp.convertAttrValueToString false

com.ibm.wsspi.jsp.disableElCache:

Set the com.ibm.wsspi.jsp.disableElCache web container custom property to true to disable the
commons-el expression cache if you are experiencing out of memory conditions because the hash maps
are held by the expression evaluator.

Name Default value

com.ibm.wsspi.jsp.disableElCache false

com.ibm.wsspi.jsp.disableResourceInjection: The resource injection feature accesses resources in
applications differently than it did in earlier versions of the product, and causes the compiled method
output to be larger than it was previously. If you have large JSP files that in earlier releases pushed the
65535 byte limit in the translated service method, they might now exceed this limit, causing the compile to
fail.

If you encounter this situation, you can either break a large JSP file into smaller JSP files, and use
<jsp:include> statements to combine them after they are compiled, or you can add the
com.ibm.wsspi.jsp.disableResourceInjection custom property to your web container settings to disable the
resource injection function during the JSP translation process. When the
com.ibm.wsspi.jsp.disableResourceInjection custom property is set to true, the resource injection function
is disabled for all applications.

If you only want to disable the resource injection function for specific applications, you can add the
disableResourceInjection JSP attribute to the ibm-web-ext.xmi files for those specific applications.

Name Default value

com.ibm.wsspi.jsp.disableResourceInjection false

com.ibm.wsspi.jsp.disableTldSearch: The com.ibm.wsspi.jsp.disableTldSearch custom property can be
used to improve application startup time. By default, when an application starts, the JSP engine searches
the application installation directories for the taglib descriptor (TLD) files. This search process might
increase the startup time for large applications with many files and directories. To disable this search
process, set this property to true.

Name Default value

com.ibm.wsspi.jsp.disableTldSearch false

com.ibm.wsspi.jsp.enabledoublequotesdecoding:

2648 Administering WebSphere applications



Set the com.ibm.wsspi.jsp.enabledoublequotesdecoding web container custom property to decode an
encoded double quote character if it is embedded in a script function within a JavaServer Pages (JSP) file.

The JSP Container does not decode an encoded double quote character during the translation of a JSP
file. Instead, there is a dependency on the browser to decode it. However, when an encoded double quote
character exists inside a script function of a tag, the browser cannot decode it. Thus, when this custom
property is not set, the encoded double quote character causes the script function to malfunction.

When you set this custom property, the value affects all of your deployed applications. If you want to affect
an individual application, set the enableDoubleQuotesDecoding JSP attribute to true within the
ibm-web-ext.xmi file in your application.

Name Default value

com.ibm.wsspi.jsp.enabledoublequotesdecoding false

com.ibm.wsspi.jsp.removexmlnsfromoutput: When the web container generates HTML code from a
JSP document, the web container does not remove any xmlns attributes, that are specified for tags in the
JSP document. Therefore, when the JSP document is rendered on the browser, the xmlns attributes
remain in the generated HTML code.

To ensure that the xmlns attributes are always removed from generated HTML code, add the
com.ibm.wsspi.jsp.removexmlnsfromoutput custom property to your web container configuration settings
and set this property to true.

When you set this custom property , the value affects all of your deployed applications. If you want to
affect an individual application, set the removeXmlnsFromOutput JSP attribute to true within the
ibm-web-ext.xmi file in your application.

Name Default value

com.ibm.wsspi.jsp.removexmlnsfromoutput false

DebugSessionCrossover:

The DebugSessionCrossover custom property enables code to perform additional checks to verify that
only the session associated with the request is accessed or referenced. Messages are logged if any
discrepancies are detected.

Note: The use of the DebugSessionCrossover property as a web container custom property is
deprecated. You can now define it as a session management custom property.

To enable session data crossover detection, set this property to true

Name Default value

DebugSessionCrossover false

Refer to the HTTP session problems article for additional information.

DecodeUrlAsUTF8:

The UTF-8 encoded URL feature, which provides UTF-8 encoded Uniform Resource Locators (URLs) to
support the double-byte characters in URLs is enabled by default. You can prevent the web container from
explicitly decoding URLs in UTF-8 and have them use the ISO-8859 standard as per the current HTTP
specification by setting this custom property to false.

Chapter 24. Administering web applications 2649



Name Default value

DecodeUrlAsUTF8 true

enableInProcessConnections:

Use the enableInProcessConnections custom property to reduce response times and to reduce the
number of threads that are used to service a request, which reduces the potential for a deadlock.

There is an optimized communication path between a web services client application and a web container
that are located in the same application server process. Requests from the web services client that are
normally sent to the web container using a network connection are delivered directly to the web container
using an optimized local path. The local path is available because the web services client application and
the web container are running in the same process. This optimized communication path is disabled by
default. Before enabling this property, make sure that wild cards are not specified for the web container
ports. Use specific ports for the web container when the optimized communication path is enabled.

To enable the optimized communication path, set this property to true.

Name Default value

enableInProcessConnections false

Refer to the Web services client to web container optimized communication topic for additional information.

fileServingEnabled, directoryBrowsingEnabled, and serveServletsByClassnameEnabled:

fileServingEnabled, directoryBrowsingEnabled, and similar properties are global settings for internal
servlets. Web application archive (WAR) files that are packaged using third-party tools cannot specify
behavior for the services that are exposed by the web container internal servlets.

You can use the fileServingEnabled, directoryBrowsingEnabled, and serveServletsByClassnameEnabled
properties to globally enable and disable the fileServing, directoryBrowsing, and
serveServletsByClassname functions for internal servlets for all web applications at the web container
level.

v Setting the fileServingEnabled, property to false disables the fileServing function.

v Setting the directoryBrowsingEnabled, property to true enables the directoryBrowsing function.

v Setting the serveServletsByClassnameEnabled property to true enables the
serveServletsByClassnameEnabled function.

Name Default value

fileServingEnabled true

directoryBrowsingEnabled false

serveServletsByClassnameEnabled false

Settings that are defined in an assembly tool take precedence over the global settings that are set through
the custom properties at the web container level.

Web application deployment extensions continue to hold configuration information for the services that are
provided by the internal servlets, and take precedence over the global settings that are set through the
custom properties at the web container level.

ForceSessionIdLengthCheck: Newly-generated session IDs are, by default, 23 characters in length,
unless you use the HttpSessionIdLength custom property to specify a different maximum length for your
session IDs.

2650 Administering WebSphere applications



When an incoming request has a session ID that is longer than the expected session ID length, and
whose prefix is identical to a pre-existing session ID, the longer ID is used to return a new session. If the
length of the session ID on the incoming request is larger then the maximum length specified for your
system, such that it exceeds the width of the ID column in the session table column that is used in
database persistence, an SQL0302 error occurs.

To prevent the occurrence of these SQL0302 errors, you can add the ForceSessionIdLengthCheck custom
property to your web container custom properties and set it to true. When this custom property is set to
true, the length of a session ID cannot exceed 23 characters. If an incoming request has a session ID that
is longer than 23 characters, the first 23 characters are used to return a new session.

Name Default value

ForceSessionIdLengthCheck false

ForceSessionInvalidationMultiple:

The ForceSessionInvalidationMultiple custom property indicates whether the session manager should wait
indefinitely for a request to complete before attempting to invalidate the session, or attempt to invalidate a
session after the specified time limit has elapsed.

v If you specify 0 (zero) for this custom property, the session manager waits indefinitely until a request is
complete before attempting to invalidate the session.

If your requests normally are not bound by a response time limit, specify 0 for this property.

v If you specify a positive integer, such as 1, 2, or 3 for this custom property, even if a session is not
known to have completed, the session manager attempts to invalidate the session if the indicated time
period since the last access occurred has elapsed. This time period is the result of multiplying the value
specified for this property and the value specified for the Session Timeout property. For example, if you
specify 2 minutes for the Session Timeout property and 2 for the ForceSessionInvalidationMultiple
property, the session manager attempts to invalidate the session after 4 minutes.

If you want to invalidate your sessions after a certain amount of time has elapsed, specify the
appropriate positive integer for this property.

Name Default value

ForceSessionInvalidationMultiple 1

httpsIndicatorHeader:

The custom property httpsIndicatorHeader manages HTTPS requests that are forwarded to an application
server from an SSL offloader that is used in front of WebSphere Application Server. When an HTTPS
request is received by an SSL offloader it is redirected over HTTP to an application server using
WebSphere Application Server. The SSL offloader adds a header indicating the original request was over
HTTP. The httpsIndicatorHeader property specifies the request header key name added by the SSL box.
The application server checks this indicator to determine if SSL is required. If it determines the request is
SSL over HTTP, an HTTPS scheme is chosen.

Name Default value

httpsIndicatorHeader none

HttpSessionIdReuse:

The custom property HttpSessionIdReuse determines whether the session manager can use the session
ID sent from a browser to preserve session data across web applications that are running in an
environment that is not configured for session persistence. In a multi-JVM environment, that is not
configured for session persistence, setting this property to true enables the session manager to use the

Chapter 24. Administering web applications 2651



same session information for all of a user requests, even if the web applications that are handling these
requests are governed by different JVM files. The default value for this property is false.

Note: The use of the HttpSessionIdReuse property as a web container custom property is deprecated.
You should now define this functionality as a session management custom property.

To enable the session manager to use the session ID sent from a browser to preserve session data across
web applications that are running in an environment that is not configured for session persistence, set this
property to true.

Name Default value

HttpSessionIdReuse false

listeners:

The servlet specification supports applications registering listeners for servlet-related events on an
individual application basis through the web.xml descriptor. However, using the listeners custom property,
you can enable a server to listen to servlet events across web applications.

To implement global listening, a listener is registered at the web container level and is propagated to all of
the installed and new web applications. This global behavior of internal servlet listeners is controlled by the
listeners custom property by using the following name-value pair format.
listeners=listener_class

Name Default value

listeners none

The value for this property is a string, specifying a comma-separated list of listener classes. The listener
that is supplied must implement standard listener classes from the Java Servlet API or IBM listener
extension classes.

prependSlashToResource:

WebSphere Application Server 5.x supports Uniform Resource Locators (URLs) without leading front
slashes ( / ) . To preserve compatibility, you can set this custom property to true. When this property is set
to true, the web container ignores the specification and consider URLs without the leading front slash, use
the following name-value pair.

Name Default value

prependSlashToResource false

trusted: The trusted custom property enables the application server to use inbound private headers from
the web server plug-in. These inbound private headers notify the application server about the connection
to the web server. When you set the custom property to true, the application server uses the asserted
information on the client certificates. These client certificates are used by the end user to connect to the
web server and establish the client information, which is treated as the certificate for the end user. Then,
the application server uses the certificate information for authentication purposes when client certificate
authentication is used or when the application code accesses the javax.net.ssl.peer_certificates
certificates. Because this information is asserted, it is insecure and potentially vulnerable to an attacker
that is able to connect directly to the application server and bypass the web server.

Important: If you allow direct connections to the application server and use client certificates, you must
set this custom property to false.

2652 Administering WebSphere applications



Name Default value

trusted true

Web module deployment settings
Use this page to configure an instance of web module deployment.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage Modules > Web_module_instance.

URI:

Specifies the relative location of the module within the application enterprise archive (EAR) file.

Alternate deployment descriptor:

Specifies the alternate deployment descriptor for the module as defined in the application deployment
descriptor according to the Java Platform, Enterprise Edition (Java EE) specification.

Starting weight:

Specifies the order that modules are started. Lower weighted modules are started before higher weighted
modules.

If the application deployment descriptor specifies the <initialize-in-order>true</initialize-in-order>
element, the default starting weights reflect the order that is specified in the deployment descriptor.
Otherwise, the defaults are determined based on module type (RAR modules start before EJB modules,
which start before web modules).

Class loader order:

Specifies whether the class loader searches in the parent class loader or in the application class loader
first to load a class. The standard for development kit class loaders and product class loaders is Classes
loaded with parent class loader first. By specifying Classes loaded with application class loader
first, your application can override classes contained in the parent class loader, but this action can
potentially result in ClassCastException or LinkageErrors if you have mixed use of overridden classes and
non-overridden classes.

The options are Classes loaded with parent class loader first and Classes loaded with local class
loader first (parent last). The default is to search in the parent class loader before searching in the
application class loader to load a class.

Information Value
Data type String
Default Classes loaded with parent class loader first

Context root for web modules settings
Use this page to specify the context root for web modules during or after installation of an application onto
a WebSphere Application Server deployment target.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Context root for web modules. This page is the same
as the Context root for web modules page on the application installation and update wizards.

Web Module:

Chapter 24. Administering web applications 2653



Specifies the name of a web module in the application that you are installing or that you are viewing after
installation.

URI:

Specifies the location of the module relative to the root of the application EAR file.

Context Root:

Specifies the context root of the web application (WAR).

A context root for each web module is defined in the application deployment descriptor during application
assembly. Use this field to assign a different context root to a web module. The context root is combined
with the defined servlet mapping (from the WAR file) to compose the full URL that users type to access
the servlet. For example, if the context root is /gettingstarted and the servlet mapping is MySession, then
the URL is http://host:port/gettingstarted/MySession.

Environment entries for web modules settings
Use this page to configure the environment entries of Web modules such as servlets and JavaServer
Pages (JSP) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Environment entries for web modules. This page is the
same as the Environment entries for web modules page on the application installation and update wizards.

Module:

Specifies the name of a web module.

URI:

Specifies the location of the module relative to the root of the application (EAR file).

Name:

Specifies the name of the environment entry that you are editing or viewing. The environment entry is the
env-entry property in the web module.

Type:

Specifies a data type for the environment entry defined by the env-entry property in the web module.

Description:

Specifies information on the environment entry.

Value:

Specifies an editable value for the environment entry defined by the env-entry property in the web
module.

The lookup name is displayed in the Value column if the lookup name is configured in the application
metadata. The lookup name is not editable. If you do not specify a value on this page, the lookup name is
used for the value.

2654 Administering WebSphere applications



Web container troubleshooting tips

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

If you are having problems starting a web module, or accessing resources within a particular web module:
v View the JVM logs and process logs for the application server which hosts the problem web

modules, and look for messages in the JVM output file which indicate that the web module has started
successfully. You should see messages similar to the following:
WebContainer A SRVE0161I: IBM WebSphere Application Server - Web Container.
Copyright IBM Corp. 1998-2002
WebContainer A SRVE0169I: Loading Web Module: [module_name]
ApplicationMg A WSVR0221I: Application started: [application_name]
HttpTransport A SRVE0171I: Transport http is listening on port [port_number]
[server_name] open for e-business in profile_root/logs/[server_name]/SystemOut.log

v For specific problems that can cause servlets, HTML files, and JavaServer Pages (JSP) files not to be
served, refer to the topic, web resource (JSP file, servlet, HTML file, image) does not display .

v For a detailed trace of the run-time behavior of the web container, enable trace for the
component com.ibm.ws.webcontainer using com.ibm.ws.webcontainer*=all.

If application server related calls fail during Servlet.init method, you can either:

v Initialize the servlet manually by making a single request to that servlet in your browser when the server
is ready for e-business instead of starting the servlet upon startup or

v You can choose not to make application server related calls in the servlet's init method.

If the property to start servlets during application server startup is enabled, part of its startup process calls
the Servlet.init method on its servlets when you start the web container. Therefore, when the web
container is starts and calls the init method, other components such as Naming and Work Load
Management may not be fully started yet. As a result, application server related calls may not work since
all of the application server components may not be ready yet. Once the application server is 'ready for
e-business', it is completely ready.

If none of these steps fixes your problem, check to see if the problem has been identified and documented
by looking at the available online support (hints and tips, tech notes, and fixes). If you do not find your
problem listed there contact IBM support.

For current information available from IBM Support on known problems and their resolution, refer to the
IBM Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the IBM Support page.

Disabling servlet pooling: Best practices and considerations
This topic provides usage examples of when you may want to disable servlet pooling. You may want to
disable request and response pooling if your application is creating threads inside of the application or if
you are concerned about the web container reusing request and response objects.

Disabling request and response pooling
v Application is creating threads inside of the application.

The Servlet 2.4 specification states the following:

Chapter 24. Administering web applications 2655



SRV.4.10 Lifetime of the Request Object Each request object is valid only within the scope of a
servlet’s service method, or within the scope of a filter’s doFilter method. Containers commonly recycle
request objects in order to avoid the performance overhead of request object creation. The developer
must be aware that maintaining references to request objects outside the scope described above is not
recommended as it may have indeterminate results.

SRV.5.6 Lifetime of the Response Object Each response object is valid only within the scope of a
servlet’s service method, or within the scope of a filter’s doFilter method. Containers commonly recycle
response objects in order to avoid the performance overhead of response object creation. The
developer must be aware that maintaining references to response objects outside the scope described
above may lead to non-deterministic behavior.

v If you are concerned about the web container reuse of reusing request and response objects. Since
these objects are reused, there is the potential for two requests in two separate applications to have
access to the same request or response object as described in the Thread Safety section of Servlet 2.4.

SRV.2.3.3.3 Thread Safety Implementations of the request and response objects are not guaranteed to
be thread safe. This means that they should only be used within the scope of the request handling
thread.

References to the request and response objects should not be given to objects executing in other
threads as the resulting behavior may be nondeterministic. If the thread created by the application uses
the container-managed objects, such as the request or response object, those objects must be
accessed only within the servlet’s service life cycle and such thread itself should have a life cycle within
the life cycle of the servlet’s service method because accessing those objects after the service method
ends may cause undeterministic problems. Be aware that the request and response objects are not
thread safe. If those objects were accessed in the multiple threads, the access should be synchronized
or be done through the wrapper to add the thread safety, for instance, synchronizing the call of the
methods to access the request attribute, or using a local output stream for the response object within a
thread.

It is important to note that disabling pooling prevents the web container from recycling the servlet request
and servlet response objects for subsequent requests. This creates additional overhead as a result of an
increase in request and response object creation and the subsequent garbage collection of these
discarded objects.

JavaServer Pages specific web container custom properties
You can configure name-value pairs of data, where the name is a property key and the value is a string
value that you can use to set internal system configuration properties. You can define a new property to
configure a setting beyond what is available in the administrative console. This topic includes a list of the
available JavaServer Pages custom properties. The JavaServer Pages custom properties are
case-sensitive.

You can use the following JSP file-specific web container custom properties:

v “com.ibm.ws.jsp.getparameterreturnemptystring” on page 2657

v “com.ibm.ws.jsp.jdksourcelevel” on page 2657

v “com.ibm.ws.jstl.allowLenientDateParsing” on page 2657

v “com.ibm.wsspi.jsp.allowjspoutputelementmismatch” on page 2657

v “com.ibm.wsspi.jsp.allowtaglibprefixusebeforedefinition” on page 2658

v “com.ibm.wsspi.jsp.allowtaglibprefixredefinition” on page 2658

v “com.ibm.wsspi.jsp.allowunmatchedendtag” on page 2658

v “com.ibm.wsspi.jsp.evalquotedandescapedexpression” on page 2658

v “com.ibm.wsspi.jsp.modifyPageContextVariable” on page 2659

v “com.ibm.wsspi.jsp.recompilejsponrestart” on page 2660

v “com.ibm.wsspi.jsp.usecdatatrim” on page 2660

v “com.ibm.wsspi.jsp.usescriptvardupinit” on page 2660

2656 Administering WebSphere applications



v “com.ibm.wsspi.jsp.usestringcast” on page 2661

v com.ibm.wsspi.jsp.reusepropertygroupconfigoninclude

com.ibm.ws.jsp.getparameterreturnemptystring:

Use this custom property to facilitate the migration of Version 5.1 applications.

If a JSP file contains an action that is not set in a JSP file, the JSP engine returns null. In Version 5.1, if a
JSP file contains an action that is not set in a JSP file, the JSP engine returned an empty string. If you
need your applications to continue returning an empty string, add this property to your JSP settings and
set it to true. When this property is set to true, the value returned on a call to jsp:getProperty is an empty
string instead of null.

Name com.ibm.ws.jsp.getparameterreturnemptystring

Value Boolean

com.ibm.ws.jsp.jdksourcelevel:

Use this property to set the JDK source level through the administrative console.

A JSP engine parameter can be configured for different levels of JDK. However, setting a JSP parameter
requires that you set the jdksourcelevel JSP attribute in the web extension file for each web module.
However, you can use the com.ibm.ws.jsp.jdksourcelevel custom property to set the JSP attribute globally
using the web container custom property. If this attribute is also defined in the web extension file, the
property defined in the web extension file supersedes the custom property for that particular application.
This custom property is not case-sensitive.

The default value is 16.

Name com.ibm.ws.jsp.jdksourcelevel

Value 13, 14, 15, 16, or 17

com.ibm.wsspi.jsp.allowjspoutputelementmismatch:

CTS requirements in previous releases were not applicable to the product, therefore the JSP container
supported multiple occurrences of properties in the jsp:output element. In the current release, CTS
compliance requires that the JSP container strictly enforces rules about multiple occurrences of properties
in the jsp:output element. You can use the com.ibm.wsspi.jsp.allowjspoutputelementmismatch custom
property to relax the enforcement of the rule for compatibility with earlier versions.

Name com.ibm.wsspi.jsp.allowjspoutputelementmismatch

Value Boolean

com.ibm.ws.jstl.allowLenientDateParsing: Some applications include the JSTL fmt:parseDate tag to
parse a date and time. For example:
<fmt:parseDate value="20070311 02:00:00 AM"
var="myTestDate"
type="date"
pattern="yyyyMMdd HH:mm:ss a" />

If the date and time being parsed falls within daylight savings hours, the following exception occurs:
java.text.ParseException: Unparseable date: "20070311 02:00:00 AM"
at java.text.DateFormat.parse(DateFormat.java:349) at
org.apache.taglibs.standard.tag.common.fmt.ParseDateSupport.doEn dTag(ParseDateSupport.java:178)
at com.ibm._jsp._testDate._jspx_meth_fmt_parseDate_0(_jstlDate.java :123)
at com.ibm._jsp._testDate._jspService(_jstlDate.java:86) ... 28 more

Chapter 24. Administering web applications 2657



If you want to allow more lenient parsing of the date when using the parseDate tag in a specific
application, add the com.ibm.ws.jstl.allowLenientDateParsing property as a context parameter to the
web.xml file for that application and set this parameter to true.

Following is an example of how to specify this property as a context parameter in a web.xml file:
<context-param>
<param-name>com.ibm.ws.jstl.allowLenientDateParsing</param-name>
<param-value>true</param-value>
</context-param>

gotcha: Because this property must be set for a specific application, it must be specified as a context
parameter. This property is ignored if it is specified as a custom property.

com.ibm.wsspi.jsp.allowtaglibprefixusebeforedefinition:

CTS compliance requires that a tag library directive that defines a prefix must occur before that prefix is
used in a custom tag. This rule was not enforced in previous releases because CTS requirements were
not required. However, you can use the com.ibm.wsspi.jsp.allowtaglibprefixusebeforedefinition
custom property to relax the enforcement of the rule for compatibility with earlier versions.

Name com.ibm.wsspi.jsp.allowtaglibprefixusebeforedefinition

Value Boolean

com.ibm.wsspi.jsp.allowtaglibprefixredefinition:

CTS compliance requires that if a tag library prefix is already defined with a different URI within a JSP, the
product must create a translation error. This rule was not enforced in previous releases because CTS
requirements were not required. However, you can use the com.ibm.wsspi.jsp.allowtaglibprefixredefinition
custom property to relax the enforcement of the rule for compatibility with earlier versions.

Name com.ibm.wsspi.jsp.allowtaglibprefixredefinition

Value Boolean

com.ibm.wsspi.jsp.allowunmatchedendtag:

Use this custom property to facilitate the migration of Version 5.1 applications.

When an improper termination of end tags occurs, a translation exception is created. In Version 5.1 of the
product, improper termination of end tags was ignored. If you are migrating applications from Version 5.1
that have improperly terminated end tags, you can add this custom property to your web container
settings, and set it to true if you want do not want a translation exception to be issued when an improper
termination of end tags occurs.

When this property is set to true, this functionality is enabled for all applications in the server. If you want
to enable this functionality for a specific application, specify the JSPAttribute allowUnmatchedEndTag, in
the extensions file for that specific application.

Name com.ibm.wsspi.jsp.allowunmatchedendtag

Value Boolean

com.ibm.wsspi.jsp.evalquotedandescapedexpression:

Use this property to compile functions that contain an expression. The JSP translation code was modified
to handle escape characters and quotations properly when determining whether to evaluate an expression
or to treat it as a literal string. To apply this behavior globally across all web applications, add the following
name-value pair as a web container custom property.

2658 Administering WebSphere applications



Name com.ibm.wsspi.jsp.evalquotedandescapedexpression

Value Boolean

To enable this new behavior for a single application, you must also add the
evalquotedandescapedexpression JSP attribute to the ibm-web-ext.xmi or ibm-web-ext.xml file of the
failing application and set the value to true.

The following example code shows the attribute in an XMI format:
&ltjspAttributes xmi:id="JSPAttribute_1" name="evalquotedandescapedexpression" value="true"/>

Note: The attribute ID value must be unique.

The following example code shows the attribute in the ibm-web-ext.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<web-ext
xmlns="http://websphere.ibm.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd"
version="1.0">
<jsp-attribute name="evalquotedandescapedexpression" value="true" />

<reload-interval value="3"/>
<auto-encode-requests value="true"/>
<auto-encode-responses value="true"/>
<enable-directory-browsing value="true"/>
<enable-file-serving value="true"/>
<pre-compile-jsps value="true"/>
<enable-reloading value="true"/>
<enable-serving-servlets-by-class-name value="true" />

</web-ext>

Note: Use an assembly tool, such as Rational Application Developer, to modify IBM extension and binding
files. You can convert extension and binding files within modules from XMI to XML using the IBM
Bindings and Extensions Conversion Tool for Multi-Platforms.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

com.ibm.wsspi.jsp.modifyPageContextVariable:

During the translation phase of a tag file that is compiled, the JSP container implicitly uses the
pageContext variable for the PageContext object. The use of the pageContext variable as an implicit
variable name in tag files does not comply with the JSP Specification.

Chapter 24. Administering web applications 2659



If compilation errors occur for applications that use a local pageContext variable in their tag file, set the
com.ibm.wsspi.jsp.modifyPageContextVariable custom property to true to remove the use of the
pageContext variable name in the generated Java code for tag files.

Name com.ibm.wsspi.jsp.modifyPageContextVariable

Value Boolean

com.ibm.wsspi.jsp.recompilejsponrestart:

This property forces JSP files that were compiled at run time to be recompiled every time the application is
restarted. This property is helpful if you switch the underlying JSF implementation. This property is best
used on development environments.

Name com.ibm.wsspi.jsp.recompilejsponrestart

Value Boolean

com.ibm.wsspi.jsp.usecdatatrim:

Use this custom property to facilitate the migration of Version 5.1 applications.

If your JSP files include nesting tags on separate lines, extra lines appear in the Java code that is
generated for those sections of the JSP files. The extra lines are added in the generated Java code
because the text is not trimmed before creating the CDATA section.

You can eliminate the extra lines if you use the double quotation mark (") to append all the lines into a
single line, or if you use this property to enable the trimming of the text before the CDATA section is
created. Trimming the text before the CDATA section is created eliminates the extra white spaces in the
generated Java code.

When this property is added to your web container settings, and set to true, this functionality is enabled
for all applications in the server. If you want to enable this functionality for a specific application, specify
the JSPAttribute, useCDataTrim, for that specific in the extensions file for that specific application.

Name com.ibm.wsspi.jsp.usecdatatrim

Value Boolean

com.ibm.wsspi.jsp.usescriptvardupinit:

The code generated for a JSP file assumed that the same tag variables to be declared two or more times
in an If-Else condition, even if the variable had a page scope. The com.ibm.wsspi.jsp.usescriptvardupinit
custom property enables this feature for all the applications deployed on a particular server. If the
compatibility feature is required only for a specific application, enable the useScriptVarDupInit JSP
attribute. If both the options are set, then the JSP attribute takes preference over the web container
custom property.

Name com.ibm.wsspi.jsp.usescriptvardupinit

Value Boolean

com.ibm.wsspi.jsp.reusepropertygroupconfigoninclude:

Note: Most properties that are defined in a JSP property group apply to an entire translation unit, for
example, the requested JSP file that is matched by its URL pattern and all the files it includes using
the include directive. The exceptions are the page-encoding and is-xml properties, which apply
separately to each JSP file that is matched by its URL pattern. To revert the behavior to a setting
before WebSphere Application Server Version 8.0, set the custom property to true to apply the two
property values to the entire translation unit.

2660 Administering WebSphere applications



Name com.ibm.wsspi.jsp.reusepropertygroupconfigoninclude

Value false

com.ibm.wsspi.jsp.usestringcast:

Use this custom property to facilitate the migration of Version 5.1 applications.

The generated Java source for a JSP file does not add the "implicit" cast for return types of type String
when the request.getAttribute method is called. When a JSP file includes a resource whose relative path
does not evaluate to a String, the include fails because the include takes only a String as a relative path of
the resource. This behavior is different than the behavior in Version 5.1.

If you are migrating Version 5.1 applications that include the request.getAttribute method, you can add this
property to your web container settings and set it to true. When this property is set to true the JSP
compiler explicitly adds a 'String cast' to the relative path of a resource before the inclusion.

When this property is added to your web container settings, and set to true, this functionality is enabled
for all applications in the server. If you want to enable this functionality, specify the useStringCast
JSPAtrribute in the extensions file for the specific application.

Name com.ibm.wsspi.jsp.usestringcast

Value Boolean

Configuring JSP engine parameters
Learn about how to add, change or delete JSP engine configuration parameters.

About this task

The following note applies to the file references with a .xmi extension in this topic:

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

WebSphere Application Server does not support the modification of deployment descriptor extension
parameters through the Administrative Console or through administrative scripting.

Note: Use an assembly tool, such as Rational Application Developer, to modify IBM extension and binding
files. You can convert extension and binding files within modules from XMI to XML using the IBM
Bindings and Extensions Conversion Tool for Multi-Platforms.

To add, change or delete JSP engine configuration parameters, complete the following steps:

Chapter 24. Administering web applications 2661



Procedure
1. Open the WEB-INF/ibm-web-ext.xmi or WEB-INF/ibm-web-ext.xml file.

JSP engine configuration parameters are stored in a web module's configuration directory or in a web
modules's binaries directory in the WEB-INF/ibm-web-ext.xmi or WEB-INF/ibm-web-ext.xml file. Open
the WEB-INF/ibm-web-ext.xmi or WEB-INF/ibm-web-ext.xml file from:

v The configuration directory, as in the following examples:
profile_root/config/cells/cellName/applications/enterpriseAppName/deployments/deployedName/webModuleName/WEB-INF/ibm-web-ext.xmi

profile_root/config/cells/cellName/applications/enterpriseAppName/deployments/deployedName/webModuleName/WEB-INF/ibm-web-ext.xml

v The binaries directory if an application was deployed into WebSphere Application Server with the
flag “Use Binary Configuration” set to true. Example of a binaries directory is:
profile_root/installedApps/nodeName/applicationName.ear/applicationName.war/WEB-INF/ibm-web-ext.xmi

profile_root/installedApps/nodeName/applicationName.ear/applicationName.war/WEB-INF/ibm-web-ext.xml

2. Edit the WEB-INF/ibm-web-ext.xmi or WEB-INF/ibm-web-ext.xml file.

v To add configuration parameters to the WEB-INF/ibm-web-ext.xmi file, use the following format:
xmi:id="JSPAttribute_6" name="parametername" value="parametervalue"/>

v To add configuration parameters to the WEB-INF/ibm-web-ext.xml file, use the following format:
<jsp-attribute name="parametername" value="parametervalue"/>

v To delete configuration parameters, either delete the line from the file, or enclose the statement with
<!-- --> tags.

3. Save the file.

4. Restart the Enterprise Application. It is not necessary to restart the server for parameter changes to
take effect. However, some JSP engine configuration parameters affect the Java source code that is
generated for a JSP. If such a parameter is changed, then you must retranslate the JSP files in the
web module to regenerate Java source. You can use the batch compiler to retranslate all JSP files in a
web module. The batch compiler uses the JSP engine configuration parameters that you have set in
the ibm-web-ext.xmi or ibm-web-ext.xml file, unless you specifically override them. The topic, JSP
engine configuration parameters, identifies the parameters that affect the generated Java source.

Example

The following is a sample of the WEB-INF/ibm-web-ext.xmi file. The lines in bold text are JSP engine
configuration parameters.
<?xml version="1.0" encoding="UTF-8"?>
<webappext:WebAppExtension xmi:version="2.0" xmlns:xmi=http://www.omg.org/XMI

xmlns:webappext="webappext.xmi" xmlns:webapplication="webapplication.xmi" xmi:id="WebAppExtension_1"
reloadInterval="9" reloadingEnabled="true" defaultErrorPage="error.jsp" additionalClassPath=""
fileServingEnabled="true" directoryBrowsingEnabled="false" serveServletsByClassnameEnabled="true"
autoRequestEncoding="true" autoResponseEncoding="false"
<webApp href="WEB-INF/web.xml#WebApp_1"/>
<jspAttributes xmi:id="JSPAttribute_1" name="useThreadTagPool" value="true"/>
<jspAttributes xmi:id="JSPAttribute_2" name="verbose" value="false"/>
<jspAttributes xmi:id="JSPAttribute_3" name="deprecation" value="false"/>
<jspAttributes xmi:id="JSPAttribute_4" name="reloadEnabled" value="true"/>
<jspAttributes xmi:id="JSPAttribute_5" name="reloadInterval" value="5"/>
<jspAttributes xmi:id="JSPAttribute_6" name="keepgenerated" value="true"/>
<!--<jspAttributes xmi:id="JSPAttribute_7" name="trackDependencies" value="true"/> -->

</webappext:WebAppExtension>

The following is a sample of the WEB-INF/ibm-web-ext.xml file. The lines in bold text are JSP engine
configuration parameters.
<?xml version="1.0" encoding="UTF-8"?>
<web-ext

xmlns="http://websphere.ibm.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd"

version="1.0">

2662 Administering WebSphere applications



<default-error-page uri="error.jsp"/>
<jsp-attribute name="useThreadTagPool" value="true" />
<jsp-attribute name="verbose" value="false" />
<jsp-attribute name="deprecation" value="false" />
<jsp-attribute name="reloadEnabled" value="true" />
<jsp-attribute name="reloadInterval" value="5" />
<jsp-attribute name="keepgenerated" value="true" />
<jsp-attribute name="trackDependencies" value="true" />
<reload-interval value="9"/>
<auto-encode-requests value="true"/>
<auto-encode-responses value="false"/>
<enable-directory-browsing value="false"/>
<enable-file-serving value="false"/>
<pre-compile-jsps value="false"/>
<enable-reloading value="true"/>
<enable-serving-servlets-by-class-name value="true"/>

</web-ext>

Attention: The integer n in JSPattribute_n has to be unique within the file.

JSP engine
The WebSphere Application Server JavaServer Pages (JSP) engine is the implementation of the
JavaServer Pages Specification.

WebSphere Application Server Version 8.5 supports the JSP 2.1 specification.

The JSP engine

v Validates JSP source, both classic and XML styles

v Translates JSP source to Java classes

v Compiles Java classes, reporting any errors

v Generates Java classes for any tag files that are used by the JSP

v Interfaces with the web container to load JSP class files

v Supports JSP batch compilation, JSP compilation during application installation, and JSP compilation
during the build process of customer applications, through an Ant task.

v Loads class files, and manage life-cycle (reloading, unloading as necessary)

v Supports debugging of JavaServer Pages files through support for JSR 45 (Debugging Support for
Other Languages)

JSP engine configuration parameters
In WebSphere Application Server, you can configure the JavaServer Pages (JSP) engine configuration
parameters for optimal performance in a production server environment and for the needs of developers in
a development environment.

The JSP engine parameters are case sensitive. If the value specified for a parameter is comprised of two
or more words separated by spaces, you must add quotation marks around the value. Some parameters
affect the Java source that is generated for a JSP or tag file. These parameters are identified by the
statement “This parameter requires regeneration of Java source”. This statement indicates that if the
configuration parameter is modified, the new value for the parameter does not have any effect until the
JSP files are retranslated and the Java sources are recompiled.

Note: Use an assembly tool, such as Rational Application Developer, to modify IBM extension and binding
files. You can convert extension and binding files within modules from XMI to XML using the IBM
Bindings and Extensions Conversion Tool for Multi-Platforms.

compileWithAssert:

Chapter 24. Administering web applications 2663



Specifies whether the generated Java classes should contain support for the Developer Kit, Java
Technology Edition 1.4 Assertion facility. The effect of setting this parameter to true is that the –source 1.4
option is passed to the Java compiler. The default for this parameter is false. This parameter requires
regeneration of Java source.

classdebuginfo:

Indicates whether the compiler includes debugging information in the generated class file. When you set
this parameter to true, the –g option is passed to the Java compiler. The default for this parameter is
false. This parameter requires regeneration of Java source.

convertAttrValueToString:

Specifies whether to convert start and end attributes of the repeat tag to strings before they are used. The
default for this parameter is false. This parameter requires regeneration of Java source.

deprecation:

Specifies whether the compiler generates deprecation warnings when compiling the generated Java
source. When you set this parameter to true, the -deprecation option is passed to the Java compiler. The
default for this parameter is false. This parameter requires regeneration of Java source.

disableElCache:

Set the com.ibm.wsspi.jsp.disableElCache web container custom property to true to disable the
commons-el expression cache if you are experiencing out of memory conditions because the hash maps
are held by the expression evaluator. The default for this parameter is false.

disableJspRuntimeCompilation:

If this option is set to true, the JSP engine at runtime does not translate and compile JSP files; the JSP
engine loads only precompiled class files. JSP source files do not need to be present in order to load
class files. When this option is set to true, you can install an application without JSP source, but the
application must have precompiled class files. There is a web container custom property with the same
name that is used to determine the behavior of all web modules installed in a server. If both the web
container custom property and the JSP engine option are set, the JSP engine option takes precedence.
The default for this parameter is false.

disableTldSearch:

Set this option is set to true to prevent the JSP engine from searching the application installation
directories for the taglib descriptor (TLD) files when an application starts. If this option is set to false, when
an application starts, the JSP engine searches the application installation directories for the TLD files. The
default for this parameter is false.

There is a web container custom property, com.ibm.wsspi.jsp.disableTldSearch, that can be used to
specify whether, when an application starts, the JSP engines in all web modules installed in a server do
not search the application installation directories for the TLD files. If conflicting values are set for the web
container custom property and the JSP engine option, the setting for the JSP engine option takes
precedence.

Note: This option is only available in version levels 7.0.0.3, and higher.

evalQuotedAndEscapedExpression:

Set this option to true to handle escape characters and quotations properly when determining whether to
evaluate an expression.

2664 Administering WebSphere applications



During the translation phase of a JSP compile, expressions are evaluated by the JSP engine. Characters,
such as the escape character (\) or nested quotations, single or double, causes the JSP file translation to
fail. For example, when you use functions that contain an expression such as

<input type=“text” value=“${fn:substring(’1234567’, 0,4)}”/>

Because of the double quote directly before the fn:substring statement, the JSP file fails to compile
because the translator did not add the function mapper to the generated Java class. Also, if a dollar sign
($) was escaped using the backslash (\$), the translator still attempts to evaluate the expression instead of
treating it as a literal string. To handle escape characters and quotations properly, you must set
evalQuotedAndEscapedExpression to true in the ibm-web-ext.xmi or ibm-web-ext.xml file of the failing
application.

The following code sample shows an entry in the ibm-web-ext.xmi file:

<jspAttributes xmi:id=“JSPAttribute_1”
name=“evalQuotedAndEscapedExpression” value=“true”/>

The following code sample shows an entry in the ibm-web-ext.xml file:
<?xml version=“1.0” encoding=“UTF-8”?>
<web-ext

xmlns=“http://websphere.ibm.com/xml/ns/javaee”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd”

version=“1.0”>
<file-serving-attribute name=“extendedDocumentRoot” value=“/opt/extDocRootDir” />
<jsp-attribute name=“evalQuotedAndEscapedExpression” value=“true” />
<jsp-attribute name=“extendedDocumentRoot” value=“/opt/extDocRootDir”,“${MY_CUSTOM_VARIABLE}” />

<reload-interval value=“3”/>
<auto-encode-requests value=“false”/>
<auto-encode-responses value=“false”/>
<enable-directory-browsing value=“false”/>
<enable-file-serving value=“true”/>
<pre-compile-jsps value=“false”/>
<enable-reloading value=“true”/>
<enable-serving-servlets-by-class-name value=“false” />

</web-ext>

To apply this behavior globally across all web applications, you can set the
com.ibm.wsspi.jsp.evalQuotedAndEscapedExpression web container custom property to true.

extendedDocumentRoot:

Use the extended document root facility when applications require access to files outside of the application
web application archive (WAR) directory. This facility enables you to configure an application with one or
more directory paths from which you can serve static files and JSP files. You can use this attribute when
an application requires access to files that exist outside of the web application archive (WAR) directory.
For example, if several applications require access to a set of common files, you can place the common
files in a directory to which you can link each application as an extended document root directory.

To configure an application with an extended document root, add an extendedDocumentRoot attribute as a
file-serving attribute to the ibm-web-ext.xmi or ibm-web-ext.xml file for the application. The value of this
attribute is a comma-delimited list of directories that serve as the root directory location for the static files.

The following entry is an example within the ibm-web-ext.xmi file:
<fileServingAttributes xmi:id=“FileServingAttribute_1” name=“extendedDocumentRoot” value=“/opt/extDocRootDir”/>

The following examples are based on the previous entry in the ibm-web-ext.xmi file with the attribute set
to the /opt/extDocRootDir value:

Chapter 24. Administering web applications 2665



v A request for the http://localhost:9080/context_root/sample.html resource requires that the sample.html
file is located in the /opt/extDocRootDir/sample.html directory structure.

v A request for the http://localhost:9080/context_root/myDir/sample.gif resource requires that the
sample.gif file is located in the /opt/extDocRootDir/myDir/sample.gif directory structure.

The following entry is an example within the ibm-web-ext.xml file:
<?xml version=“1.0” encoding=“UTF-8”?>
<web-ext

xmlns=“http://websphere.ibm.com/xml/ns/javaee”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd”

version=“1.0”>
<file-serving-attribute name=“extendedDocumentRoot” value=“/opt/extDocRootDir” />
<jsp-attribute name=“evalQuotedAndEscapedExpression” value=“true” />
<jsp-attribute name=“extendedDocumentRoot” value=“/opt/extDocRootDir”, “${MY_CUSTOM_VARIABLE}”/>
<reload-interval value=“3”/>
<auto-encode-requests value=“false”/>
<auto-encode-responses value=“false”/>
<enable-directory-browsing value=“false”/>
<enable-file-serving value=“true”/>
<pre-compile-jsps value=“false”/>
<enable-reloading value=“true”/>
<enable-serving-servlets-by-class-name value=“false” />

</web-ext>

Important: To serve static files from an extended document root directory, you must enable file serving.

To configure an application with an extended document root from which JSP files are served, add an
extendedDocumentRoot attribute as a JSP attribute to the ibm-web-ext.xmi or ibm-web-ext.xml file. The
value of this attribute is a comma-delimited list of directories that serve as the root directory location for
the JSP files.

The following entry is an example within the ibm-web-ext.xmi file:

<jspAttributes xmi:id=“JSPAttribute_1” name=“extendedDocumentRoot” value=“/opt/extDocRootDir”/>

The following example shows the entry within the ibm-web-ext.xml file:
<?xml version=“1.0” encoding=“UTF-8”?>
<web-ext

xmlns=“http://websphere.ibm.com/xml/ns/javaee”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd”

version=“1.0”>
<file-serving-attribute name=“extendedDocumentRoot” value=“/opt/extDocRootDir” />
<jsp-attribute name=“evalQuotedAndEscapedExpression” value=“true” />
<jsp-attribute name=“extendedDocumentRoot” value=“/opt/extDocRootDir”, “${MY_CUSTOM_VARIABLE}” />
<reload-interval value=“3”/>
<auto-encode-requests value=“false”/>
<auto-encode-responses value=“false”/>
<enable-directory-browsing value=“false”/>
<enable-file-serving value=“true”/>
<pre-compile-jsps value=“false”/>
<enable-reloading value=“true”/>
<enable-serving-servlets-by-class-name value=“false” />

</web-ext>

You can also use an extendedDocumentRoot attribute to define a WebSphere variable on multiple nodes
to the appropriate directory.

ibm-web-ext.xmi example:

<jspAttributes xmi:id=“JSPAttribute_2” name=“extendedDocumentRoot”
value=“${MY_CUSTOM_VARIABLE}”/>

ibm-web-ext.xml example:

2666 Administering WebSphere applications



<jsp-attribute name=“extendedDocumentRoot”
value=“${MY_CUSTOM_VARIABLE}” />

where MY_CUSTOM_VARIABLE is the WebSphere variable that you want to define on multiple nodes.

The following example shows a ibm-web-ext.xmi file that defines an extended document root both as a
file-serving attribute and a JSP attribute:
<?xml version=“1.0” encoding=“UTF-8”?>
<com.ibm.ejs.models.base.extensions.webappext:WebAppExtension xmi:version=“2.0”
xmlns:xmi=“http://www.omg.org/XMI”
xmlns:com.ibm.ejs.models.base.extensions.webappext=“webappext.xmi” xmi:id=“WebAppExtension_1”

reloadInterval=“3”
reloadingEnabled=“true”
fileServingEnabled=“true”>

<webApp href=“WEB-INF/web.xml#WebApp_ID/”>
<fileServingAttributes xmi:id=“FileServingAttribute_1” name=“extendedDocumentRoot”
value=“/opt/extDocRootDir/”>
<jspAttributes xmi:id=“JSPAttribute_1” name=“extendedDocumentRoot”
value=“/opt/extDocRootDir/”>

<com.ibm.ejs.models.base.extensions.webappext:WebAppExtension>

The following example shows a ibm-web-ext.xml file that defines an extended document root both as a
file-serving attribute and a JSP attribute:
<?xml version=“1.0” encoding=“UTF-8”?>
<web-ext

xmlns=“http://websphere.ibm.com/xml/ns/javaee”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=“http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd”

version=“1.0”>
<file-serving-attribute name=“extendedDocumentRoot” value=“/opt/extDocRootDir” />
<jsp-attribute name=“evalQuotedAndEscapedExpression” value=“true” />
<jsp-attribute name=“extendedDocumentRoot” value=“/opt/extDocRootDir”,“${MY_CUSTOM_VARIABLE}” />

<reload-interval value=“3”/>
<auto-encode-requests value=“false”/>
<auto-encode-responses value=“false”/>
<enable-directory-browsing value=“false”/>
<enable-file-serving value=“true”/>
<pre-compile-jsps value=“false”/>
<enable-reloading value=“true”/>
<enable-serving-servlets-by-class-name value=“false” />

</web-ext>

If the request is a valid partial request for a welcome file, a 404 error is returned. If the JSP file is located
inside a JAR file and the reloadEnabled attribute value is true, the time stamp of the JAR file is used for
isOutDated checks for recompile purposes. The default for this parameter is null.

Note: For IBM extension and binding files, the .xmi or .xml file name extension is different depending on
whether you are using a pre-Java EE 5 application or module or a Java EE 5 or later application or
module. An IBM extension or binding file is named ibm-*-ext.xmi or ibm-*-bnd.xmi where * is the
type of extension or binding file such as app, application, ejb-jar, or web. The following conditions
apply:

v For an application or module that uses a Java EE version prior to version 5, the file extension
must be .xmi.

v For an application or module that uses Java EE 5 or later, the file extension must be .xml. If .xmi
files are included with the application or module, the product ignores the .xmi files.

However, a Java EE 5 or later module can exist within an application that includes pre-Java EE 5
files and uses the .xmi file name extension.

Chapter 24. Administering web applications 2667



The ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, ibm-webservicesclient-bnd.xmi,
ibm-webservicesclient-ext.xmi, and ibm-portlet-ext.xmi files continue to use the .xmi file
extensions.

ieClassId:

Indicates the Java plug-in COM class ID for Internet Explorer.

The <jsp:plugin> tags use this value. The default classid is clsid:8AD9C840-044E-11D1-B3E9-
00805F499D93

javaEncoding:

Specifies the encoding that is used when the .java file is generated, and when it is compiled by the Java
compiler. Set this parameter when the page encoding of your JSP pages is not UTF-8 compatible. When
javaEncoding is set, the encoding is passed to the Java compiler through the -encoding argument. Note
that encoding is not supported by Jikes. The default is UTF-8. This parameter requires regeneration of
Java source.

jdkSourceLevel:

This JSP engine parameter was introduced in WebSphere Application Server version 6.1. Use this
parameter instead of the compileWithAssert parameter, although compile WithAssert still works in version
6.1.

The default value for this parameter is 16. This parameter requires regeneration of Java source. The
following are jdkSourceLevel paramater values:

v 13 - This value will disable all new language features of JDK 1.4, JDK 5.0, JDK 6.0, and JDK 7.0.

v 14 - This value will enable the use of the assertion facility and will disable all new language features of
JDK 5.0, JDK 6.0 and JDK 7.0.

v 15 - This value will enable the use of the assertion facility and will disable all new language features of
JDK 6.0 and JDK 7.0.

v 16 - This value will enable the use of the assertion facility and will disable all new language features of
JDK 7.0.

v 17 - This value will enable the use of the new features of JDK 7.0.

jspClassLoaderLimit:

The WebSphere Application Server creates a JSPExtensionClassLoader object for each JSP in an
application. This can result in these objects taking up a lot of native memory, which can lead to an
OutOfMemoryException. This integer value determines how many JSPExtensionClassLoader objects to
keep loaded in memory.
<jspAttributes xmi:id="JSPAttribute_1" name="jspClassLoaderLimit" value="1500"/>

jspClassLoaderExclusionList:

While jspClassLoaderLimit specifies the number of JSPExtensionClassLoader objects to keep loaded in
memory, this comma delimited list of JSP values indicate what JSPs are NOT to be unloaded regardless
of the limit set by jspClassLoaderLimit.
<jspAttributes xmi:id="JSPAttribute_2" name="jspClasLoadeerExcluesionList" value="/test/RappHTML2.jsp,/test/RappHTML4.jsp"/>

jsp.file.extensions:

2668 Administering WebSphere applications



For JSP files with extensions other than the four standard extensions, *.jsp, *.jspx, *.jsw, and *.jsv, you can
configure this the extensions using this parameter. These extensions are added to the standard
extensions.

The preferred method for doing this is to create a <jsp-property-group> in web.xml, and add a
<url-pattern> tag for each extension.

The JSP engine can handle a list of file extensions that is separated by a colon or semi-colon. For
example, *.ext1;*.ext2:*.extn

keepgenerated:

Indicates that the Java files generated by the JSP compiler during the translation phase of the processing
are retained. The default for this parameter is false. This parameter requires regeneration of Java source.

keepGeneratedclassfiles:

Indicates that the class files generated by the JSP compiler during the translation phase of the processing
are retained. The default for this parameter is true. This parameter requires regeneration of Java source.

modifyPageContextVariable:

During the translation phase of a tag file that is compiled, the JSP container implicitly uses the
pageContext variable for the PageContext object. The use of the pageContext variable as an implicit
variable name in tag files does not comply with the JSP Specification. If compilation errors occur for
applications that use a local pageContext variable in their tag file, set the modifyPageContextVariable
attribute totrue to remove the use of the pageContext variable name in the generated Java code for tag
files.

recompileJspOnRestart:

Determines whether a JSP file is retranslated and recompiled after application startup for the first time the
file is requested. If recompileJspOnRestart is false, a JSP file is still compiled, if necessary, on the first
request to that JSP file unless the parameter disableJspRuntimeCompilation is true. The default for this
parameter is false.

reloadEnabled:

Determines whether or not a JSP file is translated and compiled at runtime if the JSP file or its
dependencies (see trackDependencies) are modified.

If reloadEnabled is false, a JSP file is still compiled, if necessary, on the first request to it unless the
parameter disableJspRuntimeCompilation is true. The default for this parameter is false.

If this JSP engine parameter is not specified, the equivalent web container parameter for web module
class reloading is used. However, for an application whose deployment descriptor is at the Servlet 2.2
level, the default is true. This is done for the support of applications being migrated from WebSphere
Application Server Version 4.x.

reloadInterval:

If reloading is enabled, reloadInterval determines the delay between checks to see if a JSP file is
outdated.

For example, if reloadInterval is 5, the JSP engine checks to see if a JSP file is outdated only when the
last such check was done more than 5 seconds prior to the current request for the JSP file. The larger the

Chapter 24. Administering web applications 2669



reloadInterval, the less frequently the JSP engine checks for the need to reload a JSP file. If this JSP
engine parameter is not specified, the equivalent web container parameter for web module class reloading
is used. However, for an application whose deployment descriptor is at the Servlet 2.2 level, the default is
5 seconds. This is done for the support of applications being migrated from WebSphere Application Server
Version 4.x.

reusePropertyGroupConfigOnInclude:

Note: Most properties that are defined in a JSP attribute group apply to an entire translation unit, for
example, the requested JSP file that is matched by its URL pattern and all the files it includes using
the include directive. The exceptions are the page-encoding and is-xml properties, which apply
separately to each JSP file that is matched by its URL pattern. To revert the behavior to a setting
prior to WebSphere Application Server Version 8.0, set the attribute to true to apply the two
property values to the entire translation unit.

scratchdir:

Specifies the directory where the generated class files are created.

The system property com.ibm.websphere.servlet.temp.dir is used to set the scratchdir option on a
server-wide basis. The JSP engine scratchdir parameter takes precedence over the system property
com.ibm.websphere.servlet.temp.dir. The default for this parameter is profile_root/temp. This parameter
requires regeneration of Java source.

gotcha: Do not specify a directory path that places the JSP temporary directory at the same level or
underneath the configuration temporary directory. The default location for the configuration
temporary directory is profile_home/config/temp.

For example, if you change the location of the JSP temporary directory to also be
profile_home/config/temp. or if you place the JSP temporary directory underneath the
configuration temporary directory at profile_home/config/temp/temp, processing errors occur.

trackDependencies:

If reloading is enabled, trackDependencies determines whether the JSP engine tracks modifications to the
requested JavaServer Pages files dependencies as well as to the JSP file itself.

The dependencies tracked by the JSP engine are :

1. files statically included in the JSP file

2. tag files referenced in the JSP file (excluding tag files that are in JARs)

3. TLD files referenced in the JSP file (excluding TLDs that are in JARs)

The default is false.

useFullPackageNames:

If useFullPackageNames is true, the JSP engine generates and loads JSP classes using full package
names.

The default is to generate all JSP classes in the same package. (For more information, refer to the
Packages and directories for generated .java and .class files topic). The JSP engine's class loader knows
how to load JSP classes when they are all in the same package.

The default method of generating all JSP classes in the same package has the benefit of generating
smaller file-system paths. Full package names has the benefit of enabling the configuration of precompiled
JSP class files as servlets in the web.xml file without the use of the jsp-file attribute, resulting in a single

2670 Administering WebSphere applications



class loader, the web application's class loader, that is used to load all such JSP classes. Similarly, when
the JSP engine's configuration attributes useFullPackageNames and disableJspRuntimeCompilation are
both true, a single class loader is used to load all JSP classes, even if the JSP files are not configured as
servlets in the web.xml file.

When useFullPackageNames is set to true, the batch compiler generates a generated_web.xml file in the
web module's WEB-INF directory. This file contains servlet configuration information for each JSP file that
was successfully translated and compiled. The information can optionally be copied into the web module
web.xml file so that the JSP files are loaded as servlets by the web container. Note that if a JSP file is
configured as a servlet in this way, no reloading of the JSP file is done at runtime if the JSP file is
modified. This is because the JSP file is treated as a regular servlet and requests for it do not pass
through the JSP engine. This parameter requires regeneration of Java source.

useImplicitTagLibs:

The JSP engine implicitly recognizes tsx and jsx as tag library prefixes for tag libraries supplied by the
JSP engine. If tsx or jsx are used as prefixes for a customer's tag library, the customer's tag library
overrides the implicit tag library. However, the implicit tag library is still cached by the JSP engine.
Explicitly setting this parameter to false tells the engine not to cache the implicit tag library, and save
resources. The default for this parameter is true.

The default URL for the tsx tags is http://websphere.ibm.com/tags/tsx. The default URI for the jsx tags is
http://websphere.ibm.com/tags/jsx.

You might need to define the tsx or jsx tag library prefix with a different URI than its default URI. Also, you
might need to define the same library prefix with a different URI. In these two situations, you can set the
com.ibm.wsspi.jsp.allowtaglibprefixredefinition custom property to avoid translation errors. For more
information, see the documentation about JavaServer Pages custom properties.

useInMemory:

Specifies that the JSP engine translate and compile Java code in the system memory.

When this option is not set, the JSP engine must perform the following steps:

1. Write the translated Java file to the file system

2. Load the Java file from the file system

3. Compile the code into a class file

4. Write the class to the file system

5. Load the class file into a classloader.

Note: No .class file or .java file will be written to the system disk. For debugging or creating a JAR file
from precompiled JSP code, you will need to disable this option.

useJikes:

Specifies whether Jikes is used for compiling Java sources.

NOTE: Jikes is not shipped with WebSphere Application Server. The default for this parameter is false.
This parameter requires regeneration of Java source.

usePageTagPool:

*Enables or disables the reuse of custom tag handlers on an individual JavaServer Pages basis. The
default for this parameter is false. This parameter requires regeneration of Java source.

Chapter 24. Administering web applications 2671



useThreadTagPool:

When thread-level tag handler pooling is used, tag handlers may be reused among separate occurrences
of a custom action across all JSP pages in a single web module across separate requests. The default for
this parameter is false. This parameter requires regeneration of Java source.

Enabling custom tag handler reuse might reveal problems in the tag handler code with regard to the tag's
ability to be reused. A custom tag handler should always do two things:

v The release method of the tag handler should reset its state and release any private resources that it
might have used. The JSP engine ensures the release method is called before the tag handler is
garbage collected.

v In the doEndTag method, all instance states associated with this instance must be reset.

verbose:

Indicates that the compiler generates verbose output when compiling the generated Java source code.
The effect of setting this parameter to true is that the -verbose option is passed to the Java compiler. The
default for this parameter is false. This parameter requires regeneration of Java source.

*Enabling custom tag handler reuse might reveal problems in the tag handler code with regard to the tag's
ability to be reused. A custom tag handler should always do two things:

v The release method of the tag handler should reset its state and release any private resources that it
might have used. The JSP engine ensures the release method is called before the tag handler is
garbage collected.

v In the doEndTag method, all instance states associated with this instance must be reset.

CAUTION:
When using page or thread tag pooling, the doEndTag method is not called in the case of an
exception, and if there is service state that must be cleared, then the TryCatchFinally interface
should be implemented.

JavaServer Pages troubleshooting tips
Use this tips to troubleshoot problems with JavaServer Pages.

JavaServer Pages source code shown by the web server

If you share the document root of the WebSphere Application Server with the web server document root, a
security exposure can result as the web server might display the JavaServer Pages (JSP) source file as
plain text.

Problem
You can use the WebSphere Web server plug-in set of rules to determine whether a given request
will be handled by the WebSphere Application Server. When an incoming request fails to match
those rules, the web server plug-in returns control to the web server so that the web server can
fulfill the request. In this case, the unknown host header causes the web server plug-in to return
control to the web server because the rules do not indicate that the WebSphere Application Server
should handle it. Therefore, the web server looks for the request in the web server document root.
Since the JSP source file is stored in the document root of the web server, the web server finds
the file and displays it as plain text.

Suggested solution
Move the WebSphere Application Server JSP source file outside of the web server document root.
Then, when this request comes in with the unknown host header, the plug-in returns control to the
web server and the JSP source file is not found in the document root. Therefore, the web server
returns a 404 File Not Found error rather than the JSP source file.

2672 Administering WebSphere applications



Problems displaying double-byte character set (DBCS) characters when using the
@include directive

JavaServer Pages files that use the @include directive might experience problems when displaying
double-byte character set (DBCS) characters. Some applications that are migrated to WebSphere
Application Server Version 6.0 and above might need to be modified to comply with the JSP 2.0
specification as a result of backwards compatibility issues. The JSP 2.0 specification requires that each
statically included resource must set a page encoding or content type because the character encoding for
each file is determined separately, even if one file includes another using the include directive.

Problems using the JavaServer Pages (JSP) engine

If you are having difficulty using the JavaServer Pages (JSP) engine, try these steps:
1. Determine whether other resources such as .html files or servlets are being requested and displayed

correctly. If they are not, the problem probably lies at a deeper level, such as with the HTTP server.
2. If other resources are being displayed correctly, determine whether the JSP processor has started

normally:
v Browse the JVM logs of the server hosting the JSP files you are trying to access. The

following messages indicate that the JSP processor has started normally:

Extension Processor [class com.ibm.ws.jsp.webcontainerext.JSPExtensionProcessor]
was initialized successfully.
Extension Processor [class com.ibm.ws.jsp.webcontainerext.JSPExtensionProcessor]
has been associated with patterns [*.jsp *.jspx *.jsw *.jsv ].

If the JSP processor fails to load, you will see a message such as

No Extension Processor found for handling JSPs.
JSP Processor not defined. Skipping : jspfilename.

in the root_dir/logs/server_name/SystemOut.log file
3. If the JSP engine has started normally, the problem may be with the JSP file itself.

v The JSP may have invalid JSP syntax and could not be processed by the JSP
Processor. Examine the root_dir/logs/server_name/SystemOut.log file of the target application for
invalid JSP directive syntax messages. Errors similar to the following in a browser indicate this kind
of problem:

Message: /filename.jsp(2,1)JSPG0076E: Missing required attribute page for jsp
element jsp:include

This example indicates that line 2, column 1 of the named JavaServer Pages file is missing a
mandatory attribute for the jsp:include action. Similar messages are displayed for other syntax
errors.

v Examine the target application server's SystemErr.log files for problems with invalid Java syntax.
Errors similar to Message: Unable to compile class for JSP in a browser indicate this kind of
problem.

The error message output from the Javac compiler will be found in the SystemErr.log file. It might
look like:

JSPG0091E: An error occurred at line: 2 in the file: /myJsp.jsp
JSPG0093E: Generated servlet error: c:\WASROOT\temp\ ...
test.war\_myJsp.java:16: myInt is already defined in com.ibm.ws.jsp20._myJsp
int myInt = 122; String myString = "number is 122"; static int myStaticInt=22;
int myInt=121;

^ 1 error

Correct the error in the JSP file and retry the file.

Chapter 24. Administering web applications 2673



v Examine the log files for the target application for problems with invalid Java syntax. Errors similar
to Message: Unable to compile class for JSP in a browser indicate this kind of problem.

The error message output from the Javac compiler will be found in the SystemErr.log. It
might look like:

JSPG0091E: An error occurred at line: 2 in the file: /myJsp.jsp
JSPG0093E: Generated servlet error: c:\WASROOT\temp\ ...
test.war\_myJsp.java:16: myInt is already defined in com.ibm.ws.jsp20._myJsp
int myInt = 122; String myString = "number is 122"; static int myStaticInt=22;
int myInt=121;

^ 1 error

Correct the error in the JSP file and retry the file.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

JavaServer Pages fail to compile when using precompile

Symptom Problem Suggested solution
JavaServer Pages fail to compile
during deployment through the
administrative console when
precompile is selected.

SystemErr R com.ibm.websphere
.management.exception
.AdminException:

ADMA0021E: Error in compiling jsps -
xyz.war (rc=1)

JavaServer Pages fail to compile
during deployment through the
administrative console when
precompile is selected when there is a
dependency on another Java archive
(JAR) file that is not available on any
class path.

You may use wsadmin scripting to
precompile JSP files during enterprise
application deployment. However if
you want to use the administrative
console, then compile all JSP files
before packaging the application.

1. Add the dependent JAR to the
application server.

a. Click Servers > Application
servers > server1 > Java and
Process Management >
Process Definition >
Application servers > Java
Virtual Machine in the
console navigation.

b. Add fully qualified dependent
JAR in class path field.

c. Click OK.

d. Restart application server.

2674 Administering WebSphere applications



JSPG0089E: Mismatch found between page directive encoding Shift_JIS and xml prolog
encoding UTF-8

Symptom Problem Suggested solution
The following error appears:

JSP Processing Error

HTTP Error Code: 500

Error Message: /test.jsp(2,1)
/test.jsp(2,1) JSPG0089E:
Mismatch found between page
directive encoding Shift_JIS
and xml prolog encoding UTF-8

The pageEncoding attribute in the
jsp:directive.page element is not
UTF-8.

JavaServer Pages must specify a
prolog that matches the encoding
specified in the page directive. For
example,

<?xml version="1.0" encoding="Shift_JIS"?>
<jsp:root xmlns:jsp="http://java.sun.com/
JSP/Page" version="2.0">

<jsp:directive.page language="java"
contentType="text/html";
charset=Shift_JIS pageEncoding=
"Shift_JIS"/>

<jsp:text>XXXXXjsp:text>XXXXX>
</jsp:root>

For additional information, see section
JSP.4.1, Page Character Encoding, in
the JavaServer Pages specification
and section 4.3.3 and appendix F.1 of
the Extensible Markup Language
(XML) specification

If none of these steps solves the problem, check to see if the problem is identified and documented using
the links in the topic, Diagnosing and fixing problems: Resources for learning. If you do not see a problem
that resembles yours, or if the information provided does not solve your problem, contact IBM support for
further assistance.

For current information available from IBM Support on known problems and their resolution, see the IBM
Support page. The IBM Support page contains documents that can save you time gathering information
needed to resolve this problem.

Backing up and recovering servlets
Servlet source and class files, user profile data, Hypertext Transfer Protocol (HTTP) configuration, and
administrative configuration should be considered for backup when using servlets. You should consider
saving your HTTP configuration because changes to the HTTP configuration are often made to enable
WebSphere Application Server to serve servlets and JSP requests, and to enable WebSphere Application
Server security. You should consider backing up the user profile data if you use the User Profile function of
WebSphere Application Server.

Procedure
v Backup servlet source and class files. Application code and configuration such as bindings, is located by

default in the profile_root/installedApps directory. By saving this directory, you save your installed
applications, including HTML, servlets, JavaServer Pages (JSP) files, and enterprise beans. Normally,
each application is located in a separate subdirectory, so you can choose to save all applications or a
subset.

1. Save all installed applications. The commands below have been wrapped for display purposes.
Enter each as a single command.
SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)
OBJ((’/profile_root/installedApps’))

2. Saves the sampleApp application only. The commands below have been wrapped for display
purposes. Enter each as a single command.
SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)
OBJ((’/profile_root/installedApps/cellName/sampleApp.ear’))

Chapter 24. Administering web applications 2675



If you have located utility or general purpose classes in other directories, such as profile_root/lib/app
or profile_root/lib/ext, be sure to include those locations in your backup plan as well.

v Save your HTTP configuration.

Attention: The following information applies to IBM HTTP Server for iSeries (powered by Apache). If
you are using Lotus Domino HTTP Server, see the Notes.net Documentation Library.

1. Save the HTTP server instances for IBM HTTP Server for iSeries (powered by Apache). The HTTP
server instances for IBM HTTP Server for iSeries (powered by Apache) are members of the
QATMHINSTC file in the library QUSRSYS. An example save command for this file could be the
following: SAVOBJ OBJ(QATMHINSTC) LIB(QUSRSYS) DEV(*SAVF) OBJTYPE(*FILE)
SAVF(WSALIB/WSASAVF)

2. Save the HTTP configurations for IBM HTTP Server for iSeries (powered by Apache). The HTTP
configurations for IBM HTTP Server for iSeries (powered by Apache) are stored in the integrated file
system in a subdirectory, chosen when the configuration was created. The recommended location is
within the WebSphere instance directory. You can determine this file location by inspecting HTTP
server instance member in the QATMHINSTC file in library QUSRSYS. An example save command
for this file could be the following: SAV DEV('/QSYS.lib/wsalib.lib/wsasavf.file') OBJ(('profile_root/
profile/apache/conf') ('profile_root/profile/htdocs')) where profile is the name of your instance. The
default instance name is default.

Backing up and recovering JavaServer Pages files
JavaServer Pages source and generated servlet classes, Hypertext Transfer Protocol (HTTP)
configuration, and administrative configuration should be considered for backup when using JavaServer
Pages files.

Procedure
v Save installed applications. Application code and configuration such as bindings, is located by default in

the profile_root/installedApps directory. By saving this directory, you save your installed applications,
including HTML, servlets, JavaServer Pages (JSP) files, and enterprise beans. Normally, each
application is located in a separate subdirectory, so you can choose to save all applications or a subset.

1. Save all installed applications. The command below has been wrapped for display purposes. Enter
the following as a single command, with a space between the end of DEV parameter and OBJ.
SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)

OBJ((’/profile_root/installedApps’))

2. Save the sampleApp application only. The command below has been wrapped for display purposes.
Enter the following as a single command with a space between the end of DEV parameter and OBJ.
SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)

OBJ((’/profile_root/installedApps/cellName/sampleApp.ear’))

v Save and restore your JSP files. When JSP files are run, a servlet class is generated, compiled, and
then run. When saving and restoring your JSP files, you can elect to save only the JSP source or the
generated files as well.

– If you save and restore only the JSP source, the servlet source and class files are regenerated when
they are invoked. This is a simpler, smaller save and restore operation. Note that regeneration slows
the first requests, and default optimization is done on the generated Java programs.

– If you save and restore the source and generated files, no regeneration is done. If you have
optimized Java programs to levels other than the default, this optimization is preserved.

Example

WebSphere Application Server places the generated files (.class, .java, and optionally, .dat) in a temporary
directory under the WebSphere Application Server instance. For example, the default instance stores the
generated files in this directory:
/profile_root/temp/node_name/application_server/enterprise_app/web_module

2676 Administering WebSphere applications



In this example:

v profile is the name of your instance. The default instance name is default.

v node_name is the name of the iSeries server or partition on which your WebSphere Application Server
instance is running

v application_server is the name of your WebSphere Application Server

v enterprise_app is the name of the enterprise application to which the JSP file belongs

v web_module is the web module that contains your JSP file.

Attention: A .dat file is a helper file used by the generated servlet.

Administering RRD applications

Asynchronous request dispatching settings

Asynchronous request dispatching settings
Use this page to enable the asynchronous request dispatcher (ARD), which enables servlets and JSP
pages to make standard include calls concurrently on separate threads.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Web Container Settings > Web container > Asynchronous request
dispatching.

Additionally, the initiation and the insertion of the include contents can be separated so that the include
has more time to execute before it needs to be written to the response. ARD requires aggregation of the
include contents with the original response. The application server can aggregate the contents in memory
or the client browser can aggregate the contents through AJAX. Aggregation type is configurable at the
application level.

Allow Asynchronous Request Dispatching:

Enables applications installed on this server to use asynchronous request dispatching.

Asynchronous include timeout:

Specifies the default timeout in milliseconds to complete asynchronous includes.

Information Value
Data type Integer
Units Milliseconds
Default 60000
Range

Maximum expired requests per minute:

Specifies the maximum percentage of expired response versus total response in one minute before
switching to synchronous requests.

Information Value
Data type Integer
Units Percentage
Default 15
Range

Chapter 24. Administering web applications 2677



Maximum memory size of results store:

Specifies the maximum size of store for client side requests.

Information Value
Data type Integer
Units Megabytes
Default 100
Range

Asynchronous request dispatching settings

Asynchronous request dispatching settings
Use this page to enable the asynchronous request dispatcher (ARD), which enables servlets and JSP
pages to make standard include calls concurrently on separate threads.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Web Container Settings > Web container > Asynchronous request
dispatching.

Additionally, the initiation and the insertion of the include contents can be separated so that the include
has more time to execute before it needs to be written to the response. ARD requires aggregation of the
include contents with the original response. The application server can aggregate the contents in memory
or the client browser can aggregate the contents through AJAX. Aggregation type is configurable at the
application level.

Allow Asynchronous Request Dispatching
Enables applications installed on this server to use asynchronous request dispatching.

Asynchronous include timeout
Specifies the default timeout in milliseconds to complete asynchronous includes.

Information Value
Data type Integer
Units Milliseconds
Default 60000
Range

Maximum expired requests per minute
Specifies the maximum percentage of expired response versus total response in one minute before
switching to synchronous requests.

Information Value
Data type Integer
Units Percentage
Default 15
Range

Maximum memory size of results store
Specifies the maximum size of store for client side requests.

Information Value
Data type Integer

2678 Administering WebSphere applications



Information Value
Units Megabytes
Default 100
Range

Administering RRD applications

Configuring HTTP sessions

Configuring session management by level
When you configure session management at the web container level, all applications and the respective
web modules in the web container normally inherit that configuration, setting up a basic default
configuration for the applications and web modules below it. However, you can set up different
configurations individually for specific applications and web modules that vary from the web container
default. These different configurations override the default for these applications and web modules only.

About this task

An enterprise application can contain web modules, and so can an OSGi application. At the web container
level and at the application level, the process for configuring HTTP sessions is the same whether the web
module is part of an enterprise application or an OSGi application. For enterprise applications only, you
can also configure HTTP sessions at the web module level.

Note: When you overwrite the default session management settings at the application level, all the web
modules below the application inherit the new setting unless they too are set to overwrite these
settings.

Note: Session management configuration is a post-deployment configuration and is tied to existing
targets. If you change the target mapping after you configure session management, you must return
to the session management configuration page in the administrative console or use wsadmin
scripting and apply the changes. Apply the changes to module targets if session management is
configured for a web module. Apply the changes to all targets if session management is configured
for an application level.

Procedure
1. Open the administrative console.

2. Change the configuration for the web container, enterprise application, or web module level. The
following substeps explain how to access the configuration panels for each of these levels.
v Complete the following substeps for the web container level:

a. Click Servers > Server Types > WebSphere application servers > server_name.
b. Under Container Settings, expand Web Container Settings and click Web container.
c. Under Additional Properties, click Session management.

v Complete the following substeps for the application level:

If the application is an enterprise application:
a. Click Applications > Application Types > WebSphere enterprise applications >

application_name.
b. Under Web Module Properties, click Session management.

If the application is an OSGi application:
a. Click Applications > Application Types > Business-level applications > application_name >

eba_asset_name.
b. Under Additional Properties, click Session management.

Chapter 24. Administering web applications 2679



v Complete the following substeps for the web module level, if the application is an enterprise
application:
a. Click Applications > Application Types > WebSphere enterprise applications >

application_name.
b. Under Modules, click Manage Modules > module_name.
c. Under Additional Properties, click Session Management.

3. Manage sessions by configuring session tracking, session timeouts and serializing access.

4. If you are working at the web module or application level and want these settings to override the
inherited Session Management settings, under General Properties select Override session
management.

5. Click Apply and Save.

Session management settings
Use this page to manage HTTP session support. This support includes specifying a session tracking
mechanism, setting maximum in-memory session count, controlling overflow, and configuring session
timeout.

To view this administrative console page at the web container level, click Servers > Server Types >
WebSphere application servers > server_name > Session management.

Important:
You can override the session management settings at the application level.

Session tracking mechanism:

Table 245. HTTP session tracking mechanism. This table describes mechanisms for HTTP session management.
Mechanism Function Default

Enable SSL ID tracking Specifies that session tracking uses Secure Sockets Layer (SSL) information as a
session ID. Enabling SSL tracking takes precedence over cookie-based session
tracking and URL rewriting.

There are two parameters available if you enable SSL ID tracking: SSLV3Timeout and
Secure Authentication Service (SAS). SSLV3Timeout specifies the time interval after
which SSL sessions are renegotiated. This parameter is a high setting and
modification does not provide any significant impact on performance. The SAS
parameter establishes an SSL connection only if it goes out of the Java Virtual
Machine (JVM) to another JVM. If all the beans are co-located within the same JVM,
the SSL used by SAS does not hinder performance.

These parameters are set by editing the sas.server.properties and
sas.client.props files, located in the product_installation_root/properties directory,
where product_installation_root is the directory where WebSphere Application Server
is installed.
Important: SAS is supported only between Version 6.0.x and previous version
servers that have been federated in a Version 6.1 cell.

false (cleared)

Enable cookies Specifies that session tracking uses cookies to carry session IDs. If cookies are
enabled, session tracking recognizes session IDs that arrive as cookies and tries to
use cookies for sending session IDs. If cookies are not enabled, session tracking uses
Uniform Resource Identifier (URL) rewriting instead of cookies (if URL rewriting is
enabled).

Enabling cookies takes precedence over URL rewriting. Click Enable cookies to
change these settings.

Application level session management settings override the server level session
management settings. Because session management is defined at the application
level, enabling cookies for the administration console is handled in the deployment.xml
file.

Cookie names in the web.xml file override application level and server level session
management settings. Further, cookie names from a ServletContextListener object
override all settings.

true (selected)

Enable URL rewriting Specifies that the session management facility uses rewritten URLs to carry the
session IDs. If URL rewriting is enabled, the session management facility recognizes
session IDs that arrive in the URL if the encodeURL method is called in the servlet.

false (cleared)

2680 Administering WebSphere applications



Table 245. HTTP session tracking mechanism (continued). This table describes mechanisms for HTTP session
management.
Mechanism Function Default

Enable protocol switch rewriting This option is only available when Enable URL rewriting is selected. This option
specifies that the session ID is added to a URL when the URL requires a switch from
HTTP to HTTPS or from HTTPS to HTTP. If rewriting is enabled, the session ID is
required to go between HTTP and HTTPS.

false (cleared)

Maximum in-memory session count:

Specifies the maximum number of sessions to maintain in memory for each web module.

The meaning differs depending on whether you are using in-memory or distributed sessions. For
in-memory sessions, this value specifies the number of sessions in the base session table for a web
module. Use the Allow overflow property to specify whether to limit sessions to this number for the entire
session management facility or to allow additional sessions to be stored in secondary tables. For
distributed sessions, this value specifies the size of the memory cache for sessions of each web module.
When the session cache has reached its maximum size and a new session is requested, the session
management facility removes the least recently used session from the cache to make room for the new
one.

Note: Do not set this value to a number less than the maximum thread pool size for your server.

Allow overflow:

Specifies that the number of sessions in memory can exceed the value specified by the Max in-memory
session count property. This option is valid only in non-distributed sessions mode.

Session timeout:

Specifies how long a session can go unused before it is no longer valid. Specify either Set timeout or No
timeout. Specify the value in minutes greater than or equal to two.

The value specified in a web module deployment descriptor file takes precedence over the administrative
console settings. However, the value of this setting is used as a default when the session timeout is not
specified in a web module deployment descriptor. To preserve performance, the invalidation timer is not
accurate to the second. When the write frequency is time-based, ensure that this value is least twice as
large as the write interval.

Security integration:

Specifies that when security integration is enabled, the session management facility associates the identity
of users with their HTTP sessions. Session security (security integration) is enabled by default.

Serialize session access:

Specifies that concurrent session access in a given server is not permitted.

Table 246. Serialize session access. This table describes mechanisms for serialize session access.
Mechanism Function

Maximum wait time Specifies the maximum amount of time a servlet request waits on an HTTP session before starting. This
parameter is optional and expressed in seconds. The default is five seconds. Under normal conditions, a servlet
request waits for access to an HTTP session and is notified by the request that currently owns the given HTTP
session when the request finishes.

Allow access on timeout Specifies whether the servlet starts normally or stops processing from a timeout. The servlet starts normally
when this box is checked. If this box is not checked, the servlet stops processing and error logs are generated.

Chapter 24. Administering web applications 2681



Session recovery support
For session recovery support, WebSphere Application Server provides distributed session support in the
form of database sessions. You can use session recovery support when the user's session data must be
maintained across a server restart or when the user's session data is too valuable to lose through an
unexpected server failure.

All the attributes set in a session must implement java.io.Serializable if the session requires external
storage. In general, consider making all objects held by a session serialized, even if immediate plans do
not call for session recovery support. If the website grows, and session recovery support becomes
necessary, the transition occurs transparently to the application if the sessions only hold serialized objects.
If not, a switch to session recovery support requires coding changes to make the session contents
serialized.

Configuring session tracking

About this task

Review the Session tracking options to plan your approach to session management. To configure session
tracking, complete the following:

Procedure
1. Go to the appropriate level of Session Management.

2. Specify the session tracking mechanism that you want to pass the session ID between the browser
and the servlet:
v To track sessions with cookies, click Enable Cookies.

To change the cookie settings, click Modify.
v To track sessions with URL rewriting, click Enable URL Rewriting.

If you want to enable protocol switch rewriting, click Enable protocol switch rewriting.
v To track sessions with SSL information, click Enable SSL ID tracking.

Note: Session tracking using the SSL ID is deprecated in WebSphere Application Server version
7.0. You can reconfigure session tracking to use cookies or modify the application to use
URL rewriting.

3. Click Apply.

4. Click Save.

Session tracking options
HTTP session support also involves session tracking. You can use cookies, URL rewriting, or Secure
Sockets Layer (SSL) information for session tracking.

the following tracking methods are available:
v Session tracking with cookies
v Session tracking with URL rewriting
v Session tracking with Secure Sockets Layer (SSL) information

Session tracking with cookies: Tracking sessions with cookies is the default. No special programming
is required to track sessions with cookies.

Session tracking with URL rewriting: An application that uses URL rewriting to track sessions must
adhere to certain programming guidelines. The application developer needs to do the following:
v Program servlets to encode URLs
v Supply a servlet or JavaServer Pages (JSP) file as an entry point to the application

Using URL rewriting also requires that you enable URL rewriting in the session management facility.

2682 Administering WebSphere applications



Note: In certain cases, clients cannot accept cookies. Therefore, you cannot use cookies as a session
tracking mechanism. Applications can use URL rewriting as a substitute.

Program session servlets to encode URLs

Depending on whether the servlet is returning URLs to the browser or redirecting them, include either the
encodeURL method or the encodeRedirectURL method in the servlet code. Examples demonstrating what
to replace in your current servlet code follow.

Rewrite URLs to return to the browser

Suppose you currently have this statement:
out.println(“<a href=\”/store/catalog\“>catalog<a>”);

Change the servlet to call the encodeURL method before sending the URL to the output stream:
out.println(“<a href=\”“”);
out.println(response.encodeURL (“/store/catalog”));
out.println(“\”>catalog</a>“”);

Rewrite URLs to redirect

Suppose you currently have the following statement:
response.sendRedirect (“http://myhost/store/catalog”);

Change the servlet to call the encodeRedirectURL method before sending the URL to the output stream:
response.sendRedirect (response.encodeRedirectURL (“http://myhost/store/catalog”));

The encodeURL method and encodeRedirectURL method are part of the HttpServletResponse object.
These calls check to see if URL rewriting is configured before encoding the URL. If it is not configured, the
calls return the original URL.

You can also configure session support to enable protocol switch rewriting. When this option is enabled,
the product encodes the URL with the session ID for switching between HTTP and HTTPS protocols.

gotcha: If you want to encode a URL, you must enable the AlwaysEncodeURL custom property and set
the value to true.

Session management properties, like the session management configuration, can be configured
at the server, application, or web module level. The following steps are for setting the custom
properties for session management at the server level.

1. In the administrative console click Servers > Server Types > WebSphere application
servers > server_name > Session management.

2. Under Additional Properties select Custom Properties.

3. On the Custom Properties page, click New.

4. On the settings page, enter the property that you want to configure in the Name field and the
value that you want to set it to in the Value field.

5. Click Apply or OK.

6. Click Save on the console task bar to save your configuration changes.

7. Restart the server.

Supply a servlet or JSP file as an entry point

The entry point to an application, such as the initial screen presented, may not require the use of
sessions. However, if the application in general requires session support (meaning some part of it, such as

Chapter 24. Administering web applications 2683



a servlet, requires session support), then after a session is created, all URLs are encoded to perpetuate
the session ID for the servlet (or other application component) requiring the session support.

The following example shows how you can embed Java code within a JSP file:
<%
response.encodeURL (“/store/catalog”);
%>

Session tracking with SSL information (Deprecated):

Note: Session tracking using the SSL ID is deprecated in WebSphere Application Server version 7.0. You
can configure session tracking to use cookies or URL rewriting.

No special programming is required to track sessions with Secure Sockets Layer (SSL) information.

To use SSL information, turn on Enable SSL ID tracking in the session management property page.
Because the SSL session ID is negotiated between the web browser and HTTP server, this ID cannot
survive an HTTP server failure. However, the failure of an application server does not affect the SSL
session ID if an external HTTP server is present between WebSphere Application Server and the browser.

SSL tracking is supported for the IBM HTTP Server and iPlanet Web Servers only. You can control the
lifetime of an SSL session ID by configuring options in the web server. For example, in the IBM HTTP
Server, set the configuration variable SSLV3TIMEOUT to provide an adequate lifetime for the SSL session
ID. An interval that is too short can cause a premature termination of a session. Also, some web browsers
might have their own timers that affect the lifetime of the SSL session ID. These web browsers may not
leave the SSL session ID active long enough to serve as a useful mechanism for session tracking. The
internal HTTP Server of WebSphere Application Server also supports SSL tracking.

When using the SSL session ID as the session tracking mechanism in a cloned environment, use either
cookies or URL rewriting to maintain session affinity. The cookie or rewritten URL contains session affinity
information that enables the web server to properly route a session back to the same server for each
request.

Serializing access to session data
The Servlet API supports concurrent access to a session in a given server instance. WebSphere
Application Server provides an option to prevent the concurrent access to a session in a given server
instance so that concurrent modification of a session does not occur in a given server instance.

About this task

Preventing concurrent access to a session is achieved by synchronizing the requests based on session.
When this feature is turned on, a session is obtained for the request before invoking the servlet and
requests are synchronized by locking the session for the servlet initiation time. Note that synchronization is
based on the memory copy of session. So this feature cannot serialize requests across servers based on
session when session affinity fails.

You can also use the serializing access to session data feature to synchronize session objects inside of
servlets or JavaServer pages. Applications cannot synchronize session objects inside of their servlets or
JavaServer Pages because a deadlock with the session manager may occur. The deadlock occurs
because the session manager does not expect the use of more than one locking mechanism. You can
ensure that only one request can access the session at a time through the use of the configuration option,
Allow serial access.

Use this feature only when concurrent modification of the same session data is possible and is not
desirable by the application. This feature has overhead of serializing the requests based on a session.

2684 Administering WebSphere applications



Do the following to synchronize session access:

Procedure
1. Select the level of Session Management on which you want to serialize session access.

2. Under Serialize Session access, click Allow serial access.

3. In the Maximum wait time box, type the amount of time, in milliseconds, a servlet waits on a session
before continuing execution. The default is 120000 milliseconds or two minutes.

4. Select Allow access on timeout if you want the servlet to gain access to the session and continue
normal execution even if the session is still locked by another servlet. If you do not select this box, the
servlet execution will abort when the session request times out.

5. Click Apply.

6. Click Save.

Cookie settings
Use this page to configure cookie settings for session management.

To view this administrative console page, click Servers > Server types > WebSphere application
servers > server_name > Session management > Enable cookies.

Cookie name:

Specifies a unique name for the session management cookie. The servlet specification requires the name
JSESSIONID. However, for flexibility, you can configure this value.

Restrict cookies to HTTPS sessions:

Specifies that the session cookies include the secure field. Enabling this feature restricts the exchange of
cookies to HTTPS sessions only.

Set cookies as HTTP only to help prevent cross-site scripting attacks:

Specifies that session cookies include the HTTP only field. When checked, browsers that support the
HTTP only attribute do not enable cookies to be accessed by client-side scripts. For security cookies, see
the global security settings for web single sign-on (SSO).

Cookie domain:

Specifies the domain field of a session tracking cookie. This value controls whether a browser sends a
cookie to particular servers. For example, if you specify a particular domain, session cookies are sent to
hosts in that domain. The default domain is the server.

Cookie maximum age:

Specifies the amount of time that the cookie lives on the client browser. Specify that the cookie lives only
as long as the current browser session, or to a maximum age. If you choose the maximum age option,
specify the age in seconds. This value corresponds to the Time to Live (TTL) value described in the
Cookie specification.

Default is the current browser session which is equivalent to setting the value to -1.

Cookie path:

Specifies that a cookie is sent to the URL designated in the path. Specify any string representing a path
on the server. A slash (/) indicates root directory. Specify a value to restrict the paths to which the cookie is

Chapter 24. Administering web applications 2685



sent. By restricting paths, you prevent the cookie from going to certain URLs on the server. If you specify
the root directory, the cookie is sent no matter which path on the given server is accessed.

Set the cookie path to match the context root for each application. This setting restricts the cookie from
being sent to other applications and results in having different cookies created when accessing multiple
applications.

Session management custom properties
You can specify additional settings for session management through setting custom properties.

Session management properties, like the session management configuration, can be configured at the
server, application, or web module level. The following steps are for setting the custom properties for
session management at the server level.

1. In the administrative console click Servers > Server Types > WebSphere application servers >
server_name > Session management.

2. Under Additional Properties select Custom Properties.

3. On the Custom Properties page, click New.

4. On the settings page, enter the property that you want to configure in the Name field and the value
that you want to set it to in the Value field.

5. Click Apply or OK.

6. Click Save on the console task bar to save your configuration changes.

7. Restart the server.

You can use the custom properties page to define the following session management properties:

v “AlwaysEncodeURL” on page 2687

v “CloneSeparator” on page 2687

v “CloneSeparatorChange” on page 2687

v “DebugSessionCrossover” on page 2687

v “DelayAfterDuplicateIdException” on page 2687

v “ForceSessionInvalidationMultiple” on page 2687

v “HideSessionValues” on page 2688

v “HttpSessionCloneId” on page 2688

v “HttpSessionIdLength” on page 2688

v “HttpSessionIdReuse” on page 2688

v “HttpSessionReaperPollInterval” on page 2688

v “InvalidateOnUnauthorizedSessionRequestException” on page 2689

v “NoAdditionalSessionInfo” on page 2689

v “OptimizeCacheIdIncrements” on page 2689

v “SecurityUserIgnoreCase” on page 2689

v “Servlet21SessionCompatibility” on page 2690

v “SessionIdentifierMaxLength” on page 2690

v “SessionRewriteIdentifier” on page 2690

v “SessionTableName” on page 2690

v “SessionTableSkipIndexCreation” on page 2690

v “UseInvalidatedId” on page 2690

v “UseOracleBLOB” on page 2690

v “UsingApplicationSessionsAndInvalidateAll” on page 2691

v “UsingCustomSchemaName” on page 2691

2686 Administering WebSphere applications



AlwaysEncodeURL:

The Servlet 2.5 specification specifies to not encode the URL on a response.encodeURL call if it is not
necessary. To support backward compatibility when URL encoding is enabled, set the AlwaysEncodeURL
custom property to true to call the encodeURL method. The URL is always encoded, even if the browser
supports cookies.

CloneSeparator:

Use this property to specify a different character as the clone separator in session cookies. The value
specified for this custom property must be a single character.

This property was set as a web container custom property in version 6.1 but must now be set as a session
management custom property.

bprac: This property should only be used as a means to provide more flexibility if you have a situation
where you cannot use either a colon (:), or a plus sign (+) as the clone separator in session
cookies. You should understand the clone character requirements of other products running on
your system before using this property to change the clone separator character.

The fact that any character can be specified as the value for this custom property does not imply
that the character you specify will function correctly. This fact also does not imply that IBM is
responsible for fixing any problem that might arise from using an alternative character.

CloneSeparatorChange:

Use this property to maintain session affinity. The clone ID of the server is appended to session identifier
separated by colon. On some Wireless Application Protocol (WAP) devices, a colon is not allowed. Set this
property to true to change clone separator to a plus sign (+).

DebugSessionCrossover:

The DebugSessionCrossover custom property enables code to perform additional checks to verify that
only the session associated with the request is accessed or referenced. Messages are logged if any
discrepancies are detected.

Set this property to true to enable session data crossover detection.

See article, HTTP session problems, for additional information.

DelayAfterDuplicateIdException:

The DelayAfterDuplicateIdException custom property is used to specify how long, in milliseconds, the
session manager should wait before attempting to retrieve a session from the backend server after a
SESN0196W error occurs.

The default value for this property is 500.

ForceSessionInvalidationMultiple:

The ForceSessionInvalidationMultiple custom property indicates whether the session manager should wait
indefinitely for a request to complete before attempting to invalidate the session, or should attempt to
invalidate a session after the specified time limit has elapsed. The default value for this property is 3.

v If you specify 0 (zero) for this custom property, the session manager waits indefinitely until a request is
complete before attempting to invalidate the session.

If your requests normally are not bound by a response time limit, specify 0 for this property.

Chapter 24. Administering web applications 2687



v If you specify a positive integer, such as 1, 2, or 3, for this custom property, even if a session is not
known to have completed, the session manager attempts to invalidate the session, if the indicated time
period since the last access occurred has elapsed. This time period is the result of multiplying the value
specified for this property and the value specified for the Session Timeout property. For example, if you
specify 2 minutes for the Session Timeout property and 2 for the ForceSessionInvalidationMultiple
property, the session manager attempts to invalidate the session after 4 minutes.

If you want to invalidate your sessions after a certain amount of time has elapsed, specify the
appropriate positive integer for this property.

HideSessionValues:

The HideSessionValues custom property prevents the logging of session attribute values in session
manager traces.

Applications store these session attribute values. The default value is true.

HttpSessionCloneId:

Use this property to change the clone ID of the cluster member. Within a cluster, this ID must be unique to
maintain session affinity. When set, this name overwrites the default name generated by WebSphere
Application Server.

Default clone ID length: 40

HttpSessionIdLength:

Use this property to configure the session identifier length. Do not use an extremely low value; using a low
value results in reduced number of combinations possible, thereby increasing risk of guessing the session
identifier. In a cluster, all cluster members should be configured with same ID length. Allowed range: 8 to
128. Default length: 23.

HttpSessionIdReuse:

The custom property HttpSessionIdReuse determines whether the session manager can use the session
ID sent from a browser to preserve session data across web applications that are running in an
environment that is not configured for session persistence.

In a multi-JVM environment that is not configured for session persistence setting this property to true
enables the session manager to use the same session information for all of a user's requests even if the
web applications that are handling these requests are governed by different JVMs. The default value for
this property is false. Set this property to true if you want to enable the session manager to use the
session ID sent from a browser to preserve session data across web applications that are running in an
environment that is not configured for session persistence.

HttpSessionReaperPollInterval:

Use this property to specify, in seconds, a wake-up interval for the process that removes invalid sessions.
The value specified for this property overrides the default installation value, which is between 30 and 360
seconds, and ensures that the reaper process runs at a specific interval.

If the maximum inactive interval is less than 2 minutes, the reaper poll interval may be as short as 30
seconds.

If the maximum inactive interval is more than 15 minutes, the reaper poll interval can be as long as 6
minutes.

2688 Administering WebSphere applications



Because the default timeout and maximum inactive interval is 30 minutes, the reaper interval is usually
between 5 and 6 minutes.

For example, you might want to use this property if you want the installation timed out sessions invalidated
more frequently than 5 to 6 minutes. Specifying HttpSessionReaperPollInterval=120 ensures that sessions
are invalidated within 2 minutes of timing out.

The minimum value for this property is 30 seconds. If a value less than the minimum is entered, the
specified property is ignored and an appropriate value is automatically determined and used. The
maximum inactive interval is the session timeout. The default is based on maximum inactive interval set in
session management.

InvalidateOnUnauthorizedSessionRequestException:

Set this property to true if, in response to an unauthorized request, you want the session manager to
invalidate a session instead of issuing an UnauthorizedSessionRequestException error message.

When a session is invalidated, the requester can create a new session, but does not have access to any
of the previously saved session data. This invalidation allows a single user to continue processing
requests after a logout while still protecting session data.

The default value for this property is false.

NoAdditionalSessionInfo:

Set this property true to force removal of information that is not needed in session identifiers.

OptimizeCacheIdIncrements:

Set the OptimizeCacheIdIncrements custom property to true to make the session manager assess whether
the in-memory session for a web module is older than the copy in persistent store. Setting this property
resolves the continually increasing cache ID.

If HTTP session management is configured to use session persistence and the user's browser session is
moving back and forth across multiple web applications you might see extra persistent store activity as the
in-memory sessions for a web module are refreshed from the persistent store. As a result, the cache IDs
are continually increasing and the in-memory session attributes are overwritten by those of the persistent
copy. Set this property to true if you want to prevent the cache IDs from continually increasing.

If the configuration is a cluster, ensure that the system times of each cluster member is identical as
possible.

SecurityUserIgnoreCase:

Set this property to true if you want the session security identity and the client security identity to be
considered a match even if their cases are different.

When a user configures session security integration, the session manager compares the security identity
of th session owner with the security identity of the client request. Because the matching criteria is case
sensitive, if these two identities do not exactly match, an UnauthorizedSessionRequestException is sent
back to the client.

If you have situations where you want the session security identity and the client security identity to be
considered a match even if their cases are different, add the SecurityUserIgnoreCase custom property to
your Web container configuration settings, and set the property to true. When this property is set to true,
an UnauthorizedSessionRequestException does not occur if the session security identity and the client

Chapter 24. Administering web applications 2689



security identity are identical except for their cases. For example, when this property is set to true, the
session security identity USER1 matches the client security identities User1 and user1.

Servlet21SessionCompatibility:

Set this custom property to true to enable global session behavior. In Servlet 2.2 and later, sessions are
scoped at the Web module level. The default is false.

Note: This property is deprecated. The IBMApplicationSession method replaces the function of the
Servlet21SessionCompatibility custom property.

SessionIdentifierMaxLength:

Use this value to set maximum length that a session identifier can grow.

This property helps to find out the condition and take appropriate action to address servers fail-over. When
this is specified, message is logged when specified maximum length is reached. Allowed value: integer.

SessionRewriteIdentifier:

Use this property to change the key used with URL rewriting. Default key: jsessionid.

SessionTableName:

Use this custom property to set the database table name. Allowed value: String. The default value is
SESSIONS.

Some applications may rely on method ejbCreate(...) to have created the entity bean in the database. For
such a requirement, setting the JVM property com.ibm.websphere.ejbcontainer.allowEarlyInsert to true
overrides the default behavior.

SessionTableSkipIndexCreation:

Use this property to disable index creation on server startup.

This custom property should only be used if you want to manually create your own database indices for
session persistence. However, it is recommended that you let session manager create database indices.

To enable this property, go to the session management custom properties administrative console page,
enter the SessionTableSkipIndexCreation property name and set its value to true. Before enabling this
property, make sure that the correct index does exist on your session database.

UseInvalidatedId:

Set this custom property to true to reuse the incoming ID if the session with that ID was recently
invalidated. This is a performance optimization because it prevents checking the persistent store. The
default value is true.

UseOracleBLOB:

The UseOracleBLOB custom property creates the HTTP session database table using the Binary Large
Object (BLOB) data type for the medium column. This property increases performance of persistent
sessions when Oracle databases are used. Due to an Oracle restriction, BLOB support requires use of the
Oracle Call Interface (OCI) database driver for more than 4000 bytes of data. You must also ensure that a
new sessions table is created before the server is restarted by dropping your old sessions table or by
changing the datasource definition to reference a database that does not contain a sessions table.

2690 Administering WebSphere applications



To create a sessions table using the BLOB data type, use the following name-value pair:

Name Value
UseOracleBLOB true

UsingApplicationSessionsAndInvalidateAll:

When the invalidateAllSet method is called, not all IBMApplicationSessions objects are checked. If you are
using both the IBMApplicationSessions object and the invalidateAll call, use the following name-value pair:

Name Value
UsingApplicationSessionsAndInvalidateAll true

UsingCustomSchemaName:

Use this property to ensure that the session manager successfully detects the sessions table on
subsequent server startups.

Set this custom property to true if you are using DB2 for sessions persistence and the customSchema
property is not set to the default value in the DB2 JDBC driver.

The default value is false.

Configuring session tracking for Wireless Application Protocol (WAP)
devices
Applications that run in a web container use sessions to keep track of individual users. Because most
Wireless Application Protocol (WAP) devices do not support cookies, you can configure WAP devices to
use URL rewriting to track sessions.

About this task

On most WAP devices, the maximum URL length is 128 characters. With URL rewriting, a session
identifier is added to the URL itself, effectively decreasing the space available for the actual URL and the
number of parameters that can be sent on a request.

To reduce the length of session identifier, you can configure key (jsessionid), session ID length and clone
ID. To make these configuration changes, complete the following steps.

Procedure
1. Open the administrative console.

2. Click Servers > Server Types > WebSphere application servers > server_name > Web Container
Settings > Web container.

3. Under Additional Properties, click Custom properties.

4. Add the appropriate properties from the following list:
v HttpSessionIdLength
v SessionRewriteIdentifier
v HttpSessionCloneId
v CloneSeparatorChange
v NoAdditionalSessionInfo
v SessionIdentifierMaxLength

5. Click Apply and Save.

Chapter 24. Administering web applications 2691



Configuring for database session persistence
You can configure a database to collect session data for database session persistence.

About this task

To configure the session management facility for database session persistence, complete the following
steps.

Procedure
1. Create and configure a JDBC provider.

2. Create a data source pointing to a database.

Use the JDBC provider that you defined: Resources > JDBC > JDBC Providers > JDBC_provider >
Data Sources > New. The data source should be non-JTA, for example, non-XA enabled. Note the
JNDI name of the data source.

Point to an existing database.

3. Verify that the correct database is listed under Resources > JDBC Providers > JDBC_provider >
Data Sources > datasource_name. If necessary, contact your database administrator to verify the
correct database name.

4. Go to the appropriate level of Session Management.

5. Under Additional Properties, click Distributed Environment Settings

6. Select and click Database.

7. Specify the Data Source JNDI name from a previous step. The database user ID and password are
case-sensitive.

8. Specify the database user ID and password that is used to access the database and for table
creation. When you created your data source, you might have specified a Container Managed
Authentication Alias or a Component Managed Authentication Alias; however, these two settings are
not used by the session manager for session persistence. The session manager uses the userId and
password specified in this step for session persistence.

9. Optional: Append the schema name in the session User ID field if you want to have more
than one instance of the session table.

The session manager uses the schema name to qualify the session table name for all database
operations. If only the userid is specified without the schema name, the schema name defaults to
NULL and therefore a table name with NULL as the schema name, for example, NULL.SESSIONS, is
created. You can create multiple session tables with different schema names, other than NULL, and
access them separately by modifying the user name to contain the appropriate schema name.

10. Retype the password for confirmation.

11. Configure a table space and page sizes for DB2 session databases.

12. Switch to a multirow schema.

13. Click OK.

14. If you want to change the tuning parameters, click Custom Tuning Parameters under Additional
properties.

15. Click Apply.

16. Click Save.

Switching to a multi-row schema
The multi-row schema configuration supports storing an unlimited amount of data that is only bounded by
the database capacities in an application. The application can read individual fields instead of the whole
record, which can help to improve performance by avoiding unnecessary Java object serialization.
Configure the session management facility to store each attribute in a session object in its own row in the
database by using the multi-row schema configuration.

2692 Administering WebSphere applications



About this task

The only practical limit that remains is the size of the session attribute object. The multi-row schema
potentially has performance benefits in certain usage scenarios, such as when larger amounts of data are
stored in the session but only small amounts are specifically accessed during a given servlet processing of
an HTTP request. In such a scenario, avoiding unneeded Java object serialization is beneficial to
performance.

In addition to allowing larger session records, using multi-row schema can yield performance benefits.
However, it requires a little work to switch from single-row to multi-row schema, as shown in the following
table.

By default, a single session maps to a single row in the database table used to hold sessions. With this
setup, there are hard limits to the amount of user-defined, application-specific data that WebSphere
Application Server can access.

Consider configuring direct single-row usage to one database and multi-row usage to another database
while you verify which option suits your application needs. Do this in code by switching the data source
used; then monitor performance.

Table 247. Choosing a single-row or multi-row schema configuration. Single-row or multi-row schema configuration

Programming issue Application scenario

Reasons to use single-row v You can read or write all values with just one record
read and write.

v This takes up less space in a database because you
are guaranteed that each session is only one record
long.

Reasons not to use single-row 2-megabyte limit of stored data per session.

Reasons to use multi-row v The application can store an unlimited amount of data;
that is, you are limited only by the size of the database
and a 2-megabyte-per-record limit.

v The application can read individual fields instead of the
whole record. When large amounts of data are stored
in the session but only small amounts are specifically
accessed during servlet processing of an HTTP
request, multi-row sessions can improve performance
by avoiding unneeded Java object serialization.

Reasons not to use multi-row If data is small in size, you probably do not want the extra
overhead of multiple row reads when you can store
everything in one row.

In the case of multi-row usage, design your application data objects not to have references to each other,
to prevent circular references. For example, suppose you are storing two objects A and B in the session
using HttpSession.put(..) method, and A contains a reference to B. In the multi-row case, because objects
are stored in different rows of the database, when objects A and B are retrieved later, the object graph
between A and B is different than stored. A and B behave as independent objects.

Procedure
1. Modify the Session Management facility properties to switch from single to multi-row schema.

2. Manually drop the table.

To drop the table:
a. Determine which data source configuration Session Management is using.
b. In the data source configuration, look up the database name.
c. Use the database facilities to connect to the database.

Chapter 24. Administering web applications 2693



d. Drop the SESSIONS table.

Configuring tablespace and page sizes for DB2 session databases
If you are using DB2 for session persistence, you can increase the page size to optimize performance for
writing large amounts of data to the database. Page sizes of 8K, 16K, and 32K are supported.

About this task

To use a page size other than the default (4K), complete the following steps.

Procedure
1. If the SESSIONS table already exists, drop it from the DB2 database.

2. Create a new DB2 buffer pool and table space, specifying the same page size (8K, 16K or 32K) for
both, and assign the new buffer pool to this table space.
DB2 Connect to session
DB2 CREATE BUFFERPOOL sessionBP SIZE 1000 PAGESIZE 8K
DB2 Connect reset
DB2 Connect to session
DB2 CREATE TABLESPACE sessionTS PAGESIZE 8K MANAGED BY SYSTEM

USING (’D:\DB2\NODE0000\SQL00005\sessionTS.0’) BUFFERPOOL sessionBP
DB2 Connect reset

Refer to DB2 product documentation for details.

3. Configure the correct table space name and page size in the Session Management facility. Page size
is referred to as row size on the Session Management page.)

Results

When the product is restarted, the Session Management facility creates the new SESSIONS table in the
specified tablespace based on the indicated page size.

Creating a table for session persistence
You can use a database table to collect and store session data. If you are using a database table for
session persistence, you must create and define a database table that is associated with the application
server.

About this task

Whenever the session manager is set for database persistence, the session manager creates a table for
its use. If you want to expand the column size limits to make it more appropriate for your website, you can
create the table externally. If the external table is specified as the target table in the session manager
database persistence configuration, then during the session manager start up, the external table is used.
In most cases it is better to let the session manager create the table during startup.

To create a table for collecting session data, do the following:

Procedure

Have your administrator create a database table for storing your session data using one of the following
data definition language (DDL): For DB2:
CREATE TABLE <SchemaName>.sessions (

ID VARCHAR(128) NOT NULL ,
PROPID VARCHAR(128) NOT NULL ,
APPNAME VARCHAR(128) NOT NULL,
LISTENERCNT SMALLINT ,
LASTACCESS BIGINT,
CREATIONTIME BIGINT,
MAXINACTIVETIME INTEGER ,

2694 Administering WebSphere applications



USERNAME VARCHAR(256) ,
SMALL VARCHAR(3122) FOR BIT DATA ,
MEDIUM LONG VARCHAR FOR BIT DATA ,
LARGE BLOB(2M)

)

For Oracle:
CREATE TABLE SESSIONS (

ID VARCHAR(128) NOT NULL ,
PROPID VARCHAR(128) NOT NULL ,
APPNAME VARCHAR(128) NOT NULL,
LISTENERCNT SMALLINT ,
LASTACCESS INTEGER,
CREATIONTIME INTEGER,
MAXINACTIVETIME INTEGER ,
USERNAME VARCHAR(256) ,
SMALL RAW(2000),
MEDIUM LONG RAW ,
LARGE RAW(1)
)

If the web container custom property UseOracleBLOB is set to true then:
CREATE TABLE SESSIONS (

ID VARCHAR(128) NOT NULL ,
PROPID VARCHAR(128) NOT NULL ,
APPNAME VARCHAR(128) NOT NULL,
LISTENERCNT SMALLINT ,
LASTACCESS INTEGER,
CREATIONTIME INTEGER,
MAXINACTIVETIME INTEGER ,
USERNAME VARCHAR(256) ,
SMALL RAW(2000),
MEDIUM BLOB,
LARGE RAW(1)
)

Attention:
1. At run time, the session manager accesses the target table using the identity of the Java Platform,

Enterprise Edition (Java EE) server in which the owning web application is deployed. Any web
container that is configured to use persistent sessions must have both read and update access to the
subject database table.

2. HTTP session processing uses the index defined using the CREATE INDEX statement to avoid database
deadlocks. In some situations, such as when a relatively small table size is defined for the database,
DB2 may decide not to use this index. When the index is not used, database deadlocks can occur. If
database deadlocks occur, see the DB2 Administration Guide for the version of DB2 you are using for
recommendations on how to calculate the space required for an index and adjust the size of the tables
that you are using accordingly.

3. It might be necessary to tune DB2 to make efficient use of the sessions database table and to avoid
deadlocks when accessing it. Your DB2 administrator should refer to the DB2 Administration Guide for
specific information about tuning the version of DB2 that you are using.

4. During run time, the session manager may create an entry in the database for each web module of the
application. This row of data is used internally for session management purposes, such as in session
invalidation. Do not be concerned with this entry. It can be overlooked.

Database settings
Use this page to specify the settings for database session support.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Session management > Distributed environment settings > Database.

Datasource JNDI name:

Chapter 24. Administering web applications 2695



Specifies the datasource description.

The JNDI name of the non-XA enabled datasource from which session management obtains database
connections. For example, if the JNDI name of the datasource is "jdbc/sessions", specify "jdbc/sessions."
The datasource represents a pool of database connections and a configuration for that pool (such as the
pool size). The datasource must already exist as a configured resource in the environment.

User ID:

Specifies the user ID for database access.

Password:

Specifies the password for database access.

DB2 row size:

Specifies the table space page size configured for the sessions table, if using a DB2 database. Possible
values are 4, 8, 16, and 32 kilobytes (KB). The default row size is 4KB.

The default row size is 4KB. In DB2, it can be updated to a larger value. This can help database
performance in some environments. When this value is other than 4, you must specify table space name
to use this property. For 4KB pages, the table space name is optional.

Table space name:

Specifies that table space to be used for the sessions table.

This value is required when the DB2 page size is other than 4KB.

Use multi row schema:

Specifies that each session data attribute is placed in a separate row in the database, allowing larger
amounts of data to be stored for each session. This action can yield better performance when session
attributes are very large and few changes are required to the session attributes. If use multi row schema is
not enabled, instances of application data can be placed in the same row.

Configuring write contents
In session management, you can configure which session data is written to the database or to another
WebSphere instance, depending on whether you are using database persistent sessions or memory to
memory replication. You can either write only session data properties that have been updated through
setAttribute method and removeAttribute method calls or you can write all session data properties.

About this task

This flexibility allows for fewer code changes for the JavaServer Pages (JSP) writer when the application
will be operating in a clustered environment. The following options are available in Session Management
for tuning what is written back:
v Write changed (the default) - Write only session data properties that have been updated through

setAttribute method and removeAttribute method calls.
v Write all - Write all session data properties.

The Write all setting might benefit servlet and JSP writers who change Java objects' states that reside as
attributes in HttpSession and do not call HttpSession.setAttribute method.

2696 Administering WebSphere applications



However, the use of Write all could result in more data being written back than is necessary. If this
situation applies to you, consider combining the use of Write all with Time-based write to boost
performance overall. As always, be sure to evaluate the advantages and disadvantages for your
installation.

With either Write Contents setting, when a session is first created, complete session information is written,
including all of the objects bound to the session.

Table 248. Single-row or multi-row schemas. When using database session persistence, in subsequent session
requests, what is written to the database depends on whether a single-row or multi-row schema has been set for the
session database, as shown in the following table.

Write Contents setting Behavior with single-row schema Behavior with multirow schema

Write changed If any session attribute is updated, all
objects bound to the session are
written.

Only the session data modified
through setAttribute method or
removeAttribute method calls is
written.

Write all All bound session attributes are
written.

All session attributes that currently
reside in the cache are written. If the
session has never left the cache, all
session attributes are written.

Procedure
1. Go to the appropriate level of Session Management. See the Administering applications and their

environment PDF for more information.

2. Click Distributed environment settings

3. Click Custom tuning parameters.

4. Click Custom settings.

5. Select the appropriate write contents setting.

6. Click OK.

Configuring write frequency
In the session management facility, you can configure the frequency for writing session data to the
database or to a WebSphere instance, depending on whether you use database distributed sessions or
memory-to-memory replication. You can write session data using the end of service servlet, manual update
or time based update options.

About this task

This flexibility enables you to weigh session performance gains against varying degrees of failover support.
The following options are available in the Session Management facility for tuning write frequency:
v End of service servlet- Write session data at the end of the servlet service method call.
v Manual update- Write session data only when the servlet calls the IBMSession.sync method.
v Time based (the default) - Write session data at periodic intervals, in seconds (called the write interval).

When a session is first created, session information is always written at the end of the service call.

If you are using the time based write option, when a server shuts down, the server typically attempts to
write the latest session data, that is in the session cache, to the persistent store, as part of the shutdown
process.

Using the time based write or manual update options can result in the loss of data in failover scenarios
because the backup copy of the session in the persistent store, such as a database, or another JVM,
might not be in sync with the session in the session cache.

Chapter 24. Administering web applications 2697



Procedure
1. Go to the appropriate level of Session Management. See the Administering applications and their

environment PDF for more information.

2. Click Distributed environment settings

3. Click Custom tuning parameters.

4. Click Custom settings.

5. Select the method of write frequency that you want to use.

6. Click OK.

2698 Administering WebSphere applications



Chapter 25. Administering web services

This page provides a starting point for finding information about web services.

Web services are self-contained, modular applications that can be described, published, located, and
invoked over a network. They implement a services oriented architecture (SOA), which supports the
connecting or sharing of resources and data in a very flexible and standardized manner. Services are
described and organized to support their dynamic, automated discovery and reuse.

Planning to use web services
You can plan to develop and implement web services based on a variety of Java programming models.

Before you begin

The JAX-WS Web services samples demonstrate the simple message exchange patterns using both
synchronous and asynchronous invocation of web services in SOAP 1.1 and SOAP 1.2 environments. The
samples are composed with web service standards such as WS-Addressing (WS-A) , WS-Reliable
Messaging (WS-RM), and WS-Secure Conversation (WS-SC), which you can use to complete a broad
range of interoperability tests. The samples demonstrate the use of JavaBeans artifacts and static service
endpoints and proxy-based clients. Additionally, a sample is provided that demonstrates Message
Transmission Optimization Mechanism (MTOM).

About this task

best-practices: IBM WebSphere Application Server supports the Java API for XML-Based Web Services
(JAX-WS) programming model and the Java API for XML-based RPC (JAX-RPC)
programming model. JAX-WS is the next generation web services programming model
extending the foundation provided by the JAX-RPC programming model. Using the
strategic JAX-WS programming model, development of web services and clients is
simplified through support of a standards-based annotations model. Although the
JAX-RPC programming model and applications are still supported, take advantage of the
easy-to-implement JAX-WS programming model to develop new web services
applications and clients.

You must re-write existing JAX-RPC applications if you want to take advantage of the features of the
JAX-WS programming model.

Web services reflect the service-oriented architecture approach to programming. This approach is based
on the idea of building applications by discovering and implementing network-available services, or by
invoking the available applications to accomplish a task. Web services deliver interoperability, for example,
web services applications provide a way for components created in different programming languages to
work together as if they were created using the same language. Web services rely on existing transport
technologies, such as HTTP, and standard data encoding techniques, such as Extensible Markup
Language (XML), for invoking the implementation.

Procedure
1. Identify your goals and design web services to fit your e-business solution. Consider what you want to

accomplish by using web services. Decide how web services fit into your current topology, applications
and programming model. Determine how the Web services process requests on the server and how
the clients manage and use the web service.

2. Design your web services for reliability, availability, manageability and security. For example, you want
your web services to process a transaction in a reasonable time at all hours of the day and provide
users with optimal security, such as authentication for buyers. Planning to use web services to work
with WebSphere Application Server helps to meet these requirements.

© Copyright IBM Corp. 2012 2699



3. Review the standards used in developing and deploying web services onto WebSphere Application
Server. Development and deployment are based on a variety of Java programming models.

4. Decide what development and implementation tools to use. You can use a variety of manual
development and implementation tasks. Whether you have an existing web service to implement or
you want to develop your own from a JavaBeans implementation or from an Enterprise JavaBeans
(EJB) module, you can choose different tasks respective to your resources. You can also use
assembly tools to complete development and implementation tasks.

5. Install the application server. For detailed information on installing the application server, read about
installing your application serving environment.

6. Review web services samples.

Results

You have a design plan for implementing web services applications into your business architecture.

Deploying web services

Deploying web services applications onto application servers
After assembling the artifacts required to enable the web module for web services into an enterprise
archive (EAR) file, you can deploy the EAR file into the application server.

Before you begin

To deploy Java-based web services, you need an enterprise application, also known as an EAR file that is
configured and enabled for web services.

A Java API for XML-Based Web Services (JAX-WS) application does not require additional bindings and
deployment descriptors for deployment whereas a Java API for XML-based RPC (JAX-RPC) web services
application requires you to add additional bindings and deployment descriptors for application deployment.
JAX-WS is much more dynamic, and does not require any of the static data generated by the deployment
step required for deploying JAX-RPC applications.

For JAX-WS web services, the use of the webservices.xml deployment descriptor is optional because you
can use annotations to specify all of the information that is contained within the deployment descriptor file.
You can use the deployment descriptor file to augment or override existing JAX-WS annotations. Any
information that you define in the webservices.xml deployment descriptor overrides any corresponding
information that is specified by annotations.

Note: In a mixed node cell, you can only target a JAX-WS enabled enterprise beans module to a server
using WebSphere Application Server Version 7.0 and later. However, you can target a JAX-WS
enabled web application archives (WAR) module to a server using either WebSphere Application
Server Version 7.0 and later or WebSphere Application Server Version 6.1 Feature Pack for Web
Services

You can use the wsdeploy command with JAX-RPC applications to add WebSphere product-specific
deployment classes to a web services-compatible enterprise application enterprise archive (EAR) file or an
application client Java archive (JAR) file.

To install or deploy a JAX-WS application, you only need to install the JAX-WS enabled EAR file. If your
web services application contains only JAX-WS endpoints, you do not need to run the wsdeploy command,
as this command is used to process only JAX-RPC endpoints.

Ensure that you have installed the HTTP or Java Message Service (JMS) router module that was
generated with the endptEnabler command onto the same target as your web services enterprise bean

2700 Administering WebSphere applications



JAR files. These HTTP or JMS router modules are included in your web services application and they
need to use the runtime libraries of the application server.

About this task

This task is one of the steps in developing and implementing web services.

You can use either the administrative console or the wsadmin scripting tool to deploy an EAR file. If you are
installing an application containing web services by using the wsadmin command, specify the -deployws
option for JAX-RPC applications. If you are installing an application containing web services by using the
administrative console, select Deploy WebServices in the Install New Application wizard. For more
information about installing applications using the administrative console, see the installing enterprise
application files with the console information.

If your JAX-RPC web services application was previously deployed with the wsdeploy command, it is not
necessary to specify web services deployment during installation.

The following actions deploy the EAR file with the wsadmin command:

Procedure
1. Start install_root/bin/wsadmin from a command prompt.

2. Deploy the EAR file.

v For JAX-WS web service applications, enter the $AdminApp install EARfile
"-usedefaultbindings" command at the wsadmin prompt.

v For JAX-RPC web service applications, enter the $AdminApp install EARfile
"-usedefaultbindings -deployws" command at the wsadmin prompt.

Results

You have a web service installed onto your application server.

Note: While installing web services applications that contain a large number of enterprise beans onto the
application server, you might receive out of memory errors. If you receive out of memory errors,
increase the heap size of your Java Virtual Machine (JVM). Read about tuning the IBM virtual
machine for Java documentation to learn more about tuning the application server environment.

What to do next

You can confirm that the web services application was deployed by entering the web service endpoint URL
in a browser, then viewing an informative page. The information page contains the following information:
{http://webservice.pli.tc.wssvt.ibm.com}RetireWebServices
Hello! This is an Axis2 web service!

The first line of this information is variable, depending on your web service. The URI in the brackets is the
namespace and the string that follows, in this example RetireWebServices, is the name of the port used to
access the web service.

The next step you might want to consider is to apply security to your web service.

Provide options to perform the web services deployment settings
Use this page to specify options for web services deployment.

This administrative console page is a step in the application installation and update wizards.

To view this page, you must select Deploy web services on the Select installation options page.

Chapter 25. Administering web services (generally applicable) 2701



To view this administrative console page, complete the following steps:

1. Click Applications > New application > application_path .

2. Select the option to Show all installation options and parameters .

3. Click Next to get to the Step: Select installation options page.

4. Select Deploy web service.

5. Click Next to get to the Step: Provide options to perform the web services deployment page.

You can specify the web services deployment options on this page only when installing or updating an
application that uses web services.

The wsdeploy command is supported by Java API for XML-based RPC (JAX-RPC) applications. The Java
API for XML-Based Web Services (JAX-WS) programming model that is implemented by the application
server does not support the wsdeploy command. If your web services application contains only JAX-WS
endpoints, you do not need to run the wsdeploy command, as this command is used to process only
JAX-RPC endpoints.

The options that you specify set parameter values for the wsdeploy command. The wsdeploy command
adds product-specific deployment classes to a web services-compatible enterprise archive (EAR) file or an
application client Java archive (JAR) file. These classes include:
v Stubs
v Serializers and deserializers
v Implementations of service interfaces

The wsdeploy command is run during installation after you click Finish on the Summary page of the
wizard.

Deploy web services option - Classpath:

Specifies entries to add to the CLASSPATH when the generated classes are compiled.

To specify the class paths of multiple entries, you need to separate the entries with a semicolon on
Windows platforms and on Linux, Unix, and z/OS platforms, you need to use a colon to separate the
entries. This is the same separator that is used with the CLASSPATH environment variable.

This option is the same as the wsdeploy command parameter -cp class_path.

Information Value
Data type String
Default null

Deploy web services option - Extension Directories:

Specifies a directory that contains zipped or Java archive (JAR) files. All zipped and JAR files in this
directory are added to the CLASSPATH used to compile the generated files.

This option is the same as the wsdeploy command parameter -jardir directory.

Information Value
Data type String
Default null

2702 Administering WebSphere applications



wsdeploy command
Use the wsdeploy command to add WebSphere product-specific deployment classes to a web
services-compatible enterprise application enterprise archive (EAR) file or an application client Java
archive (JAR) file.

The wsdeploy command is supported by Java API for XML-based RPC (JAX-RPC) applications. The Java
API for XML-Based Web Services (JAX-WS) programming model that is implemented by the application
server does not support the wsdeploy command. If your web services application contains only JAX-WS
endpoints, you do not need to run the wsdeploy command, as this command is used to process only
JAX-RPC endpoints.

The deployment classes that are added by the wsdeploy tool to a web services-compatible EAR file or a
JAR file include:
v Stubs
v Serializers and deserializers
v Implementations of service interfaces

This deployment step must be performed at least once, and can be performed more often. Deployment
can be performed separately using the wsdeploy command, assembly tools, or when the application is
installed. When using the wsadmin command for installation, specify the -deployws option.

The wsdeploy command operates as noted in the following list:
v Each module in the enterprise application or JAR file is examined.
v If the module contains web services implementations, indicated by the presence of the webservices.xml

deployment descriptor, the associated Web Services Description Language (WSDL) files are located
and the WSDL2Java command is run with the role deploy-server option.

v If the module contains web services clients, indicated by the presence of the client deployment
descriptor, the associated WSDL files are located and the WSDL2Java command is run with the role
deploy-client option.

v The files generated by the WSDL2Java command are compiled and repackaged.

See the WSDL2Java command for JAX-RPC applications command information to learn more about the files
that are generated for deployment.

When the generated files are compiled, they can reference application-specific classes outside the EAR or
JAR file, if the EAR or JAR file is not self-contained. In this case, use either the -jardir or -cp option to
specify additional JAR or zip files to be added to CLASSPATH variable when the generated files are
compiled.

wsdeploy command syntax

The command syntax is noted in the following example:
wsdeploy Input_filename Output_filename [options]

Required options:
v Input_filename

Specifies the path to the EAR or JAR file to deploy.
v Output_filename

Specifies the path of the deployed EAR or JAR file. If output_filename already exists, it is silently
overwritten. The output_filename can be the same as the input_filename.

Other options:
v -jardir directory

Specifies a directory that contains JAR or zip files. All JAR and zip files in this directory are added to
the CLASSPATH used to compile the generated files. This option can be specified zero or more times.

v -cp entries

Chapter 25. Administering web services (generally applicable) 2703



Specifies entries to add to the CLASSPATH when the generated classes are compiled. Multiple entries
are separated the same as they are in the CLASSPATH environment variable.

v -codegen

Specifies to generate but not compile deployment code. This option implicitly specifies the -keep option.
v -debug

Includes debugging information when compiling, that is, use javac -g to compile.
v -help

Displays a help message and exit.
v -ignoreerrors

Do not stop deployment if validation or compilation errors are encountered.
v -keep

Do not delete working directories containing generated classes. A message is displayed indicating the
name of the working directory that is retained.

v -novalidate

Do not validate the web services deployment descriptors in the input file.
v -trace

Displays processing information, including the names of the generated files.
v -compliancelevel level

Sets the JDK level for compiler compliance. Valid values include: 1.4, 5.0, 6.0 (default) and 7.0. This
flag is optional.

The following example illustrates how the options are used with the wsdeploy command:
wsdeploy x.ear x_deployed.ear -trace -keep
Processing web service module x_client.jar.
Keeping directory: f:\temp\Base53383.tmp for module: x_client.jar.
Parsing XML file:f:\temp\Base53383.tmp\WarDeploy.wsdl
Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java
Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java
Generating f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java
Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java.
Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java.
Compiling f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java.
Done processing module x_client.jar.

The following messages may be displayed:
v Flag -f is not valid.

Option f was not recognized as a valid option.
v Flag -c is ambiguous.

Options can be abbreviated, but the abbreviation must be unique. In this case, the wsdeploy command
cannot determine which option was intended.

v Flag -c is missing parameter -p.

A required parameter for an option is omitted.
v Missing p parameter.

A required option is omitted.

JAX-WS application deployment model
The administration function of the product is enhanced to support installing and deploying Java Application
Programming Interface (API) for XML Web Services (JAX-WS) applications like any other WebSphere
Application Server applications.

A JAX-WS application is packaged as a web application archive (WAR) file or a WAR module within an
Enterprise Archive (EAR) file. The JAX-WS application deployment model is similar to the Java API for
XML Remote Protocol Call (JAX-RPC) web services application model. The main differences are JAX-RPC
web services application requires you to add additional bindings and deployment descriptors for application

2704 Administering WebSphere applications



deployment. A JAX-WS application does not require additional bindings and deployment descriptors for
deployment. You can deploy your JAX-WS applications as you would deploy any other WebSphere
Application Server application.

JAX-WS web services is a rewrite of JAX-RPC web services. The table compares the web services stack
for both JAX-WS and JAX-RPC web services.

JAX-RPC web services JAX-WS web services

Bindings are proprietary Bindings are based on the open source Java API for XML
Bindings (JAXB)

Parsing is proprietary Parsing is based on the open source Java Specification
Request (JSR) 173

No Java annotations support Support for Java annotations such as @WebService,
@WebMethod, @WebParam, @WebResult, and @SOAPBinding

During deployment, some deployment descriptor files are
created in a JAX-RPC based service and client.

The following files are created on the services side, when
it is an EJB based web service and EJB based module:

v webservices.xml

v <name_of_service>_mapping.xml

v ibm-webservices-bnd.xmi

v ibm-webservices-ext.xmi

When the service is a JavaBeans-based or web
module-based service, the following files and deployment
descriptors are required:

v webservices.xml

v <name_of_service>_mapping.xml

v In the web.xml file, there is no additional content

v ibm-webservices-bnd.xmi

v ibm-webservices-ext.xmi

The web.xml exists in both EJB and JavaBeans based
services. However, there is no additional content added to
the file during deployment of a Web service application or
module.

For JAX-WS web services, the use of the
webservices.xml deployment descriptor is optional
because you can use annotations to specify all of the
information that is contained within the deployment
descriptor file. You can use the deployment descriptor file
to augment or override existing JAX-WS annotations. Any
information that you define in the webservices.xml
deployment descriptor overrides any corresponding
information that is specified by annotations.

Starting with WebSphere Application Server Version 7.0 and later, Java EE 5 application modules (web
application modules version 2.5 or above, or EJB modules version 3.0 or above) are scanned for
annotations to identify JAX-WS services and clients. However, pre-Java EE 5 application modules (web
application modules version 2.4 or before, or EJB modules version 2.1 or before) are not scanned for
JAX-WS annotations, by default, for performance considerations. In the Version 6.1 Feature Pack for Web
Services, the default behavior is to scan pre-Java EE 5 web application modules to identify JAX-WS
services and to scan pre-Java EE 5 web application modules and EJB modules for service clients during
application installation. Because the default behavior for WebSphere Application Server Version 7.0 and
later is to not scan pre-Java EE 5 modules for annotations during application installation or server startup,
to preserve backward compatability with the feature pack from previous releases, you must configure
either the UseWSFEP61ScanPolicy property in the META-INF/MANIFEST.MF of a web application archive
(WAR) file or EJB module or define the Java virtual machine custom property,
com.ibm.websphere.webservices.UseWSFEP61ScanPolicy, on servers to request scanning during
application installation and server startup. To learn more about annotations scanning, see the JAX-WS
annotations information.

Chapter 25. Administering web services (generally applicable) 2705



Using a third-party JAX-WS web services engine
In certain situations you might need to set up a third-party JAX-WS web services engine. For example,
you must set up a third-party JAX-WS web services engine if you need to deploy applications that use a
single runtime across various application servers such as WebSphere Application Server, JBoss, and
WebLogic, or if you want to build JAX-WS web services applications using third party JAX-WS run-times
such as CXF, Axis2, and Metro.

Before you begin

Use of a third-party JAX-WS runtime has limitations. It also requires mandatory configuration changes, and
in some cases, it requires manual intervention to resolves issues that occur during deployment and when
you run the application. These limitations and issues vary based on the third-party JAX-WS runtime you
decide to use. You should understand the limitations for the third-party JAX-WS runtime you are preparing
to use before you configure your system to use that implementation.

The following limitations exist regardless of which third-party JAX-WS implementation you use:

v The WebSphere Application Server runtime restricts usage of application modules that use both the
JAX-WS implementation provided with WebSphere Application Server, and an external JAX-WS
implementation in the same application EAR file. You must use either the JAX-WS implementation
provided with WebSphere Application Server or the external implementation in a single application EAR
file. This limitation ensures that the runtime WebSphere Application Server does not conflict with the
external third-party JAX-WS implementation.

v You must remove any conflicting JAR files from your application library before you deploy an application
that uses an external JAX-WS implementation. Most of the external third-party JAX-WS runtimes include
some JAR file libraries that are already installed on WebSphere Application Server. This situation
causes conflicts in your application library.

v After an application that uses a third-party JAX-WS runtime is deployed on WebSphere Application
Server, it is not recognized as a service client or provider. Therefore, you cannot attach application level
policy sets to these applications. You must rely on external runtimes support quality of service.
Following is a list of WebSphere Application Server features that are not available if you decide to
deploy and run application that uses third-party JAX-WS implementations:
– WS-Security, WS-RM, and WS-Transactions policy sets
– WSDM
– JNDI lookup to retrieve JAX-WS Service or Port Instance.

gotcha: Even though IBM supports the enablement of third party JAX-WS runtimes to run on WebSphere
Application Server, and ensures the successful deployment of applications that use such
runtimes, IBM does not provide support for resolving JAR file conflict problems, or any problem
that a stack trace indicates is in the third party code.

About this task

When you deploy an application EAR file with a third-party JAX-WS implementation on WebSphere
Application Server, the WebSphere Application Server runtime must ensure the use of the third-party
engine, and disable the use of the existing WebSphere Application Server JAX-WS web services engine.

WebSphere Application Server does not claim support for any of the third-party JAX-WS runtimes, but has
tested the deployment and execution of applications that use such runtimes.

You must complete the following steps before you can use an external JAX-WS runtime in an application.

Procedure
1. Set the class loader policy to Classes loaded with local class loader first (parent last) at the

module level.

2706 Administering WebSphere applications



Changing the class loader policy to parent last ensures that the external third-party JAX-WS runtime
and their dependent library JAR files are first in the class loader search path, thereby ensuring that the
third-party implementation is used instead of the WebSphere Application Server.

a. In the administrative console, click Applications > Application Types > WebSphere enterprise
applications > application_name > Class loading and update detection.

b. Under Class reloading options, select Override class reloading settings for web and EJB
modules .

c. Under Class loader order, select Class loader order property to Classes loaded with local
class loader first (parent last).

a. Click OK, and then Save to save your changes.

2. Turn off web services annotation scanning.

Annotation scanning can be turned off at the application level or at the server level.

To turn off annotation scanning at the application level, set the DisableIBMJAXWSEngine property in
the META-INF/MANIFEST.MF of a WAR file or EJB module to true. Example:

Manifest-Version: 1.0
DisableIBMJAXWSEngine: true

To turn off web services annotation scanning at the server level:

a. In the administrative console, go to the Custom properties page for the Java virtual machine.

Servers > Server Types > WebSphere application servers > server_name, and then,
under Server Infrastructure, click Java and process management > Process definition > Java
virtual machine > Custom properties

b. Set the com.ibm.websphere.webservices.DisableIBMJAXWSEngine property to true

If this property does not already exist for your configuration, click New, and add
com.ibm.websphere.webservices.DisableIBMJAXWSEngine in the Name field and true in the Value
field.

Results

What to do next
v Deploy and run an application EAR file with a third-party JAX-WS implementation on WebSphere

Application Server.

Deploying web services client applications
After you have created an enterprise archive (EAR) file for the web services client application, you can
deploy the web services client application into the Application Server.

Before you begin

To deploy a Java-based web services client, you need an enterprise application, also known as an
enterprise archive (EAR) file that is configured and enabled for web services.

A Java API for XML-Based Web Services (JAX-WS) application is packaged as a web application archive
(WAR) file or a WAR module within an Enterprise Archive (EAR) file. A JAX-WS application does not
require additional bindings and deployment descriptors for deployment whereas a Java API for XML-based
RPC (JAX-RPC) web services application requires you to add additional bindings and deployment
descriptors for application deployment. JAX-WS is much more dynamic, and does not require any of the
static data generated by the deployment step required for deploying JAX-RPC applications. For JAX-RPC
web services clients, you must configure the client deployment descriptors.

Chapter 25. Administering web services (generally applicable) 2707



About this task

You can use either the administrative console or the wsadmin scripting tool to deploy an EAR file. If you are
installing an application containing web services by using the wsadmin command, specify the -deployws
option for JAX-RPC applications.

Use the wsdeploy command only with JAX-RPC applications. The wsdeploy command is not applicable for
JAX-WS applications.

If you are installing an application containing web services by using the administrative console, select
Deploy WebServices in the Install New Application wizard. Read about installing a new application for
more information on using the administrative console.

The following actions deploy the EAR file with the wsadmin command:

Procedure
1. Start install_root/bin/wsadmin from a command prompt.

2. Deploy the EAR file.

v For JAX-WS web service applications, enter the $AdminApp install EARfile
"-usedefaultbindings" command at the wsadmin prompt.

v For JAX-RPC web service applications, enter the $AdminApp install EARfile
"-usedefaultbindings -deployws" command at the wsadmin prompt.

Results

You have a deployed a web service client in the application server runtime environment.

What to do next

Test the web services client. You can now test a web services-enabled managed client EAR file or an
unmanaged client JAR file.

Making deployed web services applications available to clients
You can publish WSDL files to the file system. If you are a client developer or a system administrator, you
can use WSDL files to enable clients to connect to web services.

Before you begin

The publish WSDL administrative console panel supports both JAX-RPC and JAX-WS services. The
publish WSDL panel generates a compression file that contains WSDL files for all modules in an
application that contains JAX-WS or JAX-RPC web services. Read about providing the HTTP endpoint
URL information to learn how the URL information affects the content of the published WSDL.

To publish a Web Services Description Language (WSDL) file you need an enterprise application, also
known as an enterprise archive (EAR) file, that contains a Web services-enabled module and has been
deployed into WebSphere Application Server. To learn how to deploy web services, see the deploying web
services applications onto application servers information.

About this task

The purpose of publishing the WSDL file is to provide clients with a description of the web service,
including the URL identifying the location of the service.

2708 Administering WebSphere applications



After installing a web services application, and optionally modifying the endpoint information, you might
need WSDL files containing the updated endpoint informations to make deployed web services application
to be available to clients.

Before you publish a WSDL file, you can configure web services to specify endpoint information in the
form of URL fragments to enable full URL specification of WSDL ports. Refer to the tasks describing
configuring endpoint URL information.

The WSDL files for each web services-enabled module are published to the file system location you
specify. You can provide these WSDL files to clients that want to invoke your Web services.

You can specify endpoint information for HTTP ports, for Java Message Service (JMS) ports, or you can
directly access enterprise beans that are acting as web services.

Procedure
1. Configure the web services client bindings.

2. Configure the URL endpoint information for HTTP bindings. Do one of the following depending on what
kind of bindings you are using:

v Configure the URL endpoint information for JMS bindings.

3. Externalize or publish the WSDL file out of the application. You can complete this task in the following
ways:

v Publish a WSDL file with the wsadmin tool.

What to do next

Apply security to your web services. To learn more, see the securing web services applications using
message level security information.

Configuring web services client bindings
When a web services application is deployed into WebSphere Application Server, an instance is created
for each application or module. The instance contains deployment information for the web module or
Enterprise JavaBeans (EJB) module, including client bindings.

Before you begin

Deploy a web service into your WebSphere Application Server instance. Read about deploying web
services applications onto application servers.

You must know the topology of the URL endpoint address of the web services servers and which web
service the client depends upon. You can view the deployment descriptors in the administrative console to
find the topology information. To learn more, see the View web services server deployment descriptors
information.

About this task

The client bindings define the Web Services Description Language (WSDL) file name and preferred ports.
The relative path of a web service in a module is specified within a compatible WSDL file that contains the
actual URL to be used for requests. The address is only needed if the original WSDL file did not contain a
URL, or when a different address is needed. For a service endpoint with multiple ports, you need to define
an alternative WSDL file name.

The following steps describe how to edit bindings for a web service after these bindings are deployed on a
server. When one web service communicates with another web service, you must configure the client
bindings to access the downstream web service.

Chapter 25. Administering web services (generally applicable) 2709



To configure client bindings through the administrative console:

Procedure
1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Manage Modules >
module_instance > Web services client bindings.

3. Find the web service you want to update.

The web services are listed in the Web Service field.

4. Select the WSDL file name from the drop down box in the WSDL file name field.

5. Click Edit in the Preferred port mappings field to configure the default port to use.

a. Specify the port type and the preferred ports in the Port type and Preferred ports fields.

Configuring the preferred port enables you to select an optimal port implementation use non-SOAP
protocols. See the RMI-IIOP web services using JAX-RPC information to learn more about using
non-SOAP protocols.

b. Click Apply and OK.

6. Click Edit in the Port information field to configure the request timeout, the overridden endpoint, and
the overridden binding namespace for a port.

Configuring the request timeout accommodates complex topologies that can have multiple cascaded
Web services that involve multiple hops or long-running services.

You can configure Timeout values based on observed behavior of the overall system as integration
proceeds. For example, a web service client might time out because of changing network conditions or
the performance of an external web service. When you have applications containing web services
clients that timeout, you can change the request time out values for the clients.

You can specify an endpoint URL to override the current endpoint. A client invoking a request on this
port uses this endpoint instead of the endpoint specified in the WSDL file. You can specify the
Overridden endpoint URL value for both Java API for XML-Based Web Services (JAX-WS) clients
and Java API for XML-based RPC (JAX-RPC) clients.

Note: The Overridden endpoint URL field is applicable for both JAX-WS and JAX-RPC clients. The
other fields on this administrative console page are only applicable for JAX-RPC clients.

a. Click Apply and OK.

Results

Your web service client bindings are configured.

What to do next

Now you can finish any other configurations, start or restart the application, and verify the expected
behavior of the web service.

Web services client bindings:

The client bindings define the Web Services Description Language (WSDL) file name, preferred ports and
other port information. Use this page to specify the client bindings and the port mappings for the web
services in a module.

A web service can specify the relative path within the module of a compatible WSDL file containing the
actual URL to be used for requests. The relative path only needs to be specified if the original WSDL file
does not contain a URL or when a different URL is needed. For a service endpoint with multiple ports
defined, a preferred mapping specifies the default port to use for a port type.

To view this administrative console page, complete the following steps:

2710 Administering WebSphere applications



1. Click Applications > Application Types > WebSphere enterprise applications > resource_name .

2. Click Manage Modules > module_name > Web services client bindings.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

Web service:

Identifies the name of this web service. A module can contain one or more web services.

EJB:

For EJB modules, identifies the name of the EJB.

WSDL file name:

Specifies the WSDL file name, which is relative to the module. Locate the WSDL file name in the drop
down menu.

Preferred port mappings:

Specifies and manages the preferred port type mapping for a web service when a particular port type is
requested.

Click Edit to edit the preferred port mapping information on the Preferred port mappings page.

Port information:

Specifies additional configuration information for the ports of this web service.

Click Edit to edit the port information on the Port information page. You can set a request timeout, override
an endpoint and override a binding namespace for each client port.

Preferred port mappings:

Use this page to view and manage a preferred portType mapping for a web service.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

When you have multiple ports that reference the same portType (service endpoint interface), a preferred
port specifies the port to use when the Service.getPort(Class SEI) method is called with only the service
endpoint interface.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage Modules > module instance > Web services
client bindings > Edit > preferred_port_instance.

portType:

Specifies the portType.

The preferred port and the portType values are both of the type java.xml.namespace.QName.

Preferred port:

Specifies the preferred port to be associated with a particular portType. The Service.getPort(Class)
method returns the preferred port associated with the specified service endpoint interface class (portType).

Chapter 25. Administering web services (generally applicable) 2711



The preferred ports available are listed, as well as a value of None, which indicates no preferred port is
selected.

Web services client port information:

Use this page to specify a request timeout, override an endpoint, and override a binding namespace for a
web services client port.

A web service can have multiple ports. You can view and configure the port attributes for each defined
web service port. The web services are listed on the web services client bindings page.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications > resource_name .

2. Click Manage Modules > module_name > Web services client bindings.

3. Click Edit under Port Information.

This administrative console page applies to both Java API for XML-Based Web Services (JAX-WS) and
Java API for XML-based RPC (JAX-RPC) web services. The Overridden endpoint URL field is the only
field supported for JAX-WS clients. The other fields are not applicable for JAX-WS clients.

Port:

Specifies the name of a port.

Request timeout:

Specifies the time, in seconds, that a web service client waits for a request to complete on this port. If a
timeout is not specified, the default request timeout for the client to wait is 300 seconds. If the value is set
at 0 (zero), the timeout used is the default value for the underlying transport mechanism. This field is
supported only for JAX-RPC clients.

A typical use for this setting is to customize the client's behavior when it is configured to use a JMS
transport to access a web service to make it wait longer for an expected completion. Depending upon
network conditions, or the nature of a web service implementation, it might be necessary to tune the
timeout.

Overridden endpoint URL:

Specifies the name of an endpoint that is used to override the current endpoint. A client invoking a request
on this port uses this endpoint instead of the endpoint specified in the WSDL file. This field is supported
for both JAX-WS and JAX-RPC clients.

If an assembled application contains a web service client that is statically bound, the client is locked into
using the implementation (service end point) identified in the WSDL file used during development.
Overriding the endpoint is an alternative to configuring the deployed WSDL attribute.

The overridden endpoint URI attribute is specified on a per port basis. It does not require an alternative
WSDL file within the module. The overridden endpoint URI takes precedence over the deployed WSDL
attribute. The client uses this value for the service end point URI or SOAP address, instead of the value in
the static client bindings.

Note: You can edit this field if you have managed clients or a mixture of both managed and unmanaged
clients. You cannot edit the field if you have unmanaged clients only.

If you do not want a request by an unmanaged JAX-WS client service to be sent to the endpoint URL that
is specified in this field, you can specify the

2712 Administering WebSphere applications



com.ibm.ws.websvcs.unmanaged.client.dontUseOverriddenEndpointUri Java virtual machine (JVM)
system property. For more information about this custom property, read about the Java virtual machine
custom properties.

Overridden binding:

Specifies the WSDL file binding namespace URI to use with this port, instead of the namespace in the
WSDL file. This binding does not need to exist in the WSDL file. A client invoking a request on this port
uses this binding instead of the binding specified in the WSDL file. An overridden binding namespace
cannot be specified unless an overridden endpoint is specified. This field is supported only for JAX-RPC
clients.

Configuring endpoint URL information for HTTP bindings
Configuring a service endpoint is necessary to connect Java API for XML-Based Web Services (JAX-WS)
and Java API for XML-based RPC (JAX-RPC) web services clients to any web services among the
components being assembled or to any external web services.

Before you begin

You can develop an HTTP accessible Java API for XML-based remote procedure call (JAX-RPC) or Java
API for XML Web Services (JAX-WS) web service when you have an existing JavaBeans object to enable
as a web service. For additional information, see the using HTTP to transport web services requests
information.

You can use either the administrative console or property files to configure and manage HTTP endpoint
URL fragments. To learn about using property files to set and manage the URL fragments, see the
information about working with web services endpoint URL fragment property files.

This task describes using the administrative console to configure endpoint URL information for HTTP
bindings.

About this task

You can specify HTTP URL prefixes for web services that are accessed through HTTP by using the
Provide HTTP endpoint URL information panel in the administrative console. The HTTP URL prefixes
provide location specific information and are used to form complete endpoint URLs that are included within
published WSDL files.

Note: The Provide HTTP panel in the administrative console displays modules that contain Java API for
XML-Based Web Services (JAX-WS) and Java API for XML-based RPC (JAX-RPC) web services.
You can use the Provide HTTP panel to provide URL information for both types of web services,
however, the panel does not indicate which type of service that you are working with.

To configure these prefixes with the administrative console:

Procedure
1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Provide HTTP endpoint URL
information.

3. Specify the URL prefixes for the web service.

In this step you specify the protocol (HTTP or HTTPS), as well as the host_name and port_number
used in the endpoint URL. You can select a prefix from a predefined list, by selecting the default HTTP
URL prefix, or you can use a custom HTTP URL prefix.

a. Select Default HTTP URL prefix or Custom HTTP URL Prefix.

Chapter 25. Administering web services (generally applicable) 2713



If you select the default HTTP URL prefix, a list provides you with a choice of endpoint URL
prefixes. The list is a combination of two sets of ports in the module: the virtual host ports and the
application server ports. Use a prefix from this list if the application server of the web service is
accessed directly. Select a value and also select the check box of the modules to use the prefix.

If you want to use a custom HTTP URL prefix, type the value in the field. Select the check box to
use in the prefix.

If you configure a custom HTTP URL prefix, , you must also configure the custom JVM property,
com.ibm.ws.webservices.enableHTTPPrefix in the administrative console and set the value to true.
You must restart the application server after this custom property has been defined so that this
property is used by the system. Setting this custom JVM property is required so the custom HTTP
endpoint prefix information is correctly displayed in the ?WSDL query that is returned from the
browser and the URL field of the WSDL file that is returned to the client. If this custom property is
not defined with the value of true, the custom HTTP URL prefix is not reflected in the WSDL file
that the service returns to the client. To learn how to configure this custom JVM property, see the
documentation on configuring additional HTTP transport properties using the JVM custom property
panel in the administrative console.

Note: The com.ibm.ws.webservices.enableHTTPPrefix custom property applies to JAX-RPC web
services applications only.

b. Click Apply.

The URL prefix, whether default or custom, is copied to the selected module HTTP URL prefix
field.

c. Click OK. The URL information is saved to your workspace.

Results

You have specified the partial URL information that is used to form the target endpoint addresses in the
WSDL files that are published using the Publish WSDL files panel.

What to do next

Configure any other URL endpoint information for Java Message Service (JMS) bindings and direct
Enterprise JavaBeans (EJB) access. Then publish the WSDL files to make the deployed web services
application available to clients.

Provide HTTP endpoint URL information:

Use this page to specify endpoint URL prefix information for web services accessed by HTTP. Prefixes are
used to form complete endpoint addresses included in published Web Services Description Language
(WSDL) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Provide HTTP endpoint URL information.

You can specify a portion of the endpoint URL to be used in each web service module. In a published
WSDL file, the URL defining the target endpoint address is found in the location attribute of the port's
soap:address element.

This administrative console page applies for Java API for XML-Based Web Services (JAX-WS) and Java
API for XML-based RPC (JAX-RPC) web services.

In addition to the using the administrative console, you can use property files to configure and manage
HTTP endpoint URL fragments. To learn about using property files to set and manage the URL fragments,
see the information about working with web services endpoint URL fragment property files.

2714 Administering WebSphere applications



Specify endpoint URL prefixes for web services:

Specifies the protocol (either http or https), host_name, and port_number to be used in the endpoint URL.

You can select a prefix from a predefined list using the HTTP URL prefix or Custom HTTP URL prefix
field.

The URL prefix format is protocol://host_name:port_number, for example, http://myHost:9045. The
actual endpoint URL that is contained in a published WSDL file consists of the prefix followed by the
module's context-root and the web service url-pattern, for example, http://myHost:9045/services/
myService.

Select default HTTP URL prefix:

Specifies the drop down list associated with a default list of URL prefixes. This list is the intersection of the
set of ports for the module's virtual host and the set of ports for the module's application server. Use items
from this list if the web services application server is accessed directly.

To set an HTTP endpoint URL prefix, select Select default HTTP URL prefix and select a value from the
drop down list. Select the check box of the modules that are to use the prefix and click Apply. When you
click Apply, the entry in the Select default HTTP URL prefix or Select custom HTTP URL prefix fields,
depending on which is selected, is copied into the HTTP URL prefix field of any module whose check box
is selected.

Select custom HTTP URL prefix:

Specifies the protocol, host, and port_number of the intermediate service if the web services in a module
are accessed through an intermediate node, for example the web services gateway or an IHS server.

To set a custom HTTP endpoint URL prefix, you must also configure the custom JVM property,
com.ibm.ws.webservices.enableHTTPPrefix in the administrative console and set the value to true. Setting
this custom JVM property is required so the custom HTTP URL is correctly populated in the URL field of
the WSDL file that is returned to the client. If this custom JVM property is not configured, the custom
HTTP URL prefix is not in the URL field in the copy of the WSDL file that the service returns to the client.
To learn how to configure this custom JVM property, see the documentation on configuring additional
HTTP transport properties using the JVM custom property panel in the administrative console. You must
restart the application server after this custom property has been defined so that this property is used by
the system.

After the com.ibm.ws.webservices.enableHTTPPrefix custom JVM property is configured, select Select
custom HTTP URL prefix and enter a value. Select the check box of the modules that are to use the
prefix and click Apply. When you click Apply, the entry in the Select default HTTP URL prefix or Select
custom HTTP URL prefix fields, depending on which is selected, is copied into the HTTP endpoint URL
prefix field of any module whose check box is selected.

Note: The com.ibm.ws.webservices.enableHTTPPrefix custom property applies to JAX-RPC web services
applications only.

Configuring endpoint URL information for JMS bindings
WebSphere Application Server supports the use of the Java Message Service (JMS) API to transport web
services requests, as an alternative to using HTTP.

Before you begin

The application server supports use of the Java Message Service (JMS) API to transport web services
requests, as an alternative to HTTP transport. Read about using the Java Message Service (JMS) to

Chapter 25. Administering web services (generally applicable) 2715



transport web services requests to learn more about how web service clients and servers can
communicate through JMS queues and topics instead of through HTTP connections.

You can use either the administrative console or property files to configure and manage JMS endpoint
URL fragments. To learn about using property files to set and manage the URL fragments, see the
information about working with web services endpoint URL fragment property files.

This task describes using the administrative console to configure endpoint URL information for JMS
bindings.

About this task

Configuring a service endpoint is necessary to connect web service clients to any web services among the
components being assembled or to any external web services. You can configure the endpoint URL
information for JMS during application installation

In this task, enter the JMS endpoint URL prefix to use for each web service-enabled Enterprise JavaBeans
(EJB) Java archive (JAR) file that belong to the application. The JMS endpoint URLs are included in the
Web Services Description Language (WSDL) files published for clients to use.

You can specify HTTP URL prefixes for web services that are accessed through HTTP by using the
Provide HTTP endpoint URL information panel in the administrative console. These prefixes are used to
form complete endpoint addresses that are included in WSDL files when published.

You can specify JMS URL prefixes by using the Provide JMS and EJB endpoint URL information panel in
the administrative console during or after application installation.

This task applies for Java API for XML-Based Web Services (JAX-WS) and Java API for XML-based RPC
(JAX-RPC) web services.

To configure JMS URL prefixes:

Procedure
1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Provide JMS and EJB
endpoint URL information.

3. Locate the list of web services modules that are accessible through JMS transport.

4. Type the JMS URL fragment in the URL fragment field. Enter a URL fragment that is a prefix to the
initial URL part that is obtained by examining the deployment information of the Web service. See the
usage scenario following this task for more information.

The value that you enter is used to define the location attribute of the port soap:address element within
the WSDL file that is published using the application_name_ExtendedWSDLFiles.zip or the
application_name_WSDLFiles.zip file on the Publish WSDL zip files panel.

Results

You have a web service that is accessible through the JMS transport and configured with JMS bindings.

Example

Suppose an application called StockQuoteService contains an EJB JAR file that is named StockQuoteEJB,
which contains one or more web services that are accessible through the JMS transport.

2716 Administering WebSphere applications



See the using SOAP over Java Message Service to transport web services information to review the
example that defines a queue with the Java Naming and Directory Interface (JNDI) name of
jms/StockQuote_Q, and a connection factory with the JNDI name of jms/StockQuote_CF, for your
application.

In this example, you specify the following string as the JMS URL prefix within the Provide JMS and EJB
endpoint URL information panel:
jms:/queue?destination=jms/StockQuote_Q&connectionFactory=jms/StockQuote_CF

The WSDL publisher uses this partial URL string to produce the actual JMS URL for each port component
that is defined in the module. The targetService=<port_name> string is added to the end of the JMS URL,
for example:
jms:/queue?destination=jms/StockQuote_Q&connectionFactory=jms/StockQuote_CF&targetService=getQuote

The published WSDL file is used by clients to invoke the web service.

What to do next

Publish the WSDL files to make the deployed web services application available to clients.

Provide JMS and EJB endpoint URL information:

Use this page to specify Java Message Service (JMS) and Enterprise JavaBeans (EJB) endpoint URL
fragments for web services accessed through SOAP and Java Message Service (JMS) or directly as
enterprise beans. Fragments are used to form complete endpoint addresses included in published Web
Services Description Language (WSDL) files.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Provide JMS and EJB endpoint URL information.

You can specify a fragment of the endpoint URL to be used in each web service module. In a published
WSDL file, the URL defining the target endpoint address is found in the location attribute of the port's
soap:address element.

If you are using web services modules that are configured to use JMS or configured to access enterprise
beans directly, these modules are listed on this panel.

This administrative console page applies for Java API for XML-Based Web Services (JAX-WS) and Java
API for XML-based RPC (JAX-RPC) web services.

In addition to the using the administrative console, you can use property files to configure and manage
JMS and EJB endpoint URL fragments. To learn about using property files to set and manage the URL
fragments, see the information about working with web services endpoint URL fragment property files.

URL fragment for JMS:

Specifies a URL fragment for web services accessed through a JMS transport. You can enter a value that
is used to define the soap:address of a web service. When WSDL files are published, a URL is formed
using this fragment and is contained in the WSDL files.

The URL fragment that is entered as a value is a prefix to which the targetService property is appended to
form a complete JMS URL endpoint. The default value is obtained by examining the installed service's
deployment information, for example, jms:jndi:jms/MyQueue&jndiConnectionFactoryName=jms/MyCF.

This information is obtained from the configured JMS endpoint for the web service, which is a Message
Driven Bean (MDB) defined by the endpointEnabler command-line tool. You can modify the URL

Chapter 25. Administering web services (generally applicable) 2717



fragment, for example, by adding properties. The URL fragment is combined with the targetService
property to form the complete URL, for example, jms:jndi:jms/MyQueue&jndiConnectionFactoryName=jms/
MyCF&priority=5&targetService=GetQuote.

URL fragment for EJB:

Specifies a URL fragment for web services accessed through an EJB binding. You can enter a value used
to define the location attribute of the port's generic:address element of a Web service. This port address
is contained in the WSDL compression file when the compression file is published using the
application_name_ExtendedWSDLFiles.zip field on the Publish WSDL zip file panel.

The URL fragment value entered is a suffix, which is appended to the initial part of the URL obtained by
examining the web service's deployment information. For example, the following URL fragment can be
obtained from the EJB's deployment information: wsejb:/
com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome.

In this case, you can enter the following information in the URL fragment field,
jndiProviderURL=corbaloc:iiop:myhost.mycompany.com:2809, which results in this endpoint URL,
wsejb:/com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome
&jndiProviderURL=corbaloc:iiop:myhost.mycompany.com:2809.

Configuring endpoint URL information to directly access enterprise beans
WebSphere Application Server supports directly accessing an enterprise bean as a web service, as an
alternative to using HTTP or Java Message Service (JMS) to transport requests between the server and
the client. The Enterprise JavaBeans (EJB) module that is used as a web service contains a Web Services
Description Language (WSDL) file that contains EJB bindings.

Before you begin

To learn more about the process of directly accessing an enterprise bean as a web service, see the using
WSDL EJB bindings to invoke an EJB from a JAX-RPC web services client.

You can use either the administrative console or property files to configure and manage EJB endpoint URL
fragments. To learn about using property files to set and manage the URL fragments, see the information
about working with web services endpoint URL fragment property files.

This task describes using the administrative console to configure endpoint URL information to directly
access enterprise beans.

About this task

Configuring a service endpoint is necessary to connect web service clients to any web services among the
components being assembled or to any external web services.

You can specify web address endpoints of the enterprise bean for web services that are accessed directly
by EJB bindings using the Provide JMS and EJB endpoint web address information panel in the
administrative console.

If you have modules that are configured for using direct EJB access, the modules are listed on the Provide
JMS and EJB endpoint web address information panel in the administrative console. The EJB endpoint is
only available in the WSDL that is found in the application_name_ExtendedWSDLfiles.zip file.

You can specify a fragment of the endpoint web address for the web services in each module.

To configure the web address endpoints of the enterprise bean with the administrative console:

2718 Administering WebSphere applications



Procedure
1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Provide JMS and EJB
endpoint URL information.

3. Locate the list of EJB modules.

4. Select the application module.

5. Type the web address fragment in the URL fragment field.

Enter a web address fragment that is a suffix to the initial web address part that is obtained by
examining the web service deployment information. See the example following this task for more
information.

The value that you enter is used to define the location attribute of the port generic:address element
within the WSDL file that is published using the application_name_ExtendedWSDLFiles.zip file name
link on the Publish WSDL zip files panel. The zip file names are listed as links on the panel.

6. Click OK.

7. Click Save.

Results

You have configured endpoints of the enterprise bean for Web services that are accessed directly by EJB
bindings.

Example

The following example illustrates a web address fragment to enter in the URL fragment field.

The following web address information can be obtained from the deployment descriptor of an enterprise
bean:
wsejb:/com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome

Enter the following web address fragment in the URL fragment field:
jndiProviderURL=corbaloc:iiop:myhost.mycompany.com:2089

The results are shown in the following example:
wsejb:/com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome&jndiProviderURL=
corbaloc:iiop:myhost.mycompany.com:2089

What to do next

Provide a description of the web service to the service requestor by publishing WSDL files. To learn more,
read about making deployed web services applications available to clients.

Publishing WSDL files using the administrative console
You can publish a Web Services Description Language (WSDL) file using the WebSphere Application
Server administrative console.

Before you begin

Before completing this task, you need to install or deploy the web service. After deployment, configure the
URL endpoint tasks for your transport:

v Configure endpoint URL information for HTTP bindings

v Configure endpoint URL information for JMS bindings

v Configure endpoint URL information to directly access enterprise beans

Chapter 25. Administering web services (generally applicable) 2719



About this task

By publishing a WSDL file, you are providing clients with a description of the web service, including the
URL identifying the location of the service.

The WSDL files in each web services-enabled module are published to the file system location you
specify. You can provide these WSDL files in the development and configuration process of the web
service clients so they can invoke your web services.

This task applies for Java API for XML-Based Web Services (JAX-WS) and Java API for XML-based RPC
(JAX-RPC) web services.

To learn about more ways to publish WSDL files, see the making deployed web services applications
available to clients information.

To publish an application's WSDL file with the administrative console:

Procedure
1. Open the administrative console.

2. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

3. Under Web Services Properties, click Publish WSDL files. This takes you to the Publish WSDL zip
files page.

4. Click the WSDL compression file to download. The compression file contains the application's
published WSDL files. The compression file ExtendedWDLFiles.zip contains EJB binding information. It
can also contain JMS or HTTP binding information. The compression file WSDLFiles.zip only contains
JMS or HTTP binding information.

What to do next

Apply security to your web services. To learn more, see the securing web services applications using
message level security information.

Publish WSDL compressed files settings:

Use this page to publish Web Services Description Language (WSDL) files.

This administrative console page applies for Java API for XML-Based Web Services (JAX-WS) and Java
API for XML-based RPC (JAX-RPC) web services.

The publish WSDL panel generates a compressed file that contains WSDL files for all modules in an
application that contains a JAX-WS or JAX-RPC web service. Read about providing the HTTP endpoint
URL information to learn how the URL information affects the content of the published WSDL.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Publish WSDL files.

When you click OK, a panel showing one or several compressed file names displays. Each compressed
file contains a WSDL file that represents the web services-enabled modules in the application. When you
select a compressed file to publish, a dialogue displays from which you can choose where to create the
compressed file. Within the published compressed files, the directory structure is application_name/
module_name/[META-INF|WEB-INF]/wsdl/wsdl_file_name.

2720 Administering WebSphere applications



In a published WSDL file, the location attribute of a port's soap:address element contains the endpoint
URL through which the web service is accessed. Using the Provide HTTP endpoint URL information
and the Provide JMS and EJB endpoint URL information panels, configure the endpoint URLs to be
used for the web services in each module.

application_name_WSDLFiles.zip:

Specifies the application_name_WSDLFiles.zip file containing the WSDL that describes web services that
are accessible by standard SOAP-based ports.

application_name_ExtendedWSDLFiles.zip:

Specifies the application_name_ExtendedWSDLFiles.zip file containing the WSDL file that describes the
web services available, including SOAP-based and non-SOAP based (for example, EJB) ports.

If there are no web services configured for direct EJB access, this compressed file name is not displayed.
Do not use this compressed file if you want to produce a WSDL file compliant to standards.

Publishing WSDL files using a URL
You can publish a Web Services Description Language (WSDL) file using a URL.

Before you begin

Before you can publish a WSDL file using a URL, ensure the web services-enabled application is installed
and running.

The files referenced by the <wsdl-file> element in the webservices.xml might import other WSDL or XML
Schema Definition (XSD) files. Typically, all WSDL or XSD files are initially placed into the META-INF/wsdl
directory when using Enterprise JavaBeans (EJB) or the WEB-INF/wsdl directory when using JavaBeans. If
your WSDL or XSD files are not placed in one of these directories, the file referenced by the <wsdl-file>
and its imported files are copied to the wsdl directory for publishing purposes.

There are two different forms of URL query strings. The first appends /wsdl to the service and returns only
HTTP and JMS bindings. The second appends /extwsdl to the service and returns the extended WSDL
file, including HTTP, JMS, and EJB bindings. If a WSDL file contains only EJB bindings and the /wsdl
query is used, an error message displays in the browser saying there are no HTTP or JMS bindings in the
WSDL file. The error message suggests using the /extwsdl query instead. Publishing a WSDL file using a
URL requires that the application have a web module; either provided by the application or in the form of
an HTTP router module. If an EJB application contains a WSDL file with only JMS or EJB Web service
bindings, the endptEnabler command can be used to add an HTTP router module to the application.

Note: Only HTTP URLs are supported for publishing.

About this task

To publish a WSDL file using a URL:

Procedure
1. Retrieve the outer-most WSDL file. The outer-most WSDL file is the WSDL file defined by the

<wsdl-file> element in the webservices.xml file.

Each web service has an endpoint address, like http://example.com/services/stockquote. You can
retrieve the outer-most WSDL file (defined by the <wsdl-file> element within the webservices.xml file)
by appending the string “/wsdl” or “/wsdl/” to the endpoint address, for example, http://example.com/
services/stockquote/wsdl.

Chapter 25. Administering web services (generally applicable) 2721



2. Retrieve the imported WSDL files. When the outer-most WSDL file imports other WSDL or XSD files,
these imported files can be retrieved by appending the relative path to the URL, which is used to
retrieve the outer-most WSDL file. This is also true for WSDL files that import other files. This process
is similar to the use of relative hyperlinks in HTML documents. If an HTML document contains a
hyperlink to other documents, the relative path is appended to create the URL to access the
hyperlinked documents.

Example

Suppose you have an application with the following directory structure:
<module-root>/
WEB-INF/
webservices.xml /* the <wsdl-file> element points to "WEB-INF/wsdl/fooImpl.wsdl"*/
web.xml
ibm-webservices-bnd.xml

wsdl/
fooImpl.wsdl /* imports foo.wsdl which is an interface wsdl */
foo.wsdl /* type definition for the interface */

If the SOAP address for the foo service is http://examples.com:9080/services/foo, the simple way to
retrieve the foo service's outer-most WSDL is with the following form: http://examples.com:9090/
services/foo/wsdl or http://examples.com:9090/services/foo/wsdl/. The URL is redirected to
http://examples.com:9090/services/foo/wsdl/fooImpl.wsdl, where fooImpl.wsdl is the name of the
outer-most WSDL file.

Since the fooImpl.wsdl file has the import <import namespace="http://examples.com/foo"
location="a/b/foo.wsdl>, use the URL http://examples.com:9090/services/foo/wsdl/a/b/foo.wsdl to
obtain the foo.wsdl file.

Running an unmanaged web services JAX-RPC client
WebSphere Application Server Version 8.5 and the Application Client for WebSphere Application Server
Version 8.5 provides a thin Java Platform, Standard Edition 6 (Java SE 6) web services client runtime
implementation that is based on the Java API for XML-based RPC (JAX-RPC) 1.1 specification. The Thin
Client for JAX-RPC with WebSphere Application Server is a stand-alone Java SE 6 client environment that
enables running unmanaged JAX-RPC web services client applications in a non-WebSphere environment
to invoke web services that are hosted by the application server.

Before you begin

Note: You can use the Thin Client for JAX-RPC with WebSphere Application Server as a stand-alone
client run time in a pure Java SE environment, or within an OSGi environment. The Thin Client for
JAX-RPC is not supported when running within WebSphere Application Server or WebSphere
Application Client environments. In this version of the application server, with the exception of the
Administration Thin Client, other Thin Client run times provided with the application server can also
reside in the CLASSPATH and coexist with the Thin Client for JAX-RPC.

Before you can set up a JAX-RPC unmanaged client environment you will need to obtain the Thin Client
for JAX-RPC Java archive (JAR) file. To obtain the Thin Client for JAX-RPC, you must either install the
application server or the application client.

The Thin Client for JAX-RPC JAR file, com.ibm.ws.webservices.thinclient_8.5.0.jar, is located in the
app_server_root\runtimes directory. Refer to the license agreements to ensure correct usage and for
limitations on copies of the Thin Client for JAX-RPC outside of the WebSphere environment.

The Thin Client for JAX-RPC is supported in the following environments:

v IBM Software Development Kits (SDKs) Version 6.0

2722 Administering WebSphere applications



v Sun Java Development Kit (JDK) Version 6.0 that are provided by IBM

v non-IBM SDKs Version 6.0 with this limitation:

– Xerces limitation on non-IBM SDKs

If you are using a non-IBM SDK, because of dependencies with the Xerces implementation, you will
need to download Xerces-J version 2.6.2 and set it in the classpath before attempting to run the Thin
Client for JAX-RPC.

– Equinox 3.6 OSGi runtime environments

About this task

Note: WS-Addressing is not supported for JAX-RPC web services in an unmanaged client environment. If
you need to use WS-Addressing, or a web service standard that relies on WS-Addressing, such as
WS-Notification, you must use the Thin Client for Java API for XML-based Web Services (JAX-WS)
instead. To learn how to setup and run the Thin Client for JAX-WS, see the Thin Client for JAX-WS
documentation.

Procedure
1. Configure the path. You can add the Java bin directories to your path by typing:

2. Configure the classpath.

export CLASSPATH=.:<your_web_services_thin_client_install_directory>/com.ibm.ws.webservices.thinclient_8.5.0.jar:
<your_application_jars>;$CLASSPATH

v If you are using a non-IBM SDK, obtain a Xerces xml-apis.jar and xercesImpl.jar from the
Xerces web site and configure the classpath definition.

export CLASSPATH=.:<your_Xerces_install_directory>/xml-apis.jar:<your_Xerces_install_directory>
\xercesImpl.jar:$CLASSPATH

3. Configure SSL for the client.

a. Add the following system properties to the Java command:
-Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props

You can obtain the ssl.client.props file from the WebSphere Application Server installation and
modify the file to suit your environment. You must, at a minimum, update the location of the
com.ibm.ssl.keyStore and com.ibm.ssl.trustStore key files in the ssl.client.props file to the
match location of your target environment. For example, use these SSL configuration settings when
running the application with a Sun JRE:

com.ibm.ssl.protocol=SSL
com.ibm.ssl.trustManager=SunX509
com.ibm.ssl.keyManager=SunX509
com.ibm.ssl.contextProvider=SunJSSE

com.ibm.ssl.keyStoreType=JKS
com.ibm.ssl.keyStoreProvider=SUN
com.ibm.ssl.keyStore=/home/user1/etc/key.jks

com.ibm.ssl.trustStoreType=JKS
com.ibm.ssl.trustStoreProvider=SUN
com.ibm.ssl.trustStore=/home/user1/etc/trust.jks

The key store file and trust store file must be created using the Java keytool utility before the
application runs. The automatic key file generation is not supported with a non-IBM product JRE.

4. Enter the following command to run your client application:

$JAVA_HOME/bin/java -Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props <your_client_application>

Chapter 25. Administering web services (generally applicable) 2723



Results

You have set up an unmanaged JAX-RPC client runtime environment that can be used to invoke web
services hosted on a WebSphere Application Server.

Running an unmanaged web services JAX-WS client
WebSphere Application Server provides a thin Java Platform, Standard Edition 6 (Java SE 6) web services
client runtime implementation that is based on the Java API for XML-based Web Services (JAX-WS) 2.2
specification. The Thin Client for JAX-WS with WebSphere Application Server is a stand-alone Java SE 6
client environment that enables running unmanaged JAX-WS web services client applications in a
non-WebSphere environment to invoke web services that are hosted by the application server.

Before you begin

Note: You can use the Thin Client for JAX-WS with WebSphere Application Server as a stand-alone client
run time in a pure Java SE environment, or within an OSGi environment. The Thin Client for
JAX-WS is not supported running within WebSphere Application Server or WebSphere Application
Client environments. In this version of the application server, with the exception of the
Administration Thin Client, other Thin Client run times provided with the application server can also
reside in the CLASSPATH and coexist with the Thin Client for JAX-WS.

Before you set up a JAX-WS unmanaged client execution environment, obtain the Thin Client for JAX-WS
Java archive (JAR) file. To obtain the Thin Client for JAX-WS, install WebSphere Application Server
Version 8.5 or the Application Client for WebSphere Application Server Version 8.5. The Thin Client for
JAX-WS JAR file, com.ibm.jaxws.thinclient_8.5.0.jar, is located in the app_server_root\runtimes
directory.

Copy the Thin Client for JAX-WS, com.ibm.jaxws.thinclient_8.5.0.jar file and the
endorsed_apis_8.5.0.jar files, to other machines to create a lightweight client environment that enables
communications with the product. Copies of the Thin Client for JAX-WS are subject to the same terms and
conditions of the license agreement for the WebSphere product where you obtained the Thin Client for
JAX-WS. Refer to the license agreements for correct usage and other limitations.

The Thin Client for JAX-WS is supported in the following environments:

v IBM Software Development Kits (SDKs) Version 6.0

v non-IBM SDKs V6.0 with the following limitation:

– Xerces limitation on non-IBM SDKs

You must download Xerces-J Version 2.6.2, and add the file to the classpath when setting up the
Thin Client for JAX-WS environment.

– WS-SecurityKerberos on non-IBM SDKs

WS-SecurityKerberos is not supported with the Sun JDK or other non-IBM SDKs. Applications
running in a Thin Client for JAX-WS environment that make use of WS-Security message level
protection and use Kerberos security tokens as described in the Web Services Security Kerberos
Token Profile 1.1 specification, do not correctly work on non-IBM JDKs. This limitation exists because
of a dependancy on the IBM JGSS provider that is only available within IBM SDKs.

v Equinox 3.6 OSGi runtime environments

About this task

Set up a Thin Client for JAX-WS environment by completing the following steps.

2724 Administering WebSphere applications



Procedure
1. Copy the Thin Client for JAX-WS JAR file, com.ibm.jaxws.thinclient_8.5.0.jar, to other machines to

create a lightweight client environment.

2. Use the Java Endorsed Standards Override Mechanism to override APIs that are available in the JDK
on your system.

Because the Thin Client for JAX-WS with WebSphere Application ServerVersion 8.5 requires APIs that
are more current than what is available in JDKs to support JAX-WS 2.2 and JAXB 2.2
implementations, you must override the default JDK APIs in use by your system by using the Java
Endorsed Standards Override Mechanism.

Copy the app_server_root\runtimes\endorsed\endorsed_apis_8.5.0.jar file into the default directory,
JAVA_JRE\lib\endorsed. Alternatively, you can use the java.endorsed.dirs property to specify a
directory of your choice. If you choose to use an alternative directory, it is a best practice to only
include the endorsed_apis JAR file.

3. Configure the path. Enter the following command to add the Java bin directories to your path:

4. Configure the classpath.

v Add the Thin Client for JAX-WS JAR file to the classpath definition.

Important: If the Thin Client is to use the Java Message Service (JMS), then all the JAR files that
are required must be in the classpath for JMS and for the client so that entries exist for
all the required files. Otherwise, required files will not be identified as installed and
ready for use.

export CLASSPATH=.:<your_jax-ws_thin_client_install_directory>/com.ibm.jaxws.thinclient_8.5.0.jar:
<your_application_jars>;$CLASSPATH

v If you are using a non-IBM SDK, obtain a Xerces xml-apis.jar file and xercesImpl.jar file from the
Xerces website, and configure the classpath definition.

export CLASSPATH=.:<your_Xerces_install_directory>/xml-apis.jar:<your_Xerces_install_directory>
\xercesImpl.jar:$CLASSPATH

5. Optional: Implement policy sets for your client.

6. Configure SSL for the client.

a. Add the following system properties to the Java command:
-Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props

You can obtain the ssl.client.props file from the WebSphere Application Server installation and
modify the file to suit your environment. You must, at a minimum, update the location of the
com.ibm.ssl.keyStore and com.ibm.ssl.trustStore key files in the ssl.client.props file to the
match location of your target environment. For example, use these SSL configuration settings when
running the application with a Sun JRE:

com.ibm.ssl.protocol=SSL
com.ibm.ssl.trustManager=SunX509
com.ibm.ssl.keyManager=SunX509
com.ibm.ssl.contextProvider=SunJSSE

com.ibm.ssl.keyStoreType=JKS
com.ibm.ssl.keyStoreProvider=SUN
com.ibm.ssl.keyStore=/home/user1/etc/key.jks

com.ibm.ssl.trustStoreType=JKS
com.ibm.ssl.trustStoreProvider=SUN
com.ibm.ssl.trustStore=/home/user1/etc/trust.jks

The key store file and trust store file must be created using the Java keytool utility before the
application runs. The automatic key file generation is not supported with a non-IBM product JRE.

7. Run your client application:

v Enter the following command if you have copied the endorsed_apis_8.5.0.jar file into the
JAVA_JRE\lib\endorsed default directory; for example:

Chapter 25. Administering web services (generally applicable) 2725



$JAVA_HOME/bin/java -Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props <your_client_application>

v Enter the following command if you have copied the endorsed_apis_8.5.0.jar file into a directory
other than the default JAVA_JRE\lib\endorsed directory; for example:

$JAVA_HOME/bin/java
-Djava.endorsed.dirs=<directory_that_includes_endorsed_apis_8.5.0.jar>
-Dcom.ibm.SSL.ConfigURL=file:///home/sample/ssl.client.props <your_client_application>

Results

You have set up an unmanaged JAX-WS client runtime environment to invoke web services hosted on a
WebSphere Application Server.

Testing web services-enabled clients
Once you have developed, assembled, deployed and configured your web service, you can test to confirm
your web service runs in the application server environment.

Before you begin

Before testing your web services Java client to confirm your web service runs in the WebSphere
Application Server environment, verify that the server endpoint specified in the client Web Services
Description Language (WSDL) file is running and available.

About this task

Tests are run differently depending on whether the client module is in a Java EE container or if the client is
running in the Thin Client for Java API for XML-based RPC (JAX-RPC) with WebSphere Application Server
application environment or the Thin Client for Java API for XML-Based Web Services (JAX-WS) with
WebSphere Application Server application environment.

Procedure
1. Test an unmanaged client JAR file by running your application with the java command.

For JAX-WS applications:
"$JAVA_HOME/bin/java"
-Djava.endorsed.dirs=<your_jax-ws_thin_client_install_directory>/endorsed_apis_8.5.0.jar
-classpath
"<your_JAX-WS_thin_client_install_directory>/runtimes/com.ibm.jaxws.thinclient_8.5.0.jar:
<list_of_your_application_jars_and_classes>"
<fully_qualified_class_name_to_run> <your_application_parameters>

The unmanaged client application runs.

2. Test a managed JAX-RPC client EAR file or an unmanaged JAX-WS client EAR file.

a. Run your client application with the launchClient command. The following example illustrates the
use of this command:

launchClient clientEar

Results

You have a web services-enabled client that is tested. Now you can add security measures to the web
service. Security measures are optional.

Administering deployed web services applications
You can administer deployed web services applications using the administrative console.

2726 Administering WebSphere applications



Before you begin

Before you can administer a web service application, you need to deploy your web service application.

About this task

You can use the administrative console to administer Java API for XML-Based Web Services (JAX-WS)
service provider or service client applications or Java API for XML-based RPC (JAX-RPC) web services.

Procedure
v Administer service providers. You can administer your service providers using the following ways:

– View service providers at the cell level using the administrative console. You can view the details of
your service provider, manage the policy sets for the service, its endpoints and operations, and
assign bindings for the policy set attachment at the cell level.

– View service providers at the application level using the administrative console. You can view the
details of your service provider, manage the policy sets for the service, its endpoints and operations,
and assign bindings for the policy set attachment at the application level.

– Manage policy sets and bindings for service providers. You can view the details of your service
provider, manage the policy sets for the service, its endpoints and operations, and assign bindings
for the policy set attachment.

– Manage policy sets and bindings for service providers at the application level using the
administrative console. You can manage policy sets for the provider, its endpoints, and operations,
and assign bindings for the policy set attachment at the application level.

– View WSDL document using the administrative console . You can view the WSDL document for your
JAX-WS application.

v Administer service clients. You can administer your service clients using the following ways:

– View service clients at the cell level . Your application server instance can have one or more
applications deployed on it that contain service clients. You can view a list of your service clients at
the cell level using the administrative console.

– View service clients at the application level . Your application server instance can have one or more
applications deployed on it that contains service clients. You can view the service client names that
are referenced in an application.

– Manage policy sets and bindings for service clients. You can view details of your service client
reference, manage the policy sets for the service, its endpoints and operations, and assign bindings
for the policy set attachment.

– Manage policy sets and bindings for service clients at the application level. You can manage policy
sets for your service client applications or its service references, endpoints, or operations and assign
bindings for the policy set attachment at the application level.

v View the deployment descriptors.. View the web services server and client deployment descriptors for a
deployed web services application. You can view the bindings in the deployment descriptors. The
deployment descriptors are required for JAX-RPC web services. You can optionally use the
webservices.xml deployment descriptor to augment or override application metadata specified in
annotations within your JAX-WS web services.

v Configure the scope of a web service port..(JAX-RPC applications only) When a web service
application is deployed into WebSphere Application Server, an instance is created for each application
or module. The instance contains deployment information for the web module or enterprise bean
module, including implementation scope and client bindings information. There are three levels of scope
that you can set: application, session and request.

v Suppress the compensation service Not all web servers are configured to handle SOAP messages
containing CoordinationContext elements. WebSphere Application Server allows you to configure a
custom property for the compensation service which processes a predefined list of Enterprise Java
Beans for which no CoordinationContext should be sent on web service requests.

Chapter 25. Administering web services (generally applicable) 2727



Overview of service and endpoint listeners
Using the administrative function of this product, you can control throughput by starting and stopping
individual service listeners and endpoint listeners. When you stop a service listener, this causes any
associated endpoint listeners to stop listening to any new inbound requests and the application server
rejects any new incoming requests for that service. Additionally, resources become free that can be used
to service requests that are already being processed for the service or to service new incoming requests
for other services.

Service listener

The service listener can be started or stopped. When a service listener is stopped, all the
endpoints for the service are stopped and new inbound requests are no longer processed. The
endpoints for the service send out 404 error message response code to indicate that the service
listener is currently stopped and cannot service new inbound requests. When the service listener
is started, all the endpoints for the service resume processing of new inbound requests.

Endpoint listener

The endpoint listener can be started or stopped. When a service endpoint listener is stopped, the
specific endpoint stops listening to any new inbound request. The requests that are already being
processed are not affected. The endpoint sends out a 404 error message response code to
indicate that the endpoint is currently stopped and cannot service a new, inbound request. When
the endpoint listener is started, the specific endpoint resumes listening on new inbound requests.
The state of a particular service endpoint does not impact the listening function of other endpoints
for the same service.

Administration of service and endpoint listeners
The administration function of the product is enhanced to support service and endpoint listeners. You can
use MBeans such as EndpointManager and the EndpointCentralManager to invoke service and endpoint
listeners.

After an application containing a web service is installed, you want to verify that the service is installed
correctly. You also want to monitor its service listener state, and update the listener state as needed to
control the throughput. One option is to use the collection view of service providers in the administrative
console of the product to locate the service provider of interest and observe its listener state.

If you do not want the listener state, then select the service and choose to start or stop the service
listener. As the system starts or stops the service listener, the status indicator for the service is updated to
show that it is started or stopped. This scenario helps you to throttle back traffic to a specific service as
needed but leaves the containing application and other services in the application running. See service
providers at the cell level using the administrative console. You can also reference service providers at the
application level using the administrative console.

Important: You can only start or stop the service listener using the administrative console.

Another option is to use MBeans. With MBeans, you can invoke the startListener or stopListener
operations in the EndpointCentralManager MBean or EndpointManager MBean to start or stop the listener
service. The administrative console option does not expose the function of starting or stopping the listening
state of a specific endpoint in a service. However, the MBeans option provides this capability. You can use
scripting to invoke the MBean operations to start or stop the endpoint listener.

EndpointCentralManager MBean

There is an EndpointCentralManager MBean instance in the deployment manager, AdminAgent,
and stand-alone server. The EndpointCentralManager MBean provides the administrative
convenience to start and stop the service or endpoint listeners across all the deployment targets
such as the cluster members in a cluster. You do not have to know the target servers for the
service application.

2728 Administering WebSphere applications



EndpointManager MBean

There is an EndpointManager MBean instance for each web services application module in a
server. This MBean instance is created when the application module is started. The MBean
instance is deleted when the module is stopped. The MBean provides the start and stop
operations to change the service and endpoint listener state. The MBean can also send a Java
Management Extension (JMX) notification whenever the listener state has changed.

Viewing service providers at the cell level using the administrative
console
You can use this administrative console page to view and manage your service providers at the cell level.

Before you begin

Before completing this task, you need to install one or more Java API for XML-Based Web Services
(JAX-WS).

About this task

You can view a list of your installed service providers, such as JAX-WS web services providers in a cell.
You can start or stop the service listener.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Procedure
1. Open the administrative console.

2. In the navigation pane, expand Services > Service providers.

3. Locate the web service of interest by name and the associated deployed asset in Deployed Asset
column.

4. [Optional] Click the service of interest in the Name column to view the detail of the service and
manage the policy sets and bindings for that service.

5. Click Start Listener or Stop Listener to start or stop the service listener. Starting the service listener
makes all the endpoints for the service provider available and ready to receive messages. Stopping the
listener makes all the endpoints for the service provider unavailable.

Results

When you finish this task, you have viewed the service providers at the cell level. You have also started or
stopped the service listener.

What to do next

Proceed to view service providers at the application level using the administrative console.

Service providers collection at the cell level
Use this page to view and manage service providers at the cell level. Java Application Programming
Interface (API) for XML-Based Web Services (JAX-WS) service providers are displayed in this view. Java
API for XML Remote Procedure Call (JAX-RPC) service providers are not displayed in this view.

To view a service provider using this administrative console page, perform the following steps:

1. Expand Services > Service Providers.

2. Locate the service of interest by name in the Name column.

Chapter 25. Administering web services (generally applicable) 2729



3. Click the service of interest in the Name column.

4. View the detail of the service.

To change the listening state of a service, perform the following steps:

1. Select the service of interest, and click Start Listener to start the listener service or click Stop
Listener to stop the listener service. Starting the service listener makes all the endpoints for the
service provider to be available and to receive messages. Stopping the listener makes all the
endpoints for the service provider unavailable.

2. [Optional] Select the deployed asset link in the Deployed Asset column to access the deployed asset
settings page.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Name:

Specifies the name of the service provider. The service, QName (Java class javax.xml.namespace.QName),
is displayed when you hover your mouse pointer over the Name field.

Type:

Specifies the type of service, such as a JAX-WS web service and Web Services Notification (WSN) client
service. You can filter by the type of service. If your service was migrated from the Feature Pack for Web
Services, you can only filter by the name of the service.

Deployed Asset:

Represents a Java Platform, Enterprise Edition (Java EE) application or a WS-Notification service point.

Table 249. Type of deployed asset. Indicates the type of deployed asset.
Type of deployed asset Description

Java EE application

WS-Notification Service point application

Status:

Indicates the status for the service listener.

Table 250. Status for the service listener. This table describes the status indicators for the deployed asset, service
endpoints and service listener.
Service listener status Description

Service endpoints are listening.

Service endpoints are running, but the listener control is not supported because of the characteristics of this service;
for example, the application is installed on a Feature Pack for Web Services server.

Either the deployed asset is partially started or the service endpoints are listening on some, but not all the target
servers.

The deployed asset is partially started and the listener control is not supported.

Service endpoints are not listening, but the deployed asset is running.

Service endpoints are not listening because the deployed asset is not running.

Service endpoints are not listening because the deployed asset is not running. Listener control is not supported.

2730 Administering WebSphere applications



Table 250. Status for the service listener (continued). This table describes the status indicators for the deployed
asset, service endpoints and service listener.
Service listener status Description

Deployed asset is partially stopped. Service endpoints are not listening.

Deployed asset is partially stopped. Service endpoints are not listening. Listener control is not supported because of
the characteristics of this service; for example, the application is installed on a Feature Pack for Web Services server.

Status cannot be determined.

Viewing service providers at the application level using the
administrative console
You can use this administrative console page to view and manage your service providers at the application
level.

Before you begin

Before completing this task, you need to install a Java API for XML-Based Web Services (JAX-WS) web
service.

About this task

You can view a list of your service providers, such as JAX-WS web services providers at the application
level. You can start the service listener to make all the endpoints for the service to be available and to
receive messages. You can also stop the service listener.

Procedure
1. Open the administrative console.

2. To view the service providers, click Applications > Application Types > WebSphere enterprise
applications >Service_provider_application_instance > Service providers.

3. [Optional] Click a module that contains a service to view the module information.

4. Depending on the current application status, click Start Listener or Stop Listener to start or stop the
service listener. Starting the service listener makes all the endpoints for the service available and ready
to receive messages. Stopping the listener makes all the endpoints for the service unavailable. See
Endpoint and service listeners overview.

Results

When you complete this task, you have viewed and managed the service providers at the application level.

What to do next

You can proceed to managing policy sets using the administrative console. You can click on a service
provider to manage the policy sets and bindings for that service.

Service providers collection at the application level
Use this page to view and manage service providers at the application level.

To view a service provider using this administrative console page, perform the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications
>Service_provider_application_instance > Service providers.

2. Locate the service of interest by name in the Name column.

3. Click the service of interest in the Name column.

Chapter 25. Administering web services (generally applicable) 2731



4. View the detail of the service.

To change the listening state of a service, perform the following steps:

1. Select the service of interest, and click Start Listener, to start the service listener or Stop Listener, to
stop the service listener. Starting the service listener makes all the endpoints for the service provider to
be available and to receive messages. Stopping the listener makes all the endpoints for the service
provider to be unavailable.

2. [Optional] Click a module name in the Module column to access the module detail page.

Name:

Specifies the name of the service provider. The service QName (Java class javax.xml.namespace.QName)
is displayed when you hover your mouse pointer over the Name field.

Type:

Specifies the type of service.

Module:

Specifies the name of the module that contains the service.

Status:

Indicates the status for the service listener.

Table 251. Status for the service listener. This table describes the status indicators for the deployed asset, service
endpoints and service listener.
Service listener status Description

Service endpoints are listening.

Service endpoints are running, but the listener control is not supported because of the characteristics of this
service; for example, the application is installed on a Feature Pack for Web Services server.

Either the deployed asset is partially started or the service endpoints are listening on some, but not all the target
servers.

The deployed asset is partially started and the listener control is not supported.

Service endpoints are not listening, but the deployed asset is running.

Service endpoints are not listening because the deployed asset is not running.

Service endpoints are not listening because the deployed asset is not running. Listener control is not supported.

Deployed asset is partially stopped. Service endpoints are not listening.

Deployed asset is partially stopped. Service endpoints are not listening. Listener control is not supported
because of the characteristics of this service; for example, the application is installed on a Feature Pack for Web
Services server.

Status cannot be determined.

Viewing the detail of a service provider and managing policy sets
using the administrative console
Use this administrative console task to view the detail of your service provider and to manage the policy
sets for the service, its endpoints and operations. You can also use this page to manage policy sets and
bindings or to access additional information for a Service Component Architecture (SCA) composition unit
for service providers.

2732 Administering WebSphere applications



Before you begin

Before completing this task, you need to install one or more Java API for XML-Based Web Services
(JAX-WS) or SCA artifacts.

About this task

You have developed a web service that contains all the necessary artifacts and deployed your web
services application into your application server instance. Now, you can attach or detach policy sets and
manage the associated bindings.

The policy set information is displayed in the Attached Policy Set column. If a policy set is directly
attached, then the policy set name appears; for example, WS-I RSP is displayed. If there is no policy set
attached, and a policy set is attached at a higher level, then the word inherited in parentheses is
appended to the policy set name, as the following example demonstrates: WS-I RSP (inherited). If there
is no policy set attached directly or at a higher level, then None is displayed.

Every attachment of a policy set to a service artifact has an assigned binding. The binding information is
displayed in the Binding column. The Binding column can contain the following values:

v Not applicable. There is no policy set attached, either directly or to a higher level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application-specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher level resource.

In Version 7.0 and later, there are two types of bindings, application specific bindings and general
bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are
specific to and constrained to the characteristics of the defined policy. Application specific bindings are
capable of providing configuration for advanced policy requirements, such as multiple signatures; however,
these bindings are only reusable within an application. Furthermore, application specific bindings have very
limited reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding and fully configure the bindings for each policy that you have
added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,
TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not
configured in the application specific bindings.

For service providers, you can only create application specific bindings by selecting Assign Binding >
New Application Specific Binding for service provider resources that have an attached policy set. See
service providers policy sets and bindings collection. Similarly, for service clients, you can only create
application specific bindings by selecting Assign Binding > New Application Specific Binding for
service client resources that have an attached policy set. See service client policy set and bindings
collection.

General bindings

General bindings were introduced in Version 7.0. These bindings can be configured to be used across a
range of policy sets and can be reused across applications and for trust service attachments. Though

Chapter 25. Administering web services (generally applicable) 2733



general bindings are highly reusable, they are however not able to provide configuration for advanced
policy requirements, such as multiple signatures. There are two types of general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general provider policy set bindings by accessing Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel or by accessing Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. See defining and managing service client or provider bindings. General provider policy set bindings
might also be used for trust service attachments.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Procedure
1. Open the administrative console.

2. In the navigation pane, expand Services > Service providers >Service_provider_application_instance
Service providers.

3. [Optional] Use the WSDL document link under the Additional Properties section to view the Web
Services Description Language (WSDL) for the service. The Application and Module links provide
access to the application and module settings page.

For SCA service providers, the Additional Properties section does not show the WSDL document
link, instead, there is a composition unit link. Click Composition unit to see the composition unit detail
page.

4. Select one or more service, endpoints and operations of interest and view the associated service,
endpoints and operations.

5. Do one or more of the following actions:

v Click Attach, to attach a policy to a selected service, endpoint or operation.

v Click Detach, to detach a policy set from a list of attached policy sets for a service, endpoint or
operation.

6. Click Assign Binding to select from a list of available bindings for the selected policy set attachment.
All the bindings are listed along with the following options:

Table 252. Binding descriptions. Use the descriptions of the default bindings for the selected policy set attachment.
Bindings Description

Default Specifies the default binding for the selected service, endpoint or operation. You can
specify client and provider default bindings to be used at the cell level or global
security domain level, for a particular server, or for a security domain. The default
bindings are used when an application specific binding has not been assigned to the
attachment. When you attach a policy set to a service resource, the binding is initially
set to the Default. If you do not specifically assign a binding to the attachment point
using this Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the runtime checks to see if the attachment includes a
binding. If so, it uses that binding. If not, the runtime checks in the following order and
uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding Select this option to create a new application specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If you
select more than one resource, ensure that all selected resources have the same
policy set attached.

Provider sample Select this option to use the Provider sample binding.

Provider sample V2 Select this option to use the Provider sample V2 binding when you are using either
the Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy sets.

2734 Administering WebSphere applications



Table 252. Binding descriptions (continued). Use the descriptions of the default bindings for the selected policy set
attachment.
Bindings Description

Saml Bearer Provider sample Select this option to use the Saml Bearer Provider sample. The Saml Bearer Provider
sample extends the Provider sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default policy
sets.

Saml HoK Symmetric Provider sample Select this option to use the Saml HoK Symmetric Provider sample. The Saml HoK
Symmetric Provider sample extends the Provider sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this sample
with one of the SAML HoK Symmetric key default policy sets: either SAML11 HoK
Symmetric WSSecurity default or SAML20 HoK Symmetric WSSecurity default.

7. To close the drop down list for the assign binding action, click Assign Binding.

Results

When you finish this task, a policy set is attached, detached or a binding is assigned to the service artifact.

Example

You have configured a service provider, EchoService12 in the application instance, WSSampleServicesSei.
Now you want to attach the WS-Security policy to the EchoService12Port endpoint of the EchoService12
service provider. First locate EchoService12 in the Services > Service providers collection. Click the
EchoService12 service provider. Select the check box for the columoService12Port resource. Click Attach
and select WSSecurity default policy from the list. Click Save, to save your changes to the master
configuration.

What to do next

You can now proceed to manage policy sets and bindings for service providers at the application level
using the administrative console.

Service provider settings
Use the Service provider settings page to manage the settings for your service providers. You can attach
and detach policy sets to an application, its service, endpoints or operations. You can create new bindings,
or use bindings that you have already created for an attached policy set. You can view or change whether
the service provider can share its current policy configuration.

Use the WSDL document link to view the Web Services Description Language (WSDL) for the service.
The Application and Module links provide access to the application and module settings page.

To view this administrative console page, click Services > Service providers >
service_provider_instance.

You can also view this page by clicking Applications > Application Types > WebSphere enterprise
applications > service_provider_application_instance > Service providers >
service_provider_instance.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Chapter 25. Administering web services (generally applicable) 2735



Table 253. Button descriptions. Use the buttons to manage policy sets and policy set bindings for a service provider,
its endpoints, or operations.
Bindings Description

Attach Policy Set Click this button to view a list of policy sets available for attachment to the selected
service, endpoint, or operation. Select a policy set from the list to attach and it is
attached to the selected service, endpoint, or operation. To close the menu list, click
Attach Policy Set.

Detach Policy Set Click this button to detach a policy set from a selected service, endpoint, or operation.
After the policy set is detached, if there is no policy set attached to an upper level
service resource, the Attached Policy Set column displays None and the Binding
column displays Not Applicable.

If there is a policy set attached to an upper level service resource, the Attached
Policy Set column displays policy_set_name (inherited) and the binding used for the
upper level attachment is applied. The binding name is displayed followed by
(inherited).

Assign Binding Click this button to select from a list of available bindings for the selected policy set
attachment. The options include the following:

Default Specifies the default binding for the selected service reference, endpoint,
or operation. You can specify client and provider default bindings to be
used at the cell level or global security domain level, for a particular server,
or for a security domain. The default bindings are used when an
application-specific binding has not been assigned to the attachment.
When you attach a policy set to a service resource, the binding is initially
set to the default. If you do not specifically assign a binding to the
attachment point using this Assign Binding action, the default specified at
the nearest scope is used.

For any policy set attachment, the run time checks to see if the attachment
includes a binding. If so, it uses that binding. If not, the run time checks in
the following order and uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy
set attachments. The new binding you create is used for the selected
resources. If you select more than one resource, ensure that all selected
resources have the same policy set attached.

Provider sample
Select this option to use the Provider sample binding.

Provider sample V2
Select this option to use the Provider sample V2 binding when you are
using either the Kerberos V5 WSSecurity default or the
TrustServiceKerberosDefault policy sets.

Saml Bearer Provider sample
Select this option to use the Saml Bearer Provider sample. The Saml
Bearer Provider sample extends the Provider sample binding to support
SAML Bearer token usage scenarios. You can use this sample with any of
the SAML bearer token default policy sets.

Saml HoK Symmetric Provider sample
Select this option to use the Saml HoK Symmetric Provider sample. The
Saml HoK Symmetric Provider sample extends the Provider sample
binding to support SAML holder-of-key (HoK) symmetric key token usage
scenarios. You can use this sample with one of the SAML HoK Symmetric
key default policy sets: either SAML11 HoK Symmetric WSSecurity default
or SAML20 HoK Symmetric WSSecurity default.

To close the menu list, click Assign Binding.

Service provider:

Specifies the name of the service provider that is displayed.

Policy Set Attachments:

2736 Administering WebSphere applications



Service/Endpoint/Operation:

Specifies the name of the service provider, endpoint, or operation that is contained in a service.

Attached Policy Set:

Specifies the policy set that is attached to a service provider, endpoint, or operation.

The Attached Policy Set column can contain the following values:

v None. No policy set is attached, either directly or to a higher-level service resource.

v Policy_set_name. The name of the policy set that is attached directly to the service resource, for
example, WS-I RSP.

v Policy_set_name (inherited). The name of the policy set that is not attached directly to a service
resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached policy
set.

Binding:

Specifies the binding configuration that is available for a service provider, endpoint, or operation.

The Binding column can contain the following values:

v Not applicable. No policy set is attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the binding.

About policy set bindings

In this release, there are two types of bindings: application-specific bindings and general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point. These bindings are
specific to, and constrained by, the characteristics of the defined policy. Application-specific bindings can
provide configuration for advanced policy requirements such as multiple signatures; however, these
bindings are reusable only within an application. Also, application-specific bindings have very limited reuse
across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding, and fully configure the bindings for each policy that you add. For
WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,
SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the
application-specific bindings.

For service providers, you can create application-specific bindings only by selecting Assign Binding >
New Application Specific Binding, on the Service providers policy sets and bindings collection page, for
service provider resources that have an attached policy set. Similarly, for service clients, you can create

Chapter 25. Administering web services (generally applicable) 2737



application-specific bindings only by selecting Assign Binding > New Application Specific Binding, on
the Service clients policy sets and bindings collection page, for service client resources that have an
attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and they can be reused
across applications and for trust service attachments. Although general bindings are highly reusable, they
cannot provide configuration for advanced policy requirements such as multiple signatures. There are two
types of general bindings: general provider policy set bindings and general client policy set bindings.

You can create general provider policy set bindings by clicking Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel, or by clicking Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. For details about defining and managing service client or provider bindings, see the related links.
General provider policy set bindings might also be used for trust service attachments.

Policy Sharing:

Specifies whether the service provider can share its current policy configuration.

The Policy sharing column can contain the following values:

v Not applicable. The resource does not have a policy set attached, so there is no policy configuration to
share.

v Disabled. The policy set of the resource cannot be shared. This is the default setting if a policy set is
attached to a service.

v Enabled. The policy set of the resource can be shared.

When the value in the column is a link, click the link to view or change settings about how the policy
configuration can be shared.

For a service, if the policy set is inherited from the parent application, the policy sharing value is also
inherited, and you cannot change it. The value is not a link and it is followed by the term inherited in
parentheses.

For an endpoint or operation, the value is not a link and it is followed by the term inherited in
parentheses. The setting is inherited from the parent application or service and you cannot change it.

Managing policy sets and bindings for service providers at the
application level using the administrative console
Use this administrative console task to manage policy sets for an application or its services, endpoints,
and operations.

Before you begin

Before completing this task, you need to install one or more Java API for XML-Based Web Services
(JAX-WS) and attach a policy set to each web service.

About this task

You have developed a web service that contains all the necessary artifacts and deployed your web
services application into your application server instance. Now, you can attach or detach policy sets and
manage the associated bindings.

2738 Administering WebSphere applications



The policy set information is displayed in the Attached Policy Set column. If a policy set is directly
attached, then the policy set name appears; for example, WS-I RSP is displayed. If there is no policy set
attached, and a policy set is attached at a higher level, then the word inherited in parentheses is
appended to the policy set name, as the following example demonstrates: WS-I RSP (inherited). If there
is no policy set attached directly or at a higher level, then None is displayed.

Every attachment of a policy set to a service artifact has an assigned binding. The binding information is
displayed in the Binding column. The Binding column can contain the following values:

v Not applicable. There is no policy set attached, either directly or to a higher level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application-specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher level resource.

In Version 7.0 and later, there are two types of bindings, application specific bindings and general
bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are
specific to and constrained to the characteristics of the defined policy. Application specific bindings are
capable of providing configuration for advanced policy requirements, such as multiple signatures; however,
these bindings are only reusable within an application. Furthermore, application specific bindings have very
limited reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding and fully configure the bindings for each policy that you have
added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,
TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not
configured in the application specific bindings.

For service providers, you can only create application specific bindings by selecting Assign Binding >
New Application Specific Binding for service provider resources that have an attached policy set. See
service providers policy sets and bindings collection. Similarly, for service clients, you can only create
application specific bindings by selecting Assign Binding > New Application Specific Binding for
service client resources that have an attached policy set. See service client policy set and bindings
collection.

General bindings

General bindings were introduced in Version 7.0. These bindings can be configured to be used across a
range of policy sets and can be reused across applications and for trust service attachments. Though
general bindings are highly reusable, they are however not able to provide configuration for advanced
policy requirements, such as multiple signatures. There are two types of general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general provider policy set bindings by accessing Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel or by accessing Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. See defining and managing service client or provider bindings. General provider policy set bindings
might also be used for trust service attachments.

Chapter 25. Administering web services (generally applicable) 2739



Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Procedure
1. Open the administrative console.

2. Applications > Application Types > WebSphere enterprise applications
>Service_provider_application_instance > Service provider policy sets and bindings.

[Optional] When you are accessing a business-level application, click Business-level applications
(BLA) > My_BLA > BLA_instance > Service provider policy sets and bindings. Alternatively, click
Services > Service providers > My_BLA > BLA_instance > Service provider policy sets and
bindings.

3. Select the check box next to a service resource of interest.

4. Click Attach to attach a policy set to an application, service, endpoint or operation.

5. [Optional] Click Detach to detach a policy set from a list of attached policy sets for an application,
service provider, endpoint or operation.

6. Click Assign Binding to select from a list of available bindings for the selected policy set attachment.
All the bindings are listed along with the following options:

Table 254. Binding descriptions. Use the descriptions of the default bindings for the selected policy set attachment.
Bindings Description

Default Specifies the default binding for the selected service, endpoint or operation. You can
specify client and provider default bindings to be used at the cell level or global
security domain level, for a particular server, or for a security domain. The default
bindings are used when an application specific binding has not been assigned to the
attachment. When you attach a policy set to a service resource, the binding is initially
set to the Default. If you do not specifically assign a binding to the attachment point
using this Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the runtime checks to see if the attachment includes a
binding. If so, it uses that binding. If not, the runtime checks in the following order and
uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding Select this option to create a new application specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If you
select more than one resource, ensure that all selected resources have the same
policy set attached.

Provider sample Select this option to use the Provider sample binding.

Provider sample V2 Select this option to use the Provider sample V2 binding when you are using either
the Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy sets.

Saml Bearer Provider sample Select this option to use the Saml Bearer Provider sample. The Saml Bearer Provider
sample extends the Provider sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default policy
sets.

Saml HoK Symmetric Provider sample Select this option to use the Saml HoK Symmetric Provider sample. The Saml HoK
Symmetric Provider sample extends the Provider sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this sample
with one of the SAML HoK Symmetric key default policy sets: either SAML11 HoK
Symmetric WSSecurity default or SAML20 HoK Symmetric WSSecurity default.

7. To close the drop down list for the assign binding action, click Assign Binding.

Results

When you finish this task, a policy set is attached or detached, and a binding is assigned to the service
artifact.

2740 Administering WebSphere applications



Example

If you have configured a service provider application instance, app1 and you want, for example, to attach
theUsername WSSecurity default policy set to your application, first locate app1 application in the
Applications > Application Types > WebSphere enterprise applications. Click app1 > Service
provider policy sets and bindings under the Web Services Properties section. Select the check box next
to the app1 service application. Click Attach and select Username WSSecurity default policy set. Click
Save, to save your changes to the master configuration. You are returned to the Applications >
Application Types > WebSphere enterprise applications page.

To assign a binding to the attached policy set, click app1 > Service provider policy sets and bindings.
Select the check box next to the app1 service application and click Assign Binding. Select Provider
sample binding from the list. Click Save, to save your changes to the master configuration.

What to do next

You can proceed to view service providers at the cell level using the administrative console.

Service provider policy sets and bindings collection
Use this page to attach and detach policy sets to an application, a service provider, its endpoints, or
operations. You can select the default bindings, create new application-specific bindings, or use bindings
that you created for an attached policy set. You can view or change whether the service provider can
share its current policy configuration.

This page provides detail information for an application and its associated web service providers,
endpoints, and operations. You can view and manage policy set attachments and bindings information
using this page.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > Service_provider_application_instance > Service provider policy sets and
bindings.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Table 255. Binding descriptions. Use the descriptions of the default bindings for the selected policy set attachment.
Bindings Description

Attach Policy Set Click this button to view a list of policy sets available for attachment to the selected
service, endpoint, or operation. Select a policy set from the list to attach and it is
attached to the selected service, endpoint, or operation. To close the menu list, click
Attach Policy Set.

Detach Policy Set Click this button to detach a policy set from a selected service, endpoint, or operation.
After the policy set is detached, if there is no policy set attached to an upper level
service resource, the Attached Policy Set column displays None and the Binding
column displays Not Applicable.

If there is a policy set attached to an upper level service resource, the Attached
Policy Set column displays policy_set_name (inherited) and the binding used for the
upper level attachment is applied. The binding name is displayed followed by
(inherited).

Chapter 25. Administering web services (generally applicable) 2741



Table 255. Binding descriptions (continued). Use the descriptions of the default bindings for the selected policy set
attachment.
Bindings Description

Assign Binding Click this button to select from a list of available bindings for the selected policy set
attachment. The options include the following:

Default Specifies the default binding for the selected service reference, endpoint,
or operation. You can specify client and provider default bindings to be
used at the cell level or global security domain level, for a particular server,
or for a security domain. The default bindings are used when an
application-specific binding has not been assigned to the attachment.
When you attach a policy set to a service resource, the binding is initially
set to the default. If you do not specifically assign a binding to the
attachment point using this Assign Binding action, the default specified at
the nearest scope is used.

For any policy set attachment, the run time checks to see if the attachment
includes a binding. If so, it uses that binding. If not, the run time checks in
the following order and uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy
set attachments. The new binding you create is used for the selected
resources. If you select more than one resource, ensure that all selected
resources have the same policy set attached.

Provider sample
Select this option to use the Provider sample binding.

Provider sample V2
Select this option to use the Provider sample V2 binding when you are
using either the Kerberos V5 WSSecurity default or the
TrustServiceKerberosDefault policy sets.

Saml Bearer Provider sample
Select this option to use the Saml Bearer Provider sample. The Saml
Bearer Provider sample extends the Provider sample binding to support
SAML Bearer token usage scenarios. You can use this sample with any of
the SAML bearer token default policy sets.

Saml HoK Symmetric Provider sample
Select this option to use the Saml HoK Symmetric Provider sample. The
Saml HoK Symmetric Provider sample extends the Provider sample
binding to support SAML holder-of-key (HoK) symmetric key token usage
scenarios. You can use this sample with one of the SAML HoK Symmetric
key default policy sets: either SAML11 HoK Symmetric WSSecurity default
or SAML20 HoK Symmetric WSSecurity default.

To close the menu list, click Assign Binding.

Application/Service/Endpoint/Operation:

Specifies the name of the application and the associated service providers, endpoints or operations.

The Application/Service/Endpoint/Operation column lists the service application and the service providers,
endpoints, or operations that the application contains.

Attached Policy Set:

Specifies the policy set that is attached to a service provider, endpoint, or operation.

The Attached Policy Set column can contain the following values:

v None. No policy set is attached, either directly or to a higher-level service resource.

v Policy_set_name. The name of the policy set that is attached directly to the service resource, for
example, WS-I RSP.

2742 Administering WebSphere applications



v Policy_set_name (inherited). The name of the policy set that is not attached directly to a service
resource, but that is attached to a higher-level service resource.

When the value in the column is a link, click the link to view or change settings about the attached policy
set.

Binding:

Specifies the binding configuration that is available for a service provider, endpoint, or operation.

The Binding column can contain the following values:

v Not applicable. No policy set is attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application-specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher-level resource.

When the value in the Binding column is a link, click the link to view or change settings about the binding.

About policy set bindings

In this release, there are two types of bindings: application-specific bindings and general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point. These bindings are
specific to, and constrained by, the characteristics of the defined policy. Application-specific bindings can
provide configuration for advanced policy requirements such as multiple signatures; however, these
bindings are reusable only within an application. Also, application-specific bindings have very limited reuse
across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding, and fully configure the bindings for each policy that you add. For
WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,
SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the
application-specific bindings.

For service providers, you can create application-specific bindings only by selecting Assign Binding >
New Application Specific Binding, on the Service providers policy sets and bindings collection page, for
service provider resources that have an attached policy set. Similarly, for service clients, you can create
application-specific bindings only by selecting Assign Binding > New Application Specific Binding, on
the Service clients policy sets and bindings collection page, for service client resources that have an
attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and they can be reused
across applications and for trust service attachments. Although general bindings are highly reusable, they
cannot provide configuration for advanced policy requirements such as multiple signatures. There are two
types of general bindings: general provider policy set bindings and general client policy set bindings.

You can create general provider policy set bindings by clicking Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel, or by clicking Services >

Chapter 25. Administering web services (generally applicable) 2743



Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. For details about defining and managing service client or provider bindings, see the related links.
General provider policy set bindings might also be used for trust service attachments.

Policy Sharing:

Specifies whether the service provider can share its current policy configuration.

The Policy sharing column can contain the following values:

v Not applicable. The resource does not have a policy set attached, so there is no policy configuration to
share.

v Disabled. The policy set of the resource cannot be shared. This is the default setting if a policy set is
attached to a service.

v Enabled. The policy set of the resource can be shared.

When the value in the column is a link, click the link to view or change settings about how the policy
configuration can be shared.

For a service, if the policy set is inherited from the parent application, the policy sharing value is also
inherited, and you cannot change it. The value is not a link and it is followed by the term inherited in
parentheses.

For an endpoint or operation, the value is not a link and it is followed by the term inherited in
parentheses. The setting is inherited from the parent application or service and you cannot change it.

Viewing WSDL documents for service providers using the
administrative console
You can locate and view a Web Services Description Language (WSDL) document from the administrative
console.

Before you begin

Before completing this task, you need to install or deploy a Java API for XML Web Services (JAX-WS)
application. Read about the JAX-WS application deployment model.

About this task

JAX-WS integration with the WebSphere Application Server provides the option to view a Web Services
Description Language (WSDL) document that is associated with your web service using the administrative
console.

A web service application that contains all the necessary artifacts has been developed and deployed to the
Application Server. Now you can view the WSDL document for each service using the administrative
console.

Procedure
1. Open the administrative console.

2. In the navigation pane, expand Services > Service providers.

3. Select a web service of interest in the Service providers collection view.

4. Click the WSDL document link to view the WSDL document.

2744 Administering WebSphere applications



Results

When you finish this task, you have viewed the WSDL document for a service artifact.

What to do next

You can attach and detach policy sets and configure bindings information for your application. See
managing policy sets and bindings for service providers at the application level using the administrative
console.

Viewing service clients at the cell level using the administrative
console
You can view all your service clients at the cell level using the administrative console.

Before you begin

Before completing this task, you need to install one or more Java API for XML-Based Web Services
(JAX-WS).

About this task

You can view a list of your service clients, such as JAX-WS Web services clients using the administrative
consolel.The Name column displays the service client references. The Deployed Asset column displays the
name of the deployed asset that contains the service client.

Procedure
1. Open the administrative console.

2. In the navigation pane, expand Services > Service clients.

3. View the web service client of interest in the Name column and the associated application in the
Deployed Asset column. For JAX-WS (WSN) references, the name of the containing WS-Notification
service that is a part of the System Integration (SI) is displayed. Hovering over this name displays the
Bus:<busName>.

Results

When you complete this task, you have viewed the service clients at the cell level.

What to do next

Proceed to view service clients at the application level using the administrative console. Click each service
to see and manage the policy sets and bindings associated with a particular service.

Service client collection at the cell level
Use this page to view and manage service clients at the cell level. Server-based Java API for XML-Based
Web Services (JAX-WS) service clients are the only clients that are displayed in this view. Java API for
XML-based RPC (JAX-RPC) service clients are not displayed in this view.

To view this administrative console page, click Services > Service clients. Select the service name link in
the Name column to access the service client settings page. Select the deployed asset link in the
Deployed Asset column to access the deployed asset settings page.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Chapter 25. Administering web services (generally applicable) 2745



Name:

Specifies the name of the service client, which is the name of the service provider that is referenced by
the client. The full QName, Java class javax.xml.namespace.QName, is displayed when you hover the mouse
pointer over the Name field.

If a web services reference has been defined for a service client, the Name field contains the name of the
service reference under the corresponding service client. The full name of the service reference in
name-value pair format is displayed when you hover the mouse pointer over the Name field.

Type:

Specifies the type of service such as a JAX-WS client service and Web Services Notification (WSN) client
service. You can filter by the type of service.

Deployed Asset:

Represents a Java Platform, Enterprise Edition (Java EE) application or a WS-Notification service. For
JAX-WS or WSN clients, the name of the containing WS-Notification service that is a part of the System
Integration (SI) is displayed. Hovering over this name displays the Bus:<busName>.

Table 256. Type of deployed asset and service broker. This table describes the representations for the types of
deployed assets.
Icon Description

Java EE application

WS-Notification service

Viewing service clients at the application level using the administrative
console
You can view your installed service clients for an application using this task.

Before you begin

Before completing this task, you need to install a Java API for XML-based Web Services (JAX-WS) web
service.

About this task

You can view a list of your service client references.

Your application server instance can have one or more applications deployed on it that contain service
clients. This task enables you to view the service names that are referenced in an application.

Procedure
1. Open the administrative console.

2. View the service clients in an application by expanding Applications > Application Types >
WebSphere enterprise applications >Service_client_application_instance > Service clients.

[Optional] When you are accessing a business-level application, click Services > Service clients >
BLA_client_instance.

3. Select a client from the Name column to view the client and to manage the policy sets and bindings
associated with it.

4. [Optional] Select a module name from the Module column to access the module detail page.

2746 Administering WebSphere applications



5. [Optional] In the Additional Properties section, click Composition unit, to see the composition unit
detail page.

Results

When you finish this task, you have viewed service clients at the application level.

What to do next

You can now proceed to managing policy sets using the administrative console.

Service clients collection at the application level
Use this page to view and manage service clients at the application level.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > Service_client_application_instance > Service client.

Name:

Specifies the name of the service client. The service QName, Java class javax.xml.namespace.QName, is
displayed when you hover your mouse pointer over the Name field. If a web services reference has been
defined for a service client, the Name field contains the name of the service reference under the
corresponding service client. The full name of the service reference in name-value pair format is displayed
when you hover the mouse pointer over the Name field.

Type:

Specifies the type of service such as a Java API for XML-Based Web Services (JAX-WS) web service.
You can filter by the type of service.

Module:

Specifies the name of the module that contains the service. Selecting a module name accesses the
module detail page.

Viewing detail of a service client and managing policy sets using the
administrative console
Use this administrative console task to view the detail of your service client reference and to manage the
policy sets for the service, its endpoints and operations.

Before you begin

Before completing this task, you need to install one or more Java API for XML-based Web Services
(JAX-WS) web services, and attach a policy set to each web service.

About this task

You have developed a web service that contains all the necessary artifacts and deployed your web
services application into your application server instance. Now, you can attach or detach policy sets and
manage the associated bindings.

The policy set information is displayed in the Attached Policy Set column. If a policy set is directly
attached, then the policy set name appears; for example, WS-I RSP is displayed. If there is no policy set
attached, and a policy set is attached at a higher level, then the word inherited in parentheses is

Chapter 25. Administering web services (generally applicable) 2747



appended to the policy set name, as the following example demonstrates: WS-I RSP (inherited). If there
is no policy set attached directly or at a higher level, then None is displayed.

Every attachment of a policy set to a service artifact has an assigned binding. The binding information is
displayed in the Binding column. The Binding column can contain the following values:

v Not applicable. There is no policy set attached, either directly or to a higher level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application-specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher level resource.

In Version 7.0 and later, there are two types of bindings, application specific bindings and general
bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are
specific to and constrained to the characteristics of the defined policy. Application specific bindings are
capable of providing configuration for advanced policy requirements, such as multiple signatures; however,
these bindings are only reusable within an application. Furthermore, application specific bindings have very
limited reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding and fully configure the bindings for each policy that you have
added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,
TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not
configured in the application specific bindings.

For service clients, you can only create application specific bindings by selecting Assign Binding > New
Application Specific Binding for service client resources that have an attached policy set. See service
clients policy sets and bindings collection. Similarly, for service clients, you can only create application
specific bindings by selecting Assign Binding > New Application Specific Binding for service client
resources that have an attached policy set. See service client policy set and bindings collection.

General bindings

General bindings were introduced in Version 7.0. These bindings can be configured to be used across a
range of policy sets and can be reused across applications and for trust service attachments. Though
general bindings are highly reusable, they are however not able to provide configuration for advanced
policy requirements, such as multiple signatures. There are two types of general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general client policy set bindings by accessing Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel or by accessing Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. See defining and managing service client or provider bindings.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

2748 Administering WebSphere applications



Procedure
1. Open the administrative console.

2. In the navigation pane, click Applications > Application Types > WebSphere enterprise
applications >Service_client_application_instance > Service clients.

3. Select one or more service, endpoints and operations of interest and view the associated service,
endpoints and operations.

4. You can perform any of the following actions:

v Click Attach, to attach a policy set to a selected service, endpoint or operation.

v Click, Detach, to detach a policy set from a list of attached policy sets for a service, endpoint or
operation. The service name is the service client reference in the application.

5. Click Assign Binding to select from a list of available bindings for the selected policy set attachment.
All the bindings are listed along with the following options:

Table 257. Binding descriptions. Use the descriptions of the default bindings for the selected policy set attachment.
Bindings Description

Default Specifies the default binding for the selected service client, endpoint, or operation. You
can specify client and provider default bindings to be used at the cell level or global
security domain level, for a particular server, or for a security domain. The default
bindings are used when an application-specific binding has not been assigned to the
attachment. When you attach a policy set to a service resource, the binding is initially
set to the default. If you do not specifically assign a binding to the attachment point
using this Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the run time checks to see if the attachment includes a
binding. If so, it uses that binding. If not, the run time checks in the following order and
uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If you
select more than one resource, ensure that all selected resources have the same
policy set attached.

Client sample Select this option to use the Client sample binding.

Client sample V2 Select this option to use the Client sample V2 binding when you are using either the
Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy sets.

Saml Bearer Client sample Select this option to use the Saml Bearer Client sample. The Saml Bearer Client
sample extends the Client sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default policy
sets.

Saml HoK Symmetric Client sample Select this option to use the Saml HoK Symmetric Client sample. The Saml HoK
Symmetric Client sample extends the Client sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this sample
with one of the SAML HoK Symmetric key default policy sets: either SAML11 HoK
Symmetric WSSecurity default or SAML20 HoK Symmetric WSSecurity default.

6. To close the drop down list for the assign binding action, click Assign Binding.

Results

When you finish this task, a policy set is attached, detached or a binding is assigned to the service artifact.

Example

You have configured a service client reference, EchoService12 in the application instance,
WSSampleClientSei. Now you want to attach the WSSecurity default policy to the EchoService12Port
endpoint of the EchoService12 service client reference. First locate EchoService12 in the Services >
Service clients collection. Click the EchoService12 service client reference. Select the check box for the
EchoService12Port resource and click Attach. Select the WSSecurity default policy from the list. Click
Save, to save your changes to the master configuration.

Chapter 25. Administering web services (generally applicable) 2749



What to do next

You can now proceed to manage policy sets and bindings for service clients at the application level using
the administrative console.

Service client settings
Use this administrative console page to manage the settings for your service clients. You can attach and
detach policy sets to a service, its endpoints, or operations. You can select default bindings, create new
application-specific bindings, or use existing bindings for an attached policy set. You can view or change
whether the client uses the policy of the service provider.

This service client page displays configuration information for a service client and the associated endpoints
and operations. You can view and manage policy set attachments, bindings information, and whether the
client uses the policy of the service provider.

The Application and Module links provide access to the application and module settings page.

To view this administrative console page, click Services > Service clients > service_client_instance.

You can also view this page by clicking Applications > Application Types > WebSphere enterprise
applications > service_client_application_instance > Service clients > service_client_instance.

To attach or detach a policy set or binding, do the following:

1. Select a service client, endpoint, or operation from Service/Endpoint/Operation. The
Service/Endpoint/Operation list is nested, indicating parent-child relationships. When you select a
parent, the children automatically inherit the settings of the parent.

2. Click the desired button.

Table 258. Button descriptions. Use the buttons to manage policy sets and policy set bindings for service clients.
Button Resulting action

Attach Client Policy Set Click this button to view a list of policy sets available for attachment to the selected service,
endpoint, or operation. Select a policy set from the list to attach and it is attached to the selected
service, endpoint, or operation. To close the menu list, click Attach Client Policy Set.

Detach Client Policy Set Click this button to detach a policy set from a selected service, endpoint, or operation. After the
policy set is detached, if there is no policy set attached to an upper level service resource, the
Attached Client Policy Set column displays None and the Binding column displays Not Applicable.

If there is a policy set attached to an upper level service resource, the Attached Client Policy Set
column displays policy_set_name (inherited) and the binding used for the upper level attachment
is applied. The binding name is displayed followed by (inherited).

2750 Administering WebSphere applications



Table 258. Button descriptions (continued). Use the buttons to manage policy sets and policy set bindings for
service clients.
Button Resulting action

Assign Binding Click this button to select from a list of available bindings for the selected policy set attachment.
The options include the following:

Default Specifies the default binding for the selected service, endpoint, or operation. You can
specify client and provider default bindings to be used at the cell level or global security
domain level, for a particular server, or for a security domain. The default bindings are
used when an application-specific binding has not been assigned to the attachment.
When you attach a policy set to a service resource, the binding is initially set to the
default. If you do not specifically assign a binding to the attachment point using this
Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the run time checks to see if the attachment includes a
binding. If so, it uses that binding. If not, the run time checks in the following order and
uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If you
select more than one resource, ensure that all selected resources have the same policy
set attached.

Client sample
Select this option to use the Client sample binding.

Client sample V2
Select this option to use the Client sample V2 binding when you are using either the
Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy sets.

Saml Bearer Client sample
Select this option to use the Saml Bearer Client sample. The Saml Bearer Client sample
extends the Client sample binding to support SAML Bearer token usage scenarios. You
can use this sample with any of the SAML bearer token default policy sets.

Saml HoK Symmetric Client sample
Select this option to use the Saml HoK Symmetric Client sample. The Saml HoK
Symmetric Client sample extends the Client sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this sample
with one of the SAML HoK Symmetric key default policy sets: either SAML11 HoK
Symmetric WSSecurity default or SAML20 HoK Symmetric WSSecurity default.

To close the menu list, click Assign Binding.

Service client:

Specifies the name of the service client that is displayed.

Policy Set Attachments:

Service/Endpoint/Operation:

Specifies the name of the service client, endpoints or operations. The full QName (Java class
javax.xml.namespace.QName) is displayed when you hover the mouse pointer over a service client name.

Attached Client Policy Set:

Specifies the policy set that is attached to the service client, endpoints or operations.

The Attached Client Policy Setcolumn can contain the following values:

v None. No policy set is attached, either directly or to a higher level service resource.

v policy_set_name. The name of the policy set that is attached directly to the service resource, for
example, WS-I RSP.

Chapter 25. Administering web services (generally applicable) 2751



v policy_set_name (inherited). The name of the policy set that is not attached directly to a service
resource, but that is attached to a higher level service resource.

When the value in the column is a link, click the link to view or change settings about the attached policy
set.

Policies Applied:

Specifies the policies that are applied to the resource.

The Policies Applied column can contain the following values:

v None. No policies are applied to the service. This is the default setting if there is no policy set attached
to the client.

v Client only. The client policy set is applied to the service. This is the default setting if a policy set is
attached to the client.

v Provider only. The policy configuration of the service provider is applied to the service, as long as the
client can support those policies.

v Client and provider. A policy that is based on both the client policy set and the policy of the service
provider is applied to the service.

When the value in the column is a link, click the link to view or change settings about how the policies are
applied.

For a service, if the value in the column is a link followed by the word inherited in parentheses, this
shows a setting that is inherited from the parent application. You can click the link to change the setting for
the service.

For an endpoint or operation, the value is not a link and it is followed by the word inherited in
parentheses. The setting is inherited from the parent application or service and you cannot change it. If
there is no applied policy, the entry in the column is None.

Binding:

Specifies the binding information available for a service client, endpoint, or operation.

The Binding column can contain the following values:

v Not applicable. There is no policy set attached, either directly or to a higher level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application-specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher level resource.

When the value in the Binding column is a link, click the link to view or change settings about the binding.

About policy set bindings

In this release, there are two types of bindings: application-specific bindings and general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point. These bindings are
specific to, and constrained by, the characteristics of the defined policy. Application-specific bindings can

2752 Administering WebSphere applications



provide configuration for advanced policy requirements such as multiple signatures; however, these
bindings are reusable only within an application. Also, application-specific bindings have very limited reuse
across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding, and fully configure the bindings for each policy that you add. For
WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,
SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the
application-specific bindings.

For service providers, you can create application-specific bindings only by selecting Assign Binding >
New Application Specific Binding, on the Service providers policy sets and bindings collection page, for
service provider resources that have an attached policy set. Similarly, for service clients, you can create
application-specific bindings only by selecting Assign Binding > New Application Specific Binding, on
the Service clients policy sets and bindings collection page, for service client resources that have an
attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and they can be reused
across applications and for trust service attachments. Although general bindings are highly reusable, they
cannot provide configuration for advanced policy requirements such as multiple signatures. There are two
types of general bindings: general provider policy set bindings and general client policy set bindings.

You can create general provider policy set bindings by clicking Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel, or by clicking Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. Read about defining and managing service client or provider bindings for more information. General
provider policy set bindings might also be used for trust service attachments.

Managing policy sets and bindings for services references using the
administrative console
Use this administrative console task to manage policy sets and bindings for the service reference, its
endpoints, and operations.

Before you begin

Before completing this task, you must install one or more Java API for API for XML-based Web Services
(JAX-WS) web services, that contain at least one client service reference.

About this task

You have developed a web service that contains all the necessary artifacts and deployed your web
services application into your application server instance. Now, you can attach or detach policy sets and
manage the associated bindings.

When you configure the policy set attachments for a service reference, you can override the policy set
attachments that are inherited from the service client using the administrative console. You can attach a
policy set and binding for a service reference that is different from the policy set attachment for the service
client. You can also specify to not attach a policy set to a service reference, even if a policy set is attached
to the service client.

Chapter 25. Administering web services (generally applicable) 2753



The default behavior is that a service reference, and its endpoints and operations, inherits the policy set
attachment of the corresponding resources of the service. Service references are only valid for service
clients.

Using the administrative console, you can configure the service reference to either inherit policy set and
bindings configuration from the service client or to specify individual settings for the service reference by
attaching policy sets and bindings that are different from the policy sets and bindings attached to the
service client.

The policy set information is displayed in the Attached Policy Set column. If a policy set is directly
attached, then the policy set name is displayed; for example, WS-I RSP. If there is no policy set attached,
and a policy set is attached at a higher level or to the service client, then the word inherited in
parentheses is appended to the policy set name, as the following example demonstrates: WS-I RSP
(inherited). If there is no policy set attached directly or at a higher level, then None is displayed.

Every attachment of a policy set to a service artifact has an assigned binding. The binding information is
displayed in the Binding column. The Binding column can contain the following values:

v Not applicable. There is no policy set attached, either directly, to a service client resource, or to a higher
level service reference resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application-specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service reference resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a service client resource or a higher level service reference resource.

There are two types of bindings, application specific bindings and general bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are
specific to and constrained to the characteristics of the defined policy. Application specific bindings are
capable of providing configuration for advanced policy requirements, such as multiple signatures; however,
these bindings are only reusable within an application. Furthermore, application specific bindings have very
limited reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding and fully configure the bindings for each policy that you have
added. For WS-Security policy, some high-level configuration attributes such as TokenConsumer,
TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not
configured in the application specific bindings.

For service clients, you can only create application specific bindings by selecting Assign Binding > New
Application Specific Binding for service client resources that have an attached policy set. See service
clients policy sets and bindings collection. Similarly, for service clients, you can only create application
specific bindings by selecting Assign Binding > New Application Specific Binding for service client
resources that have an attached policy set. See service client policy set and bindings collection.

General bindings

General bindings can be configured to be used across a range of policy sets and can be reused across
applications and for trust service attachments. Though general bindings are highly reusable, they are
however not able to provide configuration for advanced policy requirements, such as multiple signatures.
There are two types of general bindings:

v General provider policy set bindings

2754 Administering WebSphere applications



v General client policy set bindings

You can create general client policy set bindings by accessing Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel or by accessing Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. See defining and managing service client or provider bindings.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Note: In a mixed cell environment, the following limitations apply to service reference attachments or
resource attachments that are specified in name-value pair format:

v You must not create these types of attachments for applications that are deployed on an
application server that is prior to WebSphere Application Server Version 8.0. Service reference
attachments are only supported on WebSphere Application Server Version 8.0 and later.

v An application that contains these types of attachments must not be deployed on an application
server that is prior to WebSphere Application Server Version 8.0.

v If an application that is deployed in a cluster environment contains these types of attachments,
you must not add a member application server that is prior to WebSphere Application Server
Version 8.0 to the cluster.

Procedure
1. Open the administrative console.

2. In the navigation pane, click Applications > Application Types > WebSphere enterprise
applications >Service_client_application_instance > Service clients.

3. Select a service references and view the associated service reference, endpoints, and operations.

4. You can perform any of the following actions:

v Click Inherit, to clear existing policy set and binding settings for the service reference and to use
policy set attachments that are defined by the service client. By default, a service reference, and its
endpoints and operations, inherits the policy set attachment of the corresponding resources of the
service.

v Click Override, to override existing policy set and binding settings for the service client and to either
define separate policy sets and bindings for the service reference or to specify that a policy set is
not attached to the service reference.

v Click Attach Client Policy Set, to attach a policy set to a selected service reference, endpoint, or
operation. This button is active only after you have clicked the Override button.

v Click, Detach Client Policy Set, to detach a policy set from a list of attached policy sets for a
service reference, endpoint, or operation. The service name is the service client reference in the
application. This button is active only after you have clicked the Override button.

5. Click Assign Binding to select from a list of available bindings for the selected policy set attachment.
This button is active only after you have clicked the Override button. All the bindings are listed along
with the following options:

Chapter 25. Administering web services (generally applicable) 2755



Table 259. Binding descriptions. Use the descriptions of the default bindings to determine which binding to apply to
service references.
Bindings Description

Default Specifies the default binding for the selected service reference, endpoint, or operation.
You can specify client and provider default bindings to be used at the cell level or
global security domain level, for a particular server, or for a security domain. The
default bindings are used when an application-specific binding has not been assigned
to the attachment. When you attach a policy set to a service resource, the binding is
initially set to the default. If you do not specifically assign a binding to the attachment
point using this Assign Binding action, the default specified at the nearest scope is
used.

For any policy set attachment, the run time checks to see if the attachment includes a
binding. If so, it uses that binding. If not, the run time checks in the following order and
uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If you
select more than one resource, ensure that all selected resources have the same
policy set attached.

Client sample Select this option to use the Client sample binding.

Client sample V2 Select this option to use the Client sample V2 binding when you are using either the
Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy sets.

Saml Bearer Client sample Select this option to use the Saml Bearer Client sample. The Saml Bearer Client
sample extends the Client sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default policy
sets.

Saml HoK Symmetric Client sample Select this option to use the Saml HoK Symmetric Client sample. The Saml HoK
Symmetric Client sample extends the Client sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this sample
with one of the SAML HoK Symmetric key default policy sets: either SAML11 HoK
Symmetric WSSecurity default or SAML20 HoK Symmetric WSSecurity default.

6. To close the drop-down list for the assign binding action, click Assign Binding.

7. (optional) Display inherit policy set attachments confirmation. Selecting this check box enables the
inherit policy set attachments confirmation panel. You must expand the Preferences section to select
this check box.

Results

When you finish this task, you have specified policy sets and bindings for a service reference.

Example

Suppose that you have configured a service client reference, EchoService12 in the application instance,
WSSampleClientSei. You want to attach the WSSecurity default policy to the EchoService12Port endpoint
of the EchoService12 service client reference. You must override the current service client policy set and
bindings. Complete the following steps:

1. Locate EchoService12 in the Applications > Application Types > WebSphere enterprise
applications >WSSampleClientSei > Service clients collection. Alternatively, you can locate
EchoService12 in the Services > Service clients collection.

2. Click Override, to override the service client attachments.

3. Select the check box for the EchoService12Port resource, and click Attach Client Policy Set.

4. Select the WSSecurity default policy from the list.

5. Click Save to save your changes to the master configuration.

2756 Administering WebSphere applications



Suppose later, you want your service reference, EchoService12 to not use the WSSecurity default policy.
Instead, you want to use the policy sets and attachments from the service client, WSSampleClientSei.
Complete the following steps:

1. Locate EchoService12 in the Applications > Application Types > WebSphere enterprise
applications >WSSampleClientSei > Service clients collection. Alternatively, you can locate
EchoService12 in the Services > Service clients collection.

2. Click Inherit, to clear the existing policy set and binding settings for the service reference and to use
policy set attachments that are defined by the service client.

3. Click OK on the Inherit policy sets page to confirm that you want to inherit the policy set attachments
that are defined by the service client. You can optionally select the check box to not show the inherit
confirmation page in the future.

4. Click Save to save your changes to the master configuration.

What to do next

You can now proceed to manage other service references for the service client or to manage policy sets
and bindings for service clients at the application level using the administrative console.

Service reference settings
Use this administrative console page to manage the settings for your service references. Service
references can inherit the policy sets and bindings of the service client or you can specify policy sets and
bindings that are different from those of the service client.

This service references page displays configuration information for a service reference and the associated
endpoints and operations. You can view and configure the service reference to either inherit policy set and
binding configurations from the service client or to specify individual settings for the service reference by
attaching policy sets and bindings that are different from the policy sets and bindings that are attached to
the service client.

The Application, Module, and Service client links provide access to the application, module, and service
client settings page.

To view this administrative console page, click Services > Service clients >
service_reference_instance.

You can also view this page by clicking Applications > Application Types > WebSphere enterprise
applications > service_client_application_instance > Service clients > service_reference_instance.

You can specify a policy set and binding for a service reference that is different from the policy set
attachment for the service. In addition, you can indicate to not attach a policy set to a service reference,
even if a policy set is attached to the service. The default behavior is that a service reference, and its
endpoints and operations, inherits the policy set attachment of the corresponding resources of the service.
Service references are only valid for the client attachment type.

To attach or detach a policy set or binding, complete the following actions:

1. Select a service reference, endpoint, or operation from Service Reference/Endpoint/Operation. The
Service Reference/Endpoint/Operation list is nested, indicating parent-child relationships. When you
select a parent, the children automatically inherit the settings of the parent.

2. Click the button for the action that you want to complete.

Chapter 25. Administering web services (generally applicable) 2757



Table 260. Button descriptions. Use the buttons to manage policy sets and policy set bindings for service
references.
Button Resulting action

Inherit Click this button to clear the existing policy set and binding settings for the service reference and to
use policy set attachments that are defined by the service client. By default, a service reference, as
well as its endpoints and operations, inherits the policy set attachment of the corresponding
resources of the service.

Override Click this button to override the existing policy set and binding settings for the service client and to
either define separate policy sets and bindings for the service reference or to specify that a policy
set is not attached to the service reference.

Attach Client Policy Set Click this button to view a list of policy sets available for attachment to the selected service
reference, endpoint, or operation. Select a policy set from the list to attach; that policy set is
attached to the selected service, endpoint, or operation. To close the menu list, click Attach Client
Policy Set. This button is active only after you have clicked the Override button.

Detach Client Policy Set Click this button to detach a policy set from a selected service reference, endpoint, or operation.
After the policy set is detached, if there is no policy set attached to an upper-level service resource,
the Attached Client Policy Set column displays None and the Binding column displays Not
Applicable.

If there is a policy set attached to an upper-level service reference resource or service client, the
Attached Client Policy Set column displays policy_set_name (inherited) and the binding used for
the upper-level attachment is applied. The binding name is displayed followed by (inherited).

This button is active only after you have clicked the Override button.

Assign Binding Click this button to select from a list of available bindings for the selected policy set attachment.
The options include the following:

Default Specifies the default binding for the selected service reference, endpoint, or operation.
You can specify client and provider default bindings to be used at the cell level or global
security domain level for a particular server or for a security domain. The default
bindings are used when an application-specific binding has not been assigned to the
attachment. When you attach a policy set to a service resource, the binding is initially
set to the default. If you do not specifically assign a binding to the attachment point
using this Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the runtime environment verifies whether the attachment
includes a binding. If so, it uses that binding. If not, the runtime environment checks in
the following order and uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If you
select more than one resource, ensure that all selected resources have the same policy
set attached.

Client sample
Select this option to use the Client sample binding.

Client sample V2
Select this option to use the Client sample V2 binding when you are using either the
Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy sets.

Saml Bearer Client sample
Select this option to use the Saml Bearer Client sample. The Saml Bearer Client sample
extends the Client sample binding to support SAML Bearer token usage scenarios. You
can use this sample with any of the SAML bearer token default policy sets.

Saml HoK Symmetric Client sample
Select this option to use the Saml HoK Symmetric Client sample. The Saml HoK
Symmetric Client sample extends the Client sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this sample
with one of the SAML HoK Symmetric key default policy sets: either SAML11 HoK
Symmetric WSSecurity default or SAML20 HoK Symmetric WSSecurity default.

To close the menu list, click Assign Binding.

This button is active only after you have clicked the Override button.

2758 Administering WebSphere applications



Display inherit policy set attachments confirmation: Selecting this check box specifies that you want
to enable the inherit policy set attachments confirmation. You must expand the Preferences section to
select this check box.

Service Reference/Endpoint/Operation:

Specifies the name of the service reference, endpoints, or operations. The full resource name is displayed
when you hover the mouse pointer over a service reference, endpoint or operation.

Client Policy Set:

Specifies the policy set that is attached to the service reference, endpoints, or operations.

The Attached Client Policy Set column can contain the following values:

v None. No policy set is attached, either directly to the service client, or to a higher-level service
reference resource.

v policy_set_name. The name of the policy set that is attached directly to the service reference resource,
for example, WS-I RSP.

v policy_set_name (inherited). The name of the policy set that is not attached directly to a service
reference resource; the policy set is attached to a higher-level service reference resource or to a service
client resource.

When the value in the column is a link, click the link to view or change settings about the attached policy
set.

Policies Applied:

Specifies the policies that are applied to the service reference.

The Policies Applied service reference link is only enabled after you have clicked the Override button.

The Policies Applied column can contain the following values:

v None. No policies are applied to the service. This is the default setting if there is no policy set attached
to the client.

v Client only. The client policy set is applied to the service. This is the default setting if a policy set is
attached to the client.

v Provider only. The policy configuration of the service provider is applied to the service, as long as the
client can support those policies.

v Client and provider. A policy that is based on both the client policy set and the policy of the service
provider is applied to the service.

When the value in the column is a link, click the link to view or change settings about how the policies are
applied.

For an endpoint or operation, the value is not a link and it is followed by the word inherited in
parentheses. The setting is inherited from the parent application or service and you cannot change it. If
there is no applied policy, the entries in the column are None or None (inherited).

Binding:

Specifies the binding information available for a service reference, endpoint, or operation.

The Binding column can contain the following values:

Chapter 25. Administering web services (generally applicable) 2759



v Not applicable. There is no policy set attached, either directly to the service client, or to a higher-level
service reference resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application-specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service reference resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher-level service reference resource or to a service client resource.

About policy set bindings

In this release, there are two types of bindings: application-specific bindings and general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point. These bindings are
specific to, and constrained by, the characteristics of the defined policy. Application-specific bindings can
provide configuration for advanced policy requirements such as multiple signatures; however, these
bindings are reusable only within an application. Also, application-specific bindings have very limited reuse
across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding, and fully configure the bindings for each policy that you add. For
WS-Security policy, some high-level configuration attributes such as TokenConsumer, TokenGenerator,
SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the
application-specific bindings.

For service providers, you can create application-specific bindings only by selecting Assign Binding >
New Application Specific Binding, on the Service providers policy sets and bindings collection page, for
service provider resources that have an attached policy set. Similarly, for service clients, you can create
application-specific bindings only by selecting Assign Binding > New Application Specific Binding, on
the Service clients policy sets and bindings collection page, for service client resources that have an
attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and they can be reused
across applications and for trust service attachments. Although general bindings are highly reusable, they
cannot provide configuration for advanced policy requirements such as multiple signatures. There are two
types of general bindings: general provider policy set bindings and general client policy set bindings.

You can create general provider policy set bindings by clicking Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel, or by clicking Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. Read about defining and managing service client or provider bindings for more information. General
provider policy set bindings might also be used for trust service attachments.

Managing policy sets and bindings for service clients at the
application level using the administrative console
Use this administrative console task to manage policy sets for service clients applications or its services,
endpoints, or operations.

2760 Administering WebSphere applications



Before you begin

Before completing this task, you need to install one or more Java API for XML-Based Web Services
(JAX-WS) applications.

About this task

You have developed a web service that contains all the necessary artifacts and deployed your web
services application into your application server instance. Now, you can attach or detach policy sets and
manage the associated bindings.

The policy set information is displayed in the Attached Policy Set column. If a policy set is directly
attached, then the policy set name appears; for example, WS-I RSP is displayed. If there is no policy set
attached, and a policy set is attached at a higher level, then the word inherited in parentheses is
appended to the policy set name, as the following example demonstrates: WS-I RSP (inherited). If there
is no policy set attached directly or at a higher level, then None is displayed.

Every attachment of a policy set to a service artifact has an assigned binding. The binding information is
displayed in the Binding column. The Binding column can contain the following values:

v Not applicable. There is no policy set attached, either directly or to a higher level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application-specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher level resource.

In Version 7.0 and later of this product, there are two types of bindings, application specific bindings and
general bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are
specific to and constrained to the characteristics of the defined policy. Application specific bindings are
capable of providing configuration for advanced policy requirements, such as multiple signatures; however,
these bindings are only reusable within an application. Furthermore, application specific bindings have very
limited reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding and fully configure the bindings for each policy that you have
added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,
TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not
configured in the application specific bindings.

For service clients, you can only create application specific bindings by selecting Assign Binding > New
Application Specific Binding for service client resources that have an attached policy set. See service
clients policy sets and bindings collection. Similarly, for service clients, you can only create application
specific bindings by selecting Assign Binding > New Application Specific Binding for service client
resources that have an attached policy set. See service client policy set and bindings collection.

General bindings

General bindings were introduced in Version 7.0 of this product. These bindings can be configured to be
used across a range of policy sets and can be reused across applications and for trust service

Chapter 25. Administering web services (generally applicable) 2761



attachments. Though general bindings are highly reusable, they are however not able to provide
configuration for advanced policy requirements, such as multiple signatures. There are two types of
general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general client policy set bindings by accessing Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel or by accessing Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. See defining and managing service client or provider bindings.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Procedure
1. Open the administrative console.

2. In the navigation pane, click Applications > Application Types > WebSphere enterprise
applications > Service_client_application_instance > Service client policy sets and bindings.

3. Select the check box next to the Application/Service/Endpoint/Operation column. The service name
is the service client reference in the application.

4. Click Attach to attach a policy set to an application, service, endpoint or operation.

5. [Optional] Click Detach to detach a policy set from a list of attached policy sets for an application,
service client, endpoint or operation.

6. Click Assign Binding to select from a list of available bindings for the selected policy set attachment.
All the bindings are listed along with the following options:

Table 261. Binding descriptions. Use the descriptions of the default bindings for the selected policy set attachment.
Bindings Description

Default Specifies the default binding for the selected service client, endpoint, or operation. You
can specify client and provider default bindings to be used at the cell level or global
security domain level, for a particular server, or for a security domain. The default
bindings are used when an application-specific binding has not been assigned to the
attachment. When you attach a policy set to a service resource, the binding is initially
set to the default. If you do not specifically assign a binding to the attachment point
using this Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the run time checks to see if the attachment includes a
binding. If so, it uses that binding. If not, the run time checks in the following order and
uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain in which the server resides

3. Default general bindings for the global security domain

New Application Specific Binding Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If you
select more than one resource, ensure that all selected resources have the same
policy set attached.

Client sample Select this option to use the Client sample binding.

Client sample V2 Select this option to use the Client sample V2 binding when you are using either the
Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy sets.

Saml Bearer Client sample Select this option to use the Saml Bearer Client sample. The Saml Bearer Client
sample extends the Client sample binding to support SAML Bearer token usage
scenarios. You can use this sample with any of the SAML bearer token default policy
sets.

Saml HoK Symmetric Client sample Select this option to use the Saml HoK Symmetric Client sample. The Saml HoK
Symmetric Client sample extends the Client sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this sample
with one of the SAML HoK Symmetric key default policy sets: either SAML11 HoK
Symmetric WSSecurity default or SAML20 HoK Symmetric WSSecurity default.

2762 Administering WebSphere applications



Results

When you finish this task, a policy set is attached or detached, and a binding is assigned to the service
artifact.

Example

If you have configured a service client application instance, app1 and you want, for example, to attach the
Username WSSecurity default policy set to your application, first locate app1 application in the
Applications > Application Types > WebSphere enterprise applications. Click app1 > Service client
policy sets and bindings under the Web Services Properties section. Select the check box next to the
app1 service application. Click Attach and select Username WSSecurity default policy set. Click Save, to
save your changes to the master configuration.

To assign a binding to the attached policy set, click app1 > Service client policy sets and bindings.
Select the check box next to the app1 service application and click Assign Binding. Select client sample
binding from the list. Click Save, to save your changes to the master configuration.

What to do next

You can proceed to view service clients at the cell level using the administrative console.

Service client policy set and bindings collection
Use this page to attach and detach policy sets to an application, a service client, its endpoints, or
operations. You can select the default bindings, create new application-specific bindings, or use existing
bindings for an attached policy set. You can view or change whether the client uses the policy of the
service provider.

This page displays detail information for an application and its associated web service clients, endpoints,
and operations. You can view and manage policy set attachments and bindings information using this
page.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > service_client_application_instance > Service client policy sets and
bindings.

This console page can also be viewed for WS-Notification service clients by clicking one of the following
paths:

v Service integration > WS-Notification > Services > service_name > [Additional properties]
Outbound request policy sets and bindings

v Service integration > Buses > bus_name > [Services] WS-Notification services > service_name >
[Additional properties] Outbound request policy sets and bindings

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Chapter 25. Administering web services (generally applicable) 2763



Table 262. Button descriptions. Use the buttons to manage policy sets and policy set bindings for a service client, its
endpoints, or operations.
Button Resulting action

Attach Client Policy Set Click this button to view a list of policy sets available for attachment to the selected service,
endpoint, or operation. Select a policy set from the list to attach and it is attached to the selected
service, endpoint, or operation. To close the menu list, click Attach Client Policy Set.
Note: Attach policy sets at the highest level, the EAR server level for example, and let the lower
levels inherit those bindings. This can significantly improve the processing time needed to attach
sets to multiple operations.

After you attach sets at the highest level, you can then customize the lower levels by detaching
sets or removing bindings from those specific operations.

Detach Client Policy Set Click this button to detach a policy set from a selected service, endpoint, or operation. After the
policy set is detached, if there is no policy set attached to an upper level service resource, the
Attached Client Policy Set column displays None and the Binding column displays Not Applicable.

If there is a policy set attached to an upper level service resource, the Attached Client Policy Set
column displays policy_set_name (inherited) and the binding used for the upper level attachment
is applied. The binding name is displayed followed by (inherited).

Assign Binding Click this button to select from a list of available bindings for the selected policy set attachment. All
the bindings are listed along with the following options:

Default Specifies the default binding for the selected service, endpoint or operation. You can
specify client and provider default bindings to be used at the cell level or global security
domain level, for a particular server, or for a security domain. The default bindings are
used when an application-specific binding has not been assigned to the attachment.
When you attach a policy set to a service resource, the binding is initially set to the
default. If you do not specifically assign a binding to the attachment point using this
Assign Binding action, the default specified at the nearest scope is used.

For any policy set attachment, the run time checks to see if the attachment includes a
binding. If so, it uses that binding. If not, the run time checks in the following order and
uses the first available default binding:

1. Default general bindings for the server

2. Default general bindings for the domain that the server resides

3. Default general bindings for the global security domain

New Application Specific Binding
Select this option to create a new application-specific binding for the policy set
attachments. The new binding you create is used for the selected resources. If you
select more than one resource, ensure that all selected resources have the same policy
set attached.

Client sample
Select this option to use the Client sample binding.

Client sample V2
Select this option to use the Client sample V2 binding when you are using either the
Kerberos V5 WSSecurity default or the TrustServiceKerberosDefault policy sets.

Saml Bearer Client sample
Select this option to use the Saml Bearer Client sample. The Saml Bearer Client sample
extends the Client sample binding to support SAML Bearer token usage scenarios. You
can use this sample with any of the SAML bearer token default policy sets.

Saml HoK Symmetric Client sample
Select this option to use the Saml HoK Symmetric Client sample. The Saml HoK
Symmetric Client sample extends the Client sample binding to support SAML
holder-of-key (HoK) symmetric key token usage scenarios. You can use this sample
with one of the SAML HoK Symmetric key default policy sets: either SAML11 HoK
Symmetric WSSecurity default or SAML20 HoK Symmetric WSSecurity default.

To close the menu list, click Assign Binding.
Note: Assign bindings at the highest level, the EAR server level for example, and let the lower
levels inherit those bindings. This can significantly improve the processing time needed to attach
sets and bindings to multiple operations.

After you assign bindings at the highest level, you can then customize the lower levels by
detaching sets or removing bindings from those specific operations.

Application/Service/Endpoint/Operation:

2764 Administering WebSphere applications



Specifies the name of the application and the associated service client, endpoints, or operations. For
WS-Notification service clients, the first entry is associated with the WS-Notification service, not an
application.

Attached Client Policy Set:

Specifies the policy set that is attached to the application, service clients, endpoints, or operations.

The Attached Client Policy Set column can contain the following values:

v None. No policy set is attached directly, or is attached at an upper level.

v policy_set_name. The name of the policy set that is directly attached, for example, WS-I RSP.

v policy_set_name (inherited). A policy set is not directly attached to the resource, but a policy set is
attached to a higher-level resource.

When the value in the column is a link, click the link to view or change settings about the attached policy
set.

Policies Applied:

Specifies the policies that are applied to the resource. This column is not applicable and is not shown for
WS-Notification service clients.

The Policies Applied column can contain the following values:

v None. No policies are applied to the application or service. This is the default setting if there is no policy
set attached to the client.

v Client only. The client policy set is applied to the application or service. This is the default setting if a
policy set is attached to the client.

v Provider only. The policy configuration of the service provider is applied to the application or service,
as long as the client can support those policies.

v Client and provider. A policy that is based on both the client policy set and the policy of the service
provider is applied to the application or service.

When the value in the column is a link, click the link to view or change settings about how the policies are
applied.

For a service, if the value in the column is a link followed by the word inherited in parentheses, this
shows a setting that is inherited from the parent application. You can click the link to change the setting for
the service.

For an endpoint or operation, the value is not a link and it is followed by the word inherited in
parentheses. The setting is inherited from the parent application or service and you cannot change it.

Binding:

Specifies the name of the binding associated with a policy set.

The Binding column can contain the following values:

v Not applicable. There is no policy set attached, either directly or to a higher-level service resource.

v Binding_name or Default. The binding name is displayed if a policy set is attached directly and an
application-specific binding or a general binding is assigned, for example, MyBindings1. Default is
displayed if a policy set is attached directly but the service resource uses the default bindings.

v Binding_name (inherited) or Default (inherited). A service resource inherits the bindings from an
attachment to a higher-level resource.

Chapter 25. Administering web services (generally applicable) 2765



When the value in the Binding column is a link, click the link to view or change settings about the binding.

About policy set bindings

In this release, there are two types of bindings: application-specific bindings and general bindings.

Application-specific bindings

You can create application-specific bindings only at a policy set attachment point. These bindings are
specific to, and constrained by, the characteristics of the defined policy. Application-specific bindings can
provide configuration for advanced policy requirements such as multiple signatures; however, these
bindings are reusable only within an application. Also, application-specific bindings have very limited reuse
across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding, and fully configure the bindings for each policy that you add. For
WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,
SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the
application-specific bindings.

For service providers, you can create application-specific bindings only by selecting Assign Binding >
New Application Specific Binding, on the Service providers policy sets and bindings collection page, for
service provider resources that have an attached policy set. Similarly, for service clients, you can create
application-specific bindings only by selecting Assign Binding > New Application Specific Binding, on
the Service clients policy sets and bindings collection page, for service client resources that have an
attached policy set.

General bindings

You can configure general bindings to be used across a range of policy sets and they can be reused
across applications and for trust service attachments. Although general bindings are highly reusable, they
cannot provide configuration for advanced policy requirements such as multiple signatures. There are two
types of general bindings: general provider policy set bindings and general client policy set bindings.

You can create general provider policy set bindings by clicking Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel, or by clicking Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. For details about defining and managing service client or provider bindings, see the related links.
General provider policy set bindings might also be used for trust service attachments.

Viewing web services deployment descriptors in the administrative
console
You can view the web services client and server deployment descriptors for a deployed web services
application. You can view the bindings in the deployment descriptors.

Before you begin

Before you can view the deployment descriptors, you need to complete all tasks required to implement a
JAX-RPC web service, create the deployment descriptor templates that were generated by the WSDL2Java
command-line tool, configure the deployment descriptors and bindings, and deploy the Web service
application into WebSphere Application Server. Review the implementing web services application
documentation for more information on developing and implementing web services.

2766 Administering WebSphere applications



About this task

Deployment descriptors contain the information that is needed by a web services client to communicate
with the server for which the Web services is installed. This information is added to the deployment
descriptor templates after a web service is developed or an existing web service is located. The data that
you can view in the deployment descriptor includes the following:

v The web service description including the name, WSDL file, WSDL file location and the mapping file.

v The port description, including the port component name, the WSDL port, the service endpoint interface
that indicate the service's bindings, and the EJB that is used to implement the web service.

After you have developed a web service that contains all the necessary artifacts, created the deployment
descriptors from the deployment descriptor templates, configured the deployment descriptors, and
deployed the web services application into WebSphere Application Server; now you can view the
deployment descriptors and bindings in the administrative console.

Similar to Java API for XML-based RPC (JAX-RPC) web services, you can use deployment descriptors to
describe JAX-WS web services. For JAX-WS web services, the use of the webservices.xml deployment
descriptor is optional because you can use annotations to specify all of the information that is contained
within the deployment descriptor file. You can use the deployment descriptor file to augment or override
existing JAX-WS annotations. Any information that you define in the webservices.xml deployment
descriptor overrides any corresponding information that is specified by annotations.

Procedure
1. Open the administrative console.

2. Click Applications > Application Types > WebSphere enterprise applications > application_name
> Manage Modules.

v Click View web services client deployment descriptor extension.

v Click View web services server deployment descriptor.

v Click View web services server deployment descriptor extension.

3. Click Expand All to view the deployment descriptor contents.

4. Verify deployment descriptor and bindings configurations.

What to do next

You have viewed and verified the deployment descriptors and bindings for the web services application.

Configuring the scope of a JAX-RPC web services port
When a Java API for XML-based RPC (JAX-RPC) web service application is deployed into WebSphere
Application Server, an instance is created for each application or module. The instance contains
deployment information for the web module or enterprise bean module, including implementation scope,
client bindings and deployment descriptor information. There are three levels of scope that can be set:
application, session and request.

Before you begin

Deploy a web service into the WebSphere Application Server. To learn more, read about deploying web
services applications onto application servers.

About this task

The Web Services for Java Platform, Enterprise Edition (Java EE) specification states that web services
implementations must be stateless. Therefore, to maintain specification compliance, the scope can remain
at the application level because the state relevant to the individual sessions level or the requests level is

Chapter 25. Administering web services (generally applicable) 2767



not supposed to be maintained in the implementation. If you want to deviate from the specification and
want to access a different JavaBeans instance, because you are looking for information that is located in
another JavaBeans implementation, the scope settings need to change.

The setting that you configure for the scope determines how frequently a new instance of a service
implementation class is created for the web services ports in a module. Use this task to configure the
scope of a web services port.

This task applies only to Java API for XML-based RPC (JAX-RPC) web services.

To change the scope setting in the administrative console:

Procedure
1. Open the administrative console.

2. Click Applications > Application Types > WebSphere enterprise applications application_name
> Manage Modules > module instance > Web services implementation scope

3. Set the scope to application, session or request. The application scope causes the same instance of
the implementation to be used for all requests on the application. The session scope causes the same
instance to be used for all requests in each session. The request scope causes a new instance to be
used for every request. For example, with the scope set to application, every message that comes to
the server accesses the same JavaBeans instance because that is the way the scope settings are
configured.

4. Click Apply.

5. Click OK.

Results

The scope for a web services port is configured.

What to do next

Now you can finish any other configurations, start or stop the application, and verify the expected behavior
of your web service.

Web services implementation scope
Use this page to view and manage the scope of the ports of a Web service application.

To view this administrative console page, click Applications > Application Types > WebSphere
enterprise applications > application_name > Manage Modules > module_instance > Web services
implementation scope.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

Port:

Specifies a port name for a web service. A module can contain one or more web services, each of which
can contain one or more ports.

Web service:

Specifies the name of the web service. A module can contain one or more web services.

URI:

2768 Administering WebSphere applications



Specifies the Uniform Resource Identifier (URI) of the binding file that defines the scope. The URI is
relative to the web module.

Scope:

Specifies the scope of a port. The valid values for scope are request, session and application.

The scope value determines when a new instance of a service implementation is created for the web
service ports in a module. When the scope value is set to application, the same instance of the
implementation is used for all requests on the application. When the scope value is set to session, the
same instance is used for all requests on each session. When the scope value is set to request, a new
instance is created for every request.

Suppressing the compensation service
Not all web servers are configured to handle SOAP messages containing CoordinationContext elements.
You can use WebSphere Application Server to configure a custom property for the compensation service
which processes a predefined list of Enterprise Java Beans for which no CoordinationContext should be
sent on web service requests.

About this task

When the compensation service is used, CoordinationContext elements are included in the outgoing SOAP
header. For example:
<wscoor:CoordinationContext soapenv:mustUnderstand="1"
...
</wscoor:CoordinationContext>

If such a SOAP message is received by a web server which is not configured to process
CoordinationContext elements, an exception message is produced. See the following example:
Header block local name ’CoordinationContext’ is not defined.

You can construct a file containing a list of all Enterprise Java Beans which should not send the
CoordinationContext element in web service requests. This file must be in plain text format and must
contain one entry per line, in the following format:
application_name#module#bean
application_name#module#bean
application_name#module#bean

Here application_name is the name of the application as known on the server; module is the name of the
Enterprise Java Bean jar; and bean is the name of the Enterprise Java Bean.

Note: This file must only contain entries for beans not configured to use the compensation service. This
custom property will not be effective for any beans listed in the file which have compensation
service metadata associated with them.

Procedure
1. Start the administrative console.

2. In the navigation pane, click Servers > Server Types > WebSphere application servers >
server_name > [Container Settings] Container Services > Compensation Service > [Additional
Properties] Custom Properties

3. Click New.

4. Enter SUPPRESS_CSCOPE_ON_WS_CALLS in the Name field.

5. In the Value field, enter a fully qualified file name.

6. Click Apply or OK.

7. Click Save to save your changes to the master configuration.

Chapter 25. Administering web services (generally applicable) 2769



8. Restart the server.

Results

Web service requests sent from Enterprise Java Beans listed in the custom property file will not contain
CoordinationContext metadata in the outgoing SOAP message header.

JAX-WS timeout properties
Timeout properties for configuring how long Java API for XML-Based Web Services (JAX-WS) clients wait
to read response messages, send request messages, and make connections, can be set in various levels
of the application server for JAX-WS applications. These timeout properties can be configured via policy
sets, on the org.apache.axis2.context.MessageContext, and the Java virtual machine (JVM). This order of
precedence is how the web services runtime environment reads the properties. For example, if the write
timeout were set in both the policy set and on the JVM, the runtime environment uses the property value
in the policy file and ignore the JVM property. The following tables outline the read, write, and connection
timeout properties. Unlike a Java API for XML-based RPC (JAX-RPC) client, timeout properties for
JAX-WS clients must not be set on the client binding file, as the runtime environment ignores timeout
properties set this way.

Policy set timeout properties

The following timeout properties can be set via policy sets. The web services runtime environment honors
timeout properties set at the policy set level as the highest precedence. Valid values for the timeout
properties are integers, representing seconds.

Table 263. Policy set timeout properites. Timeout properties for policy sets.

Java constant name Literal name Default value

com.ibm.ws.websvcs.transport.common.TransportConstants.READ_TIMEOUTreadTimeout 300

com.ibm.ws.websvcs.transport.common.TransportConstants.WRITE_TIMEOUTwriteTimeout 300

com.ibm.ws.websvcs.transport.common.TransportConstants.CONN_TIMEOUTconnectTimeout 180

MessageContext timeout properties

The following timeout properties can be set on the MessageContext. The web services runtime environment
honors timeout properties set on the MessageContext only if the equivalent timeout properties have not also
been set via policy sets. Valid values for the timeout properties are integers, representing seconds.

Table 264. MessageContext timeout properites. Timeout properties for message context.

Java constant name Literal name Default value

com.ibm.wsspi.webservices.Constants.RESPONSE_TIMEOUT_PROPERTYtimeout 300

com.ibm.wsspi.websvcs.Constants.WRITE_TIMEOUT_PROPERTY write_timeout 300

com.ibm.wwsspi.websvcs.Constants.CONNECTION_TIMEOUT_PROPERTYconnect_timeout 180

JVM timeout properties

The following timeout properties can be set on the JVM. The web services runtime environment honors
timeout properties set on the JVM only if the equivalent timeout properties have not also been set via
policy sets or on the MessageContext. Valid values for the timeout properties are integers, representing
seconds.

2770 Administering WebSphere applications



Table 265. JVM timeout properites. Timeout properties for JVM.

Java constant name Literal name Default value

com.ibm.wsspi.webservices.Constants.RESPONSE_TIMEOUT_PROPERTYtimeout 300

com.ibm.wsspi.webservices.Constants.WRITE_TIMEOUT_PROPERTYwrite_timeout 300

com.ibm.ws.websvcs.transport.http.WSHTTPConstants.HTTP_SOCKET_CONNECTION_TIMEOUTcom.ibm.websphere.webservices.http.SocketTimeout180

Managing policy sets using the administrative console
You can use policy sets, or assertions that define services, to simplify your web services configuration
because policy sets group security and other web services settings into reusable units. You can use the
administrative console to create, modify, and delete custom policy sets.

Before you begin

Before creating policy sets, first identify the security and other requirements of the web service.

Note: You can only use policy sets with JAX-WS applications that run on the Axis2 web service engine.
You cannot use policy sets for JAX-RPC applications.

About this task

You can use the administrative console to view and manage policy sets. From the administrative console,
click Services > Policy sets > Application policy sets or Services > Policy sets > System policy sets.
The Application policy sets collection displays a listing of the custom (if you have created custom policy
sets) and default policy sets. Use the Application or System policy sets collection page to create, copy,
delete, export, and import policy sets.

The following policy sets are ready for you to use as is.

v LTPA WSSecurity Default

v Kerberos V5 HTTPS default

v SSL WSTransaction

v Username SecureConversation

v Username WSSecurity default

v WS-Addressing default

v WSHTTPS default

v WS-I RSP ND

v WS-ReliableMessaging persistent

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Procedure
v “Viewing policy sets using the administrative console” on page 2772.

This topic describes the process of viewing and evaluating policy sets.

v “Creating policy sets using the administrative console” on page 2773.

This topic describes two ways to create policy sets: creating new policy sets or copying and renaming
policy set templates.

v “Modifying policy sets using the administrative console” on page 2783.

This topic describes how to edit custom policy sets you have created.

Chapter 25. Administering web services (generally applicable) 2771



v “Importing policy sets using the administrative console” on page 2780.

This topic describes how to import policy sets from the default repository or from a selected location.

v “Exporting policy sets using the administrative console” on page 2849.

This topic describes how to export policy sets.

v “Deleting policy sets using the administrative console” on page 2784.

This topic describes how to delete custom policy sets. You can delete policy set templates and re-import
them if needed.

v “Managing policies in a policy set using the administrative console” on page 2801

This topic describes how you can define policies with policy sets to secure messages.

v “Defining and managing policy set bindings” on page 2785

This topic describes configuring custom binding configurations.

Results

Using these tasks, you can determine how to create a new policy set and verify whether you can reuse an
existing policy set. You can configure a policy set, and define policies for that policy set.

What to do next

Depending on how you are using policy sets, you might want to revisit some of the tasks listed in this topic
to tweak the configuration for your policy set. You can also proceed to configure bindings for your policy
set. See Defining binding information for policy sets.

Viewing policy sets using the administrative console
You can use the administrative console to view lists of policy sets. Policy sets can either be default policy
sets that you cannot edit or custom policy sets that you have created and can edit. You can use policy
sets, or assertions that define services, to simplify your web services configuration because policy sets
group security and other web services settings into reusable units.

Before you begin

If you are creating a custom policy set by copying an existing default policy set, you might want to view
the existing policy sets to choose a policy set with properties similar to the one you are planning to create.

About this task

You can view a list of policy sets to decide which policy sets can be reused or copied, modified and
reused.

Procedure
1. To view policy sets from the administrative console, click Services > Policy sets > Application policy

sets or Services > Policy sets > System policy sets.

2. Set the number of policy set rows that you want to view at a time using the Preferences settings. The
default value is 20. The Editable column on the table in this view shows which policy sets you can edit.
You can only edit the custom policy sets that you create. You cannot edit the provided default policy
sets.

3. To view the details for any of the policy sets, click the name of the policy set in the Name column of
the table. The Policy set settings page displays details about the selected policy set. If the policy set is
a custom policy set you can edit the fields on the page. If the policy set is a provided default, then you
can copy and reuse the policy set. You cannot edit the fields otherwise.

2772 Administering WebSphere applications



Results

After you have viewed the available policy sets and their settings, you can then decide if you want to
create a new policy set, copy an existing policy set that you can rename, or use one of the existing policy
sets that meets your needs.

Creating policy sets using the administrative console
You can use the administrative console to either create a policy set by specifying all the necessary
information or by copying an existing policy set that you rename. You can use policy sets, or assertions
that define services, to simplify your web services configuration because policy sets group security and
other web services settings into reusable units.

Before you begin

To create a new policy set, you can either specify the information to create a new policy set or you can
copy and rename an existing policy set. Using either method, you need basic information about the policy
set that you want to create, such as the name, description, policies to include, policy details, attachments,
and binding configurations. If you are creating a policy set by copying an existing policy set, then you
should also view the existing policy sets to choose one with properties that are most similar to the one you
plan to create.

About this task

Whether you choose to create a new policy set or copy and rename an existing one, start from the
Applications policy sets collection in the administrative console.

Procedure
1. From the administrative console, click Services > Policy sets > Application policy sets or Services

> Policy sets > System policy sets.

2. If the policy set you are creating is:

v a new policy set, then click New.

v an existing policy set to be copied and renamed, click the Select box beside the name of the policy
set to be copied in the Name column and click Copy.

Using either method, this action opens the Policy set settings view to specify the required information
about the policy set being created or copied.

3. Enter the name of the policy set that you want to create or copy in the Name field.

4. Enter a brief description of the policy set in the Description field. This is the description that displays
in the Application policy sets or the System policy set collection, so it must be meaningful to you and
other potential users of this policy set.

Note: If you created a new policy set, it does not contain policies to edit until you add them to the
policy set. The policy set is initially empty.

Results

You have provided the basic information to create a policy set.

Example

After you have looked at your web services, you might decide that the WS-I RSP default policy set most
closely meets your needs. You would go to the administrative console and click Services > Policy sets >
Application policy sets to access the Application policy sets collection. Locate the WS-I RSP default in
the Name column of the table and click the box beside it (in the Select column). Click Copy. This opens

Chapter 25. Administering web services (generally applicable) 2773



the Policy set settings window. You might want to name your policy set by your company or division so
you could provide a name like ABC WS-I RSP in the Name field. Because you know others in your
organization might access and use it, you've chosen a name that is meaningful to those people too. You
want to be sure everyone knows exactly what this copy of the WS-I RSP policy is used for, so you add a
description in the Description field describing it. Now you want to customize the policy set so you edit the
policy information by clicking the name of a policy to edit it.

When you identify the requirements of your web service, you might decide that none of the default policy
sets meet your needs closely enough to use them as a template so you might decide to create your own
policy set. You would first create the policy set with the name you choose to give it. As if you were reusing
an existing template, you would go to the administrative console and click Services > Policy sets >
Application policy sets and click New. The Policy set settings window opens but note that the Policy set
name field is blank and there are not yet any associated policies in the table. Enter the name and add any
policies necessary.

When you add policies to a policy set, the policies are set to their default values. You can then edit the
policies to modify any attribute values that need to be changed and save the settings.

What to do next

If you are creating a new policy set without copying an existing policy set, you need to specify the policy
information. If you are copying an existing policy set, you can either accept the default policies associated
with the policy set or you can change the policies.

WS-I RSP default policy sets
The Reliable Asynchronous Message Profile (WS-I RSP) default policy sets are based on the Reliable
Asynchronous Message Profile specification. The WS-I RSP default policy sets include the WS-I RSP
default policy set, the Lightweight Third-Party Authentication (LTPA) WS-I RSP default policy set and the
Username WS-I RSP default policy set. You can use these policy sets to simplify your web services
configuration.

The WS-I RSP default policy sets are composed of a set of policies to provide reliable and secure web
services. The WS-I RSP default policy sets use the WS-Addressing, WS-ReliableMessaging, and
WS-Security specifications. Use the WS-I RSP default policy set, the LTPA WS-I RSP default policy set, or
the Username WS-Security WS-I RSP default policy set as provided with the application server. To
customize the policy sets, you must first copy the policy set, and then configure custom policy settings and
bindings to meet your needs.

The WS-I RSP default policy sets include the following policies:

WS-Addressing policy
You can use the WS-Addressing policy to enable the addressing capability of the WS-Addressing
specification.

WS-ReliableMessaging policy
You can use the WS-ReliableMessaging policy to specify the quality of service for reliable delivery.

WS-Security policy
The WS-Security policy in the WS-I RSP default policy set provides the following security:

v Message integrity through digital signature that includes signing the body, time stamp,
WS-Addressing headers and WS-ReliableMessaging headers using the WS-
SecureConversation and WS-Security specifications.

v Confidentiality through encryption that includes encrypting the body, signature elements, using
the WS-SecureConversation and WS-Security specifications.

v Traditional RSA cryptography is used to secure a request to a Trust Server to obtain a Secure
Context Token (SCT). Thereafter, the conversation is secured using symmetric keys derived
from the SCT.

2774 Administering WebSphere applications



The application server provides additional policy sets that you can use or customize. To use the following
default policy sets, you must import the policy sets from the default repository. Read about importing policy
sets using the administrative console for more information.

The following WS-I RSP default policy sets exist:

WS-I RSP default
This policy set provides:

v Reliable message delivery to the intended receiver by enabling WS-ReliableMessaging.

v Message integrity through digital signature that includes signing the body, time stamp,
WS-Addressing headers and WS-ReliableMessaging headers using the WS-
SecureConversation and WS-Security specifications.

v Confidentiality through encryption that includes encrypting the body, signature elements, using
the WS-SecureConversation and WS-Security specifications.

LTPA WS-I RSP default
This policy set provides the WS-I RSP default policy set and adds a Lightweight Third Party
Authentication (LTPA) token included in the request message to authenticate the client to the
service.

Username WS-I RSP default
This policy set provides the WS-I RSP default policy set and adds a username token included in
the request message to authenticate the client to the service. The username token is encrypted in
the request.

SecureConversation default policy sets
The SecureConversation default policy sets are based on the Web Services Secure Conversation
Language (SecureConversation) standard that establishes a secure context, based on shared keys for the
client and server to use for a series of messages. This standard provides a framework to define how to
secure the message exchange across organizations. The SecureConversation default policy sets include
the SecureConversation policy set, the Lightweight Third-Party Authentication (LTPA) SecureConversation
policy set, and the Username SecureConversation policy set.

The SecureConversation default policy sets are based on the WS-SecureConversation, the WS-Security,
and the WS-Addressing specifications. Use the SecureConversation policy set, the LTPA
SecureConversation policy set, or the Username SecureConversation policy set as provided with the
application server. To customize the policy sets, you must first copy the policy set, and then configure
custom policy settings and bindings to meet your needs.

The WS-SecureConversation specification alone does not provide a complete security solution. The
WS-SecureConversation is built on the WS-Security and WS-Trust specifications to provide secure
communication across one or more messages. Specifically, this specification defines mechanisms for
establishing and sharing security contexts, and deriving keys from established security contexts or any
shared secret.

WS-Security focuses on the message authentication model but not in a security context. The
WS-SecureConversation specification defines mechanisms for establishing and sharing security contexts,
and deriving keys from security contexts, to enable a secure conversation. By using the SOAP extensibility
model, modular SOAP-based specifications are designed to be composed with each other to provide a rich
messaging environment.

The following SecureConversation default policy sets exist:

SecureConversation
This policy set provides:

Chapter 25. Administering web services (generally applicable) 2775



v Message integrity by digital signature that includes signing the body, timestamp, and
WS-Addressing headers using WS-SecureConversation and WS-Security specifications.

v Message confidentiality by encryption that includes encrypting the body, signature and signature
confirmation elements, using WS-SecureConversation and WS-Security specifications.

LTPA SecureConversation
This policy set provides the SecureConversation policy set and adds a Lightweight Third Party
Authentication (LTPA) token included in the request message to authenticate the client to the
service.

Username SecureConversation
This policy set provides the SecureConversation policy set and adds a username token included in
the request message to authenticate the client to the service. The username token is encrypted in
the request

WS-ReliableMessaging default policy sets
The WS-ReliableMessaging default policy sets are pre-configured to provide reliable message exchange
between web services. Two of these policy sets (WS-I RSP and WS-I RSP ND) are immediately available,
and the rest are readily available for import from a default repository.

With WS-ReliableMessaging, you can make your SOAP over HTTP-based web services reliable without
writing custom code. You can use the provided non-editable default policy sets without change, or you can
create customized copies of them.

All the default policy sets that include the WS-ReliableMessaging policy also include the WS-Addressing
policy. The WS-ReliableMessaging policy provides the ability to deliver a message reliably to its intended
receiver. The WS-Addressing policy provides a transport-neutral way to uniformly address web services
and messages, and WS-ReliableMessaging uses WS-Addressing to provide asynchronous request and
reply capabilities.

Note: WS-ReliableMessaging Version 1.1 messaging requires WS-Addressing to be mandatory. If you use
a policy set that includes WS-ReliableMessaging and WS-Addressing policies, and the
WS-Addressing policy is configured as optional, then WebSphere Application Server overrides the
WS-Addressing setting and automatically enables WS-Addressing.

The following default policy sets that include the WS-ReliableMessaging policy are immediately available,
as described in “Viewing policy sets using the administrative console” on page 2772:

WS-I RSP
This policy set enables WS-ReliableMessaging Version 1.1 and uses the minimum quality of
service, unmanaged non-persistent. This quality of service requires minimal configuration.
However it is non-transactional and, although it allows for the resending of messages that are lost
in the network, if a server becomes unavailable you will lose messages. In-order delivery is set to
“false”, so messages are not necessarily delivered in the order in which they were sent. Message
integrity is provided by digitally signing the body, the time stamp, and the WS-Addressing headers.
Message confidentiality is provided by encrypting the body and the signature. This policy set
follows the WS-SecureConversation and WS-Security specifications.

WS-I RSP ND
This is the network deployment version of the WS-I RSP policy set. This policy set provides the
WS-I RSP default policy set and adds a managed non-persistent quality of service. This
in-memory quality of service option uses a messaging engine to manage the sequence state, and
messages are written to disk if memory is low. This quality of service allows for the re-sending of
messages that are lost in the network, and can also recover from server failure. However, state is
discarded after a messaging engine restart so in this case you will lose messages.

The following additional default policy sets that include the WS-ReliableMessaging policy are readily
available for import, as described in “Importing policy sets using the administrative console” on page 2780:

2776 Administering WebSphere applications



LTPA WS-I RSP
This policy set provides the WS-I RSP default policy set and adds a Lightweight Third Party
Authentication (LTPA) token included in the request message to authenticate the client to the
service.

Username WS-I RSP
This policy set provides the WS-I RSP default policy set and adds a username token included in
the request message to authenticate the client to the service. The username token is encrypted in
the request.

WSReliableMessaging 1_0
This policy set enables both WS-ReliableMessaging Version 1.0 and WS-Addressing and uses the
minimum quality of service, unmanaged non-persistent. This quality of service requires minimal
configuration. However it is non-transactional and, although it allows for the resending of
messages that are lost in the network, if a server becomes unavailable you will lose messages.
In-order delivery is set to “false”, so messages are not necessarily delivered in the order in which
they were sent.

You can use this policy set with .NET-based web services.

WSReliableMessaging default
This policy set enables both WS-ReliableMessaging Version 1.1 and WS-Addressing and uses the
minimum quality of service, unmanaged non-persistent. This quality of service requires minimal
configuration. However it is non-transactional and, although it allows for the resending of
messages that are lost in the network, if a server becomes unavailable you will lose messages.
In-order delivery is set to “false”, so messages are not necessarily delivered in the order in which
they were sent.

WSReliableMessaging persistent
This policy set enables both WS-ReliableMessaging and WS-Addressing and uses the maximum
quality of service, managed persistent. This quality of service supports asynchronous web service
invocations and uses a service integration messaging engine and message store to manage the
sequence state. Messages are processed within transactions, are persisted at the web service
requester server and at the web service provider server, and are recoverable in the event of server
failure. In-order delivery is set to “false”, so messages are not necessarily delivered in the order in
which they were sent.

Because this policy set specifies managed persistent quality of service, you have to define
bindings to the service integration bus and messaging engine that you want to use to manage the
WS-ReliableMessaging state. You can attach and bind a WS-ReliableMessaging policy set to a
web service application by using the administrative console or the wsadmin tool.

WSAddressing default policy set
The WSAddressing default policy set provides a transport-neutral way to uniformly address web services
and messages.

The WSAddressing default policy set is based on the WS-Addressing specification. The WS-Addressing
standard uses endpoint references and message addressing properties to facilitate the addressing of web
services in a standard and interoperable way.

Use the WSAddressing default policy set as provided with the application server. To customize the policy
set, you must first copy the policy set, and then configure custom policy settings and bindings to meet your
needs.

To learn more about the WS-Addressing standard, read about Web Services Addressing support.

Chapter 25. Administering web services (generally applicable) 2777



Web Services Security default policy sets
The Web Services Security default policy sets are based on the WS-Security 1.0 and Web Services
Addressing (WS-Addressing) specifications. The Web Services Security default policy sets include the
WSSecurity default policy set, the Lightweight Third-Party Authentication (LTPA) WSSecurity policy set, the
Username WSSecurity policy set, and the Kerberos V5 HTTPS default policy set. These default policy sets
are used to build secure web services.

The Web Services Security default policy sets use the WS-Security 1.0 specification enhancements to
SOAP messaging to provide quality of protection through message integrity, message confidentiality, and
single message authentication. Providing quality of protection means to prevent the following potential
threats to SOAP messages:

v The message being modified or read by antagonists.

v An antagonist sending messages to a service that are formed correctly, but lack the appropriate security
claims to be processed.

The WS-Addressing specification defines XML 1.0 and XML Namespaces elements to identify web
services endpoints and to secure end-to-end endpoint identification in messages.

You can use the WSSecurity default policy set, the LTPA WSSecurity policy set, the Username WSSecurity
policy set, or the Kerberos V5 HTTPS default policy set as provided with the application server. To
customize the other Web Services Security policy sets, you must first copy the policy set, and then
configure custom policy settings and bindings to meet your needs.

Features and details of the default Web Services Security policy sets are as follows:

Kerberos V5 HTTPS default
This policy set provides message authentication with a Kerberos Version 5 token. Message
integrity and confidentiality are provided by Secure Sockets Layer (SSL) transport security. This
policy set follows the OASIS Kerberos Token Profile V1.1 and WS-Security specifications.

When you use this policy set, configure the basic authentication data and custom properties such
as the com.ibm.wsspi.wssecurity.krbtoken.targetServiceName and
com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost custom properties in the client bindings. For
more information, see the Authentication generator or consumer token settings and Protection
token settings (generator or consumer) topics.

LTPA WSSecurity default
This policy set provides:

v Message integrity through digital signature (using RSA public-key cryptography) to sign the
body, time stamp, and WS-Addressing headers using WS-Security specifications.

v Message confidentiality through encryption (using RSA public-key cryptography) to encrypt the
body, signature and signature elements using WS-Security specifications.

v A Lightweight Third Party Authentication (LTPA) token included in the request message to
authenticate the client to the service.

Username SecureConversation
This policy set provides:

v Message integrity through digital signature that includes signing the body, time stamp, and
WS-Addressing headers using WS-SecureConversation and WS-Security specifications

v Message confidentiality through encryption that includes encrypting the body, signature and
signature confirmation elements, using WS-SecureConversation and WS-Security specifications

v A username token included in the request message to authenticate the client to the service. The
username token is encrypted in the request

Username WSSecurity default
This policy set provides:

2778 Administering WebSphere applications



v Message integrity through digital signature (using RSA public-key cryptography) to sign the
body, time stamp, and WS-Addressing headers using WS-Security specifications.

v Message confidentiality through encryption (using RSA public-key cryptography) to encrypt the
body, signature and signature elements using WS-Security specifications.

v A username token included in the request message to authenticate the client to the service. The
username token is encrypted in the request.

WSSecurity default
This policy set provides:

v Message integrity through digital signature (using RSA public-key cryptography) to sign the
body, time stamp, and WS-Addressing headers using WS-Security specifications.

v Message confidentiality through encryption (using RSA public-key cryptography) to encrypt the
body, signature and signature elements using WS-Security specifications.

WSTransaction default policy sets
The WSTransaction default policy sets are based on the WS-Transaction specification and provide
transactional integrity for web services. The WSTransaction default policy sets include the WSTransaction
policy set and the SSL WSTransaction policy set.

You can use the WSTransaction default policy sets to make your SOAP over HTTP-based web services
interoperable and coordinate atomic transactions or business activities without writing custom code. Use
the WSTransaction policy set or the SSL WSTransaction policy set as provided with the application server.
To customize the policy sets, you must first copy the policy set, and then configure custom policy settings
and bindings to meet your needs.

The WSTransaction default policy sets are:

WSTransaction
Use this policy set to coordinate distributed transactional work atomically and interoperably, by
using the WS-AtomicTransaction specification. Also, use this policy set to coordinate loosely
coupled business processes that are distributed across the heterogenous web service
environment, with the ability to compensate actions if a failure occurs in the business activity, by
using the WS-BusinessActivity specification.

SSL WSTransaction
Use this policy set to coordinate distributed transactional work atomically, interoperably and
securely, by using the WS-AtomicTransaction specification and SSL Transport security. Also, use
this policy set to coordinate loosely coupled business processes, with the ability to compensate
actions if a failure occurs in the business activity, securely, by using the WS-BusinessActivity
specification and SSL Transport security.

WSHTTPS default policy set
The WSHTTPS default policy set provides SSL transport security for the HTTP protocol with web services
applications.

The WSHTTPS default policy set is provided with the application server and it contains the HTTP transport
policy, the SSL transport policy and the WS-Addressing policy.

You can use the WSHTTPS default policy set as provided with the application server. You cannot edit the
WSHTTPS default policy set. You can create a copy of the default policy set and then configure custom
policy settings and bindings to meet your needs. Alternatively, you can create a new policy set and specify
the policies for it.

Copy of default policy set and bindings settings
Use this page to copy a policy set that you select from a list of available policy sets.

To view this administrative console page:

Chapter 25. Administering web services (generally applicable) 2779



1. Click Services > Policy sets > Application policy sets.

2. Select the policy set that you want to copy, and click Copy.

3. Enter a name for the copy of the policy set in the Name field.

4. [Optional] Enter a description for the copy of the policy set in the Description field.

Name:

Specifies the name of the policy set. Use this field to enter a name for the copy of the policy set.

Description:

Specifies a description of the policy set that you want to copy.

Transfer attachments:

If the policy set that you want to copy is attached to one or more applications, services, or endpoints, then
the check box option for Attach this policy set in place of the original for all attached applications,
services, endpoints, and operations, is available. The default setting for this check box is cleared. You
can perform the following actions:

1. Select the Attach this policy set in place of the original for all attached applications, services,
endpoints, and operations check box to move the attachments to a new policy set. Selecting the
check box detaches the original policy set and attaches the replacement policy set in its place.

2. Select Copy bindings if you want to copy the bindings of the policy set that is currently attached.

3. [Optional] Select Restore default bindings if you want to restore the default bindings.

Importing policy sets using the administrative console
You can import predefined policy sets or import policy sets from a selected location using the
administrative console.

Before you begin

Before you begin this task, review Application policy sets collection.

About this task

The policy sets panel has an Import button to allow the import of policy sets. You can import a policy set
from the default repository or from a selected location.

Procedure
1. From the administrative console navigation, click Services > Policy sets > Application policy sets or

Services > Policy sets > System policy sets. The policy sets collection page displays a listing of the
custom and default policy sets. Custom policy sets are displayed only if you have created them. If you
have not created a custom policy set, then only the default policy sets are displayed.

2. From the Application policy sets panel, click Import.

3. Choose the option for importing the policy set. You can choose to import a policy set from the default
repository or from a selected location. Selecting Import from Default Repository accesses the next
panel that displays a set of predefined default policy sets that are available for you to import. Some of
the predefined policy sets have already been imported for you from the default repository. You can
import additional predefined policy sets that are available in the predefined policy set repository.

Select Import from Selected Location to provide a path or browse your file system for a policy set
file to import.

v To import a policy set from the default repository, select Import from Default Repository and
perform task step 4.

2780 Administering WebSphere applications



v To import a policy set from a selected location, select Import from Selected Location and perform
task step 7.

4. Select Import from Default Repository and select either the Import or the Import a Copy radio
button.

The behavior of Import policy set:

v Available for selection of one or more policy sets.

v Imports the default, not editable, policy set. You are returned to the Application policy sets panel
after the import of the policy set.

v The imported policy set can be deleted, but it cannot be modified.

The behavior of Import a Copy for a policy set:

v Not available for multiple selection. If multiple policy sets are selected and the Import a Copy radio
button is selected, an error message is displayed, indicating that only one policy set can be copied
at a time.

v Prompts you for a name and description for the copy. You are returned to the Application policy sets
panel after you import the policy set.

v The imported policy set can be modified or deleted.

5. If you selected Import from the previous step, select one or more policy sets to import in the Name
column.

a. Click OK. You are returned to the Application policy set panel.

b. Click Save, to save your changes to the configuration.

6. If you selected Import a Copy from step 4, select the policy set to import a copy in the Name column.
You can only select one policy set in the Name column to import its copy.

a. Provide a different name for the copy.

b. Click OK. You are returned to the Application policy set panel.

c. Click Save, to save your changes to the configuration.

7. Select Import from Selected Location.

a. Specify the full path or browse for the policy set file in your file system.

b. Select either Use current policy set name or Specify a different name to use for this policy
set.

c. Click OK. You are returned to the Application policy set panel.

d. Click Save to save your changes to the configuration.

Results

When you finish this task, you have been able to import a policy set using either the default repository or
from a selected location.

Example

If you have a policy set, XYZ_ps and you want to import it from a selected location, perform the following
steps:

1. From the Application policy set panel, click Import.

2. Select Import from Selected Location.

3. Specify the full path or browse to where the XYZ_ps policy set file is located in your file system.

4. Select either Use the current policy set name, XYZ_ps, or Specify a different name for the policy
set.

5. Click OK.

6. Click Save, to save your changes to the configuration.

Chapter 25. Administering web services (generally applicable) 2781



What to do next

You can modify or use the policy set that you just imported.

Import policy sets from default repository settings
Use this page to specify a policy set to import from a default repository. You can import predefined policy
sets from the default repository.

To view this administrative console page, complete the following actions:

1. Click Services > Policy sets > Application policy sets.

2. Click Import.

3. Select From Default Repository.

4. You have the Import and Import a copy options. Select Import a copy.

5. In the Name of copy field, enter a name for the copy of the policy set that you select to import from
the list of policy sets.

The behavior of Import:

v Available for selection of one or more policy sets.

v Imports the default, not editable, policy set. You are returned to the Application policy sets panel after
the import of the policy set.

v The imported policy set can be deleted, but it cannot be modified.

The behavior of Import a copy policy set:

v Not available for multiple selection. If multiple policy sets are selected and the Import a copy radio
button is selected, an error message is displayed, indicating that only one policy set can be copied at a
time.

v Prompts you for a name for the copy. The description of the imported policy set is kept, but you can edit
the description after you have imported the policy set. You are returned to the Application policy sets
panel after the import of the policy set.

v The imported policy set can be modified or deleted.

Name of copy:

Use this field to enter a name for the copy of the policy set that you select to import from the list.

Before you can edit this field, you must select Import a copy option.

Buttons:

Click the appropriate button:

Button Resulting action
OK Imports the specified policy set. You are returned to the Application policy set panel

after the import.
Cancel Returns you to the Application policy set panel without importing a policy set.

Import policy sets from a selected location settings
Use this page to specify a policy set to import from a selected location.

To view this administrative console page, click Services > Policy sets > Application policy sets >
Import policy set from selected location.

On this page, specify a policy set to import from a selected location.

2782 Administering WebSphere applications



Path and file name for the policy set file:

Specify a fully qualified path and file name to the policy set file or use the Browse to locate the file in your
file system.

Select Use current policy set name if you are not changing the policy set name and click OK.

Select Specify a different name for this policy set if you are changing the policy set name. Provide a
new name and click OK.

Button Resulting action
OK Imports the specified policy set file if valid or returns an error if an invalid file is

provided. You are returned to the Application policy set panel after the import.
Cancel Returns you to the Application policy set panel without importing a policy set.

Modifying policy sets using the administrative console
You can use the administrative console to modify existing custom policy sets that you have created. If you
have copied an existing default policy set or created a policy set yourself, you can always go back and
make changes to them to make them better suit the changing needs of your business.

Before you begin

You can create a copy of a policy set and modify the copy. You must first copy a default policy set before
you can modify it. See copy of default policy set and bindings settings.

About this task

To modify a custom policy set, you can use the Policy set settings view to access configuration information
for the policy set.

Procedure
1. Create a policy set using the steps in “Creating policy sets using the administrative console” on page

2773

2. From the administrative console, click Services > Policy sets > Application policy sets
>policy_set_name or Services > Policy sets > System policy sets >policy_set_name where
policy_set_name is the custom policy set of interest that is displayed in the table. This opens the
Policy set settings view. You must specify the required information about the policy set that you want to
modify.

3. Change the description of the policy set. Edit the brief description of the policy set in the Description
field. This is the description that displays in the Application policy sets collection so it must be
meaningful to you and other potential users of this policy set.

4. Edit the policy information. You can include, exclude, add or delete policies from this policy set using
the settings in the Policies table. To work more extensively with policies, see “Managing policies in a
policy set using the administrative console” on page 2801.

5. This step does not apply to system policy sets. Detach the policy set from an application or replace the
policy set attached to the application with another policy set. Click the Attached applications link to
access applications that are attached to this policy set and applications that contain attached service
resources. To detach a policy set from an application, use the following steps:

a. In the Filter list, click Name.

b. Find the application. In the Search term(s) field, enter all or part of the name of the application you
want to detach and click Go.

c. Detach the application. Find and select the application in the listing and click Detach Policy Set.

Chapter 25. Administering web services (generally applicable) 2783



To change the policy set that is attached to an application, use the following steps:

a. In the Filter list, click Name.

b. Find the application. In the Search term(s) field, enter all or part of the name of the application and
click Go.

c. Replace the policy set for this application. Find and select the application in the listing and click
Replace Policy Set. You then have one of the following options:

v If there are fewer than 25 policy sets to choose from, the Replace Policy Set button is a drop
down list and you can click a policy set to attach to the application.

v If there are more than 25 policy sets to choose from, the Replace Policy Set button opens a
collection of policy sets and you can select the policy set to replace from the listing.

Results

Performing these tasks modifies the application to which the custom policy set is attached.

Example

If you had a custom policy set ABC WS-I RSP, for example, that had a misleading description and you
want to change the description so that other users know what the policy set really includes, you would
access the Policy Set settings view for that policy set. To do this, from the administrative console, you
would click Services > Policy sets > Application policy sets > ABC WS-I RSP. Then you would click
the description field and edit the text so that it better represents the scope of the policy set.

What to do next

If the policy set you have modified is an attached policy set, restart all affected applications to pick up the
changes you made. If the policy set is unattached, then no further action is required.

Deleting policy sets using the administrative console
You can use the administrative console to delete the default policy sets or the application specific policy
sets that you have created.

Before you begin

If you are deleting an attached policy set, stop all applications and the associated endpoints or operations,
then detach and delete the policy set. If the policy set is unattached, then you do not need to detach the
policy set before deleting it.

About this task

If a application specific policy set is no longer needed, you might choose to delete it. To delete a
application specific policy set, use the Application policy set collection panel.

Procedure
1. From the administrative console, click Services > Policy sets > Application policy sets or Services

> Policy sets > System policy sets.

2. Click the box in the Select column next to the policy set that you want to delete.

3. Click Delete.

4. Verify that you want to delete this policy set.

Results

The selected application specific policy set is deleted from the list of policy sets and is no longer available.

2784 Administering WebSphere applications



Example

You might decide that the ABC WS-I RSP policy set that you created did not meet your needs as you had
expected and you have already created the DEF WS-I RSP policy set to better meet your needs. You
have detached all the applications and endpoints from the ABC WS-I RSP policy set and you want to
delete the policy set. Click Services > Policy sets > Application policy sets and find the ABC WS-I RSP
policy set in the listing. Select the ABC WS-I RSP policy set and click Delete. Confirm that you want to
delete the policy set and it is removed from the listing of policy sets. Restart the applications that you
detached the ABC WS-I RSP policy from, and you have successfully deleted the policy set.

Alternatively, and depending on your use case, you might want to reassign the attachment to another
resource before deleting the policy set. Make a copy of the policy set that you are about to delete, then
attach it later to your application or service artifact. See attaching a policy set to a service artifact. You can
now delete the policy set.

What to do next

If you have detached and then deleted a policy set from an application, restart all affected applications to
pick up this change.

Defining and managing policy set bindings
Policy set bindings contain platform specific information, like keystore, authentication information or
persistent information, required by a policy set attachment. Use this task to create and manage bindings.

About this task

In Version 7.0 and later, there are two types of bindings, application specific bindings and general
bindings.

Application specific bindings

You can create application specific bindings only at a policy set attachment point. These bindings are
specific to and constrained to the characteristics of the defined policy. Application specific bindings are
capable of providing configuration for advanced policy requirements, such as multiple signatures; however,
these bindings are only reusable within an application. Furthermore, application specific bindings have very
limited reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding and fully configure the bindings for each policy that you have
added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,
TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not
configured in the application specific bindings.

For service providers, you can only create application specific bindings by selecting Assign Binding >
New Application Specific Binding for service provider resources that have an attached policy set. See
service providers policy sets and bindings collection. Similarly, for service clients, you can only create
application specific bindings by selecting Assign Binding > New Application Specific Binding for
service client resources that have an attached policy set. See service client policy set and bindings
collection.

General bindings

General bindings were introduced in Version 7.0. These bindings can be configured to be used across a
range of policy sets and can be reused across applications and for trust service attachments. Though

Chapter 25. Administering web services (generally applicable) 2785



general bindings are highly reusable, they are however not able to provide configuration for advanced
policy requirements, such as multiple signatures. There are two types of general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general provider policy set bindings by accessing Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel or by accessing Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. See defining and managing service client or provider bindings. General provider policy set bindings
might also be used for trust service attachments.

Important: The general bindings that are shipped with the product are provider and client sample
bindings. These bindings are initially set as the cell default bindings. Do not use these
bindings in their current state in a production environment. To use the sample bindings, modify
them to meet your security needs in a production environment. Alternatively, create a copy of
the bindings and then modify the copy. For example, change the key and keystore settings to
ensure security, and modify other settings to match your environment. You must also configure
the username and password for Username or LTPA token authentication. See the topic
Configuring the username and password for WS-Security Username or LTPA token
authentication for more information.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

To view or work with your current policy sets bindings, perform the following:

Procedure
1. To view your current policy set and application specific bindings from the administrative console, click

Services > Policy sets > Application policy sets >policy_set_name > Attached applications and
then click an application.

Depending on the application that you select, you can manage the bindings attached to the following
policy sets:

v Service provider policy sets and bindings

v Service client policy sets and bindings

To learn more about managing the bindings attached to policy sets, see the service provider or service
client policy sets and bindings information.

Sort on the Attached policy set column on either of the policy sets and bindings pages to select the
service resources with the same policy set attached. Likewise, sort on the Binding column to select
the service resources that share the same custom binding to attach to a different policy set. If you sort
on the Policy Set or the Binding column, the hierarchical relationship of the service resources in the
first column is not accurate. You can sort again on the Application/Service/Endpoint/Operation
column to restore the hierarchical relationship. The entries in the Application/Service/Endpoint/
Operation column display in ascending order.

2. To work with an existing bindings from the administrative console, click Services > Policy sets >
Application policy sets >policy_set_name > Attached applications. Click an application name, and
then click either the Service provider policy sets and bindings or the Service client policy sets
and bindings. Then click a binding name in the Bindings column of the table.

Note: If no applications appear when you click Attached applications, you do not have any
applications attached to the selected policy set. To attach a policy set and binding to an
application using the administrative console, click Applications > Enterprise Applications >

2786 Administering WebSphere applications



application name. Then, click either Service provider policy sets and bindings or Server
client policy sets and bindings to attach resources to your policy set and to assign bindings.

.

3. [Optional] To work with general bindings, click Services > Policy sets > General client policy set
bindings or Services > Policy sets > General provider policy set bindings.

You can complete the following actions for general bindings:

v “Importing policy set bindings using the administrative console”

v “Export policy sets bindings settings” on page 2794

v “Defining and managing service client or provider bindings” on page 2790

v “Creating new or configuring existing general binding settings” on page 2793

v “Copy policy set binding settings” on page 2794

v “Deleting policy set bindings” on page 2795

Results

When you finish this task, you would have performed one or more of the following:

v Created an application specific or general policy set binding

v Imported a policy set binding

v Exported a policy set binding

v Deleted a policy set binding

v Modified an application attachment to apply an application specific binding for single security domain

v Modified an application attachment to apply an application specific binding for multiple security domain

Importing policy set bindings using the administrative console
You can import predefined client or provider policy set bindings using the administrative console.

Before you begin

This task only applies to general client or provider bindings. Before you begin this task, review the defining
and managing service client or provider bindings.

About this task

The general bindings panel has an Import button to allow the import of client or provider policy set
bindings. You can import a policy set binding by specifying the full path and filename of the binding to
import.

Procedure
1. Navigate to the General client policy set bindings or the General provider policy set bindings panel

using one of the following ways:

v Services > Policy sets > General client policy set bindings

v Services > Policy sets > General provider policy set bindings

2. Click Import.

3. Specify the full path and file name of the policy set binding to import.

4. Select either Use current binding name or Specify a different name to use for this binding. If you
are importing a binding and that binding name already exists in the repository, you must specify a
different name to use for the binding import.

5. Click OK.

Chapter 25. Administering web services (generally applicable) 2787



Results

When you finish this task, you have been able to import a policy set binding using the administrative
console.

Example

If you have a policy set binding, XYZ_psbind and you want to import it, perform the following steps:

1. From the General client or provider policy set bindings panel, click Import.

2. Specify the full path and file name of the policy set binding to import or use Browse to locate the
binding in your file system.

3. Select either Use current binding name or Specify a different name to use for this binding.

4. Click OK.

5. Click Save, to save your changes to the configuration.

What to do next

You can export a policy set binding to reuse it.

Import policy set bindings settings:

Use this page to specify a service client or provider policy set binding to import for your service.

Navigate to the General client policy set bindings or the General provider policy set bindings panel using
one of the following ways:

v Services > Policy sets > General client policy set bindings

v Services > Policy sets > General provider policy set bindings

Click Import. Specify a fully qualified path and binding name that you want to use to import the policy set
binding. The policy set binding file must be a compressed file.

Full Path with file name:

Specify a fully qualified path and file name to the policy set file or use the browse button to locate the file
in your file system.

Select Use current binding name if you are not changing the binding name and click OK.

Select Specify a different name for this binding if you are changing the binding name. Provide a new
name and click OK.

Button Resulting action
OK Imports the specified binding file if valid or returns an error if an incorrect file is

provided. You are returned to the General client or provider policy set binding panel
after the import.

Cancel Returns you to the General client or provider policy set binding panel without importing
a binding.

Web services policy set bindings
A set of bindings is a named object that is associated with a specific policy set and service resource that is
attached to the policy set.

Bindings contain environment and platform specific information, like the following types of information:

v Keys used for signature and encryption

2788 Administering WebSphere applications



v Keystore information

v Authentication information

v Persistent information

Typically, bindings are specific to the application or the platform, and they are not shared.

There are two types of bindings, application specific bindings and general bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are
specific to and defined by the characteristics of the policy. Application specific bindings are capable of
providing configuration for advanced policy requirements, such as multiple signatures; however, these
bindings are only reusable within an application. Furthermore, application specific bindings have limited
reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding and fully configure the bindings for each policy that you have
added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,
TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not
configured in the application specific bindings.

For service providers, you can only create application specific bindings by selecting Assign Binding >
New Application Specific Binding for service provider resources that have an attached policy set. See
service providers policy sets and bindings collection. Similarly, for service clients, you can only create
application specific bindings by selecting Assign Binding > New Application Specific Binding for
service client resources that have an attached policy set. See service client policy set and bindings
collection.

General bindings

General bindings can be configured to be used across a range of policy sets and can be reused across
applications and for trust service attachments. Although general bindings are highly reusable, they do not
provide configuration for advanced policy requirements, such as multiple signatures. There are two types
of general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general provider policy set bindings by accessing Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel or by accessing Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. See defining and managing service client or provider bindings. General provider policy set bindings
might also be used for trust service attachments.

Important:

The sample general bindings that are shipped with the product are provider and client sample.
Do not use these sample bindings in their current state in a production environment. However,
if they were modified to contain non-sample data, you can use these sample bindings in a
production environment.

You cannot assign a binding to a service provider resource that does not have a policy set or
has an inherited attachment. To assign a binding to such a service provider resource, you
must first attach a policy set to the resource. Also, you cannot assign a binding to a service

Chapter 25. Administering web services (generally applicable) 2789



client resource that does not have an effective policy configuration or has an inherited policy
attachment. To assign a binding to such a service client resource, you must first attach a
policy set or specify the use of the provider policy.

Defining and managing service client or provider bindings
Service client or provider bindings are general bindings. You can create, copy, and manage general
bindings such as the client or provider policy set bindings. These bindings provide system-specific
configuration and can be reused across policy set attachments.

Before you begin

You cannot assign a binding to a service provider resource that does not have a policy set or has an
inherited attachment. To assign a binding to such a service provider resource, you must first attach a
policy set to the resource. Also, you cannot assign a binding to a service client resource that does not
have an effective policy configuration or has an inherited policy attachment. To assign a binding to such a
service client resource, you must first attach a policy set or specify the use of the provider policy. For more
information, read about attaching a policy set to a service artifact.

About this task

There are two types of bindings, application specific bindings and general bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are
specific to and defined by the characteristics of the policy. Application specific bindings are capable of
providing configuration for advanced policy requirements, such as multiple signatures; however, these
bindings are only reusable within an application. Furthermore, application specific bindings have limited
reuse across policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in an
unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that you want to
override the default binding and fully configure the bindings for each policy that you have added. For
WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,
SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the
application specific bindings.

For service providers, you can only create application specific bindings by selecting Assign Binding >
New Application Specific Binding for service provider resources that have an attached policy set.
Similarly, for service clients, you can only create application specific bindings by selecting Assign Binding
> New Application Specific Binding for service client resources that have an attached policy set.

General bindings

General bindings can be configured to be used across a range of policy sets and can be reused across
applications and for trust service attachments. Though general bindings are highly reusable, they do not
provide configuration for advanced policy requirements, such as multiple signatures. There are two types
of general bindings:

v General provider policy set bindings

v General client policy set bindings

Important: The general bindings that are included with the product are provider and client sample
bindings. Do not use these bindings in their current state in a production environment.
However, if they were modified to contain non-sample data, they could be used in a
production environment.

2790 Administering WebSphere applications



Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

You can complete the following tasks to define and manage general client or provider policy set bindings.

Procedure
1. To create a new general client or provider policy set binding or to manage the binding configuration

from the administrative console, click Services > Policy sets > General client policy set bindings >
New. You can also access this panel by clicking Services > Policy sets > General provider policy
set bindings > New. Use the resulting detail panel to create a new client or provider policy set
binding. For more information, read about creating new or configuring existing general binding settings.

2. To copy a specific policy set binding, select the binding name from the table and click Copy. For more
information, read about copying a policy set binding settings.

3. To import a client or provider policy set binding, click Import. Read about importing policy set bindings
using the administrative console to complete the import task.

4. To export a client or provider policy set binding, select the binding name from the table, and click
Export. For more information, read about export policy set binding settings.

5. To delete a policy set binding, select the binding name from the table, and click Delete. For more
information, read about deleting policy set bindings.

Results

When you finish this task, you have created, copied, exported, imported or deleted a client or provider
policy set binding.

Service client or provider policy set bindings collection:

Use this page to create, copy, and manage general policy set bindings, such as the service client or
provider bindings. These bindings provide system-specific configuration, and can be reused across policy
set attachments. You can select the general default bindings, create new general bindings, or use existing
bindings for an attached policy set.

To view this administrative console page, click Services > Policy Sets > General client policy set
bindings. You can also view this page by clicking Services > Policy Sets > General provider policy set
bindings.

About policy set bindings

There are two types of bindings, application specific bindings and general bindings.

Application specific binding

You can create application specific bindings only at a policy set attachment point. These bindings are
specific to and defined by the characteristics of the defined policy. Application specific bindings can provide
configuration for advanced policy requirements, such as multiple signatures; however, these bindings are
only reusable within an application. Furthermore, application specific bindings have limited reuse across
policy sets.

When you create an application specific binding for a policy set attachment, the binding begins in an
unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that you want to
override the default binding and fully configure the bindings for each policy that you have added. For
WS-Security policy, some high level configuration attributes such as TokenConsumer, TokenGenerator,
SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not configured in the
application specific bindings.

Chapter 25. Administering web services (generally applicable) 2791



For service providers, you can only create application specific bindings by selecting Assign Binding >
New Application Specific Binding for service provider resources that have an attached policy set. See
service providers policy sets and bindings collection. Similarly, for service clients, you can only create
application specific bindings by selecting Assign Binding > New Application Specific Binding for
service client resources that have an attached policy set. See service client policy set and bindings
collection.

General bindings

General bindings were introduced in WebSphere Application Server Version 7.0. These bindings can be
configured to be used across a range of policy sets and can be reused across applications and for trust
service attachments. Though general bindings are highly reusable, they are however not able to provide
configuration for advanced policy requirements, such as multiple signatures. There are two types of
general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general provider policy set bindings by accessing Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel. Or, you can create general
client policy set bindings by accessing Services > Policy sets > General client policy set bindings >
New in the general client policy sets panel. See defining and managing service client or provider bindings.
General provider policy set bindings might also be used for trust service attachments.

Important:

The sample general bindings that are shipped with the product are provider and client sample.
Do not use these sample bindings in their current state in a production environment. However,
if they were modified to contain non-sample data, you can use these sample bindings in a
production environment.

You cannot assign a binding to a service provider resource that does not have a policy set or
has an inherited attachment. To assign a binding to such a service provider resource, you
must first attach a policy set to the resource. Also, you cannot assign a binding to a service
client resource that does not have an effective policy configuration or has an inherited policy
attachment. To assign a binding to such a service client resource, you must first attach a
policy set or specify the use of the provider policy.

Depending on your assigned security role when security is enabled, you might not have
access to text entry fields or buttons to create or edit configuration data. Review the
administrative roles documentation to learn more about the valid roles for the application
server.

Name:

Specifies the name of the service client or provider policy set binding.

The following list of buttons are available to create and manage service client or provider policy set
bindings:

Button Resulting Action
New Creates a new client or provider policy set binding. This option accesses the New

binding panel. The binding is empty initially; you must enter a name and an optional
description for a new client or provider policy set binding.

2792 Administering WebSphere applications



Button Resulting Action
Delete Removes the selected client or provider general policy set binding. The default general

bindings are being used as the default for a server or a security domain, including the
global security domain. You cannot delete default bindings for global security or other
security domains. An attempt to delete such default general binding generates an error
message that the selected binding cannot be deleted because it is currently the default
binding for a security domain.

Copy Creates a modifiable copy of the selected client or provider policy set binding using a
new name that you provide.

Import Imports a client or provider policy set binding. This is a menu item with the option of
importing a binding with the same name or providing a different name for the import.

Export Exports the selected client or provider policy set binding to an archive file.

Security Domain:

Indicates which security domain uses the general policy set binding. The default domain is global security.
This column in the collection table appears only when there are multiple security domains to which the
binding can be scoped.

Description:

Specifies the user-defined description for the client or provider policy set bindings.

Creating new or configuring existing general binding settings:

Use this page to create a new client or provider policy set binding. You can also use this page to configure
an existing general binding. Empty bindings will be deleted. Scoping a binding to a security domain
constrains the configuration options to those applicable to that domain and limits use of the binding to the
specified domain.

To view this administrative console page, click Services > Policy sets > General client policy set
bindings > New. You can also view this page by clicking Services > Policy sets > General provider
policy set bindings > New.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Bindings configuration name:

Specifies the name of the new binding configuration.

You must enter a binding configuration name to proceed. The name of the binding is automatically applied
when you add a policy type and provide additional configuration information. At that time, the initial Cancel
button is replaced with an OK button. Each binding that you add is initially empty, and you are directed to
the binding configuration panel to provide additional information for the binding.

Button Resulting action
Add Adds a policy type, such as WS-Security, to a new binding that you create or to an

existing binding. You can access the configuration of each policy type binding through
the policy type name link. If you click Cancel without providing any configuration
information for the policy type, that policy type is not saved or included in the list of
policy types. You might receive an attention message that the policy type was not
saved as part of the binding configuration.

Delete Deletes a policy type from the list.

Chapter 25. Administering web services (generally applicable) 2793



Button Resulting action
OK Associates the name of the binding to the policy type information after you add a policy

type and provide additional configuration information.
Cancel Returns you to the General client or provider policy set bindings panel without creating

a new binding configuration.

Security domain:

This field is only available in a multiple security domain environment and specifies a valid security domain.
You can scope the binding to that particular security domain, which is scoped to the global security domain
by default.

Description:

Specifies a brief description of the new client or provider policy set binding.

Export policy sets bindings settings
This task only applies to general client or provider bindings. Use this page to export either a client or
provider policy set binding for reuse.

Navigate to the General client policy set bindings or the General provider policy set bindings panel using
one of the following paths:

v Services > Policy sets > General client policy set bindings

v Services > Policy sets > General provider policy set bindings

1. Select a binding from the list and click Export.

2. Click the binding to download the archive file.

3. Use the file dialog box to select a location for the exported binding. The policy set binding file is
exported as a compressed file.

4. Click Done.

Copy policy set binding settings
Use this page to view and copy general policy set bindings for either a single security or a multiple
security domain environment.

To access this administrative console page, perform the following steps:

1. Click Services > Policy sets > General client policy set bindings. You can also access this page by
clicking Services > Policy sets > General provider policy set bindings.

2. Select an existing binding from the list, and click Copy.

3. Provide a name and description for the copy.

4. Click OK.

5. Click Save, to save your changes.

Name:

Specifies the name of copy. You must provide a different name for the copy of the binding configuration.

Security domain:

Specifies a valid security domain. This field is only available in a multiple security domain environment.
You can scope the binding to a particular security domain; it is scoped to the global security domain by
default.

Description:

2794 Administering WebSphere applications



Specifies a brief description of the copy of the policy set binding.

Deleting policy set bindings
Use this task to delete general policy set bindings using the administrative console.

About this task

You cannot delete general bindings specified as the default for any server or domain. You also cannot
delete general bindings that are assigned to a policy set attachment. To delete other bindings, perform the
following steps:

Procedure
1. Click Services > Policy sets > General client policy set bindings. You can also access this page by

clicking Services > Policy sets > General provider policy set bindings.

2. Select an existing binding from the list, and click Delete.

3. Click Save, to save your changes.

Results

When you finish this task, you have deleted a general policy set binding.

Creating application specific bindings for policy set attachment
After you attach a policy set to a service artifact such as an application, service, or endpoint, you can
define application specific bindings for the attached policy set.

Before you begin

Before you can start this task, you must deploy an application containing web services, and attach a policy
set. See attaching a policy set to a service artifact.

About this task

The application specific binding panels display options based on the definitions in the attached policy set.
For example, if the policy set does not have WS-ReliableMessaging configured, then the application
specific binding panels do not display an option to configure WS-ReliableMessaging bindings. To create
application specific bindings for an attached policy set, perform the following steps:

Procedure
1. Open the administrative console.

2. To create application specific bindings for a service provider policy attachment, click Applications >
Application Types > WebSphere enterprise applications >Service_provider_application_instance >
Service provider policy sets and bindings.

To create application specific bindings for a service client policy attachment, click Applications >
Enterprise applications > application_name > Service client policy sets and bindings.

3. Select the check box for the service artifact with an attached policy set.

4. Click Assign Binding to see a list of available bindings to assign.

5. [Optional] Select a previously defined application specific attachment binding from the list.

If you decide to create a new application specific binding, complete steps 6 through 9.

6. Click New.

7. Specify a name for the binding and select which policies that you want to include in this application
specific binding. Click Add, and select the policies to add.

8. Complete the information for the specified policies to define associated configuration data.

9. Click Save, to save your changes to the master configuration.

Chapter 25. Administering web services (generally applicable) 2795



Results

When you finish this task, a application specific binding is created for the service artifact with the attached
policy set.

Example

You have the application, app1 with the attached policy set Username WSSecurity default, and you want to
define application specific bindings. First locate the application in the Applications > Application Types >
WebSphere enterprise applications collection. Click the app1 application. You can then click the Service
provider policy sets and bindings link or the Service client policy sets and bindings link. Select the
check box for the app1 application where the policy set is attached. Click Assign Binding and click New.
Specify a name for the binding, such as myBinding. Click Add and select WS-Security from the list. Next,
click the link for WS-Security policy and complete the panels with the appropriate information. Click Save,
to save your changes to the master configuration.

What to do next

Restart the application that contains the service artifact with the application specific bindings you created.

Modifying default bindings at the server level for policy sets
You can define default bindings for HTTP transport, JMS transport, Secure Sockets Layer (SSL) transport,
WS-Addressing, WS-ReliableMessaging, and WS-Security policies.

Before you begin

To create or modify server default bindings, you must first install and configure an application server.

About this task

You can modify default cell bindings that are delivered with the product. Default bindings are not linked to
a particular policy set and they provide default settings that might be used for sharing configuration
information across multiple applications.

You can create default bindings for individual application servers and customize those bindings to meet
your requirements. The policy set bindings are optional. If a policy set binding is not defined at the server
level, then the default cell level bindings are used. To modify these default bindings, complete the following
steps:

Procedure
1. Open the administrative console.

2. To see which bindings are defined as the defaults for the cell or server, click Services > Policy sets >
Default policy sets bindings.

After seeing which bindings are defaults, you can select and edit them from the General provider or
General client policy set bindings pages.

3. To edit the default bindings, see Setting default policy set bindings .

Results

When you finish these steps, the default policy set bindings are modified. If you created default bindings at
the server level, those default bindings are used instead of the default bindings at the cell level.

2796 Administering WebSphere applications



What to do next

You can create application specific bindings for your policy sets. Read about creating application specific
bindings for policy set attachments.

Reassigning bindings to policy sets attachments
After you create a custom attachment binding, you can reassign that binding to another service artifact if
necessary. You can reset a service artifact, such as an application, service, or endpoint to use the
inherited bindings or default bindings.

Before you begin

To reassign an application specific binding or a default binding, there must be an assigned binding for the
service artifact.

About this task

You can assign bindings to policy sets and other service artifacts. If you created a policy set and attached
it to a service artifact, you can reassign the binding that was initially assigned to that policy set.

Procedure
1. Open the administrative console.

2. To reassign a binding for your service provider, click Applications > Application Types > WebSphere
enterprise applications > application_name > Service provider policy sets and bindings.

To reassign a binding for your service client, click Applications > Application Types > WebSphere
enterprise applications > application_name > Service client policy sets and bindings.

3. Select the check box for the service artifact with an attachment binding.

4. Select Assign Binding.

5. Select the binding that you want to assign.

6. Click Save, to save your changes to the master configuration.

Results

The service artifact now inherits the policy set bindings that are indicated in either the Service provider
policy sets and bindings or Service client policy sets and bindings panel.

Restriction: Reassigning the binding for a service artifact only reassigns it for that service artifact and any
inherited artifacts. It does not reassign the binding for other non-related and non-inherited
attachments to the same policy set or to a different policy set.

Example

If you have the application, app1 with an attached policy set Username WSSecurity default, and you want
to define custom bindings, then perform the following steps:

1. Locate the application in the Applications > Application Types > WebSphere enterprise
applications > application_name collection.

2. Click the app1 application.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings link.

4. Select the check box for theapp1 application where the custom attachment binding is defined.

5. Click Assign Binding and select New.

6. Provide a name for the application specific bindings.

7. Add required policies to the new application specific bindings.

Chapter 25. Administering web services (generally applicable) 2797



8. Configure the bindings.

9. Click Save, to save your changes to the master configuration.

What to do next

Restart the application that contains the policy set where you reassigned the bindings.

Policy set bindings settings
Use this page to view or define general, application specific, or trust service specific bindings configuration
information for policies that you can associate with the selected policy set. This bindings configuration
information is specific to a system. Use the links on this page to work with bindings for each specific
policy.

To view this administrative console page when you are creating or editing a trust service specific binding,
click Services > Trust service > Trust service attachments. Select a binding by clicking the binding
name in the table if the binding has been assigned to an attachment. To create a new trust service specific
binding, click Assign binding > New Trust Service Specific Binding.

To view this administrative console page when you are editing a general binding, click Services > Policy
sets > General provider policy set bindings or Services > Policy sets > General client policy set
bindings.

To view this administrative console page when you are creating or editing an application specific binding,
complete the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click Service provider policy sets and bindings or Service client policy sets and bindings in the
Web Services Properties section.

4. Select a binding by clicking the binding name in the table if the binding has been assigned to an
attachment. You must have previously attached a policy set and assigned an application specific
binding.

5. [Optional] To edit a default cell binding or default server binding, click eitherServices > Policy sets >
General provider policy set bindings or Services > Policy sets > General client policy set
bindings.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

About Policy set bindings

Policy set bindings contain platform-specific information, like keystore, authentication information or
persistent information, required by a policy set attachment. Each policy set attachment to a service
provider or service client must have exactly one binding. When you create a policy set attachment, the
general default bindings are used initially. When general bindings are used in association with a policy set
attachment, the cell-level general bindings are applied at run time. If application server level bindings exist,
the server-level general bindings override the cell-level definition. General bindings specify configuration
for both service client and service provider attachments and the general bindings are not tailored to a
specific policy set or application. When you define server-level general bindings, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP Transport, that
you want to override the general binding and you must fully configure the bindings for each policy that you
have added.

An application specific binding is a named binding that you create. Application specific bindings enable you
to provide platform-specific configuration information for specific policy set attachments. When you create
an application specific binding, the available binding configuration options are tailored to the definitions in

2798 Administering WebSphere applications



the attached policy set. You can reuse application specific bindings for multiple service resources within an
application. For example, if you create a trust service specific binding, that binding can be reused only for
trust service attachments. When you create an application specific binding for a policy set attachment, the
binding begins in a completely unconfigured state. You must add each policy, such as WS-Security or
HTTP Transport, that you want to override the general binding and you must fully configure the bindings
for each policy that you have added.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Bindings configuration name:

Specifies the name of the policy set bindings configuration. The binding name is not editable when you are
editing a binding. When you are creating a new binding, you must specify the binding name.

Note: If you are running a Version 6.1 application, the Binding configuration name is displayed as Version
6.1 default policy set bindings.

Use the following actions to create, edit, or delete policy set bindings.

Button Resulting action
Add Adds the selected policy set binding to the application.
Delete Removes the selected policy set binding from the application.

Policies – HTTP transport:

Links to the HTTP transport policy configuration settings page where you define the HTTP transport
settings. The HTTP features and HTTP connection polices are applied to outbound messages. The
response listener policy is enforced on inbound messages.

Policies – SSL transport:

Links to the SSL transport policy configuration settings page where you define the SSL transport settings.

Policies – JMS transport:

Links to the JMS transport policy configuration settings page where you define the JMS transport settings.

Policies – WS-Addressing:

Links to the configuration settings page for the WS-Addressing policy. In a WebSphere Application Server,
Network Deployment environment, use this page enable or disable workload management. Otherwise, you
can attach the WS-Addressing policy set to service resources. No additional configuration is required.

Policies – WS-ReliableMessaging:

Links to the panel where the WS-ReliableMessaging bindings are configured.

Policies – WS-Security:

Links to the WS-Security policy set bindings settings page where the WS-Security bindings are configured.

Policies – Custom properties:

Chapter 25. Administering web services (generally applicable) 2799



Links to the Custom properties policy set bindings settings page where the Custom properties bindings are
configured. The CustomProperties binding is only supported for service clients.

Web Services Addressing policy set binding
Use this page to modify the endpoint reference binding for Web Services Addressing (WS-Addressing).
The product enforces this binding on JAX-WS web service applications that use WS-Addressing. This
panel applies only to the WebSphere Application Server, Network Deployment version of the product.

To view this administrative console page, click Services > Policy Sets > Default policy set bindings >
WS-Addressing.

Prevent workload management of referenced endpoints in clusters:

By default, when an application uses the WS-Addressing API createEndpointReference(service, port)
method to create an endpoint reference in a cluster environment, that endpoint reference is workload
managed. Select this option to prevent the workload management of such endpoint references.

If you select this option, messages that are targeted at such an endpoint reference are always sent to the
node on which the endpoint reference was created. This behavior is useful when the endpoint contains
in-memory state that is held on a single node, for example, in Web Services Resource Framework
(WS-RF) applications.

Note: Although the endpoint reference always represents the same endpoint, the state that is held at that
endpoint is not reliable. If the node that is hosting the endpoint fails, the state might be lost. Note
also that if the node fails, the endpoint reference is no longer valid.

Information Value
Data type Check box
Default Cleared
Range

Cleared
Endpoint references that are created by the
application in a cluster environment are workload
managed.

Selected
Endpoint references that are created by the
application in a cluster environment are not
workload managed.

Attaching a policy set to a service artifact
Attach a policy set to a service artifact, such as an application, service, endpoint or operation, to define the
quality of services that are supported. Policy sets can define the policies for WS-Addressing, WS-Security,
WS-ReliableMessaging, WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and
Secure Sockets Layer (SSL) transport.

Before you begin

Before you can start this task, you must deploy an application containing web services. Also, if none of the
default policy sets contain the necessary policy definitions, then you must create a custom policy set with
the necessary definitions.

About this task

Develop a web service that contains each of the necessary artifacts, and deploy your web services
application into your application server instance. Now you can attach policy sets to your service artifacts,
such as an application, service, or endpoint.

2800 Administering WebSphere applications



To attach a policy set to a service artifact, perform the following steps:

Procedure
1. Open the administrative console.

2. To attach a policy set to a service provider, click Applications > Enterprise applications >
application_name > Service provider policy sets and bindings.

To attach a policy set to a service client, click Applications > Enterprise applications >
application_name > Service client policy sets and bindings.

3. Select the check box for the service artifact.

4. Select Attach to display a list of available policy sets to attach. Select a policy set from the list.

5. Click Save, to save your changes to the master configuration.

6. [Optional] To see what attachments are defined for a given policy set, select Services > Policy sets >
Application policy sets > policy_set_name > Attached applications.

Results

When you finish these steps, a policy set is attached to the service artifact.

Example

If you have the application, app1 and you want to attach the policy set, WSSecurity default, then perform
the following steps:

1. Locate the app1 application in the Applications > Enterprise applications collection.

2. Click the app1 application.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings link.

4. Select the check box for the service artifact where the policy set is to be attached.

5. Click Attach. Select WSSecurity default policy set.

6. Click Save, to save your changes to the master configuration.

What to do next

You can create custom bindings for policy set attachments. Read about creating custom bindings for policy
set attachments.

You can configure the service client or service provider to share their policies. Read about using
WS-Policy to exchange policies in a standard format.

Managing policies in a policy set using the administrative console
When working with policy sets in the administrative console, you can customize the included policies to
ensure message security. You can enable, disable, customize, add, or delete policies from a policy set.
With your policy sets, you can define policies for WS-Addressing, WS-Security, WS-ReliableMessaging,
WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and Secure Sockets Layer
(SSL) transport. The policies for all but WS-Security are relatively straightforward to define.

Before you begin

You can customize the policies for custom policy sets. The provided default policy sets cannot be edited.
Make sure that you have created a copy of the default policy set or created a completely new policy set to
specify the policies for this policy set.

Chapter 25. Administering web services (generally applicable) 2801



About this task

Customize policies associated with a policy set using the administrative console.

Procedure
1. Click one of the following:

v Services > Policy sets > Application policy sets >policy_set_name

v Services > Policy sets > System policy sets >policy_set_name

You can also click Services > Policy sets > Application policy sets > New or Services > Policy
sets > System policy sets > New. Follow this path when you want to create a new policy set and the
associated policy or policies.

2. Add a policy to a custom policy set. To do this, see “Adding policies to policy sets using the
administrative console.”

3. Enable a policy for a custom policy set. To do this, see “Enabling policies for policy sets using the
administrative console” on page 2847.

4. Optional: You can also disable a policy from a custom policy set. To do this, see “Disabling policies
from policy sets using the administrative console” on page 2848.

5. Optional: You can also delete a policy from a custom policy set. To do this, see “Deleting policies from
policy sets using the administrative console” on page 2803.

Results

After you have customized your policies, the associated policy set can protect messages according to the
policy or policies defined.

What to do next

If the policy set you have modified is an attached policy set, restart all affected applications to pick up the
changes you made. If the policy set is unattached, then no further action is required.

Adding policies to policy sets using the administrative console
You can use the administrative console to add policies to policy sets. Adding and configuring policies to a
policy set further defines the rules governing the policy set.

Before you begin

Before adding a policy to a policy set, check that it is not listed as disabled in the Policies table. A
disabled policy can be listed for the policy set and only need to be enabled to be included in the policy set.
If this is the case, the policy does not need to be added and it is not available to be added.

About this task

All policies are initially set to their default values. These values can be edited and the attributes changed
using the administrative console.

Procedure
1. Click Services > Policy sets > Application policy sets > policy_set_name or Services > Policy

sets > System policy sets > policy_set_name. This displays a listing of available policies in the
Policies table for the policy set selected. If you created a new policy set and did not copy and rename
an existing policy set, this table might contain no policies and you must add them.

2. Add a policy. To add a policy not listed in the Policies table of the Policy set settings page, click the
Add drop down button. This button displays a list of available policies that are not already listed in the
Policies table and therefore not included in the policy set.

2802 Administering WebSphere applications



3. Click the policy to be added. The selected policy is added to the Policies table. Each policy you add
has default settings that can be modified.

Results

After you have added a policy, it is then included in the policy set.

Example

If you were working on policy set ABC_ps (that you created and it therefore has no policies associated
with it) you would click the ABC_ps name in the Policy Sets collection and then click the Add button in
the Policies table on the Policy set settings window. The drop down list displays all available policies for
you to choose from. You might decide you want to include the WS-Addressing and WS-Security policies
for this policy set. You would select each of those from the list. Then, click the policy name in the table to
edit the properties of these policies.

What to do next

If the modified policy set is an attached policy set, restart all affected applications to apply the changes. If
the policy set is unattached, then no further action is required.

Deleting policies from policy sets using the administrative console
You can use the administrative console to delete policies from policy sets. Deleting the policy removes the
policy that further defined the rules governing the policy set.

Before you begin

Before deleting a policy from a policy set, be sure that you no longer want the policy to be available to the
policy set. Otherwise, consider disabling it so that it is still available to the policy set but not currently
associated with the policy set. You can disable the policy and leave it available for the policy set by
clicking the Select button by the policy to be disabled and then clicking the Disable button. That policy
(and any configuration changes you have made to it) is still available to the policy set but is not currently
included in the policy set.

About this task

To delete a policy from a policy set, use the administrative console.

Procedure
1. Click Services > Policy sets > Application policy sets > policy_set_name or Services > Policy

sets > System policy sets > policy_set_name. The Policy set settings page displays a listing of
available policies in the Policies table of the Policy set settings page for the policy set selected. If you
created a new policy set and did not copy and rename an existing policy set, this table might contain
no policies to delete.

2. Delete the policy from the policy set.

a. Click the Select box beside the policy that you want to delete in the Policies table of the Policy set
settings page.

b. Click the Delete button.

3. Verify that you want to delete the selected policy from the policy set.

Results

You have deleted the policy from the policy set.

Chapter 25. Administering web services (generally applicable) 2803



Example

If you have a policy set containing a policy that you no longer want included in that policy set, you have
two options: disable it or delete it. In some cases, you might want to disable the policy if you have
configured attributes for it that you might want to enable at a later time. You can disable the policy and
leave it available for the policy set by clicking the Select button by the policy to be disabled and then
clicking the Disable button. But for this example, you have decided that the policy WS-Addressing is no
longer valid for your custom policy set ABC_ps and you and you want to delete it. To delete it, click the
Select button beside the WS-Addressing policy and then click Delete. Confirm that you want to delete the
policy.

What to do next

You can now add other policies to the policy set or enable or disable existing policies.

Modifying policies using the administrative console
With your policy sets, you can define policies for WS-Addressing, WS-Security, WS-ReliableMessaging,
WS-Transaction, HTTP transport, Java Messaging Service (JMS) transport, and Secure Sockets Layer
(SSL) transport. The policies for all but WS-Security are relatively straightforward to define.

Before you begin

The provided default policy sets cannot be edited. You can create a copy of the default policy set or create
a completely new policy set in order to specify the policies for it.

About this task

Polices are associated with policy sets, so you can change an instance of a policy for a particular policy
set.

Procedure
1. Select the policy set containing the policy you want to modify. To customize the policies associated

with a policy set, from the administrative console, click:

v Services > Policy sets > Application policy sets >policy_set_name. Click a policy name in the
Policies table.

v Or Services > Policy sets > System policy sets >policy_set_name. Click a policy name in the
Policies table.

2. Modify the settings. Depending on which Policy you choose, different settings can be modified.

3. [Optional] If the policy to be modified is not already in the Policies table, click Add and select a policy
from the list to modify.

4. Save the changes you have made. Once you change the settings on a policy, you need to save the
changes to return to the policy set.

Results

The policy set configuration is saved with the selected modifications.

Example

You have created a copy of the WSReliableMessaging persistent policy set and named it WSRM_p1. You
want to change the settings on the WSReliableMessaging policy that is included, by default, in the copy of
this policy set. So you click your WSRM_p1 policy set from the Application policy sets window and then click
the WSReliableMessaging policy from the Policies table. You can then alter the following settings:

2804 Administering WebSphere applications



Standard
The default setting is WSReliableMessaging 1.1.

Deliver messages in the order that they were sent
The default setting is false. Valid values are true or false.

Quality of service
The default is Unmanaged non-persistent

Save your changes and return to the Application policy sets window for the WSRM_p1 policy set.

What to do next

You can use the policy set as you have configured or you can change the bindings, attach or detach the
policy set from applications.

Note: Because this policy set specifies managed persistent quality of service, you have to define bindings
to the service integration bus and messaging engine that you want to use to manage the
WS-ReliableMessaging state. You can attach and bind a WS-ReliableMessaging policy set to a web
service application by using the administrative console or the wsadmin tool.

Configuring the WS-ReliableMessaging policy:

When working with policy sets in the administrative console, you can customize some policies.

Before you begin

This task assumes that you are working with a policy set to which the WS-ReliableMessaging policy has
been added.

Do not edit the policies associated with the provided default policy sets. If you have to modify the reliable
messaging policy settings, use a copy of a default policy set or create a new policy set.

At any stage - that is, before or after you have built your reliable web service application, or configured
your policy sets - you can set a property that configures endpoints to only support clients that use reliable
messaging. This setting is reflected by WS-Policy if engaged.

About this task

To configure the WS-ReliableMessaging policy for a given policy set, use the administrative console to
complete the following steps:

Procedure

1. In the navigation pane, click Services > Policy sets > Application policy sets > policy_set_name >
WS-ReliableMessaging. The “WS-ReliableMessaging settings” on page 2807 form is displayed.

2. Modify one or more of the following properties:

Standard

Select the WS-ReliableMessaging specification to use for reliable transmission of your
messages. WS-ReliableMessaging Version 1.1 is the default value. Select the
WS-ReliableMessaging specification to use for reliable transmission of your messages.
WS-ReliableMessaging Version 1.1 is the default value. Details of the supported
WS-ReliableMessaging specifications are available at the following web addresses:

v The WS-ReliableMessaging specification Version 1.0, February 2005.

v The OASIS WS-ReliableMessaging specification Version 1.1, February 2007.

Chapter 25. Administering web services (generally applicable) 2805

http://www.ibm.com/developerworks/library/specification/ws-rm/
http://docs.oasis-open.org/ws-rx/wsrm/200702


Note: If you plan to invoke a .NET-based web service, you must select WS-
ReliableMessaging Version 1.0.

Deliver messages in the order that they were sent
Select this option if the sender of a request has to receive a response before it sends the next
request, or if you want to enable transaction support for inbound (provider) message
exchanges as described in “Providing transactional recoverable messaging through
WS-ReliableMessaging” on page 3220, or if you want to marginally increase reliability as
described in A message is not recovered after a server becomes unavailable.

Tip: When you enable this option, WS-ReliableMessaging ensures that the messages are
made available to the requester application in the order that they were sent. That is, if
WS-ReliableMessaging cannot make a given message available, it will not make any
subsequent messages available. However, the requester application must also poll for the
messages in the order in which it is to receive them. For example:

a. WS-ReliableMessaging makes message 1 available, then message 2, then message
3.

b. The requester application uses asynchronous polling to deliberately poll for message
2, then message 3, then message 1. All three messages are available, so this polling
out of order is successful.

Even though WS-ReliableMessaging is delivering the messages in the order that they
were sent, the requester application is choosing to receive them out of order.

Quality of service
Select the radio button for your required quality of service. The three choices are:

Unmanaged non-persistent
You can configure web service applications to use WS-ReliableMessaging with a
default in-memory store. This quality of service requires minimal configuration.
However it is non-transactional and, although it allows for the resending of messages
that are lost in the network, if a server becomes unavailable you will lose messages.

Managed non-persistent
This in-memory quality of service option uses a messaging engine to manage the
sequence state, and messages are written to disk if memory is low. This quality of
service allows for the re-sending of messages that are lost in the network, and can
also recover from server failure. However, state is discarded after a messaging engine
restart so in this case you will lose messages.

Managed persistent
This quality of service for asynchronous web service invocations is recoverable. This
option also uses a messaging engine and message store to manage the sequence
state. Messages are persisted at the web service requester server and at the web
service provider server, and are recoverable if the server becomes unavailable.
Messages that have not been successfully transmitted when a server becomes
unavailable can continue to be transmitted after the server restarts.

The default is unmanaged non-persistent.

Note: All three qualities of service are supported when applications are deployed to the
application server. Thin client and client container applications use the first option only.

Note: In WebSphere Application Server Version 6.1, you could also configure whether to use the
WS-MakeConnection protocol. This configuration option has now been removed from the
administrative console panel, because the product now automatically determines whether
WS-MakeConnection is used, based on the following criteria:

v Whether you are using WS-ReliableMessaging Version 1.0 or Version 1.1.

2806 Administering WebSphere applications



v Whether the requester supports WS-MakeConnection.

v Whether the message exchange protocol is synchronous or asynchronous.

3. Click OK.

4. Save your changes to the master configuration.

Results

After you have customized the reliable messaging policy, the associated policy set uses this policy to help
ensure reliable delivery of messages.

WS-ReliableMessaging settings:

For the WS-ReliableMessaging policy you can configure the version of the WS-ReliableMessaging
standard that you want to use, the order in which messages are delivered, and the required quality of
service (the reliability level) for message delivery. The product can enforce these policies on inbound
messages and applies them to outbound messages.

To view this page in the console, click the following path: Services > Policy sets > Application policy
sets > policy_set_name > WS-ReliableMessaging.

With WebSphere Application Server, you can use WS-ReliableMessaging with Java API for XML-Based
Web Services (JAX-WS) web services applications that use a SOAP over HTTP binding. Select the
WS-ReliableMessaging specification to use for reliable transmission of your messages.
WS-ReliableMessaging Version 1.1 is the default value. Select the WS-ReliableMessaging specification to
use for reliable transmission of your messages. WS-ReliableMessaging Version 1.1 is the default value.
Details of the supported WS-ReliableMessaging specifications are available at the following web
addresses:

v The WS-ReliableMessaging specification Version 1.0, February 2005.

v The OASIS WS-ReliableMessaging specification Version 1.1, February 2007.

Note: If you plan to invoke a .NET-based web service, you must select WS-ReliableMessaging Version
1.0.

Do not edit the policies associated with the provided default policy sets. If you have to modify the reliable
messaging policy settings, use a copy of a default policy set or create a new policy set.

At any stage - that is, before or after you have built your reliable web service application, or configured
your policy sets - you can set a property that configures endpoints to only support clients that use reliable
messaging. This setting is reflected by WS-Policy if engaged.

Standard: Select the WS-ReliableMessaging specification to use for reliable transmission of your
messages. WS-ReliableMessaging Version 1.1 is the default value. Select the WS-ReliableMessaging
specification to use for reliable transmission of your messages. WS-ReliableMessaging Version 1.1 is the
default value.

Deliver messages in the order that they were sent:

Select this option if the sender of a request has to receive a response before it sends the next request.

If you enable in-order delivery, you must also ensure that the requester application polls for the messages
in the order in which it is to receive them. For more information, see “Configuring the WS-
ReliableMessaging policy” on page 2805.

Specifying in-order delivery also marginally increases reliability if you are using the managed persistent
quality of service.

Chapter 25. Administering web services (generally applicable) 2807

http://www.ibm.com/developerworks/library/specification/ws-rm/
http://docs.oasis-open.org/ws-rx/wsrm/200702


Quality of Service: Select one of the following qualities of service:

Unmanaged non-persistent - Tolerates network and remote system failures
You can configure web service applications to use WS-ReliableMessaging with a default
in-memory store. This quality of service requires minimal configuration. However it is
non-transactional and, although it allows for the resending of messages that are lost in the
network, if a server becomes unavailable you will lose messages. The default is Unmanaged
Non-Persistent.

Managed non-persistent - Tolerates system, network, and remote system failures, but state is
discarded after messaging engine restart

This in-memory quality of service option uses a messaging engine to manage the sequence state,
and messages are written to disk if memory is low. This quality of service allows for the re-sending
of messages that are lost in the network, and can also recover from server failure. However, state
is discarded after a messaging engine restart so in this case you will lose messages.

Managed persistent - Tolerates system, network, and remote system failures
This quality of service for asynchronous web service invocations is recoverable. This option also
uses a messaging engine and message store to manage the sequence state. Messages are
persisted at the web service requester server and at the web service provider server, and are
recoverable if the server becomes unavailable. Messages that have not been successfully
transmitted when a server becomes unavailable can continue to be transmitted after the server
restarts.

Note:

v All three qualities of service are supported when applications are deployed to the application
server. Thin client and client container applications use the first option only.

v For the unmanaged non-persistent quality of service, the messages are stored only in memory.
For both of the managed qualities of service, the messages are managed by a messaging
engine and stored in a message store. You specify a binding to a bus and messaging engine on
the “WS-ReliableMessaging policy binding” form. If your chosen quality of service is Unmanaged
Non-Persistent, which does not use a binding to a messaging engine, then any binding that you
specify is ignored.

WS-ReliableMessaging policy binding:

To configure a web service application to use WS-ReliableMessaging, you attach a policy set that contains
a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed
persistent, managed non-persistent, or unmanaged non-persistent. The managed qualities of service,
managed persistent and managed non-persistent, are supported by the service integration bus. Use this
page to select the bus and messaging engine to use for the reliable messaging protocol state.

To view this page in the console, click one of the following paths:

v Services > Policy sets > Default policy set bindings > Version 6.1 default policy set bindings >
WS-ReliableMessaging (This is the default binding for client and provider policy set attachments within
WebSphere Application Server Version 6.1 applications, and attachments to service applications that are
deployed to a Version 6.1 server.)

v Services > Policy sets > General provider policy set bindings >
provider_policy_set_binding_name > WS-ReliableMessaging (This binding is used for the specified
provider policy set.)

v Services > Policy sets > General client policy set bindings > client_policy_set_binding_name >
WS-ReliableMessaging (This binding is used for the specified client policy set.)

Note:

v You only have to specify a binding to a bus and messaging engine if you are using a managed
quality of service. If your chosen quality of service is Unmanaged Non-Persistent, any binding

2808 Administering WebSphere applications



that you specify is ignored. The quality of service is defined on the “WS-ReliableMessaging
settings” on page 2807 form for your chosen policy set. For more information, see “Configuring
the WS-ReliableMessaging policy” on page 2805.

v When many applications use the same messaging engine, it can impact performance. Factors to
consider include the number of applications that are already binding to the messaging engine,
the CPU utilization, and the message throughput. To improve performance for a single server
configuration, create a new messaging engine to bind to your application.

Bus name:

Specifies a list of available service integration buses in the cell. Use the list to select a bus, or click
Manage buses, bus members, and messaging engines to add a new bus. The bus that you add is
selected for this binding configuration when you return to this panel.

Messaging engine:

Specifies a list of each bus member for the selected bus. Use the list to select a bus member, or click
Manage buses, bus members, and messaging engines to add a new bus member. The bus member
that you add is selected for this binding configuration when you return to this panel.

Configuring the WS-Addressing policy:

When working with policy sets in the administrative console, you can add and configure policies to enable
standard addressing of web services.

Before you begin

You can specify policies for custom policy sets. The provided default policy sets cannot be edited. You
must create a copy of the default policy set or create a completely new policy set in order to specify the
policies for it.

About this task

Adding a WS-Addressing policy enables the support for WS-Addressing. This support provides a standard
way to address Web services and include addressing information in messages. Adding a WS-Addressing
policy is equivalent to configuring the WSDL file for the web service to specify that WS-Addressing should
be used.

To specify or configure the policies associated with a policy set, use the administrative console.

Procedure

1. In the navigation pane of the administrative console, click Services > Policy sets > Application
policy sets > policy_set_name > [Policies] WS-Addressing. The WS-Addressing settings pane is
displayed.

2. Select WS-Addressing is mandatory to specify that WS-Addressing information must be included in
SOAP message headers. For servers, this setting means that the server returns a fault if it receives a
message that does not contain a WS-Addressing header. For clients, this setting means that
WS-Addressing headers are always added to SOAP messages. If you have enabled WS-Policy, this
requirement is communicated between servers and clients that support WS-Policy.

3. In the Messaging style box, select the message exchange pattern to use:

v Synchronous and asynchronous. The targeting of response messages is not restricted.

v Synchronous only. Response messages must be targeted at the WS-Addressing anonymous URI.

v Asynchronous only. Response messages must not be targeted at the WS-Addressing anonymous
URI.

Chapter 25. Administering web services (generally applicable) 2809



4. Click OK.

5. Save your changes to the master configuration.

Results

After you have included the WS-Addressing policy in a policy set, the associated policy set uses this policy
to address web services.

WS-Addressing policy settings:

Use this page to define the appropriate WS-Addressing policy assertions for this policy set.

To view this administrative console page, click Services > Policy sets > Application policy sets >
policy_set_name > [Policy] WS-Addressing, when the policy set includes the WS-Addressing policy
type.

You can configure the WS-Addressing policy type for both client-side and provider-side policy sets. If you
enable WS-Policy, this configuration is communicated between servers and clients that support WS-Policy.

WS-Addressing is mandatory:

Specifies whether a WS-Addressing SOAP header is included on messages.

Information Value
Data type Check box
Default Cleared
Range

Cleared
WS-Addressing is not mandatory. Servers will not
generate a fault if they receive a message that
does not contain a WS-Addressing header.
Clients might not include WS-Addressing headers
in SOAP messages, for example, if WS-Policy is
enabled and the server does not specify that
WS-Addressing is mandatory.

Selected
WS-Addressing is mandatory. Servers return a
fault if they receive a message that does not
contain a WS-Addressing header. Clients always
include WS-Addressing headers in SOAP
messages.

Messaging style:

Specifies the messaging style supported by this policy set.

Use the radio buttons to configure the messaging style.

v Select Synchronous and asynchronous to specify that there is no restriction on the targeting of
response messages.

v Select Synchronous only to specify that response messages must be targeted at the WS-Addressing
anonymous URI. You might want to use this messaging style in the following situations:

– The SOAP headers are not signed, and WS-Security is not enabled. Specifying the synchronous
message exchange pattern prevents the server sending messages to a third party, thereby
preventing the server from potentially taking part in a Denial of Service attack.

2810 Administering WebSphere applications



– Clients with a NAT device between themselves and the endpoint. In this configuration,
non-anonymous URIs cannot be routed. Use this setting to prevent the client from sending a
message containing a ReplyTo endpoint reference with a non-anonymous URI.

v Select Asynchronous only to specify that response messages must not be targeted at the
WS-Addressing anonymous URI. This setting does not mean that all non-anonymous URIs are
supported, therefore a server can return a fault if it receives a response endpoint reference that it
cannot process. You might want to use this messaging style if the endpoint has a very long-running
invocation time, and you do not want to hold the connection open while waiting for a response.

The following table shows how the messaging style options correspond to WS-Policy assertions.

Table 266. WS-Addressing messaging style and WS-Policy. This table provides a mapping between messaging style
options and WS-Policy assertions.
Messaging style WS-Policy mapping

Synchronous and asynchronous wsam:AnonymousResponses or wsam:NonAnonymousResponses

Synchronous only wsam:AnonymousResponses

Asynchronous only wsam:NonAnonymousResponses

Information Value
Required No
Data type Radio button

Configuring the HTTP transport policy:

When working with policy sets in the administrative console, you can customize policies to ensure
message security. You can customize the Hypertext Transfer Protocol (HTTP) transport policy configuration
or use the policy as it is provided with the default settings.

Before you begin

You can configure some settings for default policies for custom policy sets. The provided default policy
sets cannot be edited. To customize a policy set, you must create a copy of the default policy set or create
a new policy set and specify the policies for the custom policy set.

About this task

You can configure HTTP transport with the HTTP transport policy. HTTP is an application-level protocol for
distributed, collaborative, hypermedia information systems. It is a generic, stateless, protocol that can be
used for many tasks beyond its use for hypertext, such as name servers and distributed object
management systems, through extension of request methods, error codes and headers. A feature of HTTP
is the typing and negotiation of data representation, allowing systems to be built independently of the data
being transferred. HTTP features and HTTP connections properties are applied to outbound messages for
both the service client and service provider.

You can only configure a policy through a policy set. Therefore, before you can configure the HTTP
transport policy, a policy set must exist that contains the HTTP transport policy. The provided default
WSHTTPS policy set is read only and it cannot be edited. To customize a policy set that contains the
HTTP transport policy, you must first create a copy of the WSHTTPS default policy set or create a new
policy set and add the HTTP transport policy to the new policy set.

Note: The WSHTTPS default policy set contains the HTTP transport policy, the SSL transport policy and
WS-Addressing policy. If you do not require the SSL transport policy or the WS-Addressing policy,
you can customize your copy of the WSHTTPS default policy set to delete the policies that you do
not require.

Chapter 25. Administering web services (generally applicable) 2811



After you have created a copy of the WSHTTPS default policy set or created a new policy set with the
HTTP transport policy added, you can customize the HTTP transport policy. Use the HTTP transport policy
settings panel to customize the values of the HTTP transport policy properties such as read or write
timeout values. Your customized values for the HTTP transport policy now apply for your policy set that
contains that custom HTTP transport policy. You can attach this policy set containing your customized
HTTP transport policy to your Java API for XML-Based Web Services (JAX-WS) application, its services,
endpoints, or operations. This change affects all JAX-WS applications to which that policy set is attached.
To learn more about attaching policy sets to applications, see the documentation for managing policy sets
for service providers and service clients at the application level.

For example, if you have multiple policy sets, mypolicyset1 and mypolicyset2, containing the HTTP
transport policy, you can customize the HTTP transport policy for each policy set to reflect different
properties, such as timeout values. Now, you can attach these customized policy sets to one or more
applications and these applications will use the HTTP property values associated with the HTTP transport
policy that is contained within the attached policy set.

Procedure

1. Create a policy set that contains the HTTP transport policy.

a. Create a custom policy set.

From the administrative console, click Services > Policy Sets > Application policy sets . From
this panel you can create a new policy set, copy an existing default policy set such as WSHTTPS,
import a copy of a policy set from the default repository or you can import an existing policy set
from your specified location.

b. Add the HTTP transport policy to the policy set. From the administrative console, click Services >
Policy Sets > Application policy sets > policy_set_name. In the policy collection, click HTTP
transport. The HTTP transport window displays options for configuring the HTTP settings for the
transport policy.

c. In the Protocol Version drop down list, click the HTTP version to use. HTTP 1.1 is the default
setting but HTTP 1.0 is also available. Selecting HTTP 1.1 enables more of the function on the rest
of the HTTP transport window as some of the options are not available for HTTP version 1.0.

d. Complete the HTTP Features section. The following check boxes determine which HTTP features
are enabled for this transport:

Session Enabled
Whether the HTTP session is enabled when a message is sent.

Enable chunked transfer encoding
Whether chunked transfer encoding is enabled when a message is sent. This option is only
available if HTTP 1.1 is selected in the Protocol version field (it is greyed out and
disabled if HTTP 1.0 is selected).

Send expect "100-request" header
Displays whether the expect "100-request" header is enabled when a message is sent.
This option is only available if HTTP 1.1 is selected in the Protocol version field (it is
greyed out and disabled if HTTP 1.0 is selected).

Accept URL redirection automatically
Displays whether the URL is automatically redirected when a message is sent.

Compress request content
Displays whether the request content is compressed when a message is sent.

Compress response content
Displays whether the response content is compressed when a message is sent.

e. Complete the HTTP Connections section. The following fields determine how HTTP connections
are configured for this transport:

2812 Administering WebSphere applications



Read timeout
Displays the length of time, in seconds, for the read to time out when a message is sent.

Write timeout
Displays the length of time, in seconds, for the write to time out when a message is sent.

Connection timeout
Displays the length of time, in seconds, for the connection to time out when a message is
sent.

Use persistent connection
Displays whether a persistent connection is to be used when a message is sent. This
option is only available if HTTP 1.1 is selected in the Protocol version field.

Resend enabled
Displays whether or not a message can be resent. Click this check box to enable a
message to be sent again.

2. Customize the HTTP transport provider bindings.

a. Navigate to the HTTP transport provider bindings. From the administrative console, click Services
> Policy Sets > General provider policy set bindings > provider_policy_set_binding_name >
HTTP transport.

The HTTP transport (bindings) window displays options for configuring the HTTP transport
bindings.

b. Specify the properties for the Proxy for outbound asynchronous service responses.

The following fields determine proxy specifications for outbound asynchronous service responses:

Host Displays the host name for the outbound asynchronous service responses proxy.

Port Displays the port number for the outbound asynchronous service responses proxy. You can
enter or edit the port number.

User name
Displays the user name for the outbound asynchronous service responses proxy.

Password
Displays a placeholder for the password for the outbound asynchronous service responses
proxy. You can enter or edit the password. The actual password is masked.

Confirm password
Displays a placeholder for the password for the outbound asynchronous service responses
proxy that must match the one in the Password field. The actual password is masked.

c. Specify the properties for the Basic authentication for outbound asynchronous responses.

The following fields determine authentication specifications for outbound asynchronous responses:

User name
Displays the user name for basic authentication of outbound asynchronous responses.

Password
Displays a placeholder for the password for basic authentication of outbound asynchronous
responses. The actual password is masked.

Confirm password
Displays a placeholder for the password for basic authentication of outbound asynchronous
responses that must match the one in the Password field. The actual password is masked.

3. Customize the HTTP transport client bindings.

a. Navigate to the HTTP transport client bindings. From the administrative console, click Services >
Policy Sets > General client policy set bindings > provider_policy_set_binding_name >
HTTP transport.

Chapter 25. Administering web services (generally applicable) 2813



The HTTP transport (bindings) window displays options for configuring the HTTP transport
bindings.

b. Specify the properties for the Proxy for outbound service requests. The following fields determine
proxy specifications for outbound service requests:

Host Displays the host name for the outbound service request proxy.

Port Displays the port number for the outbound service request proxy.

User name
Displays the user name for the outbound service request proxy.

Password
Displays a placeholder for the password for the outbound service request proxy. The actual
password is masked.

Confirm password
Displays a placeholder for the password for the outbound service request proxy that must
match the one in the Password field. The actual password is masked.

c. Specify the properties for Basic authentication for outbound service requests. The following fields
determine authentication specifications for outbound service requests:

User name
Displays the user name for basic authentication of outbound service requests.

Password
Displays a placeholder for the password for basic authentication of outbound service
requests. The actual password is masked.

Confirm password
Displays a placeholder for the password for basic authentication of outbound service
requests that must match the one in the Password field. The actual password is masked.

Results

After you have customized the HTTP transport policy, the associated policy set uses this policy to protect
message transmission.

Example

You can attach policy sets to an application, its services, endpoints, or operations. In this example
scenario, suppose you have two different JAX-WS service clients for your application, but you want to use
different HTTP transport property values for each service client. Specifically, you want to configure a
different read or write timeout value for each service client. To modify the HTTP timeout values, you can
edit the values of the HTTP transport policy that is contained within the policy set that is attached to your
application or in this case, your service client. This change affects all applications to which the policy set
containing the custom HTTP transport policy is attached.

This example describes the steps for configuring different read, write, and connection timeout values for
service clients deployed in the same application server. This example makes the following assumptions:

v There are two JAX-WS service clients, ServiceClient1 and ServiceClient2, that are deployed in the
application server.

v The HTTP transport policy has not been previously attached to these applications.

1. Create two new policy sets and add the HTTP transport policy to them. For example:
HTTPServiceClient1Policy and HTTPServiceClient2Policy

a. Click Services > Policy sets > Application policy sets > New .

b. Enter the name of the new application policy set, HTTPServiceClient1Policy.

c. From the Policies collection, click Add > HTTP transport.

2814 Administering WebSphere applications



d. Click Apply and Save to save your changes to the master configuration.

e. Repeat these steps to create the HTTPServiceClient2Policy.

2. Customize the HTTP transport policy settings for the newly created HTTPServiceClient1Policy and
HTTPServiceClient2Policy policy sets. For example, customize the read and write timeout values for
the HTTP transport policy contained in the HTTPServiceClient1Policy policy set and the connection
timeout value for the HTTP transport policy contained in the HTTPServiceClient2Policy policy set.

a. Click Services > Policy sets > Application policy sets >HTTPServiceClient1Policy .

b. From the Policies collection, click HTTP transport.

c. From the HTTP transport policy configuration panel, change the HTTP connection read and write
timeout values to 500 seconds.

d. Click Apply and Save to save your changes to the master configuration.

e. Click Services > Policy sets > Application policy sets >HTTPServiceClient2Policy .

f. From the Policies collection, click HTTP transport.

g. From the HTTP transport policy configuration panel, change the HTTP connection timeout value to
360 seconds.

h. Click Apply and Save to save your changes to the master configuration.

3. Attach the custom HTTP transport policy, HTTPServiceClient1Policy, to your application,
ServiceClient1. Similarly, attach the custom HTTP transport policy, HTTPServiceClient2Policy, to
ServiceClient2.

a. Click Services > Service clients > ServiceClient1.

b. From the Policy set attachments collection, select the service, ServiceClient1.

c. Click Attach Client Policy Set and click on HTTPServiceClient1Policy.

d. Click Save to save your changes to the master configuration.

e. Click Services > Service clients > ServiceClient2.

f. From the Policy set attachments collection, select the service, ServiceClient2.

g. Click Attach Client Policy Set and click on HTTPServiceClient2Policy.

h. Click Save to save your changes to the master configuration.

As a result, the ServiceClient1 application now has the HTTPServiceClient1Policy attached and the HTTP
sessions will use a read and write timeout value of 500 seconds. The ServiceClient2 application has the
HTTPServiceClient2Policy attached and the HTTP sessions will use a connection timeout value of 360
seconds.

What to do next

You can customize policies to ensure message security by configuring the SSL transport policy.

HTTP transport policy settings:

Use this page to define HTTP transport policy configuration. HTTP features and HTTP connection policies
are applied to outbound messages. Any changes to the HTTP transport policy from this console page
affects all Java API for XML-Based Web Services (JAX-WS) applications to which this custom HTTP
transport policy is attached.

To view this administrative console page, click Services > Policy sets > Application policy sets
>policy_set_name > HTTP transport, where policy_set_name, applies to any policy set that contains
HTTP transport policy.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

Chapter 25. Administering web services (generally applicable) 2815



You can only configure a policy through a policy set. Therefore, before you can configure the HTTP
transport policy, a policy set must exist that contains the HTTP transport policy.

The WSHTTPS default policy set is provided with the application server and it contains the HTTP transport
policy, the SSL transport policy and the WS-Addressing policy. The provided default WSHTTPS policy set
is read only and it cannot be edited. To customize a policy set that contains the HTTP transport policy, you
must first create a copy of the WSHTTPS default policy set or create a new policy set and add the HTTP
transport policy to the new policy set.

After you customize values for the HTTP transport policy, these values now apply for your policy set that
contains that custom HTTP transport policy. You can attach this policy set that contains your customized
HTTP transport policy to your application, its services, endpoints, or operations. This change affects all
JAX-WS applications to which that policy set is attached. To learn more about attaching policy sets to
applications, see the documentation for managing policy sets for service providers and service clients at
the application level.

Protocol version:

Specifies the version of HTTP protocol to use. Use this list to specify the version of HTTP protocol. The
default value is HTTP 1.1. The HTTP 1.0 value is also a valid option.

Some of the remaining options on the HTTP Transport panel only work with HTTP Version 1.1. The
following brief descriptions compare these options:

HTTP 1.0
Allows messages to be in MIME-like format, containing meta information about the data
transferred and modifiers on the request, response, or both. However, HTTP 1.0 does not
sufficiently address the effects of hierarchical proxies, caching, the need for persistent
connections, or virtual hosts.

HTTP 1.1
Enables each of two communicating applications to determine the true capabilities or the other.
This protocol includes more stringent requirements than HTTP 1.0 to ensure reliable
implementation of features.

Session enabled:

Specifies whether the HTTP session is enabled when a message is sent. Select this check box to enable
an HTTP session.

If this property is used within a policy set that is attached to a service client, then it indicates whether
HTTP session information is propagated to subsequent requests invoked by the same client application. If
the property is enabled, the HTTP session information is returned to the service client in a response
message is sent in subsequent requests invoked using the same RequestContext object.

If this property is used within a policy set that is attached to a service provider, then it indicates whether or
not a new HTTP session is created when a request is being processed. If the property is enabled, then as
a request is being processed, a new HTTP session is created if one does not already exist. This HTTP
session information is then returned to the service client in the response message.

Enable chunked transfer encoding:

Specifies whether chunked transfer encoding is enabled when a message is sent. Select this check box to
enable a chunked transfer encoding. This option is only available if you select HTTP 1.1 in the Protocol
version field. This option is disabled if you selected the HTTP 1.0 protocol.

The default for this property is true.

2816 Administering WebSphere applications



Send expect "100-request" header:

Specifies whether the expect "100-request" header is enabled when a message is sent. Select this check
box to enable the expect "100-request" header. This option is only available if you selected HTTP 1.1 in
the Protocol version field. This option is disabled if you selected the HTTP 1.0 protocol.

The purpose of the 100 status is to allow a client that is sending a request message with a request body
to determine if the origin server accepts the request, based on the request headers, before the client
sends the request body. In some cases, you might not want the client to send the body if the server
rejects the message without looking at the body.

The Expect request-header field is used to indicate that particular server behaviors are required by the
client. A server that cannot comply with any of the expectation values in the Expect field if a request
responds with an appropriate error status.

Accept URL redirection automatically:

Specifies whether the automatic URL redirection is accepted when a message is sent. Select this check
box to enable a URL that has been automatically redirected to be accepted.

Compress request content:

Specifies whether the request content is compressed when a message is sent. Content coding is used to
allow a document to be compressed without losing the identity of its underlying media type and without
loss of information. Select this check box to enable request content that you want to compress. Clicking
the Compress request content button enables the Compression format option to select the compression
method. The default value for the compression format is gzip.

Compress response content:

Specifies whether the response content is compressed when a message is sent. Content coding is used to
allow a document to be compressed without losing the identity of its underlying media type and without
loss of information. Select this check box to enable response content that you want to compress. Clicking
the Compress response content button enables the Compression format option as he compression
method. The default value for the compression format is gzip.

Read timeout:

Specifies the length of time, in seconds, for the Web services client to completely read the SOAP
response. If the read process does not complete within the specified time, a SOAP fault error is generated
on the client machine.

Write timeout:

Specifies the length of time, in seconds, for the write action to time out when a message is sent. Specify
the time, in seconds, to enable the write to time out length of time.

Connection timeout:

Specifies the length of time, in seconds, for the connection to time out when a message is sent. Specify
the time, in seconds, to enable the connection to time out length of time.

Use persistent connection:

Specifies whether a persistent connection is used when a message is sent. Select this check box to
enable use of a persistent connection. This option is only available if you selected HTTP 1.1 in the
Protocol version field. This option is disabled if you selected the HTTP 1.0 protocol.

Chapter 25. Administering web services (generally applicable) 2817



Resend enabled:

Specifies whether a message can be resent. Select this check box to resend a message.

HTTP transport bindings settings:

Use this page to define the HTTP transport bindings for the HTTP transport policy.

To configure the HTTP transport bindings for the HTTP transport policy, perform the following:

1. Navigate to the general bindings collection panel using either the Services > Policy sets > General
client policy set bindings or Services > Policy sets > General provider policy set bindings path.

2. Click a general binding in the Name column.

3. Click the HTTP transport policy in the Policies table.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

Important: You can also configure HTTP transport properties such as read or write timeout values for
JAX-WS applications that are deployed in the same application server. If you want to
customize these HTTP properties, you must edit the HTTP transport policy. To customize the
HTTP transport policy settings, click Services > Policy sets > Application policy sets
>policy_set_name>HTTP transport policy where policy_set_name applies to any policy set
that contains the HTTP transport policy. Your customized values for the HTTP transport policy
now apply for your policy set that contains that custom HTTP transport policy. You can attach
this policy set that contains your customized HTTP transport policy to your application, its
services, endpoints, or operations. This change affects all JAX-WS applications to which that
policy set is attached. To learn more about attaching policy sets to applications, see the
documentation for managing policy sets for service providers and service clients at the
application level.

Proxy for outbound service requests – Host:

Specifies the host name for the outbound service request proxy. In this field, you can change the name of
the host if you are editing an existing set of application specific bindings or you can enter the host name
for the outbound service request proxy.

Proxy for outbound service requests – Port:

Specifies the port number for the outbound service request proxy. You can edit an existing port number, or
enter a new port number for the outbound service request proxy in this field.

Proxy for outbound service requests – User name:

Specifies the user name for the outbound service request proxy. Enter a user name in this field.

Proxy for outbound service requests – Password:

Specifies a placeholder for the outbound service request proxy password. The actual password is masked.

Proxy for outbound service requests – Confirm password:

Specifies a placeholder for the outbound service request proxy password. Re-enter the password you
entered in the Password field. The actual password is masked.

Basic authentication for outbound service requests – User name:

2818 Administering WebSphere applications



Specifies the user name for basic authentication of outbound service requests. Enter or edit the user
name.

Basic authentication for outbound service requests – Password:

Specifies a placeholder for basic authentication of outbound service requests password. The actual
password is masked.

Basic authentication for outbound service requests – Confirm password:

Specifies a placeholder for basic authentication of outbound service requests password. Re-enter the
same password as in the Password field. The actual password is masked.

Proxy for outbound asynchronous service responses – Host:

Specifies the host name for the outbound asynchronous service responses proxy. You can enter or edit the
host name.

Proxy for outbound asynchronous service responses – Port:

Specifies the port number for the outbound asynchronous service responses proxy. You can enter or edit
the port number.

Proxy for outbound asynchronous service responses – User name:

Specifies the user name for the outbound asynchronous service responses proxy. You can enter or edit
the user name.

Proxy for outbound asynchronous service responses – Password:

Specifies a placeholder for the outbound asynchronous service responses proxy password. You can enter
or edit the password. The actual password is masked.

Proxy for outbound asynchronous service responses – Confirm password:

Specifies a placeholder for the outbound asynchronous service responses proxy password. You can
re-enter or edit the password. The actual password is masked.

Basic authentication for outbound asynchronous service responses – User name:

Specifies the user name for basic authentication of outbound asynchronous responses. You can enter or
edit the user name.

Basic authentication for outbound asynchronous service responses – Password:

Specifies a placeholder for basic authentication of outbound asynchronous responses password. You can
enter or edit the password in this field. The actual password is masked.

Basic authentication for outbound asynchronous service responses – Confirm password:

Specifies a placeholder for basic authentication of outbound asynchronous responses password. Re-enter
the password in this field. The actual password is masked.

Custom Properties – Name:

Specifies the name of custom property. Custom properties are not initially displayed in this column until
you define them.

Chapter 25. Administering web services (generally applicable) 2819



Custom Properties – Value:

Specifies the value of the custom property. With the Value entry field, you can enter, edit, or delete the
value for a custom property.

Click one of the following buttons to enable the action described:

Button Resulting action
New Creates a new custom property entry. To add a custom

property, enter the name and value.
Delete Removes the selected custom property.
Edit You can edit a selected custom property. It is only

displayed when one or more properties exist.

Configuring the Java Message Service (JMS) transport policy:

You can define a Java Message Service (JMS) transport policy configuration if you are using SOAP over
JMS with your Java API for XML-Based Web Services (JAX-WS) applications.

Before you begin

You can configure some settings for policies for custom policy sets. The provided default policy sets
cannot be edited. You must create a copy of the default policy set or create a new policy set in order to
specify the policies for it.

About this task

When using the SOAP over JMS transport with JAX-WS applications, you can customize the transport by
configuring the JMS transport policy. The SOAP over JMS transport provides an alternative to HTTPS for
transporting SOAP requests and response messages between clients and servers. See the documentation
on using SOAP over JMS to transport web services to learn more about this transport protocol.

You can only configure a policy through a policy set. Therefore, before you can configure the JMS
transport policy, a policy set must exist that contains the JMS transport policy. To customize a policy set
that contains the JMS transport policy, you must first create a policy set and add the JMS transport policy
to the new policy set.

Use the JMS transport policy settings panel to customize the values of the JMS transport policy properties,
such as the request timeout value. Your customized values for the JMS transport policy now apply for your
policy set that contains that custom JMS transport policy. You can attach this policy set containing your
customized JMS transport policy to your JAX-WS application, its services, endpoints, or operations. This
change affects all JAX-WS applications to which that policy set is attached. To learn more about attaching
policy sets to applications, see the documentation for managing policy sets for service providers and
service clients at the application level.

Procedure

1. Create a policy set that contains the JMS transport policy.

a. Create a custom policy set. From the administrative console, click Services > Policy Sets >
Application policy sets. From this panel you can create a new policy set, import a copy of a
policy set from the default repository, or you can import an existing policy set from your specified
location.

b. Add the JMS transport policy to the policy set. From the administrative console, click Services >
Policy Sets > Application policy sets > policy_set_name. In the policy collection, click JMS
transport. The JMS transport window displays options for configuring the JMS settings for the
transport policy.

2820 Administering WebSphere applications



c. Specify the JMS connection properties for the JMS transport requests. The following fields
configure the JMS features for this transport:

Request timeout
Specifies whether to enable a request timeout value. The request timeout value is the
amount of time that the client waits for a response after sending the request to the server.
The range is from 0 to 2147483647.

Allow transactional messaging for one-way and asynchronous operations
Specifies to enable a client to use transactions in one-way or asynchronous two-way
requests. Select this check box to enable transactional messaging.

When this option is selected, the client runtime environment exchanges SOAP request and
response messages with the server over the JMS transport in a transactional manner if the
client is operating under a transaction. This process indicates that the clients transaction is
used to send the SOAP request message to the destination queue or topic, and the server
receives the request message only after the client commits the transaction. Similarly, the
server receives the request message under the control of a container-managed transaction
and sends the reply message, if applicable, back to the client using that same transaction.
The client then receives the reply message only after the server transaction has been
committed.

If this option is not selected, then the client and server runtime environments perform
messaging operations in a non-transactional manner as transactions are temporarily
suspended for the JMS request. The transactions are enabled again after the request has
completed.

Note: Transactional messaging operations are not supported for two-way synchronous
operations as this leads to a deadlock condition.

2. Customize the JMS transport provider bindings.

a. Navigate to the JMS transport provider bindings. From the administrative console, click Services >
Policy Sets > General provider policy set bindings > provider_policy_set_binding_name >
JMS transport.

The JMS transport provider bindings window displays options for defining basic authentication for
asynchronous service responses and custom properties for the JMS service provider binding
configuration.

b. Specify the properties for basic authentication for asynchronous service responses.

You can use the JMS transport provider policy bindings to configure a service that uses the JMS
transport to send asynchronous response messages back to the client. The application server
runtime environment uses the user name and password that you configure when connecting to the
JMS messaging provider and this configuration enables the service to send an asynchronous
response message to the client in a secure manner.

The following fields determine the authentication requirements for responses from the server:

User name
Specifies the user name for the asynchronous service responses for the service provider.

Password
Specifies a placeholder for the password for the asynchronous service responses from the
service provider. You can enter or edit the password in this field. The actual password is
masked.

Confirm password
Specifies a placeholder for the password for the asynchronous service responses from the
service provider that must match the one in the Password field. The actual password is
masked.

3. Customize the JMS transport client bindings.

Chapter 25. Administering web services (generally applicable) 2821



a. Navigate to the JMS transport client bindings. From the administrative console, click Services >
Policy Sets > General client policy set bindings > client_policy_set_binding_name > JMS
transport.

The JMS transport provider bindings window displays options for defining basic authentication for
outbound service requests and custom properties for the JMS client binding configuration.

b. Specify the Basic Authentication for Outbound Service Requests properties.

You can use the JMS transport client policy bindings to configure a client that uses the JMS
transport to send a request message to the server. The client runtime environment uses the user
name and password that you configure when connecting to the JMS messaging provide. This
configuration enables the client to send the request message to the server in a secure manner.

The following fields determine the authentication requirements for requests sent to the server:

User name
Specifies the user name that is used by the client runtime when connecting to the JMS
messaging provider to send an outbound request to the destination queue or topic. Enter a
user name in this field.

Password
Specifies a placeholder for the password that is used by the client runtime when
connecting to the JMS messaging provider to send an outbound request to the destination
queue or topic. You can enter or edit the password in this field. The actual password is
masked.

Confirm password
Specifies a placeholder for the password that is used by the client runtime when
connecting to the JMS messaging provider to send an outbound request to the destination
queue or topic. Re-enter the password in this field. This password must match the one in
the Password field. The actual password is masked.

Results

After you have customized the JMS transport policy, the associated policy set uses this policy to configure
the runtime behavior of the SOAP over JMS transport.

Example

You can attach policy sets to an application, its services, endpoints, or operations. In this example
scenario, suppose you have two different JAX-WS service clients for your application, but you want to use
different JMS transport request timeout values for each service client. To modify the JMS request timeout
values, you can edit the values of the JMS transport policy that is contained within the policy set that is
attached to your application or in this case, your service client. This change affects all applications to
which the policy set containing the custom JMS transport policy is attached.

This example describes the steps for configuring different request timeout values for service clients
deployed in the same application server. This example includes the following assumptions:

v Two JAX-WS service clients exist, ServiceClient1 and ServiceClient2, that are deployed in the
application server.

v The JMS transport policy has not been previously attached to these applications.

1. Create two new policy sets and add the JMS transport policy to them. For example:
JMSServiceClient1Policy and JMSServiceClient2Policy

a. Click Services > Policy sets > Application policy sets > New .

b. Enter the name of the new application policy set, JMSServiceClient1Policy.

c. From the Policies collection, click Add > JMS transport.

d. Click Apply and Save to save your changes to the master configuration.

2822 Administering WebSphere applications



e. Repeat these steps to create the JMSServiceClient2Policy.

2. Customize the JMS transport policy settings for the newly created JMSServiceClient1Policy and
JMSServiceClient2Policy policy sets. For example, set the request timeout value to 180 seconds for the
JMS transport policy contained in the JMSServiceClient1Policy. The JMS transport policy contained in
the JMSServiceClient2Policy specifies 300 seconds as the request timeout value.

a. Click Services > Policy sets > Application policy sets > JMSServiceClient1Policy .

b. From the Policies collection, click JMS transport.

c. From the JMS transport policy configuration panel, specify 180 seconds for the request timeout
value.

d. Click Apply and Save to save your changes to the master configuration.

e. Click Services > Policy sets > Application policy sets > JMSServiceClient2Policy .

f. From the Policies collection, click JMS transport.

g. From the JMS transport policy configuration panel, specify 300 seconds for the request timeout
value.

h. Click Apply and Save to save your changes to the master configuration.

3. Attach the custom JMS transport policy, JMSServiceClient1Policy, to your application, ServiceClient1.
Similarly, attach the custom JMS transport policy, JMSServiceClient2Policy, to ServiceClient2.

a. Click Services > Service clients > ServiceClient1.

b. From the Policy set attachments collection, select the service, ServiceClient1.

c. Click Attach Client Policy Set, and click JMSServiceClient1Policy.

d. Click Save to save your changes to the master configuration.

e. Click Services > Service clients > ServiceClient2.

f. From the Policy set attachments collection, select the service, ServiceClient1.

g. Click Attach Client Policy Set, and click JMSServiceClient2Policy.

h. Click Save to save your changes to the master configuration.

As a result, the ServiceClient1 application now has the JMSServiceClient1Policy attached, and the JMS
sessions use a request timeout of 180 seconds. The ServiceClient2 application has the policy,
JMSServiceClient2Policy, attached and the JMS sessions use a request timeout of 300 seconds.

What to do next

You can customize other policies that you might need for your application.

JMS transport policy settings:

Use this page to configure settings for the Java Message Service (JMS) transport policy. You can
configure a client that is using the JMS transport policy to exchange request and response messages with
the server.

To view this administrative console page:

1. Click Services, expand Policy sets, and click Application policy sets.

2. Click New to create a new application policy set and provide a name for it in the Name field.

3. Under the Policy heading, click Add and select JMS transport.

4. Click OK or Apply.

5. Click JMS transport to view the JMS transport policy settings panel.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

Chapter 25. Administering web services (generally applicable) 2823



You can only configure a policy through a policy set. Therefore, before you can configure the JMS
transport policy, a policy set must exist that contains the JMS transport policy.

To customize a policy set that contains the JMS transport policy, you must create a new policy set, import
a copy of a policy set from the default repository, or you can import an existing policy set from your
specified location. After you have an editable policy set, you can add the JMS transport policy to your
policy set.

After you customize values for the JMS transport policy, these values now apply for your policy set that
contains that customized JMS transport policy. You can attach this policy set that contains your customized
JMS transport policy to your application, its services, endpoints, or operations. This change affects all
JAX-WS applications to which that policy set is attached. To learn more about attaching policy sets to
applications, read about managing policy sets for service providers and service clients at the application
level.

Client JMS connection properties - Request timeout:

Specifies the request timeout value. The request timeout value is the amount of time that the client waits
for a response after sending the request to the server. The default value is 300 seconds.

Client JMS connection properties - Allow transactional messaging for one-way and asynchronous
operations:

Specifies to enable a client to use transactions in one-way or asynchronous two-way requests. Select this
check box to enable transactional messaging.

If this option is selected, the client runtime exchanges SOAP request and response messages with the
server over the JMS transport in a transactional manner if the client is operating under a transaction.
Therefore, the client transaction is used to send the SOAP request message to the destination queue or
topic, and the server receives the request message only after the client commits the transaction. Similarly,
the server receives the request message under the control of a container-managed transaction and sends
the reply message, if applicable, back to the client using that same transaction. The client then receives
the reply message only after the server transaction is committed.

If this option is not selected, the client and server runtimes perform messaging operations in a
non-transactional manner.

Note: Transactional messaging operations are not supported for two-way synchronous operations as this
leads to a deadlock condition.

.

JMS transport bindings:

Use this page to define the Java Message Service (JMS) transport provider or client bindings
configuration.

If you are using JMS transport provider bindings, to view this administrative console page, complete the
following actions:

1. Click Services > Policy Sets > General provider policy set bindings.

2. Click provider_policy_set_binding_name.

3. In the policy collection, click JMS transport.

If the JMS transport policy has not been added to the selected general provider policy set, then use the
create general provider bindings panel to add the JMS transport policy to the selected general provider
policy set.

2824 Administering WebSphere applications



You can use the JMS transport provider policy bindings to configure a service that uses the JMS transport
to send asynchronous response messages back to the client. The application server run time uses the
user name and password that you configure when connecting to the JMS messaging provider and this
configuration enables the service to send an asynchronous response message to the client in a secure
manner.

If you are using JMS transport client bindings, to view this administrative console page, complete the
following actions:

1. Click Services > Policy Sets > General client policy set bindings.

2. Click client_policy_set_binding_name.

3. In the policy collection, click JMS transport.

If the JMS transport policy has not been added to the selected general client policy set, then use the
create general client bindings panel to add the JMS transport policy to the selected general client policy
set.

You can use the JMS transport client policy bindings to configure a client that uses the JMS transport to
send a request message to the server. The client run time uses the user name and password that you
specify when connecting to the JMS messaging provider, and this configuration enables the client to send
the request message to the server in a secure manner.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

Important: You can also configure JMS transport properties, such as request timeout values or whether
to enable transactional messaging for one-way asynchronous operations for JAX-WS
applications that are deployed in the same application server. If you want to customize these
JMS properties, you must edit the JMS transport policy. To customize the JMS transport policy
settings, click Services > Policy sets > Application policy sets > policy_set_name >JMS
transport policy, where policy_set_name applies to any policy set that contains the JMS
transport policy. Your customized values for the JMS transport policy now apply for your policy
set that contains that custom JMS transport policy. You can attach this policy set that contains
your customized JMS transport policy to your application, its services, endpoints, or
operations. This change affects all JAX-WS applications to which that policy set is attached.
To learn more about attaching policy sets to applications, see the documentation for managing
policy sets for service providers and service clients at the application level.

Basic Authentication – User name:

For the service provider, this field specifies the user name for the asynchronous service responses. For
the client, this field specifies the user name that is used by the client runtime when connecting to the JMS
messaging provider to send an outbound request to the destination queue or topic. Enter a user name in
this field.

Basic Authentication – Password:

For the service provider, this field specifies a placeholder for the password of the asynchronous service
responses. For the client, this field specifies the password that is used by the client runtime when
connecting to the JMS messaging provider to send an outbound request to the destination queue or topic.
You can enter or edit the password in this field. The actual password is masked.

Basic Authentication – Confirm password:

For the service provider, this field specifies a placeholder for the password for the asynchronous service
responses. For the client, this field specifies the password that is used by the client runtime when
connecting to the JMS messaging provider to send an outbound request to the destination queue or topic.
Re-enter the password in this field. The actual password is masked.

Chapter 25. Administering web services (generally applicable) 2825



Custom Properties – Name:

Specifies the name of custom property. Custom properties are not initially displayed in this column until
you define them.

Click one of the following buttons to enable the described action:

Button Resulting action
New Creates a new custom property entry. To add a custom

property, enter the name and value.
Delete Removes the selected custom property.
Edit Edit a selected custom property. This button is only

displayed when one or more properties exist.

Custom Properties – Value:

Specifies the value of the custom property. With the Value entry field, you can enter, edit, or delete the
value for a custom property.

Configuring the WS-Transaction policy:

When you work with policy sets in the administrative console, you can configure the WS-Transaction policy
type for the WS-AtomicTransaction (WS-AT) and the WS-BusinessActivity (WS-BA) protocols. You can
configure whether a client propagates, and a server receives, a WS-AT context, and whether a client
propagates, and a server receives, a WS-BA context.

Before you begin

You must be working with a policy set that includes the WS-Transaction policy type.

Do not edit the policies associated with the provided default policy sets. To modify the WS-Transaction
policy settings, use a copy of a default policy set or create a new policy set.

About this task

You can configure the policies for the WS-AtomicTransaction and WS-BusinessActivity protocols. The
WS-AT protocol supports coordination of activities so that either all the activities occur, or none of them
occur. The WS-BA protocol supports coordination of activities that are more loosely coupled than atomic
transactions and that therefore require a compensation process if a failure occurs in the business activity.

When you add a WS-Transaction policy, it is equivalent to setting the following deployment descriptors that
are associated with an EJB or web module:

v Use Web Services Atomic Transaction

v Send Web Services Atomic Transaction on requests

v Execute using Web Services Atomic Transaction on incoming requests

A WS-BA context is sent if the client is running in a BusinessActivity scope (BAScope). A provider runs in
a BAScope if it receives a message that contains a WS-BA context, as long as the provider is set to run
Enterprise JavaBeans (EJB) methods in a Business Activity scope.

Procedure

1. In the navigation pane of the administrative console, click Services > Policy sets > Application
policy sets > policy_set_name > [Policies] WS-Transaction. The WS-Transactions settings pane is
displayed.

2826 Administering WebSphere applications



2. In the WS-AtomicTransaction section, select the option you require:

v Mandatory. For a client, the client always propagates a WS-AT context on an outbound request.
For a server, any request that is received must include a WS-AT context, otherwise the request is
rejected.

v Supports. For a client, the client can propagate a WS-AT context on an outbound request when
that context is available. For a server, if a request includes a WS-AT context, the context is imported
and established on the thread before the request is processed.

v Never. For a client, the client never propagates a WS-AT context on an outbound request. For a
server, any request that is received must not include a WS-AT context, otherwise the request is
rejected.

3. In the WS-BusinessActivity section, select the option you require:

v Mandatory. For a client, the client always propagates a WS-BA context on an outbound request.
For a server, any request that is received must include a WS-BA context, otherwise the request is
rejected.

v Supports. For a client, the client can propagate a WS-BA context on an outbound request when
that context is available. For a server, if a request includes a WS-BA context, the context is imported
and established on the thread before the request is processed.

v Never. For a client, the client never propagates a WS-BA context on an outbound request. For a
server, any request that is received must not include a WS-BA context, otherwise the request is
rejected.

4. Click OK.

5. Save your changes to the master configuration.

Results

After you configure the WS-Transaction policy, the associated policy set uses this policy to support
WS-AtomicTransaction and WS-BusinessActivity.

WS-Transaction policy settings:

Use this page to specify the policies for the WS-AtomicTransaction (WS-AT) and WS-BusinessActivity
(WS-BA) protocols. WS-AT supports coordination of activities so that either all the activities occur, or none
of them occur. WS-BA supports coordination of activities that are more loosely coupled than atomic
transactions, and that therefore, require a compensation process if an error occurs.

To view this page in the console, click the following path: Services > Policy sets > Application policy
sets > policy_set_name > [Policy] WS-Transaction, when the policy set includes the WS-Transaction
policy type.

You can configure the WS-Transaction policy type for both client and provider policy sets.

WS-AtomicTransaction: Specifies behavior with the WS-AT policy. The options are:

Mandatory
For a client, the client always propagates a WS-AT context on an outbound request. If there is no
transaction on the thread when the request is made, the attempt to make the request fails.

For a server, any request that is received must include a WS-AT context, otherwise the request is
rejected. If any Web Services Description Language (WSDL) is generated for the web service with
which the policy type is associated, a policy assertion is included that indicates that an operation
must be invoked with an atomic transaction context.

Chapter 25. Administering web services (generally applicable) 2827



Supports
For a client, the client can propagate a WS-AT context on an outbound request when it is
available. For example, a transaction is associated with the thread that makes the request, and the
policy of the provider requires WS-AT context.

For a server, if a request includes a WS-AT context, the context is imported and established on
the thread before the request is processed. If a request does not include a WS-AT context, the
request is processed as usual. If any WSDL is generated for the web service with which the policy
type is associated, a policy assertion is included that indicates that an operation supports
invocation with an atomic transaction context when that context is available.

Never For a client, the client never propagates a WS-AT context on an outbound request.

For a server, any request that is received must not include a WS-AT context, otherwise the
request is rejected with a MustUnderstand error. If any WSDL is generated for the web service
with which the policy type is associated, that WSDL does not include a policy assertion for an
atomic transaction context.

WS-BusinessActivity: Specifies behavior with the WS-BA policy. The options are:

Mandatory
For a client, the client always propagates a WS-BA context on an outbound request. If there is no
business activity scope on the thread when the request is made, the attempt to make the request
fails.

For a server, any request that is received must include a WS-BA context, otherwise the request is
rejected. If any WSDL is generated for the web service with which the policy type is associated, a
policy assertion is included that indicates that an operation must be invoked with a business
activity context.

Supports
For a client, the client can propagate a WS-BA context on an outbound request when it is
available. For example, a business activity scope is associated with the thread that makes the
request, and the policy of the provider requires a WS-BA context.

For a server, if a request includes a WS-BA context, the context is imported and established on
the thread before the request is processed. If a request does not include a WS-BA context, the
request is processed as usual. If any WSDL is generated for the web service with which the policy
type is associated, a policy assertion is included that indicates that an operation supports
invocation with a business activity context when that context is available.

Never For a client, the client never propagates a WS-BA context on an outbound request.

For a server, any request that is received must not include a WS-BA context, otherwise the
request is rejected with a MustUnderstand error. If any WSDL is generated for the web service
with which the policy type is associated, that WSDL does not include a policy assertion for a
business activity context.

Configuring the WS-Security policy:

When working with policy sets in the administrative console, you can customize policies to ensure
message security. The WS-Security policy can be configured to apply a message security (WS-Security)
profile to requests. Message security policies are applied to requests and enforced on responses to
support interoperability.

Before you begin

You can configure some settings for default policies for custom policy sets. The provided default policy
sets cannot be edited. You must create a copy of the default policy set or create a completely new policy
set in order to specify the policies for it.

2828 Administering WebSphere applications



About this task

Message security policies are applied to requests and enforced on responses to support interoperability.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Procedure

1. Use the WS-Security policy panel to begin configuring the WS-Security policy. To access the
WS-Security policy panel, from the administrative console, click Services > Policy sets > Application
policy sets > policy_set_name > WS-Security policy.

2. Choose which type of message security to configure.

v Click the Main policy link to specify how message security policies are applied to requests and
enforced on responses to support interoperability.

v Click the Bootstrap policy link to configure how secure conversations are established. A bootstrap
policy might already be configured. If no bootstrap policy is currently configured, first ensure that you
have enabled message security with symmetric signature and encryption policies and secure
conversation tokens for both integrity and confidentiality protection.

3. Use the Main policy settings panel or the Bootstrap policy settings panel to specify how message
security policies are applied to requests and enforced on responses. Assertions for WS-Security
versions are already generated based on assertions in the policy set. If the policy set includes a WS-S
1.1 assertion, then WS-S 1.1 itself is asserted. Configure the settings on this panel to configure main
or bootstrap policy settings:

a. Select whether Message level protection is required. Select this check box if any of the message
parts should be digitally signed or encrypted or if a timestamp should be inserted in the message.
It this box is unchecked, the Signature confirmation, Key symmetry, and Timestamp and Security
header layout options are disabled.

b. Specify whether signature confirmation is required. Click this check box to require signature
confirmation.

c. Configure the settings in the Key Symmetry section. The following fields can be configured in the
Key symmetry section:

Use symmetric tokens
Click this radio button to use symmetric tokens. You can then configure symmetric tokens
with the Symmetric signature and encryption policies link. Click this link to access the
Symmetric Signature and Encryption Policies panel where you can create the trust context
in which to use symmetric tokens. Using the same token for signing and validating
messages and encrypting and decrypting messages provides better performance than can
be achieved with asymmetric tokens. Symmetric tokens should be used within a trust
context.

Use asymmetric tokens
Click this link to access the Asymmetric Signature and Encryption Policies panel where you
can create the trust context (message integrity and confidentiality) in which to use
asymmetric tokens. You can do this by specifying which token type to use for the initiator
and recipient signature as well as the initiator and recipient encryption.

Include timestamp in header
Click this check box to include a timestamp in the header. You can then specify if the
timestamp is positioned first or last in the header by using the Security header layout radio
button options:

v Strict: Declarations must precede use

v Layout (Lax): Order of contents can vary

v Lax but timestamp required first in header

Chapter 25. Administering web services (generally applicable) 2829



v Lax but timestamp required last in header

d. Optional: Click the Algorithms link under the Policy Details section if you want to access the
Algorithms panel to view and select from available algorithms. The available algorithms include
cryptographic algorithms and their key lengths, as well as canonicalization algorithms for
reconciling XML differences. Click this link to view the cryptographic and cannonicalization
algorithms that are supported.

e. Optional: Configure the request settings. Click either of the following links to configure request
settings:

Request message part protection
Links to configuration for request message part protection. Click this link to define which
message parts are to be protected and how that protection is provided.

Request token policies
Links to configuration for request token policies. Click this link to define policies that specify
which types of security tokens are supported and the properties of those token types.

f. Optional: Configure the response settings. Click either of the following links to configure response
settings:

Response message part protection
Links to configuration for response message part protection. Click this link to define which
message parts are to be protected and how that protection is provided.

Response token policies
Links to configuration for response token policies. Click this link to define policies that
specify which types of security tokens are supported and the properties of those token
types.

Results

Once you have customized the WS-Security policy, the associated policy set uses this policy to protect
messages.

WS-Security policy settings:

Use this page to configure the WS-Security policy and apply a message security WS-Security profile to
requests. WS-Security policies are applied to requests and enforced on responses to support
inter-operability.

To view this administrative console page, click Services > Policy sets > Application policy sets >
policy_set_name > WS-Security policy.

Main policy:

Links to configuration settings for a main policy. Use the Main policy link if you want to configure how
WS-Security policies are applied to requests and enforced on responses to support interoperability.

Secure conversation bootstrap policy:

Links to configuration settings for a secure conversation bootstrap policy. Use the bootstrap policy link if
you want to configure how secure conversations are established. To configure a secure conversation
bootstrap policy, first ensure that you have enabled message security in the main policy with symmetric
signature and encryption policies and secure conversation tokens for both integrity and confidentiality
protection.

Click Remove bootstrap policy to discontinue using secure conversation policy settings.

Configuring the request or response token policies:

2830 Administering WebSphere applications



You can configure the request and response token policies that are part of the WS-Security policy using
the administrative console. Message requests token policies are applied to requests and enforced on
responses to support both quality and interoperability.

Before you begin

You can configure some settings for the policies within your policy sets. The default policy sets provided in
the product cannot be edited. You must create a copy of the default policy set or create a completely new
policy set in order to specify the policies for it.

About this task

Use this administrative console task to define policies that specifically support security tokens and
properties.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Procedure

1. Click Services > Policy sets > Application policy sets > policy_set_name > WS-Security policy.

2. Click one of the following links:

v Main policy or

v Bootstrap policy

v Click the Main policy link to specify how message security policies are applied to requests and
enforced on responses to support interoperability.

v Click the Bootstrap policy link to configure how secure conversations are established. A bootstrap
policy might already be configured. If no bootstrap policy is currently configured, first ensure that you
have enabled message security with symmetric signature and encryption policies and secure
conversation tokens for both integrity and confidentiality protection. See Configuring the WS-Security
policy.

3. Click Request token policies under Request Policies or Response token policies under Response
Policies. Use this to panel to define policies that specify which types of security tokens are supported
for the properties of each token type.

Results

Once you have customized the WS-Security policy with the associated properties, including the request
and response token policies, you can then send and receive protect messages.

Request or Response token policies collection:

Use this page to define policies that specify supporting security tokens and properties.

To view this administrative console page, complete the following:

1. Click Services > Policy sets > Application policy sets > policy_set_name.

2. Click the WS-Security policy in the policies table.

3. Click the Main policy link or the Bootstrap policy link.

4. Click Request token policies or Response token policies from the Policy Details section.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Chapter 25. Administering web services (generally applicable) 2831



Add:

Add a token from a list of supported token types. You can only add a token to a custom policy set.

This option provides the following supported token types:

v Username

v X.509

v LTPA

v Custom

To change the settings for a token after adding it, click on the token identifer name in the table.

Delete:

Removes the selected token name. This action is only available for a custom policy set.

Token Identifier:

Specifies the name of the token.

Type:

Specifies the token type in the Supported token types table. This list displays a token type for each token
name in the list.

Version:

Specifies the version of the token in the Supported token types table. This list displays the version of each
token in the list.

Token type settings:

Use the administrative console to define the details about the token types. This panel is displayed
differently for each different token type. Policies can be defined that specify which types of security tokens
are supported as well as properties for the token type.

To view token types for a policy set, complete the following steps:

1. Click Services > Policy sets > Application policy sets > policy_set_name.

2. Click the WS-Security policy in the Policies table.

3. Click the Main policy link or the Bootstrap policy link.

4. Click one of the following:

v Request token policies from the Policy detail section.

v Response token policies from the Policy detail section.

v Symmetric signature and encryption policies from the Key symmetry section.

v Asymmetric signature and encryption policies from the Key symmetry section.

5. For a Request token policy or a Response token policy, click a token from the Supported Token Types
table or click the Add Token Type button to select the type of token to add.

6. For a symmetric signature and encryption policy or an asymmetric signature and encryption policy,
click Edit Selected Type Policy.

This panel is displayed for each token type you are configuring or adding. It displays fields for some token
types and not for others. This help topic contains all of the fields for each of the token types and describes
which token is being configured for each field.

2832 Administering WebSphere applications



Custom token name:

For a custom token, specify the name of the token being configured. Enter or edit the name for the custom
token in this entry field.

Local name:

For a custom token, specify the local name.

If the custom token type is used to generate a Kerberos token as defined in the OASIS Web Services
Security Specification for Kerberos Token Profile v1.1, use one of the values in the following table for the
local name. The value you choose depends on the specification level of the Kerberos token generated by
the Key Distribution Center (KDC). The table lists the values and the specification level associated with
each value. For purposes of interoperability, the Basic Security Profile V1.1 standard requires the use of
the local name, http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ.

Local name value for Kerberos token Associated specification level
http://docs.oasis-open.org/wss/oasiswss-
kerberos-token-profile-1.1#Kerb erosv5_AP_REQ

Kerberos V5 AP-REQ as defined in the Kerberos
specification. This value is used when the Kerberos ticket
is an AP Request.

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ

GSS-API Kerberos V5 mechanism token containing a
KRB_AP_REQ message as defined in RFC-1964 [1964],
Sec. 1.1 and its successor RFC-4121, Sec. 4.1. This
value is used when the Kerberos ticket is an AP Request
(ST + Authenticator).

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#Kerberosv5_AP_REQ1510

Kerberos V5 AP-REQ as defined in RFC1510. This value
is used when the Kerberos ticket is an AP Request per
RFC1510.

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ1510

GSS-API Kerberos V5 mechanism token containing a
KRB_AP_REQ message as defined in RFC-1964, Sec.
1.1 and its successor RFC-4121, Sec. 4.1. This value is
used when the Kerberos ticket is an AP Request (ST +
Authenticator) per RFC1510.

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#Kerberosv5_AP_REQ4120

Kerberos V5 AP-REQ as defined in RFC4120. This value
is used when the Kerberos ticket is an AP Request per
RFC4120.

http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-
profile-1.1#GSS_Kerberosv5_AP_REQ4120

GSS-API Kerberos V5 mechanism token containing an
KRB_AP_REQ message as defined in RFC-1964, Sec.
1.1 and its successor RFC-4121, Sec. 4.1. This value is
used when the Kerberos ticket is an AP Request (ST +
Authenticator) per RFC4120.

URI:

For a custom token, specify the uniform resource identifier (URI).

Leave this field empty, if the custom token type is used to generate a Kerberos token as defined in the
OASIS Web Services Security Specification for Kerberos Token Profile v1.1.

LTPA token name:

For an LTPA token, specify the name of the token being configured. Enter or edit the name for the LTPA
token in this entry field.

Propagate the JAAS subject:

Chapter 25. Administering web services (generally applicable) 2833



For an LTPA token, specify whether the associated Java Authentication and Authorization Service (JAAS)
subject is propagated. Select this check box to propagate the JAAS subject. The default value is not
selected. Therefore, the JAAS subject is not propagated by default.

Username token name: Specify the name of the token being configured. Enter or edit the name for the
username token in this entry field.

WS-Security version:

For a Username token, specify the version of Web Services Security, the WS-Security specification, that is
used to secure the message transmission.

The following versions are available:

v WS-Security V1.0

v WS-Security V1.1

X.509 token name:

For a X.509 token, specify the name of the token being configured. Enter or edit the name for the X.509
token in this entry field.

WS-Security version:

For a X.509 token, specify the version of Web Services Security that is used to secure the message
transmission.

The following versions are available:

v WS-Security V1.0

v WS-Security V1.1

X.509 type:

For a X.509 token, specify the type of X.509 token being configured.

The following types are available for the X.509 token:

v X.509 Version 1. This option is available with WS-Security Version 1.1 only.

v X.509, Version 3

v X.509 PKCX7

v PKI Path Version 1

Secure conversation token: The secure conversation token is available only when using symmetric
signature and encryption policies.

Require reference to secure context token issuer:

For a secure conversation token, select this option to specify a reference to the issuer of the security
context token.

After selecting the Require reference to secure context token issuer option, specify the URI of the
security context token issuer.

Transform algorithms settings:

Use this administrative console page to select the uniform resource locator (URL) for the transform
algorithms that are needed to protect the message part.

2834 Administering WebSphere applications



To view this administrative console page, complete the following:

1. Click Services > Policy sets > General provider policy set bindings or General client policy set
bindings.

2. Click the name of the binding you want to edit.

3. Click WS-Security policy in the Policies table

4. Click the Authentication and Protection link in the Main message security policy bindings section.

5. Select a signature protection in the Request message and encryption protection section or the
Response message signature and encryption protection section.

6. Click the Additional bindings > Signed part reference default at the end of the panel.

7. Click a URL in the Transform algorithms table.

You can also get to this administrative console page by completing the following actions:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services.

3. Select Service provider policy sets and bindings or Service client policy sets and bindings.

4. Select a binding.

Important: You must have previously attached a policy set and assigned an application specific
binding before you can do this step.

5. Select WS-Security.

Important: You must have previously added WS-Security to the bindings.

6. Click the Authentication and Protection link in the Main message security policy bindings section.

7. Select a signature protection in the Request message and encryption protection section or the
Response message signature and encryption protection section.

8. Click the Additional bindings > Signed part reference default at the bottom of the panel.

9. Click New to add a transform.

10. [Optional] Click a URL in the Transform algorithms table. This step assumes that a transform
algorithm has previously been configured.

URL:

Specifies the URL for the transform algorithms that are used to protect the message part.

The URLs of the supported transform algorithms are listed in the table. The recommended transform is
http://www.w3.org/2001/10/xml-exc-c14n# and it is the Exclusive XML Canonicalization, as well as the
default value provided in the URL field when a transform is added.

List of URLs for the transform algorithms
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/2002/06/xmldsig-filter2
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform
http://www.w3.org/2002/07/decrypt#XML
http://www.w3.org/2000/09/xmldsig#enveloped-signature

Custom properties:

Specifies the custom properties name and value pair for the transform algorithms. Click New to add a new
custom property. Click Delete to delete a custom property.

Name Specifies the name of a custom property that you choose to set to protect the message part.

Chapter 25. Administering web services (generally applicable) 2835



Value Specifies the value of a custom property that you choose to set to protect the message part.

Signed part reference default bindings settings:

Use this administrative console page to configure the signed part reference general bindings and the
uniform resource locator (URL) for the transform algorithms that are needed to protect the message part.

You can view and configure bindings for WS-Security using this administrative console page:

1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services

3. Select Service provider policy sets and bindings or Service client policy sets and bindings

4. Select a binding.

Note: You must have previously attached a policy set and assigned an application specific binding
before you can do this step.

5. Select WS-Security.

Note: You must have previously added WS-Security to the bindings.

6. Click the Authentication and Protection link in the Main message security policy bindings section.

7. Select a signature protection in the Request message and encryption protection section or the
Response message signature and encryption protection section.

8. Click the Additional bindings - Signed part reference default at the bottom of the panel. For the
custom, select an assigned message part and click Edit. In the custom version, there is also a
reference field, Specifies the name of the signature protection in the policy set. Use this field to
specify the name of the signature protection in the policy set.

9. Check the Include timestamp check box to include the timestamp when the message part is signed.

10. Check the Include nonce check box to include the nonce when the message part is signed.

Part reference properties:

Specifies the name of the part reference properties that include the transform algorithms used to protect
the message part.

1. Check the Include timestamp check box to include the timestamp for the message part.

2. Check the Include nonce check box to include the nonce when the message part is signed.

Transform algorithms:

Specifies the uniform resource locator (URL) description for the transform algorithms. Click the URL to
view the transform algorithms.

Main policy and bootstrap policy settings:

Use this page to specify how message security policies are applied to requests and enforced on
responses, as defined by the main policy settings and the bootstrap policy settings. Assertions for Web
Services Security (WS-Security) versions are already generated based on assertions in the policy set. If
the policy set includes a Web Services Security Version 1.1 assertion, then Web Services Security Version
1.1, itself, is asserted.

To view this administrative console page, use one of the following steps:

1. Click Services > Policy sets > Application policy sets > policy_set_name .

2. Click the WS-Security policy in the Policies table.

3. Click the Main policy link or the Bootstrap policy link.

2836 Administering WebSphere applications



Message level protection:

Specifies whether message level protection, using digital signatures and encryption, is required.

Require signature confirmation
Specifies whether the signature confirmation is required. Select this check box to require a
signature confirmation.

Message part protection:

Specifies whether message part protection, using digital signatures and encryption, is required.

Request message part protection
Click this link to define which request message parts you want protected and how that protection
is provided.

Response message part protection
Click this link to define policies that specify which response message parts you want protected and
how that protection is provided.

When the Message level protection check box is cleared, the link to Request message part protection is
disabled, because the configuration information associated with message level security is removed when
message level protection is cleared.

Key symmetry – Use symmetric tokens:

Specifies whether to use symmetric tokens. Select this radio button to use symmetric tokens. You can then
configure symmetric tokens using the Symmetric signature and encryption policies link. Click this link
to access the Symmetric signature and encryption policies panel where you can create the trust context in
which to use symmetric tokens. Using the same token for signing and validating messages and encrypting
and decrypting messages provides higher performance than can be achieved with asymmetric tokens. Use
symmetric tokens within a trust context. If a custom Kerberos token type is used, you must select the Use
symmetric tokens option.

Key symmetry – Use asymmetric tokens:

Specifies whether to use asymmetric tokens. Select this button to use asymmetric tokens. You can then
configure asymmetric tokens using the Asymmetric signature and encryption policies link. Click this
link to access the Asymmetric signature and encryption policies panel where you can create the trust
context (message integrity and confidentiality) in which to use asymmetric tokens. Specify which token
type to use for the initiator and recipient signature as well as the initiator and recipient encryption.

Include time stamp in security header:

Specifies whether to use a time stamp in the header. Select this check box to include a time stamp in the
header. You can then specify where in the header to place the time stamp by using the Security header
layout radio buttons.

Security header layout:

Specifies the layout rules for the security header.

You can use the following radio buttons for the security header layout:

Strict: declarations must precede use
The declarations in the header must precede the use.

Layout (Lax): order of contents can vary
The order of contents in the header can vary.

Chapter 25. Administering web services (generally applicable) 2837



Lax but timestamp required first in header
The timestamp must be first in the header, but the order of the remaining elements can vary.

Lax but timestamp required last in header
The timestamp must be last in the header, but the order of the remaining elements can vary.

Policy details:

Specifies links for accessing the request token policies, response token policies, and algorithms for
asymmetric tokens. Click these links to view token policies and cannonicalization algorithms that are
supported. Algorithms are used to reconcile XML differences.

Request token policies:

Click this link to define policies that specify which types of supporting authentication tokens are used in the
request and the properties of those token types.

Response token policies:

Click this link to define policies that specify which types of supporting authentication tokens are used in the
response and the properties of those token types.

Algorithms for symmetric or asymmetric tokens:

Links to a view of available algorithms. Click this link to view the cryptographic and cannonicalization
algorithms that are supported. Algorithms are used to reconcile XML differences.

Asymmetric signature and encryption policies settings:

Use this page to create the trust context, message integrity and confidentiality, to use asymmetric tokens.
You can create the trust context by specifying which token type to use for the initiator and recipient
signature as well as the initiator and recipient encryption.

To view this administrative console page complete the following actions:

1. Click Services > Policy sets > Application policy sets > policy_set_name > WS-Security policy
type.

2. Click Main policy or Bootstrap policy.

3. Click the Asymmetric signature and encryption policies link.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

Message integrity policies – Initiator signature token:

Specifies the token type of the initiator signature token. To add a token type or change the current token
type that is displayed in the Initiator signature token field, or to edit the displayed token type, click
Action.

Message integrity policies – Recipient signature token:

Specifies the token type of the recipient signature token. To add a token type or change the current token
type that is displayed in the Recipient signature token field, or to edit the displayed token type, click
Action.

Message confidentiality policies – Use the same token types that are used for integrity protection:

2838 Administering WebSphere applications



Specifies whether the token type set for initiator signature token and recipient signature token are used for
the initiator encryption token and the recipient encryption token. When the box is checked the fields are
empty and are cleared of data when Ok or Apply is selected.

Message confidentiality policies – Initiator encryption token:

Specifies the initiator encryption token type. To add a token type or change the current token type that is
displayed in the Initiator encryption token field, or to edit the displayed token type, click Action.

Message confidentiality policies – Recipient encryption token:

Specifies recipient encryption token type. To add a token type or change the current token type that is
displayed in the Recipient encryption token field, or to edit the displayed token type, click Action.

Action:

Specifies an option for each of the signature and encryption token fields. Use the Action button to change,
delete, add, or edit the listed token type.

The Action button lists supported token types and provides the following options:

Edit selected type policy
Opens a page to edit the token type shown in the signature or encryption token fields.

Delete selected type policy
Removes the token type from the signature or encryption token fields.

Change to custom type
Opens the Custom type page to specify the uniform resource identifier (URI) for a custom token
type.

Add custom type
Adds the custom type entry in the signature or encryption token fields.

Change to X.509
Changes the listed token type to X.509.

Add X.509
Adds the X.509 token type.

When you change the token type, any values you specified for the former token type are lost and the
default values for the newly assigned token type are used.

Symmetric signature and encryption policies settings:

Use this page to create the trust context to use symmetric tokens. Using the same token for signing and
validating messages and encrypting and decrypting messages increases performance. Use symmetric
tokens within a trust context.

To view this administrative console page, complete the following options:

1. Click Services > Policy sets > Application policy sets.

2. Select a policy_set_name in the policy sets table that contains WS-Security content.

3. Click WS-Security in the policies table.

4. Click the Main policy link or the Bootstrap policy link.

5. Click the Symmetric signature and encryption policies link.

Message Integrity – Token type for signing and validating messages:

Chapter 25. Administering web services (generally applicable) 2839



Specifies the current token type used for signing and validating messages.

To change the current token type that is displayed in the Token type for signing and validating
messages field or to edit the displayed token type, click Action.

Message Confidentiality – Use same token type for confidentiality that is used for integrity:

Specifies whether the token type set for signing and validating messages is also used for encrypting and
decrypting messages. For a Kerberos token, message confidentiality uses the same token that is used for
the message integrity.

If you select this check box, then the Token type for encrypting and decrypting messages field is
blank. If you clear this check box, then a different token can be used for message confidentiality.

Message Confidentiality – Token type for encrypting and decrypting messages:

Specifies the current token type that is used for encrypting and decrypting messages.

To change the current token type that is displayed in the Token type for encrypting and decrypting
messages field or to edit the displayed token type, verify that the Use the same token type for
confidentiality that is used for integrity protection check box is cleared, and click Action.

Action:

Enables the token type selected to be changed or edited.

The Action button lists supported token types and provides the following options:

Edit selected type policy
Opens a page to edit the token type for signing or encrypting fields.

Change to Secure Conversation
Changes the token type to Secure Conversation.

Change to custom type
Opens the custom type page to specify the Uniform Resource Identifier (URI) for a custom token
type.

When you change the token type, any values that you specified for the former token type are lost, and the
default values for the newly assigned token type are used.

Algorithms settings:

Use this page to view the supported cryptographic and cannonicalization algorithms. Algorithms are used
to reconcile XML differences.

To view this administrative console page:

1. Click Services > Policy sets > Application policy sets > policy_set_name.

2. Click the WS-Security policy in the Policies table.

3. Click the Main policy link or the Bootstrap policy link.

4. Click the Algorithms for symmetric tokens link or the Algorithms for asymmetric tokens link.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

Algorithm suite:

2840 Administering WebSphere applications



Specifies the supported algorithms that are required for performing cryptographic operations with
symmetric or asymmetric key-based security tokens.

All of the algorithm values in this field specify an algorithm suite. Algorithm suites and the values they each
represent are detailed in the Web Services Security Policy Language (WS-SecurityPolicy) July 2005
Version 1.1 specification. Select a supported algorithm from the following list:

v Basic256

v Basic192

v Basic128

v TripleDes

v Basic256Rsa15

v Basic192Rsa15

v Basic128Rsa15

v TripleDesRsa15

v Basic256Sha256

v Basic192Sha256

v Basic128Sha256

v TripleDesSha256

v Basic256Sha256Rsa15

v Basic192Sha256Rsa15

v Basic128Sha256Rsa15

v TripleDesSha256Rsa15

This table defines values for the components for each algorithm suite.

Table 267. Algorithm suite components. The algorithms are used to perform cryptographic operations on tokens.

Algorithm Suite Digest Encryption
Symmetric
Key Wrap

Asymmetric
Key Wrap

Encryption key
Derivation

Signature key
Derivation

Minimum
Symmetric Key
Length

Basic256 Sha1 Aes256 KwAes256 KwRsaOaep PSha1L256 PSha1L192 256

Basic192 Sha1 Aes192 KwAes192 KwRsaOaep PSha1L192 PSha1L192 192

Basic128 Sha1 Aes128 KwAes128 KwRsaOaep PSha1L128 PSha1L128 128

TripleDes Sha1 TripleDes KwTripleDes KwRsaOaep PSha1L192 PSha1L192 192

Basic256Rsa15 Sha1 Aes256 KwAes256 KwRsa15 PSha1L256 PSha1L192 256

Basic192Rsa15 Sha1 Aes192 KwAes192 KwRsa15 PSha1L192 PSha1L192 192

Basic128Rsa15 Sha1 Aes128 KwAes128 KwRsa15 PSha1L128 PSha1L128 128

TripleDesRsa15 Sha1 TripleDes KwTripleDes KwRsa15 PSha1L192 PSha1L192 192

Basic256Sha256 Sha256 Aes256 KwAes256 KwRsaOaep PSha1L256 PSha1L192 256

Basic192Sha256 Sha256 Aes192 KwAes192 KwRsaOaep PSha1L192 PSha1L192 192

Basic128Sha256 Sha256 Aes128 KwAes128 KwRsaOaep PSha1L128 PSha1L128 128

TripleDesSha256 Sha256 TripleDes KwTripleDes KwRsaOaep PSha1L192 PSha1L192 192

Basic256Sha256Rsa15 Sha256 Aes256 KwAes256 KwRsa15 PSha1L256 PSha1L192 256

Basic192Sha256Rsa15 Sha256 Aes192 KwAes192 KwRsa15 PSha1L192 PSha1L192 192

Basic128Sha256Rsa15 Sha256 Aes128 KwAes128 KwRsa15 PSha1L128 PSha1L128 128

TripleDesSha256Rsa15 Sha256 TripleDes KwTripleDes KwRsa15 PSha1L192 PSha1L192 192

When using a Kerberos custom token based on the OASIS Web Services Security Specification for
Kerberos Token Profile V1.1, only Aes128, Aes256, and TripleDes encryption-based algorithm suites are
supported.

Cannonicalization algorithm:

Specifies whether to use inclusive or exclusive cannonicalization.

Chapter 25. Administering web services (generally applicable) 2841



The following supported cannonicalization algorithms are available in this list:

v Exclusive cannonicalization

v Inclusive cannonicalization

The default value is Exclusive cannonicalization.

XPath version:

Specifies the version of the XPath filter to use.

The following supported XPath versions are available:

v XPath 1.0

v XPathfilter 2.0

The XPathfilter 2.0 version is the default value.

Use security token reference transformation:

Specifies whether the security token reference is transformed. Indicate whether the security token
reference transform is either True or False.

Message part protection settings:

Use this page to define the message parts that you want protected and how that protection is provided.

To view this administrative console page, complete the following actions:

1. Click Services > Policy sets > Application policy sets >policy_set_name.

2. Click the WS-Security policy in the Policies table.

3. Click the Main policy link or the Bootstrap policy link.

4. Click the Request message part protection link or the Response message part protection link from
the Message Part Protection section.

Integrity protection – Signed parts:

Specifies the signed parts that you have added for message integrity protection. You can select parts to
edit or delete, or add new signed parts.

Button Resulting action
Add Specifies each element of a new signed part and to add

those elements to the Signed parts listing.
Edit Loads the specific part you selected for editing.
Delete Removes the selected signed part from the list.

Confidentiality protection – Encrypted parts:

Specifies the encrypted parts that have been added for message confidentiality protection. You can select
parts to edit or delete, or add new encrypted parts.

Button Resulting action
Add Enables you to specify each of the elements of a new

encrypted part and to add those elements to the
Encrypted parts listing.

Edit Loads the specific part you selected for editing.
Delete Removes the selected encrypted part from the list.

2842 Administering WebSphere applications



Signed part settings:

Use this page to define the elements of a signed part. Signed parts are used to protect message integrity
and, in this case, the signed parts are being defined as part of the policy set process.

To view this administrative console page, complete the following actions:

1. Click Services > Policy sets > Application policy sets > policy_set_name.

2. Click the WS-Security policy in the Policies table.

3. Click either the Main policy link or the Bootstrap policy link.

4. Click the Request message part protection link or the Response message part protection link in
the Message Part Protection section.

5. In the Integrity protection section, complete one of the following actions:

v Click Add to add a new signed part.

v Select an existing signed part and click Edit.

Name of part to be signed:

Specifies the name of this set of one of more message parts that you have selected to sign. The name
you choose is a label and must be unique within the Response message part protection or Request
message part protection collections for this WS-Security policy.

Elements in part:

Specifies a list of the message elements included in the signed part. The Elements in part field contains
a listing of message elements that are included in this signed part to provide message integrity.

Click Add to add an element to the signed part of the message. To remove a message element from a
signed part of a message, first click the selection box next to the element to be removed, then click
Remove. Use the OK, Apply, Reset or Cancel buttons for the text entry fields. The QName or the Xpath
expression value is required and can be edited at any time, such as when adding a new element, or after
the element is added.

Protect message body:

Specifies if the message body is protected in this part. To protect the message body in this part, click
Protect message body.

XPath expression:

Specifies if the displayed XPath expression is used as the method for specifying that a specific element is
included in this part.

Select XPath from the Add menu list and provide an expression in the new XPath entry that is displayed
in the table. Any Xpath expression row on the table that has no corresponding value is removed when you
click OK or Apply.

QName for SOAP header elements only:

Specifies the Qname type for a namespace value for the SOAP header element that you want to encrypt.
To encrypt a SOAP header element, select Qname and provide the namespace and optionally the
localname of the SOAP header element in the Value field. When specifying the Qname, if using the
optional localname, a comma must be inserted between the namespace and the localname, for example
<namespace>,<localname>. If the localname is omitted, all SOAP header elements with the specified

Chapter 25. Administering web services (generally applicable) 2843



namespace are encrypted. To use the Qname selection method, the SOAP header elements must be the
immediate children of the SOAP header. Any Qname row in the table that has no corresponding value is
removed when you click OK or Apply.

Restriction:
You cannot select header elements that are sub-elements of other elements in the SOAP header using
Qname. In this case, you must use an Xpath expression to select these header elements.

Encrypted message part settings:

Use this page to define the elements of an encrypted part of a message. Encrypted parts are used to
protect message confidentiality, and in this case, the encrypted parts are being defined as part of the
policy set process. A message part is a named set of one or more message elements.

To view this administrative console page, complete the following actions:

1. Click Services > Policy sets > Application policy sets > policy_set_name.

2. Click the WS-Security policy in the Policies table.

3. Click the Main policy link or the Bootstrap policy link.

4. Click the Request message part protection link or the Response message part protection link in
the Message Part Protection section.

5. In the Confidentiality protection section, you can perform any of the following:

v Click Add to add a new encrypted part.

v Select an existing encrypted part, and click Edit.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Name of part to encrypt:

Specifies the name of the set of one or more message parts that you have selected to encrypt. The name
you choose is a label and must be unique within the Response message part protection or Request
message part protection collections for this WS-Security policy.

Elements in part:

Specifies a list of the message elements that are included in the encrypted part. The Elements in part
field contains a listing of message elements that are included in this encrypted part to provide message
confidentiality.

Click Add to add an element to the encrypted part of the message. To remove a message element from
an encrypted part of a message, first click the selection box next to the element to be removed, then click
Remove. The value of the Qname namespace, or the Xpath expression, is required and can be edited at
any time, while adding a new element or after the element is added.

Body Specifies the body of the message part.

Qname for SOAP header elements only
Specifies the Qname type for a namespace value for the SOAP header element that you want to
encrypt. To encrypt a SOAP header element, select Qname and provide the namespace and
optionally the localname of the SOAP header element in the Value field. When specifying the
Qname, if using the optional localname, a comma must be inserted between the namespace and
the localname, for example <namespace>,<localname>. If the localname is omitted, all SOAP
header elements with the specified namespace are encrypted. To use the Qname selection

2844 Administering WebSphere applications



method, the SOAP header elements must be the immediate children of the SOAP header. Any
Qname row in the table that has no corresponding value is removed when you click OK or Apply.

Restriction: You cannot select header elements that are sub-elements of other elements in the
SOAP header using Qname. In this case, you must use an Xpath expression to
select these header elements.

Xpath expression
Specifies if the displayed Xpath expression is used as the method for specifying that a specific
element is included in this part. Select XPath from the Add menu list, and provide an expression
in the new XPath entry that is displayed in the table. Any Xpath expression row on the table that
has no corresponding value is removed when you click OK or Apply.

Configuring the Custom properties policy:

When working with policy sets in the administrative console, you can customize policies to set generic
properties that are not supported in other policy types. You must customize the Custom properties policy
configuration because all properties within the policy are user-defined.

About this task

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

You can configure generic properties that are not supported in other policy types with the Custom
properties policy. These additional properties are set in the binding. The Custom properties policy provides
an alternative way to set a binding property instead of using the JAX-WS programming model to set the
property on the BindingProvider object. The CustomProperties binding is only supported for service clients.

After you have created a new policy set with the Custom properties policy added, you must create a
Custom properties binding and add at least one custom property to configure the binding. A Custom
properties binding type can be added to a general client binding or an application specific client binding.
You cannot create an empty Custom properties binding. You must define at least one name and value pair
within the binding.

Note: In a mixed cell environment, the following limitations apply to attachments to policy sets containing
CustomProperties policy:

v You must not create attachments to policy sets containing CustomProperties policy for
applications that are deployed on an application server that is prior to WebSphere Application
Server Version 8.0. The CustomProperties policy is only supported on WebSphere Application
Server Version 8.0 and later.

v An application that contains an attachment to a policy set containing CustomProperties policy
must not be deployed on an application server that is prior to WebSphere Application Server
Version 8.0.

v If an application that is deployed in a cluster environment contains an attachment to a policy set
containing CustomProperties policy, you must not add a member application server that is prior
to WebSphere Application Server Version 8.0 to the cluster.

Procedure

1. Create the Custom properties policy.

a. Navigate to the Application policy sets or the System policy sets From the administrative console,
click Services > Policy Sets > Application policy sets or Services > Policy Sets > System
policy sets.

b. Click the New... button.

c. Enter a unique policy set name.

d. Click the Add button and choose the Custom properties policy in the Policies table.

Chapter 25. Administering web services (generally applicable) 2845



e. Click the Apply button.

f. Click the Save link.

You cannot configure the Custom properties policy from this panel. You must configure your Custom
properties with a Custom properties binding.

2. Customize the Custom properties bindings.

a. Navigate to the Custom properties bindings. From the administrative console, click Services >
Policy Sets > General client policy set bindings > client_policy_set_binding_name.

b. Click Add > Custom properties.

The Custom properties (bindings) window displays options for adding Custom properties bindings.

c. Specify the properties for each custom property you want to add. The following fields are required:

Name Displays the name of the custom property.

Value Displays the value of the custom property.

The application specific bindings can be customized similarly, from the application policy set and
bindings attachments panel.

Results

After you have customized the Custom properties policy, the associated policy set uses this policy to set
generic properties that are not supported in other policy types.

Policy set bindings settings for Custom properties:

Use this page to view, define, or configure general bindings or application specific bindings, for the Custom
properties policy.

This administrative console page applies only to Java API for XML Web Services (JAX-WS) applications.

To view this administrative console panel, click Services > Policy sets > General client policy set
bindings.

To edit or configure the general bindings, complete the following steps:

1. Click New.

2. For Bindings configuration name, specify a unique binding name.

3. Optionally, specify a description.

4. Click Add and select the Custom properties policy in the Policies table.

5. Specify a unique name and value pair.

6. Optionally, to add additional properties, click New.

7. Optionally, to edit a property, select a property and click Edit.

8. Optionally, to delete a property, select a property and click Delete.

9. Click Apply.

10. Click Save.

This product supports using the Custom properties policy and binding to set generic properties that are not
supported in other policy types. The additional properties are set in the binding. The Custom properties
policy provides an alternative way to set a binding property instead of using the JAX-WS programming
model to set the property on the BindingProvider object. You cannot create an empty Custom properties
binding. You must define at least one name and value pair within the binding. Additionally, there are no
predefined properties in the binding because all properties are user-defined. The CustomProperties binding
is only supported for service clients.

2846 Administering WebSphere applications



Note: In a mixed cell environment, the following limitations apply to attachments to policy sets containing
CustomProperties policy:

v You must not create attachments to policy sets containing CustomProperties policy for
applications that are deployed on an application server that is prior to WebSphere Application
Server Version 8.0. The CustomProperties policy is only supported on WebSphere Application
Server Version 8.0 and later.

v An application that contains an attachment to a policy set containing CustomProperties policy
must not be deployed on an application server that is prior to WebSphere Application Server
Version 8.0.

v If an application that is deployed in a cluster environment contains an attachment to a policy set
containing CustomProperties policy, you must not add a member application server that is prior
to WebSphere Application Server Version 8.0 to the cluster.

Name:

Specifies the name associated with this property.

Information Value
Data type String

Value:

Specifies the value associated with this property.

Information Value
Data type String

Enabling policies for policy sets using the administrative console
Policies can be listed in a policy set in the disabled state so that they are not currently included in the
policy set. You can enable a policy to be included in a policy set using the administrative console.

Before you begin

To enable a policy for a policy set, be sure the policy is listed in the policy set and shown in the Disabled
state in the State column of the Policies table on the Policy set settings page.

About this task

To enable a policy in a policy set, use the administrative console.

Procedure
1. Click Services > Policy sets > Application policy sets > policy_set_name or Services > Policy

sets > System policy sets > policy_set_name. The Policy Set Settings page displays a listing of
available policies in the Policies table for the policy set selected. If this table contains no policies to
enable, no policies exist for the policy set of interest. In this case, you must add the policies to the
policy set.

2. Click the Select box beside the disabled policy that you want to enable. You can select multiple
policies if you want to enable more than one.

3. Click the Enable button. The State column of the Policies table is updated to display the selected
policy as enabled.

Results

You have enabled a policy for the selected policy set.

Chapter 25. Administering web services (generally applicable) 2847



What to do next

If the policy is not listed in the Policies table, it cannot be enabled and must be added. You can modify the
policy after it is enabled.

Disabling policies from policy sets using the administrative console
You can have policies listed in a policy set that are in the enabled state so that they are currently included
in the policy set. You can disable a policy from being included in a policy set without deleting it from the
policy set. You might want to do this if you want the policy included in the policy set in the future. You can
use the administrative console to change this setting.

Before you begin

To disable a policy for a policy set, be sure the policy is listed in the policy set and shown in the Enabled
state in the State column of the Policies table on the Policy set settings page. If the policy is not listed, it
might have been deleted and you must add it again and then disable it.

About this task

You can disable a policy in a policy set, from the menu of the administrative console.

Procedure
1. Click Services > Policy sets > Application policy sets >policy_set_name or Services > Policy

sets > System policy sets >policy_set_name. Clicking a policy set name from the listing in the
policy sets collection opens the Policy set settings panel for that policy set. This panel displays a listing
of available and enabled policies in the Policies table for the policy set you selected. If this table
contains no policies, there are no existing policies to disable.

2. Click theSelect box beside the enabled policy to be disabled. You can select multiple policies if you
want to disable more than one.

3. Click Disable. The State column of the Policies table is updated to display the selected policy as
disabled. The policy was not deleted from the policy set and is still available to be enabled.

Results

You have disabled a policy for the selected policy set.

What to do next

You could now enable other policies or add or modify existing policies for this policy set.

Web services policies
Policies define the type of web service policy based on the quality of service type. Policies are initially set
with default settings but the attributes can be edited and changed.

Provided policies include:

WS-Addressing
Based on the World Wide Web Consortium (W3C) WS-Addressing specifications for web services.
This family of specifications provide transport-neutral mechanisms to address web services and to
facilitate end-to-end addressing. This specification provides asynchronous support.

WS-Security
Based on the WS-Secure Conversation (WS-SC) and WS-Security specifications along with the
associated token profiles. The WS-Security specification and its associated token profiles define a
way to send security tokens and provide message integrity and confidentiality. The WS-Secure
Conversation specification establishes a secure context, based on shared keys, for the client and

2848 Administering WebSphere applications



server to use for a series of messages. This standard provides a framework across organizations
that defines how to secure the entire conversation. Use the WS-Security policy to define how the
SOAP messages are secured. It has options such as:

v which message parts are signed and encrypted

v the tokens types to be included

v whether to use symmetric or asymmetric cryptography

You can also use WS-Security policies to define the bootstrap policy that is used to acquire
security context tokens. Security context tokens are used by secure conversation.

WS-Reliable Messaging (WS-RM)
This specification enables the sender and receiver to assure the quality of services in a set of
messages. It helps the application developer deal with latency issues, maintenance interruption,
and other problems that prevent messages from being completed. This quality assurance is critical
for stateful applications.

WS-Transaction
This specification provides support for coordination of atomic transactions or business activities for
web services applications. You can enable WS-Transaction on both the client (outbound) and
server (inbound) side by attaching a policy set that enables the WS-Transaction policy as part of
the policy set. This policy is based on the WS-AtomicTransaction specification and the
WS-BusinessActivity specification, together with the WS-Coordination specification.

HTTP Transport
The HTTP transport policy applies the HTTP features and HTTP connections polices to outbound
messages. The response listener policy is enforced on inbound messages.

SSL Transport
Provides SSL transport security for the HTTP protocol with web services applications.

JMS Transport
When using the SOAP over JMS transport with JAX-WS applications, you can customize the
transport by configuring the JMS transport policy. The SOAP over JMS transport provides an
alternative to HTTPS for transporting SOAP requests and response messages between clients and
servers. Use the JMS transport policy to configure a service that uses the JMS transport to send
asynchronous response messages back to the client.

Custom Properties
Provides the ability to specify generic binding properties for web service applications. The
CustomProperties binding is only supported for service clients.

Exporting policy sets using the administrative console
You can export policy sets between a client and a provider or between servers using the administrative
console.

Before you begin

Before you begin this task, select the policy set to be exported. Read about the application policy sets
collection and exporting policy sets to client or server environments using the wsadmin tool.

About this task

Static export is used in development environment to exchange a policy sets between a client and a
provider. You can also export between servers. The exported format is a .zip file.

Procedure
1. From the administrative console navigation, click Services > Policy sets > Application policy sets or

Services > Policy sets > System policy sets. The Application policy sets collection page displays a

Chapter 25. Administering web services (generally applicable) 2849



listing of the custom and default policy sets. Custom policy sets are displayed only if you have created
them. If you have not created a custom policy set, then only the default policy sets are displayed.

2. From the Application policy sets panel, select a policy set and click Export.

3. Locate the export archive file. From the Export policy set archive file settings panel, click the archive
file to export.

4. Choose a location to export the file. Do not export the file to a browser.

Results

When you finish this task, the policy set archive file has been exported to the location you specified.

Example

If you have a policy set, ABC_ps and you want to move it from ServerA to ClientA, you can use the export
function. The export policy set can be used by importing it into another application server. Read about the
command task for importing an exported policy set compression file.

What to do next

You can import the policy set to reuse it.

Implementing policy sets for unmanaged clients
Policy sets can simplify your quality of service configuration for web services by combining configuration
settings for services like addressing, messaging, and security. To use policy sets in an unmanaged client,
structure the policy sets in a way that is consumable by the client on the command-line invocation.

Before you begin

Before creating policy sets or changing existing policy sets, first identify the security and other
requirements of the web service.

Note: You can use policy sets only with JAX-WS applications that run on the Axis2 web service engine.
You cannot use policy sets for JAX-RPC applications.

About this task

Policy sets are assertions about how services are defined, and you can use them to control web services
at the application or system level. Policy sets can be maintained through the application server for
deployed services, but if you are using a thin client, which is unmanaged, you must configure the policy
sets manually to take advantage of them.

Procedure
1. Create a policy set, or export an existing policy set from the application server.

v For a new policy set, create the policy set files through scripting or the administrative console. For
more information about managing web services policy sets, see the “Managing policy sets using the
administrative console” on page 2771 topic.

v To export an existing policy set:

a. Select Services > Policy sets > policy_set_type

b. Select the policy set that you want to export from the list.

c. Click Export...

d. Click the policy set name to download the archive file.

2. Place the policy set files in the META-INF directory so they can be used by the unmanaged client.

2850 Administering WebSphere applications



Note: If you exported a policy set from the application server, you must extract the policy set files from
the archive, and place them in the META-INF directory.

The following is an example of the file structure of a policy set collection:

-META-INF
-PolicySets

-policy_set1
policySet.xml
-PolicyTypes

-policy_type1
policy.xml

-policy_type2
policy.xml

-policy_set2
...

3. Create the clientPolicyAttachments.xml file, which references the policy sets that you want to
implement, and place it in the META-INF directory.

a. Create the clientPolicyAttachments.xml file in Rational Application Developer or another
development tool. The following sample is an example of a clientPolicyAttachments.xml file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<psa:PolicySetAttachment

xmlns:psa="http://www.ibm.com/xmlns/prod/websphere/200605/policysetattachment"
xmlns:ps="http://www.ibm.com/xmlns/prod/websphere/200605/policyset">
<psa:PolicySetReference name="policy_set1" id="1342">

<psa:Resource pattern="WebService:/">
</psa:Resource>

</psa:PolicySetReference>
</psa:PolicySetAttachment>

b. Verify that the clientPolicyAttachments.xml file is in the META-INF directory.

4. Create an application specific or general client policy set binding that is compatible with the policy set.
You can export a general binding from the application server, or use a development tool like Rational
Application Developer to create an application-specific binding. For more information about bindings,
see “Defining and managing policy set bindings” on page 2785. To export a binding from the
application server:

a. Select Services > Policy sets > General client policy set bindings

b. Select the binding that you want to export from the list.

c. Click Export...

d. Click the binding name to download the archive file.

5. Place the binding files in the META-INF directory so they can be used by the unmanaged client.

Note: If you exported bindings from the application server, you must extract the files from the archive,
and place them in the META-INF directory.

The file structure differs if you are using general bindings or application-specific bindings:

v Here is an example of a set of general bindings, which are in the bindings subdirectory:
-META-INF

-bindings
-binding1

bindingDefinition.xml
-PolicyTypes

-policy_type1
bindings.xml

-policy_type2
bindings.xml</p><p>

-binding2
...

v Here is an example of an application-specific binding, for which there is no bindings subdirectory:

Chapter 25. Administering web services (generally applicable) 2851



-META-INF
-binding1

bindingDefinition.xml
-PolicyTypes

-policy_type1
bindings.xml

-policy_type2
bindings.xml

-binding2
...

6. Verify that the location of the policy set and bindings are in the class path when you start your thin
client. For example, you can specify the class path on the command line:

java -cp policy_set/ my_client

Application policy sets collection
Use this page to manage policy sets. You can create, copy, export, and import policy sets. You can also
view or delete existing policy sets. You can use policy sets, or assertions that define services, to simplify
your web services configuration because policy sets group security and other web services settings into
reusable units.

To view this administrative console page, click Services > Policy sets > Application policy sets.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Name
Specifies a list of available policy sets. Click a policy set name to access the details panel for that policy
set. Use the buttons on the page to create a new policy set or manage the existing policy sets. You can
also import a policy set to display in the list of available policy sets.

The following list of buttons are available to you for creating and managing policy sets:

Button Resulting action
New Creates a new policy set. This option opens an empty policy set and allows you to

provide additional details, such as the name, description, and policy configuration
options.

Delete Removes the selected policy set.
Copy Creates a copy of the policy set that is selected from a list. After you create a copy, you

can provide a name and a description for the copy. You must also specify whether to
transfer attachments and binding information, where these options are available, from
the original to the copy.

Import Imports a policy set. This is a menu item with the option of importing a policy set from a
default repository or a selected location. You can select and import the default policy
sets from the default repository. The default repository for the import function in the
administrative console is the directory that contains the default policy sets. Initially, a
subset of pre-configured policy sets are exposed. However, there are other default
policy sets that are available to import when you select Import > From Default
Repository. The administrative console also displays the default policy sets in a list
that includes descriptions, that you can use to select the policy set that you want to
import.

Export Exports the selected policy set to an archive file.

Editable
This column shows whether the policy set is a user-defined, custom policy set that can be edited or
whether the policy set is a default policy set that is not editable.

2852 Administering WebSphere applications



Values displayed in this field are Editable or Not editable. Even though a policy set is identified as not
editable, it is deletable. For example, you cannot edit information for the default system policy set, but you
can delete the policy set. You can change the properties for a default, not editable policy set by copying it,
and then modifying the properties of the copy. For more information on modifying a default policy set, see
copy of default policy set and bindings settings document.

Information Value
Data type: String
Default: Not editable

Description
Provides a brief description of the application policy sets that currently exist. You cannot edit information
for the default application policy sets; however, you can delete the policy sets. The list of contained
policies for each policy set that it relates to are displayed in the Name column. The contained policies that
are displayed are only those that are enabled. From this panel, the field is not editable.

For custom policy sets that you create or modify, you can edit this description when you create or
customize policy sets on the details panel. The description is the same one that you entered in the
Description field when you created that policy set. The included and enabled policies appear at the top
followed by a bulleted list of the key attributes of the policy set.

Application policy set settings
Use this page to view, create, enable or disable your policy sets. You can use policies, or assertions that
define services, to simplify your web services configuration.

To view this administrative console page, click one of the following paths:

v Services > Policy sets > Application policy sets > policy_set_name.

v Services > Policy sets > Application policy sets > New.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Important: You can only edit the fields on this page if you open this page for a custom policy set. You
cannot edit default policies.

Policy set name
Specifies the name of a selected policy set. This field is empty if you are creating a new policy set and
you can enter a policy set name. If you select an existing policy set from the Policy set page, then this
field displays the name of that policy set. This field is also not editable for existing custom policy sets and
default policy sets.

Description
Specifies a brief description of the policy set being viewed, modified or created. This field displays a brief
description of the policy set displayed in the Policy set name field or is empty if a new policy set is being
created. You can edit this field for custom policy sets only.

Policies
The Policies table displays a list of policies that are contained in the policy set. This table initially contains
no policies when you are creating a new custom policy set. If this is a default policy set, then you cannot
add, delete, enable or disable the policy. The configuration of a policy in a default policy set cannot be
altered but you can view a policy by clicking on the policy name link. If the policy is a custom policy, you
can modify the configuration of the policy by clicking the policy name link. You can alter the policies
contained in a custom policy set using the following buttons:

Chapter 25. Administering web services (generally applicable) 2853



Button Resulting action
Add Provides a list of valid policies, instances of which are not already included in the

collection, that can be added to the policy set collection. The following policies are
available:

v Custom properties

v HTTP transport

v JMS transport

v SSL transport

v WS-Addressing

v WS-ReliableMessaging

v WS-Security

v WS-Transaction
Delete Removes the selected policy from the policy set and from the listing in the Description

column of the table.
Enable The policy is enabled for the policy set and displayed as enabled in the State column.
Disable The policy is disabled for the policy set. The policy remains in the list but the State field

shows the policy as Disabled.

Policies - Policy
Specifies the name of a policy. This field is empty if you are creating a new policy set. If you select an
existing policy, then this field displays the name of that policy. If the policy settings are viewable, then you
can click on the policy name to view the settings. For custom policy sets, you can click on the policy name
to configure the policy settings.

Policies - State
Specifies an Enabled or Disabled status for each policy in the policy set. You cannot change the state for
default policy sets. To change the state of the policy, select the policy and click Enable or Disable. The
state is refreshed in this column to reflect your change.

If you disable a policy, you are temporarily removing the policy from the policy set without losing the
configuration details for that policy. When a policy is disabled, you can easily enable the policy again by
selecting Enable. If the policy is deleted, the configuration for that policy no longer exists. After you delete
a policy, to enable that policy in a policy set, you must add the policy to the policy set and enter the
configuration details for that policy.

Policies - Description
Specifies a brief description of each policy in the policies table. The product does not support custom
policies; therefore, this field is not editable. You cannot create a new policy.

Additional properties – Attached deployed assets
Click this link to search for applications to which this policy set is attached. You can also find applications
that contain service resources to which the policy set is attached.

Search attached applications collection
Use this page to search for applications and other resources that are attached to a specific policy set or to
search for applications and other resources that have attached service resources.

To view this administrative console page, complete the following actions:

1. Click Services > Policy sets > Application policy sets >policy_set_name.

2. Click Attached applications link in the Additional Properties section.

2854 Administering WebSphere applications



Name
Specifies a list of applications that match the search text. The application names that are displayed in the
Name column are either attached explicitly to the specified policy set or have service resources attached
to this policy set.

To alter the policy set that is attached to an application, select an application, and click a button to enable
the following options:

Button Resulting action
Detach Policy Set Detaches the current policy set from the selected

application or applications. This action also detaches any
attached application service resources. This action does
not detach other policy sets from the application or
application service resources.

Replace Policy Set Displays a list of policy sets that can be attached to the
selected application or applications and any contained
attached service resources. The policy set is replaced with
the one selected. This action does not replace other policy
sets that are attached to resources in the application that
you select.

Click the application name to complete actions such as attaching policy sets to the application, its
services, or its endpoints.

Web services policy sets
Policy sets are assertions about how services are defined. They are used to simplify your quality of service
configuration for web services.

Note: You can use policy sets only with Java API for XML-Based Web Services (JAX-WS) or Service
Component Architecture (SCA) applications. You cannot use policy sets with Java API for
XML-based RPC (JAX-RPC) applications.

Policy sets combine configuration settings, including those for transport and message level configuration,
such as WS-Addressing, WS-ReliableMessaging, and WS-Security.

There are two main types of policy sets; application policy sets and system policy sets. Application policy
sets are used for business-related assertions. These assertions are related to the business operations that
are defined in the Web Services Description Language (WSDL) file. System policy sets, on the other hand,
are used for non-business-related system messages. These messages are not related to the business
operations that are defined in the WSDL, but instead refer to messages that are defined in other
specifications which apply qualities of service (QoS). Such QoS are the request security token (RST)
messages that are defined in WS-Trust, or create sequence messages that are defined in WS-Reliable
Messaging metadata exchange messages of the WS-MetadataExchange.

Policies are defined based on a quality of service. Policy definition is typically based on WS-Policy
standard language, for example, the WS-Security policy is based on the current WS-SecurityPolicy from
the Organization for the Advancement of Structured Information Standards (OASIS) standards.

An instance of a policy set consists of a collection of policies. For example, the WS-I RSP default policy
set consists of instances of the WS-Security, WS-Addressing, and WS-ReliableMessaging policy types. A
policy set is identified by a unique name that is unique across the cell. An empty policy set is a policy set
with no policies defined.

Chapter 25. Administering web services (generally applicable) 2855



You can use a default policy set after it is imported. If you want to change the properties for a default, not
editable policy set, you need to copy the policy set to create an editable version to modify. See copy of
default policy set and bindings settings. You can perform the following actions on policy sets:

v create

v copy

v edit

v delete

v attach to service resources like applications

v detach from service resources like applications

v export

v import

Note which functions you can configure using policy sets and the relationship of the security information
that is configured. A set of default policy sets are included that you can import; then copy and rename for
reuse. You can use a default policy set after it is imported, but if you want to change any of the settings,
you need to copy the policy set to create an editable version. The configuration can then be altered and
customized on the copy.

Important: You can only copy and customize policy sets using the administrative console or
administrative commands. Policy sets do not function correctly if they are copied manually.

On the application server, policy sets are stored at the cell level. Policy sets are centrally located so that
they are available to all applications on the server.

The following application policy sets are installed on the base or network deployment (ND) profile by
default: WS-I RSP or WS-I RSP (ND), Username WSSecurity default, and WSHTTPS default. The WS-I
RSP (ND) is installed in a network deployment environment.

The following policy sets are ready for you to use as is.

v LTPA WSSecurity Default

v Kerberos V5 HTTPS default

v SSL WSTransaction

v Username SecureConversation

v Username WSSecurity default

v WS-Addressing default

v WSHTTPS default

v WS-I RSP ND

v WS-ReliableMessaging persistent

The application server also provides other default policy sets that you can use or customize. To use the
additional policy sets, you must import them from the default repository. Read about importing policy sets
from the administrative console for more information.

The following default policy sets are provided:

WS-I RSP default
This policy set provides:

v Reliable message delivery to the intended receiver by enabling WS-ReliableMessaging

v Message integrity through digital signature that includes signing the body, time stamp,
WS-Addressing headers and WS-ReliableMessaging headers using the WS-
SecureConversation and WS-Security specifications

2856 Administering WebSphere applications



v Confidentiality through encryption that includes encrypting the body, signature elements, using
the WS-SecureConversation and WS-Security specifications

LTPA WS-I RSP default
This policy set provides:

v Reliable message delivery to the intended receiver by enabling WS-ReliableMessaging

v Message integrity through digital signature that includes signing the body, time stamp,
WS-Addressing headers and WS-ReliableMessaging headers using the WS-
SecureConversation and WS-Security specifications

v Confidentiality through encryption that includes encrypting the body, signature elements, using
the WS-SecureConversation and WS-Security specifications

v A Lightweight Third Party Authentication (LTPA) token included in the request message to
authenticate the client to the service

Username WS-I RSP default
This policy set provides:

v Reliable message delivery to the intended receiver by enabling WS-ReliableMessaging

v Message integrity through digital signature that includes signing the body, time stamp,
WS-Addressing headers and WS-ReliableMessaging headers using the WS-
SecureConversation and WS-Security specifications

v Confidentiality through encryption that includes encrypting the body, signature elements, using
the WS-SecureConversation and WS-Security specifications

v A username token included in the request message to authenticate the client to the service. The
username token is encrypted in the request

SecureConversation
This policy set provides:

v Message integrity through digital signature that includes signing the body, time stamp, and
WS-Addressing headers using WS-SecureConversation and WS-Security specifications

v Message confidentiality through encryption that includes encrypting the body, signature and
signature confirmation elements, using WS-SecureConversation and WS-Security specifications

LTPA SecureConversation
This policy set provides:

v Message integrity through digital signature that includes signing the body, time stamp, and
WS-Addressing headers using WS-SecureConversation and WS-Security specifications

v Message confidentiality through encryption that includes encrypting the body, signature and
signature confirmation elements, using WS-SecureConversation and WS-Security specifications

v A Lightweight Third Party Authentication (LTPA) token included in the request message to
authenticate the client to the service

Username SecureConversation
This policy set provides:

v Message integrity through digital signature that includes signing the body, time stamp, and
WS-Addressing headers using WS-SecureConversation and WS-Security specifications

v Message confidentiality through encryption that includes encrypting the body, signature and
signature confirmation elements, using WS-SecureConversation and WS-Security specifications

v A username token included in the request message to authenticate the client to the service. The
username token is encrypted in the request

WSAddressing default
Enables WS-Addressing support, which uses endpoint references and message addressing
properties to facilitate the addressing of web services in a standard and interoperable way.

Chapter 25. Administering web services (generally applicable) 2857



WSHTTPS default
Provides SSL transport security for the HTTP protocol with Web services applications.

Kerberos V5 HTTPS default
This policy set provides message authentication with a Kerberos Version 5 token. Message
integrity and confidentiality are provided by Secure Sockets Layer (SSL) transport security. This
policy set follows the OASIS Kerberos Token Profile V1.1 and WS-Security specifications.

When you use this policy set, configure the basic authentication data and custom properties such
as the com.ibm.wsspi.wssecurity.krbtoken.targetServiceName and
com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost custom properties in the client bindings. For
more information, see the Authentication generator or consumer token settings and Protection
token settings (generator or consumer) topics.

Kerberos V5 SecureConversation
This policy set provides message integrity by digitally signing the body, time stamp, and
WS-Addressing headers. Message confidentiality is provided by encrypting the body and the
signature. The bootstrap policy is configured with the Kerberos V5 token. This policy set follows
the WS-SecureConversation, OASIS specification for the Kerberos Token Profile, in addition to the
WS-Security specification.

To use this policy set, you must also use the Client sample V2 and Provider sample V2 general
sample bindings for your applications. For more information, refer to the topic General sample
bindings for JAX-WS applications. To use this new policy set, create a new profile after installing
the product.

To update existing profiles with this new policy set and the general bindings, Client sample V2 and
Provider sample V2 general sample bindings, you must complete some manual steps. You only
need to update the deployment manager profile and stand-alone application server profiles. To
complete the manual steps for an existing profile, refer to the topic Configuring Kerberos policy
sets and V2 general sample bindings.

Kerberos V5 WSSecurity default
This policy set provides message integrity by digitally signing the body, time stamp, and
WS-Addressing headers. Message confidentiality is provided by encrypting the body and the
signature using Advanced Encryption Standard (AES) encryption. The derived key from the
Kerberos V5 token is used. This policy set follows the OASIS specification for the Kerberos Token
Profile, in addition to the WS-Security specification.

To use this policy set, you must also use the Client sample V2 and Provider sample V2 general
sample bindings for your applications. For more information, refer to the topic General sample
bindings for JAX-WS applications. To use this new policy set, create a new profile after installing
the product.

To update existing profiles with this new policy set and the general bindings, Client sample V2 and
Provider sample V2 general sample bindings, you must complete some manual steps. You only
need to update the deployment manager profile and stand-alone application server profiles. To
complete the manual steps for an existing profile, refer to the topic Configuring Kerberos policy
sets and V2 general sample bindings.

TrustServiceKerberosDefault
This policy set specifies the symmetric algorithm and the derived keys to provide message
security. Message integrity is provided by digitally signing the body, time stamp, and
WS-Addressing headers using the HMAC-SHA1 algorithm. Message confidentiality is provided by
encrypting the body and signature using the Advanced Encryption Standard (AES). This policy set
follows the WS-Security and Secure Conversation specifications for issuing and renewing trust
operation requests.

2858 Administering WebSphere applications



To use this policy set, you must also use the Client sample V2 and Provider sample V2 general
sample bindings for your applications. For more information, refer to the topic General sample
bindings for JAX-WS applications. To use this new policy set, create a new profile after installing
the product.

To update existing profiles with this new policy set and the general bindings, Client sample V2 and
Provider sample V2 general sample bindings, you must complete some manual steps. You only
need to update the deployment manager profile and stand-alone application server profiles. To
complete the manual steps for an existing profile, refer to the topic Configuring Kerberos policy
sets and V2 general sample bindings.

WSReliableMessaging default
This policy set enables both WS-ReliableMessaging Version 1.1 and WS-Addressing and uses the
minimum quality of service, unmanaged non-persistent. This quality of service requires minimal
configuration. However it is non-transactional and, although it allows for the resending of
messages that are lost in the network, if a server becomes unavailable you will lose messages.
In-order delivery is set to “false”, so messages are not necessarily delivered in the order in which
they were sent.

WSReliableMessaging persistent
This policy set enables both WS-ReliableMessaging and WS-Addressing and uses the maximum
quality of service, managed persistent. This quality of service supports asynchronous web service
invocations and uses a service integration messaging engine and message store to manage the
sequence state. Messages are processed within transactions, are persisted at the web service
requester server and at the web service provider server, and are recoverable in the event of server
failure. In-order delivery is set to “false”, so messages are not necessarily delivered in the order in
which they were sent.

Because this policy set specifies managed persistent quality of service, you have to define
bindings to the service integration bus and messaging engine that you want to use to manage the
WS-ReliableMessaging state. You can attach and bind a WS-ReliableMessaging policy set to a
web service application by using the administrative console or the wsadmin tool.

WSReliableMessaging 1_0
This policy set enables both WS-ReliableMessaging Version 1.0 and WS-Addressing and uses the
minimum quality of service, unmanaged non-persistent. This quality of service requires minimal
configuration. However it is non-transactional and, although it allows for the resending of
messages that are lost in the network, if a server becomes unavailable you will lose messages.
In-order delivery is set to “false”, so messages are not necessarily delivered in the order in which
they were sent.

You can use this policy set with .NET-based web services.

WSSecurity default
This policy set provides:

v Message integrity through digital signature (using RSA public-key cryptography) to sign the
body, time stamp, and WS-Addressing headers using WS-Security specifications.

v Message confidentiality through encryption (using RSA public-key cryptography) to encrypt the
body, signature and signature elements using WS-Security specifications.

LTPA WSSecurity default
This policy set provides:

v Message integrity through digital signature (using RSA public-key cryptography) to sign the
body, time stamp, and WS-Addressing headers using WS-Security specifications.

v Message confidentiality through encryption (using RSA public-key cryptography) to encrypt the
body, signature and signature elements using WS-Security specifications.

v A Lightweight Third Party Authentication (LTPA) token included in the request message to
authenticate the client to the service.

Chapter 25. Administering web services (generally applicable) 2859



Username WSSecurity default
This policy set provides:

v Message integrity through digital signature (using RSA public-key cryptography) to sign the
body, time stamp, and WS-Addressing headers using WS-Security specifications.

v Message confidentiality through encryption (using RSA public-key cryptography) to encrypt the
body, signature and signature elements using WS-Security specifications.

v A username token included in the request message to authenticate the client to the service. The
username token is encrypted in the request.

WSTransaction
This policy set enables WS-Transaction, which provides:

v The ability to coordinate distributed transactional work atomically and interoperably using the
WS-AtomicTransaction specification.

v The ability to coordinate loosely coupled business processes that are distributed across the
heterogenous web service environment, with the ability to compensate actions if a failure occurs
in the business activity, using the WS-BusinessActivity specification.

SSL WSTransaction
This policy set enables WS-Transaction, which provides:

v The ability to coordinate distributed transactional work atomically, interoperably, and securely,
using the WS-AtomicTransaction specification and SSL Transport security.

v The ability to coordinate loosely coupled business processes, with the ability to compensate
actions if a failure occurs in the business activity, securely, using the WS-BusinessActivity
specification and SSL Transport security.

Policy sets do not include environment or platform-specific information, such as keys for signing, keystore
information, or persistent store information. This type of information is defined in the binding. A policy set
attachment defines how a policy set is attached to service resources and bindings. The attachment
definition is outside the policy set definition and is defined as meta-data associated with application data.

Bindings are made up of environment and platform-specific information. General bindings such as the
service client or provider bindings for the global security domain can be shared across applications.

To enable policy sets to work with applications, bindings are needed. Use the administrative console to
configure general bindings and application specific bindings. Read about defining binding information for
policy sets for more information about working with attachments and bindings.

Overview of migrating policy sets and bindings
Policy sets are migrated during the product migration from Version 6.1 Feature Pack for Web Services or
Version 7.0 to Version 8.0. This topic describes the different rules that apply to migrating policy sets and
bindings. For information about migrating the version of the product that you are running, see migrating
and coexisting.

Migration from Version 6.1 Feature Pack for Web Services

Migration rules for policy sets

For the following policy sets, the migration code first checks for any application attachment for a policy set.
If there is an application attachment, the migration code upgrades and renames the policy set to
oldPolicySet_wsfep; then updates the policy set attachments from oldPolicySet to oldPolicySet_wsfep in
Version 7.0 and later. If there is no attachment for the policy set, then the policy set is not migrated or
renamed.

v LTPA RAMP default

v LTPA SecureConversation

2860 Administering WebSphere applications



v LTPA WSSecurity default

v Username RAMP default

v Username SecureConversation

v Username WSSecurity default

Other policy sets are migrated to Version 7.0 and later only if there is no other policy set in Version 7.0
and later with the same name.

Migration rules for bindings

In Version 7.0 and later, custom bindings are called application specific bindings. Read web services policy
set bindings.

The following migration rules apply to application specific bindings, cell level default bindings, server level
default bindings, and trust service bindings:

Application specific bindings
During migration, the Version 6.1 application specific bindings in the applications are not upgraded.
They are copied with the applications to the Version 7.0 and later system. After migration, you can
upgrade the Version 6.1 application specific bindings in an application using the administrative
command, upgradeBindings.

Cell level default bindings

During migration, the cell level default bindings from the Version 6.1 Feature Pack for Web
Services are copied to the Version 7.0 and later system, and they replace any existing Version 6.1
cell default bindings in the Version 7.0 and later system. The Version 6.1 cell default bindings are
migrated to general bindings in Version 7.0 and later.

Attention:
There is a security fix for the Version 6.1 cell level default WSSecurity bindings. Run the script,
updateBindings.py that is located in WAS_HOME/bin to fix issues with the Version 6.1 cell level
default WSSecurity bindings.

You can install a WebSphere Application Server Version 6.1 Feature Pack for Web Services
application within the WebSphere Application Server Version 7.0 and later environment. If your
application contains Version 6.1 application specific bindings, the application is defined as a
Version 6.1 application to the application server. Additionally, if your application is installed on a
WebSphere Application Server Version 6.1 Feature Pack for Web Services server within the
WebSphere Application Server Version 7.0 and later environment, the application specific binding
is created as a Version 6.1 application specific binding.

When you create an application specific binding, the system checks to see if the application is
installed on a Version 6.1 server or if the application contains any Version 6.1 application specific
bindings. If either of these conditions is true, the system creates Version 6.1 application specific
bindings. In addition, you are not allowed to assign a general binding to a policy set attachment for
that application because general bindings are for Version 7.0 and later level of the product.

Server level default bindings

During migration, the server default bindings in the Version 6.1 Feature Pack for Web Services are
copied over to the Version 7.0 and later server. The server default bindings are also migrated to
general bindings. You can decide whether or not to use these general bindings as the Version 7.0
and later server default bindings. The Version 6.1 applications and other applications that are
installed on a Version 6.1 server use the Version 6.1 default bindings.

Trust service bindings

Trust service bindings are migrated during the product migration. The migrated trust service
bindings replace the trust service bindings in Version 7.0 and later.

Chapter 25. Administering web services (generally applicable) 2861



Migrating general bindings from Version 7.0 and later to Version 8.0

A general binding is migrated from Version 7.0 to Version 8.0 only if there is no other general binding in
Version 8.0 with the same name. If a general binding is not migrated because it has the same name as a
Version 8.0 binding, then you can export the binding from the Version 7.0 system and import it into Version
8.0 with a different name.

The default binding settings which specify which provider and client bindings are used as defaults are not
migrated from Version 7.0 to Version 8.0. You must modify your default binding settings in Version 8.0 if
you want to use the same defaults that were specified in Version 7.0.

2862 Administering WebSphere applications



Chapter 26. Administering web services - bus-enabled web
services

You can associate your web services with the service integration bus, to achieve the following goals: make
internal services available as web services; make external web services available internally at bus
destinations. Bus-enabled web services also provide a choice of quality of service and message
distribution options for web services, along with intelligence in the form of mediations that allow for the
rerouting of messages.

Enabling web services through the service integration bus
Web services can use the service integration bus to provide a single point of control, access, and
validation of web service requests and allow control of web services that are available to different groups
of web service users.

About this task

With bus-enabled web services you can achieve the following goals:

v Create an inbound service: Take an internally-hosted service that is available at a bus destination, and
make it available as a web service.

v Create an outbound service: Take an externally-hosted web service, and make it available internally at a
bus destination.

Bus-enabled web services provide a choice of quality of service and message distribution options, along
with intelligence in the form of mediations that allow for the rerouting of messages.

To enable web services through service integration technologies, complete the following steps:

Procedure
1. Optional: Learn about bus-enabled web services. Explore the concepts that underly service integration

bus-enabled web services.

2. Plan your bus-enabled web services installation. Determine the bus-enabled web services roles that
each server is to perform.

3. Ensure that every server that is to play a bus-enabled web services role is a member of a service
integration bus. For more information, see “Configuring the members of a bus” on page 1971.

4. For every server that is to play a bus-enabled web services role, install and configure a Service Data
Objects (SDO) repository on the server.

Note: For WebSphere Application Server Version 6.0, you also had to manually install a selection of
the following applications:

v The service integration technologies resource adapter (used to invoke web services at
outbound ports).

v The bus-enabled web services application.

v One or more endpoint listener applications.

For later versions of WebSphere Application Server, these applications are installed
automatically as and when needed. For example, the endpoint listener application is installed
automatically when you configure an endpoint listener.

5. Create a new endpoint listener configuration for each endpoint listener application that you plan to use
to receive inbound service requests.

6. Optional: Create an inbound service. An inbound service is a web interface to a service that is
provided internally (that is, a service provided by your own organization and hosted in a location that is

© IBM Corporation 2009 2863



directly available through a service integration bus destination). To configure a locally-hosted service as
an inbound service, you associate it with a service destination, and with one or more endpoint listeners
through which service requests and responses are passed to the service. You can also choose to have
the local service made available through one or more UDDI registries.

7. Optional: Create an outbound service. An outbound service is a web service that is hosted externally,
and is made available through a service integration bus. To make an externally-hosted service
available through a bus, you first associate it with a service destination, then you configure one or
more port destinations (one for each type of binding, for example SOAP over HTTP or SOAP over
JMS) through which service requests and responses are passed to the external service. You get the
port definitions from the WSDL, but you can choose which ones you want to create.

8. Optional: Apply additional security to your bus-enabled web services. By default, the bus-enabled web
services configuration works when WebSphere Application Server security is enabled and your service
integration buses are secured. However this level of security does not impose any security restrictions
on the users of your bus-enabled web services configuration. To control how your bus-enabled web
services configuration is used by each group of your colleagues or customers, use the bus-enabled
web services additional security features to enable working with password-protected components and
servers, with WS-Security and with HTTPS.

What to do next

For more information about specific aspects of bus-enabled web services, see the following topics:

v “Installing and configuring the SDO repository”

v “Configuring web services for a service integration bus” on page 2869

v “Administering the bus-enabled web services resources” on page 2881

v “Creating a new WS-Security binding” on page 2907

v “Creating a new WS-Security configuration” on page 2912

v “Passing SOAP messages with attachments through the service integration bus” on page 2916

Installing and configuring the SDO repository
Service Data Objects (SDO) is an open standard for enabling applications to handle data from different
data sources in a uniform way, as data graphs. Service integration bus-enabled web services use an SDO
repository for storing and serving WSDL definitions. Use this task to create and configure your preferred
database to store SDO data, and to install and configure an SDO repository on each server that you plan
to use for bus-enabled web services.

Before you begin

Determine the servers on which to install and configure an SDO repository as described in Planning your
bus-enabled web services installation, then add each server as a member of a bus as described in
“Configuring the members of a bus” on page 1971.

An SDO repository can work with most database products. For specific information about choosing and
configuring your preferred database, consult your database administrator or database product
documentation, and read the notes in this topic on database usage.

About this task

To install and configure an SDO repository, complete the following steps:

v Install your preferred database product.

v Create a JDBC provider and a data source for your database.

v Run the installSdoRepository.jacl script one or more times, to install the SDO application on each
server and to set the database type that the SDO repository is to use.

2864 Administering WebSphere applications



For more information about how to do this, first read the following notes on database usage and on the
installSdoRepository.jacl script, and then complete the steps for one of these configurations:

v “Configure the SDO repository for a single server, and to use the embedded Derby
database” on page 2866.

v “Configure the SDO repository for a single server, and to use a database other than embedded Derby”
on page 2866.

Notes on database usage:

v For a single server configuration, you can use either your preferred
database or the embedded Apache Derby database that is supplied with
WebSphere Application Server.

v The SDO repository dictates the schema and table names that it uses, so
different repositories must use different databases to ensure that they do
not access the same data.

v Create the database for your preferred database supplier by using the
Table.ddl file from the relevant app_server_root/util/SdoRepository/
database_type directory. The Table.ddl file describes the database table
that is needed by the SDO repository.

v The -editBackendId flag on the installSdoRepository.jacl script
determines the database type that the repository is to use. The back end
ID determines what database-specific rules the application follows when
talking to the database. See the associated note on the
installSdoRepository.jacl script.

v Some databases require a user ID that has been granted permissions to
access the SDO repository database. Create a user ID for user name
SDOREP before you create the tables for Oracle, Sybase, and SQL Server
databases. Because of the way these databases handle user names and
table names, the user name must be SDOREP to enable the SDO repository
to access its table with the fully qualified name SDOREP.BYTESTORE. Make
sure that you grant permission for the SDOREP user to read from, and write
to, the database.

v If you use an Informix database, do not disable logging.

v The SDO repository does not require XA support. In most cases you can
use either an XA or a non-XA data source. However, if your database is
Oracle 8 or 9, you must use the Oracle JDBC driver (non-XA) for the SDO
repository data source.

v You might also choose to complete other steps such as creating an index
of the primary key to improve database performance. Do not change the
schema, table and column names.

Notes on the installSdoRepository.jacl script:

v Use the wsadmin scripting client to run the script.

v Run the script from within QShell.

v The script is provided in the app_server_root/bin
directory, where app_server_root is the root directory
for the installation of WebSphere Application Server. If
you choose to run the wsadmin scripting client from
another directory, specify the full path to the script on
the command option. For example to work with a
profile other than the default profile, change to the
app_server_root/profiles/profile_name/bin
directory then specify the following path to the script:

Chapter 26. Administering web services - Bus enabled web services 2865



wsadmin -f app_server_root/bin/installSdoRepository.jacl

v The -editBackendId flag on the
installSdoRepository.jacl script determines the
database type that the repository is to use. The back
end ID determines what database-specific rules the
application follows when talking to the database. To
see the full list of available back end ID values, use
the -listBackendIds flag:
wsadmin -f installSdoRepository.jacl -listBackendIds

All the back end ID values in the list can be used
when the SDO repository is installed on one or more
WebSphere Application Server Version 7.0 or later
application servers. Values marked with (*) cannot be
used when the SDO repository is installed on Version
6.0 servers. Values marked with (**) cannot be used
when the SDO repository is installed on Version 6.0 or
Version 6.1 servers.

v If the data source already exists, or there has been a
previous broken or partial installation of the SDO
repository application, the installSdoRepository.jacl
script fails to complete and configuration changes are
not saved. In these cases, run the SDO repository
uninstall script, fix the problem, then rerun the
installSdoRepository.jacl script.

Configure the SDO repository for a single server, and to use the embedded Derby
database

About this task

If you are creating a single server configuration and you want to use embedded Derby, you run the
installSdoRepository.jacl script with the -createDb switch. This action creates the Derby database and
installs the SDO repository.

To configure the SDO repository for a single server and to use the embedded Derby database, complete
the following steps:

Procedure
1. Open a command prompt, then change to the app_server_root/bin directory.

2. Enter the following command:
wsadmin -f installSdoRepository.jacl -createDb

Note: The -createDb flag tells the command to create a default Derby database. If you omit this flag,
the command still installs an SDO repository that is configured to use Derby, but the command
does not also create the database.

Configure the SDO repository for a single server, and to use a database other than
embedded Derby
About this task

If you are creating a single server configuration that uses a database other than embedded Derby, you
install your preferred database product, then create a JDBC provider and a data source, then run the
installSdoRepository.jacl script twice:

2866 Administering WebSphere applications



1. One time to install the SDO application on the application server.

2. One time to set the database type that the SDO repository is to use.

To configure the SDO repository for a single server and to use a database other than embedded Derby,
complete the following steps:

Procedure
1. Create the database for your preferred database supplier by using the Table.ddl file from the relevant

app_server_root/util/SdoRepository/database_type directory.

For an illustration of the process for creating tables in DB2, see Recreating database tables from the
exported table data definition language . For more information, see “Deploying data access
applications” on page 147.

2. Create a J2C authentication alias.

This is for use with the data source that you create in the next step. Check that the authentication alias
matches the login details for your database instance, otherwise a connection will not be made.

3. Create and configure a JDBC provider and data source.

Set the following data source properties:

v Set the authentication property to use the authentication alias you created in the previous step.

v Select the Use this Data Source in container managed persistence (CMP) check box.

v Set the Name property to a name of your own choosing. For example, SDO Repository DataSource.

v Set the JNDI name property to the following exact value: jdbc/com.ibm.ws.sdo.config/
SdoRepository.

v Set any other properties that are required settings for your chosen database.

4. Optional: Test the data source connection:

Note: This option does not work in all configurations. The availability of this option depends on the
scope at which the data source is defined, and the scope of any WebSphere Application Server
variables that are used in the JDBC provider and data source configurations. For more
information about testing connections to data sources, see Test connection service.

a. In the administrative console, navigate to Resources -> JDBC -> Data sources.

b. Select the SDO repository data source.

c. Click Test connection.

5. Configure the SDO repository:

a. Open a command prompt, then change to the app_server_root/bin directory.

b. Install the SDO repository application on the server:
wsadmin -f installSdoRepository.jacl

c. Set the database type that the SDO repository is to use:

wsadmin -f installSdoRepository.jacl -editBackendId database_type

for example:
wsadmin -f installSdoRepository.jacl -editBackendId DB2UDB_V82

The SDO repository uninstall script
Use this script to uninstall a Service Data Objects (SDO) repository that was previously installed, or failed
to install correctly.

You install the SDO repository application on every server that you plan to use for one or more of the
service integration bus-enabled web services roles as described in “Installing and configuring the SDO
repository” on page 2864.

Chapter 26. Administering web services - Bus enabled web services 2867



If the data source already exists, or there has been a previous broken or partial installation of the SDO
repository application, the installSdoRepository.jacl script fails to complete and configuration changes
are not saved. In these cases, you have to run the uninstallSdoRepository.jacl script. This script
continues when it finds unexpected results, so it can clean up a broken or partial installation.

Note: Run the script from within QShell.

The script is provided in the app_server_root/bin directory, where app_server_root is the root directory for
the installation of WebSphere Application Server. If you choose to run the wsadmin scripting client from
another directory, specify the full path to the script on the command option. For example to work with a
profile other than the default profile, change to the app_server_root/profiles/profile_name/bin directory
then specify the following path to the script:
wsadmin -f app_server_root/bin/uninstallSdoRepository.jacl

The SDO repository script install and uninstall pairs

The following are the install and uninstall command pairs, where each uninstall command undoes the
action of the related install command. If you attempt to uninstall with a different set of arguments to those
previously used with the installSdoRepository.jacl script, you might find that the uninstall does not
remove everything or that it displays warnings when it tries to remove non-existent settings.

For configuration of the SDO repository on a server, the -createDb flag tells the install
command to create a default (Apache Derby) database and configure it for use with this application server.
The -removeDb flag tells the uninstall command to remove the database configuration from the application
server, but not to delete the Apache Derby database:
wsadmin -f installSdoRepository.jacl -createDb
wsadmin -f uninstallSdoRepository.jacl -removeDb

Note:

v If you did not use -createDb on the installer, because you had already configured an Apache
Derby database for some other purpose, then you should not use the -removeDb flag on the
uninstaller.

v To avoid deleting data that you might want to keep, the -removeDb flag does not delete the
Apache Derby database. If you are certain that you want to delete the database, you can do so
manually. An Apache Derby database is a directory on the file system. The one created by the
installer with the -createDb flag is in the profile_root/databases/SdoRepDb directory, where
profile_root is the directory in which profile-specific information is stored. If you do not delete the
database, and you try to install again with the -createDb flag, the installation process fails stating
that the SdoRepDb directory already exists.

For installation or removal of the SDO repository application from a server:
wsadmin -f installSdoRepository.jacl
wsadmin -f uninstallSdoRepository.jacl

Bus-enabled web services installation files and locations

When you install WebSphere Application Server, the files that are required for running service integration
bus-enabled web services are copied into your file system under app_server_root, where app_server_root
is the root directory for the installation of WebSphere Application Server.

The following table lists the main bus-enabled web services files that you might have to access, and the
locations into which they are placed.

2868 Administering WebSphere applications



Table 268. Bus-enabled web services files and their locations. The first column of this table lists the main
bus-enabled web services files, the second column describes the purpose of the files, the third column lists the
locations of the files.
File name Purpose Location

installSdoRepository.jacl The script used to configure the SDO repository.
Bus-enabled web services use an SDO
repository for storing and serving their WSDL
definitions.

app_server_root/bin

uninstallSdoRepository.jacl The script used to uninstall the SDO repository. app_server_root/bin

SDO repository resources The resource files used to configure the SDO
repository to work with a range of different
databases.

app_server_root/util/SdoRepository

sibwsauthbean.ear The application for Password-protecting a web
service operation.

app_server_root/installableApps

sibwsAuthGen

The command file used to generate
authorization beans for password-protecting a
web service operation.

app_server_root/util

soaphttpchannel1.ear The SOAP over HTTP endpoint listener 1
application. This application is installed
automatically when you create an associated
endpoint listener configuration.

app_server_root/installableApps

soaphttpchannel2.ear The SOAP over HTTP endpoint listener 2
application. This application is installed
automatically when you create an associated
endpoint listener configuration.

app_server_root/installableApps

soapjmschannel1.ear The synchronous SOAP over Java Messaging
Service (JMS) endpoint listener 1 application.
This application is installed automatically when
you create an associated endpoint listener
configuration.

app_server_root/installableApps

soapjmschannel2.ear The synchronous SOAP over JMS endpoint
listener 2 application. This application is installed
automatically when you create an associated
endpoint listener configuration.

app_server_root/installableApps

Configuring web services for a service integration bus
Take an internally-hosted service that is available at a bus destination, and make it available as a web
service; Take an externally-hosted web service, and make it available internally at a bus destination; Use
the web services gateway to map an existing service - either an inbound or an outbound service - to a
new Web service that appears to be provided by the gateway.

About this task

In figure 1, a client request is received by an endpoint listener then passed through an inbound port to an
inbound service destination. An outbound service destination passes a request through an outbound port
to an external service.

Chapter 26. Administering web services - Bus enabled web services 2869



In figure 2, a client request is received by an endpoint listener, then passed through an inbound port to an
inbound service destination. An outbound service destination passes a request through an outbound port
to an external service, and a gateway service resembles an inbound service and maps to an outbound
service.

Through service integration bus-enabled web services you can achieve the following goals:

Procedure
v Create an inbound service: Take an internally-hosted service that is available at a bus destination, and

make it available as a web service.

v Create an outbound service: Take an externally-hosted web service, and make it available internally at a
bus destination.

Making an internally-hosted service available as a web service
Create an inbound service. An inbound service is a Web interface to a service that is provided internally
(that is, a service provided by your own organization and hosted in a location that is directly available
through a service integration bus destination). To configure a locally-hosted service as an inbound service,
you associate it with a service destination, and with one or more endpoint listeners through which service
requests and responses are passed to the service. You can also choose to have the local service made
available through one or more UDDI registries.

Before you begin

This topic assumes that:

v You have created and installed a Service Data Objects (SDO) repository (used for storing and serving
WSDL definitions) on every server that is to play a service integration bus-enabled web services role.

v You have created a new endpoint listener configuration for each endpoint listener that you plan to use
to receive inbound service requests.

v You already have an internally-hosted service that you want to configure as an inbound service, and
you have made the service available at a service integration bus destination.

v You have created references to any UDDI registries in which you want to register this service.

client
requestors

target
service

inbound service

outbound service

service destination

service destination

service integration technologies

inbound
port

port
destination

port
destination

port
destination

endpoint
listener

endpoint
listener

inbound
port

Figure 48. Inbound and outbound services

2870 Administering WebSphere applications



You must also create a template WSDL file that describes the service, and make the WSDL available at a
URL or through a UDDI registry. For information on how to create a WSDL file, see Developing a WSDL
file for JAX-RPC applications.

You can create an inbound service by using the administrative console as described in this task, or by
using the “createSIBWSInboundService command” on page 3037.

Note: If the bus needs to pass messages through an authenticating proxy server to retrieve WSDL
documents, then you cannot use the administrative console for this task and you must create your
new inbound service by using the wsadmin tool. For more information see the corresponding
troubleshooting tip.

About this task

In the following figure, a client request is received by an endpoint listener, then passed through an inbound
port to an inbound service destination. JAX-RPC handlers and WS-Security bindings can be applied at the
ports.

Web service requests and responses to an inbound service can be sent across any binding (for example
SOAP over HTTP or SOAP over JMS) that is available to the bus. Each available binding type is
represented by an inbound port, and each inbound port is associated with a binding-specific endpoint
listener.

You can control and monitor access to your inbound services in the following ways:

v You can control which groups of users can access a particular inbound web service by making the
service available only through specific endpoint listeners.

v You can associate JAX-RPC handler lists with ports, so that the handlers can monitor activity at the
port, and take appropriate action depending upon the sender and content of each message that passes
through the port.

WS-Security

client
requestors

JAX-RPC
handlers

WSDL

inbound service

service destination

service integration technologies

SOAP over HTTP

SOAP over JMS

inbound
port

endpoint
listener

endpoint
listener

inbound
port

Figure 49. Inbound service

Chapter 26. Administering web services - Bus enabled web services 2871



v You can set the level of security to be applied to messages (the WS-Security configuration and
bindings). The security level can be set independently for request and response messages.

Procedure
1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses -> bus_name -> [Services] Inbound
Services. The inbound services collection form is displayed.

3. Click New. The New inbound service wizard is displayed.

4. Use the wizard to create the new inbound service configuration by completing the following steps. For
more information about the properties that you set with the wizard, see Inbound services settings.

a. Select the service destination and template WSDL location.

Note: The template WSDL is the service-specific WSDL file that you have created to describe this
inbound service.

b. Select the service from the template WSDL.

Note:

v This option is needed in case there is more than one service in the template WSDL. The
field is filled in for you by default. If there is only one service in the WSDL, accept the
default.

c. Specify the name of the inbound service and select the endpoint listeners.

Note:

v You need not supply a name for the inbound service. If you choose not to supply a name,
a default name is created. The default name is derived from the service destination name,
with characters that are not valid for names filtered out.

v An inbound port is automatically created for each endpoint listener that you select. Each
inbound port is created without a template port, JAX-RPC handler list or security settings
and is given a default name that relates to the endpoint listener selected. For an overview
of the relationship between endpoint listeners and inbound ports, see Endpoint listeners
and inbound ports: Entry points to the service integration bus.

d. Define any UDDI publication properties.

Note: You can use the wizard to specify the UDDI publication properties that are used to publish
this inbound service to an initial UDDI registry. After you create an inbound service through
the wizard, you can use the modify an existing inbound service configuration option to
publish the service to more UDDI registries. For information about the UDDI publication
properties, see UDDI Publication settings and UDDI registries: Web service directories that
can be referenced by bus-enabled web services.

5. Click Finish.

Results

If the processing completes successfully, the list of inbound services for this service integration bus is
updated to include the new inbound service. Otherwise, an error message is displayed.

What to do next

If you want to secure your new inbound service, or apply any JAX-RPC handler lists to the ports for the
service, or publish the service to more UDDI registries, use the administrative console to modify your
inbound service configuration.

Modifying an existing inbound service configuration:

2872 Administering WebSphere applications



Modify the configuration details for an existing inbound service. For example: secure the service; apply
JAX-RPC handler lists to the ports for the service; publish the service to more than one UDDI registry.

About this task

An inbound service is a web interface to a service that is provided internally (that is, a service provided by
your own organization and hosted in a location that is directly available through a service integration bus
destination).

When you first create an inbound service, you connect the service to one or more endpoint listeners and
(optionally) specify the UDDI publication properties that are used to publish the inbound service to an initial
UDDI registry. An inbound port is automatically created for each endpoint listener that you select, but each
inbound port is created without a template port, JAX-RPC handler list or security settings. Modify your
inbound service configuration if you want to control and monitor access to your inbound services in any of
the following ways:

v Associate JAX-RPC handler lists with ports, so that the handlers can monitor activity at the port, and
take appropriate action depending upon the sender and content of each message that passes through
the port.

v Password-protect a web service operation.

v Set the level of security to be applied to messages (the WS-Security configuration and bindings). The
security level can be set independently for request and response messages.

v Publish the service to more than one UDDI registry.

To list the existing inbound services, and to view and modify their configuration details, complete the
following steps:

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses -> bus_name -> [Services] Inbound
Services. A list of all the inbound services is displayed in an inbound services collection form.

3. Click the name of an inbound service in the list. The current settings for this inbound service are
displayed.

4. Optional: Click Reload template WSDL to reload the template WSDL file for this inbound service.

Note:

v When you create a new inbound service, a copy of the template WSDL file for the service is
loaded into a locally-maintained repository. If you change the template WSDL file, you must
update the local copy.

v When you click Reload template WSDL, you run the command that is described in
Refreshing the inbound service WSDL file by using the wsadmin tool. For the command to
complete successfully, the conditions must be met that are described in that topic.

v If the bus needs to pass messages through an authenticating proxy server to retrieve WSDL
documents, then you cannot use the Reload template WSDL option and you must run the
refresh WSDL command by using the wsadmin tool. For more information, see the
corresponding troubleshooting tip.

5. Modify the general properties. For information about each of these properties, see Inbound services
settings.

Note:

v When you change an inbound service name, the system looks up all objects that refer to it
and updates the name.

Chapter 26. Administering web services - Bus enabled web services 2873



v The template WSDL is the service-specific WSDL file that you create to describe this inbound
service. For information about how to create a WSDL file, see Developing a WSDL file for
JAX-RPC applications.

v Although logically the template WSDL name and namespace are only required if there is
more than one service in the WSDL, the fields that you use to set them are coded within the
administrative console as compulsory fields. They are filled in for you by default, so if they
are not logically required for your service you should leave the default values. If you remove
the value from either field, the administrative console treats the empty field as an error.

v If you select the option to Enable operation-level security then you must also complete, for
this inbound service, the steps described in Password-protecting a web service operation.

6. Modify the additional properties.

a. Modify the inbound ports that are associated with this inbound service.

An inbound port describes the web service enablement of a service destination on a specific
endpoint listener, with associated configuration. Each inbound port is associated with an endpoint
listener, and you can control which groups of users can access a particular inbound service by
making the service available only through specific endpoint listeners. For more information, see
Endpoint listeners and inbound ports: Entry points to the service integration bus.

You can use a JAX-RPC handler list to monitor activity at the port, and take appropriate action (for
example logging, or rerouting) depending upon the sender and content of each message that
passes through the port. For more information, see Bus-enabled web services and JAX-RPC
handlers.

You can use WS-Security to set the levels of security to be applied to messages. The security level
can be set independently for request and response messages. For more information, see Service
integration technologies and WS-Security.

See also Inbound ports settings.

b. Modify the UDDI publication properties that are used to publish this inbound service to one or more
UDDI registries. For information about the UDDI publication properties, see UDDI Publication
settings and UDDI registries: Web service directories that can be referenced by bus-enabled web
services.

c. Modify the custom properties, if any, that you have set for this inbound service. These custom
properties are name and value pairs that you can use to set internal system configuration
properties. In each pair, the name is a property key and the value is a string value.

d. Use the publish WSDL files property to export the template WSDL for this inbound service to a
compressed file.

As a technology preview, the exported compressed file includes a version of the WSDL file that has
no ports (bindings) defined. This non-bound WSDL is intended for use by your colleagues
preparing to deploy an inbound service. It gives you a convenient way of sharing information about
the planned deployment details for the service among your team. When you finally deploy the
inbound service, the associated WSDL must be complete (that is, it must include the binding
information).

The non-bound WSDL file is always published in the exported compressed file for the inbound
service, along with the bound WSDL file if the inbound service has any ports defined. The
compressed file, named inbound_service_name.zip, therefore always contains the following files:

v bus_name.inbound_service_nameNonBound.wsdl (this file contains the non-bound service, port
and binding for the inbound service).

v bus_name.inbound_service_namePortTypes.wsdl (this file contains the port type definition for the
inbound service).

If the inbound service has one or more ports, then the compressed file additionally contains the
following files:

v bus_name.inbound_service_nameService.wsdl (this file contains the service and port elements
for the inbound service).

2874 Administering WebSphere applications



v bus_name.inbound_service_nameBindings.wsdl (this file contains the binding elements that
correspond to the ports for the inbound service).

If there is an error generating the WSDL then an error page is returned.

7. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of inbound services for this service integration bus is
redisplayed. Otherwise, an error message is displayed.

Deleting inbound services configurations:

Use this task to delete inbound services configurations using the administrative console.

Before you begin

Decide which method to use to configure these resources. You can delete an inbound service by using the
administrative console as described in this task, or by using the “deleteSIBWSInboundService command”
on page 3038.

About this task

To delete one or more inbound services by using the administrative console, complete the following steps:

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses -> bus_name -> [Services] Inbound
Services. A list of all the inbound services is displayed in an inbound services collection form.

3. Select the check box for every inbound service that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of inbound services for this service integration bus is
updated. Otherwise, an error message is displayed.

Making an externally-hosted web service available internally
Create an outbound service. An outbound service provides access, through one or more outbound ports,
to a web service that is hosted externally. An outbound service can be used by any of your internal
systems that can access the service integration bus on which it is hosted. To make an externally-hosted
service available through a bus, you first associate it with a service destination, then you configure one or
more port destinations (one for each type of binding, for example SOAP over HTTP or SOAP over JMS)
through which service requests and responses are passed to the external service. You get the port
definitions from the WSDL, but you can choose which ones you want to create.

Before you begin

This topic assumes that you have created and installed a Service Data Objects (SDO) repository (used for
storing and serving WSDL definitions) on every server that is to play a service integration bus web
services role.

To create an outbound service, you must know the location of the externally-published WSDL file that
describes the service. This WSDL file is either available at a web address or through a UDDI registry.

Chapter 26. Administering web services - Bus enabled web services 2875



If the WSDL file for your outbound service is stored in a UDDI registry, you associate the outbound service
with a UDDI reference to the registry. You select the UDDI reference from a drop-down list, so you must
configure the UDDI reference before you configure a new outbound service that uses it.

Decide which method to use to configure these resources. You can create an outbound service by using
the administrative console as described in this task, or by using the “createSIBWSOutboundService
command” on page 3031.

Note: If the bus needs to pass messages through an authenticating proxy server to retrieve WSDL
documents, then you cannot use the administrative console for this task and you must create your
new outbound service by using the wsadmin tool. For more information see the corresponding
troubleshooting tip.

About this task

In the following figure, each message is passed from the outbound service to the target service through an
outbound port. A separate outbound port is created for each available binding. JAX-RPC handlers and
WS-Security settings can be applied at the ports.

Requests and responses to an outbound service are sent across any transport binding (for example SOAP
over HTTP, SOAP over JMS, EJB binding) that is available to both the target service and the service
integration bus. Each available binding type is represented by an outbound port configured at a port
destination. For more information, see Outbound ports and port destinations.

You can control and monitor access to the target service in the following ways:

v You can associate JAX-RPC handler lists with ports, so that the handlers can monitor activity at the
port, and take appropriate action depending upon the sender and content of each message that passes
through the port.

WS-Security

JAX-RPC
handlers

WSDL
outbound service

service destination
target service

service integration technologies

SOAP over HTTP

SOAP over JMS

EJB

outbound
port

outbound
port

outbound
port

port
destination

port
destination

port
destination

Figure 50. Outbound service

2876 Administering WebSphere applications



v You can set the level of security to be applied to messages (the WS-Security binding). The security
level can be set independently for request and response messages.

Procedure
1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses -> bus_name -> [Services] Outbound
Services. The outbound services collection form is displayed.

3. Click New. The New outbound service wizard is displayed.

4. Use the wizard to create the new outbound service configuration by completing the following steps. For
more information about the properties that you set with the wizard, see Outbound services settings and
Outbound ports settings.

a. Locate the target service WSDL.

b. Select the service from the WSDL.

Note:

v This option is needed in case there is more than one service in the WSDL. The field is
filled in for you by default. If there is only one service in the WSDL, accept the default.

v There needs to be at least one port defined in the service you select.

c. Select the ports that are to be enabled for this service.

Note: Select at least one port.

d. Name the outbound service, the service destination and all of the port destinations.

Note:

v Default names are generated, but you can rename them. The default names are unique
within the current service integration bus. Any replacement names that you choose must
be similarly unique. If you enter a name that is not unique, an error message is displayed.

v If you have created a port selection mediation and deployed it to the service integration
bus, then it is available for selection in the list of mediations. If you do not want to use a
port selection mediation with this outbound service, select none from the drop-down list.
This list contains all mediations, including port selection mediations, that are currently
deployed to this service integration bus.

v The list of available ports is a subset of the ports that are described in the WSDL file. You
chose this subset in the previous step. If you selected more than one port in the previous
step, you should also set the default port to be used unless otherwise specified by a port
selection mediation.

e. Assign each port destination and (optionally) the port selection mediation to a bus member.

Note:

v Bus members are application servers or clusters that are added to this bus.

v The option to assign a port selection mediation to a bus member is only displayed if you
selected a mediation in the previous step.

5. Click Finish.

Results

If the processing completes successfully, the list of outbound services for this service integration bus is
updated to include the new outbound service. Otherwise, an error message is displayed.

Chapter 26. Administering web services - Bus enabled web services 2877



What to do next

Because the service is hosted externally, you might also need to enable proxy server authentication for
each port to get permission to access the Internet.

If you want to secure your new outbound service, or apply any JAX-RPC handler lists to the ports, or
enable proxy server authentication for any of the ports, use the administrative console to modify your
outbound service configuration.

Modifying an existing outbound service configuration:

Modify the configuration details for an outbound service. For example: secure the service; apply JAX-RPC
handler lists to the ports for the service; publish the service to more than one UDDI registry.

About this task

An outbound service provides access, through one or more outbound ports, to a web service that is
hosted externally. An outbound service can be used by any of your internal systems that can access the
service integration bus on which it is hosted.

When you first create an outbound service you select the ports that are to be enabled for the service, but
you do not associate the ports with JAX-RPC handler lists or security settings. You need to modify your
outbound service configuration if you want to control and monitor access to the target service in any of the
following ways:

v Associate JAX-RPC handler lists with ports, so that the handlers can monitor activity at the port, and
take appropriate action depending upon the sender and content of each message that passes through
the port.

v Password-protect a web service operation.

v Set the level of security to be applied to messages (the WS-Security binding). The security level can be
set independently for request and response messages.

v Enable proxy server authentication for any of the ports.

To list the existing outbound services, and to view and modify their configuration details, complete the
following steps:

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses -> bus_name -> [Services] Outbound
Services. A list of outbound services is displayed in an outbound services collection form.

3. Click the name of an outbound service in the list. The current settings for this outbound service are
displayed.

4. Optional: Click Reload WSDL to reload the external WSDL file for this outbound service.

Note:

v When you create a new outbound service, a copy of the external WSDL file for the service is
loaded into a locally-maintained repository. If the external service provider changes the
WSDL file, you must update the local copy.

v When you click Reload WSDL, you run the command that is described in Refreshing the
outbound service WSDL file by using the wsadmin tool. For the command to complete
successfully, the conditions must be met that are described in that topic.

2878 Administering WebSphere applications



v If the bus needs to pass messages through an authenticating proxy server to retrieve WSDL
documents, then you cannot use the Reload WSDL option and you must run the refresh
WSDL command by using the wsadmin tool. For more information see the corresponding
troubleshooting tip.

5. Modify the general properties. For information about each of these properties, see Outbound services
settings.

Note:

v When you change an outbound service name, the system looks up all objects that refer to it
and updates the name. Any replacement name that you choose must be unique within the
current service integration bus. If you enter a name that is not unique, an error message is
displayed.

v You cannot change the Service destination name. However, if you click View alongside the
name, you can view and modify the configuration information for the service destination.

v If you change the WSDL location information (that is the fields WSDL location type, WSDL
location and WSDL UDDI Registry), then click Apply, the outbound service WSDL file is
reloaded. Therefore you should click Apply after you make any changes to the WSDL
location information and before you change any of the WSDL-derived fields (for example
WSDL service name, and list of available ports).

v Although logically the WSDL service name and namespace are only required if there is more
than one service in the WSDL, the fields that you use to set them are coded within the
administrative console as compulsory fields. They are filled in for you by default, so if they
are not logically required for your service you should leave the default values. If you remove
the value from either field, the administrative console treats the empty field as an error.

v The list of available ports from which you choose the Default port name is a subset of the
ports that are described in the WSDL file. You chose this subset when you created or last
modified this outbound service. To add or remove available ports, use the additional
properties option Outbound Ports.

v If you have created a port selection mediation and deployed it to the service integration bus,
then it is available for selection in the list of mediations. If you do not want to use a port
selection mediation with this outbound service, select none from the drop-down list. This list
contains all mediations, including port selection mediations, that are currently deployed to this
service integration bus.

v Bus members are application servers or clusters that are added to this bus. The Bus
member property defines the bus member to which the port selection mediation is assigned.
If you change the Port selection mediation property value to (none), you should also
change the Bus member property value to (none). If you want to use a port selection
mediation, assign it to a bus member. If you do not do this, the administrative console
displays an error message.

v If you select the option to Enable operation-level security then you must also complete, for
this outbound service, the steps described in Password-protecting a web service operation.

v

6. Modify the additional properties.

a. Modify the ports that are associated with this outbound service. For information about the
properties of outbound service ports, see Outbound ports settings.

Note:

v Requests and responses to an outbound service can be sent across any binding (for
example SOAP over HTTP or SOAP over JMS) that is available to both the service
integration bus and the external web service. Each available binding is represented by a
port.

Chapter 26. Administering web services - Bus enabled web services 2879



v You can use a JAX-RPC handler list to monitor activity at the port, and take appropriate
action (for example logging or re-routing) depending upon the sender and content of each
message that passes through the port. If the external web service requires HTTP basic
authentication, you can use a JAX-RPC handler list to provide an HTTP basic
authentication header as described in Invoking a password-protected outbound service.

v You can use WS-Security to set the levels of security to be applied to messages. The
security level can be set independently for request and response messages. For more
information, see Service integration technologies and WS-Security.

v You can set the levels of security to be applied to messages. The security level can be
set independently for request and response messages.

v The service integration technologies require access to the Internet to invoke an outbound
service or to retrieve a target service WSDL file. If you use a proxy server in support of
Internet routing, and if your proxy server requires authentication before it grants access to
the Internet, then you must enable proxy server authentication.

b. Modify the custom properties, if any, that you have set for this outbound service. These custom
properties are name and value pairs that you can use to set internal system configuration
properties. In each pair, the name is a property key and the value is a string value.

7. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of outbound services for this service integration bus is
redisplayed. Otherwise, an error message is displayed.

Deleting outbound service configurations:

Use this task to delete outbound services configurations using the administrative console.

Before you begin

Decide which method to use to configure these resources. You can delete an outbound service by using
the administrative console as described in this task, or by using the “deleteSIBWSOutboundService
command” on page 3033.

About this task

To delete one or more outbound services by using the administrative console, complete the following
steps:

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Buses -> bus_name -> [Services] Outbound
Services. A list of outbound services is displayed in an outbound services collection form.

3. Select the check box for every outbound service that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of outbound services for this service integration bus is
updated. Otherwise, an error message is displayed.

2880 Administering WebSphere applications



Administering the bus-enabled web services resources
Use the administrative console to configure the main service integration bus-enabled web services
resources: endpoint listeners; JAX-RPC handler lists; WS-Security bindings and configurations; references
to UDDI registries.

About this task

When you configure a bus-enabled web service you associate it with one or more of the following
resources:
v The endpoint listeners on which you want the service to be available.
v Any JAX-RPC handler lists that apply to the service.
v Any WS-Security bindings and configurations that apply to the service.
v Any references to UDDI registries in which entries for the service are created.

You choose each of these resources from a list of resources that you have previously configured.

Use the administrative console to administer the bus-enabled web services resources as described in the
following topics:

Procedure
1. “Creating a new endpoint listener configuration.”

2. “Working with JAX-RPC handlers and clients” on page 2891.

3. “Working with mediations” on page 2902.

4. “Creating a new UDDI reference” on page 2902.

Creating a new endpoint listener configuration
An endpoint listener is the point (address) at which messages for an inbound service are received. The
endpoint listeners that are supplied with WebSphere Application Server support SOAP over HTTP and
SOAP over JMS bindings.

Before you begin

For every server that is to host an endpoint listener, you must install and configure a Service Data Objects
(SDO) repository on the server.

If you want to change the default HTTP endpoint listener security role, do so before you configure the
SOAP over HTTP endpoint listener.

Before you configure a SOAP over JMS endpoint listener, configure the associated JMS resources.

You can set up separate endpoint listeners for inbound and outbound requests. For more information, see
Endpoint listeners and inbound ports: Entry points to the service integration bus.

Decide which method to use to configure these resources. You can create a new endpoint listener
configuration by using the administrative console as described in this task, or by using the
“createSIBWSEndpointListener command” on page 3046.

Note: If you want to create an endpoint listener configuration for your own endpoint listener application,
rather than for one of the listeners that is supplied with WebSphere Application Server, you must
use the wsadmin tool.

About this task

Endpoint listeners are a physical endpoint for receiving inbound service requests. An inbound service
describes a bus destination as a logical web service. An inbound port associates a (logical) inbound

Chapter 26. Administering web services - Bus enabled web services 2881



service with an endpoint listener to provide a (physical) endpoint where the service can be invoked.
Therefore you must have defined an endpoint listener before you can create an inbound port.

A request arrives at an endpoint listener. It is passed to an inbound port, at which point security and
JAX-RPC handler lists can be applied, then sent on to the service destination. Responses follow the same
path in reverse.

To configure a new endpoint listener for use with an inbound service is a two-stage process:

1. Configure the listener for a specific application server or cluster (as described in this task).

2. Configure an inbound service on the same bus to use the listener (as described in the task “Making an
internally-hosted service available as a web service” on page 2870).

To use the administrative console to configure an endpoint listener, complete the following steps:

Procedure
1. Start the administrative console.

2. In the navigation pane, click one of the following paths:

v Servers -> Server Types -> WebSphere application servers -> server_name -> Endpoint
listeners

v Servers -> Clusters -> WebSphere application server clusters -> cluster_name -> Endpoint
listeners

The endpoint listeners collection form is displayed.

3. Click New. The New endpoint listener wizard is displayed.

4. Use the wizard to create the new endpoint listener configuration by completing the following steps. For
more information about the properties that you set with the wizard, see “Endpoint listeners [Settings]”
on page 2922. You might want to use the values given in “Example values for endpoint listener
configuration” on page 2884.

a. Select listener name and binding type.
Endpoint listener name

Type the name of your choice by which the endpoint listener is known. For example:
wsgwsoaphttp; wsgwsoaphttp2; SOAPJMSChannel1; SOAPJMSChannel2.

Binding type
Select the type of binding that this endpoint listener supports. For a SOAP over HTTP or
SOAP over HTTPS endpoint listener, select SOAP/HTTP or SOAP/HTTPS. For a SOAP over
JMS endpoint listener select SOAP/JMS.

b. Optional: Configure JMS settings.

This panel is only displayed if you selected SOAP/JMS in the previous panel.

You can choose to deploy your endpoint listener application to use an activation specification or a
listener port. Listener ports are stabilized. For more information, read the article on stabilized
features. Wherever possible, you should deploy your endpoint listener application to use an
activation specification. You can use only activation specifications with the default messaging
provider; you can use either activation specifications or listener ports with the WebSphere MQ
messaging provider.

Select from the drop-down lists the listener port, or the activation specification and queue
connection factory that you have previously configured as described in “Configuring JMS
resources for the synchronous SOAP over JMS endpoint listener” on page 2887.

c. Configure required URLs. Configure web addresses for the application root and the WSDL serving
root. You can either select pre-configured addresses based on the known virtual hosts, or create
new values.
URL root

Select or type the address at which external clients access the endpoint listener endpoint.

2882 Administering WebSphere applications



The URL root is the context root of the endpoint listener application, and provides the root
of the web address that is used to build the endpoint addresses within WSDL files to direct
requesters to this endpoint listener.

An HTTP server can be used with a stand-alone application sever. Alternatively, if your
endpoint listener is used by external clients to access a cluster providing high availability or
workload management, your cluster usually employs a suitably configured HTTP server (or
WebSphere proxy server) operating as an IP-sprayer. In either case, if external clients
access the endpoint listener through an HTTP server or server cluster, using default port
80, then specify the HTTP server name and no port number. For example (for SOAP over
HTTP endpoint listener 1):
http://www.yourcompany.com/wsgwsoaphttp1
For a stand-alone application server, your endpoint listener is typically configured for clients
to connect directly to an individual application server. If your endpoint listener is used by
external clients to access a cluster, you can configure the listener so that clients connect
directly to an individual application server within the cluster as shown in the following
example, but this might restrict the high availability or workload management capabilities of
your cluster. However, if you allow external clients to connect direct to your application
server (for example because it is a stand-alone server or in a development or test
environment) then specify the application server host name and port number. For example
(for SOAP over HTTP endpoint listener 1):
http://your.server.name:9080/wsgwsoaphttp1
where the port number (specified as 9080 in this example) matches the WC_defaultHost
port value for the application server concerned.

WSDL serving HTTP URL root
Type the root of the web address for the WSDL files of the inbound services that are
available at this endpoint listener. This address comprises the root of the HTTP address at
which external clients access your endpoint listener application, followed by /sibws. This
represents the URL that is used when publishing the WSDL URL to a UDDI registry. The
host and port name you specify for the WSDL serving HTTP URL root typically match those
you specify for the URL root.

If external clients access the endpoint listener through an HTTP server or server cluster,
typically by using default port 80, then this URL root includes the HTTP server name and
no port number. For example:
http://www.yourcompany.com/sibws

However, if you allow external clients to connect direct to your application server (for
example in a development or test environment) then this URL root includes the application
server host name and port number. For example:
http://your.server.name:9080/sibws

Note: The WSDL serving HTTP URL root is only used internally by other components of
WebSphere Application Server (notably the IBM UDDI registry). For all other uses,
you access the WSDL file through the endpoint listener endpoint for the inbound
service. To get the location details for a given inbound service WSDL file, publish
the WSDL file to a compressed file as described in “Modifying an existing inbound
service configuration” on page 2872, then look up the location within the exported
WSDL file.

d. Select the service integration buses to which the new endpoint listener should be connected. Only
buses of which the application server or cluster is a member are available for selection.

5. Click Finish.

Chapter 26. Administering web services - Bus enabled web services 2883



Results

If the processing completes successfully, the list of endpoint listeners is updated to include the new
endpoint listener. Otherwise, an error message is displayed.

What to do next

You are now ready to select this endpoint listener for use with an inbound service as described in “Making
an internally-hosted service available as a web service” on page 2870.

Example values for endpoint listener configuration:

You can configure any number of endpoint listeners with values of your own choosing, including the
example values given in this topic.

When you create an endpoint listener configuration, you provide the following configuration details:

Endpoint listener name
The name by which the endpoint listener is known.

URL root
The address at which external clients access the endpoint listener endpoint. The URL root is the
context root of the endpoint listener application, and provides the root of the web address that is
used to build the endpoint addresses within WSDL files to direct requesters to this endpoint
listener.

WSDL serving HTTP URL root
The root of the web address for the WSDL files of the inbound services that are available at this
endpoint listener. This address comprises the root of the HTTP address at which external clients
access your endpoint listener application, followed by /sibws.

Note: The WSDL serving HTTP URL root is only used internally by other components of
WebSphere Application Server (notably the IBM UDDI registry). For all other uses, you
access the WSDL file through the endpoint listener endpoint for the inbound service. To get
the location details for a given inbound service WSDL file, publish the WSDL file to a
compressed file as described in “Modifying an existing inbound service configuration” on
page 2872, then look up the location within the exported WSDL file.

The rest of this topic gives example configuration details (endpoint listener name, endpoint listener URL
root and WSDL serving URL root) for four endpoint listeners that you might want to create:

v “SOAP over HTTP endpoint listener 1”

v “SOAP over HTTP endpoint listener 2” on page 2885

v “Synchronous SOAP over Java Message Service (JMS) endpoint listener 1” on page 2885

v “Synchronous SOAP over JMS endpoint listener 2” on page 2886

SOAP over HTTP endpoint listener 1

Endpoint listener name
SOAPHTTPChannel1.

URL root
The address at which external clients access the endpoint listener endpoint. If external clients
access the endpoint listener through an HTTP server or server cluster, by using default port 80,
then specify the HTTP server name and no port number. For example (for this endpoint listener):

2884 Administering WebSphere applications



http://www.yourcompany.com/wsgwsoaphttp1However, if you allow external clients to connect direct
to your application server (for example because it is a stand-alone server or in a development or
test environment) then specify the application server host name and port number. For example (for
this endpoint listener):

http://your.server.name:9080/wsgwsoaphttp1

WSDL serving HTTP URL root

The root of the HTTP address at which external clients access your endpoint listener application,
followed by /sibws. For example:
http://www.yourcompany.com/sibws

or
http://your.server.name:9080/sibws

Note: The WSDL serving HTTP URL root is only used internally by other components of
WebSphere Application Server (notably the IBM UDDI registry). For all other uses, you
access the WSDL file through the endpoint listener endpoint for the inbound service.

SOAP over HTTP endpoint listener 2

Endpoint listener name
SOAPHTTPChannel2.

URL root
The address at which external clients access the endpoint listener endpoint. If external clients
access the endpoint listener through an HTTP server or server cluster, by using default port 80,
then specify the HTTP server name and no port number. For example (for this endpoint listener):

http://www.yourcompany.com/wsgwsoaphttp2However, if you allow external clients to connect direct
to your application server (for example because it is a stand-alone server or in a development or
test environment) then specify the application server host name and port number. For example (for
this endpoint listener):

http://your.server.name:9080/wsgwsoaphttp2

WSDL serving HTTP URL root

The root of the HTTP address at which external clients access your endpoint listener application,
followed by /sibws. For example:
http://www.yourcompany.com/sibws

or
http://your.server.name:9080/sibws

Note: The WSDL serving HTTP URL root is only used internally by other components of
WebSphere Application Server (notably the IBM UDDI registry). For all other uses, you
access the WSDL file through the endpoint listener endpoint for the inbound service.

Synchronous SOAP over Java Message Service (JMS) endpoint listener 1

Endpoint listener name
SOAPJMSChannel1.

URL root

You specify the properties of the synchronous SOAP over JMS endpoint listener 1 endpoint by
using the following syntax:

jms:/queue_or_topic_indicator?property_name=property_value and so on, separating each
property using the “&” character.

Chapter 26. Administering web services - Bus enabled web services 2885



For example, if you use the default values for queue destination and queue connection factory
when you install the synchronous SOAP over JMS endpoint listeners, then the first part of the end
point address is:
jms:/queue?destination=jms/SOAPJMSQueue1&connectionFactory=jms/SOAPJMSFactory1

For each of the synchronous SOAP over JMS endpoint listeners, here is the full list of properties
that you can specify in the endpoint address:

WSDL serving HTTP URL root
The root of the HTTP address at which external clients access your endpoint listener application,
followed by /SIBWS.

If external clients access the endpoint listener through an HTTP server or server cluster, typically
by using default port 80, then this URL root includes the HTTP server name and no port number.
For example:
http://www.yourcompany.com/sibws

However, if you allow external clients to connect direct to your application server (for example in a
development or test environment) then this URL root includes the application server host name
and port number. For example:
http://your.server.name:9080/sibws

Note: The WSDL serving HTTP URL root is only used internally by other components of
WebSphere Application Server (notably the IBM UDDI registry). For all other uses, you
access the WSDL file through the endpoint listener endpoint for the inbound service.

Synchronous SOAP over JMS endpoint listener 2

Endpoint listener name
SOAPJMSChannel2.

URL root

You specify the properties of the synchronous SOAP over JMS endpoint listener 2 endpoint by
using the following syntax:

jms:/queue_or_topic_indicator?property_name=property_value and so on, separating each
property using the “&” character.

For example, if you use the default values for queue destination and queue connection factory
when you install the synchronous SOAP over JMS endpoint listeners, then the first part of the end
point address is:
jms:/queue?destination=jms/SOAPJMSQueue2&connectionFactory=jms/SOAPJMSFactory2

For the full list of properties that can be specified in the endpoint address for synchronous SOAP
over JMS endpoint listener 2, see the list of properties previously detailed for Synchronous SOAP
over JMS endpoint listener 1.

WSDL serving HTTP URL root
The root of the HTTP address at which external clients access your endpoint listener application,
followed by /SIBWS.

If external clients access the endpoint listener through an HTTP server or server cluster, typically
by using default port 80, then this URL root includes the HTTP server name and no port number.
For example:
http://www.yourcompany.com/sibws

However, if you allow external clients to connect direct to your application server (for example in a
development or test environment) then this URL root includes the application server host name
and port number. For example:
http://your.server.name:9080/sibws

2886 Administering WebSphere applications



Note: The WSDL serving HTTP URL root is only used internally by other components of
WebSphere Application Server (notably the IBM UDDI registry). For all other uses, you
access the WSDL file through the endpoint listener endpoint for the inbound service.

Configuring JMS resources for the synchronous SOAP over JMS endpoint listener:

Configure the synchronous SOAP over Java Message Service (JMS) endpoint listeners to use a JMS
provider - either the default messaging provider, or another provider such as the WebSphere MQ
messaging provider - to pass SOAP messages over JMS.

Before you begin

If you have not already done so, choose a JMS messaging provider.

About this task

If you are defining a SOAP over JMS endpoint listener, you must first configure the following JMS
resources for your JMS provider:

v Service integration bus queue destination (for the default messaging provider)

v JMS queue connection factory

v JMS queue destination

v JMS activation specification or listener port

Note:

Listener ports are stabilized. For more information, read the article on stabilized features. Wherever
possible, you should deploy your endpoint listener application to use an activation specification. You can
use only activation specifications with the default messaging provider; you can use either activation
specifications or listener ports with the WebSphere MQ messaging provider.

Procedure

1. Use the administrative console to create and configure queue connection factories and queue
destinations.

For more information about how to do this for your messaging provider, see the related links.

Create a queue connection factory and a queue destination for each endpoint listener that you plan to
configure. For example, if you plan to configure both of the SOAP over JMS endpoint listeners that are
supplied with WebSphere Application Server, create two connection factories (one for each endpoint
listener) and two queues. The JMS resources and JNDI names that the supplied SOAP over JMS
endpoint listeners expect by default are provided in the following table. If you use different resources
and names in this step, then change the defaults when you subsequently configure the endpoint
listener.

Table 269. JMS resources and expected JNDI names. The first column of this table lists the JMS resources, the
second column shows the expected default JNDI names for endpoint listener 1, the third column shows the expected
default JNDI name for endpoint listener 2, the fourth column shows the expected queue name for endpoint listener 1,
and the fifth column shows the expected queue name for endpoint listener 2.

JMS resource
default JNDI name
(endpoint listener 1)

default JNDI name
(endpoint listener 2)

queue name (endpoint
listener 1)

queue name (endpoint
listener 2)

JMS queue connection
factory

jms/SOAPJMSFactory1 jms/SOAPJMSFactory2 Not required Not required

JMS queue destination jms/SOAPJMSQueue1 jms/SOAPJMSQueue2 User defined (for
example:
SOAPJMSDestQueue1)

User defined (for
example:
SOAPJMSDestQueue2)

2. Configure the underlying destination for each JMS queue.

Chapter 26. Administering web services - Bus enabled web services 2887



Configure these destinations as described in the documentation for your JMS provider. If you are using
the default messaging provider, use the administrative console to add the two new queue names
specified in the previous table as destinations for your application server as described in Creating a
queue for point-to-point messaging. The identifier for the destination should match that defined by the
user as the queue name in the previous table.

3. Configure the deployment details for the application.

If you are using activation specifications, use the administrative console to create and configure the
activation specifications as described in “Configuring an activation specification for the default
messaging provider” on page 503 or Creating an activation specification for the WebSphere MQ
messaging provider. Create two activation specifications, one for each endpoint listener. The default
JMS resources and associated names that the synchronous SOAP over JMS endpoint listeners expect
are provided in the following table. However, you can use any JNDI name for the activation
specification, provided that the EAR file has the same JNDI reference in the administrative console
“Binding enterprise beans to listener port names or activation specification JNDI names” panel. If you
use different resources and names in this step, change the defaults when you subsequently configure
the endpoint listener. You must also stop then restart the application server.

Table 270. Default JMS resource and associated name expected. The first column of this table lists the JMS
resources, the second column shows the expected default JNDI names for endpoint listener 1, the third column
shows the expected default JNDI name for endpoint listener 2, the fourth column shows the expected queue name
for endpoint listener 1, and the fifth column shows the expected queue name for endpoint listener 2.

JMS resource
default JNDI name
(endpoint listener 1)

default JNDI name
(endpoint listener 2)

destination JNDI name
(endpoint listener 1)

destination JNDI name
(endpoint listener 2)

activation specification eis/SOAPJMSChannel1 eis/SOAPJMSChannel2 jms/SOAPJMSQueue1 jms/SOAPJMSQueue2

If you are using listener ports with any supported JMS provider, use the administrative console to
create and configure the listener ports in the message listener service as described in Adding a new
listener port. Create two listener ports (one for each endpoint listener). The default JMS resources and
associated names that the supplied SOAP over JMS endpoint listeners expect are provided in the
following table. If you use different resources and names in this step, then change the defaults when
you subsequently configure the endpoint listener.

Table 271. Default JMS resources and expected names. The first column of this table lists the JMS resources, the
second column shows the expected default JNDI names for endpoint listener 1, the third column shows the expected
default JNDI name for endpoint listener 2, the fourth column shows the expected queue name for endpoint listener 1,
and the fifth column shows the expected queue name for endpoint listener 2.

JMS resource
default name (for use with SOAP over
JMS endpoint listener 1)

default name (for use with SOAP over
JMS endpoint listener 2)

listener port SOAPJMSPort1 SOAPJMSPort2

connection factory jms/SOAPJMSFactory1 jms/SOAPJMSFactory2

destination jms/SOAPJMSQueue1 jms/SOAPJMSQueue2

4. Save your changes to the master configuration.

5. Bind the JMS resources by stopping then restarting the application server.

What to do next

You are now ready to create a new SOAP over JMS endpoint listener configuration.

Modifying an existing endpoint listener configuration:

Modify the additional properties for an endpoint listener that has been configured for use with inbound
services.

2888 Administering WebSphere applications



Before you begin

You cannot use this task to modify the general properties of an existing endpoint listener. The reason for
this is that, when you create a new endpoint listener, an associated endpoint listener application is
automatically installed that uses the same general property values. Therefore if you subsequently change
the general properties, you break the link between the configuration and the underlying application. If you
have to change the general properties, you must delete and recreate the endpoint listener configuration.

About this task

To list the endpoint listeners, and to view and modify their configuration details, complete the following
steps.

Procedure

1. Start the administrative console.

2. In the navigation pane, click one of the following paths:

v Servers -> Server Types -> WebSphere application servers -> server_name -> Endpoint
listeners

v Servers -> Clusters -> WebSphere application server clusters -> cluster_name -> Endpoint
listeners

A list of endpoint listeners is displayed in an endpoint listener collection form.

3. Click the name of an endpoint listener in the list. The current endpoint listener settings for this endpoint
listener are displayed.

4. View the following general properties. If you are modifying an endpoint listener that is supplied with
WebSphere Application Server, you might want to use the values given in “Example values for
endpoint listener configuration” on page 2884.
Name View the name by which the endpoint listener is known. If this is your own endpoint listener,

rather than one that is supplied with WebSphere Application Server, then this name must
match the name given in the endpoint listener application that you have installed (that is, the
display name of the endpoint module within the endpoint application EAR file).

DescriptionDescription
View the (optional) description of the endpoint listener.

URL root
View the address at which external clients access the endpoint listener endpoint. The URL root
is the context root of the endpoint listener application, and provides the root of the web
address that is used to build the endpoint addresses within WSDL files to direct requesters to
this endpoint listener.

If external clients access the endpoint listener through an HTTP server or server cluster, by
using default port 80, then specify the HTTP server name and no port number. For example
(for SOAP over HTTP endpoint listener 1):
http://www.yourcompany.com/wsgwsoaphttp1
However, if you allow external clients to connect direct to your application server (for example
because it is a stand-alone server or in a development or test environment) then specify the
application server host name and port number. For example (for SOAP over HTTP endpoint
listener 1):
http://your.server.name:9080/wsgwsoaphttp1

WSDL serving HTTP URL root
View the root of the web address for the WSDL files of the inbound services that are available
at this endpoint listener. This address comprises the root of the HTTP address at which
external clients access your endpoint listener application, followed by /sibws.

If external clients access the endpoint listener through an HTTP server or server cluster,
typically by using default port 80, then this URL root includes the HTTP server name and no
port number. For example:

Chapter 26. Administering web services - Bus enabled web services 2889



http://www.yourcompany.com/sibws

However, if you allow external clients to connect direct to your application server (for example
in a development or test environment) then this URL root includes the application server host
name and port number. For example:
http://your.server.name:9080/sibws

Note: The WSDL serving HTTP URL root is only used internally by other components of
WebSphere Application Server (notably the IBM UDDI registry). For all other uses, you
access the WSDL file through the endpoint listener endpoint for the inbound service. To
get the location details for a given inbound service WSDL file, publish the WSDL file to
a compressed file as described in “Modifying an existing inbound service configuration”
on page 2872, then look up the location within the exported WSDL file.

5. Under the additional properties heading, click Connection properties. A list of all the service
integration buses that are currently connected to this endpoint listener is displayed in a service
integration bus connection properties collection form. Add, amend or delete buses in the list of
currently-connected buses. To add a new bus, complete the following steps:

a. Click New. The service integration bus connection properties settings form is displayed.

b. Under the general properties heading, select an available service integration bus from the
drop-down list. The bus is selected and the additional properties for the bus are displayed.

Note: Under the connection properties for the bus there are Custom properties. These custom
properties are name and value pairs that you can use to set internal system configuration
properties. In each pair, the name is a property key and the value is a string value. You use
custom properties to define the manner in which the endpoint listener connects to this bus.
Included in this set is property name com.ibm.ws.sib.webservices.replyDestination, which
defines the reply destination name used by the endpoint listener. Do not modify or remove
this property, which is set automatically when the service integration bus is associated with
the endpoint listener.

6. Under the additional properties heading, click Associated application. Details for the application that
handles the requests for this endpoint listener are displayed in an enterprise application settings form.

7. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of service integration buses that are connected to this
endpoint listener is updated, and the list of endpoint listeners is redisplayed. Otherwise, an error message
is displayed.

What to do next

You are now ready to select this endpoint listener for use with an inbound service as described in “Making
an internally-hosted service available as a web service” on page 2870.

Deleting endpoint listener configurations:

Use this task to delete endpoint listener configurations using the administrative console.

Before you begin

You cannot delete an endpoint listener that has inbound ports associated with it. If you try to do this, an
error is generated. Before you can delete an endpoint listener, you must either delete each associated
inbound service or remove each associated port from the port list for the inbound service.

2890 Administering WebSphere applications



Decide which method to use to configure these resources. You can delete an endpoint listener
configuration by using the administrative console as described in this task, or by using the
“deleteSIBWSEndpointListener command” on page 3048.

About this task

To remove one or more endpoint listener configurations, complete the following steps:

Procedure

1. Start the administrative console.

2. In the navigation pane, click Servers -> Server Types -> WebSphere application servers ->
server_name -> Endpoint listeners. A list of endpoint listeners is displayed in an endpoint listener
collection form.

3. Select the check box for every endpoint listener configuration that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of endpoint listeners is updated. Otherwise, an error
message is displayed.

Working with JAX-RPC handlers and clients
The Java API for XML-based remote procedure calls (JAX-RPC) provides you with a standard way of
developing interoperable and portable web services. You can use JAX-RPC handlers, handler lists and
client applications with your service integration bus-enabled web services.

About this task

There are two main elements of JAX-RPC that you can use directly with the service integration bus:

v JAX-RPC handlers and handler lists.

v JAX-RPC client applications.

A JAX-RPC handler is a Java class that performs a range of handling tasks.For example: logging
messages, or transforming their contents, or terminating an incoming request. To create a JAX-RPC
handler, you can use a tool such as IBM Rational Application Developer. To enable handlers to undertake
more complex operations, you chain them together into handler lists. You associate each handler list with
one or more ports, so that the handler list can monitor activity at the port, and take appropriate action
depending upon the sender and content of each message that passes through the port.

JAX-RPC client applications send and receive web service request and response messages. JAX-RPC
client applications that use the IBM JAX-RPC run-time environment can do this in a number of different
ways, depending on the bindings in the WSDL document that they are developed against, and the
configuration data that is used at run time.

Detailed instructions on how to configure JAX-RPC handlers, handler lists and client applications for use
with the service integration bus are provided in the following topics:

Procedure
v “Creating a new JAX-RPC handler configuration.”

v “Creating a new JAX-RPC handler list” on page 2895.

v “Sending web service messages directly over the bus from a JAX-RPC client” on page 2898.

v “Implementing JAX-RPC handlers to access SDO messages” on page 2901.

Creating a new JAX-RPC handler configuration:

Chapter 26. Administering web services - Bus enabled web services 2891



Create a JAX-RPC handler configuration for use, as part of a handler list, with service integration
bus-deployed web services. Handlers monitor messages at ports, and take appropriate action depending
upon the sender and content of each message.

Before you begin

This task assumes that you have already created your handler. You can do this by using IBM Rational
Application Developer or a similar tool. For more information, see the IBM developerWorks article Support
for J2EE Web Services in WebSphere Studio Application Developer V5.1 -- Part 3: JAX-RPC Handlers.

You must also make the handler class available to the server that hosts the port for the service that you
want to monitor, as detailed in “Loading JAX-RPC handler classes” on page 2893.

About this task

A Java API for XML-based remote procedure calls (JAX-RPC) handler is a Java class that performs a
range of handling tasks. For example: logging messages, or transforming their contents, or terminating an
incoming request. To make WebSphere Application Server aware of your handler, and to make the handler
available for inclusion in one or more handler lists, you use the administrative console to create a new
handler configuration.

Procedure

1. In the navigation pane, click Service integration -> Web services -> JAX-RPC Handlers. The
JAX-RPC handlers collection form is displayed.

2. Click New. The JAX-RPC handlers settings form is displayed.

3. Type the following general properties:
Name Type the name by which the handler is known.

This name must be unique, and it must obey the following syntax rules:
v It must not start with “.” (a period).
v It must not start or end with a space.
v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

For example TestHandler.
Description

Type the (optional) description of the handler.
Class name

Type the name of the class that is to be instantiated. For example
com.ibm.jaxrpc.handler.TestHandler.

Note: You can configure multiple instances of a handler by creating each instance with a
different handler name, and pointing to the same handler class.

4. Click OK. The general properties for this item are saved, and the additional properties options are
made available.

5. Type the following additional properties:
SOAP roles

Add SOAP actor definitions to the list of SOAP roles in which this handler acts. For more
information, see the SOAP specification.

JAX-RPC headers
Add JAX-RPC header definitions (Namespace URI and Local part) to the list of JAX-RPC
headers against which this handler operates. JAX-RPC headers are SOAP headers that are
processed by a JAX-RPC handler.

Custom properties
Add custom properties (name/value pairs, where the name is a property key and the value is a
string value that can be used to set internal system configuration properties).

2892 Administering WebSphere applications

http://www.ibm.com/developerworks/websphere/library/techarticles/0310_flurry/flurry3.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0310_flurry/flurry3.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/


6. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handlers is updated to include the new handler.
Otherwise, an error message is displayed.

What to do next

To use this handler, add it to a handler list as described in Creating a new JAX-RPC handler list or
Modifying an existing JAX-RPC handler list.

Loading JAX-RPC handler classes:

A JAX-RPC handler interacts with messages as they pass into and out of the service integration bus,
therefore you make the handler class available to the server or cluster that hosts the inbound or outbound
port for the service that you want to monitor.

Before you begin

This task assumes that you have already created your handler. You can do this by using IBM Rational
Application Developer or a similar tool. For more information, see the IBM developerWorks article Support
for J2EE Web Services in WebSphere Studio Application Developer V5.1 -- Part 3: JAX-RPC Handlers.

About this task

Before you can configure your JAX-RPC handler for use with service integration bus-deployed web
services, you must make the handler class available. If you want to monitor an inbound port, make the
handler class available to the server on which the endpoint listener for that port is located. If you want to
monitor an outbound port, make the handler class available to the server on which the outbound port
destination is localized.

To make the handler class available to the server that hosts the port that you want to monitor, you create a
shared library for the class then add the shared library to the class loader for the server.

Procedure

1. Package the class file for your handler as a JAR file, then copy the JAR file into a convenient directory.

Make the handler class available to the application server in one of the following ways:

v Copy the individual class file into a directory structure under app_server_root/classes that matches
the package name of the class, where app_server_root is the root directory for the installation of
WebSphere Application Server. For example a handler class com.ibm.jaxrpc.handler.TestHandler
is copied into the app_server_root/classes/com/ibm/jaxrpc/handler directory.

v Package the class files for all your handlers as a JAR file, then copy it into the app_server_root/
lib/app directory.

2. Start the administrative console.

3. Create a shared library for the JAR file.

a. Navigate to Environment -> Shared libraries.

b. Set the scope at which you want the new library to be visible, then click New.

c. Give the new library a name.

d. Set the class path to the directory and file name for your handler JAR file.

e. Save your changes to the master configuration.

For more information, see Creating shared libraries.

4. Create a class loader for the server on which you want to make the JAR file available.

Chapter 26. Administering web services - Bus enabled web services 2893

http://www.ibm.com/developerworks/websphere/library/techarticles/0310_flurry/flurry3.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0310_flurry/flurry3.html


a. Navigate to Servers -> Server Types -> WebSphere application servers -> server_name ->
[Server Infrastructure] Java and Process Management -> Class loader.

b. Click New.

c. Click OK.

d. Save your changes to the master configuration.

For more information, see Configuring class loaders of a server.

5. Add the shared library to the class loader for the server.

a. Navigate to Servers -> Server Types -> WebSphere application servers -> server_name ->
[Server Infrastructure] Java and Process Management -> Class loader -> class_loader_name
> [Additional Properties] Shared library references.

b. Click Add.

c. Click on the name of your new library, then click OK.

d. Save your changes to the master configuration.

For more information, see Associating shared libraries with servers.

What to do next

You are now ready to configure your handler for use (as part of a handler list) with service integration
bus-enabled web services.

Modifying an existing JAX-RPC handler configuration:

A Java API for XML-based remote procedure calls (JAX-RPC) handler is a Java class that performs a
range of handling tasks. For example: logging messages, or transforming their contents, or terminating an
incoming request. Handlers monitor messages at ports, and take appropriate action depending upon the
sender and content of each message. Modify the configuration details for a JAX-RPC handler that has
been configured for use, as part of a handler list, with service integration bus-deployed Web services.

Before you begin

If you modify a handler class but do not change the class name, you do not have to modify the handler
configuration as described in this topic. You just have to stop then restart the servers that host the ports
that this handler monitors.

About this task

To list the handlers, and to view and modify their configuration details, complete the following steps.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Web services -> JAX-RPC Handlers. A list of
handlers is displayed in a JAX-RPC handlers collection form.

3. Click the name of a handler in the list. The current JAX-RPC handlers settings for this handler are
displayed.

4. Modify the following general properties:
Name Modify the name of the handler.

This name must be unique, and it must obey the following syntax rules:
v It must not start with “.” (a period).
v It must not start or end with a space.
v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

2894 Administering WebSphere applications



Note: When you change a handler name, the system looks up all objects that refer to it and
updates the name.

Description
Modify the (optional) description of the handler.

Class name
Change the name of the class that is to be instantiated. If you change the class name, you
must also make the new class available to the servers that host the ports that this handler
monitors, as detailed in “Loading JAX-RPC handler classes” on page 2893.

5. Modify the following additional properties:
SOAP roles

Add, modify or remove SOAP actor definitions from the list of SOAP roles in which this handler
acts. For more information, see the SOAP specification.

JAX-RPC headers
Add, modify or remove JAX-RPC header definitions (Namespace URI and Local part) from the
list of JAX-RPC headers against which this handler operates. JAX-RPC headers are SOAP
headers that are processed by a JAX-RPC handler.

Custom properties
Add, modify or remove custom properties (name/value pairs, where the name is a property key
and the value is a string value that can be used to set internal system configuration
properties).

6. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handlers is redisplayed. Otherwise, an error message
is displayed.

Deleting JAX-RPC handler configurations:

A Java API for XML-based remote procedure calls (JAX-RPC) handler is a Java class that performs a
range of handling tasks. For example: logging messages, or transforming their contents, or terminating an
incoming request. Delete JAX-RPC handlers that are configured for use (as part of a handler list) with
service integration bus-deployed web services.

About this task

When you remove a handler that is currently used by one or more web services on a service integration
bus, the system removes the handler from the handler lists for each associated web service.

To remove one or more handlers that are currently configured for a service integration bus, use the
administrative console to complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> Web services -> JAX-RPC Handlers. A list of
handlers is displayed in a JAX-RPC handlers collection form.

2. Select the check box for every handler that you want to remove.

3. Click Delete.

Results

If the processing completes successfully, the list of handlers is updated. Otherwise, an error message is
displayed.

Creating a new JAX-RPC handler list:

Chapter 26. Administering web services - Bus enabled web services 2895

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/


A Java API for XML-based remote procedure calls (JAX-RPC) handler is a Java class that performs a
range of handling tasks. For example: logging messages, or transforming their contents, or terminating an
incoming request. Create a JAX-RPC handler list for use with service integration bus-enabled web
services.

Before you begin

You can only add previously-configured handlers to a handler list. To configure a handler, see Creating a
new JAX-RPC handler configuration.

About this task

Handlers monitor messages at ports, and take appropriate action depending upon the sender and content
of each message. To enable handlers to undertake more complex operations, you chain them together into
handler lists. The approach taken in WebSphere Application Server is to apply handler lists (rather than
individual handlers) at the ports, where each handler list contains one or more handlers.

To create a new JAX-RPC handler list, use the administrative console to complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> Web services -> JAX-RPC Handler Lists. The
JAX-RPC handler lists collection form is displayed.

2. Click New. The JAX-RPC handler lists settings form is displayed.

3. Type the following general properties:
Name Type the name by which the handler list is known.

This name must be unique, and it must obey the following syntax rules:
v It must not start with “.” (a period).
v It must not start or end with a space.
v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

For example TestList.
Description

Type the (optional) description of the handler list.
JAX-RPC handlers

In the JAX-RPC handlers pane, complete the following steps:
a. Select one or more handlers from the list of available JAX-RPC handlers, then click Add to

move the selected handlers into the list of handlers for this JAX-RPC handler list.
b. Select a handler in the list of handlers for this JAX-RPC handler list, then click Up or Down

to change the position of the handler within the list.

Handlers are applied in the sequence in which they appear in the handler list.

Note: If you click Reset, only the Name and Description fields are reset to their state when the form
was first loaded. The two lists of available and assigned handlers are not reset.

4. Click OK. The general properties for this item are saved.

5. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handler lists is updated to include the new handler list.
Otherwise, an error message is displayed.

2896 Administering WebSphere applications



What to do next

To use this handler list, select it for use with a web service as described in “Modifying an existing inbound
service configuration” on page 2872 or “Modifying an existing outbound service configuration” on page
2878.

Modifying an existing JAX-RPC handler list:

A Java API for XML-based remote procedure calls (JAX-RPC) handler is a Java class that performs a
range of handling tasks. For example: logging messages, or transforming their contents, or terminating an
incoming request. Modify the configuration details for a JAX-RPC handler list that has been configured for
use with service integration bus-deployed web services.

Before you begin

You can only add previously-configured handlers to a handler list. To configure a handler, see Creating a
new JAX-RPC handler configuration.

About this task

Handlers monitor messages at ports, and take appropriate action depending upon the sender and content
of each message. To enable handlers to undertake more complex operations, you chain them together into
handler lists. The approach taken in WebSphere Application Server is to apply handler lists (rather than
individual handlers) at the ports, where each handler list contains one or more handlers.

To list the existing handler lists, and to view and modify their configuration details, use the administrative
console to complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> Web services -> JAX-RPC Handler Lists. A list
of all the handler lists is displayed in a JAX-RPC handler lists collection form.

2. Click the name of a handler list in the list. The current JAX-RPC handler lists settings for this handler
are displayed.

3. Modify the following general properties:
Name Modify the name of the handler list.

This name must be unique, and it must obey the following syntax rules:
v It must not start with “.” (a period).
v It must not start or end with a space.
v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

When you change a handler list name, the system looks up all objects that refer to it and
updates the name.

Description
Modify the (optional) description of the handler list.

JAX-RPC handlers
In the JAX-RPC handlers pane, complete the following steps:
a. Select one or more previously-configured handlers from either the list of available

JAX-RPC handlers or the list of handlers for this JAX-RPC handler list, then click Add or
Remove to modify the list of handlers for this JAX-RPC handler list.

b. Select a handler in the list of handlers for this JAX-RPC handler list, then click Up or Down
to change the position of the handler within the list.

Handlers are applied in the sequence in which they appear in the handler list.

Note: If you click Reset, only the Name and Description fields are reset to their state when the form
was first loaded. The two lists of available and assigned handlers are not reset.

Chapter 26. Administering web services - Bus enabled web services 2897



4. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handler lists is redisplayed. Otherwise, an error
message is displayed.

What to do next

To use this handler list, select it for use with a web service as described in “Modifying an existing inbound
service configuration” on page 2872 or “Modifying an existing outbound service configuration” on page
2878.

Deleting JAX-RPC handler lists:

A Java API for XML-based remote procedure calls (JAX-RPC) handler is a Java class that performs a
range of handling tasks. For example: logging messages, or transforming their contents, or terminating an
incoming request. Delete JAX-RPC handler lists that are configured for use with service integration
bus-deployed Web services.

About this task

When you remove a handler list that is currently used by one or more web services on a service
integration bus, the system removes the handler list for each associated web service.

To remove one or more handler lists, use the administrative console to complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> Web services -> JAX-RPC Handler Lists. A list
of handler lists is displayed in a JAX-RPC handler lists collection form.

2. Select the check box for every handler list that you want to remove.

3. Click Delete.

Results

If the processing completes successfully, the list of handler lists is updated. Otherwise, an error message
is displayed.

Sending web service messages directly over the bus from a JAX-RPC client:

Use this task to send web service messages over a bus by retargeting the JAX-RPC client.

About this task

Java API for XML-based remote procedure calls (JAX-RPC) client applications send and receive web
service request and response messages. JAX-RPC client applications that use the IBM JAX-RPC run-time
environment can do this in a number of different ways, depending on the bindings in the WSDL document
that they are developed against, and the configuration data that is used at run time.

For an introduction to basic JAX-RPC programming concepts, including the JAX-RPC client and server
programming models, see Getting Started with JAX-RPC.

If you want to use a JAX-RPC client to send messages over the service integration bus, you have two
choices:

2898 Administering WebSphere applications

http://developer.java.sun.com/developer/technicalArticles/WebServices/getstartjaxrpc/


v Use a SOAP binding (SOAP over HTTP or SOAP over JMS), and pass messages indirectly through an
endpoint listener to an inbound service. You would do this if you had SOAP-specific JAX-RPC handlers
that must run in the client application context.

v Pass messages directly into the service integration bus at a destination by “retargeting” the JAX-RPC
client application as described in this topic.

Note: There are currently limitations regarding the Java types used by services that are retargeted
through a JAX-RPC client application.

Retargeting involves setting the following two values into the client application deployment descriptor, or
specifying them dynamically at run time from within the client application:

v The binding namespace is set to indicate that the client uses the messaging bus directly.

v The endpoint address is set to include the particular destination and (optionally) the format of messages
that the client uses.

The destination also needs to be configured so that it knows the port type of messages that the JAX-RPC
client is using. There are two ways to achieve this:

v Create an outbound service. An outbound service represents an externally-provided web service. In this
case, requests from the JAX-RPC client pass through the service destination and are then sent on to
the service provider defined by the outbound service configuration.

v Create an inbound service. An inbound service represents a service provided somewhere within or
beyond the messaging bus. You can create an inbound service on any existing destination. The creation
of an inbound service associates a WSDL port type with the destination. When retargeting to a
destination with an inbound service, the client application needs to specify both the destination name
and inbound service name, because it is possible to configure more than one inbound service against a
single destination. In this case, requests from the JAX-RPC client pass through the destination and then
onwards through the service integration bus depending on routing that is done at the initial destination.

To have web service messages sent directly to a destination using a JAX-RPC client, complete the
following steps:

Procedure

1. Create the JAX-RPC client application.

2. Create the outbound service or inbound service with which you want the JAX-RPC client application to
exchange messages.

3. Use the administrative console to access the port information for your JAX-RPC client application, as
described in “Configuring web services client bindings” on page 2709 and Web services client port
information.

4. Override the default SOAP binding for your JAX-RPC client application. Change the binding
namespace to http://www.ibm.com/ns/2004/02/wsdl/mp/sib

5. Override the endpoint that your JAX-RPC client application uses to send web service requests. The
new endpoint should use the sib: URL syntax and include either the outbound service destination
name, or both the inbound service name and its corresponding destination name.

What to do next

After you change the binding namespace, any JAX-RPC handler lists that were configured for the
retargeted port are ignored. For clients that are developed against WSDL with a SOAP binding, retargeting
directly to the bus causes the handlers to be ignored. However if the client is developed against the
non-bound WSDL for the service, retargeting to the bus is not considered to be changing the binding
namespace, and so the handler information is retained. In this case the JAX-RPC handlers are called with
the SDOMessageContext subclass.

Chapter 26. Administering web services - Bus enabled web services 2899



Associated reference information:

v “sib: URL syntax”

sib: URL syntax:

The sib: URL has the following syntax:
sib:/[destination|path]?property_1=value_1&property_2=value_2&...

where:

v Square brackets (“[ ]”) indicate that a parameter is optional.

v Transport type is sib:, followed by either /destination to specify destination type or /path to specify a
forward routing path, followed by a “query string” that contains one or more properties. The permitted
properties are described in the subsequent sections of this topic.

Required properties

The following properties are required. They are used to specify the destination for the request.

Note: All destination names must be fully-qualified. That is, they must include the name of the service
integration bus as well as the destination name itself. Use the syntax bus:destination. If a bus or
destination name contains a colon or comma, wrap the name in double quotation marks (“”). If it
contains a double quotation mark, repeat the quotation mark.

destinationName
The destination name.

path The forward routing path, in the form of a sequence of destination names separated by commas.

replyDestinationName
The name of the destination to be used for the reply.

inboundService
The name of the inbound service that identifies the specific attachment that the requester
application uses. You can omit this value if the destination is a service destination with an
associated outbound service configuration, because in that case the requester is attaching to the
outbound service through the service destination.

timeout
The time the requester waits for a response. The default value is 60 seconds. A zero value
indicates an unlimited wait.

Service integration technologies-related properties

The following properties are optional. If you do not specify a value for a property, then the default value is
used. For more information regarding the permitted values for these properties, see the generated API
information for the SIMessage interface.

reliability
The reliability of the request message.

timeToLive
The amount of time (in milliseconds) before the request times out. A zero value indicates that the
request never times out.

Note: The timeout property (see the required properties) is the time delay after which the
requester application blocks the application thread that is waiting for a response to a
request and response operation. The time to live and replyTimeToLive optional properties
indicate how long the request and reply messages should be processed by the messaging
engines. This does not include the processing time at the service implementation. You

2900 Administering WebSphere applications



would therefore usually set the timeout to be the sum of the request and response times to
live, plus some amount for the service processing time.

priority
The priority of the request message.

user
The user ID required to access the request destination.

password
The password required to access the request destination.

replyReliability
The reliability of the reply message.

replyTimeToLive
The amount of time (in milliseconds) before the reply times out. A zero value indicates that the
reply never times out.

replyPriority
The priority of the reply message.

Other properties

You can also include user-defined properties in the URL. These properties must be named with a user.
prefix. For example:
sib:/destination?destinationName=myBus:myDestination & reliability=assured & user.customData=XYZ

After the request is sent, the URL itself is available within the message properties, named inbound.url.

Implementing JAX-RPC handlers to access SDO messages:

JAX-RPC handlers are invoked during the processing of request and response messages. For messages
that are exchanged by using the SOAP protocol, each JAX-RPC handler is passed a SOAP-specific
MessageContext object. For other protocols, the IBM web services runtime environment passes a
MessageContext object that provides a Service Data Objects view of the message. Service Data Objects
(SDO) is an open standard for enabling applications to handle data from different data sources in a
uniform way, as data graphs.

If the JAX-RPC handler only deals with message context properties, it does not have to be aware of the
particular subclass of MessageContext that it is given, because the context property methods are defined
by the MessageContext interface itself. If the handler needs to process information contained within the
message, it must be coded to work with the required subclasses. Your JAX-RPC handlers should test
whether the MessageContext is an instance of the required subclass.

A JAX-RPC handler is given an SDO-specific MessageContext object (an instance of the
com.ibm.websphere.webservices.handler.sdo.SDOMessageContext class) rather than the SOAP-specific
MessageContext object in the following cases:

v A JAX-RPC client or outbound invocation from the service integration bus invokes a service by using
the EJB binding.

v A JAX-RPC client is developed against a non-bound WSDL and is retargeted to a destination in the
service integration bus.

The SDOMessageContext class provides methods to get and set the com.ibm.websphere.sdo.SDOMessage
instance that represents the message that is being processed. The SDOMessage has a method to access
the SDO DataGraph object that holds the message content as SDO DataObjects.

Chapter 26. Administering web services - Bus enabled web services 2901



A JAX-RPC handler can modify the SDO DataGraph contents, but it cannot change the format or schema
of the message.

The following example shows code that can be used to access the SDO DataGraph from the
MessageContext object in a JAX-RPC handler handleRequest method:
public boolean handleRequest(MessageContext messageContext) {

// Convert the MessageContext into an SDOMessageContext
if( messageContext instanceof SDOMessageContext) {
SDOMessageContext smc = (SDOMessageContext)messageContext;

// Retrieve the message
SDOMessage message = smc.getSDOMessage();

// Get the root object in the SDO DataGraph
DataGraph graph = message.getDataGraph();
DataObject content = graph.getRootObject();

// Now do something with the message content.....
}
return true;
}

Working with mediations
Use a mediation to change the content of a message, or the way in which a message is handled.

Before you begin

For an introduction to using mediations with the service integration bus, see Learning about mediations.

About this task

A mediation is an application that contains a mediation handler. You associate a mediation with a service
integration bus destination, and the mediation acts on messages that pass through the destination. The
action taken by a mediation depends upon the specific instructions you give in the mediation handler. For
example, you can use a mediation to change the contents of a message, or to choose a particular forward
route for a message.

To write a mediation application that contains a mediation handler, install it into WebSphere Application
Server and associate it with a bus destination, complete the following steps:

Procedure
1. Create the mediation application. For examples of how to do this, see:

v Writing a routing mediation

v Writing a mediation that maps between attachment encoding styles

2. Install the mediation application into WebSphere Application Server.

3. Create the associated mediation object in the bus.

Note: The handler list name is the name you gave to your handler when you defined the handler
class as a mediation handler.

4. Mediate the destination. Use the administrative console to access the destination that you want to
mediate, then select your mediation from the list of available mediations.

Creating a new UDDI reference
Create a reference (a pointer) to a UDDI registry for use with service integration bus-enabled web
services.

2902 Administering WebSphere applications



Before you begin

This topic assumes that you have already created a J2C authentication alias for each Authorized Name
that you want to associate with this UDDI reference. For more information about Authorized Names, see
UDDI registries: Web service directories that can be referenced by bus-enabled web services.

About this task

A UDDI reference is a pointer to a UDDI registry. This registry can be a private UDDI registry such as the
IBM WebSphere UDDI Registry, or a public UDDI registry. The service integration technologies interact
with UDDI registries in two ways:
v When you configure an inbound service, you can create entries for the web service in one or more

UDDI registries.
v When you configure an outbound service, you specify the location of the target WSDL file that describes

the web service. This WSDL file can be located at a URL or through a UDDI registry.

In the UDDI model, web services are owned by businesses, and businesses are owned by Authorized
Names. Each UDDI reference gives access to the Web services that are owned by a single Authorized
Name in a single UDDI registry. For more information about how the service integration technologies work
with UDDI registries, see UDDI registries: Web service directories that can be referenced by bus-enabled
web services and Publishing a web service to a UDDI registry. For more general information about UDDI
and UDDI registries, see the UDDI community at uddi.org.

To create a new UDDI reference, complete the following steps:

Procedure
1. Start the administrative console.

2. In the navigation pane, click Service integration -> Web services -> UDDI References. The UDDI
references collection form is displayed.

3. Click New. The UDDI references settings form is displayed.

4. Type the following general properties:
Name Type the name by which the UDDI reference is known. This name must be unique, and it must

follow the following syntax rules:
v It must not start with “.” (a period).
v It must not start or end with a space.
v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

You might need more than one UDDI reference for a given UDDI registry. For more
information, see UDDI registries: Web service directories that can be referenced by
bus-enabled web services.

Description
Type the (optional) description of the UDDI reference.

Inquiry URL
Type the web address that provides access to this registry for the SOAP inquiry API.

Publish URL
Type the web address that provides access to this registry for the SOAP publish API.

Authentication alias

Type the J2C authentication alias for the user ID and password of an “Authorized Name” that
has update access to this registry.

The alias you enter here must match the user ID of the owner of the corresponding business
in the UDDI registry. You can see the owning user ID in UDDI by looking at the business
details under the “Authorized Name” field. If the alias you enter here does not match the
“Authorized Name” value for the business that owns the service, then the service is not
published or found.

Chapter 26. Administering web services - Bus enabled web services 2903

http://uddi.org
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/


If the business has more than one “Authorized Name”, you might want to set up multiple UDDI
references (each with a different authentication alias) to the same UDDI registry.

5. Click OK.

Results

If the processing completes successfully, the list of UDDI references is updated to include the new UDDI
reference. Otherwise, an error message is displayed.

What to do next

To use this UDDI reference, select it when “Making an internally-hosted service available as a web
service” on page 2870 or “Making an externally-hosted web service available internally” on page 2875.

Modifying an existing UDDI reference:

Modify the configuration details for a UDDI reference that has been configured for use with service
integration bus-enabled web services.

About this task

A UDDI reference is a pointer to a UDDI registry. This registry can be a private UDDI registry such as the
IBM WebSphere UDDI Registry, or a public UDDI registry. The service integration technologies interact
with UDDI registries in two ways:
v When you configure an inbound service, you can create entries for the web service in one or more

UDDI registries.
v When you configure an outbound service, you specify the location of the target WSDL file that describes

the web service. This WSDL file can be located at a URL or through a UDDI registry.

To list the UDDI references, and to view and modify their configuration details, complete the following
steps:

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Web services -> UDDI References. A list of
UDDI references is displayed in a UDDI references collection form.

3. Click the name of a UDDI reference in the list. The current UDDI reference settings for this UDDI
reference are displayed.

4. Modify the following general properties:
Name Modify the name of the UDDI reference.

This name must be unique, and it must obey the following syntax rules:
v It must not start with “.” (a period).
v It must not start or end with a space.
v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Note: When you change a UDDI reference name, the system looks up all objects that refer to
it and updates the name.

Description
Modify the (optional) description of the UDDI reference.

Inquiry URL
Type the new web address that provides access to this registry for the SOAP inquiry API.

Publish URL
Type the new web address that provides access to this registry for the SOAP publish API.

Authentication alias

2904 Administering WebSphere applications

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/


Type the new J2C authentication alias for the user ID and password of an “Authorized Name”
that has update access to this registry.

The alias you enter here must match the user ID of the owner of the corresponding business
in the UDDI registry. You can see the owning user ID in UDDI by looking at the business
details under the “Authorized Name” field. If the alias you enter here does not match the
“Authorized Name” value for the business that owns the service, then the service is not
published or found.

If the business has more than one “Authorized Name”, you might want to set up multiple UDDI
references (each with a different authentication alias) to the same UDDI registry.

5. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of UDDI references is redisplayed. Otherwise, an error
message is displayed.

What to do next

To use this UDDI reference, select it when “Making an internally-hosted service available as a web
service” on page 2870 or “Making an externally-hosted web service available internally” on page 2875.

Deleting UDDI references:

delete UDDI references that are configured for use with service integration bus-deployed web services.

About this task

When you remove a UDDI reference that is currently used by one or more web services on a service
integration bus, the system removes the UDDI reference for each associated web service and makes any
necessary updates in the associated UDDI registry.

To remove UDDI references, complete the following steps:

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> Web services -> UDDI References. A list of
UDDI references is displayed in a UDDI references collection form.

3. Select the check box for every UDDI reference that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of UDDI references is updated. Otherwise, an error
message is displayed.

Publishing a web service to a UDDI registry:

When you configure an inbound or outbound service, you enable UDDI interaction by associating the
service with a UDDI reference, and (depending upon what you are trying to do) either or both of the
following pieces of information: The business key that identifies the UDDI business category under which
you want your service to appear in the UDDI registry, and the service-specific part of the service key that
the UDDI registry assigns to your service. To help you understand what UDDI business keys and service
keys are, and where you find them in a UDDI registry, here is a description of how to publish a web
service to a UDDI registry.

Chapter 26. Administering web services - Bus enabled web services 2905



About this task

Service integration technologies interact with UDDI registries as described in UDDI registries: Web service
directories that can be referenced by bus-enabled web services. When you publish a web service to a
UDDI registry, you:

v Specify the type of business that your web service supports. This usually means choosing an existing
business type from a list, but you can also create a new business type. For each type of business there
is an associated business key. Service integration bus-enabled web services use this key, in
combination with the service key, to find the web service in the registry.

v Add a Technical model. Technical models are generic categories. Using these models, a UDDI registry
user can search for a type of service, rather than needing to know the access details for a specific
service. Bus-enabled web services interact with UDDI registries at the level of individual Web services,
and therefore do not use Technical models.

v Add the web service. The UDDI registry assigns a service key to your service, and publishes the
service. Bus-enabled web services use this key, in combination with the business key, to find the web
service in the registry.

The following steps describe how you publish a web service to the IBM WebSphere UDDI Registry. If you
are working with a different UDDI registry, then the specific navigation is different but the underlying
principles are the same.

Procedure

1. Specify a business:

a. To get a list of valid business keys, look up businesses in the UDDI registry. Here is an example of
a UDDI business key:
08A536DC-3482-4E18-BFEC-2E2A23630526

.

b. If you do not find an appropriate existing business in the UDDI registry, then use the Add a
business option on the Advanced Publish section of the Publish pane to add a new one.

2. Add a technical model:

a. Select Add a technical model on the Advanced Publish section of the Publish pane.

b. Enter the name as specified for the target namespace of your binding (or interface) WSDL file, then
add a description (if required).

c. Add a category of Type unspsc and value wsdlSpec (the Key name field can be left blank).

d. Add an overview URL specifying the web address for your binding WSDL file, then add a
description (if required).

Note: The binding and the service definition for your web service might be held in separate WSDL
files, therefore be careful to type the web address of the WSDL file that defines the binding.

e. Click Publish Technical Model.

3. Add a service:

a. Select Show owned entities on the Advanced Publish section of the Publish pane.

b. Select Add a Service for your business.

c. Enter the name as specified for the target service in your WSDL file, then add a description (if
required).

d. For the Access point verify that the correct web address type is selected (for example http for an
HTTP access point), then enter the value of the soap:address location (or its equivalent) from your
service definition WSDL file (for example http://yourhost:80/SimpleTest/servlet/rpcrouter).

2906 Administering WebSphere applications



e. For the Technical model select Add, then find the required Technical model by entering a suitable
prefix and selecting Find technical models, then select the check box for the required Technical
model and click Update.

f. Click Publish Service.

Results

The UDDI registry assigns a service key to your service, and publishes the service.

What to do next

After the service has been published you can get the service key from the target UDDI registry.

Here is an example of a full UDDI service key:
uddi:blade108node01cell:blade108node01:server1:default:6e3d106e-5394-44e3-be17-aca728ac1791

The service-specific part of this key is the final part:
6e3d106e-5394-44e3-be17-aca728ac1791

Creating a new WS-Security binding
Create a new WS-Security binding for use with service integration bus-enabled web services. You use
WS-Security bindings to secure the SOAP messages that pass between service requesters (clients) and
inbound services, and between outbound services and target web services.

Before you begin

Use this option to create WS-Security bindings that comply with either the Web Services Security
(WS-Security) 1.0 specification, or the previous WS-Security specification, WS-Security Draft 13 (also
known as the Web Services Security Core Specification).

Note: Use of WS-Security Draft 13 was deprecated in WebSphere Application Server Version 6.0. Use of
WS-Security Draft 13 is deprecated, and you should only use it to allow continued use of an
existing web services client application that has been written to the WS-Security Draft 13
specification.

This topic assumes that you have got, from the owning parties, the WS-Security bindings for the client (for
an inbound service) and the target web service (for an outbound service).

You can only use WS-Security with web service applications that comply with the Web Services for Java
Platform, Enterprise Edition (Java EE) or Java Specification Requirements (JSR) 109 specification. For
more information, see Web Services Security and Java Platform, Enterprise Edition security relationship.
For information about how to make your web service applications JSR-109 compliant, see Implementing
JAX-RPC web services clients or Implementing static JAX-WS web services clients .

About this task

WS-Security bindings provide the information that the run-time environment needs to implement the
WS-Security configuration (for example “To sign the body, use this key”), You receive this security binding
information direct from the service requester or target service provider, in the form of an
ibm-webservicesclient-bnd.xmi file for the client, and an ibm-webservices-bnd.xmi file for the target web
service. You extract the information from these .xmi files, then manually enter it into the WS-Security
bindings forms.

Bindings are administered independently from any web service that uses them, so you can create a
binding then apply it to many web services.

Chapter 26. Administering web services - Bus enabled web services 2907

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


WebSphere Application Server also includes a set of default WS-Security binding objects, as described in
Default bindings and runtime properties for Web Services Security. However, if you are using either of the
single server products WebSphere Application Server or WebSphere Application Server Express, then
these default bindings are configured within the application server, and are not available for use with
bus-enabled web services.

Unlike most other configuration objects, when you create a WS-Security binding you can only define its
basic aspects. To define the binding details you save the new binding, then reopen it for modification as
described in Modifying an existing WS-Security binding.

To create a new WS-Security binding, complete the following steps:

Procedure
1. Start the administrative console.

2. In the navigation pane, click Service integration -> Web services -> WS-Security bindings. The
WS-Security bindings collection form is displayed.

3. Click New. The New WS-Security binding wizard is displayed.

4. Use the wizard to assign the following general properties:

a. Select the version of the WS-Security specification. Set this option to either Draft 13 (for a binding
that complies with the WS-Security Draft 13 specification) or 1.0 (for a binding that complies with
the Web Services Security (WS-Security) 1.0 specification.

Note: Use of WS-Security Draft 13 was deprecated in WebSphere Application Server Version 6.0.
Use of WS-Security Draft 13 is deprecated, and you should only use it to allow continued
use of an existing web services client application that has been written to the WS-Security
Draft 13 specification.

b. Specify the binding type.

Set this option to one of the following binding types:

For WS-Security Version 1.0:

v request consumer, for use when consuming requests from a client to an inbound service.

v request generator, for use when generating requests from an outbound service to a target web
service.

v response consumer, for use when consuming responses from a target web service to an
outbound service.

v response generator, for use when generating responses from an inbound service to a client.

For WS-Security Draft 13:

v request receiver, for use when receiving requests from a client to an inbound service.

v request sender, for use when sending requests from an outbound service to a target web
service.

v response receiver, for use when receiving responses from a target web service to an outbound
service.

v response sender, for use when sending responses from an inbound service to a client.

c. Specify the WS-Security binding.

Give a name to this binding. This name must be unique and it must follow the following syntax
rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

(WS-Security 1.0 bindings only. Optional.) Select the Use defaults check box to create a
convenient default binding for use in a development and test environment. If you select this option,

2908 Administering WebSphere applications

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


the binding uses the WebSphere Application Server default set of binding information rather than
any custom information that you might subsequently add. Note however that this default binding is
by definition insecure, and is not for production use. You can also select or clear this check box
when you modify an existing WS-Security binding.

Note: If you are creating a WS-Security 1.0 request generator binding, the web address for the
WS-Security 1.0 namespace is displayed in a drop-down list. This is the namespace used
by WS-Security 1.0 to send a request, and you should not have to change this value. The
other values included in the drop-down list refer to namespaces used by earlier versions of
the WS-Security draft specification, and are included for backwards compatibility.

5. Click Finish. The general properties for this item are saved.

Results

If the processing completes successfully, the list of WS-Security bindings is updated to include the new
binding. Otherwise, an error message is displayed.

What to do next

You are now ready to define the binding details as described in “Modifying an existing WS-Security
binding.”

Modifying an existing WS-Security binding
You can add or modify the configuration details for a WS-Security binding that is configured for use with
service integration bus-enabled web services. You use WS-Security bindings to secure the SOAP
messages that pass between service requesters (clients) and inbound services, and between outbound
services and target web services.

About this task

WS-Security bindings provide the information that the run-time environment needs to implement the
WS-Security configuration (for example “To sign the body, use this key”). You receive this security binding
information direct from the service requester or target service provider, in the form of an
ibm-webservicesclient-bnd.xmi file for the client, and an ibm-webservices-bnd.xmi file for the target web
service. You extract the information from these .xmi files, then manually enter it into the WS-Security
bindings forms.

Bindings are administered independently from any web service that uses them, so you can create a
binding then apply it to many web services.

To list the WS-Security bindings, and to view and modify their configuration details, complete the following
steps:

Procedure
1. Start the administrative console.

2. In the navigation pane, click Service integration -> Web services -> WS-Security bindings. A list of
WS-Security bindings is displayed in a WS-Security bindings collection form.

Each available binding is flagged as one of the following binding types:

For WS-Security Version 1.0:

v request consumer, for use when consuming requests from a client to an inbound service.

v request generator, for use when generating requests from an outbound service to a target web
service.

v response consumer, for use when consuming responses from a target web service to an outbound
service.

Chapter 26. Administering web services - Bus enabled web services 2909



v response generator, for use when generating responses from an inbound service to a client.

For WS-Security Draft 13:

v request receiver, for use when receiving requests from a client to an inbound service.

v request sender, for use when sending requests from an outbound service to a target web service.

v response receiver, for use when receiving responses from a target web service to an outbound
service.

v response sender, for use when sending responses from an inbound service to a client.

Each available binding is also flagged as complying with either the Web Services Security
(WS-Security) 1.0 specification or the WS-Security Draft 13 specification.

Note: Use of WS-Security Draft 13 was deprecated in WebSphere Application Server Version 6.0. Use
of WS-Security Draft 13 is deprecated, and you should only use it to allow continued use of an
existing web services client application that has been written to the WS-Security Draft 13
specification.

3. Click the name of a WS-Security binding in the list. The current settings for this WS-Security binding
are displayed.

4. Modify the configuration details for this WS-Security binding. For detailed reference information about
each value that you can set, click on the associated link in the following tables:

Table 272. Value references for WS-Security 1.0 bindings. The left hand column of this table lists the value
references for theWS-Security 1.0 request consumer, and the right hand column lists the value references for the
WS-Security 1.0 request generator.
WS-Security 1.0 request consumer WS-Security 1.0 request generator

v “Signing information collection” on page 3419

v “Encryption information collection” on page 3477

v “Token consumer collection” on page 3518

v “Key information collection” on page 3438

v “Key locator collection” on page 3528

v “Collection certificate store collection” on page 3546

v “Trust anchor collection” on page 3539

v “Web Services Security property collection” on page 3532

v “Signing information collection” on page 3419

v “Encryption information collection” on page 3477

v “Token generator collection” on page 3507

v “Key information collection” on page 3438

v “Key locator collection” on page 3528

v “Collection certificate store collection” on page 3546

v Properties

Table 273. Value references for WS-Security 1.0 bindings. The left hand column of this table lists the value
references for the WS-Security 1.0 response generator, and the right hand column lists the value references for the
WS-Security 1.0 response consumer.
WS-Security 1.0 response generator WS-Security 1.0 response consumer

v “Signing information collection” on page 3419

v “Encryption information collection” on page 3477

v “Token generator collection” on page 3507

v “Key information collection” on page 3438

v “Key locator collection” on page 3528

v “Collection certificate store collection” on page 3546

v “Web Services Security property collection” on page 3532

v “Signing information collection” on page 3419

v “Encryption information collection” on page 3477

v “Token consumer collection” on page 3518

v “Key information collection” on page 3438

v “Key locator collection” on page 3528

v “Collection certificate store collection” on page 3546

v “Trust anchor collection” on page 3539

v “Web Services Security property collection” on page 3532

2910 Administering WebSphere applications

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


Table 274. Value references for Draft 13 WS-Security bindings. The left hand column of this table lists the value
references for the WS-Security Draft 13 request receiver, and the right hand column lists the value references for the
WS-Security Draft 13 request sender.
WS-Security Draft 13 request receiver WS-Security Draft 13 request sender

v “Signing information collection” on page 3419

v “Encryption information collection” on page 3477

v “Trust anchor collection” on page 3539

v “Collection certificate store collection” on page 3546

v “Key locator collection” on page 3528

v “Trusted ID evaluator collection” on page 3557

v “Login mappings collection” on page 3563

v “Signing information collection” on page 3419

v “Encryption information collection” on page 3477

v “Key locator collection” on page 3528

v “Login bindings configuration settings” on page 3580

Table 275. Value references for Draft 13 WS-Security bindings. The left hand column of the table lists the value
references for the WS-Security Draft 13 response sender, and the right hand column lists the value references for the
WS-Security Draft 13 response receiver.
WS-Security Draft 13 response sender WS-Security Draft 13 response receiver

v “Signing information collection” on page 3419

v “Encryption information collection” on page 3477

v “Key locator collection” on page 3528

v “Signing information collection” on page 3419

v “Encryption information collection” on page 3477

v “Trust anchor collection” on page 3539

v “Collection certificate store collection” on page 3546

v “Key locator collection” on page 3528

5. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of WS-Security bindings is redisplayed. Otherwise, an
error message is displayed.

Deleting WS-Security bindings
Delete WS-Security bindings that are configured for use with service integration bus-deployed web
services.

About this task

When you remove a WS-Security binding that is currently used by one or more web services on a service
integration bus, the system removes the WS-Security binding for each associated web service. To remove
WS-Security bindings, complete the following steps:

Procedure
1. Start the administrative console.

2. In the navigation pane, click Service integration -> Web services -> WS-Security bindings. A list of
WS-Security bindings is displayed in a WS-Security bindings collection form.

3. Select the check box for every WS-Security binding that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of WS-Security bindings is updated. Otherwise, an error
message is displayed.

Chapter 26. Administering web services - Bus enabled web services 2911



Creating a new WS-Security configuration
Create a new WS-Security configuration for use with service integration bus-deployed web services. You
use WS-Security configurations to secure the SOAP messages that pass between service requesters
(clients) and inbound services, and between outbound services and target web services.

Before you begin

Use this option to work with WS-Security configurations that comply with either the Web Services Security
(WS-Security) 1.0 specification, or the previous WS-Security specification, WS-Security Draft 13 (also
known as the Web Services Security Core Specification).

Note: Use of WS-Security Draft 13 was deprecated in WebSphere Application Server Version 6.0. Use of
WS-Security Draft 13 is deprecated, and you should only use it to allow continued use of an
existing web services client application that has been written to the WS-Security Draft 13
specification.

This topic assumes that you have got, from the owning parties, the WS-Security configurations for the
client (for an inbound service) and the target web service (for an outbound service).

You can only use WS-Security with web service applications that comply with the Web Services for Java
Platform, Enterprise Edition (Java EE) or Java Specification Requirements (JSR) 109 specification. For
more information, see Web Services Security and Java Platform, Enterprise Edition security relationship.
For information about how to make your web service applications JSR-109 compliant, see Implementing
JAX-RPC web services clients or Implementing static JAX-WS web services clients .

About this task

WS-Security configurations specify the level of security that you require (for example “The body must be
signed”). This level of security is then implemented through the run-time information contained in a
WS-Security binding. You receive the security configuration information direct from the service requester or
target service provider, in the form of an ibm-webservicesclient-ext.xmi file for the client, and an
ibm-webservices-ext.xmi file for the target web service, which contain the information about the levels of
security (integrity, confidentiality and identification) that are required. You extract the information from these
.xmi files, then manually enter it into the WS-Security configuration forms.

Configurations are administered independently from any web service that uses them, so you can create a
configuration then apply it to many web services. However, the security requirements for an inbound
service (which acts as a target web service) are significantly different to those required for an outbound
service (which acts as a client). Consequently, configurations are further divided by service type (inbound
or outbound).

Unlike most other configuration objects, when you create a WS-Security configuration you can only define
its basic aspects. To define the details you save the new WS-Security configuration, then reopen it for
modification as described in “Modifying an existing WS-Security configuration” on page 2913.

To create a new WS-Security configuration, complete the following steps:

Procedure
1. Start the administrative console.

2. In the navigation pane, click Service integration -> Web services -> WS-Security configurations.
The WS-Security service configurations collection form is displayed.

3. Click New. The New WS-Security Service Configuration wizard is displayed.

4. Use the wizard to assign the following general properties:

2912 Administering WebSphere applications

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


a. Select the version of the WS-Security specification. Set this option to either Draft 13 (for a
configuration that complies with the WS-Security Draft 13 specification) or 1.0 (for a configuration
that complies with the Web Services Security (WS-Security) 1.0 specification.

Note: Use of WS-Security Draft 13 was deprecated in WebSphere Application Server Version 6.0.
Use of WS-Security Draft 13 is deprecated, and you should only use it to allow continued
use of an existing web services client application that has been written to the WS-Security
Draft 13 specification.

b. Specify the service type. If you are creating a configuration to secure the SOAP messages that
pass between a service requester (client) and an inbound service (which acts as a target web
service), select Inbound Service. If you are creating a configuration to secure the SOAP messages
that pass between an outbound service (which acts as a client) and a target Web service, select
Outbound Service.

c. Specify the WS-Security configuration type.

Give a name to this configuration. This name must be unique across both WS-Security Version 1.0
and Draft 13 configurations, and it must follow the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

(Optionally) Specify an Actor URI for this configuration. WS-Security headers within the consumed
request message are only processed if they have the specified Actor URI.

5. Click Finish. The general properties for this item are saved.

Results

If the processing completes successfully, the list of WS-Security configurations is updated to include the
new configuration. Otherwise, an error message is displayed.

What to do next

You are now ready to define the configuration details as described in “Modifying an existing WS-Security
configuration.”

Modifying an existing WS-Security configuration
You can add or modify the configuration details for a WS-Security configuration that is configured for use
with service integration bus-enabled web services. You use WS-Security configurations to secure the
SOAP messages that pass between service requesters (clients) and inbound services, and between
outbound services and target web services.

About this task

WS-Security configurations specify the level of security that you require (for example “The body must be
signed”). This level of security is then implemented through the run-time information contained in a
WS-Security binding. You receive the security configuration information direct from the service requester or
target service provider, in the form of an ibm-webservicesclient-ext.xmi file for the client, and an
ibm-webservices-ext.xmi file for the target web service, which contain the information about the levels of
security (integrity, confidentiality and identification) that are required. You extract the information from these
.xmi files, then manually enter it into the WS-Security configuration forms.

Configurations are administered independently from any web service that uses them, so you can create a
configuration then apply it to many web services. However, the security requirements for an inbound
service (which acts as a target web service) are significantly different to those required for an outbound
service (which acts as a client). Consequently, configurations are further divided by service type (inbound
or outbound).

Chapter 26. Administering web services - Bus enabled web services 2913

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


To list the WS-Security configurations, and to view and modify their configuration details, complete the
following steps:

Procedure
1. Start the administrative console.

2. In the navigation pane, click Service integration -> Web services -> WS-Security configurations. A
list of WS-Security configurations is displayed in a WS-Security service configurations collection form.

Each available configuration is flagged as either Inbound or Outbound. You use an inbound
configuration to secure the SOAP messages that pass between a service requester (client) and an
inbound service (which acts as a target web service). You use an outbound configuration to secure the
SOAP messages that pass between an outbound service (which acts as a client) and a target web
service.

Each available configuration is also flagged as complying with either the Web Services Security
(WS-Security) 1.0 specification or the WS-Security Draft 13 specification.

Note: Use of WS-Security Draft 13 was deprecated in WebSphere Application Server Version 6.0. Use
of WS-Security Draft 13 is deprecated, and you should only use it to allow continued use of an
existing web services client application that has been written to the WS-Security Draft 13
specification.

3. Click the name of a WS-Security configuration in the list. The current settings for this WS-Security
configuration are displayed.

4. Modify the configuration details for this WS-Security configuration. For detailed reference information
about each value that you can set, click on the associated link in the following table:

2914 Administering WebSphere applications

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


Table 276. Value references for WS-Security configurations. The left hand column of this table lists the value
references for the WS-Security 1.0 inbound configuration, and the right hand column lists the value references for the
WS-Security 1.0 outbound configuration.
WS-Security 1.0 inbound configuration WS-Security 1.0 outbound configuration

Request consumer

v Required integrity

– Message parts

– Nonce

– Time stamp

v Required confidentiality

– Message parts

– Nonce

– Time stamp

v Required security token

v Caller

– Trust method

- Properties

– Properties

v Add time stamp

– Properties

v Properties

Response generator

v Actor

v Integrity

– Message parts

– Nonce

– Time stamp

v Confidentiality

– Message parts

– Nonce

– Time stamp

v Security Token

v Add time stamp

– Properties

v Properties

Request generator

v Actor

v Integrity

– Message parts

– Nonce

– Time stamp

v Confidentiality

– Message parts

– Nonce

– Time stamp

v Security Token

v Add time stamp

– Properties

v Properties

Response consumer

v Required integrity

– Message parts

– Nonce

– Time stamp

v Required confidentiality

– Message parts

– Nonce

– Time stamp

v Required security token

v Caller

– Trust method

- Properties

– Properties

v Add time stamp

– Properties

v Properties

Table 277. Value references for WS-Security Draft 13 configurations. The left hand column of this table lists the
value references for the WS-Security Draft 13 inbound configuration, and the right hand column lists the value
references for the WS-Security Draft 13 outbound configuration.
WS-Security Draft 13 inbound configuration WS-Security Draft 13 outbound configuration

Request receiver

v Required integrity

v Required confidentiality

v Login configuration

– Custom authentication methods

v ID assertion

v Add received time stamp

v Properties

Response sender

v Actor

v Integrity

v Confidentiality

v Add created time stamp

v Properties

Request sender

v Actor

v Integrity

v Confidentiality

v Login configuration

v ID assertion

v Add created time stamp

v Properties

Response receiver

v Required integrity

v Required confidentiality

v Add received time stamp

v Properties

Chapter 26. Administering web services - Bus enabled web services 2915



5. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of WS-Security configurations is redisplayed. Otherwise,
an error message is displayed.

Deleting WS-Security configurations
Delete WS-Security configurations that are configured for use with service integration bus-enabled web
services.

About this task

When you remove a WS-Security configuration that is currently used by one or more web services on a
service integration bus, the system removes the WS-Security configuration for each associated web
service. To remove WS-Security configurations, complete the following steps:

Procedure
1. Start the administrative console.

2. In the navigation pane, click Service integration -> Web services -> WS-Security configurations. A
list of WS-Security configurations is displayed in a WS-Security service configurations collection form.

3. Select the check box for every WS-Security configuration that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of WS-Security configurations is updated. Otherwise, an
error message is displayed.

Passing SOAP messages with attachments through the service
integration bus
The service integration technologies support web services that use a SOAP binding to pass attachments in
a MIME message.

Before you begin

See the restrictions detailed in Limitations in the support for SOAP with attachments.

About this task

The service integration bus supports SOAP messages that contain either old-style attachments (as
described in the SOAP Messages with Attachments W3C Note) or attachments that use the Web
Services-Interoperability (WS-I) Attachments Profile Version 1.0 (subject to the Limitations in the support
for SOAP with attachments).

Attachments are carried through the service integration bus and passed to the inbound or outbound
service. The content MIME type of each attachment is preserved. When the external target service for an
outbound service is deployed to a Java API for XML-based Remote Procedure Call (JAX-RPC) compliant
server, you can access the attachments on the target service by using the javax.activation.DataHandler
handler.

If the bus receives a message that contains attachments, and the bus subsequently rewrites the message,
then the generated message uses the same attachment style as the received message. To transform
attachments from one style to another, you can use a mediation to modify the message.

2916 Administering WebSphere applications

http://www.w3.org/TR/SOAP-attachments
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html


For more information, see the following topics:

Procedure
v “SOAP Messages with Attachments: WSDL examples”

v “Supporting bound attachments: WSDL examples” on page 2918

v “Locating an attachment by using swaref”

v Writing a mediation that maps between attachment encoding styles

Locating an attachment by using swaref
Use this task to locate message attachments by retrieving the message URI and removing cid: from the
beginning of the retrieved value.

About this task

When a Web Services-Interoperability (WS-I) Attachments Profile Version 1.0 message uses a SOAP with
attachments reference (swaref) to refer to an attachment, the swaref might refer to either bound or
non-bound attachments, and the swaref might refer to a single attachment several times. To enable you to
locate the correct attachment, service integration technologies stores the value of the URI that is encoded
in the message within the SDO data graph for the message body.

When storing the value of an element (or attribute) of type swaref in the data graph, service integration
technologies stores the complete URI from the message instance. Therefore when you retrieve the URI
you remove cid: from the beginning of the retrieved value to find the Content ID of the referenced
attachment.

Example

The following example shows how to use the value of a swaref element to locate the correct attachment.
This example uses the RPC/Literal WSDL and SOAP message from section 4.4 of Web
Services-Interoperability (WS-I) Attachments Profile Version 1.0:
DataObject infoNode = graph.getRootObject().getDataObject("info");
String contentId = infoNode.getString("body/ClaimDetail/ClaimForm");

// Cut off the "cid:" part of the string
contentId = contentId.substring(4);

// Locate the value of the attachment
DataObject attachmentEntry =

infoNode.getDataObject("attachments[contentId=" + contentId + "]");
byte[] data = attachmentEntry.getBytes("data");

SOAP Messages with Attachments: WSDL examples
Use this task to see an example and explanation of a WSDL file with an attachment.

Example

The following example WSDL illustrates a simple operation that has one attachment called attch:
<binding name="MyBinding" type="tns:abc" >

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="MyOperation">

<soap:operation soapAction=""/>
<input>

<mime:multipartRelated>
<mime:part>

<soap:body parts="part1 part2 ..." use="encoded" namespace="http://mynamespace"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding"/>

</mime:part>
<mime:part>

Chapter 26. Administering web services - Bus enabled web services 2917

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html


<mime:content part="attch" type="text/html"/>
</mime:part>

</mime:multipartRelated>
</input>

</operation>
</binding>

In this type of WSDL extension:
v There must be a part attribute (in this example attch) on the input message for the operation (in this

example MyOperation). There can be other input parts to MyOperation that are not attachments.
v In the binding input there must either be a <soap:body> tag or a <mime:multipartRelated> tag, but not

both.
v For MIME messages, the <soap:body> tag is inside a <mime:part> tag. There must only be one

<mime:part> tag that contains a <soap:body> tag in the binding input and that must not contain a
<mime:content> tag as well, because a content type of text/xml is assumed for the <soap:body> tag.

v There can be multiple attachments in a MIME message, each described by a <mime:part> tag.
v Each <mime:part> tag that does not contain a <soap:body> tag contains a <mime:content> tag that

describes the attachment itself. The type attribute inside the <mime:content> tag is not checked or used
by the service integration bus. It is there to suggest, to the application that uses the service integration
bus, what the attachment contains . Multiple <mime:content> tags inside a single <mime:part> tag
means that the back end service expects a single attachment with a type specified by one of the
<mime:content> tags inside that <mime:part> tag.

v The parts="..." attribute inside the <soap:body> tag is assumed to contain the names of all the SOAP
parts in the message, but not the attachment parts. If there are only attachment parts, specify parts=""
(empty string). If you omit the parts attribute altogether, then the service integration bus assumes ALL
parts including the attachments - which causes the attachments to appear twice.

In your WSDL you might have defined a schema for the attachment (for instance as a binary[]). The
service integration technologies silently ignore this mapping and treat the attachment as a Data Handler.

You do not have to mention unreferenced attachments in the WSDL bindings.

Supporting bound attachments: WSDL examples
Use this task to see examples of WSDL fragments with Web Services-Interoperability (WS-I) Attachments
Profile Version 1.0 encoding and SOAP Messages with Attachments encoding.

About this task

Web Services-Interoperability (WS-I) Attachments Profile Version 1.0 defines a convention for constructing
the Content ID for a bound attachment. This convention encodes the message part name. Consequently,
service integration technologies can recognize a bound attachment whether or not the SOAP body
contains elements representing that message part. The convention for constructing a Content ID is as
follows:
name=uuid@domain

where name is the name of the message part that is being encoded, uuid is a globally unique identifier,
and domain is a domain identifier (for example my.example.com).

Note: This approach differs from the SOAP Messages with Attachments encoding scheme, which does
not define a conventions for the Content ID but does use elements within the SOAP body to
indicate that the message part is encoded as an attachment.

In order to distinguish between the cases, service integration technologies assumes that if a message
attachment follows the Version 1.0 convention for constructing the Content ID, then it is a Version 1.0
message.

2918 Administering WebSphere applications

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html


Example

The following WSDL fragment is for a bound attachment, with message instances that follow both styles:
<wsdl:binding name="BoundSoapBinding" type="intf:BoundPortType">

<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="bound">
<soap:operation soapAction=""/>
<wsdl:input>

<mime:multipartRelated>
<mime:part>

<soap:body parts="stringIn" namespace="http://bound"
use="literal"/>

</mime:part>
<mime:part>

<mime:content part="attachIn" type="text/xml"/>
</mime:part>

</mime:multipartRelated>
</wsdl:input>

The following WSDL fragment is for a SOAP instance that uses Version 1.0 encoding. In this fragment, the
message body contains no mention of the attachIn part, and the Content ID of the attachment identifies
the part that is being encoded.
--myBoundary
Content-Type: text/xml
Content-Transfer-Encoding: 7bit
Content-Id: <myStartID>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<ns0:bound xmlns:ns0="http://bound">
<stringIn>some string data</stringIn>

</ns0:bound>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--myBoundary
Content-Type: text/xml
Content-Transfer-Encoding: 7bit
Content-Id: <attachIn=someUUID@some.domain.name>

<someOtherXMLElement/>
--myBoundary--

The following WSDL fragment is for a SOAP instance that uses SOAP Messages with Attachments
encoding. In this fragment, the message body does contain a reference to the bound attachment, and the
Content ID of the attachment is not constrained.
--myBoundary
Content-Type: text/xml
Content-Transfer-Encoding: 7bit
Content-Id: <myStartID>

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<ns0:bound xmlns:ns0="http://bound">
<stringIn>some string data</stringIn>
<attachIn href="cid:notTheStart"/>

</ns0:bound>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--myBoundary

Chapter 26. Administering web services - Bus enabled web services 2919



Content-Type: text/xml
Content-Transfer-Encoding: 7bit
Content-Id: <notTheStart>

<someOtherXMLElement/>
--myBoundary--

In the previous two cases there is sufficient information in the message to identify the bound attachment,
and in both cases service integration technologies places a bound attachment entry in the attachments list,
and places the data from the attachment into the body section of the data graph.

Connection Properties [Collection]
Connection properties define the manner in which an endpoint listener connects to the service integration
bus.

To view this page in the console, click the following path:

Servers -> Server Types -> WebSphere application servers -> server_name -> Endpoint listeners ->
listener_name -> Connection Properties.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

This panel contains a list of all the service integration buses that are currently connected to this endpoint
listener.

Bus name
The name of this property.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Connection Properties [Settings]
Connection properties define the manner in which an endpoint listener connects to the service integration
bus.

To view this page in the console, click the following path:

Servers -> Server Types -> WebSphere application servers -> server_name -> Endpoint listeners ->
listener_name -> Connection Properties -> connection-property_name.

Use this panel to connect this endpoint listener to an available service integration bus.

The service properties define the manner in which the endpoint listener connects to the bus. However you
do not currently have to use this option to set connection properties, for the following reasons:

2920 Administering WebSphere applications



v The only property name that is currently supported is
com.ibm.websphere.sib.webservices.replyDestination, which defines the reply destination name used
by the endpoint listener.

v This property is set automatically when the endpoint listener is configured for the service integration
bus.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Bus name:

The name of this property.

Information Value
Required Yes
Data type drop-down list

Endpoint listeners [Collection]
An endpoint listener receives requests from service requester applications within a specific application
server or cluster.

To view this page in the console, click the following path:

Servers -> Server Types -> WebSphere application servers -> server_name -> Endpoint listeners.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

An endpoint listener is the point (address) at which incoming messages for a web service are received by
a service integration bus. The endpoint listener acts as the ultimate receiver of a SOAP message. The
resulting messages that pass across the service integration bus are not then SOAP messages, rather just
the data and context that resulted from receiving the SOAP message. Each endpoint listener supports a
particular binding. The endpoint listeners that are supplied with WebSphere Application Server support
SOAP over HTTP and SOAP over JMS bindings.

Before you can use an endpoint listener, you must complete the following steps.

1. Install the endpoint listener application in WebSphere Application Server.

2. Configure the endpoint listener for an application server and (as part of the configuration) connect the
endpoint listener to one or more available service integration buses.

3. On a service integration bus to which you have connected the endpoint listener:

a. Configure an inbound service and (as part of the configuration) connect the service to a new
inbound port.

b. Associate the new inbound port with the newly-deployed endpoint listener.

Chapter 26. Administering web services - Bus enabled web services 2921



A deployed endpoint listener is not used until you deploy a web service that uses the endpoint listener.

Name The name of this endpoint listener.

URL root
The root of the URL that should be used to build the endpoint addresses within WSDL documents
to direct requesters to this endpoint listener.

Description
An optional description of the endpoint listener.

Buttons

Button Description

New Create a new endpoint listener.

Delete Delete the selected items.

Endpoint listeners [Settings]
An endpoint listener receives requests from service requester applications within a specific application
server or cluster.

To view this page in the console, click the following path:

Servers -> Server Types -> WebSphere application servers -> server_name -> Endpoint listeners ->
listener_name.

An endpoint listener is the point (address) at which incoming SOAP messages for a web service are
received by a service integration bus. Each endpoint listener supports a particular binding. Use this panel
to configure an endpoint listener for an application server and, as part of the configuration process,
connect the endpoint listener to one or more available service integration buses.

The endpoint listeners that you can create with WebSphere Application Server support SOAP over HTTP
and SOAP over JMS bindings. Example values for these endpoint listeners are given in “Example values
for endpoint listener configuration” on page 2884.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of this endpoint listener.

If you are installing your own endpoint listener application, rather than one that is supplied with
WebSphere Application Server, then this name must match the name given in the endpoint listener
application that you have installed (that is, the display name of the endpoint module within the endpoint
application EAR file).

Information Value
Required No
Data type String

2922 Administering WebSphere applications



Description:

An optional description of the endpoint listener.

Information Value
Required No
Data type Text area

URL root:

The root of the URL that should be used to build the endpoint addresses within WSDL documents to direct
requesters to this endpoint listener.

The address at which external clients access the endpoint listener endpoint. If external clients access the
endpoint listener through an HTTP server or server cluster, by using default port 80, then specify the
HTTP server name and no port number.For example (for SOAP over HTTP endpoint listener 1):

http://www.yourcompany.com/wsgwsoaphttp1

However, if you allow external clients to connect direct to your application server (for example because it is
a stand-alone server or in a development or test environment) then specify the application server host
name and port number.For example (for SOAP over HTTP endpoint listener 1):

http://your.server.name:9080/wsgwsoaphttp1

Information Value
Required Yes
Data type Text

WSDL serving HTTP URL root:

WSDL serving HTTP URL root

The root of the web address for the WSDL files of the inbound services that are available at this endpoint
listener. This address comprises the root of the HTTP address at which external clients access your
endpoint listener application, followed by /sibws.

If external clients access the endpoint listener through an HTTP server or server cluster, typically by using
default port 80, then this URL root includes the HTTP server name and no port number. For example:
http://www.yourcompany.com/sibws

However, if you allow external clients to connect direct to your application server (for example in a
development or test environment) then this URL root includes the application server host name and port
number. For example:
http://your.server.name:9080/sibws

Note: The WSDL serving HTTP URL root is only used internally by other components of WebSphere
Application Server (notably the IBM UDDI registry). For all other uses, you access the WSDL file
through the endpoint listener endpoint for the inbound service.

Information Value
Required Yes
Data type Text

Chapter 26. Administering web services - Bus enabled web services 2923



Additional Properties
Connection Properties

Connection properties define the manner in which an endpoint listener connects to the service
integration bus.

The application that handles the requests for this endpoint listener.

JAX-RPC Handler Lists [Collection]
A JAX-RPC handler list defines an ordered list of JAX-RPC handlers to be invoked against requests and
responses.

To view this page in the console, click the following path:

Service integration -> Web services -> JAX-RPC Handler Lists.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

A handler is a Java class that performs a range of handling tasks. For example: logging messages, or
transforming their contents, or terminating an incoming request. To enable handlers to undertake more
complex operations, you chain them together into handler lists. You associate each handler list with one or
more ports, so that the handler list can monitor activity at the port, and take appropriate action depending
upon the sender and content of each message that passes through the port.

When you remove a handler list that is currently used by one or more web services on a service
integration bus, the system removes the handler list for each associated web service.

Name The name of this JAX-RPC handler list.

Description
An optional description of the JAX-RPC handler list.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

JAX-RPC Handler Lists [Settings]
A JAX-RPC handler list defines an ordered list of JAX-RPC handlers to be invoked against requests and
responses.

To view this page in the console, click the following path:

Service integration -> Web services -> JAX-RPC Handler Lists -> handler-list_name.

A handler is a Java class that performs a range of handling tasks. For example: logging messages, or
transforming their contents, or terminating an incoming request. To enable handlers to undertake more

2924 Administering WebSphere applications



complex operations, you chain them together into handler lists. You associate each handler list with one or
more ports, so that the handler list can monitor activity at the port, and take appropriate action depending
upon the sender and content of each message that passes through the port.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of this JAX-RPC handler list.

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

When you change a handler list name, the system looks up all objects that refer to it and updates the
name.

Information Value
Required Yes
Data type String

Description :

An optional description of the JAX-RPC handler list.

Information Value
Required No
Data type Text area

JAX-RPC Handlers:

The JAX-RPC handlers in this list.

Handlers are applied in the sequence in which they appear in the handler list.

Information Value
Required No
Data type Custom

Buttons

Button Description

Add Add a selected handler to the handler list.

Remove Remove a selected handler from the handler list.

Down Move the selected handler down the handler list.

Up Move the selected handler up the handler list.

Chapter 26. Administering web services - Bus enabled web services 2925



JAX-WS Handler Lists [Collection]
A JAX-WS handler list defines an ordered list of JAX-WS handlers to be invoked against requests and
responses.

To view this page in the console, click the following path:

Service integration -> WS-Notification -> JAX-WS Handler Lists.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

A handler is a Java class that performs a range of handling tasks. For example: logging messages, or
transforming their contents, or terminating an incoming request. To enable handlers to undertake more
complex operations, you chain them together into handler lists. You associate each handler list with one or
more JAX-WS based Version 7.0 WS-Notification services or service points, so that the handler list can
monitor WS-Notification activity and take appropriate action depending upon the sender and content of
each inbound or outbound message.

When you remove a handler list that is currently used by one or more web services on a service
integration bus, the system removes the handler list for each associated web service.

Name The name of the JAX-WS handler list

Description
Description of the JAX-WS handler list

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

JAX-WS Handler Lists [Settings]
A JAX-WS handler list defines an ordered list of JAX-WS handlers to be invoked against requests and
responses.

To view this page in the console, click the following path:

Service integration -> WS-Notification -> JAX-WS Handler Lists -> handler-list_name.

A handler is a Java class that performs a range of handling tasks. For example: logging messages, or
transforming their contents, or terminating an incoming request. To enable handlers to undertake more
complex operations, you chain them together into handler lists. You associate each handler list with one or
more JAX-WS based Version 7.0 WS-Notification services or service points, so that the handler list can
monitor WS-Notification activity and take appropriate action depending upon the sender and content of
each inbound or outbound message.

2926 Administering WebSphere applications



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the JAX-WS handler list

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

When you change a handler list name, the system looks up all objects that refer to it and updates the
name.

Information Value
Required Yes
Data type String

Description:

Description of the JAX-WS handler list

Information Value
Required No
Data type Text area

JAX-WS Handlers:

The JAX-WS handlers in the handler list

Handlers are applied in the sequence in which they appear in the handler list.

Information Value
Required No
Data type Custom

Buttons

Button Description

Add Add a selected handler to the handler list.

Remove Remove a selected handler from the handler list.

Down Move the selected handler down the handler list.

Up Move the selected handler up the handler list.

Chapter 26. Administering web services - Bus enabled web services 2927



JAX-RPC Handlers [Collection]
A JAX-RPC handler provides customization of web service request or response handling.

To view this page in the console, click the following path:

Service integration -> Web services -> JAX-RPC Handlers.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

A handler is a Java class that performs a range of handling tasks. For example: logging messages, or
transforming their contents, or terminating an incoming request. For more detailed information about
JAX-RPC and JAX-RPC handlers, see the developerWorks article Support for J2EE Web Services in
WebSphere Studio Application Developer V5.1 -- Part 3: JAX-RPC Handlers.

When you remove a handler that is currently used by one or more web services on a service integration
bus, the system removes the handler from the handler lists for each associated web service.

Name The name of this JAX-RPC handler.

Class name
The name of the class that implements the JAX-RPC handler.

Description
An optional description of the JAX-RPC handler.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

JAX-RPC Handlers [Settings]
A JAX-RPC handler provides customization of web service request or response handling.

To view this page in the console, click the following path:

Service integration -> Web services -> JAX-RPC Handlers -> handler_name.

A handler is a Java class that performs a range of handling tasks. For example: logging messages, or
transforming their contents, or terminating an incoming request.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

2928 Administering WebSphere applications

http://www.ibm.com/developerworks/websphere/library/techarticles/0310_flurry/flurry3.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0310_flurry/flurry3.html


General Properties

Name:

The name of this JAX-RPC handler.

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

When you change a handler name, the system looks up all objects that refer to it and updates the name.

Information Value
Required Yes
Data type String

Description:

An optional description of the JAX-RPC handler.

Information Value
Required No
Data type Text area

Class name:

The name of the class that implements the JAX-RPC handler.

Before you can create a handler configuration, you must make the handler class available to the
application server in one of the following ways:

v Copy the individual class file into a directory structure under app_server_root/classes that matches the
package name of the class, where app_server_root is the root directory for the installation of
WebSphere Application Server. For example a handler class com.ibm.jaxrpc.handler.TestHandler is
copied into the app_server_root/classes/com/ibm/jaxrpc/handler directory.

v Package the class files for all your handlers as a JAR file, then copy it into the app_server_root/lib/
app directory.

Information Value
Required Yes
Data type String

Additional Properties
JAX-RPC Header

Defines the JAX-RPC headers against which this handler operates.

SOAP Roles
Defines the SOAP roles in which this handler acts

Custom properties
Specifies additional custom properties that you can configure for this service.

Chapter 26. Administering web services - Bus enabled web services 2929



JAX-WS Handlers [Collection]
A JAX-WS handler provides customization of web service request or response handling.

To view this page in the console, click the following path:

Service integration -> WS-Notification -> JAX-WS Handlers.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

A handler is a Java class that performs a range of handling tasks. For example: logging messages, or
transforming their contents, or terminating an incoming request.

When you remove a handler that is currently used by one or more web services on a service integration
bus, the system removes the handler from the handler lists for each associated web service.

Name The name of the JAX-WS Handler

Class name
The class name of the JAX-WS Handler

Description
Description of the JAX-WS Handler

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

JAX-WS Handlers [Settings]
A JAX-WS handler provides customization of web service request or response handling.

To view this page in the console, click the following path:

Service integration -> WS-Notification -> JAX-WS Handlers -> handler_name.

A handler is a Java class that performs a range of handling tasks. For example: logging messages, or
transforming their contents, or terminating an incoming request.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

2930 Administering WebSphere applications



General Properties

Name:

The name of the JAX-WS Handler

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

When you change a handler name, the system looks up all objects that refer to it and updates the name.

Information Value
Required Yes
Data type String

Description:

Description of the JAX-WS Handler

Information Value
Required No
Data type Text area

Class name:

The class name of the JAX-WS Handler

Before you can create a handler configuration, you must make the handler class available to the
application server in one of the following ways:

v Copy the individual class file into a directory structure under app_server_root/classes that matches the
package name of the class, where app_server_root is the root directory for the installation of
WebSphere Application Server. For example a handler class com.ibm.jaxws.handler.TestHandler is
copied into the app_server_root/classes/com/ibm/jaxws/handler directory.

v Package the class files for all your handlers as a JAR file, then copy it into the app_server_root/lib/
app directory.

Information Value
Required Yes
Data type String

JAX-RPC Header [Collection]
Defines the JAX-RPC headers against which this handler operates.

To view this page in the console, click the following path:

Service integration -> Web services -> JAX-RPC Handlers -> handler_name -> JAX-RPC headers.

To browse or change the properties of a listed item, select its name in the list.

Chapter 26. Administering web services - Bus enabled web services 2931



To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

JAX-RPC headers are SOAP headers that are processed by a JAX-RPC handler.

Namespace URI
The namespace of the header that is processed by this handler

Local part
The local part of the name of the header that is processed by this handler

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

JAX-RPC Header [Settings]
Defines the JAX-RPC headers against which this handler operates.

To view this page in the console, click the following path:

Service integration -> Web services -> JAX-RPC Handlers -> handler_name -> JAX-RPC headers ->
header_name.

JAX-RPC headers are SOAP headers that are processed by a JAX-RPC handler.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Namespace URI:

The namespace of the header that is processed by this handler

Information Value
Required Yes
Data type String

Local part:

The local part of the name of the header that is processed by this handler

Information Value
Required Yes
Data type String

2932 Administering WebSphere applications



Inbound Ports [Collection]
An inbound port describes the web service enablement of a service destination on a specific endpoint
listener, with associated configuration.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Services] Inbound Services -> service_name ->
[Additional Properties] Inbound Ports.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Requests and responses to an inbound service can be sent across any binding (for example SOAP over
HTTP or SOAP over JMS) that is available to the service integration bus. Each available binding is
represented by a type of port.

Each inbound port is associated with an endpoint listener, and you can control which groups of users can
access a particular inbound service by making the service available only through specific endpoint
listeners.

You can associate JAX-RPC handler lists with ports, so that the handlers can monitor activity at the port,
and take appropriate action depending upon the sender and content of each message that passes through
the port.

You can set the levels of security to be applied to messages. The security level can be set independently
for request and response messages.

Note: When a SOAP message is processed at the inbound port as specified in the SOAP specification, if
the SOAP header has an actor attribute that is not intended for processing in the inbound port, the
attribute is forwarded in the message.

Name The inbound port name. This name appears as the port name within the WSDL published for the
inbound service.

Endpoint Listener
An endpoint listener receives requests from service requester applications within a specific
application server or cluster.

Description
An optional description of the inbound port. This description appears in any published WSDL for
this port.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Chapter 26. Administering web services - Bus enabled web services 2933



Inbound Ports [Settings]
An inbound port describes the web service enablement of a service destination on a specific endpoint
listener, with associated configuration.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Services] Inbound Services -> service_name ->
[Additional Properties] Inbound Ports -> port_name.

Each inbound port is associated with an endpoint listener, and you can control which groups of users can
access a particular inbound service by making the service available only through specific endpoint
listeners.

You can set the levels of security to be applied to messages. The security level can be set independently
for request and response messages.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The inbound port name. This name appears as the port name within the WSDL published for the inbound
service.

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Information Value
Required Yes
Data type Text

Description:

An optional description of the inbound port. This description appears in any published WSDL for this port.

Information Value
Required No
Data type Text area

Endpoint listener :

This defines the physical endpoint listener at which requests for this port are received.

Information Value
Required Yes
Data type drop-down list

2934 Administering WebSphere applications



Template port name:

Name of the port in the template WSDL to use as a basis for this port's binding

Information Value
Required No
Data type drop-down list

JAX-RPC handler list :

This defines which list of JAX-RPC handlers is to be invoked for this port.

You use JAX-RPC handlers to monitor activity at the port, and take appropriate action (for example
logging, or re-routing) depending upon the sender and content of each message that passes through the
port.

You configure the set of JAX-RPC handler lists by using the administrative console option Service
integration -> Web services -> JAX-RPC Handler Lists.

Information Value
Required No
Data type drop-down list

Security request binding :

The security binding to be used for requests received by this port.

You configure the security bindings in this list by using the administrative console option Service
integration -> Web services -> WS-Security bindings.

Information Value
Required No
Data type drop-down list

Security response binding :

The security binding to be used for responses sent by this port.

You configure the security bindings in this list by using the administrative console option Service
integration -> Web services -> WS-Security bindings.

Information Value
Required No
Data type drop-down list

Security configuration :

Specifies the details of how security is applied to requests and responses.

You define the security configurations in this list by using the administrative console option Service
integration -> Web services -> WS-Security configurations.

Information Value
Required No

Chapter 26. Administering web services - Bus enabled web services 2935



Information Value
Data type drop-down list

Additional Properties
Custom properties

Specifies additional custom properties that you can configure for this service.

By default, a timeout error is generated if an outbound service waits for more than 60 seconds for a
response from a target web service. To change the timeout value for this inbound port from the default
value of 60 seconds to a new value of (for example) 120 seconds, create the following custom property:

Name:
timeout

Value (in milliseconds):
120000

Inbound services [Collection]
An inbound service describes the web service enablement of a service destination. It provides the
configuration of endpoint listeners within a port.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Services] Inbound Services.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

An inbound service is a web interface to a service that is provided internally (that is, a service provided by
your own organization and hosted in a location that is directly available through a service integration bus
destination). To configure a locally-hosted service as an inbound service, you first associate it with a
service destination, then you configure one or more ports (each with an associated endpoint listener)
through which service requests and responses are passed to the service. You can also choose to have the
local service made available through one or more UDDI registries.

Name The inbound service name. This name appears as the service name within WSDL published for
this inbound service.

Service destination name
The service destination to be enabled for web service access.

Published
Describes the manner in which the WSDL describing an inbound service is published to a UDDI
registry.

Description
An optional description of the inbound service. This description appears in any published WSDL
for this service.

2936 Administering WebSphere applications



Buttons

Button Description

New New

Delete Delete the selected items.

Publish to UDDI Create a new inbound service.

Unpublish from UDDI Remove the inbound service from the UDDI registry.

Inbound services [Settings]
An inbound service describes the web service enablement of a service destination. It provides the
configuration of endpoint listeners within a port.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Services] Inbound Services -> service_name.

An inbound service is a web interface to a service that is provided internally (that is, a service provided by
your own organization and hosted in a location that is directly available through a service integration bus
destination). To configure a locally-hosted service as an inbound service, you first associate it with a
service destination, then you configure one or more ports (each with an associated endpoint listener)
through which service requests and responses are passed to the service. You can also choose to have the
local service made available through one or more UDDI registries.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

Buttons

Button Description

Reload template WSDL Reload the template WSDL for this inbound service.

General Properties

Name:

The inbound service name. This name appears as the service name within WSDL published for this
inbound service.

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

v It must not be longer than 250 characters.

Information Value
Required Yes
Data type String

Chapter 26. Administering web services - Bus enabled web services 2937



Service destination name:

The service destination to be enabled for web service access.

Information Value
Required No
Data type drop-down list

Description:

An optional description of the inbound service. This description appears in any published WSDL for this
service.

Information Value
Required No
Data type Text area

Template WSDL location type:

The type of the template WSDL Location.

Specify the location type for the template WSDL file. The template WSDL file is either located at a web
address, or through a UDDI registry. When service integration technologies deploys the web service, it use
this template file as the basis for generating a WSDL file for the service.

Information Value
Required No
Data type Radio button

Template WSDL location:

The URL location or UDDI service key of the template WSDL.

Depending upon which template WSDL location type you specified in the previous field, enter either the
URL location or the service-specific part of the UDDI service key for the template WSDL file.

Here is an example of a full UDDI service key:
uddi:blade108node01cell:blade108node01:server1:default:6e3d106e-5394-44e3-be17-aca728ac1791

The service-specific part of this key is the final part:
6e3d106e-5394-44e3-be17-aca728ac1791

Information Value
Required Yes
Data type Text

Template WSDL UDDI registry:

The UDDI registry containing the template WSDL. Required for UDDI location type.

If you specified a template WSDL location type of “UDDI”, select a UDDI reference from the drop-down
list.

2938 Administering WebSphere applications



You configure the UDDI references in this list by using the administrative console option Service
integration -> Web services -> UDDI References.

Information Value
Required No
Data type drop-down list

Template WSDL service name:

The name of the service within the template WSDL. Only required if there is more than one service in the
WSDL.

If the template WSDL contains more than one service, or the WSDL is located through a UDDI registry,
type the service name.

Information Value
Required Yes
Data type String

Template WSDL service namespace:

The namespace of the service within the template WSDL. Only required if there is more than one service
in the WSDL.

If the template WSDL contains more than one service, or the WSDL is located through a UDDI registry,
type the namespace of the service name.

Information Value
Required Yes
Data type String

Enable operation level security:

Indicates whether the access control policy should be enforced.

If you enable this option you must also complete, for this web service, the steps described in the
information center for password-protecting a web service operation.

Information Value
Required No
Data type Boolean

Additional Properties
Inbound Ports

An inbound port describes the web service enablement of a service destination on a specific
endpoint listener, with associated configuration.

UDDI Publication
Describes the manner in which the WSDL describing an inbound service is published to a UDDI
registry.

Custom properties
Specifies additional custom properties that you can configure for this service.

Chapter 26. Administering web services - Bus enabled web services 2939



Publish WSDL files to ZIP file
Publish the WSDL files for this service to a .zip file

Outbound Ports [Collection]
An outbound port represents a single port for a WSDL-defined service provider. It provides the
configuration of invocation of the web service.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Services] Outbound Services -> service_name ->
Outbound Ports.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Requests and responses to an outbound service can be sent across any binding (for example SOAP over
HTTP or SOAP over JMS) that is available to both the service integration bus and the external web
service. Each available binding is represented by a port.

You can associate JAX-RPC handler lists with ports, so that the handlers can monitor activity at the port,
and take appropriate action depending upon the sender and content of each message that passes through
the port. If the external web service requires HTTP basic authentication, you can use a JAX-RPC handler
list to provide an HTTP basic authentication header.

You can set the levels of security to be applied to messages. The security level can be set independently
for request and response messages.

Because the service is hosted externally, you might also have to enable proxy server authentication to get
access to the Internet.

Name The port name.

Port destination name
The name of the port destination for this port.

Description
An optional description of the port.

Buttons

Button Description

New Create a new outbound port.

Delete Delete the selected items.

Outbound Ports [Settings]
An outbound port represents a single port for a WSDL-defined service provider. It provides the
configuration of invocation of the web service.

To view this page in the console, click the following path:

2940 Administering WebSphere applications



Service integration -> Buses -> bus_name -> [Services] Outbound Services -> service_name ->
Outbound Ports -> port_name.

Requests and responses to an outbound service can be sent across any binding (for example SOAP over
HTTP or SOAP over JMS) that is available to both the service integration bus and the external web
service. Each available binding is represented by a port.

You can set the levels of security to be applied to messages. The security level can be set independently
for request and response messages.

Because the service is hosted externally, you might also have to enable proxy server authentication to get
permission to access the Internet.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The port name.

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Information Value
Required Yes
Data type Custom

Description:

An optional description of the port.

Information Value
Required No
Data type Text area

Port destination name:

The name of the port destination for this port.

Information Value
Required Yes
Data type Custom

Port destination point:

The application server or cluster for the port destination.

Chapter 26. Administering web services - Bus enabled web services 2941



Information Value
Required Yes
Data type Custom

Binding namespace:

The namespace of the binding for this point.

Information Value
Required No
Data type String

Endpoint address:

The endpoint address for this port.

Information Value
Required No
Data type String

JAX-RPC handler list:

This defines which list of JAX-RPC handlers is to be invoked for this port.

You use JAX-RPC handlers to monitor activity at the port, and take appropriate action (for example
logging, or re-routing) depending upon the sender and content of each message that passes through the
port. If the external web service requires HTTP basic authentication, you can use a JAX-RPC handler list
to provide an HTTP basic authentication header.

You configure the set of JAX-RPC handler lists by using the administrative console option Service
integration -> Web services -> JAX-RPC Handler Lists.

Information Value
Required No
Data type drop-down list

Security request binding:

The security binding to be used with requests sent by this port.

You configure the security bindings in this list by using the administrative console option Service
integration -> Web services -> WS-Security bindings.

Information Value
Required No
Data type drop-down list

Security response binding:

The security binding to be used for responses received by this port.

You configure the security bindings in this list by using the administrative console option Service
integration -> Web services -> WS-Security bindings.

2942 Administering WebSphere applications



Information Value
Required No
Data type drop-down list

Security configuration:

Specifies the details of how security is applied to requests and responses.

You define the security configurations in this list by using the administrative console option Service
integration -> Web services -> WS-Security configurations.

Information Value
Required No
Data type drop-down list

Authenticating proxy host name :

The host name of the authenticating proxy used for invoking requests for this port.

The service integration technologies require access to the Internet for invoking outbound web services and
for retrieval of service provider WSDL files. If you use a proxy server in support of Internet routing, and if
your proxy server is configured to require authentication before it grants access to the Internet, then you
must also complete, for this outbound port, the steps described in the information center for enabling proxy
server authentication.

Information Value
Required No
Data type String

Authenticating proxy port number :

The port number of the authenticating proxy.

Information Value
Required No
Data type String

Authenticating proxy Authorization Alias:

The name of the authorization alias that contains the user name and password to use with the
authenticating proxy.

Information Value
Required No
Data type String

Additional Properties
Custom properties

Specifies additional custom properties that you can configure for this service.

Chapter 26. Administering web services - Bus enabled web services 2943



Outbound services [Collection]
An outbound service represents a WSDL-described service.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Services] Outbound Services.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

An outbound service is a web service that is hosted externally, and is made available through a service
integration bus. To configure an externally-hosted service for a bus, you first associate it with a service
destination, then you configure one or more port destinations (one for each type of binding, for example
SOAP over HTTP or SOAP over JMS) through which service requests and responses are passed to the
external service.

Note: You get the port definitions from the WSDL, but you can choose which ones you want to create.

Because the service is hosted externally, you might also have to enable proxy server authentication for
each port to get permission to access the Internet.

Name The outbound service name.

Service destination name
The name of the service destination for this outbound service.

Description
Description of the outbound service.

Buttons

Button Description

New Create a new outbound service.

Delete Delete the selected items.

Outbound services [Settings]
An outbound service represents a WSDL-described service.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Services] Outbound Services -> service_name.

An outbound service is a web service that is hosted externally, and is made available through a service
integration bus. To configure an externally-hosted service for a bus, you first associate it with a service
destination, then you configure one or more port destinations (one for each type of binding, for example
SOAP over HTTP or SOAP over JMS) through which service requests and responses are passed to the
external service.

2944 Administering WebSphere applications



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

Buttons

Button Description

Reload WSDL Refresh the details displayed with data from the WSDL
file.

General Properties

Name:

The outbound service name.

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Information Value
Required Yes
Data type String

Description:

Description of the outbound service.

Information Value
Required No
Data type Text area

Service destination name:

The name of the service destination for this outbound service.

Information Value
Required No
Data type Custom

WSDL location type:

The web service WSDL location type.

Specify the location type for the service provider WSDL file that describes the web service. The WSDL file
is either located at a web address, or through a UDDI registry.

Information Value
Required No
Data type Radio button

Chapter 26. Administering web services - Bus enabled web services 2945



WSDL location:

The URL location or the UDDI service key of the WSDL. When specifying a UDDI service key, provide
only the last segment of the key. For example, for a service key of
'uddi:cell01:node01:server1:default:6e3d106e-5394-44e3-be17-aca728ac1791', supply a value of
'6e3d106e-5394-44e3-be17-aca728ac1791'.

Depending upon which WSDL location type you specified in the previous field, enter either the URL
location or the service-specific part of the UDDI service key for the service provider WSDL file.

Here is an example of a full UDDI service key:
uddi:blade108node01cell:blade108node01:server1:default:6e3d106e-5394-44e3-be17-aca728ac1791

The service-specific part of this key is the final part:
6e3d106e-5394-44e3-be17-aca728ac1791

Information Value
Required Yes
Data type Text

WSDL UDDI Registry:

The UDDI registry containing the service provider's WSDL document. Required for UDDI Location Type.

If you specified a WSDL location type of “UDDI”, select a UDDI reference from the selection list.

You configure the UDDI references in this list by using the administrative console option Service
integration -> Web services -> UDDI References.

Information Value
Required No
Data type drop-down list

WSDL service name:

The name of the service within the WSDL. Required if there is more than one service in the WSDL.

If the service provider WSDL contains more than one service, or the WSDL is located through a UDDI
registry, type the service name from the service provider WSDL.

Information Value
Required Yes
Data type String

WSDL service namespace:

The namespace of the service within the WSDL. Required if there is more than one service in the WSDL.

If the service provider WSDL contains more than one service, or the WSDL is located through a UDDI
registry, type the namespace of the service name from the service provider WSDL.

Information Value
Required Yes
Data type Text

2946 Administering WebSphere applications



Default port name:

This port is used for all invocations unless it is overridden at runtime.

Requests and responses to this service can be sent across any binding (for example SOAP over HTTP or
SOAP over JMS) that is available to both the service integration bus and the external web service. Each
available binding is represented by a port. Select the default port that you want the service integration
technologies to use for communicating with the external service.

Information Value
Required No
Data type drop-down list

Port selection mediation:

The name of the port selection mediation that may override the default port for each request.

You can use a mediation to override the default port. For example, you can specify that requests from a
particular client should always be routed to a particular port whether or not it is the default port.

Information Value
Required No
Data type drop-down list

Bus member:

The bus member to which the port selection mediation is assigned.

Information Value
Required No
Data type drop-down list

Enable operation level security:

Selects whether the access control policy should be enforced.

If you enable this option you must also complete, for this web service, the associated steps described in
the information center for enabling operation-level authentication.

Information Value
Required No
Data type Boolean

Additional Properties
Outbound Ports

Each port enabled within this service has its own configuration.

Custom properties
Specifies additional custom properties that you can configure for this service.

Chapter 26. Administering web services - Bus enabled web services 2947



Publish WSDL files to ZIP file [Settings]
Publish the WSDL files for this service to a .zip file

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Services] Inbound Services -> service_name ->
[Additional Properties] Publish WSDL files to ZIP file.

Use the publish WSDL files property to export the template WSDL for this inbound service to a
compressed file.

The exported file includes a version of the WSDL file that has no ports (bindings) defined. This non-bound
WSDL is intended for use by your colleagues preparing to deploy an inbound service. It gives you a
convenient way of sharing information on the planned deployment details for the service among your team.
When you finally deploy the inbound service, the associated WSDL must be complete (that is, it must
include the binding information). For more information, see the topic “Non-bound WSDL” in the information
center.

The non-bound WSDL file is always published in the exported compressed file for the inbound service,
along with the bound WSDL file if the inbound service has any ports defined. The compressed file, named
inbound_service_name.zip, therefore always contains the following files:

v bus_name.inbound_service_nameNonBound.wsdl (this file contains the non-bound service, port and
binding for the inbound service).

v bus_name.inbound_service_namePortTypes.wsdl (this file contains the port type definition for the inbound
service).

If the inbound service has one or more ports, then the compressed file additionally contains the following
files:

v bus_name.inbound_service_nameService.wsdl (this file contains the service and port elements for the
inbound service).

v bus_name.inbound_service_nameBindings.wsdl (this file contains the binding elements that correspond
to the ports for the inbound service).

If there is an error generating the WSDL then an error page is returned.

SOAP Roles [Collection]
Defines the SOAP roles in which this handler acts

To view this page in the console, click the following path:

Service integration -> Web services -> JAX-RPC Handlers -> handler_name -> SOAP roles.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

For more information, see the SOAP specification.

Role Defines the SOAP roles in which this handler acts

2948 Administering WebSphere applications

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/


Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

SOAP Roles [Settings]
Defines the SOAP roles in which this handler acts

To view this page in the console, click the following path:

Service integration -> Web services -> JAX-RPC Handlers -> handler_name -> SOAP roles ->
role_name.

For more information, see the SOAP specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Role:

Defines the SOAP roles in which this handler acts

Information Value
Required Yes
Data type String

UDDI Publication [Collection]
Describes the manner in which the WSDL describing an inbound service is published to a UDDI registry.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Services] Inbound Services -> service_name ->
[Additional Properties] UDDI publication.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

For more general information about UDDI and UDDI registries, see the UDDI community at uddi.org.

Name The name of this UDDI publication property.

UDDI reference
The reference of the UDDI registry to which WSDL is to be published.

Chapter 26. Administering web services - Bus enabled web services 2949

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://uddi.org


Published
Describes the manner in which the WSDL describing an inbound service is published to a UDDI
registry.

Description
An optional description of the UDDI publication properties.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Publish to UDDI Create a new inbound service.

Unpublish from UDDI Remove the inbound service from the UDDI registry.

UDDI Publication [Settings]
Describes the manner in which the WSDL describing an inbound service is published to a UDDI registry.

To view this page in the console, click the following path:

Service integration -> Buses -> bus_name -> [Services] Inbound Services -> service_name ->
[Additional Properties] UDDI publication -> publication_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of this UDDI publication property.

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Information Value
Required Yes
Data type String

Description:

An optional description of the UDDI publication properties.

Information Value
Required No
Data type Text area

2950 Administering WebSphere applications



UDDI reference:

The reference of the UDDI registry to which WSDL is to be published.

A UDDI reference is a pointer to a UDDI registry. The UDDI references in the list are those that you added
by using the administrative console option Service integration -> Web services -> UDDI References.
Select a UDDI reference that can access the UDDI business category under which you want to publish
this service.

Information Value
Required Yes
Data type Custom

Business key:

The key of the business within which this service is to be published.

The business key identifies the business category under which you want your service to appear in UDDI.
To get a list of valid business keys, look up businesses in a UDDI registry. Here is an example of a UDDI
business key: 08A536DC-3482-4E18-BFEC-2E2A23630526.

Information Value
Required Yes
Data type Custom

Published service key:

The key of the service as published to the UDDI registry.

This is the service-specific part of the UDDI service key.

When a service is published to UDDI, the registry assigns a service key to the service.

After the service has been published you can get the service key from the target UDDI registry.

Here is an example of a full UDDI service key:
uddi:blade108node01cell:blade108node01:server1:default:6e3d106e-5394-44e3-be17-aca728ac1791

The service-specific part of this key is the final part:
6e3d106e-5394-44e3-be17-aca728ac1791

Information Value
Required No
Data type String

Custom HTTP URL for WSDL publication:

The HTTP URL root of the servlet that is to serve the WSDL that describes this service.

Information Value
Required No
Data type String

Chapter 26. Administering web services - Bus enabled web services 2951



UDDI References [Collection]
A UDDI reference describes the parameters necessary to connect to a particular UDDI registry.

To view this page in the console, click the following path:

Service integration -> Web services -> UDDI References.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

A UDDI reference is a pointer to a UDDI registry. This registry can be a private UDDI registry such as the
IBM WebSphere UDDI Registry, or a public UDDI registry.

For more general information about UDDI and UDDI registries, see the UDDI community at uddi.org.

Name The name of this UDDI reference.

Description
An optional description of the UDDI Registry.

Buttons

Button Resulting action
New Create a new administrative object of this type.
Delete Delete the selected items.

UDDI References [Settings]
A UDDI reference describes the parameters necessary to connect to a particular UDDI registry.

To view this page in the console, click the following path:

Service integration -> Web services -> UDDI References -> UDDI-reference_name.

A UDDI reference is a pointer to a UDDI registry. This registry can be a private UDDI registry such as the
IBM WebSphere UDDI Registry, or a public UDDI registry.

In the UDDI model, web services are owned by businesses, and businesses are owned by Authorized
Names. Each UDDI reference gives access to the web services that are owned by a single Authorized
Name in a single UDDI registry.

For more general information about UDDI and UDDI registries, see the UDDI community at uddi.org.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

2952 Administering WebSphere applications

http://uddi.org
http://uddi.org


General Properties

Name:

The name of this UDDI reference.

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

You might need more than one UDDI reference for a given UDDI registry.

Required Data type
Yes String

Description:

An optional description of the UDDI Registry.

Required Data type
No Text area

Inquiry URL:

The URL that applications use to inquire on the UDDI registry.

This is the web address that provides access to this registry for the SOAP inquiry API.

Required Data type
Yes String

Publish URL:

The URL that applications use to publish to the UDDI registry.

This is the web address that provides access to this registry for the SOAP publish API.

Required Data type
No String

Authentication Alias:

The user ID for accessing the UDDI repository

This is an authentication alias that you have previously defined for the user ID and password of a UDDI
“Authorized Name” that has update access to this registry.

Required Data type
No drop-down list

Chapter 26. Administering web services - Bus enabled web services 2953

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/


Actor [Settings]
Defines the Actor URI to be included in the WS-Security headers of a generated message.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> draft13-inbound-
config_name -> [Response sender] Actor

v Service integration -> Web services -> WS-Security configurations -> draft13-outbound-
config_name -> [Request sender] Actor

This panel is one of a set of panels that you can use to configure the service integration bus in
accordance with the WS-Security Draft 13 specification (also known as the Web Services Security Core
Specification). However, use of the WS-Security Draft 13 specification is deprecated, and you should only
use it to allow continued use of an existing web services client application that has been written to the
WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Actor:

Defines the Actor URI to be included in the WS-Security headers of a generated message.

Information Value
Required No
Data type String

Add created time stamp [Settings]
Specifies whether a time stamp will be added to any sent message. The time stamp may also contain an
expires value.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> draft13-inbound-
config_name -> [Response sender] Add created timestamp

v Service integration -> Web services -> WS-Security configurations -> draft13-outbound-
config_name -> [Request sender] Add created timestamp

This panel is one of a set of panels that you can use to configure the service integration bus in
accordance with the WS-Security Draft 13 specification (also known as the Web Services Security Core
Specification). However, use of the WS-Security Draft 13 specification is deprecated, and you should only
use it to allow continued use of an existing web services client application that has been written to the
WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

2954 Administering WebSphere applications



General Properties

Enabled:

When selected, a time stamp will be added to the message.

Information Value
Required No
Data type Boolean

Expires:

The expiration time of the time stamp, defined as an xsd:Duration type.

The expires value is defined as a type of xsd:Duration, and the format must match the following regular
expression:
-?P([0-9]+Y)?([0-9]+M)?([0-9]+D)?(T([0-9]+H)?([0-9]+M)?([0-9]+(\\.[0-9]*)?S)?)

For example, to specify a timestamp expiration of three minutes, enter PT3M.

Information Value
Required No
Data type String

Add received time stamp [Settings]
Specifies whether a time stamp will be added to any received message.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> draft13-inbound-
config_name -> [Request receiver] Add received timestamp

v Service integration -> Web services -> WS-Security configurations -> draft13-outbound-
config_name -> [Response receiver] Add received timestamp

This panel is one of a set of panels that you can use to configure the service integration bus in
accordance with the WS-Security Draft 13 specification (also known as the Web Services Security Core
Specification). However, use of the WS-Security Draft 13 specification is deprecated, and you should only
use it to allow continued use of an existing web services client application that has been written to the
WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Enabled:

When selected, a time stamp will be added to the message.

Information Value
Required No
Data type Boolean

Chapter 26. Administering web services - Bus enabled web services 2955



Confidentiality [Settings]
Specifies the confidentiality constraints applied to sent messages. Indicates which parts of the message
will be encrypted.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> draft13-inbound-
config_name -> [Response sender] Confidentiality

v Service integration -> Web services -> WS-Security configurations -> draft13-outbound-
config_name -> [Request sender] Confidentiality

This panel is one of a set of panels that you can use to configure the service integration bus in
accordance with the WS-Security Draft 13 specification (also known as the Web Services Security Core
Specification). However, use of the WS-Security Draft 13 specification is deprecated, and you should only
use it to allow continued use of an existing web services client application that has been written to the
WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Body content:

Specifies that the body of the message must be encrypted.

Information Value
Required No
Data type Boolean

Username token:

Specifies that the username token header must be encrypted.

Information Value
Required No
Data type Boolean

Custom authentication methods [Collection]
Specifies custom authentication methods this service will accept.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> draft13-inbound-config_name
-> [Request receiver] Login configuration -> [Additional properties] Custom authentication
methods.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

2956 Administering WebSphere applications



To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

This panel is one of a set of panels that you can use to configure the service integration bus in
accordance with the WS-Security Draft 13 specification (also known as the Web Services Security Core
Specification).

Name The name of the custom authentication method to accept.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Custom authentication methods [Settings]
Specifies custom authentication methods this service will accept.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> draft13-inbound-config_name
-> [Request receiver] Login configuration -> [Additional properties] Custom authentication methods
-> method_name.

This panel is one of a set of panels that you can use to configure the service integration bus in
accordance with the WS-Security Draft 13 specification (also known as the Web Services Security Core
Specification). However, use of the WS-Security Draft 13 specification is deprecated, and you should only
use it to allow continued use of an existing web services client application that has been written to the
WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the custom authentication method to accept.

Information Value
Required Yes
Data type String

ID assertion [Settings]
Specifies the signature method and trust mode to use when ID Assertion is set as an authentication
method.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> draft13-inbound-
config_name -> [Request receiver] ID assertion

Chapter 26. Administering web services - Bus enabled web services 2957



v Service integration -> Web services -> WS-Security configurations -> draft13-outbound-
config_name -> [Request sender] ID assertion

This panel is one of a set of panels that you can use to configure the service integration bus in
accordance with the WS-Security Draft 13 specification (also known as the Web Services Security Core
Specification). However, use of the WS-Security Draft 13 specification is deprecated, and you should only
use it to allow continued use of an existing web services client application that has been written to the
WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Signature method:

Specifies the method by which the identity will be asserted.

Information Value
Required No
Data type drop-down list

Trust mode:

Specifies the method by which the identity of the trusted party will be provided.

Information Value
Required No
Data type drop-down list

Inbound WS-Security configuration [Settings]
WS-Security configuration for an inbound request. This defines WS-Security requirements for the request
consumed from the client and the response generated. The objects created may be applied to one or
more inbound ports.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> draft13-inbound-config_name.

This panel is one of a set of panels that you can use to configure the service integration bus in
accordance with the WS-Security Draft 13 specification (also known as the Web Services Security Core
Specification). However, use of the WS-Security Draft 13 specification is deprecated, and you should only
use it to allow continued use of an existing web services client application that has been written to the
WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

2958 Administering WebSphere applications



General Properties

WS-Security version:

Identifies the version of the WS-Security specification this configuration uses.

Information Value
Required No
Data type String

Service type:

The type of service the WS-Security configuration applies to.

Information Value
Required No
Data type String

Name:

The name of the inbound WS-Security configuration.

This name must be unique across both WS-Security Version 1.0 and Draft 13 Inbound configurations, and
it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Information Value
Required Yes
Data type String

Actor URI:

WS-Security headers within the consumed request message will only be processed if they have the
specified Actor URI.

Information Value
Required No
Data type String

Request receiver
Required integrity

Specifies the integrity constraints received messages must meet. Indicates which parts of the
message must be digitally signed.

Required confidentiality
Specifies the confidentiality constraints applied to sent messages. Indicates which parts of the
message will be encrypted.

Login configuration
Specifies the authentication methods this service supports. Custom authentication methods can
also be defined.

Chapter 26. Administering web services - Bus enabled web services 2959



ID assertion
Specifies the signature method and trust mode to use when ID Assertion is set as an
authentication method.

Add received time stamp
Specifies whether a time stamp will be added to any received message.

Properties
General properties for the inbound WS-Security configuration.

Response sender
Actor Defines the Actor URI to be included in the WS-Security headers of a generated message.

Integrity
Specifies the integrity constraints applied to sent messages. Indicates which parts of the message
will be digitally signed.

Confidentiality
Specifies the confidentiality constraints applied to sent messages. Indicates which parts of the
message will be encrypted.

Add created time stamp
Specifies whether a time stamp will be added to any sent message. The time stamp may also
contain an expires value.

Properties
General properties for the inbound WS-Security configuration.

Integrity [Settings]
Specifies the integrity constraints applied to sent messages. Indicates which parts of the message will be
digitally signed.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> draft13-inbound-
config_name -> [Response sender] Integrity

v Service integration -> Web services -> WS-Security configurations -> draft13-outbound-
config_name -> [Request sender] Integrity

This panel is one of a set of panels that you can use to configure the service integration bus in
accordance with the WS-Security Draft 13 specification (also known as the Web Services Security Core
Specification). However, use of the WS-Security Draft 13 specification is deprecated, and you should only
use it to allow continued use of an existing web services client application that has been written to the
WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Body:

Specifies that the body of the message must be digitally signed.

Information Value
Required No

2960 Administering WebSphere applications



Information Value
Data type Boolean

Time stamp:

Specifies that the time stamp header must be digitally signed.

Information Value
Required No
Data type Boolean

Security token:

Specifies that the security token header must be digitally signed.

Information Value
Required No
Data type Boolean

Login configuration [Settings]
Specifies the authentication methods this service supports. Custom authentication methods can also be
defined.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> draft13-inbound-config_name
-> [Request receiver] Login configuration.

This panel is one of a set of panels that you can use to configure the service integration bus in
accordance with the WS-Security Draft 13 specification (also known as the Web Services Security Core
Specification).

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Basic authentication:

Specifies that a username and password is used as an authentication method.

Information Value
Required No
Data type Boolean

Basic authentication Nonce settings:

Specifies Nonce settings for when Basic Authentication is used. Nonce is a randomly generated value.

Chapter 26. Administering web services - Bus enabled web services 2961



Information Value
Required No
Data type Custom

ID assertion:

Specifies that ID Assertion is used as an authentication method. An ID Assertion configuration must also
be set.

Information Value
Required No
Data type Boolean

Signature:

Specifies that digital signature is used as an authentication method.

Information Value
Required No
Data type Boolean

LTPA:

Specifies that Lightweight Third Party Authentication is used as an authentication method.

Information Value
Required No
Data type Boolean

Additional Properties
Custom authentication methods

Specifies custom authentication methods this service will accept.

Login configuration [Settings]
Specifies the authentication methods this service supports. Custom authentication methods can also be
defined.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> draft13-outbound-
config_name -> [Request sender] Login configuration.

This panel is one of a set of panels that you can use to configure the service integration bus in
accordance with the WS-Security Draft 13 specification (also known as the Web Services Security Core
Specification).

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

2962 Administering WebSphere applications



General Properties

Authentication method:

Specifies the predefined authentication method to use.

Information Value
Required Yes
Data type Custom
Range

None No authentication process is used.

Basic authentication
A username and password is used to
authenticate the user.

Use Nonce
Nonce is a randomly-generated,
cryptographic token that is used to
prevent replay attacks.

Nonce time stamp required
Attaches a time stamp element to the
message.

ID assertion
This asserts the authenticated identity of the
originating client from a web service to a
downstream web service. When identity assertion
is used, the authentication decision is performed
based only on the name of the identity and not
on other information such as passwords.

Signature
This refers to an X.509 certificate that is sent by
the client to the server. The certificate is used to
authenticate to the user registry that is configured
at the server.

Custom authentication method
A custom authentication method can be entered
by the user in a text format.

Outbound WS-Security configuration [Settings]
WS-Security configuration for an outbound request. This defines WS-Security requirements for the request
generated and response consumed from the target. The objects created may be applied to one or more
outbound ports.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> draft13-outbound-
config_name.

This panel is one of a set of panels that allow you to configure the service integration bus in accordance
with WS-Security Draft 13 (also known as the Web Services Security Core Specification). However, use of
the WS-Security Draft 13 specification is deprecated, and you should only use it to allow continued use of
an existing web services client application that has been written to the WS-Security Draft 13 specification.

Chapter 26. Administering web services - Bus enabled web services 2963



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

WS-Security version:

Identifies the version of the WS-Security specification this configuration uses.

Information Value
Required No
Data type String

Service type:

The type of service the WS-Security configuration applies to.

Information Value
Required No
Data type String

Name:

The name of the outbound WS-Security configuration.

This name must be unique across both WS-Security Version 1.0 and Draft 13 Inbound configurations, and
it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Information Value
Required Yes
Data type String

Actor URI:

WS-Security headers within the consumed response message will only be processed if they have the
specified actor URI.

Information Value
Required No
Data type String

Request sender
Actor Defines the Actor URI to be included in the WS-Security headers of a generated message.

Integrity
Specifies the integrity constraints applied to sent messages. Indicates which parts of the message
will be digitally signed.

2964 Administering WebSphere applications



Confidentiality
Specifies the confidentiality constraints applied to sent messages. Indicates which parts of the
message will be encrypted.

Login configuration
Specifies the authentication method to use in the request. May be a predefined or custom
authentication method.

ID assertion
Specifies the signature method and trust mode to use when ID Assertion is set as an
authentication method.

Add created time stamp
Specifies whether a time stamp will be added to any sent message. The time stamp may also
contain an expires value.

Properties
General properties for the outbound WS-Security configuration.

Response receiver
Required integrity

Specifies the integrity constraints received messages must meet. Indicates which parts of the
message must be digitally signed.

Required confidentiality
Specifies the confidentiality constraints applied to sent messages. Indicates which parts of the
message will be encrypted.

Add received time stamp
Specifies whether a time stamp will be added to any received message.

Properties
General properties for the outbound WS-Security configuration.

Required confidentiality [Settings]
Specifies the confidentiality constraints applied to sent messages. Indicates which parts of the message
will be encrypted.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> draft13-inbound-
config_name -> [Request receiver] Required confidentiality

v Service integration -> Web services -> WS-Security configurations -> draft13-outbound-
config_name -> [Response receiver] Required confidentiality

This panel is one of a set of panels that you can use to configure the service integration bus in
accordance with the WS-Security Draft 13 specification (also known as the Web Services Security Core
Specification). However, use of the WS-Security Draft 13 specification is deprecated, and you should only
use it to allow continued use of an existing web services client application that has been written to the
WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

Chapter 26. Administering web services - Bus enabled web services 2965



General Properties

Body content:

Specifies that the body of the message must be encrypted.

Information Value
Required No
Data type Boolean

Username token:

Specifies that the username token header must be encrypted.

Information Value
Required No
Data type Boolean

Required integrity [Settings]
Specifies the integrity constraints received messages must meet. Indicates which parts of the message
must be digitally signed.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> draft13-inbound-
config_name -> [Request receiver] Required integrity

v Service integration -> Web services -> WS-Security configurations -> draft13-outbound-
config_name -> [Response receiver] Required integrity

This panel is one of a set of panels that you can use to configure the service integration bus in
accordance with the WS-Security Draft 13 specification (also known as the Web Services Security Core
Specification). However, use of the WS-Security Draft 13 specification is deprecated, and you should only
use it to allow continued use of an existing web services client application that has been written to the
WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Body:

Specifies that the body of the message must be digitally signed.

Information Value
Required No
Data type Boolean

Time stamp:

Specifies that the time stamp header must be digitally signed.

2966 Administering WebSphere applications



Information Value
Required No
Data type Boolean

Security token:

Specifies that the security token header must be digitally signed.

Information Value
Required No
Data type Boolean

Actor [Settings]
Defines the Actor URI to be included in the WS-Security headers of a generated message.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Request generator] Actor.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Actor:

Defines the Actor URI to be included in WS-Security headers of generated request.

Information Value
Required No
Data type String

Actor [Settings]
Defines the Actor URI to be included in WS-Security headers of generated response.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Response generator] Actor.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

Chapter 26. Administering web services - Bus enabled web services 2967



General Properties

Actor:

Defines the Actor URI to be included in WS-Security headers of generated response.

Information Value
Required No
Data type String

Add time stamp [Settings]
When add time stamp is specified for a consumer, a time stamp is added indicating when the message
was consumed. For a generator, a time stamp is added indicating when the message was generated.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Add timestamp.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Enabled:

If selected, a time stamp will be added to the message.

Information Value
Required No
Data type Boolean

Dialect:

The expression dialect to use.

Information Value
Required No
Data type drop-down list

Keyword:

Identifies the message part in a way defined by the chosen dialect.

When the http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect value is selected,
the following are valid keyword values:

action Specifies the wsa:Action element.

body Specifies the SOAP body element.

dsigkey
Specifies the key information element, which is used for digital signature.

2968 Administering WebSphere applications



enckey
Specifies the ds:KeyInfo element, which is used for encryption.

messageid
Specifies the wsa:MessageID element.

relatesto
Specifies the wsa:RelatesTo element.

securitytoken
Specifies any security token elements, for example the wsse:BinarySecurityToken element.

timestamp
Specifies the wsu:Timestamp element. This element determines whether the message is valid
based upon the time that the message is sent and then received.

to Specifies the wsa:To element.

When the http://www.w3.org/TR/1999/REC-xpath-1999116 dialect value is selected, then the keyword
value can be any valid XPath expression that points to a part of the message. For example:
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

Information Value
Required No
Data type String

Expires:

The expiration time of the time stamp, defined as an xsd:Duration type.

The expires value is defined as a type of xsd:Duration, and the format must match the following regular
expression:
-?P([0-9]+Y)?([0-9]+M)?([0-9]+D)?(T([0-9]+H)?([0-9]+M)?([0-9]+(\\.[0-9]*)?S)?)

For example, to specify a timestamp expiration of three minutes, enter PT3M.

Information Value
Required No
Data type String

Additional Properties
Properties

Properties associated with the added time stamp.

Add time stamp [Settings]
When add time stamp is specified for a consumer, a time stamp is added indicating when the message
was consumed. For a generator, a time stamp is added indicating when the message was generated.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Request generator] Add timestamp.

Chapter 26. Administering web services - Bus enabled web services 2969



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Enabled:

If selected, a time stamp will be added to the message.

Information Value
Required No
Data type Boolean

Dialect:

The expression dialect to use.

Information Value
Required No
Data type drop-down list

Keyword:

Identifies the message part in a way defined by the chosen dialect.

When the http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect value is selected,
the following are valid keyword values:

action Specifies the wsa:Action element.

body Specifies the SOAP body element.

dsigkey
Specifies the key information element, which is used for digital signature.

enckey
Specifies the ds:KeyInfo element, which is used for encryption.

messageid
Specifies the wsa:MessageID element.

relatesto
Specifies the wsa:RelatesTo element.

securitytoken
Specifies any security token elements, for example the wsse:BinarySecurityToken element.

timestamp
Specifies the wsu:Timestamp element. This element determines whether the message is valid
based upon the time that the message is sent and then received.

to Specifies the wsa:To element.

When the http://www.w3.org/TR/1999/REC-xpath-1999116 dialect value is selected, then the keyword
value can be any valid XPath expression that points to a part of the message. For example:
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

2970 Administering WebSphere applications



Information Value
Required No
Data type String

Expires:

The expiration time of the time stamp, defined as an xsd:Duration type.

The expires value is defined as a type of xsd:Duration, and the format must match the following regular
expression:
-?P([0-9]+Y)?([0-9]+M)?([0-9]+D)?(T([0-9]+H)?([0-9]+M)?([0-9]+(\\.[0-9]*)?S)?)

For example, to specify a timestamp expiration of three minutes, enter PT3M.

Information Value
Required No
Data type String

Additional Properties
Properties

Properties associated with the added time stamp.

Add time stamp [Settings]
When add time stamp is specified for a consumer, a time stamp is added indicating when the message
was consumed. For a generator, a time stamp is added indicating when the message was generated.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Response consumer] Add timestamp.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Enabled:

If selected, a time stamp will be added to the message.

Information Value
Required No
Data type Boolean

Dialect:

The expression dialect to use.

Information Value
Required No

Chapter 26. Administering web services - Bus enabled web services 2971



Information Value
Data type drop-down list

Keyword:

Identifies the message part in a way defined by the chosen dialect.

When the http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect value is selected,
the following are valid keyword values:

action Specifies the wsa:Action element.

body Specifies the SOAP body element.

dsigkey
Specifies the key information element, which is used for digital signature.

enckey
Specifies the ds:KeyInfo element, which is used for encryption.

messageid
Specifies the wsa:MessageID element.

relatesto
Specifies the wsa:RelatesTo element.

securitytoken
Specifies any security token elements, for example the wsse:BinarySecurityToken element.

timestamp
Specifies the wsu:Timestamp element. This element determines whether the message is valid
based upon the time that the message is sent and then received.

to Specifies the wsa:To element.

When the http://www.w3.org/TR/1999/REC-xpath-1999116 dialect value is selected, then the keyword
value can be any valid XPath expression that points to a part of the message. For example:
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

Information Value
Required No
Data type String

Expires:

The expiration time of the time stamp, defined as an xsd:Duration type.

The expires value is defined as a type of xsd:Duration, and the format must match the following regular
expression:
-?P([0-9]+Y)?([0-9]+M)?([0-9]+D)?(T([0-9]+H)?([0-9]+M)?([0-9]+(\\.[0-9]*)?S)?)

For example, to specify a timestamp expiration of three minutes, enter PT3M.

Information Value
Required No
Data type String

2972 Administering WebSphere applications



Additional Properties
Properties

Properties associated with the added time stamp.

Add time stamp [Settings]
When add time stamp is specified for a consumer, a time stamp is added indicating when the message
was consumed. For a generator, a time stamp is added indicating when the message was generated.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Response generator] Add timestamp.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Enabled:

If selected, a time stamp will be added to the message.

Information Value
Required No
Data type Boolean

Dialect:

The expression dialect to use.

Information Value
Required No
Data type drop-down list

Keyword:

Identifies the message part in a way defined by the chosen dialect.

When the http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect value is selected,
the following are valid keyword values:

action Specifies the wsa:Action element.

body Specifies the SOAP body element.

dsigkey
Specifies the key information element, which is used for digital signature.

enckey
Specifies the ds:KeyInfo element, which is used for encryption.

messageid
Specifies the wsa:MessageID element.

Chapter 26. Administering web services - Bus enabled web services 2973



relatesto
Specifies the wsa:RelatesTo element.

securitytoken
Specifies any security token elements, for example the wsse:BinarySecurityToken element.

timestamp
Specifies the wsu:Timestamp element. This element determines whether the message is valid
based upon the time that the message is sent and then received.

to Specifies the wsa:To element.

When the http://www.w3.org/TR/1999/REC-xpath-1999116 dialect value is selected, then the keyword
value can be any valid XPath expression that points to a part of the message. For example:
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

Information Value
Required No
Data type String

Expires:

The expiration time of the time stamp, defined as an xsd:Duration type.

The expires value is defined as a type of xsd:Duration, and the format must match the following regular
expression:
-?P([0-9]+Y)?([0-9]+M)?([0-9]+D)?(T([0-9]+H)?([0-9]+M)?([0-9]+(\\.[0-9]*)?S)?)

For example, to specify a timestamp expiration of three minutes, enter PT3M.

Information Value
Required No
Data type String

Additional Properties
Properties

Properties associated with the added time stamp.

Caller [Collection]
Specifies the security token, signed part or encrypted part used for authentication. If a signed or encrypted
part is used, the value of the part attribute must be the name of a defined required integrity or required
confidentiality constraint. If a stand-alone security token is used for authentication, then the URI and local
name attributes must define the type of security token used for authentication.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Caller.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

2974 Administering WebSphere applications



To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the caller.

Part Specifies the name of the required integrity or required confidentiality part within the message to
be used for authentication.

URI Specifies the namespace URI of the security token to be used for authentication.

Local name
Specifies the local name of the security token to be used for authentication.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Caller [Collection]
Specifies the security token, signed part or encrypted part used for authentication. If a signed or encrypted
part is used, the value of the part attribute must be the name of a defined required integrity or required
confidentiality constraint. If a stand-alone security token is used for authentication, then the URI and local
name attributes must define the type of security token used for authentication.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Response consumer] Caller.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the caller.

Part Specifies the name of the required integrity or required confidentiality part within the message to
be used for authentication.

URI Specifies the namespace URI of the security token to be used for authentication.

Local name
Specifies the local name of the security token to be used for authentication.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Chapter 26. Administering web services - Bus enabled web services 2975



Caller [Settings]
Specifies the security token, signed part or encrypted part used for authentication. If a signed or encrypted
part is used, the value of the part attribute must be the name of a defined required integrity or required
confidentiality constraint. If a stand-alone security token is used for authentication, then the URI and local
name attributes must define the type of security token used for authentication.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Caller -> caller_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the caller.

Information Value
Required Yes
Data type String

Part:

Specifies the name of the required integrity or required confidentiality part within the message to be used
for authentication.

Information Value
Required No
Data type drop-down list

URI:

Specifies the namespace URI of the security token to be used for authentication.

If you specify a Username token or X.509 certificate security token, you do not have to specify a URI. If
you specify a custom token, enter the URI of the QName for the value type. If you specify Lightweight Third
Party Authentication (LTPA), enter the following WebSphere Application Server predefined value type URI:
http://www.ibm.com/websphere/appserver/tokentype/5.0.2. If you specify Lightweight Third Party
Authentication propagation (LTPA_PROPAGATION), enter the following WebSphere Application Server
predefined value type URI: http://www.ibm.com/websphere/appserver/tokentype.

Information Value
Required No
Data type String

Local name:

Specifies the local name of the security token to be used for authentication.

2976 Administering WebSphere applications



WebSphere Application Server has the following predefined local name value types:

Username token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

X509 certificate token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

# X509 certificates in a PKIPath
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

LTPA For Lightweight Third Party Authentication, the local name value type is LTPA.

LTPA_PROPAGATION
For Lightweight Third Party Authentication token propagation, the local name value type is
LTPA_PROPAGATION.

Attention:

v If you enter LTPA in the Local name field, you must also specify the URI value
http://www.ibm.com/websphere/appserver/tokentype/5.0.2 in the URI field.

v If you enter LTPA_PROPAGATION in the Local name field, you must also specify the URI value
http://www.ibm.com/websphere/appserver/tokentype in the URI field.

v If you enter any of the other predefined local name value types, you can leave the URI field
blank. For example, to specify “Username token”, enter http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken in the Local name
field and do not enter a value in the URI field.

v If you specify a custom value type for a custom token, you must specify the local name and
the URI of the Quality name (QName) of the value type. For example, you might enter
Custom in the Local name field, and http://www.ibm.com/custom in the URI field.

Information Value
Required No
Data type String

Additional Properties
Trust method

The trust method associated with this caller if IDAssertion is in use for verifying an asserted ID
from an intermediary.

Properties
Properties associated with the caller.

Caller [Settings]
Specifies the security token, signed part or encrypted part used for authentication. If a signed or encrypted
part is used, the value of the part attribute must be the name of a defined required integrity or required
confidentiality constraint. If a stand-alone security token is used for authentication, then the URI and local
name attributes must define the type of security token used for authentication.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Response consumer] Caller > caller_name.

Chapter 26. Administering web services - Bus enabled web services 2977



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the caller.

Information Value
Required Yes
Data type String

Part:

Specifies the name of the required integrity or required confidentiality part within the message to be used
for authentication.

Information Value
Required No
Data type drop-down list

URI:

Specifies the namespace URI of the security token to be used for authentication.

Information Value
Required No
Data type String

Local name:

Specifies the local name of the security token to be used for authentication.

Information Value
Required No
Data type String

Additional Properties
Trust method

The trust method associated with this caller if IDAssertion is in use for verifying an asserted ID
from an intermediary.

Properties
Properties associated with the caller.

2978 Administering WebSphere applications



Confidentiality [Collection]
Specifies the confidentiality constraints applied to generated messages. This includes specifying which
message parts within the generated message must be encrypted, and the message parts to attach
encrypted Nonce and time stamp elements to.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Request generator] Confidentiality.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the confidentiality constraint.

Order Specifies the processing order of this confidentiality element.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Confidentiality [Collection]
Specifies the confidentiality constraints applied to generated messages. This includes specifying which
message parts within the generated message must be encrypted, and the message parts to attach
encrypted Nonce and time stamp elements to.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Response generator] Confidentiality.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the confidentiality constraint.

Order Specifies the processing order of this confidentiality element.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Chapter 26. Administering web services - Bus enabled web services 2979



Confidentiality [Settings]
Specifies the confidentiality constraints applied to generated messages. This includes specifying which
message parts within the generated message must be encrypted, and the message parts to attach
encrypted Nonce and time stamp elements to.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Request generator] Confidentiality -> confidentiality_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the confidentiality constraint.

Information Value
Required Yes
Data type String

Order:

Specifies the processing order of this confidentiality element.

Information Value
Required Yes
Data type Integer
Range 0 through 9

Additional Properties
Message parts

Specifies parts of the message affected by this confidentiality constraint.

Nonce
Specifies the encrypted Nonce elements which must be inserted into the generated message, and
what parts of the message they must be attached to. Nonce is a randomly generated value.

Time stamp
Specifies the encrypted time stamp elements which must be inserted in the generated message,
and what parts of the message they must be attached to.

Confidentiality [Settings]
Specifies the confidentiality constraints applied to generated messages. This includes specifying which
message parts within the generated message must be encrypted, and the message parts to attach
encrypted Nonce and time stamp elements to.

To view this page in the console, click the following path:

2980 Administering WebSphere applications



Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Response generator] Confidentiality -> confidentiality_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the confidentiality constraint.

Information Value
Required Yes
Data type String

Order:

Specifies the processing order of this confidentiality element.

Information Value
Required Yes
Data type Integer
Range 0 through 9

Additional Properties
Message parts

Specifies parts of the message affected by this confidentiality constraint.

Nonce
Specifies the encrypted Nonce elements which must be inserted into the generated message, and
what parts of the message they must be attached to. Nonce is a randomly generated value.

Time stamp
Specifies the encrypted time stamp elements which must be inserted in the generated message,
and what parts of the message they must be attached to.

Inbound WS-Security configuration [Settings]
WS-Security configuration for an inbound request. This defines WS-Security requirements for the request
consumed from the client and the response generated. The objects created may be applied to one or
more inbound ports.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name.

You can configure the service integration bus for secure transmission of SOAP messages by using tokens,
keys, signatures and encryption in accordance with the Web Services Security (WS-Security) 1.0
specification.

Chapter 26. Administering web services - Bus enabled web services 2981

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


Alternatively, you can configure the bus in accordance with the previous WS-Security specification,
WS-Security Draft 13 (also known as the Web Services Security Core Specification). However, use of the
WS-Security Draft 13 specification is deprecated, and you should only use it to allow continued use of an
existing web services client application that has been written to the WS-Security Draft 13 specification.

You use an inbound configuration to secure the SOAP messages that pass between a service requester
(client) and an inbound service (which acts as a target web service). The configuration specifies the level
of security that you require (for example “The body must be signed”). This level of security is then
implemented through the run-time information contained in the following types of WS-Security binding:

For WS-Security Version 1.0:

v request consumer, for use when consuming requests from a client to an inbound service.

v response generator, for use when generating responses from an inbound service to a client.

For WS-Security Draft 13:

v request receiver, for use when receiving requests from a client to an inbound service.

v response sender, for use when sending responses from an inbound service to a client.

WS-Security configurations are administered independently from any web service that uses them, so you
can create an inbound configuration then apply it to many inbound services.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

WS-Security version:

Identifies the version of the WS-Security specification this configuration uses.

Information Value
Required No
Data type String

Service type:

The type of service the WS-Security configuration applies to.

Information Value
Required No
Data type String

Name:

The name of the inbound WS-Security configuration.

This name must be unique across both WS-Security Version 1.0 and Draft 13 Inbound configurations, and
it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

2982 Administering WebSphere applications



Information Value
Required Yes
Data type String

Actor URI:

WS-Security headers within the consumed request message will only be processed if they have the
specified Actor URI.

Information Value
Required No
Data type String

Request consumer
Required integrity

Specifies the integrity constraints consumed messages must meet. This includes specifying which
message parts within the incoming message must be digitally signed, and the message parts to
which attached digitally signed Nonce and time stamp elements are expected.

Required confidentiality
Specifies the confidentiality constraints consumed messages must meet. This includes specifying
which message parts within the incoming message must be encrypted, and the message parts to
which attached encrypted Nonce and time stamp elements are expected.

Required security token
Specifies accepted stand-alone security tokens within a consumed message. Stand-alone security
tokens are those not already used for signature or encryption. Defining a required security token
means that messages containing a token of that type will be processed according to the usage
assertion. The security token will not be used for authentication unless it is also specified within a
caller.

Caller
Specifies the security token, signed part or encrypted part used for authentication. If a signed or
encrypted part is used, the value of the part attribute must be the name of a defined required
integrity or required confidentiality constraint. If a stand-alone security token is used for
authentication, then the URI and local name attributes must define the type of security token used
for authentication.

Add time stamp
When add time stamp is specified for a consumer, a time stamp is added indicating when the
message was consumed. For a generator, a time stamp is added indicating when the message
was generated.

Properties
General properties for the inbound WS-Security configuration.

Response generator
Actor Defines the Actor URI to be included in WS-Security headers of generated response.

Integrity
Specifies the integrity constraints applied to generated messages. This includes specifying which
message parts within the generated message must be digitally signed, and the message parts to
attach digitally signed Nonce and time stamp elements to.

Confidentiality
Specifies the confidentiality constraints applied to generated messages. This includes specifying

Chapter 26. Administering web services - Bus enabled web services 2983



which message parts within the generated message must be encrypted, and the message parts to
attach encrypted Nonce and time stamp elements to.

Security Token
Specifies stand-alone security tokens to insert into the generated message. Stand-alone security
tokens are those not already used for signature or encryption. Standard and custom security
tokens may be defined by URI and local name.

Add time stamp
When add time stamp is specified for a consumer, a time stamp is added indicating when the
message was consumed. For a generator, a time stamp is added indicating when the message
was generated.

Properties
General properties for the inbound WS-Security configuration.

Integrity [Collection]
Specifies the integrity constraints applied to generated messages. This includes specifying which message
parts within the generated message must be digitally signed, and the message parts to attach digitally
signed Nonce and time stamp elements to.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Request generator] Integrity.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the integrity constraint.

Order Specifies the processing order of this integrity constraint.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Integrity [Collection]
Specifies the integrity constraints applied to generated messages. This includes specifying which message
parts within the generated message must be digitally signed, and the message parts to attach digitally
signed Nonce and time stamp elements to.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Response generator] Integrity.

To browse or change the properties of a listed item, select its name in the list.

2984 Administering WebSphere applications



To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the integrity constraint.

Order Specifies the processing order of this integrity constraint.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Integrity [Settings]
Specifies the integrity constraints applied to generated messages. This includes specifying which message
parts within the generated message must be digitally signed, and the message parts to attach digitally
signed Nonce and time stamp elements to.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Request generator] Integrity -> integrity_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the integrity constraint.

Information Value
Required Yes
Data type String

Order:

Specifies the processing order of this integrity constraint.

Information Value
Required Yes
Data type Integer
Range 0 through 9

Chapter 26. Administering web services - Bus enabled web services 2985



Additional Properties
Message parts

Specifies parts of the message affected by this integrity constraint.

Nonce
Specifies the digitally signed Nonce elements which must be inserted into the generated message,
and what parts of the message they must be attached to. Nonce is a randomly generated value.

Time stamp
Specifies the digitally signed time stamp elements which must be inserted in the generated
message, and what parts of the message they must be attached to.

Integrity [Settings]
Specifies the integrity constraints applied to generated messages. This includes specifying which message
parts within the generated message must be digitally signed, and the message parts to attach digitally
signed Nonce and time stamp elements to.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Response generator] Integrity -> integrity_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the integrity constraint.

Information Value
Required Yes
Data type String

Order:

Specifies the processing order of this integrity constraint.

Information Value
Required Yes
Data type Integer
Range 0 through 9

Additional Properties
Message parts

Specifies parts of the message affected by this integrity constraint.

Nonce
Specifies the digitally signed Nonce elements which must be inserted into the generated message,
and what parts of the message they must be attached to. Nonce is a randomly generated value.

2986 Administering WebSphere applications



Time stamp
Specifies the digitally signed time stamp elements which must be inserted in the generated
message, and what parts of the message they must be attached to.

Message parts [Collection]
Identifies a specific message part according to the specified dialect and keyword.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required integrity -> required-integrity_name -> [Additional Properties]
Message parts

v Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name
-> [Response consumer] Required integrity -> integrity_name -> [Additional Properties] Message
parts

v Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required Confidentiality -> required-confidentiality_name -> [Additional
Properties] Message parts

v Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name
-> [Response consumer] Required Confidentiality -> confidentiality_name -> [Additional
Properties] Message parts

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the message part definition.

Dialect
The expression dialect to use.

Keyword
Identifies the message part in a way defined by the chosen dialect.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Message Parts [Settings]
Identifies a specific message part according to the specified dialect and keyword.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required integrity -> required-integrity_name -> [Additional Properties]
Message parts -> message_part_name

Chapter 26. Administering web services - Bus enabled web services 2987



v Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name
-> [Response consumer] Required integrity -> integrity_name -> [Additional Properties] Message
parts -> message_part_name

v Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required Confidentiality -> required-confidentiality_name -> [Additional
Properties] Message parts -> message_part_name

v Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name
-> [Response consumer] Required Confidentiality -> confidentiality_name -> [Additional
Properties] Message parts -> message_part_name

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the message part definition.

Information Value
Required Yes
Data type String

Dialect:

The expression dialect to use.

Information Value
Required Yes
Data type drop-down list

Keyword:

Identifies the message part in a way defined by the chosen dialect.

When the http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect value is selected,
the following are valid keyword values:

Required Integrity

action Specifies the wsa:Action element.

body Specifies the SOAP body element.

dsigkey
Specifies the key information element, which is used for digital signature.

enckey
Specifies the ds:KeyInfo element, which is used for encryption.

messageid
Specifies the wsa:MessageID element.

relatesto
Specifies the wsa:RelatesTo element.

2988 Administering WebSphere applications



securitytoken
Specifies any security token elements, for example the wsse:BinarySecurityToken element.

timestamp
Specifies the wsu:Timestamp element. This element determines whether the message is valid
based upon the time that the message is sent and then received.

to Specifies the wsa:To element.

wsaall Specifies all of the WS-Addressing elements in the SOAP header.

wsafaultto
Specifies the wsa:FaultTo WS-Addressing element in the SOAP header.

wsafrom
Specifies the wsa:From WS-Addressing element in the SOAP header.

wsareplyto
Specifies the wsa:ReplyTo WS-Addressing element in the SOAP header.

wscontext
Specifies the WS-Context header for the SOAP header. For more information, see Propagating
work area context over Web services.

Required Confidentiality

bodycontent
Specifies the SOAP body

digestvalue
Specifies the ds:DigestValue element within the ds:Signature element

signature
Specifies an entire signature. You can encrypt the signature element, ds:Signature, by selecting
this message part.

Note: If the value of a ds:DigestValue element in a signature needs to be encrypted, the entire
parent ds:Signature element must be encrypted. You can use the signature keyword to
perform the encryption.

usernametoken
Specifies the wsse:UsernameToken element

When the http://www.w3.org/TR/1999/REC-xpath-1999116 dialect value is selected, then the keyword
value can be any valid XPath expression that points to a part of the message. For example:
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

Note: Do not use this transform algorithm if you want your configured application to be compliant with the
Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to ensure
compliance.

Information Value
Required Yes
Data type String

Chapter 26. Administering web services - Bus enabled web services 2989



Nonce [Collection]
Attaches a Nonce element to the message part specified by the dialect and keyword attributes. Nonce is a
randomly generated value.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required integrity -> required-integrity_name -> [Additional Properties]
Nonce

v Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name
-> [Response consumer] Required integrity -> integrity_name -> [Additional Properties] Nonce

v Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required Confidentiality -> required-confidentiality_name -> [Additional
Properties] Nonce

v Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name
-> [Response consumer] Required Confidentiality -> confidentiality_name -> [Additional
Properties] Nonce

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the Nonce element.

Dialect
The expression dialect to use.

Keyword
The message part to attach the Nonce element to, specified in a way defined by the chosen
dialect.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Nonce [Settings]
Attaches a Nonce element to the message part specified by the dialect and keyword attributes. Nonce is a
randomly generated value.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required integrity -> required-integrity_name -> [Additional Properties]
Nonce -> nonce_name

v Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name
-> [Response consumer] Required integrity -> integrity_name -> [Additional Properties] Nonce ->
nonce_name

2990 Administering WebSphere applications



v Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required Confidentiality -> required-confidentiality_name -> [Additional
Properties] Nonce -> nonce_name

v Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name
-> [Response consumer] Required Confidentiality -> confidentiality_name -> [Additional
Properties] Nonce -> nonce_name

When a Nonce is added to the specific parts of a message, it might prevent theft and replay attacks
because a generated Nonce is unique. For example, without a Nonce, when a user name token is passed
from one machine to another machine by using a non-secure transport, such as HTTP, the token might be
intercepted and used in a replay attack. The user name token can be stolen even if you use XML digital
signature and XML encryption. However, it might be prevented by adding a Nonce.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the Nonce element.

Information Value
Required Yes
Data type String

Dialect:

The expression dialect to use.

Information Value
Required Yes
Data type drop-down list

Keyword:

The message part to attach the Nonce element to, specified in a way defined by the chosen dialect.

When the http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect value is selected,
the following are valid keyword values:

action Specifies the wsa:Action element.

body Specifies the SOAP body element.

dsigkey
Specifies the key information element, which is used for digital signature.

enckey
Specifies the ds:KeyInfo element, which is used for encryption.

messageid
Specifies the wsa:MessageID element.

relatesto
Specifies the wsa:RelatesTo element.

Chapter 26. Administering web services - Bus enabled web services 2991



securitytoken
Specifies any security token elements, for example the wsse:BinarySecurityToken element.

timestamp
Specifies the wsu:Timestamp element. This element determines whether the message is valid
based upon the time that the message is sent and then received.

to Specifies the wsa:To element.

When the http://www.w3.org/TR/1999/REC-xpath-1999116 dialect value is selected, then the keyword
value can be any valid XPath expression that points to a part of the message. For example:
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

Information Value
Required Yes
Data type String

Outbound WS-Security configuration [Settings]
WS-Security configuration for an outbound request. This defines WS-Security requirements for the request
generated and response consumed from the target. The objects created may be applied to one or more
outbound ports.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name.

You can configure the service integration bus for secure transmission of SOAP messages by using tokens,
keys, signatures and encryption in accordance with the Web Services Security (WS-Security) 1.0
specification.

Alternatively, you can configure the bus in accordance with the previous WS-Security specification,
WS-Security Draft 13 (also known as the Web Services Security Core Specification). However, use of the
WS-Security Draft 13 specification is deprecated, and you should only use it to allow continued use of an
existing web services client application that has been written to the WS-Security Draft 13 specification.

You use an outbound configuration to secure the SOAP messages that pass between an outbound service
(which acts as a client) and a target web service. The configuration specifies the level of security that you
require (for example “The body must be signed”). This level of security is then implemented through the
run-time information contained in the following types of WS-Security binding:

For WS-Security Version 1.0:

v request generator, for use when generating requests from an outbound service to a target web service.

v response consumer, for use when consuming responses from a target web service to an outbound
service.

For WS-Security Draft 13:

v request sender, for use when sending requests from an outbound service to a target web service.

v response receiver, for use when receiving responses from a target web service to an outbound service.

WS-Security configurations are administered independently from any web service that uses them, so you
can create an outbound configuration then apply it to many outbound services.

2992 Administering WebSphere applications

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

WS-Security version:

Identifies the version of the WS-Security specification this configuration uses.

Information Value
Required No
Data type String

Service type:

The type of service the WS-Security configuration applies to.

Information Value
Required No
Data type String

Name:

The name of the outbound WS-Security configuration.

This name must be unique across both WS-Security Version 1.0 and Draft 13 Inbound configurations, and
it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Information Value
Required Yes
Data type String

Actor URI:

WS-Security headers within the consumed response message will only be processed if they have the
specified actor URI.

Information Value
Required No
Data type String

Request generator
Actor Defines the Actor URI to be included in the WS-Security headers of a generated message.

Integrity
Specifies the integrity constraints applied to generated messages. This includes specifying which
message parts within the generated message must be digitally signed, and the message parts to
attach digitally signed Nonce and time stamp elements to.

Chapter 26. Administering web services - Bus enabled web services 2993



Confidentiality
Specifies the confidentiality constraints applied to generated messages. This includes specifying
which message parts within the generated message must be encrypted, and the message parts to
attach encrypted Nonce and time stamp elements to.

Security Token
Specifies stand-alone security tokens to insert into the generated message. Stand-alone security
tokens are those not already used for signature or encryption. Standard and custom security
tokens may be defined by URI and local name.

Add time stamp
When add time stamp is specified for a consumer, a time stamp is added indicating when the
message was consumed. For a generator, a time stamp is added indicating when the message
was generated.

Properties
General properties for the outbound WS-Security configuration.

Response consumer
Required integrity

Specifies the integrity constraints consumed messages must meet. This includes specifying which
message parts within the incoming message must be digitally signed, and the message parts to
which attached digitally signed Nonce and time stamp elements are expected.

Required confidentiality
Specifies the confidentiality constraints consumed messages must meet. This includes specifying
which message parts within the incoming message must be encrypted, and the message parts to
which attached encrypted Nonce and time stamp elements are expected.

Required security token
Specifies accepted stand-alone security tokens within a consumed message. Stand-alone security
tokens are those not already used for signature or encryption. Defining a required security token
means that messages containing a token of that type will be processed according to the usage
assertion. The security token will not be used for authentication unless it is also specified within a
caller.

Caller
Specifies the security token, signed part or encrypted part used for authentication. If a signed or
encrypted part is used, the value of the part attribute must be the name of a defined required
integrity or required confidentiality constraint. If a stand-alone security token is used for
authentication, then the URI and local name attributes must define the type of security token used
for authentication.

Add time stamp
When add time stamp is specified for a consumer, a time stamp is added indicating when the
message was consumed. For a generator, a time stamp is added indicating when the message
was generated.

Properties
General properties for the outbound WS-Security configuration.

Property collection
Custom properties for the type of service integration resource. Type the name and value of any custom
properties that you need.

To view this pane in the console, click one of several paths; for example Service integration -> Web
services -> WS-Security configurations -> draft13-inbound-config_name -> [Response sender]
Properties.

2994 Administering WebSphere applications



To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Use of WS-Security Draft 13 is deprecated, and you should only use it to allow continued use of an
existing web services client application that has been written to the WS-Security Draft 13 specification.

Name The name of the custom property.

Value The value of the custom property.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Property settings
Custom properties for the type of service integration resource. Type the name and value of any custom
properties that you need.

To view this pane in the console, click one of several paths; for example Service integration -> Web
services -> WS-Security configurations -> draft13-inbound-config_name -> [Response sender]
Properties -> [Additional Properties] Properties.

Use of WS-Security Draft 13 is deprecated, and you should only use it to allow continued use of an
existing web services client application that has been written to the WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the custom property.

Information Required
Required Yes
Data type String

Value:

The value of the custom property.

Information Required
Required Yes
Data type String

Chapter 26. Administering web services - Bus enabled web services 2995



Request consumer binding [Settings]
WS-Security binding for the consumption of inbound requests from the caller.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security bindings -> request-consumer-binding_name.

You can configure the service integration bus for secure transmission of SOAP messages by using tokens,
keys, signatures and encryption in accordance with the Web Services Security (WS-Security) 1.0
specification.

You use WS-Security bindings to secure the SOAP messages that pass between service requesters
(clients) and inbound services, and between outbound services and target web services. Bindings provide
the information that the run-time environment needs to implement the WS-Security configuration (for
example “To sign the body, use this key”).

Bindings are administered independently from any web service that uses them, so you can create a
binding then apply it to many web services.

You use a request consumer with an inbound configuration. A request consumer binding consumes the
requests from a client to an inbound service.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

WS-Security version:

Identifies the version of the WS-Security specification this configuration uses.

Information Value
Required No
Data type String

Binding Type:

The type of binding. This is one of request consumer, request generator, response consumer and
response generator.

Information Value
Required No
Data type String

Name:

The name of the binding.

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

2996 Administering WebSphere applications

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Information Value
Required Yes
Data type String

Use defaults:

Specifies whether to use the default binding information. When this option is enabled, Web Services
Security uses the default binding information instead of the custom binding information that is defined
here.

Information Value
Required No
Data type Boolean

Additional Properties
Signing information

Specifies the configuration for the signing parameters. You also can use these parameters for
X.509 certificate validation when the authentication method is IDAssertion and the ID type is
X509Certificate in the server-level configuration. In such cases, only fill in the Certificate path field.

Encryption information
Specifies the configuration for the XML encryption and decryption parameters. If the data and key
encryption algorithms are specified, the application server only accepts elements that are
encrypted with those algorithms.

Token consumers
Specifies the parameters for the token consumer. The information is used only on the consumer
side to process the security token. Because you can plug in a custom token consumer, you must
specify a Java class name.

Key information
Specifies the related configuration that is needed to generate the key for XML digital signature or
XML encryption.

Key locators
Specifies a list of key locator configurations that retrieve the key for signature and encryption. You
can customize a key locator class to retrieve keys from other types of repositories. The default
implementation retrieves keys from a keystore.

Collection certificate store
Specifies a list of untrusted, intermediate certificate files. This collection certificate store is used for
certificate path validation of incoming X.509-formatted security tokens. The root-trusted certificates
are specified in the Trust anchors panel.

Trust anchors
Specifies a list of keystore configurations that contain root-trusted certificates. These configurations
are used for certificate path validation of the incoming X.509-formatted security tokens. You must
create the keystore using the key tool utility. Do not use the key management utility because it
does not create a keystore with the expected format.

Properties
Specifies additional properties for the configuration.

Chapter 26. Administering web services - Bus enabled web services 2997



Request generator binding. [Settings]
WS-Security binding for the generation of outbound request to a target.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security bindings -> request-generator-binding_name.

You can configure the service integration bus for secure transmission of SOAP messages by using tokens,
keys, signatures and encryption in accordance with the Web Services Security (WS-Security) 1.0
specification.

You use WS-Security bindings to secure the SOAP messages that pass between service requesters
(clients) and inbound services, and between outbound services and target web services. Bindings provide
the information that the run-time environment needs to implement the WS-Security configuration (for
example “To sign the body, use this key”),

Bindings are administered independently from any web service that uses them, so you can create a
binding then apply it to many web services.

You use a request generator with an outbound configuration. A request generator binding generates the
requests from an outbound service to a target web service.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

WS-Security version:

Identifies the version of the WS-Security specification this configuration uses.

Information Value
Required No
Data type String

Binding Type:

The type of binding. This is one of request consumer, request generator, response consumer and
response generator.

Information Value
Required No
Data type String

Name:

The name of the binding.

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

2998 Administering WebSphere applications

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Information Value
Required Yes
Data type String

Use defaults:

Specifies whether to use the default binding information. When this option is enabled, Web Services
Security uses the default binding information instead of the custom binding information that is defined
here.

Information Value
Required No
Data type Boolean

Web Services Security namespace:

Specifies the namespace that is used by Web Services Security to send a request. However, this field
configures only the name space value and does not enforce the semantics of the specification that is
related to the namespace. Web Services Security uses the processing semantic only in draft 13 of the
OASIS specification.

Information Value
Required Yes
Data type drop-down list

Additional Properties
Signing information

Specifies the configuration for the signing parameters. You also can use these parameters for
X.509 certificate validation when the authentication method is IDAssertion and the ID type is
X509Certificate in the server-level configuration. In such cases, only fill in the Certificate path field.

Encryption information
Specifies the configuration for the XML encryption and decryption parameters. If the data and key
encryption algorithms are specified, the application server only accepts elements that are
encrypted with those algorithms.

Token generators
Specifies the parameters for the token generator. The information is used only on the generator
side to generate the security token. Because you can plug in a custom token generator, you must
specify a Java class name.

Key information
Specifies the related configuration that is needed to generate the key for XML digital signature or
XML encryption.

Key locators
Specifies a list of key locator configurations that retrieve the key for signature and encryption. You
can customize a key locator class to retrieve keys from other types of repositories. The default
implementation retrieves keys from a keystore.

Collection certificate store
Specifies a list of untrusted, intermediate certificate files. This collection certificate store is used for
certificate path validation of incoming X.509-formatted security tokens. The root-trusted certificates
are specified in the Trust anchors panel.

Chapter 26. Administering web services - Bus enabled web services 2999



Properties
Specifies additional properties for the configuration.

Request receiver [Settings]
Draft 13 WS-Security binding for the consumption of inbound requests from the caller.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security bindings -> request-receiver-binding_name.

This panel is one of a set of panels that allow you to configure the service integration bus in accordance
with WS-Security Draft 13 (also known as the Web Services Security Core Specification). However, use of
the WS-Security Draft 13 specification is deprecated, and you should only use it to allow continued use of
an existing web services client application that has been written to the WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

WS-Security version:

Identifies the version of the WS-Security specification this configuration uses.

Information Value
Required No
Data type String

Binding Type:

The type of binding. This is one of request consumer, request generator, response consumer and
response generator.

Information Value
Required No
Data type String

Name:

The name of the binding.

Information Value
Required Yes
Data type String

Additional Properties
Signing information

Specifies the configuration for the signing parameters. You also can use these parameters for
X.509 certificate validation when the authentication method is IDAssertion and the ID type is
X509Certificate in the server-level configuration. In such cases, only fill in the Certificate path field.

3000 Administering WebSphere applications



Encryption information
Specifies the configuration for the XML encryption and decryption parameters. If the data and key
encryption algorithms are specified, the application server only accepts elements that are
encrypted with those algorithms.

Trust anchors
Specifies a list of keystore configurations that contain root-trusted certificates. These configurations
are used for certificate path validation of the incoming X.509-formatted security tokens. You must
create the keystore using the key tool utility. Do not use the key management utility because it
does not create a keystore with the expected format.

Collection certificate store
Specifies a list of untrusted, intermediate certificate files. This collection certificate store is used for
certificate path validation of incoming X.509-formatted security tokens. The root-trusted certificates
are specified in the Trust anchors panel.

Key locators
Specifies a list of key locator configurations that retrieve the key for signature and encryption. You
can customize a key locator class to retrieve keys from other types of repositories. The default
implementation retrieves keys from a keystore.

Trusted ID evaluators
Specifies a list of trusted identity (ID) evaluators that determine whether the identity-asserting
authority is trusted. You can use trusted ID evaluators for backward compatibility with Version 5
applications. However, it is recommended that you use a login module instead.

Login mappings
Specifies a list of configurations for validating security tokens within incoming messages.

Request sender [Settings]
Draft 13 WS-Security binding for the generation of requests to an outbound target.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security bindings -> request-sender-binding_name.

This panel is one of a set of panels that allow you to configure the service integration bus in accordance
with WS-Security Draft 13 (also known as the Web Services Security Core Specification). However, use of
the WS-Security Draft 13 specification is deprecated, and you should only use it to allow continued use of
an existing web services client application that has been written to the WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

WS-Security version:

Identifies the version of the WS-Security specification this configuration uses.

Information Value
Required No
Data type String

Binding Type:

Chapter 26. Administering web services - Bus enabled web services 3001



The type of binding. This is one of request consumer, request generator, response consumer and
response generator.

Information Value
Required No
Data type String

Name:

The name of the binding.

Information Value
Required Yes
Data type String

Additional Properties
Signing information

Specifies the configuration for the signing parameters. You also can use these parameters for
X.509 certificate validation when the authentication method is IDAssertion and the ID type is
X509Certificate in the server-level configuration. In such cases, only fill in the Certificate path field.

Encryption information
Specifies the configuration for the XML encryption and decryption parameters. If the data and key
encryption algorithms are specified, the application server only accepts elements that are
encrypted with those algorithms.

Key locators
Specifies a list of key locator configurations that retrieve the key for signature and encryption. You
can customize a key locator class to retrieve keys from other types of repositories. The default
implementation retrieves keys from a keystore.

Login binding
Specifies the configuration that is used for sending the security tokens within the messages.

Required confidentiality [Collection]
Specifies the confidentiality constraints consumed messages must meet. This includes specifying which
message parts within the incoming message must be encrypted, and the message parts to which attached
encrypted Nonce and time stamp elements are expected.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required Confidentiality.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the required confidentiality element.

Usage Indicates the assertion of the required confidentiality constraint.

3002 Administering WebSphere applications



Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Required confidentiality [Collection]
Specifies the confidentiality constraints consumed messages must meet. This includes specifying which
message parts within the incoming message must be encrypted, and the message parts to which attached
encrypted Nonce and time stamp elements are expected.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Response consumer] Required Confidentiality.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the required confidentiality element.

Usage Indicates the assertion of the required confidentiality constraint.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Required confidentiality [Settings]
Specifies the confidentiality constraints consumed messages must meet. This includes specifying which
message parts within the incoming message must be encrypted, and the message parts to which attached
encrypted Nonce and time stamp elements are expected.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required Confidentiality -> required-confidentiality_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

Chapter 26. Administering web services - Bus enabled web services 3003



General Properties

Name:

The name of the required confidentiality element.

Information Value
Required Yes
Data type String

Usage:

Indicates the assertion of the required confidentiality constraint.

Information Value
Required Yes
Data type drop-down list
Range

Optional
Both messages that meet or do not meet the
required integrity constraint are accepted.

Required
The required integrity constraint must be met by
the incoming message.

Additional Properties
Message parts

Specifies parts of the message affected by this required confidentiality constraint.

Nonce
Specifies the encrypted Nonce elements which must be present in the consumed message, and
what parts of the message they must be attached to. Nonce is a randomly generated value.

Time stamp
Specifies the encrypted time stamp elements which must be present in the consumed message,
and what parts of the message they must be attached to.

Required confidentiality [Settings]
Specifies the confidentiality constraints consumed messages must meet. This includes specifying which
message parts within the incoming message must be encrypted, and the message parts to which attached
encrypted Nonce and time stamp elements are expected.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Response consumer] Required Confidentiality -> confidentiality_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

3004 Administering WebSphere applications



General Properties

Name:

The name of the required confidentiality element.

Information Value
Required Yes
Data type String

Usage:

Indicates the assertion of the required confidentiality constraint.

Information Value
Required Yes
Data type drop-down list
Range

Optional
Both messages that meet or do not meet the
required integrity constraint are accepted.

Required
The required integrity constraint must be met by
the incoming message.

Additional Properties
Message parts

Specifies parts of the message affected by this required confidentiality constraint.

Nonce
Specifies the encrypted Nonce elements which must be present in the consumed message, and
what parts of the message they must be attached to. Nonce is a randomly generated value.

Time stamp
Specifies the encrypted time stamp elements which must be present in the consumed message,
and what parts of the message they must be attached to.

Required integrity [Collection]
Specifies the integrity constraints consumed messages must meet. This includes specifying which
message parts within the incoming message must be digitally signed, and the message parts to which
attached digitally signed Nonce and time stamp elements are expected.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required integrity.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

Chapter 26. Administering web services - Bus enabled web services 3005



To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the required integrity element.

Usage Indicates the assertion of the required integrity constraint.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Required integrity [Collection]
Specifies the integrity constraints consumed messages must meet. This includes specifying which
message parts within the incoming message must be digitally signed, and the message parts to which
attached digitally signed Nonce and time stamp elements are expected.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Response consumer] Required integrity.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the required integrity element.

Usage Indicates the assertion of the required integrity constraint.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Required integrity [Settings]
Specifies the integrity constraints consumed messages must meet. This includes specifying which
message parts within the incoming message must be digitally signed, and the message parts to which
attached digitally signed Nonce and time stamp elements are expected.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required integrity -> required-integrity_name.

3006 Administering WebSphere applications



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the required integrity element.

Information Value
Required Yes
Data type String

Usage:

Indicates the assertion of the required integrity constraint.

Information Value
Required Yes
Data type drop-down list
Range

Optional
Both messages that meet or do not meet the
required integrity constraint are accepted.

Required
The required integrity constraint must be met by
the incoming message.

Additional Properties
Message parts

Specifies parts of the message affected by this required integrity constraint.

Nonce
Specifies the digitally signed Nonce elements which must be present in the consumed message,
and what parts of the message they must be attached to. Nonce is a randomly generated value.

Time stamp
Specifies the digitally signed time stamp elements which must be present in the consumed
message, and what parts of the message they must be attached to.

Required integrity [Settings]
Specifies the integrity constraints consumed messages must meet. This includes specifying which
message parts within the incoming message must be digitally signed, and the message parts to which
attached digitally signed Nonce and time stamp elements are expected.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Response consumer] Required integrity -> integrity_name.

Chapter 26. Administering web services - Bus enabled web services 3007



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the required integrity element.

Information Value
Required Yes
Data type String

Usage:

Indicates the assertion of the required integrity constraint.

Information Value
Required Yes
Data type drop-down list
Range

Optional
Both messages that meet or do not meet the
required integrity constraint are accepted.

Required
The required integrity constraint must be met by
the incoming message.

Additional Properties
Message parts

Specifies parts of the message affected by this required integrity constraint.

Nonce
Specifies the digitally signed Nonce elements which must be present in the consumed message,
and what parts of the message they must be attached to. Nonce is a randomly generated value.

Time stamp
Specifies the digitally signed time stamp elements which must be present in the consumed
message, and what parts of the message they must be attached to.

Required security token [Collection]
Specifies accepted stand-alone security tokens within a consumed message. Stand-alone security tokens
are those not already used for signature or encryption. Defining a required security token means that
messages containing a token of that type will be processed according to the usage assertion. The security
token will not be used for authentication unless it is also specified within a caller.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required Security Token.

3008 Administering WebSphere applications



To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the security token.

Usage Indicates the assertion of the required security token constraint.

URI Specifies the namespace URI of the security token.

Local name
Specifies the local name of the security token.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Required security token [Collection]
Specifies accepted stand-alone security tokens within a consumed message. Stand-alone security tokens
are those not already used for signature or encryption. Defining a required security token means that
messages containing a token of that type will be processed according to the usage assertion. The security
token will not be used for authentication unless it is also specified within a caller.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Response consumer] Required Security Token.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the security token.

Usage Indicates the assertion of the required security token constraint.

URI Specifies the namespace URI of the security token.

Local name
Specifies the local name of the security token.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Chapter 26. Administering web services - Bus enabled web services 3009



Required security token [Settings]
Specifies accepted stand-alone security tokens within a consumed message. Stand-alone security tokens
are those not already used for signature or encryption. Defining a required security token means that
messages containing a token of that type will be processed according to the usage assertion. The security
token will not be used for authentication unless it is also specified within a caller.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required Security Token -> required-security-token_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the security token.

Information Value
Required Yes
Data type String

URI:

Specifies the namespace URI of the security token.

This is the namespace Uniform Resource Identifier (URI) of the security token within the consumed
message.

If you specify a Username token or X.509 certificate security token, you do not have to specify a URI. If
you specify a custom token, enter the URI of the QName for the value type. If you specify Lightweight Third
Party Authentication (LTPA), enter the following WebSphere Application Server predefined value type URI:
http://www.ibm.com/websphere/appserver/tokentype/5.0.2. If you specify Lightweight Third Party
Authentication propagation (LTPA_PROPAGATION), enter the following WebSphere Application Server
predefined value type URI: http://www.ibm.com/websphere/appserver/tokentype.

Information Value
Required No
Data type String

Local name:

Specifies the local name of the security token.

WebSphere Application Server has the following predefined local name value types:

Username token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

3010 Administering WebSphere applications



X509 certificate token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

# X509 certificates in a PKIPath
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

LTPA For Lightweight Third Party Authentication, the local name value type is LTPA.

LTPA_PROPAGATION
For Lightweight Third Party Authentication token propagation, the local name value type is
LTPA_PROPAGATION.

Attention:

v If you enter LTPA in the Local name field, you must also specify the URI value
http://www.ibm.com/websphere/appserver/tokentype/5.0.2 in the URI field.

v If you enter LTPA_PROPAGATION in the Local name field, you must also specify the URI value
http://www.ibm.com/websphere/appserver/tokentype in the URI field.

v If you enter any of the other predefined local name value types, you can leave the URI field
blank. For example, to specify “Username token”, enter http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken in the Local name
field and do not enter a value in the URI field.

v If you specify a custom value type for a custom token, you must specify the local name and
the URI of the Quality name (QName) of the value type. For example, you might enter
Custom in the Local name field, and http://www.ibm.com/custom in the URI field.

Information Value
Required Yes
Data type String

Usage:

Indicates the assertion of the required security token constraint.

Information Value
Required Yes
Data type drop-down list
Range

Optional
Both messages that meet or do not meet the
required integrity constraint are accepted.

Required
The required integrity constraint must be met by
the incoming message.

Required security token [Settings]
Specifies accepted stand-alone security tokens within a consumed message. Stand-alone security tokens
are those not already used for signature or encryption. Defining a required security token means that
messages containing a token of that type will be processed according to the usage assertion. The security
token will not be used for authentication unless it is also specified within a caller.

Chapter 26. Administering web services - Bus enabled web services 3011



To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Response consumer] Required Security Token -> security-token_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the security token.

Information Value
Required Yes
Data type String

URI:

Specifies the namespace URI of the security token.

Information Value
Required No
Data type String

Local name:

Specifies the local name of the security token.

Information Value
Required Yes
Data type String

Usage:

Indicates the assertion of the required security token constraint.

Information Value
Required Yes
Data type drop-down list
Range

Optional
Both messages that meet or do not meet the
required integrity constraint are accepted.

Required
The required integrity constraint must be met by
the incoming message.

3012 Administering WebSphere applications



Response consumer binding [Settings]
WS-Security binding for consumption of responses from outbound target.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security bindings -> response-consumer-binding_name.

You can configure the service integration bus for secure transmission of SOAP messages by using tokens,
keys, signatures and encryption in accordance with the Web Services Security (WS-Security) 1.0
specification.

You use WS-Security bindings to secure the SOAP messages that pass between service requesters
(clients) and inbound services, and between outbound services and target web services. Bindings provide
the information that the run-time environment needs to implement the WS-Security configuration (for
example “To sign the body, use this key”),

Bindings are administered independently from any web service that uses them, so you can create a
binding then apply it to many web services.

You use a response consumer with an outbound configuration. A response consumer binding consumes
the responses from a target web service to an outbound service.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

WS-Security version:

Identifies the version of the WS-Security specification this configuration uses.

Information Value
Required No
Data type String

Binding Type:

The type of binding. This is one of request consumer, request generator, response consumer and
response generator.

Information Value
Required No
Data type String

Name:

The name of the binding.

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

Chapter 26. Administering web services - Bus enabled web services 3013

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Information Value
Required Yes
Data type String

Use defaults:

Specifies whether to use the default binding information. When this option is enabled, Web Services
Security uses the default binding information instead of the custom binding information that is defined
here.

Information Value
Required No
Data type Boolean

Additional Properties
Signing information

Specifies the configuration for the signing parameters. You also can use these parameters for
X.509 certificate validation when the authentication method is IDAssertion and the ID type is
X509Certificate in the server-level configuration. In such cases, only fill in the Certificate path field.

Encryption information
Specifies the configuration for the XML encryption and decryption parameters. If the data and key
encryption algorithms are specified, the application server only accepts elements that are
encrypted with those algorithms.

Token consumers
Specifies the parameters for the token consumer. The information is used only on the consumer
side to process the security token. Because you can plug in a custom token consumer, you must
specify a Java class name.

Key information
Specifies the related configuration that is needed to generate the key for XML digital signature or
XML encryption.

Key locators
Specifies a list of key locator configurations that retrieve the key for signature and encryption. You
can customize a key locator class to retrieve keys from other types of repositories. The default
implementation retrieves keys from a keystore.

Collection certificate store
Specifies a list of untrusted, intermediate certificate files. This collection certificate store is used for
certificate path validation of incoming X.509-formatted security tokens. The root-trusted certificates
are specified in the Trust anchors panel.

Trust anchors
Specifies a list of keystore configurations that contain root-trusted certificates. These configurations
are used for certificate path validation of the incoming X.509-formatted security tokens. You must
create the keystore using the key tool utility. Do not use the key management utility because it
does not create a keystore with the expected format.

Properties
Specifies additional properties for the configuration.

3014 Administering WebSphere applications



Response generator binding configuration [Settings]
WS-Security binding for generation of responses to caller.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security bindings -> response-generator-binding_name.

You can configure the service integration bus for secure transmission of SOAP messages by using tokens,
keys, signatures and encryption in accordance with the Web Services Security (WS-Security) 1.0
specification.

You use WS-Security bindings to secure the SOAP messages that pass between service requesters
(clients) and inbound services, and between outbound services and target web services. Bindings provide
the information that the run-time environment needs to implement the WS-Security configuration (for
example “To sign the body, use this key”),

Bindings are administered independently from any web service that uses them, so you can create a
binding then apply it to many web services.

You use a response generator with an inbound configuration. A response generator binding generates the
responses from an inbound service to a client.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

WS-Security version:

Identifies the version of the WS-Security specification this configuration uses.

Information Value
Required No
Data type String

Binding Type:

The type of binding. This is one of request consumer, request generator, response consumer and
response generator.

Information Value
Required No
Data type String

Name:

The name of the binding.

This name must be unique, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

Chapter 26. Administering web services - Bus enabled web services 3015

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Information Value
Required Yes
Data type String

Use defaults:

Specifies whether to use the default binding information. When this option is enabled, Web Services
Security uses the default binding information instead of the custom binding information that is defined
here.

Information Value
Required No
Data type Boolean

Additional Properties
Signing information

Specifies the configuration for the signing parameters. You also can use these parameters for
X.509 certificate validation when the authentication method is IDAssertion and the ID type is
X509Certificate in the server-level configuration. In such cases, only fill in the Certificate path field.

Encryption information
Specifies the configuration for the XML encryption and decryption parameters. If the data and key
encryption algorithms are specified, the application server only accepts elements that are
encrypted with those algorithms.

Token generators
Specifies the parameters for the token generator. The information is used only on the generator
side to generate the security token. Because you can plug in a custom token generator, you must
specify a Java class name.

Key information
Specifies the related configuration that is needed to generate the key for XML digital signature or
XML encryption.

Key locators
Specifies a list of key locator configurations that retrieve the key for signature and encryption. You
can customize a key locator class to retrieve keys from other types of repositories. The default
implementation retrieves keys from a keystore.

Collection certificate store
Specifies a list of untrusted, intermediate certificate files. This collection certificate store is used for
certificate path validation of incoming X.509-formatted security tokens. The root-trusted certificates
are specified in the Trust anchors panel.

Properties
Specifies additional properties for the configuration.

Response receiver [Settings]
Draft 13 WS-Security binding for consumption of responses from a target.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security bindings -> response-receiver-binding_name.

3016 Administering WebSphere applications



This panel is one of a set of panels that allow you to configure the service integration bus in accordance
with WS-Security Draft 13 (also known as the Web Services Security Core Specification). However, use of
the WS-Security Draft 13 specification is deprecated, and you should only use it to allow continued use of
an existing web services client application that has been written to the WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

WS-Security version:

Identifies the version of the WS-Security specification this configuration uses.

Information Value
Required No
Data type String

Binding Type:

The type of binding. This is one of request consumer, request generator, response consumer and
response generator.

Information Value
Required No
Data type String

Name:

The name of the binding.

Information Value
Required Yes
Data type String

Additional Properties
Signing information

Specifies the configuration for the signing parameters. You also can use these parameters for
X.509 certificate validation when the authentication method is IDAssertion and the ID type is
X509Certificate in the server-level configuration. In such cases, only fill in the Certificate path field.

Encryption information
Specifies the configuration for the XML encryption and decryption parameters. If the data and key
encryption algorithms are specified, the application server only accepts elements that are
encrypted with those algorithms.

Trust anchors
Specifies a list of keystore configurations that contain root-trusted certificates. These configurations
are used for certificate path validation of the incoming X.509-formatted security tokens. You must
create the keystore using the key tool utility. Do not use the key management utility because it
does not create a keystore with the expected format.

Chapter 26. Administering web services - Bus enabled web services 3017



Collection certificate store
Specifies a list of untrusted, intermediate certificate files. This collection certificate store is used for
certificate path validation of incoming X.509-formatted security tokens. The root-trusted certificates
are specified in the Trust anchors panel.

Key locators
Specifies a list of key locator configurations that retrieve the key for signature and encryption. You
can customize a key locator class to retrieve keys from other types of repositories. The default
implementation retrieves keys from a keystore.

Response sender [Settings]
Draft 13 WS-Security binding for generation of responses to a caller.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security bindings -> response-sender-binding_name.

This panel is one of a set of panels that allow you to configure the service integration bus in accordance
with WS-Security Draft 13 (also known as the Web Services Security Core Specification). However, use of
the WS-Security Draft 13 specification is deprecated, and you should only use it to allow continued use of
an existing web services client application that has been written to the WS-Security Draft 13 specification.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

WS-Security version:

Identifies the version of the WS-Security specification this configuration uses.

Information Value
Required No
Data type String

Binding Type:

The type of binding. This is one of request consumer, request generator, response consumer and
response generator.

Information Value
Required No
Data type String

Name:

The name of the binding.

Information Value
Required Yes
Data type String

3018 Administering WebSphere applications



Additional Properties
Signing information

Specifies the configuration for the signing parameters. You also can use these parameters for
X.509 certificate validation when the authentication method is IDAssertion and the ID type is
X509Certificate in the server-level configuration. In such cases, only fill in the Certificate path field.

Encryption information
Specifies the configuration for the XML encryption and decryption parameters. If the data and key
encryption algorithms are specified, the application server only accepts elements that are
encrypted with those algorithms.

Key locators
Specifies a list of key locator configurations that retrieve the key for signature and encryption. You
can customize a key locator class to retrieve keys from other types of repositories. The default
implementation retrieves keys from a keystore.

Security Token [Collection]
Specifies stand-alone security tokens to insert into the generated message. Stand-alone security tokens
are those not already used for signature or encryption. Standard and custom security tokens may be
defined by URI and local name.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Request generator] Security Token.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the security token

URI Specifies the namespace URI of the security token to insert.

Local Name
Specifies the local name of the security token to insert.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Security Token [Collection]
Specifies stand-alone security tokens to insert into the generated message. Stand-alone security tokens
are those not already used for signature or encryption. Standard and custom security tokens may be
defined by URI and local name.

To view this page in the console, click the following path:

Chapter 26. Administering web services - Bus enabled web services 3019



Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Response generator] Security Token.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the security token

URI Specifies the namespace URI of the security token to insert.

Local Name
Specifies the local name of the security token to insert.

Buttons

Button Description
New Create a new administrative object of this type.
Delete Delete the selected items.

Security Token [Settings]
Specifies stand-alone security tokens to insert into the generated message. Stand-alone security tokens
are those not already used for signature or encryption. Standard and custom security tokens may be
defined by URI and local name.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Request generator] Security Token -> security-token_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the security token

Information Value
Required Yes
Data type String

URI:

Specifies the namespace URI of the security token to insert.

This is the namespace Uniform Resource Identifier (URI) of the security token to be inserted into the
generated message.

3020 Administering WebSphere applications



If you specify a Username token or X.509 certificate security token, you do not have to specify a URI. If
you specify a custom token, enter the URI of the QName for the value type. If you specify Lightweight Third
Party Authentication (LTPA), enter the following WebSphere Application Server predefined value type URI:
http://www.ibm.com/websphere/appserver/tokentype/5.0.2. If you specify Lightweight Third Party
Authentication propagation (LTPA_PROPAGATION), enter the following WebSphere Application Server
predefined value type URI: http://www.ibm.com/websphere/appserver/tokentype.

Information Value
Required No
Data type String

Local Name:

Specifies the local name of the security token to insert.

WebSphere Application Server has the following predefined local name value types:

Username token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

X509 certificate token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

# X509 certificates in a PKIPath
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

LTPA For Lightweight Third Party Authentication, the local name value type is LTPA.

LTPA_PROPAGATION
For Lightweight Third Party Authentication token propagation, the local name value type is
LTPA_PROPAGATION.

Attention:

v If you enter LTPA in the Local name field, you must also specify the URI value
http://www.ibm.com/websphere/appserver/tokentype/5.0.2 in the URI field.

v If you enter LTPA_PROPAGATION in the Local name field, you must also specify the URI value
http://www.ibm.com/websphere/appserver/tokentype in the URI field.

v If you enter any of the other predefined local name value types, you can leave the URI field
blank. For example, to specify “Username token”, enter http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken in the Local name
field and do not enter a value in the URI field.

v If you specify a custom value type for a custom token, you must specify the local name and
the URI of the Quality name (QName) of the value type. For example, you might enter
Custom in the Local name field, and http://www.ibm.com/custom in the URI field.

Information Value
Required Yes
Data type String

Chapter 26. Administering web services - Bus enabled web services 3021



Security Token [Settings]
Specifies stand-alone security tokens to insert into the generated message. Stand-alone security tokens
are those not already used for signature or encryption. Standard and custom security tokens may be
defined by URI and local name.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Response generator] Security Token -> security-token_name.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the security token

Information Value
Required Yes
Data type String

URI:

Specifies the namespace URI of the security token to insert.

Information Value
Required No
Data type String

Local Name:

Specifies the local name of the security token to insert.

Information Value
Required Yes
Data type String

Time stamp [Collection]
Attaches a time stamp element to the message part specified by the dialect and keyword attributes.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required integrity -> required-integrity_name -> [Additional Properties]
Timestamp

v Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name
-> [Response consumer] Required integrity -> integrity_name -> [Additional Properties]
Timestamp

3022 Administering WebSphere applications



v Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required Confidentiality -> required-confidentiality_name -> [Additional
Properties] Timestamp

v Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name
-> [Response consumer] Required Confidentiality -> confidentiality_name -> [Additional
Properties] Timestamp

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Name The name of the time stamp element.

Dialect
The expression dialect to use.

Keyword
The message part to attach the time stamp element to, specified in a way defined by the chosen
dialect.

Expires
The expiration time of the time stamp, defined as an xsd:Duration type.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

Time stamp [Settings]
Attaches a time stamp element to the message part specified by the dialect and keyword attributes.

To view this page in the console, click one of the following paths:

v Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required integrity -> required-integrity_name -> [Additional Properties]
Timestamp -> timestamp_name

v Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name
-> [Response consumer] Required integrity -> integrity_name -> [Additional Properties]
Timestamp -> timestamp_name

v Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Required Confidentiality -> required-confidentiality_name -> [Additional
Properties] Timestamp -> timestamp_name

v Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name
-> [Response consumer] Required Confidentiality -> confidentiality_name -> [Additional
Properties] Timestamp -> timestamp_name

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

Chapter 26. Administering web services - Bus enabled web services 3023



General Properties

Name:

The name of the time stamp element.

Information Value
Required Yes
Data type String

Dialect:

The expression dialect to use.

Information Value
Required Yes
Data type drop-down list

Keyword:

The message part to attach the time stamp element to, specified in a way defined by the chosen dialect.

When the http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect value is selected,
the following are valid keyword values:

action Specifies the wsa:Action element.

body Specifies the SOAP body element.

dsigkey
Specifies the key information element, which is used for digital signature.

enckey
Specifies the ds:KeyInfo element, which is used for encryption.

messageid
Specifies the wsa:MessageID element.

relatesto
Specifies the wsa:RelatesTo element.

securitytoken
Specifies any security token elements, for example the wsse:BinarySecurityToken element.

timestamp
Specifies the wsu:Timestamp element. This element determines whether the message is valid
based upon the time that the message is sent and then received.

to Specifies the wsa:To element.

When the http://www.w3.org/TR/1999/REC-xpath-1999116 dialect value is selected, then the keyword
value can be any valid XPath expression that points to a part of the message. For example:
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

Information Value
Required Yes
Data type String

3024 Administering WebSphere applications



Expires:

The expiration time of the time stamp, defined as an xsd:Duration type.

The expires value is defined as a type of xsd:Duration, and the format must match the following regular
expression:
-?P([0-9]+Y)?([0-9]+M)?([0-9]+D)?(T([0-9]+H)?([0-9]+M)?([0-9]+(\\.[0-9]*)?S)?)

For example, to specify a timestamp expiration of three minutes, enter PT3M.

Information Value
Required Yes
Data type String

Trust Method [Settings]
Defines a trust method used to validate the identity of a trusted intermediary asserting an ID on a
downstream message. When a trust method is configured, the security token defined by the caller is
expected to contain an identity to be asserted.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-inbound-config_name ->
[Request consumer] Caller -> caller_name -> [Additional Properties] Trust method.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Trust any:

If trust any is selected then all upstream intermediaries will be trusted by this consumer. This should only
be selected if you are certain that all upstream intermediaries are trusted. Selecting trust any will
automatically override all other attributes of this trust method.

If you do not select the Trust any check box, but you specify a value for any other field on this panel, then
WS-Security identity assertion is enabled.

Information Value
Required No
Data type Boolean

Name:

The name of the trust method.

There are two valid predefined names:

v BasicAuth (for basic authentication).

v Signature.

Chapter 26. Administering web services - Bus enabled web services 3025



Information Value
Required No
Data type String

Part:

Specifies the name of the required integrity or required confidentiality part within the message to be used
to validate the intermediary.

Information Value
Required No
Data type drop-down list

URI:

Specifies the URI of the security token to use to validate the intermediary.

If you specify BasicAuth or Signature as the trust method, you do not have to specify this option. If you
specify a custom token, enter the URI of the QName for the value type.

Information Value
Required No
Data type String

Local Name:

Specifies the local name of the security token to use to validate the intermediary.

If you enter a value in the Local Name field, you must define a trusted ID evaluator for the token
consumer that is associated with this token.

WebSphere Application Server has the following predefined local name value types:

BasicAuth
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

Signature
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

Attention:

v If you enter one of the predefined local name value types, you can leave the URI field blank. For
example, to specify “BasicAuth”, enter http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#UsernameToken in the Local name field and do not enter a value in the URI
field.

v If you specify a custom value type for a custom token, you must specify the local name and the URI of
the Quality name (QName) of the value type. For example, you might enter Custom in the Local name
field, and http://www.ibm.com/custom in the URI field.

Information Value
Required No
Data type String

3026 Administering WebSphere applications



Additional Properties
Properties

Properties associated with the trust method.

Trust Method [Settings]
Defines a trust method used to validate the identity of a trusted intermediary asserting an ID on a
downstream message. When a trust method is configured, the security token defined by the caller is
expected to contain an identity to be asserted.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations -> v1-outbound-config_name ->
[Response consumer] Caller > caller_name -> [Additional Properties] Trust method.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Trust any:

If trust any is selected then all upstream intermediaries will be trusted by this consumer. This should only
be selected if you are certain that all upstream intermediaries are trusted. Selecting trust any will
automatically override all other attributes of this trust method.

Information Value
Required No
Data type Boolean

Name:

The name of the trust method.

Information Value
Required Yes
Data type String

Part:

Specifies the name of the required integrity or required confidentiality part within the message to be used
to validate the intermediary.

Information Value
Required Yes
Data type drop-down list

URI:

Specifies the URI of the security token to use to validate the intermediary.

Chapter 26. Administering web services - Bus enabled web services 3027



Information Value
Required Yes
Data type String

Local Name:

Specifies the local name of the security token to use to validate the intermediary.

Information Value
Required Yes
Data type String

Additional Properties
Properties

Properties associated with the trust method.

WS-Security bindings [Collection]
WS-Security bindings for consumption and generation of requests and responses.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security bindings.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

You can configure the service integration bus for secure transmission of SOAP messages by using tokens,
keys, signatures and encryption in accordance with the Web Services Security (WS-Security) 1.0
specification.

Alternatively, you can configure the bus in accordance with the previous WS-Security specification,
WS-Security Draft 13 (also known as the Web Services Security Core Specification). However, use of the
WS-Security Draft 13 specification is deprecated, and you should only use it to allow continued use of an
existing web services client application that has been written to the WS-Security Draft 13 specification.

You use WS-Security bindings to secure the SOAP messages that pass between service requesters
(clients) and inbound services, and between outbound services and target web services. Bindings provide
the information that the run-time environment needs to implement the WS-Security configuration (for
example “To sign the body, use this key”),

Bindings are administered independently from any web service that uses them, so you can create a
binding then apply it to many web services. However, the security requirements for an inbound service
(which acts as a target web service) are significantly different to those required for an outbound service
(which acts as a client). Consequently, bindings are further divided into sub-types:

For WS-Security Version 1.0:

v request consumer, for use when consuming requests from a client to an inbound service.

v request generator, for use when generating requests from an outbound service to a target web service.

3028 Administering WebSphere applications

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


v response consumer, for use when consuming responses from a target web service to an outbound
service.

v response generator, for use when generating responses from an inbound service to a client.

For WS-Security Draft 13:

v request receiver, for use when receiving requests from a client to an inbound service.

v request sender, for use when sending requests from an outbound service to a target web service.

v response receiver, for use when receiving responses from a target web service to an outbound service.

v response sender, for use when sending responses from an inbound service to a client.

Name The name of the WS-Security binding.

Binding Type
The type of binding. This is one of request consumer, request generator, response consumer and
response generator.

Security version
Identifies the version of the WS-Security specification this configuration uses.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

WS-Security configurations [Collection]
WS-Security configurations for inbound and outbound services.

To view this page in the console, click the following path:

Service integration -> Web services -> WS-Security configurations.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

You can configure the service integration bus for secure transmission of SOAP messages by using tokens,
keys, signatures and encryption in accordance with the Web Services Security (WS-Security) 1.0
specification.

Alternatively, you can configure the bus in accordance with the previous WS-Security specification,
WS-Security Draft 13 (also known as the Web Services Security Core Specification). However, use of the
WS-Security Draft 13 specification is deprecated, and you should only use it to allow continued use of an
existing web services client application that has been written to the WS-Security Draft 13 specification.

You use WS-Security configurations to secure the SOAP messages that pass between service requesters
(clients) and inbound services, and between outbound services and target Web services. Configurations
specify the level of security that you require (for example “The body must be signed”). This level of
security is then implemented through the run-time information contained in a WS-Security binding.

Chapter 26. Administering web services - Bus enabled web services 3029

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss


Configurations are administered independently from any web service that uses them, so you can create a
configuration then apply it to many web services. However, the security requirements for an inbound
service (which acts as a target web service) are significantly different to those required for an outbound
service (which acts as a client). Consequently, configurations are further divided by service type (inbound
or outbound).

Name The name of the WS-Security configuration.

Service type
The type of service the WS-Security configuration applies to.

Security version
Identifies the version of the WS-Security specification this configuration uses.

Buttons

Button Description

New Create a new administrative object of this type.

Delete Delete the selected items.

SIBWebServices command group for the AdminTask object
Use command scripts to configure service integration bus-enabled web services.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Before and immediately after performing administrative commands that carry out publication to UDDI, save
the configuration by using either the AdminConfig.save() command or an equivalent command from within
the administrative console. This ensures consistency between what is published to UDDI and what is
recorded in the service integration bus configuration as having been published to UDDI.

Each command acts on multiple objects in one operation. The commands are provided to allow you to
make the most commonly-required types of update in a consistent manner, where modifying the underlying
objects directly would be error-prone.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

The following administrative commands are available in this command group.

v “createSIBWSOutboundService command” on page 3031

v “deleteSIBWSOutboundService command” on page 3033

v “addSIBWSOutboundPort command” on page 3034

v “removeSIBWSOutboundPort command” on page 3035

v “setDefaultSIBWSOutboundPort command” on page 3036

3030 Administering WebSphere applications



v “createSIBWSInboundService command” on page 3037

v “deleteSIBWSInboundService command” on page 3038

v “addSIBWSInboundPort command” on page 3040

v “removeSIBWSInboundPort command” on page 3041

v “refreshSIBWSOutboundServiceWSDL command” on page 3042

v “refreshSIBWSInboundServiceWSDL command” on page 3043

v “publishSIBWSInboundService command” on page 3044

v “unpublishSIBWSInboundService command” on page 3045

v “createSIBWSEndpointListener command” on page 3046

v “deleteSIBWSEndpointListener command” on page 3048

v “connectSIBWSEndpointListener command” on page 3049

v “disconnectSIBWSEndpointListener command” on page 3050

createSIBWSOutboundService command
Use the createSIBWSOutboundService command to create a new service integration bus-enabled web
services outbound service configuration.

You can create a new outbound service configuration by using the wsadmin tool as described in this topic,
or by using the administrative console as described in “Making an externally-hosted web service available
internally” on page 2875.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command creates a new OutboundService object, that represents a protocol attachment to a service
provider. When you run this command you must identify a single service element within a WSDL
document.

Target object

ObjectName of the messaging bus within which the service is created.

If the WSDL is to be retrieved through a proxy, the server on which the command is running must have the
system properties that identify the proxy server set correctly. If the proxy requires authentication, then the
user ID and password can be set as parameters on the command.

Chapter 26. Administering web services - Bus enabled web services 3031



After you have run this command, you use other commands to further configure the service. For example,
to add an outbound port.

Required parameters

-name
The outbound service name.

-wsdlLocation
The location of the service provider WSDL file.

This is either a web address or the service-specific part of a UDDI service key. If you specify a UDDI
reference, the WSDL location is assumed to be a UDDI service key.

Here is an example of a full UDDI service key:
uddi:blade108node01cell:blade108node01:server1:default:6e3d106e-5394-44e3-be17-aca728ac1791

The service-specific part of this key is the final part:
6e3d106e-5394-44e3-be17-aca728ac1791

Conditional parameters

-wsdlServiceName
The name of the service within the WSDL. Only required if the service provider WSDL contains more
than one service, or the WSDL is located through a UDDI registry.

-wsdlServiceNamespace
The namespace of the service within the WSDL. Only required if the service provider WSDL contains
more than one service, or the WSDL is located through a UDDI registry, or the service is not in the
default namespace for the WSDL document.

Optional parameters

-uddiReference
If you specified a UDDI service key as the WSDL location, supply the UDDI reference for the target
UDDI registry.

-destination
The name of the service destination.

Note: The command creates the service destination. If a destination with the specified or default
name already exists, the command fails.

-userId
The user ID that you use to retrieve the WSDL.

-password
The password that you use to retrieve the WSDL.

Example
v Using Jython:

outService = AdminTask.createSIBWSOutboundService(bus, ["-name", "MyService",
"-wsdlLocation", "http://myserver.com/MyService.wsdl"])

v Using Jacl:
set outService [$AdminTask createSIBWSOutboundService $bus {-name "MyService"
-wsdlLocation "http://myserver.com/MyService.wsdl"}]

3032 Administering WebSphere applications



deleteSIBWSOutboundService command
Use the deleteSIBWSOutboundService command to delete a service integration bus-enabled web services
outbound service configuration.

You can delete an outbound service configuration by using the wsadmin tool as described in this topic, or
by using the administrative console as described in “Deleting outbound service configurations” on page
2880.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command deletes an OutboundService object, along with any associated OutboundPort objects.

Target object

ObjectName of the OutboundService object to be deleted.

The service and port destinations are deleted. Any messages on the service and port destinations are
either deleted or sent to an exception destination as specified in the policy for the messaging bus.

Resources associated with the OutboundService and OutboundPorts (JAX-RPC handler lists, WS-Security
configuration) are dissociated from the OutboundService and OutboundPorts, but are not themselves
deleted.

Parameters

None.

Example
v Using Jython:

AdminTask.deleteSIBWSOutboundService(outService)

v Using Jacl:
$AdminTask deleteSIBWSOutboundService $outService

Chapter 26. Administering web services - Bus enabled web services 3033



addSIBWSOutboundPort command
Use the addSIBWSOutboundPort command to add a service integration bus-enabled web services outbound
port.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command adds the configuration for an OutboundPort to an OutboundService.

Target object

ObjectName of the OutboundService with which the port is to be associated.

If an OutboundPort for the OutboundService by the given name already exists, or the name of the port
does not correspond to a port in the service element of the service provider WSDL (as defined on the
OutboundService) the command fails.

The command creates the port destination. If a destination with the specified or default name already
exists, the command fails.

If the WSDL is to be retrieved through a proxy server, the server on which the command is running must
have the system properties that identify the proxy server set correctly. In addition, if the proxy server
requires authentication, then the user ID and password can be set as parameters on the command.

If this is the first port for the OutboundService, then it is set as the default, and the service destination
default routing is set to point to the port destination.

Required parameters

-name
The name of the port in the service provider WSDL.

Conditional parameters

-node
The node in which the port destination is localized.

-server
The server in which the port destination is localized.

3034 Administering WebSphere applications



Optional parameters

-destination
The name of the port destination.

-userId
The user ID that you use to retrieve the WSDL.

Note: This parameter is no longer required. If you have existing scripts that provide this parameter,
they will continue to work.

-password
The password that you use to retrieve the WSDL.

Note: This parameter is no longer required. If you have existing scripts that provide this parameter,
they will continue to work.

Example
v Using Jython:

outPort = AdminTask.addSIBWSOutboundPort(outService, ["-name", "MyServiceSoap",
"-node", "MyNode", "-server", "server1"])

v Using Jacl:
set outPort [$AdminTask addSIBWSOutboundPort $outService {-name "MyServiceSoap"
-node "MyNode" -server "server1"}]

removeSIBWSOutboundPort command
Use the removeSIBWSOutboundPort command to remove a service integration bus-enabled web services
outbound port.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes the configuration for an OutboundPort.

Target object

ObjectName of the OutboundPort object that is to be removed.

The port destination is deleted. Any messages on the port destination are either deleted or sent to an
exception destination as specified in the policy for the messaging bus.

Chapter 26. Administering web services - Bus enabled web services 3035



If the port that is removed is the default for the OutboundService, then one of the remaining ports (if any)
is chosen to be the default, and the default routing on the service destination is updated. If there are no
more ports, the default is cleared from the OutboundService and the service destination.

Resources associated with the OutboundPort (JAX-RPC handler lists, WS-Security configuration) are
dissociated from the OutboundPort, but not deleted.

Parameters

None.

Example
v Using Jython:

AdminTask.removeSIBWSOutboundPort(outPort)

v Using Jacl:
$AdminTask removeSIBWSOutboundPort $outPort

setDefaultSIBWSOutboundPort command
Use the setDefaultSIBWSOutboundPort command to set the default service integration bus-enabled web
services outbound port.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command updates the default outbound port for an outbound service.

Target object

ObjectName of the OutboundService object whose default port is to be updated.

The default port is updated for the OutboundService, and the default routing on the service destination is
updated to point at the port destination.

Required parameters

-name
The name of the port to be set as the default.

3036 Administering WebSphere applications



Conditional parameters

None.

Optional parameters

None.

Example
v Using Jython:

AdminTask.setDefaultSIBWSOutboundPort(outService, ["-name", "MyServiceSoap"])

v Using Jacl:
$AdminTask setDefaultSIBWSOutboundPort $outService {-name "MyServiceSoap"}

createSIBWSInboundService command
Use the createSIBWSInboundService command to create a new service integration bus-enabled web
services inbound service configuration.

You can create a new inbound service configuration by using the wsadmin tool as described in this topic,
or by using the administrative console as described in “Making an internally-hosted service available as a
web service” on page 2870.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command creates a new InboundService object that represents a protocol attachment to be used by
service requesters. When you run this command you identify a single service element within a template
WSDL document, and an existing service destination.

Target object

ObjectName of the service integration bus within which the service is created.

If the WSDL is to be retrieved through a proxy server, the server on which the command is running must
have the system properties that identify the proxy server set correctly. If the proxy server requires
authentication, then the user ID and password can be set as parameters on the command.

Chapter 26. Administering web services - Bus enabled web services 3037



After you have run this command, you can use other commands to further configure the service. For
example, you can add an inbound port.

Required parameters

-name
The inbound service name. This cannot be longer than 250 characters.

-destination
The name of the service destination. If the specified destination does not exist, the command fails.

-wsdlLocation
The location of the template WSDL file.

This is either a web address or the service-specific part of a UDDI service key. If you specify a UDDI
reference, the WSDL location is assumed to be a UDDI service key.

Here is an example of a full UDDI service key:
uddi:blade108node01cell:blade108node01:server1:default:6e3d106e-5394-44e3-be17-aca728ac1791

The service-specific part of this key is the final part:
6e3d106e-5394-44e3-be17-aca728ac1791

Conditional parameters

-wsdlServiceName
The name of the service within the template WSDL. Only required if the template WSDL contains more
than one service, or the WSDL is located through a UDDI registry

-wsdlServiceNamespace
The namespace of the service within the WSDL. Only required if the template WSDL contains more
than one service, or the WSDL is located through a UDDI registry, or the service is not in the default
namespace for the WSDL document.

Optional parameters

-uddiReference
If you specified a UDDI service key as the template WSDL location, supply the UDDI reference for the
target UDDI registry.

-userId
The user ID that you use to retrieve the WSDL.

-password
The password that you use to retrieve the WSDL.

Example
v Using Jython:

inService = AdminTask.createSIBWSInboundService(bus, ["-name", "MyService",
"-destination", "destName",
"-wsdlLocation", "http://myserver.com/MyService.wsdl"] )

v Using Jacl:
set inService [$AdminTask createSIBWSInboundService $bus {-name "MyService"
-destination $destName
-wsdlLocation "http://myserver.com/MyService.wsdl"}]

deleteSIBWSInboundService command
Use the deleteSIBWSInboundService command to delete a service integration bus-enabled web services
inbound service configuration.

3038 Administering WebSphere applications



You can delete an inbound service configuration by using the wsadmin tool as described in this topic, or
by using the administrative console as described in “Deleting inbound services configurations” on page
2875.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command deletes an InboundService object, along with any associated InboundPort objects.

Target object

ObjectName of the InboundService object to be deleted.

Resources associated with the InboundService and its InboundPorts (JAX-RPC handler lists, WS-Security
configuration) are dissociated from the InboundService and InboundPorts but are not themselves deleted.

The optional parameters user ID and password allow the unpublishing of WSDL from UDDI registries
through an authenticating proxy server. This command fails if different UDDIPublication objects defined for
the InboundService need different user IDs or passwords to get the appropriate access.

Required parameters

None.

Conditional parameters

None.

Optional parameters

-userId
The user ID that you use to interact with UDDI registries.

-password
The password that you use to interact with UDDI registries.

Example
v Using Jython:

AdminTask.deleteSIBWSInboundService(inService)

v Using Jacl:

Chapter 26. Administering web services - Bus enabled web services 3039



$AdminTask deleteSIBWSInboundService $inService

addSIBWSInboundPort command
Use the addSIBWSInboundPort command to add a service integration bus-enabled web services inbound
port.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command adds the configuration for an InboundPort to an InboundService.

If the port name is already in use by another InboundPort for the InboundService, or the specified endpoint
listener does not exist, the command fails.

If the templatePort is specified but does not exist in the InboundService template WSDL, the command
fails.

If there is no BusConnectionProperty for the InboundService bus, then one is created with the default reply
destination name.

Target object

ObjectName of the InboundService to which the port is to be added.

Required parameters

-name
The name of the port.

-endpointListener
The name of the associated endpoint listener.

Conditional parameters

-node
The node in which the endpoint listener is located.

-server
The server in which the endpoint listener is located.

3040 Administering WebSphere applications



Optional parameters

-templatePort
The name of the port in the template WSDL to use as a basis for this port binding.

Example
v Using Jython:

inPort = AdminTask.addSIBWSInboundPort(inService, ["-name", "MyServiceSoap",
"-endpointListener", "SOAPHTTP1", "-node", "MyNode", "-server", "server1"] )

v Using Jacl:
set inPort [$AdminTask addSIBWSInboundPort $inService {-name "MyServiceSoap"
-endpointListener "SOAPHTTP1" -node "MyNode" -server "server1"}]

removeSIBWSInboundPort command
Use the removeSIBWSInboundPort command to remove a service integration bus-enabled web services
inbound port.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes the configuration for an InboundPort.

Target object

ObjectName of the InboundPort object to be removed.

Resources associated with the InboundPort (JAX-RPC handler lists, WS-Security configuration) are
dissociated from the InboundPort, but are not themselves deleted.

Parameters

None.

Example
v Using Jython:

AdminTask.removeSIBWSInboundPort(inPort)

v Using Jacl:
$AdminTask removeSIBWSInboundPort $inPort

Chapter 26. Administering web services - Bus enabled web services 3041



refreshSIBWSOutboundServiceWSDL command
Use the refreshSIBWSOutboundServiceWSDL command to refresh a service integration bus-enabled web
services outbound service WSDL file.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command loads the WSDL document from the OutboundService WSDLLocation parameters, and
locates the WSDLLocation-specified service element.

Target object

ObjectName of the OutboundService object.

If the service element is not present, the command fails.

The OutboundPorts must be a subset of the ports in the loaded WSDL document, otherwise the command
fails.

If the WSDL is to be retrieved through a proxy, the server on which the command is running must have the
system properties that identify the proxy server set correctly. If the proxy requires authentication, then the
user ID and password can be set as parameters on the command.

Required parameters

None.

Conditional parameters

None.

Optional parameters

-userId
The user ID that you use to retrieve the WSDL.

-password
The password that you use to retrieve the WSDL.

3042 Administering WebSphere applications



Example
v Using Jython:

AdminTask.refreshSIBWSOutboundServiceWSDL(outService)

v Using Jacl:
$AdminTask refreshSIBWSOutboundServiceWSDL $outService

refreshSIBWSInboundServiceWSDL command
Use the refreshSIBWSInboundServiceWSDL command to refresh a service integration bus-enabled web
services inbound service WSDL file.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command loads the WSDL document from the InboundService WSDLLocation parameters, and
locates the WSDLLocation-specified service element.

Target object

ObjectName of the InboundService object.

If the service element is not present, the command fails.

All templatePortName values in InboundPorts for the InboundService must correspond to ports in the
loaded WSDL document, otherwise the command fails.

If the WSDL is to be retrieved through a proxy, the server on which the command is running must have the
system properties that identify the proxy server set correctly. If the proxy requires authentication, then the
user ID and password can be set as parameters on the command.

Required parameters

None.

Conditional parameters

None.

Chapter 26. Administering web services - Bus enabled web services 3043



Optional parameters

-userId
The user ID that you use to retrieve the WSDL.

-password
The password that you use to retrieve the WSDL.

Example
v Using Jython:

AdminTask.refreshSIBWSInboundServiceWSDL(inService)

v Using Jacl:
$AdminTask refreshSIBWSInboundServiceWSDL $inService

publishSIBWSInboundService command
Use the publishSIBWSInboundService command to publish to UDDI a service integration bus-enabled web
services inbound service WSDL file.

Before and immediately after performing this command, save the configuration by using either the
AdminConfig.save() command or an equivalent command from within the administrative console. This
ensures consistency between what is published to UDDI and what is recorded in the service integration
bus configuration as having been published to UDDI.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command publishes the WSDL document for the InboundService, with all its ports, to the registry and
business defined by the UDDIPublication object.

Target object

ObjectName of the InboundService object.

If the UDDI publish operation succeeds, the service key in the UDDIPublication object is updated and a
warning message is produced indicating that the service is successfully published to UDDI, but that
without a save of the configuration the system is in an inconsistent state.

If the UDDI publish operation fails, the service key is not updated and an error message is produced
indicating that the publish operation failed.

If the UDDI publish operation succeeds, an information message is produced that contains sufficient
details for the administrator to independently find the service in the UDDI registry if that becomes
necessary.

3044 Administering WebSphere applications



If the WSDL is to be published through a proxy, the server on which the command is running must have
the system properties that identify the proxy server set correctly. If the proxy requires authentication, then
the user ID and password can be set as parameters on the command.

Required parameters

-uddiPublication
The name of the UDDI publication property for this service.

Conditional parameters

None.

Optional parameters

-userId
The user ID that you use to retrieve the WSDL.

-password
The password that you use to retrieve the WSDL.

Example
v Using Jython:

AdminTask.publishSIBWSInboundService(inService, ["-uddiPublication", "MyUddi"])

v Using Jacl:
$AdminTask publishSIBWSInboundService $inService {-uddiPublication "MyUddi"}

unpublishSIBWSInboundService command
Use the unpublishSIBWSInboundService command to remove from UDDI a service integration bus-enabled
web services inbound service WSDL file.

Before and immediately after performing this command, save the configuration by using either the
AdminConfig.save() command or an equivalent command from within the administrative console. This
ensures consistency between what is published to UDDI and what is recorded in the service integration
bus configuration as having been published to UDDI.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command removes the WSDL document for the InboundService, with all its ports, from the registry
and business defined by the UDDIPublication object.

Chapter 26. Administering web services - Bus enabled web services 3045



Target object

ObjectName of the InboundService object.

If the UDDIPublication object has no service key, the command fails.

If the UDDI removal operation succeeds, the service key in the UDDIPublication object is cleared and a
warning message is produced indicating that the service is successfully removed from UDDI, but that
without a save of the configuration the system is in an inconsistent state and the service must be
republished to UDDI by using the GUI or publishToUDDI command.

If the UDDI removal operation fails because the service key is not found, the service key is cleared and a
warning message is produced indicating that the service is not found.

If the UDDI removal operation fails for any other reason, the service key is not cleared and an error
message is produced indicating that the removal failed.

If the WSDL is to be published through a proxy, the server on which the command is running must have
the system properties that identify the proxy server set correctly. If the proxy requires authentication, then
the user ID and password can be set as parameters on the command.

Required parameters

-uddiPublication
The name of the UDDI publication property for this service.

Conditional parameters

None.

Optional parameters

-userId
The user ID that you use to retrieve the WSDL.

-password
The password that you use to retrieve the WSDL.

Example
v Using Jython:

AdminTask.unpublishSIBWSInboundService(inService, ["-uddiPublication", "MyUddi"])

v Using Jacl:
$AdminTask unpublishSIBWSInboundService $inService {-uddiPublication "MyUddi"}

createSIBWSEndpointListener command
Use the createSIBWSEndpointListener command to create a new service integration bus-enabled web
services endpoint listener configuration.

For every server that is to host an endpoint listener, you must install and configure a Service Data Objects
(SDO) repository on the server.

If you want to change the default HTTP endpoint listener security role, do so before you configure the
SOAP over HTTP endpoint listener.

Before you configure a SOAP over JMS endpoint listener, you should configure the associated JMS
resources.

3046 Administering WebSphere applications



You can configure any number of endpoint listeners with values of your own choosing, including the values
given in “Example values for endpoint listener configuration” on page 2884.

You can create a new endpoint listener configuration by using the wsadmin tool as described in this topic,
or by using the administrative console as described in “Creating a new endpoint listener configuration” on
page 2881.

Note: If you want to create an endpoint listener configuration for your own endpoint listener application,
rather than for one of the listeners that is supplied with WebSphere Application Server, you must
use the wsadmin tool.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command creates an endpoint listener configuration.

Target object

ObjectName of the server on which the endpoint listener is created.

The SIBWSEndpointListener object that is created has no associated SIBWSBusConnectionProperty
objects. Use the administrative console to connect one or more service integration buses to this endpoint
listener, as described in “Modifying an existing endpoint listener configuration” on page 2888.

Required parameters

-name
The name of the endpoint listener within the server. If you are installing your own endpoint listener
application, rather than one that is supplied with WebSphere Application Server, then this name must
match the name given in the endpoint listener application that you have installed (that is, the display
name of the endpoint module within the endpoint application EAR file).

-urlRoot
The root of the web address that should be used to build the endpoint addresses within WSDL
documents to direct requesters to this endpoint listener.

-wsdlUrlRoot
The root of the web address for the WSDL files of the inbound services that are provided by this
endpoint listener.

Chapter 26. Administering web services - Bus enabled web services 3047



Conditional parameters

-earFile
The location of the endpoint listener application. Specify this parameter if you are configuring an
endpoint listener other than those supplied with WebSphere Application Server.

Optional parameters

None.

Example
v Using Jython:

epl = AdminTask.createSIBWSEndpointListener(server, ["-name", "soaphttp1",
"-urlRoot", "http://myserver.com/wsgwsoaphttp1",
"-wsdlUrlRoot", "http://myserver.com/wsgwsoaphttp1"] )

v Using Jacl:
set epl [$AdminTask createSIBWSEndpointListener $server {-name "soaphttp1"
-urlRoot "http://myserver.com/wsgwsoaphttp1"
-wsdlUrlRoot "http://myserver.com/wsgwsoaphttp1"}]

deleteSIBWSEndpointListener command
Use the deleteSIBWSEndpointListener command to delete a service integration bus-enabled web services
endpoint listener configuration.

You can delete an endpoint listener configuration by using the wsadmin tool as described in this topic, or
by using the administrative console as described in “Deleting endpoint listener configurations” on page
2890.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command deletes an endpoint listener configuration.

Target object

ObjectName of the endpoint listener that is to be deleted.

The command deletes a SIBWSEndpointListener object, along with any associated
SIBWSBusConnectionProperty objects.

3048 Administering WebSphere applications



The command fails if there are any InboundPort objects associated with the endpoint listener.

Parameters

None.

Example
v Using Jython:

AdminTask.deleteSIBWSEndpointListener(epl)

v Using Jacl:
$AdminTask deleteSIBWSEndpointListener $epl

connectSIBWSEndpointListener command
Use the connectSIBWSEndpointListener command to connect a service integration bus-enabled web
services endpoint listener to a service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command connects an endpoint listener to a service integration bus.

The command creates a SIBWSBusConnectionProperty object for the endpoint listener, and a reply
destination. The command also sets the reply destination name in the bus connection properties.

Target object

ObjectName of the endpoint listener to be connected.

Required parameters

-bus
The name of the service integration bus to which the endpoint listener is to be connected.

Conditional parameters

None.

Chapter 26. Administering web services - Bus enabled web services 3049



Optional parameters

-replyDestination
The name to use for the reply destination for this connection. If no destination name is specified, the
command generates a name.

Example
v Using Jython:

busConn = AdminTask.connectSIBWSEndpointListener(epl, "[-bus myBus]")

v Using Jacl:
set busConn [$AdminTask connectSIBWSEndpointListener $epl {-bus "MyBus"}]

disconnectSIBWSEndpointListener command
Use the disconnectSIBWSEndpointListener command to disconnect a bus-enabled web services endpoint
listener from a service integration bus.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available bus-enabled web services commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('SIBWebServices')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command disconnects an endpoint listener from a service integration bus.

Target object

ObjectName of the endpoint listener to be disconnected.

The command deletes the SIBWSBusConnectionProperty object for the endpoint listener, and also deletes
the reply destination (if any) that is named in the bus connection properties.

Required parameters

-bus
The name of the service integration bus from which the endpoint listener is to be disconnected.

Conditional parameters

None.

3050 Administering WebSphere applications



Optional parameters

None.

Example
v Using Jython:

AdminTask.disconnectSIBWSEndpointListener(epl, ["-bus", "MyBus"])

v Using Jacl:
$AdminTask disconnectSIBWSEndpointListener $epl {-bus "MyBus"}

Chapter 26. Administering web services - Bus enabled web services 3051



3052 Administering WebSphere applications



Chapter 27. Administering web services - Invocation
framework (WSIF)

The Web Services Invocation Framework (WSIF) is a Web Services Description Language
(WSDL)-oriented Java™ API. You use this API to invoke web services dynamically, regardless of the
service implementation format (for example enterprise bean) or the service access mechanism (for
example Java Message Service (JMS)). Using WSIF, you can move away from the usual web services
programming model of working directly with the SOAP APIs, towards a model where you interact with
representations of the services. You can therefore work with the same programming model regardless of
how the service is implemented and accessed.

Administering WSIF
An overview of where and how the Web Services Invocation Framework (WSIF) is installed as part of
WebSphere Application Server, and information about configuring a WSIF client to invoke a web service
through JMS, and modifying the contents of the wsif.properties file.

About this task

WSIF is a thin abstraction layer between application code and the relevant invocation infrastructure.

WSIF is provided in a JAR file named com.ibm.ws.runtime.jar. The JAR file contains the WSIF classes,
and the Java, EJB, SOAP over HTTP and SOAP over JMS providers. Additional providers are packaged
as separate JAR files. When you install WebSphere Application Server, the com.ibm.ws.runtime.jar file is
put on the WebSphere or Java virtual machine (JVM) class path.

WSIF requires no further configuration, apart from the following administrative tasks:

Procedure
v Enable a WSIF client to invoke a web service through JMS.

Use the administrative console to configure the JMS resources (a queue destination and a queue
connection factory) that are required to enable a service to be invoked through JMS by a WSIF client
application.

v Modify the contents of the wsif.properties file.

You might have to modify the contents of this file, for example to change the default SOAP provider

Enabling a WSIF client to invoke a web service through JMS
The ways in which the Web Services Invocation Framework (WSIF) interacts with the Java Message
Service (JMS), and the steps to take to enable a service to be invoked through JMS by a WSIF client
application.

Before you begin

This topic assumes that you chose and configured a JMS provider when you installed WebSphere
Application Server (either the default messaging provider, or another provider such as the WebSphere MQ
messaging provider). If not, do so now as described in Choosing a messaging provider.

About this task

Here are the ways in which WSIF interacts with JMS:
v WSIF only supports input JMS properties.
v WSIF needs two queues when invoking an operation: one for the request message and one for the

reply.

© Copyright IBM Corp. 2012 3053



v The replyTo queue is by default a temporary queue, which WSIF creates on behalf of the application.
You can specify a permanent queue by setting the JMSReplyTo property to the JNDI name of a queue.

v WSIF uses the default values for properties set by the JMS implementation.

To enable a service to be invoked through JMS by a WSIF client application, complete the following steps:

Procedure
1. Use the administrative console to create and configure a queue connection factory and a queue

destination for your chosen messaging provider.

For more information, see “Configuring resources for the default messaging provider” on page 496,
“Configuring JMS resources for the WebSphere MQ messaging provider” on page 697 or “Managing
messaging with a third-party messaging provider” on page 913.

Note: In WebSphere MQ and some other JMS implementations, messages are persistent by default.
The WSIF replyTo temporary queue is of type temporary dynamic by default, which means that
your JMS provider cannot write a persistent response message to this queue. If you are using
the WebSphere MQ messaging provider, create a temporary model queue that is of type
permanent dynamic, then pass this model as the tempmodel of your queue connection factory.
This ensures that persistent messages are written to a temporary replyTo queue that is of type
permanent dynamic.

2. Use the administrative console to add the new queue destination to the list of JMS destination names
for your application server. Ensure that the Initial State is started.

3. Put the JNDI names of the queue destination and queue connection factory, as well as your JNDI
configuration, in the Web Services Description Language (WSDL) file.

4. Optional: If your client is running on an application server that has been migrated from WebSphere
Application Server Version 5, you might get basic authentication errors and therefore have to modify
your security settings. For more information see Web Services Invocation Framework troubleshooting
tips.

Configuring resources for the default messaging provider
Use the following tasks to configure JMS connection factories, activation specifications, and destinations
for the default messaging provider.

About this task

Use these tasks to configure administrative JMS resources provided by the default messaging provider.

These administrative JMS resources are in addition to any temporary JMS destinations created by
applications.
v List JMS resources.
v Configure a unified connection factory.
v Configure a queue connection factory.
v Configure a topic connection factory.
v Configure a queue.
v Configure a topic.
v Configure an activation specification.

Configuring JMS resources for the WebSphere MQ messaging provider
Use the WebSphere Application Server administrative console to configure activation specifications,
connection factories and destinations for the WebSphere MQ JMS provider.

Before you begin

This task assumes that you are working in a mixed WebSphere Application Server and WebSphere MQ
environment, and that you have decided to use the WebSphere MQ messaging provider to handle JMS

3054 Administering WebSphere applications



messaging between the two systems. If your business uses WebSphere MQ, and you want to integrate
WebSphere Application Server messaging applications into a predominately WebSphere MQ network, the
WebSphere MQ messaging provider is the natural choice. However, there can be benefits in using another
provider. If you are not sure which provider combination is best suited to your needs, see Choosing
messaging providers for a mixed environment.

You can configure JMS resources for the WebSphere MQ messaging provider through the administrative
console as described in this task, or you can configure JMS resources for the WebSphere MQ messaging
provider through the WebSphere MQ administrative commands.

About this task

Using the administrative console, you can set the scope of the WebSphere MQ messaging provider to
restrict the range of resources that are displayed:

v If you set the scope to contain only WebSphere Application Server Version 6 or Version 7.0 or later
nodes, you can configure JMS 1.1 resources and properties. This includes unified JMS connection
factories for use by both point-to-point and publish/subscribe JMS 1.1 applications. With JMS 1.1, this
approach is preferred to the domain-specific queue connection factory and topic connection factory.

v If you set the scope to contain only WebSphere Application Server Version 7.0 or later nodes, you can
also configure JMS activation specifications.

v If you set the scope to a WebSphere Application Server Version 5 node, you can only configure
domain-specific JMS resources, and the subset of properties that apply to WebSphere Application
Server Version 5.

Note:

There are two ways of specifying the information needed by WebSphere MQ messaging provider
messaging resources so that they can connect to a WebSphere MQ queue manager. It can either
be specified manually, or by providing the WebSphere MQ messaging provider resource with a
uniform resource locator (URL) that points to a client channel definition table (CCDT).

A CCDT is a binary file that contains information about how to create a client connection channel to
one or more queue managers. The file contains information such as the hostname, port, and name
of the target queue manager, as well as more advanced configuration information like the SSL
attributes that should be used.

Creating WebSphere MQ messaging provider resources using CCDTs provides the following
benefits:

v Flexibility, because client connection channel information is contained in a single place. If any of
the information changes, such as the host name of the machine on which the WebSphere MQ
queue manager resides, only the CCDT needs to be updated. When it is updated, all
WebSphere MQ messaging provider resources that make use of the CCDT pick up the change.

v Reliability, because less information is needed for a CCDT there is a reduced chance of
configuration errors. When using a CCDT to enter connection information, all that is required are
the CCDT URL and an optional queue manager name. If you configure a WebSphere MQ
messaging provider resource manually, much more information is required -- especially if you are
configuring SSL.

For further information about generating a CCDT, see the WebSphere MQ information center.

Maintenance note: The WebSphere MQ messaging provider uses code provided by the WebSphere MQ
resource adapter, which is automatically installed as part of the product.

Chapter 27. Administering web services - Invocation framework (WSIF) 3055



Procedure
v “Creating an activation specification for the WebSphere MQ messaging provider” on page 698

v “Configuring an activation specification for the WebSphere MQ messaging provider” on page 701

v “Migrating a listener port to an activation specification for use with the WebSphere MQ messaging
provider” on page 702

v “Creating a connection factory for the WebSphere MQ messaging provider” on page 703

v “Configuring a unified connection factory for the WebSphere MQ messaging provider” on page 705

v “Configuring a queue connection factory for the WebSphere MQ messaging provider” on page 706

v “Configuring a topic connection factory for the WebSphere MQ messaging provider” on page 707

v “Configuring a queue for the WebSphere MQ messaging provider” on page 708

v “Configuring a topic for the WebSphere MQ messaging provider” on page 708

v “Configuring custom properties for WebSphere MQ messaging provider JMS resources” on page 709

Managing messaging with a third-party messaging provider
For messaging between application servers, most requirements are best met by either the default
messaging provider or the WebSphere MQ messaging provider. However, you can instead use a
third-party messaging provider (that is, use another company's product as the provider). You might want to
do this, for example, if you have existing investments.

Before you begin

If you are not sure which provider combination is best suited to your needs, see Types of messaging
providers.

About this task

Enterprise applications in WebSphere Application Server can use asynchronous messaging through
services based on Java Message Service (JMS) messaging providers and their related messaging
systems. These messaging providers conform to the JMS Version 1.1 specification.

The choice of provider depends on what your JMS application needs to do, and on other factors relating to
your business environment and planned changes to that environment.

Procedure

Choose a third-party messaging provider.
To administer a third-party messaging provider, you use either the resource adaptor (for a Java EE
Connector Architecture (JCA) 1.5-compliant or 1.6-compliant messaging provider) or the client (for a
non-JCA messaging provider) that is supplied by the third party. You use the WebSphere Application
Server administrative console to administer the activation specifications, connection factories and
destinations that are within WebSphere Application Server, but you cannot use the administrative console
to administer the JMS provider itself, or any of its resources that are outside of WebSphere Application
Server.
To use message-driven beans, third-party messaging providers must either provide an inbound JCA
1.5-compliant or 1.6-compliant-resource adapter, or (for non-JCA messaging providers) include Application
Server Facility (ASF), an optional feature that is part of the JMS Version 1.1 specification.
To work with a third-party provider, choose one of the following options:

1. Manage messaging with a third-party JCA 1.5-compliant messaging provider.

2. Manage messaging with a third-party non-JCA messaging provider.

3056 Administering WebSphere applications



wsif.properties file - Initial contents
The Web Services Invocation Framework (WSIF) properties are stored in the com.ibm.ws.runtime.jar file,
in a properties file named wsif.properties. You might have to modify the contents of this file, for example
to change the default SOAP provider, so for reference here is a copy of the “as shipped” contents of the
wsif.properties file.

The com.ibm.ws.runtime.jar file is located in the app_server_root/plugins directory, where
app_server_root is the root directory for your installation of IBM WebSphere Application Server.

You must keep the wsif.properties file on the class path, so that WSIF can find it and the client
administrator can use it to configure WSIF. However if you make any changes to the file, you do not
replace the original copy in the com.ibm.ws.runtime.jar file. Instead, you save the modified version in the
app_server_root/lib/properties directory.

The following code is the initial contents of the wsif.properties file. All the possible properties are listed
and described.
# Two properties are used to override which WSIFProvider is selected when there
# exists multiple providers supporting the same namespace URI. These properties are:
#
# wsif.provider.default.CLASSNAME=N
# wsif.provider.uri.M.CLASSNAME=URI
#
# CLASSNAME is the WSIFProvider class name
# N is the number of following default wsif.provider.uri.M.CLASSNAME properties
# M is a number from 1 to N to uniquely identify each wsif.provider.uri.M.CLASSNAME
# property key.
# For example the following two properties would override the default SOAP provider
# to be the Apache SOAP provider:
#
# wsif.provider.default.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=1
# wsif.provider.uri.1.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=\
# http://schemas.xmlsoap.org/wsdl/soap/
#

# maximum number of milliseconds to wait for a response to a synchronous request.
# Default value if not defined is to wait forever.
# Timeout properties are only used by providers that support timeouts.
wsif.syncrequest.timeout=10000

# maximum number of seconds to wait for a response to an async request.
# if not defined on invalid defaults to no timeout
# Timeout properties are only used by providers that support timeouts.
wsif.asyncrequest.timeout=60

To enable your existing web services to continue to work with WSIF, you might have to change the default
WSIF SOAP provider back to the former Apache SOAP provider.

Chapter 27. Administering web services - Invocation framework (WSIF) 3057



3058 Administering WebSphere applications



Chapter 28. Administering web services - Notification
(WS-Notification)

WS-Notification enables web services to use the publish and subscribe messaging pattern.You use publish
and subscribe messaging to publish one message to many subscribers. In this pattern a producing
application inserts (publishes) a message (event notification) into the messaging system having marked it
with a topic that indicates the subject area of the message. Consuming applications that have subscribed
to the topic in question, and have appropriate authority, all receive an independent copy of the message
that was published by the producing application.

Using WS-Notification for publish and subscribe messaging for web
services
WS-Notification enables web services to use the publish and subscribe messaging pattern.

About this task

You use publish and subscribe messaging to publish one message to many subscribers. In this pattern a
producing application inserts (publishes) a message (event notification) into the messaging system having
marked it with a topic that indicates the subject area of the message. Consuming applications that have
subscribed to the topic in question, and have appropriate authority, all receive an independent copy of the
message that was published by the producing application.

Through the implementation of WS-Notification in WebSphere Application Server, you can achieve the
following goals:

v Use existing service integration technologies and web services components to deliver WS-Notification
functions.

v Interoperate with other publish and subscribe messaging clients (for example Java Message Service
(JMS), WebSphere MQ) and with alternative message brokering products.

For more information about using WS-Notification, see the following topics:

Procedure
v “WS-Notification” on page 3062

v “Accomplishing common WS-Notification tasks” on page 3060

v “Configuring WS-Notification resources” on page 3083

v “Securing WS-Notification” on page 3068

v Developing applications that use WS-Notification

What to do next

Note:

v For development use on a single server only, you can use a script to configure the necessary
resources to get up and running quickly with WS-Notification.

v In WebSphere Application Server Version 6.1, support for WS-Notification is based on a pre-final
approval public review draft of the WS-Notification standards. In later versions, this support is
extended to cover the final approved standards. The differences between the two versions of the
standards are small, and your existing WS-Notification services and client applications will
continue to work unchanged. However, you might choose to upgrade your existing applications
as described in WebSphere Application Server Version 6.1 client applications must handle the
additional error conditions .

© IBM Corporation 2009 3059



Accomplishing common WS-Notification tasks
This overview topic provides a set of links to information about the most common WS-Notification tasks.
The tasks are divided into 3 groups by role: solution architect, system administrator and application
developer.

About this task

Follow the links to view the detailed steps for each of the following tasks. For more information about the
roles, see “WS-Notification roles and goals.”

Procedure
v “Solution architect” on page 3061 sub-tasks:

– “WS-Notification” on page 3062.

– Selecting a hardware and software product combination for the enterprise that supports the
WS-Notification standards.

– Designing a server topology to host the applications, in accordance with particular WS-Notification
topologies.

v “System administrator” on page 3061 sub-tasks:

– “Using a script to get up and running quickly with WS-Notification” on page 3062.

– “Configuring a WS-Notification service for use only by WS-Notification applications” on page 3066.

– “Providing access for WS-Notification applications to an existing bus topic space” on page 3067.

– “Securing WS-Notification” on page 3068.

– “Configuring JAX-WS handlers” on page 3070.

– “Applying a JAX-WS handler list to a WS-Notification service” on page 3071.

– “Configuring a Version 7.0 WS-Notification service with Web service QoS” on page 3072.

– “Configuring WS-Notification for reliable notification” on page 3074.

– “Migrating a Version 6.1 WS-Notification configuration from WebSphere Application Server Version
6.1 to Version 7.0 or later” on page 3075.

– “Preparing a migrated Version 6.1 WS-Notification configuration for reliable notification” on page
3076.

– “Interacting at run time with WS-Notification” on page 3080.

– “Publishing the WSDL files for a WS-Notification application to a compressed file” on page 3082.

v “Application developer” on page 3061 sub-tasks:

– Developing applications that use WS-Notification

– Writing a WS-Notification application that exposes a web service endpoint.

– Writing a WS-Notification application that does not expose a web service endpoint.

– Filtering the message content of publications.

WS-Notification roles and goals
This topics lists a set of computing roles that members of your organization might perform, and explains
how you can use WS-Notification to help meet the goals of each role.

For a general description of each of the following roles, see WebSphere Application Server roles and
goals.

Enterprise architect

IT environments are currently evolving towards the following concepts:

v Service Oriented Architecture (SOA)

v Enterprise Service Bus (ESB)

3060 Administering WebSphere applications



The goal of the enterprise architect might be to guide their organization towards appropriate utilization of
these concepts to maximize the efficiency and responsiveness of the business as a whole.

WS-Notification enables publish and subscribe communication patterns (such as a stock ticker) to be
exposed by using web services in an SOA environment. This is done through open standards, enabling
straightforward replacement of the service implementation. It promotes easy exchange of data between
suppliers and customers through use of standard web service operations and prevents vendor lock-in or
adoption of proprietary standards.

WebSphere Application Server also allows WS-Notification to be used as an on- or off-ramp to an ESB,
providing seamless interchange of data between different types of client connected to the bus.

Solution architect

The main goal of the solution architect is to design a solution that supports the specification set by the
enterprise architect. This might include providing an environment in which web service applications can
participate in publish and subscribe messaging patterns. This participation might also include the
requirement to be able to exchange event notifications between web service clients and other clients of the
enterprise service bus.

To create a design, the solution architect completes the following broad steps:

v Learn about the support provided for WS-Notification in WebSphere Application Server.

v Select a hardware and software product combination for the enterprise that supports the WS-Notification
standards.

v Design a server topology to host the applications, in accordance with the particular WS-Notification
topologies that are to be implemented.

System administrator

For the specific steps that the system administrator performs to help implement common WS-Notification
tasks, see the following topics:

v “Using a script to get up and running quickly with WS-Notification” on page 3062.

v “Configuring a WS-Notification service for use only by WS-Notification applications” on page 3066.

v “Providing access for WS-Notification applications to an existing bus topic space” on page 3067.

v “Securing WS-Notification” on page 3068.

v “Configuring JAX-WS handlers” on page 3070.

v “Applying a JAX-WS handler list to a WS-Notification service” on page 3071.

v “Configuring a Version 7.0 WS-Notification service with Web service QoS” on page 3072.

v “Configuring WS-Notification for reliable notification” on page 3074.

v “Migrating a Version 6.1 WS-Notification configuration from WebSphere Application Server Version 6.1
to Version 7.0 or later” on page 3075.

v “Preparing a migrated Version 6.1 WS-Notification configuration for reliable notification” on page 3076.

v “Interacting at run time with WS-Notification” on page 3080.

v “Publishing the WSDL files for a WS-Notification application to a compressed file” on page 3082.

Application developer

If the solution architect specifies a requirement to insert event notifications into the system (that is publish
messages) or receive event notifications from the system as a result of creating a subscription containing
an interest profile, then the application developer can use WS-Notification to meet this requirement.

Chapter 28. Administering web services - Notification (WS-Notification) 3061



There are various patterns of producing and consuming application defined by WS-Notification that are
available for use by the application developer, depending upon the exact requirements of the application in
question. These options are explored in the following common WS-Notification tasks:

v Writing a WS-Notification application that exposes a web service endpoint.

v Writing a WS-Notification application that does not expose a web service endpoint.

See also Developing applications that use WS-Notification and Filtering the message content of
publications.

WS-Notification
WS-Notification enables web services to use the publish and subscribe messaging pattern. Use these
topics to learn more about WS-Notification.

You use publish and subscribe messaging to publish one message to many subscribers. In this pattern a
producing application inserts (publishes) a message (event notification) into the messaging system having
marked it with a topic that indicates the subject area of the message. Consuming applications that have
subscribed to the topic in question, and have appropriate authority, all receive an independent copy of the
message that was published by the producing application.

To learn about the WS-Notification implementation in WebSphere Application Server, see the following
topics:

v WS-Notification: Overview

v WS-Notification: Benefits

v WS-Notification and end-to-end reliability

v WS-Notification terminology

v WS-Notification: How client applications interact at runtime

v WS-Notification: Supported bindings

v WS-Notification and policy set configuration

v Reasons to create multiple WS-Notification services in a bus

v Reasons to create multiple WS-Notification service points

v Options for associating a permanent topic namespace with a bus topic space

v WS-Notification topologies

Using a script to get up and running quickly with WS-Notification
Use a jython script to configure the necessary resources to get up and running quickly with
WS-Notification in WebSphere Application Server.

Before you begin

The example script provided in this topic is intended for development use on a single server only, and not
for use in production or network deployment environments.

About this task

You can use the example script to configure a default set of resources that enable you to connect
WS-Notification applications for development purposes. When executed, the script takes the following
actions:

1. It searches in the configuration for an existing service integration bus, and creates one if necessary.

2. It searches for an existing bus member, and if one is not found it adds the (stand-alone) server to the
bus, and uses the default data source.

3. It searches for an existing service integration bus topic space destination, and creates one if
necessary.

3062 Administering WebSphere applications



4. It creates a Version 6.1 or Version 7.0 WS-Notification service.

5. It creates a Version 6.1 or Version 7.0 WS-Notification service point on the local server for a SOAP
over HTTP binding.

6. It creates a WS-Notification permanent topic namespace to reference the service integration bus topic
space that was found or created in step 3.

7. It saves the configuration, and describes where to find the WSDL for the new notification broker web
service that has been exposed.

To use the example script, complete the following steps:

Procedure
1. Save the script to the file system and use a name of your choice (for example wsnQuickStart.py).

2. Modify the hostRoot variable defined at the top of the script to point to the HTTP port of the local
server (usually 9080).

3. Install and configure the SDO repository.

4. Start the server, then execute the following command. If you saved the script with a name other than
wsnQuickStart.py, then use that name instead.
wsadmin -f wsnQuickStart.py

Example

Here is the example script:
#######################################################################################
# WS-Notification QuickStart script #
# #
# This Jython script will quickly create the basic resources required in order to #
# start using WS-Notification in WebSphere Application Server Version 6.1 or later #
# #
# Before executing it you must modify the variables defined below to match your #
# configuration settings. #
# #
# Note: #
# - This script is not intended for production use, and is intended for use on #
# a stand-alone server (not network deployment) only. #
# - The script will search the configuration for an existing bus, and if one is #
# not found then a new bus will be created #
# - It will then look for an existing Bus Member on the chosen bus. If one is not #
# found then one will be created using the default File Store #
# - It will then look for an existing service integration bus topic space. If one #
# is not found then it will create one. #
# #
# Execute the script by typing; #
# wsadmin -f wsnQuickStart.py #
# #
#######################################################################################

###########################################################
# Configuration variables #
# #
# Set the following variables to match your configuration #
###########################################################
# The URL root of HTTP port on the local server
hostRoot = "http://xyz.ibm.com:9080"
# The type of WS-Notification service you want to create (Version 6.1 or Version 7.0)
wsnServiceType = "V7.0"

#######################################################################################
# Now create the configuration objects using the variables defined above #
#######################################################################################

# These variables are arbitrary choices and need not be set unless required.
wsnServiceName = "myWSNService"+wsnServiceType
wsnServicePointName = "myWSNServicePoint"+wsnServiceType

Chapter 28. Administering web services - Notification (WS-Notification) 3063



eplName = "myNewEPL"
tnsNamespaceURI = "http://example.org/topicNamespace/example1"

# General environment variables
nodeName = AdminTask.listNodes().split("\n")[0].rstrip()
server = AdminTask.listServers().split("\n")[0].rstrip()

print "###########################################################"
print "# Check the pre-requisites before you begin #"
print "###########################################################"
# Check for the existence of the bus
requiresRestart = "false"
myBuses = AdminTask.listSIBuses().split("\n")
myBus = myBuses[0].rstrip()

if (myBus == ""):
print " *** Creating new bus "
myBus = AdminTask.createSIBus("-bus MySampleBus -busSecurity false

-scriptCompatibility 6.1")
requiresRestart = "true"

#endIf
siBusName = AdminConfig.showAttribute(myBus, "name" )
print " service integration bus name: "+siBusName+" "

# Check for the existence of the bus member
busMembers = AdminTask.listSIBusMembers(" -bus "+siBusName).split("\n")
myBusMember = busMembers[0].rstrip()

if (myBusMember == ""):
print ""
print " *** Creating new Bus Member "
busMemberName = AdminConfig.showAttribute(server, "name")
myBusMember = AdminTask.addSIBusMember(" -bus "+siBusName+"

-node "+nodeName+" -server "+busMemberName)
print ""
requiresRestart = "true"

else:
nodeName = AdminConfig.showAttribute(myBusMember, "node")
busMemberName = AdminConfig.showAttribute(myBusMember, "server")

#endElse
print " service integration bus Member on node: "+nodeName+" "
print " on server: "+busMemberName+" "

# Find a topic space to use
topicSpaces = AdminTask.listSIBDestinations(" -bus "+siBusName+"

-type TopicSpace ").split("\n")
tSpace = topicSpaces[0].rstrip()

if (tSpace == ""):
print " *** Creating a Topic Space "
tSpace = AdminTask.createSIBDestination(" -bus "+siBusName+"

-node "+nodeName+" -server "+myBusMember+"
-name MyTopicSpace -type TopicSpace")

print ""

#endIf
siBusTopicSpaceName = AdminConfig.showAttribute(tSpace, "identifier" )
print " service integration bus topic space: "+siBusTopicSpaceName+" "

print ""
print "###########################################################"
print "# Create the WS-Notification service #"
print "###########################################################"
newService = AdminTask.listWSNServices(" -name "+wsnServiceName+"

-bus "+siBusName).split("\n")[0].rstrip()

if (newService == ""):
newService = AdminTask.createWSNService(" -name "+wsnServiceName+"

-bus "+siBusName+" "+" -type "+wsnServiceType)
print "WS-Notification service created: "+wsnServiceName+" "
print " on bus: "+siBusName+" "

else:

3064 Administering WebSphere applications



print "WS-Notification service ’"+wsnServiceName+"’ "
print " already exists on bus ’"+siBusName+"’ "

#endElse

print ""
print "###########################################################"
print "# Create the WS-Notification service point #"
print "###########################################################"
eplURLRoot = hostRoot+"/wsn"
wsdlURLRoot = hostRoot+"/SIBWS/wsdl"

newServicePoint = AdminTask.listWSNServicePoints(newService, "
-name "+wsnServicePointName+" " ).split("\n")[0].rstrip()

if (newServicePoint == ""):
if (wsnServiceType == "V7.0"):

newServicePoint = AdminTask.createWSNServicePoint(newService, "
-name "+wsnServicePointName+" -node "+nodeName+" -server "+busMemberName)

else:
newServicePoint = AdminTask.createWSNServicePoint(newService, "
-name "+wsnServicePointName+"
-node "+nodeName+" -server "+busMemberName+" -eplName "+eplName+"
-eplURLRoot "+eplURLRoot+" -eplWSDLServingURLRoot "+wsdlURLRoot+" " )

print "WS-Notification service point created: "+wsnServicePointName+" "
print " on bus member: "+busMemberName+" "
print " on node: "+nodeName+" "

else:
print "WS-Notification service point ’"+wsnServicePointName+"’ "
print "already exists on WS-Notification service ’"+wsnServiceName+"’ "

#endElse

print ""
print "###########################################################"
print "# Create the WS-Notification permanent topic namespace #"
print "###########################################################"
newTopicNamespace = AdminTask.listWSNTopicNamespaces(newService, "

-namespace "+tnsNamespaceURI+" ").split("\n")[0].rstrip()

if (newTopicNamespace == ""):
newTopicNamespace = AdminTask.createWSNTopicNamespace(newService, "
-namespace "+tnsNamespaceURI+" -busTopicSpace "+siBusTopicSpaceName+"
-reliability RELIABLE_PERSISTENT")

print "WS-Notification topic namespace created: "+tnsNamespaceURI+" "
print " bus topic space: "+siBusTopicSpaceName+" "

else:
print "WS-Notification permanent topic namespace already exists: "

+tnsNamespaceURI+" "
#endElse

#######################################################################################
# All the objects have been created - inform the user where to proceed next #
#######################################################################################

print ""
print "###########################################################"
print "# Summary #"
print "###########################################################"

# Calculate where you would find the WSDL for the new service.
if (wsnServiceType == "V7.0"):
print "IMPORTANT: Because you’ve created a Version 7.0 service"
print "you need to start the newly installed application;"
print " WSN_"+wsnServiceName+"_"+wsnServicePointName
print ""
wsdlLocation = hostRoot+"/"+wsnServiceName+wsnServicePointName

+"NB/NotificationBroker?wsdl"
else:
print "IMPORTANT: Because you’ve created a Version 6.1 service"
print "you need to start 2 newly installed applications;"
serverName = AdminConfig.showAttribute(server, "name")
print " "+eplName+"."+nodeName+"."+serverName
print " sibws."+nodeName+"."+serverName

Chapter 28. Administering web services - Notification (WS-Notification) 3065



print ""
wsdlLocation = hostRoot+"/wsn/soaphttpengine/"+siBusName+"/"

+wsnServiceName+"NotificationBroker/"
+wsnServicePointName+"NotificationBrokerPort?wsdl"

print " The WSDL for the new service can be viewed at the following location; "
print " "+wsdlLocation+" "
print ""
print " Your web service applications can publish and subscribe to any topics in the namespace; "
print " "+tnsNamespaceURI+" "
print ""
if (requiresRestart == "true"):
print " You must now restart the server for the changes to take effect. "
print ""

#endIf

print ""
print "###########################################################"
print "# Save the configuration and exit #"
print "###########################################################"
AdminConfig.save()
sys.exit()

Configuring a WS-Notification service for use only by WS-Notification applications
Define all the necessary objects to configure a WS-Notification service and associated service points.

Before you begin

This task assumes that you have already configured one or more application servers, and that there are
no other messaging resources configured.

For Version 6.1 WS-Notification services, you must also create an endpoint listener configuration on each
application server that you want to use to host a WS-Notification service.

About this task

You can configure one or more servers, each hosting a WS-Notification service to which web services
applications can connect, as described in the Simple web services topology.

Procedure
1. Use the information given in “Creating a bus” on page 1966 to create a service integration bus and

add your existing server or servers as bus members. When you add a bus member, a messaging
engine is created in the server. You choose the database that hosts the persistent storage required by
the messaging engine. You can either use the default JDBC data source and Apache Derby JDBC
provider, or you can configure a data source for use with your preferred database product.

2. Using the administrative console, navigate to Service integration -> Buses -> bus_name ->
[Services] WS-Notification services. The “WS-Notification services [Collection]” on page 3145 form
for this bus is displayed.

3. Click New. The New WS-Notification service wizard is displayed.

4. Complete steps 1 to 4 of the wizard, as described in “Creating a new Version 6.1 WS-Notification
service” on page 3093 or “Creating a new Version 7.0 WS-Notification service” on page 3085. Pay
particular attention to the following settings:

v In wizard step 1: “Configure name, description, service integration bus and dynamic topic
namespace settings”, you select the service integration bus to use to host the messaging resources.
Choose the bus that you created at the beginning of this task.

v In wizard step 4: “Create WS-Notification service points”, you select the bus member that is to host
the new service. On a single server system there is only one option here. For Version 6.1
WS-Notification services, you also select the endpoint listener application to use to expose the
service. Choose the endpoint listener application that you configured before you began this task.

3066 Administering WebSphere applications



5. Optional: In wizard step 5: “Create permanent topic namespaces”, configure the WS-Notification topic
namespace to provide access to a service integration bus topic space:

v Enter the topic namespace URI that you want WS-Notification applications to use when referring to
the service integration bus topic space. This must be unique within the WS-Notification service, and
is conventionally a URI related to your organization. For example http://www.myorganization.com.

v Because there are no existing service integration bus topic spaces in your bus the “Use an existing
service integration bus topic space” radio button and associated drop-down list are not available. To
create a new bus topic space, enter your chosen name.

6. Complete wizard step 6: “Summary”.

Check that the summary of the actions taken by the wizard is as you expected, then click Finish. If the
processing completes successfully, the list of WS-Notification services is updated to include the new
WS-Notification service. Otherwise, an error message is displayed.

7. Save your changes to the master configuration. You do not have to restart the server for these
changes to take effect. However, you must start the endpoint listener or enterprise application
associated with the service point that was created in step 4 of the wizard.

What to do next

For JAX-WS based Version 7.0 WS-Notification services, you can view the URL to which WS-Notification
applications connect by looking in the NotificationBroker.wsdl file for the NotificationBroker application.
To view this file, see “Publishing the WSDL files for a WS-Notification application to a compressed file” on
page 3082.

For JAX-RPC based Version 6.1 WS-Notification services, you can view the URL to which WS-Notification
applications connect by navigating to Service integration -> Buses -> bus_name -> [Services]
WS-Notification services -> service_name -> [Additional Properties] WS-Notification service points
-> point_name -> NotificationBroker inbound port settings.

To extend this configuration so that web service applications can interact with non-web service
applications, see “Providing access for WS-Notification applications to an existing bus topic space.”

Providing access for WS-Notification applications to an existing bus topic space
Configure a solution such that web services clients can share event notifications with other clients of a
service integration bus.

Before you begin

This task assumes that you have an existing service integration bus, configured with at least one bus
member and a bus topic space. For more information, see “Creating a bus” on page 1966.

About this task

This task focuses on the “Create permanent topic namespaces” step that is part of the New
WS-Notification service wizard.

You can configure WS-Notification so that web service applications receive event notifications generated
by other clients of the service integration bus such as JMS clients. Similarly, web service applications can
generate notifications to be received by other client types. This configuration is described in the Topology
for WS-Notification as an entry or exit point to the service integration bus. You achieve this configuration
by creating a permanent topic namespace that allows messages to be shared between web service and
non-web service clients of the bus. Specifically, you create a permanent topic namespace that links the
service integration bus topic space used by messaging clients to a WS-Notification topic namespace URI.

For more information about programming the client applications, see Interacting with JMS message types.

Chapter 28. Administering web services - Notification (WS-Notification) 3067



Procedure
1. Start the administrative console.

2. Navigate to Service integration -> WS-Notification -> Services or Service integration -> Buses ->
bus_name -> [Services] WS-Notification services. The “WS-Notification services [Collection]” on
page 3145 form is displayed.

3. Click New. The New WS-Notification service wizard is displayed.

4. Complete steps 1 to 4 of the wizard, as described in “Creating a new Version 6.1 WS-Notification
service” on page 3093 or “Creating a new Version 7.0 WS-Notification service” on page 3085.

5. In wizard step 5:“ Create permanent topic namespaces”, configure the WS-Notification topic
namespace to provide access to the existing service integration bus topic space:

v Enter the topic namespace URI that you want WS-Notification applications to use when referring to
the service integration bus topic space. This must be unique within the WS-Notification service, and
is conventionally a URI related to your organization. For example http://www.myorganization.com.

v Select the “Use an existing service integration bus topic space” radio button, then from the
drop-down list select the name of your chosen service integration bus topic space.

6. Complete wizard step 6: “Summary”.

Check that the summary of the actions taken by the wizard is as you expected, then click Finish. If the
processing completes successfully, the list of WS-Notification services is updated to include the new
WS-Notification service. Otherwise, an error message is displayed.

7. Save your changes to the master configuration. You do not have to restart the server for these
changes to take effect. However, you must start the endpoint listener or enterprise application
associated with the service point that was created in step 4 of the wizard.

Results

WS-Notification applications can now connect to the WS-Notification service point and insert or receive
event notifications from the service integration bus topic space.

What to do next

For JAX-WS based Version 7.0 WS-Notification services, you can view the URL to which WS-Notification
applications connect by looking in the NotificationBroker.wsdl file for the NotificationBroker application.
To view this file, see “Publishing the WSDL files for a WS-Notification application to a compressed file” on
page 3082.

For JAX-RPC based Version 6.1 WS-Notification services, you can view the URL to which WS-Notification
applications connect by navigating to Service integration -> Buses -> bus_name -> [Services]
WS-Notification services -> service_name -> [Additional Properties] WS-Notification service points
-> point_name -> NotificationBroker inbound port settings.

Securing WS-Notification
The WS-Notification security implementation requires that a user identity is flowed in requests for
WS-Notification services. This identity is used to authenticate the client application and check that the
client is authorized to invoke the requested operation, and to access the underlying service integration bus
topic spaces and topic resources.

About this task

WS-Notification uses the same mechanisms as other Web services to provide an authenticated identity.
For example WS-Security or HTTP Basic Authentication.

There are three parts to configuring secure access to WS-Notification:

v Securing the communication channel between the application and the server.

3068 Administering WebSphere applications



v Authorizing the application to invoke the NotificationBroker.

v Authorizing the application to access the resources of the service integration bus.

If messaging security is enabled, and the WS-Security or HTTP Basic Authentication components are not
configured to flow a user identity in WS-Notification requests, then all such requests are treated as
unauthenticated and can only access messaging resources that are accessible by the WebSphere
Application Server “everyone” group.

Procedure
1. Secure the communication between the application and the server:

a. Provide security for inbound requests and associated responses by configuring the WS-Notification
service point.

v For JAX-WS based Version 7.0 WS-Notification service points, attach security-enabled policy
sets to the application associated with the service point. For JAX-RPC based Version 6.1
WS-Notification service points, configure security for the inbound ports associated with the
service point.

v If you are using SOAP over HTTP as the binding for your WS-Notification service point, modify it
to use SOAP over HTTPS as described in Configuring secure access to WS-Notification service
points by using SOAP over HTTPS.

v If you are using SOAP over JMS as the binding (for Version 6.1 WS-Notification services),
configure the JMS connection factory used by the client application to use a secure
communication protocol to communicate with the JMS provider. Exactly how you do this
depends upon the JMS provider. If you are using the service integration bus as the JMS
provider, configure the client to use SSL to communicate with the server by setting the target
inbound transport chain to InboundSecureMessaging as described in How JMS applications
connect to a messaging engine on a bus and its related tasks.

b. Provide security for outbound requests (for example notifications from the server to subscribed
consumers) by configuring the WS-Notification service.

v For JAX-WS based Version 7.0 WS-Notification services, the steps involved are similar to those
for applying security to JAX-WS web service clients except that any binding or configuration
created is applied to the WS-Notification service. For more information, see Securing JAX-WS
web services using message-level security.

v For JAX-RPC based Version 6.1 WS-Notification services, the steps involved are similar to those
for applying security to service integration bus-enabled web services outbound ports except that
any binding or configuration created is applied to the WS-Notification service. For more
information, see Securing bus-enabled web services and its sub-topics, notably Invoking
outbound services over HTTPS.

c. You can also use WS-Security to sign or encrypt SOAP messages.

v For JAX-WS based Version 7.0 WS-Notification services, see Signing and encrypting message
parts using policy sets.

v For JAX-RPC based Version 6.1 WS-Notification services, see Configuring secure transmission
of SOAP messages by using WS-Security.

2. Authorize the application to invoke the NotificationBroker:

a. Configure the client application to provide an appropriate identity.

To authorize a web service application to communicate with the server, the application must identify
itself as running as a particular authenticated identity. The mechanism for doing this depends upon
the type of web service binding you are using:

v If you are using SOAP over HTTP web service bindings, use either HTTP Basic Authentication
or WS-Security to provide the authenticated identity.

v If you are using SOAP over JMS web service bindings (for Version 6.1 WS-Notification services),
use WS-Security to provide an authenticated identity.

Chapter 28. Administering web services - Notification (WS-Notification) 3069



b. Configure the server to authorize the client application identity to carry out the required operations.

v For JAX-WS based Version 7.0 WS-Notification services, you can use Web services policy sets
such as the “Username WS-I RSP default” or “Username WSSecurity default” policy sets to
apply authorization to the Web services that are deployed in the enterprise application
associated with a service point. See also the IBMdeveloperWorks article Configuring JAX-WS
applications with WS-Security for WS-Notification.

v For JAX-RPC based Version 6.1 WS-Notification services, you can apply authorization to the
whole of an inbound service (for example the NotificationBroker endpoint of a WS-Notification
service point) as described in Password-protecting inbound services, or configure authorization
constraints independently for each Web service operation as described in Password-protecting a
web service operation.

3. Authorize the application to access the resources of the service integration bus.

Service integration bus security uses role-based authorization. When a user is assigned to a role, the
user is granted all of the permissions that the role contains. By administering authorization
permissions, you can control user access to a bus and to its resources when messaging security is
enabled.

a. Authorize the application identity to be able to connect to the service integration bus, as described
in Administering the bus connector role.

b. When the application can connect to the bus, grant the application access to the appropriate
destinations on the bus.

You can determine which service integration bus topic spaces are required, by checking which
WS-Notification topic namespaces are used by the application then looking at the appropriate
WS-Notification permanent topic namespace to find the service integration bus topic space to
which it maps. You can then grant authorization (for example the Sender or Receiver roles) for the
authenticated identity to access that topic space as described in “Administering destination roles”
on page 2075.

c. After the client application has been authorized to access the appropriate topic space destination,
you might also need to authorize the client application to access the individual topics within the
topic space destination as described in Administering topic roles.

For general information about configuring access to the service integration bus, see Securing service
integration.

Configuring JAX-WS handlers
A JAX-WS handler is a Java class that performs a range of handling tasks. For example: logging
messages, or transforming their contents, or terminating an incoming request. You can create JAX-WS
handlers, chain them together in the form of a handler list, then apply the handler list to a JAX-WS based
Version 7.0 WS-Notification service point (for inbound invocation handling) or WS-Notification service (for
outbound invocation handling).

About this task

The Java API for XML-based Web Services (JAX-WS) provides you with a standard way of developing
interoperable and portable web services. To create a JAX-WS handler, you can use a tool such as IBM
Rational Application Developer. To enable handlers to undertake more complex operations, you chain them
together into handler lists. You associate each handler list with one or more JAX-WS based Version 7.0
WS-Notification services or service points, so that the handler list can monitor WS-Notification activity and
take appropriate action depending upon the sender and content of each inbound or outbound message.

Detailed instructions on how to configure JAX-WS handlers and handler lists for use with JAX-WS based
Version 7.0 WS-Notification services are provided in the following topics:

3070 Administering WebSphere applications

http://www.ibm.com/developerworks/websphere/techjournal/0904_jiang/0904_jiang.html
http://www.ibm.com/developerworks/websphere/techjournal/0904_jiang/0904_jiang.html


Procedure
v Load JAX-WS handler classes.

v Create a new JAX-WS handler configuration.

v Modify an existing JAX-WS handler configuration.

v Delete JAX-WS handler configurations.

v Create a new JAX-WS handler list.

v Modify an existing JAX-WS handler list.

v Delete JAX-WS handler lists.

Applying a JAX-WS handler list to a WS-Notification service
To handle the messages that flow to and from an existing JAX-WS based Version 7.0 WS-Notification
service, you must create JAX-WS handlers, chain them together in the form of a handler list, then apply
the handler list to a NotificationBroker, PublisherRegistrationManager or SubscriptionManager endpoint at
a Version 7.0 WS-Notification service point (for inbound invocation handling), or apply the handler list to a
WS-Notification service (for outbound invocation handling).

Before you begin

This task assumes that you have already created a Version 7.0 WS-Notification service.

About this task

To create a JAX-WS handler, you can use a tool such as IBM Rational Application Developer. To enable
handlers to undertake more complex operations, you chain them together into handler lists. You associate
each handler list with one or more JAX-WS based Version 7.0 WS-Notification services or service points,
so that the handler list can monitor WS-Notification activity and take appropriate action depending upon
the sender and content of each inbound or outbound message. For example:

v You can use a handler list on the NotificationBroker web service to log all notification messages
received by this service point.

v You can use a handler list on a SubscriptionManager web service to log all unsubscribe requests
received by this service point.

v You can use a handler list on a PublisherRegistrationManager web service to log all publisher
deregistration requests received by this service point.

Procedure
1. Create one or more JAX-WS handlers. You can do this using IBM Rational Application Developer or a

similar tool.

2. Load JAX-WS handler classes. A JAX-WS handler interacts with messages through a JAX-WS based
Version 7.0 WS-Notification service point (for inbound invocation handling) or WS-Notification service
(for outbound invocation handling), therefore you must make the handler class available to the server
or cluster that hosts the WS-Notification service point or service that you want to monitor.

3. Create a new JAX-WS handler configuration by using the administrative console or by using the
“createJAXWSHandler command” on page 3184. By creating a new handler configuration, you make
WebSphere Application Server aware of your handler, and you make the handler available for inclusion
in one or more handler lists.

4. Create a new JAX-WS handler list. The approach taken in WebSphere Application Server is to assign
handler lists (rather than individual handlers) to WS-Notification service points (for inbound invocation
handling) or WS-Notification services (for outbound invocation handling).

5. Optional: To apply a JAX-WS handler list to a service provider endpoint (NotificationBroker,
PublisherRegistrationManager or SubscriptionManager) associated with a service point, use the
administrative console to complete the following substeps:

Chapter 28. Administering web services - Notification (WS-Notification) 3071



a. Navigate to Service integration -> WS-Notification -> Services -> service_name -> [Additional
Properties] WS-Notification service points or Service integration -> Buses -> bus_name ->
[Services] WS-Notification services -> service_name -> [Additional Properties]
WS-Notification service points. The “WS-Notification service points [Collection]” on page 3141
form is displayed. This form shows all the service points configured for this Version 7.0
WS-Notification service.

b. In the content pane, click the name of a JAX-WS based Version 7.0 WS-Notification service point
in the list. The current settings for this Version 7.0 WS-Notification service point are displayed in
the “WS-Notification service points [Settings]” on page 3142 form.

c. Apply the JAX-WS handler list by selecting it from the list box for one or more of the following
general properties:

NotificationBroker JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
NotificationBroker endpoint of the WS-Notification service point.

SubscriptionManager JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
SubscriptionManager endpoint of the WS-Notification service point.

PublisherRegistrationManager JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
PublisherRegistrationManager endpoint of the WS-Notification service point.

6. Optional: To apply a JAX-WS handler list to a WS-Notification service, use the administrative console
to complete the following substeps:

a. Navigate to Service integration -> WS-Notification -> Services or Service integration -> Buses
-> bus_name -> [Services] WS-Notification services. The “WS-Notification services [Collection]”
on page 3145 form is displayed.

b. In the content pane, click the name of a JAX-WS based Version 7.0 WS-Notification service in the
list. The current settings for this Version 7.0 WS-Notification service are displayed in the
“WS-Notification services [Settings]” on page 3146 panel.

c. Apply the JAX-WS handler list by selecting it from the list box for the following general property:

JAX-WS handler list

The JAX-WS handler list that is applied to outbound requests from the WS-Notification
service.

Configuring a Version 7.0 WS-Notification service with Web service QoS
You use the administrative console to configure web service qualities of service (QoS) such as reliability or
security by applying policy sets to a Version 7.0 WS-Notification service. The configuration of policy sets
for WS-Notification can be split into two types: service provider (for Version 7.0 WS-Notification service
points) and service client (for Version 7.0 WS-Notification service clients). Policy set configuration for these
two elements of a WS-Notification service is handled differently.

Before you begin

This task assumes that you have already created a Version 7.0 WS-Notification service. You must also
have configured policy sets that meet your quality of service requirements. You can reuse existing policy
sets within your organization, use the default policy sets provided by WebSphere Application Server, or
create new policy sets. For more information, see “Managing policy sets using the administrative console”
on page 2771.

3072 Administering WebSphere applications



About this task

Version 7.0 WS-Notification service points (NotificationBrokers, PublisherRegistrationManagers and
SubscriptionManagers) are implemented as JAX-WS applications that are deployed to servers or clusters,
and the management of the policy sets for these WS-Notification service points is configured by using the
policy set administrative infrastructure for service providers (both panels and wsadmin commands). In the
Service provider [settings] panel for a WS-Notification service provider, there is a link to the associated
WS-Notification service point application. You can use the service provider settings panel to attach policy
sets to each NotificationBroker, PublisherRegistrationManager and SubscriptionManager.

Version 7.0 WS-Notification services are implemented as two configurable service clients
(OutboundNotificationService and OutboundRemotePublisherService) for each WS-Notification service.
Events that need outgoing web service invocations occur at the service integration bus level rather than
the bus member level, even though notifications of the events occur within a particular bus member. The
two service clients that a WS-Notification service implements are therefore configured by using the policy
set administrative infrastructure for service clients. In the Service client policy sets and bindings [collection]
panel, the two service clients for a given WS-Notification service are listed in a tree structure, along with
their endpoints and operations. You can use this panel to attach policy sets to each service client, or to
both service clients for the WS-Notification service.

Procedure
1. Start the administrative console.

2. Navigate to Service integration -> WS-Notification -> Services or Service integration -> Buses ->
bus_name -> [Services] WS-Notification services. The “WS-Notification services [Collection]” on
page 3145 form is displayed.

3. In the content pane, click the name of the Version 7.0 WS-Notification service to which to apply web
service qualities of service. The current settings for this Version 7.0 WS-Notification service are
displayed in the “WS-Notification services [Settings]” on page 3146 panel.

4. Optional: To configure web service QoS for inbound requests, apply policy sets to the service provider
applications (NotificationBroker, PublisherRegistrationManager and SubscriptionManager) associated
with a service point:

Click [Additional Properties] WS-Notification service points. The “WS-Notification service points
[Collection]” on page 3141 form is displayed. This form shows all the service points configured for this
Version 7.0 WS-Notification service.

Repeat the following steps, as required, to configure the policy set and binding information for one or
more service provider applications for one or more service points:

a. In the content pane, click the name of a Version 7.0 WS-Notification service point in the list. The
current settings for this Version 7.0 WS-Notification service point are displayed in the
“WS-Notification service points [Settings]” on page 3142 form.

b. Click [Additional Properties] Policy set configuration. A link to each of the service provider
applications (NotificationBroker, PublisherRegistrationManager and SubscriptionManager) for this
service point is displayed in the Service provider [Collection] form.

c. Click the name of one of the applications. An indented list of endpoints and operations for this
service is displayed in the Service provider [settings] form.

d. Select one or more items in the list (service, endpoint or operations), then perform one of the three
available operations on the items you have selected:

v Attach policy set

v Detach policy set

v Assign binding

For more information, see “Managing policy sets using the administrative console” on page 2771.

e. Restart the service provider application.

Chapter 28. Administering web services - Notification (WS-Notification) 3073



5. Optional: To configure web service QoS for outbound requests, apply policy sets to one or both of the
web service clients associated with the WS-Notification service:

a. If necessary, navigate back to the “WS-Notification services [Settings]” on page 3146 panel for this
Version 7.0 WS-Notification service.

b. Click [Additional Properties] Outbound request policy sets and bindings. The two service
clients for this WS-Notification service are listed in a tree structure, along with their endpoints and
operations, in the Service client policy set and bindings [collection] form.

c. Select one or both service clients, then perform one of the three available operations on the items
you have selected:

v Attach client policy set

v Detach client policy set

v Assign binding

For WS-Notification service clients, policy set attachments are not supported at the endpoint (port)
or operation level. Therefore endpoints or operations are not selectable, and are shown as
inheriting any policy set or binding that is attached to the service client. For more information, see
“Managing policy sets using the administrative console” on page 2771.

Note: Using the Service client policy set and bindings [collection] form, you can configure the
policy set and binding information for both service clients for the selected service.
Alternatively, you can configure the policy set and binding information for a single Version
7.0 WS-Notification service client by clicking Services -> Service clients ->
ws-notification_service_client_name and using the WS-Notification service client [settings]
panel. This panel also provides links to the associated service integration bus and
WS-Notification service.

Results

The WS-Notification service has been successfully enabled with the required web service QoS.

Configuring WS-Notification for reliable notification
To ensure that WS-Notification web service interactions are performed in a reliable way, you configure a
JAX-WS based Version 7.0 WS-Notification service, JAX-WS client, and JAX-WS based WS-Notification
consumer web service (through policy set functions) to use WS-ReliableMessaging.

Before you begin

This task assumes that you have created a Version 7.0 WS-Notification service and service point, and that
you have created two JAX-WS applications:

v A JAX-WS client application, created from the WSDL of the new service point.

v A JAX-WS based WS-Notification consumer web service.

For more information about how to create these applications, see “Using JAX-WS clients and web services
with new Version 7.0 WS-Notification service points” on page 3079.

About this task

Reliable notification refers to the reliable transmission of messages to and from the IBM WS-Notification
implementation. You enable this reliability to mitigate the problems inherent in network transmission
protocols such as HTTP.

Note: This reliability does not include the behavior of the application server itself. For more information,
see WS-Notification and end-to-end reliability.

3074 Administering WebSphere applications



To enable reliable notification, you apply policy sets that include the WS-ReliableMessaging policy to the
service point, service client, and service consumer applications.

You can configure policy sets for JAX-WS clients for both application server and client environments,
including thin clients. For more information, see “Managing policy sets using the administrative console” on
page 2771.

Procedure
1. Configure policy sets that meet your reliable messaging requirements.

You can reuse existing policy sets within your organization, use the WS-ReliableMessaging default
policy sets provided by WebSphere Application Server, or create new policy sets. For more
information, see “Configuring a WS-ReliableMessaging policy set by using the administrative console”
on page 3211.

2. Configure the Version 7.0 WS-Notification service and service points for reliable notification.

Apply policy sets that include the WS-ReliableMessaging policy.

3. Configure the JAX-WS based WS-Notification client application so that it interacts reliably with its
target web service by using WS-ReliableMessaging.

Apply policy sets that include the WS-ReliableMessaging policy, as described in “Configuring a Version
7.0 WS-Notification service with Web service QoS” on page 3072 and “Attaching and binding a
WS-ReliableMessaging policy set to a web service application by using the administrative console” on
page 3216.

4. Configure the JAX-WS based WS-Notification consumer web service application so that it interacts
reliably with clients that attempt to communicate with it.

Apply policy sets that include the WS-ReliableMessaging policy, as described in “Attaching and binding
a WS-ReliableMessaging policy set to a web service application by using the administrative console”
on page 3216.

5. Configure the WS-Notification client application (which has been configured to interact reliably) to
communicate with the WS-Notification service point (which has similarly been configured to receive
messages reliably).

6. Prompt the WS-Notification client application to subscribe on behalf on the (reliably configured)
WS-Notification consumer web service.

Note: The WS-Notification consumer web service might also act as a client to perform its own
subscription. This client would require additional policy set configuration if reliable interactions
were required.

7. Initiate notification message publications from the WS-Notification client application.

Results

The JAX-WS based Version 7.0 WS-Notification service point receives the notification messages in a
reliable way from the WS-Notification client, and publishes the notification messages in a reliable way to
the WS-Notification consumer web service.

Migrating a Version 6.1 WS-Notification configuration from WebSphere Application
Server Version 6.1 to Version 7.0 or later
You can migrate an existing Version 6.1 WS-Notification configuration to run in a WebSphere Application
Server Version 7.0 or later environment.

Before you begin

This topic assumes that you have the following configuration:

Chapter 28. Administering web services - Notification (WS-Notification) 3075



v An existing server or cluster installation of WebSphere Application Server Version 6.1 that is ready for
migration, including at least one WS-Notification service, service point, and underlying service
integration bus.

v Existing subscriptions with associated messages pending notification.

v Existing operational WS-Notification client and web service applications that are known to transmit and
receive notifications through the existing Version 6.1 WS-Notification service.

About this task

When you migrate your system from WebSphere Application Server Version 6.1 to Version 7.0 or later, any
existing WS-Notification configuration (for example WS-Notification services, service points, administered
subscribers), and the associated service integration bus resources (for example inbound services and
endpoint listeners) are automatically migrated to valid configuration elements within the new installation.
The services and service points are migrated to Version 6.1 WS-Notification services and service points,
the endpoint URLs for the service points are unchanged, and the functions supported are exactly the same
as in WebSphere Application Server Version 6.1. For example, reliable notification is not possible with
Version 6.1 WS-Notification services and service points.

Any messages pending notification are delivered following the update and server startup sequence.

Procedure
1. Migrate your product configuration from WebSphere Application Server Version 6.1 to Version 7.0 or

later.

2. Check that notifications are being published and consumed correctly in your migrated system.

Initiate the program, process, or application that includes the WS-Notification client (or clients), and
that causes notifications to be requested and transmitted.

Results

The WS-Notification services and resources are migrated to Version 6.1 WS-Notification services and
resources that run under WebSphere Application Server Version 7.0 or later. Any messages pending
notification are delivered.

What to do next

You are now ready (optionally) to prepare your migrated Version 6.1 WS-Notification configuration for
reliable notification.

Preparing a migrated Version 6.1 WS-Notification configuration for reliable
notification
You can gradually introduce JAX-WS based client and provider entities such that a migrated Version 6.1
WS-Notification configuration is ready to be configured for reliable notification.

Before you begin

This topic assumes that you have an existing server or cluster installation of WebSphere Application
Server Version 7.0 or later, including at least one WS-Notification service, service point, and underlying
service integration bus that has been migrated to this version of the product as described in “Migrating a
Version 6.1 WS-Notification configuration from WebSphere Application Server Version 6.1 to Version 7.0 or
later” on page 3075.

3076 Administering WebSphere applications



About this task

For reliable notification, you apply policy sets that include WS-ReliableMessaging to your WS-Notification
configuration. You can only use policy sets with Java API for XML-based Web Services (JAX-WS)
applications, and with Version 7.0 WS-Notification services and service points.

The WS-Notification implementation in WebSphere Application Server Version 6.1 uses service integration
bus-enabled web services to expose the WS-Notification service endpoint, so that it can be invoked by
applications and configured with specific attributes such as WS-Security or JAX-RPC handlers. However,
the Version 6.1 implementation is not compatible with JAX-WS handlers or applications, and it cannot
compose with WS-ReliableMessaging.

To prepare a migrated Version 6.1 WS-Notification configuration for reliable notification, you must recreate
your Version 6.1 WS-Notification services and service points as Version 7.0 WS-Notification services and
service points, and recreate each JAX-RPC client application to which you want to apply a policy set as a
JAX-WS application. Note that you can continue to use JAX-RPC applications with Version 7.0
WS-Notification services and service points, and that you only have to recreate those applications that
must work with policy sets.

For information about coding JAX-RPC and JAX-WS client applications to perform specific WS-Notification
tasks, see Developing applications that use WS-Notification. You might also find it useful to learn about
JAX-WS and the JAX-WS client programming model. This should help you to determine the effort involved
in porting client code from JAX-RPC to JAX-WS, or to validate JAX-WS client to JAX-RPC web service
interoperability.

To support a phased approach to preparing for reliable notification, and to describe the four main
configurations that you might want to achieve, this task is divided into four subtasks:

Procedure
v “Using JAX-WS clients and web services with migrated service points.”

v “Using JAX-RPC clients and web services with new Version 7.0 WS-Notification service points” on page
3078.

v “Using JAX-WS clients and web services with new Version 7.0 WS-Notification service points” on page
3079.

v “Sharing notifications between Version 6.1 and Version 7.0 WS-Notification service points” on page
3080.

What to do next

When you have completed these subtasks, you have a collection of WS-Notification client and server
entities that are prepared for reliable notification, and you are ready to configure WS-Notification for
reliable notification.

Using JAX-WS clients and web services with migrated service points:
Procedure

1. Publish notification messages through a migrated Version 6.1 WS-Notification service point, from a
JAX-WS client application.

a. Create a JAX-WS WS-Notification client application by using the WSDL of the migrated service
point.

For more information, see Example: Publishing a WS-Notification message, Developing a JAX-WS
client from a WSDL file and “Publishing the WSDL files for a WS-Notification application to a
compressed file” on page 3082.

b. Run the application.

c. Initiate one or more notification messages.

Chapter 28. Administering web services - Notification (WS-Notification) 3077



The system accepts and publishes the notification messages from the JAX-WS client.

2. Receive notification messages in a new JAX-WS based WS-Notification consumer application, from a
migrated Version 6.1 WS-Notification service point.

This validates that your Version 6.1 WS-Notification service point can deliver notifications to a JAX-WS
consumer web service.

a. Create a new JAX-WS based WS-Notification consumer web service from the standard
WS-Notification WSDL.

For more information, see Example: Subscribing a WS-Notification consumer, Implementing web
services applications from existing WSDL files with JAX-WS and “Publishing the WSDL files for a
WS-Notification application to a compressed file” on page 3082.

b. Create a subscription for the new consumer service through the Version 6.1 WS-Notification
service point.

c. Prompt the WS-Notification service point to generate notifications (for example by using a
WS-Notification client application).

The system transmits the notifications to the new JAX-WS consumer application correctly.

Using JAX-RPC clients and web services with new Version 7.0 WS-Notification service points:
Procedure

1. Create a new Version 7.0 WS-Notification service.

You can configure a Version 7.0 WS-Notification service and service points with policy sets to compose
with WS-ReliableMessaging for reliable notification. The system creates and configures a new Version
7.0 WS-Notification service. This includes the creation of a Version 7.0 WS-Notification service point
that exposes the service from a particular service integration bus member. Version 6.1 and Version 7.0
WS-Notification service points can coexist in WebSphere Application Server Version 7.0 or later.

2. Publish notification messages through the new Version 7.0 WS-Notification service point, from a
JAX-RPC client application.

This validates the behavior of the Version 7.0 WS-Notification service point.

a. Create the application by using the WSDL of the new Version 7.0 WS-Notification service point.

For more information, see Example: Publishing a WS-Notification message, Developing client
bindings from a WSDL file for a JAX-RPC Web services client and “Publishing the WSDL files for a
WS-Notification application to a compressed file” on page 3082.

Note: Instead of creating a new JAX-RPC client application, you might choose to update an
existing JAX-RPC client application from the WSDL of the new service point. The WSDL for
a Version 7.0 WS-Notification service point contains a number of minor changes compared
to a Version 6.1 service point, so you must modify your existing JAX-WS client application to
take account of these changes. Specifically, you must regenerate the java proxy classes
from the WSDL, and update any use of class names and methods that have changed. For
example, there might be changes in the generated classes that include a port type or
service from the WSDL.

b. Run the application.

c. Initiate one or more notification messages.

The system accepts and publishes the notification messages from the JAX-RPC client.

3. Receive notification messages in a JAX-RPC based WS-Notification consumer application, from the
new Version 7.0 WS-Notification service point.

This validates that your Version 7.0 WS-Notification service point can deliver notifications to a
JAX-RPC consumer web service.

a. Create a new JAX-RPC based WS-Notification consumer web service from the standard
WS-Notification WSDL.

3078 Administering WebSphere applications



For more information, see Example: Subscribing a WS-Notification consumer, Implementing web
services applications from existing WSDL files with JAX-WS and “Publishing the WSDL files for a
WS-Notification application to a compressed file” on page 3082.

Note: Instead of creating a new JAX-RPC consumer application, you can use an existing
JAX-RPC consumer application from (for example) a Version 6.1 WS-Notification
configuration.

b. Create a subscription for the new consumer service through the new Version 7.0 WS-Notification
service point.

c. Prompt the WS-Notification service point to generate notifications (for example by using a
WS-Notification client application).

The system transmits the notifications to the new JAX-RPC consumer application correctly.

Using JAX-WS clients and web services with new Version 7.0 WS-Notification service points:
Before you begin

Note that with this configuration you can compose with policy sets for reliable notification.

Procedure

1. Publish notification messages through the new Version 7.0 WS-Notification service point, from a
JAX-WS client application.

a. Create a JAX-WS WS-Notification client application by using the WSDL of the new Version 7.0
WS-Notification service point.

For more information, see Example: Publishing a WS-Notification message, Developing a JAX-WS
client from a WSDL file and “Publishing the WSDL files for a WS-Notification application to a
compressed file” on page 3082.

Note: Instead of creating a new JAX-WS client application, you might choose to update the
JAX-WS client application that you created in the subtask “Using JAX-WS clients and web
services with migrated service points” on page 3077. The WSDL for a Version 7.0
WS-Notification service point contains a number of minor changes compared to a Version
6.1 service point, so you must modify your existing JAX-WS client application to take
account of these changes. Specifically, you must regenerate the java proxy classes from the
WSDL, and update any use of class names and methods that have changed. For example,
there might be changes in the generated classes that include a port type or service from the
WSDL.

b. Run the application.

c. Initiate one or more notification messages.

The system accepts and publishes the notification messages from the JAX-WS client.

2. Receive notification messages in a new JAX-WS based WS-Notification consumer application, from a
new Version 7.0 WS-Notification service point.

This validates that your Version 7.0 WS-Notification service point can deliver notifications to a JAX-WS
consumer web service.

a. Create a new JAX-WS based WS-Notification consumer web service from the standard
WS-Notification WSDL.

For more information, see Example: Subscribing a WS-Notification consumer, Implementing web
services applications from existing WSDL files with JAX-WS and “Publishing the WSDL files for a
WS-Notification application to a compressed file” on page 3082.

Note: Instead of creating a new JAX-WS consumer application, you might choose to update the
JAX-WS consumer application that you created in the subtask “Using JAX-WS clients and
web services with migrated service points” on page 3077. The WSDL for a Version 7.0

Chapter 28. Administering web services - Notification (WS-Notification) 3079



WS-Notification service point contains a number of minor changes compared to a Version
6.1 service point, so you must modify your existing JAX-WS client application to take
account of these changes. Specifically, you must regenerate the java proxy classes from the
WSDL, and update any use of class names and methods that have changed. For example,
there might be changes in the generated classes that include a port type or service from the
WSDL.

b. Create a subscription for the new consumer service through the new Version 7.0 WS-Notification
service point.

c. Prompt the WS-Notification service point to generate notifications (for example by using a
WS-Notification client application).

The system transmits the notifications to the new JAX-WS consumer application correctly.

Sharing notifications between Version 6.1 and Version 7.0 WS-Notification service points:
About this task

You can configure WS-Notification so that notifications received through migrated Version 6.1
WS-Notification service points are published through the new Version 7.0 service. You might want to do
this so that (for example) you can receive notifications through existing, unreliable connections then
publish them through new connections made reliable through WS-ReliableMessaging. To enable this
configuration, the new Version 7.0 WS-Notification service needs to use the same service integration bus
topic space as the migrated Version 6.1 WS-Notification service. You use a permanent topic namespace to
statically define the association between a WS-Notification topic namespace URI and a service integration
bus topic space destination. You configure a permanent topic namespace as a property of a
WS-Notification service.

Procedure

1. Discover which bus topic spaces the migrated Version 6.1 WS-Notification service is using. If none,
create a new permanent topic namespace to connect to a bus topic space. For more information, see
“Modifying a Version 6.1 WS-Notification service” on page 3096.

2. Create a new permanent topic namespace for the new Version 7.0 WS-Notification service, that
connects to the same bus topic space. For more information, see “Modifying a Version 7.0
WS-Notification service” on page 3089.

Results

Notifications received by either the new or migrated service point are now published to subscriptions made
on either WS-Notification service.

Interacting at run time with WS-Notification
View (and in some cases delete) at run time the active items associated with WS-Notification service
points.

Before you begin

This task assumes that you have a fully configured and operational WS-Notification service point.

About this task

A WS-Notification service point defines access to a WS-Notification service on a given bus member
through a specified web service binding (for example SOAP over HTTP). Applications use the bus
members associated with the WS-Notification service point to connect to the WS-Notification service. The
existence of a WS-Notification service point on a bus member implies that a WS-Notification web service
is exposed from that bus member, and causes web service endpoints for the notification broker,

3080 Administering WebSphere applications



subscription manager and publisher registration manager for this WS-Notification service to be exposed on
the bus member with which the service point is associated. WS-Notification applications use these
endpoints to interact with the WS-Notification service.

You can use the administrative console to interact at run time with the following active items associated
with WS-Notification service points:

Publisher registrations
A runtime list of existing publisher registrations is provided. This includes, for each publisher
registration, the information that was used to create it and when it will terminate.

Pull points
A runtime list is provided of the pull points that have been created. This includes, for each pull
point, its current termination time and a link to the associated subscription.

Subscriptions
A runtime view is provided for subscriptions that have been created by applications. This includes,
for each subscription, the information that was used to create it and an indication of its current
state.

Administered subscribers
A runtime list is provided of the administered subscribers for a given WS-Notification service point.
This includes, for each administered subscriber, an indication of its current state; for example
whether the subscription was successfully initialized at start time.

For each WS-Notification service point, runtime information is available for subscriptions, registrations,
pull points and administered subscribers. For each WS-Notification service, runtime information is
available - aggregated for all service points for the service - for subscriptions, registrations and pull points.
There is no aggregated view for administered subscribers at the WS-Notification service level.

To access and use the runtime information for active items associated with WS-Notification service points,
use the administrative console to complete the following steps:

Procedure
1. Choose between information for a particular service point, or information aggregated for all service

points for a particular service, by completing one of the following substeps:

a. Optional: For runtime information for a particular service point, navigate to either Service
integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name or Service integration -> Buses -> bus_name
-> [Services] WS-Notification services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name, then click the Runtime tab. A panel is displayed
that contains links to runtime information about subscriptions, registrations, pull points and
administered subscribers for this WS-Notification service point.

b. Optional: For runtime information aggregated for all service points for a particular service, navigate
to either Service integration -> WS-Notification -> Services -> service_name or Service
integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
then click the Runtime tab. A panel is displayed that contains links to runtime information about
subscriptions, registrations and pull points for this WS-Notification service.

2. Click Subscriptions , Publisher registrations, Pull points or (for a particular service point)
Administered subscribers.

v If you click Subscriptions, a panel is displayed that lists the durable subscriptions that have been
created by a WS-Notification service point in response to “Subscribe” requests from WS-Notification
applications. You can view the subscription name (ID), topic and other information associated with
the subscription, and you can view messages held on the durable subscription pending delivery. You
can also delete subscriptions.

Chapter 28. Administering web services - Notification (WS-Notification) 3081



Note: Both the WS-Notification subscription and publisher registration resources include the
concept of scheduled termination, in which the application indicates a period of time after
which the resource is destroyed. “Badly-behaved” in this case describes an application that
requests an infinite lifetime for a resource and then does not explicitly delete the resource
before it goes away (never to return).

v If you click Publisher registrations, a panel is displayed that lists the publisher registrations that
are currently in effect on this WS-Notification service or service point (that is, applications that have
registered as publishers). You can view the basic properties of the registration record. You can also
delete a publisher registration record.

v If you click Pull points, a panel is displayed that lists the pull points that are currently active on this
WS-Notification service or service point. You can view basic properties of the pull point such as the
subscription with which it is associated and the time at which it is currently set to expire, and you
can navigate to the associated subscriptions where appropriate. You can also delete pull points.

v For a particular service point, if you click Administered subscribers, a panel is displayed that lists
the administered subscribers that are currently in effect on this WS-Notification service point. You
can use this information to see whether a given subscriber has been successfully initialized.

What to do next

For more detailed information about working with individual runtime panels, see the following topics:

v “Listing or deleting active WS-Notification subscriptions” on page 3125.

v “Listing or deleting active WS-Notification publisher registrations” on page 3127.

v “Listing or deleting active WS-Notification pull points” on page 3128.

v “Listing active WS-Notification administered subscribers” on page 3129.

Publishing the WSDL files for a WS-Notification application to a compressed file
Use the administrative console to download a compressed file with a .zip file extension that contains the
published WSDL files for a WS-Notification application.

About this task

The ability to publish these WSDL files to a compressed file is particularly useful in the following
circumstances:

v Writing a WS-Notification application that invokes web service operations against the NotificationBroker
application, as described in Writing a WS-Notification application that does not expose a web service
endpoint.

v Running the wsimport command against the exported PublisherRegistrationManager.wsdl file to
generate a client stub for the PublisherRegistrationManager.

v Viewing the endpoint URLs to which WS-Notification applications connect, by looking in the WSDL file
for the NotificationBroker application for Version 7.0 services, or the inbound service for Version 6.1
services.

Note:

When you run the wsimport command against the exported PublisherRegistrationManager.wsdl
file you must include the ibm-wsn-jaxws.xml file as an argument to wsimport. If you omit this
bindings file, the wsimport command fails with a naming conflict error concerning the
ResourceNotDestroyedFault elements referred to in the PublisherRegistrationManager.wsdl file.
For more information about why this exception occurs, see the following troubleshooting tip: The
PublisherRegistrationManager.wsdl file is not successfully parsed by wsimport unless you include a
JAX-WS bindings file.

The ibm-wsn-jaxws.xml file is located in the app_server_root/util directory. For example:
c:\was\util\ibm-wsn-jaxws.xml. This bindings file expects to find the WSDL file to which it refers

3082 Administering WebSphere applications



in the same directory as itself, so before you run the wsimport command you must copy the
bindings file to the directory that holds your PublisherRegistrationManager.wsdl file. Here is an
example of how to run the wsimport command to include the ibm-wsn-jaxws.xml file:
c:\was\bin\wsimport -b ibm-wsn-jaxws.xml -keep PublisherRegistrationManager.wsdl

Procedure
1. Start the administrative console.

2. Navigate to the “Publish WSDL files to .zip file [Settings]” form for the WS-Notification application.

For JAX-WS based Version 7.0 WS-Notification services, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name -> [Additional Properties] Publish WSDL files to
zip

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services ->
service_name -> [Additional Properties] WS-Notification service points -> point_name ->
[Additional Properties] Publish WSDL files to zip

For JAX-RPC based Version 6.1 WS-Notification services, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> [Related Items]
Notification broker inbound service settings > [Additional Properties] Publish WSDL files to
ZIP file

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services ->
service_name -> [Related Items] Notification broker inbound service settings > [Additional
Properties] Publish WSDL files to ZIP file

3. Click on the file name to download a zip file that contains the application's published WSDL files.

Configuring WS-Notification resources
You can configure individual WS-Notification resources by using the administrative console or by using the
wsadmin tool.

About this task

To complete the tasks described in “Accomplishing common WS-Notification tasks” on page 3060, you
configure the following types of WS-Notification resource:

v WS-Notification service

v WS-Notification service point

v WS-Notification administered subscriber

v Permanent WS-Notification topic namespace

v WS-Notification topic namespace document

You can configure individual WS-Notification resources by using the administrative console or by using the
wsadmin tool, as described in the following tasks:

Procedure
v Configure WS-Notification resources by using the administrative console.

v Configure WS-Notification resources by using the wsadmin tool.

v Interact at run time with WS-Notification.

v Configure a JAX-WS client to resolve a WS-Notification service WSDL without following web links.

Configuring WS-Notification resources by using the administrative console
Use the administrative console to configure individual WS-Notification services, service points,
administered subscribers, permanent topic namespaces, topic namespace documents and JAX-WS
handlers.

Chapter 28. Administering web services - Notification (WS-Notification) 3083



Before you begin

Decide which method to use to configure these resources. You can configure WS-Notification resources by
using the administrative console as described in this task, or by using the commands in the
“WSNotificationCommands command group for the AdminTask object” on page 3151.

About this task

WS-Notification enables web services to use the publish and subscribe messaging pattern. For more
information, see WS-Notification: Overview and “WS-Notification” on page 3062.

For high-level configuration of WS-Notification, see “Accomplishing common WS-Notification tasks” on
page 3060. Use the steps for this task to configure individual instances of each type of WS-Notification
resource.

You access the WS-Notification panels through the Service integration section of the administrative
console navigation pane:

v To see a list of all the WS-Notification services, click Service integration -> WS-Notification ->
Services.

v To see a list of all the WS-Notification services for a particular service integration bus, click Service
integration -> Buses -> bus_name -> [Services] WS-Notification services.

To support the Java API for XML-based Web Services (JAX-WS) and composition with
WS-ReliableMessaging, you create your WS-Notification services as JAX-WS applications. The
implementation of WS-Notification in WebSphere Application Server Version 6.1 uses JAX-RPC
applications, so there are now two different implementations of the WS-Notification service and service
point:

v Version 7.0: Use this type of service if you want to compose a JAX-WS WS-Notification service with
web service qualities of service (QoS) via policy sets, or if you want to apply JAX-WS handlers to your
WS-Notification service. This is the recommended type of service for new deployments. This
WS-Notification option has been available in WebSphere Application Server from Version 7.0.

v Version 6.1: Use this type of service if you want to expose a JAX-RPC WS-Notification service that
uses the same technology provided in WebSphere Application Server Version 6.1, including the ability to
apply JAX-RPC handlers to the service. This WS-Notification option has been available in WebSphere
Application Server from Version 6.1.

To configure specific WS-Notification resources, use the administrative console to complete any of the
following tasks:

Procedure
v Configure a WS-Notification service.

Complete any of the following tasks:

– Create a new Version 7.0 WS-Notification service.

– Modify a Version 7.0 WS-Notification service.

– Create a new Version 6.1 WS-Notification service.

– Modify a Version 6.1 WS-Notification service.

– Delete WS-Notification services.

v Configure a WS-Notification service point.

Complete any of the following tasks:

– Create a new Version 7.0 WS-Notification service point.

– Modify a Version 7.0 WS-Notification service point.

– Create a new Version 6.1 WS-Notification service point.

3084 Administering WebSphere applications



– Modify a Version 6.1 WS-Notification service point.

– Delete WS-Notification service points.

v Configure a WS-Notification administered subscriber.

Complete any of the following tasks:

– Create a new WS-Notification administered subscriber.

– Modify a WS-Notification administered subscriber.

– Delete WS-Notification administered subscribers.

v Configure a permanent WS-Notification topic namespace.

Complete any of the following tasks:

– Create a new permanent WS-Notification topic namespace.

– Show the properties of a permanent WS-Notification topic namespace.

– Delete WS-Notification permanent topic namespaces.

v Configure a WS-Notification topic namespace document.

Complete any of the following tasks:

– Apply a WS-Notification topic namespace document.

– Show the contents of a WS-Notification topic namespace document.

– Delete WS-Notification topic namespace documents.

v Configure JAX-WS handlers and handler lists.

Complete any of the following tasks:

– Load JAX-WS handler classes.

– Create a new JAX-WS handler configuration.

– Modify an existing JAX-WS handler configuration.

– Delete JAX-WS handler configurations.

– Create a new JAX-WS handler list.

– Modify an existing JAX-WS handler list.

– Delete JAX-WS handler lists.

Creating a new Version 7.0 WS-Notification service:

Create a new WS-Notification service and the associated objects that form the infrastructure of the
WS-Notification configuration. Use this type of service if you want to compose a JAX-WS WS-Notification
service with web service qualities of service (QoS) via policy sets, or if you want to apply JAX-WS
handlers to your WS-Notification service. This is the recommended type of service for new deployments.
This WS-Notification option has been available in WebSphere Application Server from Version 7.0.

Before you begin

Decide which method to use to configure these resources. You can create a new Version 7.0
WS-Notification service by using the administrative console as described in this task, or by using the
“createWSNService command” on page 3152.

This task assumes that you have an existing service integration bus, configured with at least one bus
member.

You usually configure one WS-Notification service for a service integration bus, but you can configure
more than one. For more information, see Reasons to create multiple WS-Notification services in a bus.

Defining a Version 7.0 WS-Notification service is not the same as exposing a NotificationBroker (WSDL)
port to which web services applications can connect. To do this, create one or more Version 7.0
WS-Notification service points as described in this task.

Chapter 28. Administering web services - Notification (WS-Notification) 3085



About this task

A WS-Notification service provides the ability to expose some or all of the messaging resources defined on
a service integration bus for use by WS-Notification applications.

To support the Java API for XML-based Web Services (JAX-WS) and composition with
WS-ReliableMessaging, you create your WS-Notification services as JAX-WS applications, then use this
task to create a Version 7.0 WS-Notification service, one or more service points, and (optionally) a
permanent topic namespace.

You can also apply JAX-WS handler lists to WS-Notification service points (for inbound invocation
handling) and WS-Notification services (for outbound invocation handling).

When you create a Version 7.0 WS-Notification service, the wizard creates and deploys a JAX-WS based
provider application. This application exposes the WS-Notification web service interfaces for each of the
three WS-Notification service roles:

v Notification broker

v Subscription manager

v Publisher registration manager

Procedure

1. Start the administrative console.

2. Navigate to Service integration -> WS-Notification -> Services or Service integration -> Buses ->
bus_name -> [Services] WS-Notification services. The “WS-Notification services [Collection]” on
page 3145 form is displayed.

3. In the content pane, click New. The “New WS-Notification service” wizard is displayed. For more
information about the properties that you set with the wizard, see “WS-Notification services [Settings]”
on page 3146.

4. Step 1: Configure name, description, service integration bus and dynamic topic namespace settings.

a. Enter your chosen name and an optional description.

The name forms part of the endpoint on which the service is exposed (that is, the URL used to
access the WS-Notification service points that are defined under the service). For Version 6.1
WS-Notification services, the service name is unique within a bus. For Version 7.0 WS-Notification
services the service name is unique within the cell, which matches the administration model used
for policy sets and therefore supports composition of Version 7.0 WS-Notification services with
WS-ReliableMessaging.

b. Select or deselect the option Enable dynamic topic namespaces?.

Indicates whether dynamic topic namespaces can be used within the WS-Notification service.
That is, whether this service allows dynamic topic namespaces to be created at run time. For
more information, see Dynamic topic namespace.

Use this option to tightly control the topic namespaces that are used when connecting to a
particular WS-Notification service (for example for security or auditing requirements). If you
deselect this option, any applications that connect to the WS-Notification service and request
topics from a dynamic topic namespace are stopped from publishing or receiving messages.

All messages published to a dynamic topic namespace are inserted with the default message
reliability setting of reliable persistent. If this value is not acceptable, create a permanent topic
namespace and manually configure the attribute to the appropriate value.

Note: The dynamic topic namespaces used on a particular WS-Notification service are backed by
a service integration bus topic space that is created automatically when you create the
topic namespace. The syntax of topics used within this topic space is internal to the
WS-Notification service implementation.

3086 Administering WebSphere applications



c. Select or deselect the option Requires registration.

Indicates whether publisher applications are required to register with the broker before they can
publish notifications.

d. Select a service integration bus from the drop-down list.

e. Click Next.

5. Step 2: Select WS-Notification service type.

Select Version 7.0 as the type of service that you want to create.

6. Step 3: Configure handler and web service policy settings.

These settings are applied to the event notifications exchanged with WS-Notification client
applications.

a. Optional: Choose a JAX-WS handler list.

The JAX-WS handler list that is applied to outbound requests from the WS-Notification service. A
handler list defines the handlers that are applied when making outbound web service invocations,
for example monitoring outbound event notification (in response to a subscribe operation) and
controlling demand-based publishers (subscribe, pause and resume). For more information about
handler lists, see “Configuring JAX-WS handlers” on page 3070.

b. Enable or clear the Query WSDL option.

Indicates whether the Version 7.0 WS-Notification service queries the WSDL of other
WS-Notification web services when interacting with them. By default, this option is enabled. By
clearing this option, you can improve performance by avoiding expensive WSDL queries.
However, you should note the following considerations when WSDL querying is not enabled:

v WS-Notification attempts to discover binding information (which is usually discovered through
the WSDL) by using other means. WS-Notification uses the SOAP version associated with the
WS-Notification service point where subscriptions were made (by other web services), or where
administered subscriptions were created (by an administrator).

v There are some circumstances in which WS-Notification might be unable to determine binding
information. This can happen when cleaning up subscriptions where the associated service
point has been deleted and configuration information is no longer available. Under these
circumstances WS-Notification makes a “best guess” at binding information to use to clean up
the subscriptions.

v There is one scenario where incorrect binding information is used. That is, when a subscriber
subscribes to use a particular SOAP binding, on behalf of a NotificationConsumer that expects
notifications through a different SOAP binding.

c. Enter a dynamic topic space name.

The name of the service integration bus topic space to be used as the dynamic topic space for
this WS-Notification service. That is, the name of the bus topic space that is used to host the
ad-hoc topic namespace, and to host dynamic topic namespaces if they are permitted. A default
name of WSN_dynamic_this_service_name is offered.

d. Click Next.

7. Step 4: Create WS-Notification service points.

A WS-Notification service point defines access to a WS-Notification service on a given bus member
through a specified web service binding (for example SOAP over HTTP). Applications use the bus
members associated with the WS-Notification service point to connect to the WS-Notification service.
The existence of a WS-Notification service point on a bus member implies that a WS-Notification web
service is exposed from that bus member, and causes web service endpoints for the notification
broker, subscription manager and publisher registration manager for this WS-Notification service to be
exposed on the bus member with which the service point is associated. WS-Notification applications
use these endpoints to interact with the WS-Notification service. For more information, see
WS-Notification service point.

a. Select Yes to create a new WS-Notification service point, then click Next.

A WS-Notification service must have at least one service point.

Chapter 28. Administering web services - Notification (WS-Notification) 3087



b. Supply a name and (optional) description for the WS-Notification service point, and from the
drop-down list select the bus member on which the service point is to be configured, then click
Next.

The service point name forms part of the URL used to access the service point. On a single
server system there is only one bus member in the list.

c. Select the transport settings for the new service point.

Service point accessed via HTTP proxy
If the service point is accessed through a proxy, select the check box, and type the root of
the externally visible endpoint address URL for web services accessed through this
endpoint.

The URL for the proxy is used to populate the WSDL endpoint address fields when
publishing WSDL files to a compressed file.

SOAP Version
Select the version of SOAP that is supported by the service point. This affects the WSDL
definition that is exposed by the web service.

d. Optional: Select the JAX-WS handler list settings for the new service point.

NotificationBroker JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
NotificationBroker endpoint of the WS-Notification service point.

SubscriptionManager JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
SubscriptionManager endpoint of the WS-Notification service point.

PublisherRegistrationManager JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
PublisherRegistrationManager endpoint of the WS-Notification service point.

e. Click Next. The new service point is added to the list of service points for this WS-Notification
service.

f. Optional: To create another service point, repeat the previous substeps.

g. When you have finished creating service points for this WS-Notification service, select No for the
option to create another service point, then click Next.

8. Optional: Step 5: Create permanent topic namespaces.

For more information, see Permanent topic namespace. When you create a new WS-Notification
permanent topic namespace, you specify the namespace and associate it with one of the service
integration bus topic spaces configured on the bus on which the parent WS-Notification service is
defined. You cannot modify a permanent topic namespace after it has been created, other than to
apply or remove topic namespace documents.

a. Select Yes to create a new permanent topic namespace, then click Next.

b. Enter a name for the permanent topic namespace.

This is the URI by which WS-Notification applications refer to topics hosted by this namespace.

c. Associate this new permanent topic namespace with the service integration bus topic space that
you want to use to publish and receive messages.

From the service integration bus topic space drop-down list, complete one of the following actions:

v Select the name of an existing bus topic space.

v Select the option to Create a new topic space, then enter a name for the new topic space.

d. Select from the drop-down list the service integration bus reliability (quality of service) that is
assigned to messages published through this topic namespace.

3088 Administering WebSphere applications



You can choose one of five values, each representing one of the service integration bus message
reliability levels. The default value is reliable persistent, which is the value used by default for
JMS Persistent messages.

e. Click Next.

The new permanent topic namespace is added to a list of permanent topic namespaces for this
Version 7.0 WS-Notification service, and you are asked whether you want to create another
permanent topic namespace (default is Yes).

f. Optional: To create another permanent topic namespace, repeat the previous substeps.

g. When you have finished creating permanent topic namespaces for this Version 7.0
WS-Notification service, select No for the option to create another permanent topic namespace,
then click Next.

9. Step 6: Summary.

Check that the summary of the actions taken by the wizard is as you expected, then click Finish. If
the processing completes successfully, the list of Version 7.0 WS-Notification services is updated to
include the new Version 7.0 WS-Notification service. Otherwise, an error message is displayed.

10. Save your changes to the master configuration.

11. Optional: Restart the server if either of the following conditions apply:

v A new bus or new bus member has been created as part of this task.

v Configuration reload is not enabled for the bus.

What to do next

To undertake advanced configuration tasks for this WS-Notification service (for example, adding additional
service points and applying topic namespace documents to permanent topic namespaces), see “Modifying
a Version 7.0 WS-Notification service.”

To undertake advanced configuration tasks for the WS-Notification service point that you created as part of
this task (for example, adding administered subscribers, publishing WSDL files to a compressed file, and
configuring the enterprise application associated with this service point), see “Modifying a Version 7.0
WS-Notification service point” on page 3101.

To configure this WS-Notification service or service point with web service qualities of service (QoS) such
as reliability or security, see “Configuring a Version 7.0 WS-Notification service with Web service QoS” on
page 3072.

Modifying a Version 7.0 WS-Notification service:

Modify the description, Enabled dynamic topic namespaces?, Requires registration, JAX-WS
handler list and Query WSDL properties of a Version 7.0 WS-Notification service, and follow links to
complete advanced configuration such as adding additional WS-Notification service points, applying topic
namespace documents to permanent topic namespaces, and applying policy sets to enable
WS-ReliableMessaging.

About this task

A WS-Notification service provides the ability to expose some or all of the messaging resources defined on
a service integration bus for use by WS-Notification applications.

A handler list defines the handlers that are applied when making outbound web service invocations, for
example monitoring outbound event notification (in response to a subscribe operation) and controlling
demand-based publishers (subscribe, pause and resume).

Chapter 28. Administering web services - Notification (WS-Notification) 3089



When you create a Version 7.0 WS-Notification service, the wizard creates and deploys a JAX-WS based
provider application. This application exposes the WS-Notification web service interfaces for each of the
three WS-Notification service roles:

v Notification broker

v Subscription manager

v Publisher registration manager

You can also configure custom properties to specify a timeout time for outbound requests, and to
determine the strictness of the syntax checking of topics used under this Version 7.0 WS-Notification
service.

Procedure

1. Start the administrative console.

2. Navigate to Service integration -> WS-Notification -> Services or Service integration -> Buses ->
bus_name -> [Services] WS-Notification services. The “WS-Notification services [Collection]” on
page 3145 form is displayed.

3. In the content pane, click the name of a Version 7.0 WS-Notification service in the list. The current
settings for this Version 7.0 WS-Notification service are displayed in the “WS-Notification services
[Settings]” on page 3146 panel.

4. Modify the following general properties:

Description
An optional description of the WS-Notification service.

Enable dynamic topic namespaces?

Indicates whether dynamic topic namespaces can be used within the WS-Notification service.
That is, whether this service allows dynamic topic namespaces to be created at run time. For
more information, see Dynamic topic namespace.

Use this option to tightly control the topic namespaces that are used when connecting to a
particular WS-Notification service (for example for security or auditing requirements). If you
deselect this option, any applications that connect to the WS-Notification service and request
topics from a dynamic topic namespace are stopped from publishing or receiving messages.

All messages published to a dynamic topic namespace are inserted with the default message
reliability setting of reliable persistent. If this value is not acceptable, create a permanent
topic namespace and manually configure the attribute to the appropriate value.

Note: The dynamic topic namespaces used on a particular WS-Notification service are backed
by a service integration bus topic space that is created automatically when you create
the topic namespace. The syntax of topics used within this topic space is internal to the
WS-Notification service implementation.

Requires registration
Indicates whether publisher applications are required to register with the broker before they
can publish notifications.

JAX-WS handler list

The JAX-WS handler list that is applied to outbound requests from the WS-Notification service.

A handler list defines the handlers that are applied when making outbound web service
invocations, for example monitoring outbound event notification (in response to a subscribe
operation) and controlling demand-based publishers (subscribe, pause and resume). For more
information about handler lists, see “Configuring JAX-WS handlers” on page 3070.

Query WSDL

3090 Administering WebSphere applications



Indicates whether the Version 7.0 WS-Notification service queries the WSDL of other
WS-Notification web services when interacting with them. By default, this option is enabled. By
clearing this option, you can improve performance by avoiding expensive WSDL queries.
However, you should note the following considerations when WSDL querying is not enabled:

v WS-Notification attempts to discover binding information (which is usually discovered
through the WSDL) by using other means. WS-Notification uses the SOAP version
associated with the WS-Notification service point where subscriptions were made (by other
web services), or where administered subscriptions were created (by an administrator).

v There are some circumstances in which WS-Notification might be unable to determine
binding information. This can happen when cleaning up subscriptions where the associated
service point has been deleted and configuration information is no longer available. Under
these circumstances WS-Notification makes a “best guess” at binding information to use to
clean up the subscriptions.

v There is one scenario where incorrect binding information is used. That is, when a
subscriber subscribes to use a particular SOAP binding, on behalf of a NotificationConsumer
that expects notifications through a different SOAP binding.

5. Modify the additional properties:

WS-Notification service points
Select this link to configure the deployment of WS-Notification service points on one or more
servers. For more information, see “Creating a new Version 7.0 WS-Notification service point”
on page 3099 or “Modifying a Version 7.0 WS-Notification service point” on page 3101.

Permanent topic namespaces
Select this link to configure permanent topic namespaces for the WS-Notification service. For
more information, see Permanent topic namespace. When you create a new WS-Notification
permanent topic namespace, you specify the namespace and associate it with one of the
service integration bus topic spaces configured on the bus on which the parent WS-Notification
service is defined. You cannot modify a permanent topic namespace after it has been created,
other than to apply or remove topic namespace documents.

Custom properties
Select this link to configure additional custom properties for this WS-Notification service. These
custom properties are name and value pairs that you can use to set internal system
configuration properties. In each pair, the name is a property key and the value is a string
value.

To specify a timeout time for outbound requests sent from this WS-Notification service, set the
following custom property:
outbound.timeout

The value of this property is the timeout time in milliseconds. If the property is not set, a
default timeout of 2 minutes is used.

To determine the strictness of the syntax checking of topics used under this WS-Notification
service, set the following custom property:
com.ibm.ws.sib.wsn.strictTopicChecking

Valid values for this property are TRUE and FALSE:

v If the property value is set to TRUE, the topic syntax rules defined in the WS-Topics standard
are strictly enforced. Note that there is a performance cost compared to the default setting,
because each character of a topic is validated against a large list of permitted Unicode
characters.

v If the property is omitted or set to FALSE, syntax checking only ensures that the basic topic
structure is valid, and character checking is relaxed to allow any character except *
(asterisk) and . (dot) as a topic name part.

Chapter 28. Administering web services - Notification (WS-Notification) 3091



Outbound request policy sets and bindings
The outbound request policy sets and bindings for the two WS-Notification service clients
associated with this WS-Notification service. For reliable web service transmission of
notification messages, use this option to associate the WS-Notification service client with a
policy set that enables WS-ReliableMessaging.

For more information, see “Configuring a Version 7.0 WS-Notification service with Web service
QoS” on page 3072.

6. Apply any changes, then click OK. If the processing completes successfully, the list of WS-Notification
services is redisplayed. Otherwise, an error message is displayed.

7. Save your changes to the master configuration. You need not restart the server for the changes to fully
take effect if configuration reload is enabled for the service integration bus.

Deleting WS-Notification services:

Remove all configuration associated with one or more WS-Notification services. A WS-Notification service
provides access to service integration bus resources for web services publish and subscribe clients.

Before you begin

Decide which method to use to configure these resources. You can delete a WS-Notification service by
using the administrative console as described in this task, or by using the “deleteWSNService command”
on page 3155.

About this task

When you delete a Version 6.1 WS-Notification service, the associated inbound services and inbound
ports are also deleted. The associated endpoint listeners are deleted if they were created in the process of
creating a WS-Notification service point and are not used by any other configuration object. When you
delete a Version 7.0 WS-Notification service, the associated service point provider applications and service
points are also deleted. Do not delete these resources manually, because this might leave the associated
configuration information in an inconsistent state.

For both types of WS-Notification service, you choose whether the associated service integration bus topic
spaces are deleted.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> WS-Notification -> Services or Service
integration -> Buses -> bus_name -> [Services] WS-Notification services. A list of all the
WS-Notification services is displayed in a “WS-Notification services [Collection]” on page 3145 form.

3. Select the check box for every WS-Notification service that you want to remove.

4. Click Delete. A panel is displayed asking if the service integration bus topic spaces associated with the
WS-Notification service (including those associated with all the WS-Notification topic namespaces)
should also be deleted.

5. Optional: Select the check box if you want to delete the associated service integration bus topic
spaces.

Note: Deleting a service integration bus topic space causes exception messages to be generated for
WS-Notification applications that reference the topic space, as described in Failures as a result
of changes in topic space and topic namespace configurations.

6. Click Delete. If the processing completes successfully, the list of WS-Notification services is updated.
Otherwise, an error message is displayed.

7. Save your changes to the master configuration.

3092 Administering WebSphere applications



Creating a new Version 6.1 WS-Notification service:

Create a new WS-Notification service and the associated objects that form the infrastructure of the
WS-Notification configuration. Use this type of service if you want to expose a JAX-RPC WS-Notification
service that uses the same technology provided in WebSphere Application Server Version 6.1, including
the ability to apply JAX-RPC handlers to the service. This WS-Notification option has been available in
WebSphere Application Server from Version 6.1.

Before you begin

Ensure that you have successfully configured an SDO repository, as described in “Installing and
configuring the SDO repository” on page 2864. The SDO repository is used to store WSDL documents
during the creation of the WS-Notification service. If you do not configure the repository, an error message
appears when you create the service.

Decide which method to use to configure these resources. You can create a new Version 6.1
WS-Notification service by using the administrative console as described in this task, or by using the
“createWSNService command” on page 3152.

This task assumes that you have an existing service integration bus, configured with at least one bus
member.

You usually configure one WS-Notification service for a service integration bus, but you can configure
more than one. For more information, see Reasons to create multiple WS-Notification services in a bus.

Defining a WS-Notification service on a bus is not the same as exposing a NotificationBroker (WSDL) port
to which web services applications can connect. To do this, create one or more WS-Notification service
points as described in this task.

About this task

A WS-Notification service provides the ability to expose some or all of the messaging resources defined on
a service integration bus for use by WS-Notification applications.

A JAX-RPC handler list and WS-Security bindings define the parameters and security policy that are used
when making outbound web service invocations, for example monitoring outbound event notification (in
response to a subscribe operation) and controlling demand-based publishers (subscribe, pause and
resume).

When you create a Version 6.1 WS-Notification service, the wizard configures three service integration bus
inbound services for the WS-Notification service, one for each of the three WS-Notification service roles:

v Notification broker

v Subscription manager

v Publisher registration manager

These inbound services are defined on the same service integration bus as the Version 6.1
WS-Notification service, and each of these inbound services refers to the same bus destination.

Procedure

1. Start the administrative console.

2. Navigate to Service integration -> WS-Notification -> Services or Service integration -> Buses ->
bus_name -> [Services] WS-Notification services. The “WS-Notification services [Collection]” on
page 3145 form is displayed.

Chapter 28. Administering web services - Notification (WS-Notification) 3093



3. In the content pane, click New. The “New WS-Notification service” wizard is displayed. For more
information about the properties that you set with the wizard, see “WS-Notification services [Settings]”
on page 3146.

4. Step 1: Configure name, description, service integration bus and dynamic topic namespace settings.

a. Enter your chosen name and an optional description.

The name forms part of the endpoint on which the service is exposed (that is, the URL used to
access the WS-Notification service points that are defined under the service). For Version 6.1
WS-Notification services, the service name is unique within a bus. For Version 7.0 WS-Notification
services the service name is unique within the cell, which matches the administration model used
for policy sets and therefore supports composition of Version 7.0 WS-Notification services with
WS-ReliableMessaging.

b. Select or deselect the option Enable dynamic topic namespaces?.

Indicates whether dynamic topic namespaces can be used within the WS-Notification service.
That is, whether this service allows dynamic topic namespaces to be created at run time. For
more information, see Dynamic topic namespace.

Use this option to tightly control the topic namespaces that are used when connecting to a
particular WS-Notification service (for example for security or auditing requirements). If you
deselect this option, any applications that connect to the WS-Notification service and request
topics from a dynamic topic namespace are stopped from publishing or receiving messages.

All messages published to a dynamic topic namespace are inserted with the default message
reliability setting of reliable persistent. If this value is not acceptable, create a permanent topic
namespace and manually configure the attribute to the appropriate value.

Note: The dynamic topic namespaces used on a particular WS-Notification service are backed by
a service integration bus topic space that is created automatically when you create the
topic namespace. The syntax of topics used within this topic space is internal to the
WS-Notification service implementation.

c. Select or deselect the option Requires registration.

Indicates whether publisher applications are required to register with the broker before they can
publish notifications.

d. Select a service integration bus from the drop-down list.

e. Click Next.

5. Step 2: Select WS-Notification service type.

Select Version 6.1 as the type of service that you want to create.

6. Step 3: Configure handler and web service policy settings.

These settings are applied to the event notifications exchanged with WS-Notification client
applications.

a. Optional: Choose a JAX-RPC handler list.

The JAX-RPC handler list that is applied to outbound requests from the WS-Notification service -
for example the broker delivering notifications to a consumer. For more information about handler
lists, see “Working with JAX-RPC handlers and clients” on page 2891.

b. Optional: Choose a WS-Security configuration and bindings:

Outbound security request binding
The security binding to be used with consumer notifications and remote publisher
requests sent by this WS-Notification service.

Outbound security response binding
The security binding to be used with remote publisher responses received by this
WS-Notification service.

Outbound security configuration
Specifies the details of how security is applied to requests and responses.

3094 Administering WebSphere applications



For more information about Web Services Security resources, see Configuring secure
transmission of SOAP messages by using WS-Security.

c. Enter a dynamic topic space name.

The name of the service integration bus topic space to be used as the dynamic topic space for
this WS-Notification service. That is, the name of the bus topic space that is used to host the
ad-hoc topic namespace, and to host dynamic topic namespaces if they are permitted. A default
name of WSN_dynamic_this_service_name is offered.

d. Click Next.

7. Step 4: Create WS-Notification service points.

A WS-Notification service point defines access to a WS-Notification service on a given bus member
through a specified web service binding (for example SOAP over HTTP). Applications use the bus
members associated with the WS-Notification service point to connect to the WS-Notification service.
The existence of a WS-Notification service point on a bus member implies that a WS-Notification web
service is exposed from that bus member, and causes web service endpoints for the notification
broker, subscription manager and publisher registration manager for this WS-Notification service to be
exposed on the bus member with which the service point is associated. WS-Notification applications
use these endpoints to interact with the WS-Notification service. For more information, see
WS-Notification service point.

a. Select Yes to create a new WS-Notification service point, then click Next.

A WS-Notification service must have at least one service point.

b. Supply a name and (optional) description for the WS-Notification service point, and from the
drop-down list select the bus member on which the service point is to be configured, then click
Next.

The service point name forms part of the URL used to access the service point (that is, the
address of the web service that is exposed on the chosen server). On a single server system
there is only one bus member in the list.

c. Select a listener application to use to expose the service. Either select an existing endpoint
listener for this bus member, or Create a new endpoint listener.

For more information, see “Creating a new endpoint listener configuration” on page 2881.

d. Click Next. The new service point is added to the list of service points for this WS-Notification
service.

e. Optional: To create another service point, repeat the previous substeps.

f. When you have finished creating service points for this WS-Notification service, select No for the
option to create another service point, then click Next.

8. Optional: Step 5: Create permanent topic namespaces.

When you create a new WS-Notification permanent topic namespace, you specify the namespace
and associate it with one of the service integration bus topic spaces configured on the bus on which
the parent WS-Notification service is defined. You cannot modify a permanent topic namespace after
it has been created, other than to apply or remove topic namespace documents. For more
information, see Permanent topic namespace.

a. Select Yes to create a new permanent topic namespace, then click Next.

b. Enter a name for the permanent topic namespace.

This is the URI by which WS-Notification applications refer to topics hosted by this namespace.

c. Associate this new permanent topic namespace with the service integration bus topic space that
you want to use to publish and receive messages.

From the service integration bus topic space drop-down list, complete one of the following actions:

v Choose the name of an existing bus topic space.

v Choose the option to Create a new topic space, then enter a name for the new topic space.

d. Select from the drop-down list the service integration bus reliability (quality of service) that is
assigned to messages published through this topic namespace.

Chapter 28. Administering web services - Notification (WS-Notification) 3095



You can choose one of five values, each representing one of the service integration bus message
reliability levels. The default value is reliable persistent, which is the value used by default for
JMS Persistent messages.

e. Click Next.

The new permanent topic namespace is added to a list of permanent topic namespaces for this
WS-Notification service, and you are asked whether you want to create another permanent topic
namespace (default is Yes).

f. Optional: To create another permanent topic namespace, repeat the previous substeps.

g. When you have finished creating permanent topic namespaces for this WS-Notification service,
select No for the option to create another permanent topic namespace, then click Next.

9. Step 6: Summary.

Check that the summary of the actions taken by the wizard is as you expected, then click Finish. If
the processing completes successfully, the list of WS-Notification services is updated to include the
new Version 6.1 WS-Notification service. Otherwise, an error message is displayed.

10. Save your changes to the master configuration.

11. Optional: Restart the server if either of the following conditions apply:

v A new bus or new bus member has been created as part of this task.

v Configuration reload is not enabled for the bus.

What to do next

To undertake advanced configuration tasks for this WS-Notification service (for example adding additional
WS-Notification service points, or applying topic namespace documents to permanent topic namespaces),
see “Modifying a Version 6.1 WS-Notification service.”

Modifying a Version 6.1 WS-Notification service:

Modify the description, Enabled dynamic topic namespaces? and Requires registration properties of
a WS-Notification service, and follow links to complete advanced configuration of the WS-Notification
service such as adding additional WS-Notification service points, or applying topic namespace documents
to permanent topic namespaces.

About this task

A WS-Notification service provides the ability to expose some or all of the messaging resources defined on
a service integration bus for use by WS-Notification applications.

A JAX-RPC handler list and WS-Security bindings define the parameters and security policy that are used
when making outbound web service invocations, for example monitoring outbound event notification (in
response to a subscribe operation) and controlling demand-based publishers (subscribe, pause and
resume).

When you create a Version 6.1 WS-Notification service, the wizard configures three service integration bus
inbound services for the WS-Notification service, one for each of the three WS-Notification service roles:

v Notification broker

v Subscription manager

v Publisher registration manager

These inbound services are defined on the same service integration bus as the Version 6.1
WS-Notification service, and each of these inbound services refers to the same bus destination.

3096 Administering WebSphere applications



You can make web services-specific modifications to the WS-Notification service behavior by modifying the
three associated inbound services. You can also configure a custom property that determines the
strictness of the syntax checking of topics used under this WS-Notification service.

To modify a WS-Notification service use the administrative console to complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> WS-Notification -> Services or Service
integration -> Buses -> bus_name -> [Services] WS-Notification services. The “WS-Notification
services [Collection]” on page 3145 form is displayed.

2. In the content pane, click the name of a WS-Notification service in the list. The current settings for this
WS-Notification service are displayed in the “WS-Notification services [Settings]” on page 3146 panel.

3. Modify the following general properties:

Description
An optional description of the WS-Notification service.

Enable dynamic topic namespaces?

Indicates whether dynamic topic namespaces can be used within the WS-Notification service.
That is, whether this service allows dynamic topic namespaces to be created at run time. For
more information, see Dynamic topic namespace.

Use this option to tightly control the topic namespaces that are used when connecting to a
particular WS-Notification service (for example for security or auditing requirements). If you
deselect this option, any applications that connect to the WS-Notification service and request
topics from a dynamic topic namespace are stopped from publishing or receiving messages.

All messages published to a dynamic topic namespace are inserted with the default message
reliability setting of reliable persistent. If this value is not acceptable, create a permanent
topic namespace and manually configure the attribute to the appropriate value.

Note: The dynamic topic namespaces used on a particular WS-Notification service are backed
by a service integration bus topic space that is created automatically when you create
the topic namespace. The syntax of topics used within this topic space is internal to the
WS-Notification service implementation.

Requires registration
Indicates whether publisher applications are required to register with the broker before they
can publish notifications.

4. Modify the JAX-RPC handler list and Web Services Security settings. These settings are applied to the
event notifications exchanged with WS-Notification client applications. For more information about
handler lists, see “Working with JAX-RPC handlers and clients” on page 2891. For more information
about Web Services Security resources, see Configuring secure transmission of SOAP messages by
using WS-Security.

JAX-RPC handler list
The JAX-RPC handler list that is applied to outbound requests from the WS-Notification
service - for example the broker delivering notifications to a consumer.

Outbound security request binding
The security binding to be used with consumer notifications and remote publisher requests
sent by this WS-Notification service.

Outbound security response binding
The security binding to be used with remote publisher responses received by this
WS-Notification service.

Outbound security configuration
Specifies the details of how security is applied to requests and responses.

Chapter 28. Administering web services - Notification (WS-Notification) 3097



5. Modify the additional properties:

WS-Notification service points
Select this link to configure the deployment of WS-Notification service points on one or more
servers. For more information, see “Modifying a Version 6.1 WS-Notification service point” on
page 3104.

Permanent topic namespaces
Select this link to configure permanent topic namespaces for the WS-Notification service. For
more information, see Permanent topic namespace. When you create a new WS-Notification
permanent topic namespace, you specify the namespace and associate it with one of the
service integration bus topic spaces configured on the bus on which the parent WS-Notification
service is defined. You cannot modify a permanent topic namespace after it has been created,
other than to apply or remove topic namespace documents.

Custom properties
Select this link to configure additional custom properties for this WS-Notification service. These
custom properties are name and value pairs that you can use to set internal system
configuration properties. In each pair, the name is a property key and the value is a string
value.

To specify a timeout time for outbound requests sent from this WS-Notification service, set the
following custom property:
outbound.timeout

The value of this property is the timeout time in milliseconds. If the property is not set, a
default timeout of 2 minutes is used.

To determine the strictness of the syntax checking of topics used under this WS-Notification
service, set the following custom property:
com.ibm.ws.sib.wsn.strictTopicChecking

Valid values for this property are TRUE and FALSE:

v If the property value is set to TRUE, the topic syntax rules defined in the WS-Topics standard
are strictly enforced. Note that there is a performance cost compared to the default setting,
because each character of a topic is validated against a large list of permitted Unicode
characters.

v If the property is omitted or set to FALSE, syntax checking only ensures that the basic topic
structure is valid, and character checking is relaxed to allow any character except *
(asterisk) and . (dot) as a topic name part.

6. Modify the inbound service settings for the notification broker, subscription manager or publisher
registration manager. For more information, see “Modifying an existing inbound service configuration”
on page 2872.

7. Apply any changes, then click OK. If the processing completes successfully, the list of WS-Notification
services is redisplayed. Otherwise, an error message is displayed.

8. Save your changes to the master configuration. You need not restart the server for the changes to fully
take effect if configuration reload is enabled for the service integration bus.

Deleting WS-Notification services:

Remove all configuration associated with one or more WS-Notification services. A WS-Notification service
provides access to service integration bus resources for web services publish and subscribe clients.

3098 Administering WebSphere applications



Before you begin

Decide which method to use to configure these resources. You can delete a WS-Notification service by
using the administrative console as described in this task, or by using the “deleteWSNService command”
on page 3155.

About this task

When you delete a Version 6.1 WS-Notification service, the associated inbound services and inbound
ports are also deleted. The associated endpoint listeners are deleted if they were created in the process of
creating a WS-Notification service point and are not used by any other configuration object. When you
delete a Version 7.0 WS-Notification service, the associated service point provider applications and service
points are also deleted. Do not delete these resources manually, because this might leave the associated
configuration information in an inconsistent state.

For both types of WS-Notification service, you choose whether the associated service integration bus topic
spaces are deleted.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> WS-Notification -> Services or Service
integration -> Buses -> bus_name -> [Services] WS-Notification services. A list of all the
WS-Notification services is displayed in a “WS-Notification services [Collection]” on page 3145 form.

3. Select the check box for every WS-Notification service that you want to remove.

4. Click Delete. A panel is displayed asking if the service integration bus topic spaces associated with the
WS-Notification service (including those associated with all the WS-Notification topic namespaces)
should also be deleted.

5. Optional: Select the check box if you want to delete the associated service integration bus topic
spaces.

Note: Deleting a service integration bus topic space causes exception messages to be generated for
WS-Notification applications that reference the topic space, as described in Failures as a result
of changes in topic space and topic namespace configurations.

6. Click Delete. If the processing completes successfully, the list of WS-Notification services is updated.
Otherwise, an error message is displayed.

7. Save your changes to the master configuration.

Creating a new Version 7.0 WS-Notification service point:

You can add an additional Version 7.0 WS-Notification service point to an existing Version 7.0
WS-Notification service. A WS-Notification service point defines access to a WS-Notification service on a
given bus member through a specified web service binding (for example SOAP over HTTP). Applications
use the bus members associated with the WS-Notification service point to connect to the WS-Notification
service. The existence of a WS-Notification service point on a bus member implies that a WS-Notification
web service is exposed from that bus member, and causes web service endpoints for the notification
broker, subscription manager and publisher registration manager for this WS-Notification service to be
exposed on the bus member with which the service point is associated. WS-Notification applications use
these endpoints to interact with the WS-Notification service.

Before you begin

Decide which method to use to configure these resources. You can create a new Version 7.0
WS-Notification service point by using the administrative console as described in this task, or by using the
“createWSNServicePoint command” on page 3159.

Chapter 28. Administering web services - Notification (WS-Notification) 3099



About this task

You can define any number of WS-Notification service points for a given WS-Notification service. Each
service point defined for the same WS-Notification service represents an alternative entry point to the
service. Event notifications published to a particular WS-Notification service point are received by all
applications connected to any service point of the same WS-Notification service (subject to subscription on
the correct topic) regardless of the particular service point to which they are connected. For more
information, see Reasons to create multiple WS-Notification service points.

When you create a Version 7.0 WS-Notification service point you select a bus member on which the
WS-Notification service point is configured. You also choose the SOAP version that is supported by the
service point, and (optionally) apply JAX-WS handler lists to the NotificationBroker, SubscriptionManager
or PublisherRegistrationManager that are exposed through this service point.

Procedure

1. Start the administrative console.

2. Navigate to Service integration -> WS-Notification -> Services -> service_name -> [Additional
Properties] WS-Notification service points or Service integration -> Buses -> bus_name ->
[Services] WS-Notification services -> service_name -> [Additional Properties] WS-Notification
service points. The “WS-Notification service points [Collection]” on page 3141 form is displayed. This
form shows all the Version 7.0 WS-Notification service points configured for this Version 7.0
WS-Notification service.

3. In the content pane, click New. The New WS-Notification service point wizard is displayed. For more
information about the properties that you set with the wizard, see “WS-Notification service points
[Settings]” on page 3142.

4. Step 1: Configure name, description and select a bus member.

a. Supply a name and (optional) description for the WS-Notification service point. The service point
name forms part of the URL used to access the service point.

b. From the drop-down list, select the bus member on which the service point is to be configured. On
a single server system there is only one bus member in the list.

c. Click Next.

5. Step 2: Define transport settings.

a. Select the transport settings for the new service point.

Service point accessed via HTTP proxy
If the service point is accessed through a proxy, select the check box, and type the root of
the externally visible endpoint address URL for web services accessed through this
endpoint.

The URL for the proxy is used to populate the WSDL endpoint address fields when
publishing WSDL files to a compressed file.

SOAP Version
Select the version of SOAP that is supported by the service point. This affects the WSDL
definition that is exposed by the web service.

b. Optional: Select the JAX-WS handler list settings for the new service point.

NotificationBroker JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
NotificationBroker endpoint of the WS-Notification service point.

SubscriptionManager JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
SubscriptionManager endpoint of the WS-Notification service point.

3100 Administering WebSphere applications



PublisherRegistrationManager JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
PublisherRegistrationManager endpoint of the WS-Notification service point.

6. Click Finish. If the processing completes successfully, the list of Version 7.0 WS-Notification service
points for this Version 7.0 WS-Notification service is updated to include the new service point.
Otherwise, an error message is displayed.

7. Save your changes to the master configuration.

What to do next

To undertake advanced configuration tasks for this WS-Notification service point (for example, adding
administered subscribers, publishing WSDL files to a compressed file, and configuring the enterprise
application associated with this service point), see “Modifying a Version 7.0 WS-Notification service point.”

To configure this WS-Notification service point with web service qualities of service (QoS) such as
reliability or security, see “Configuring a Version 7.0 WS-Notification service with Web service QoS” on
page 3072.

You can also use the administrative console to work with runtime information for service points. For more
information, see “Interacting at run time with WS-Notification” on page 3080.

Modifying a Version 7.0 WS-Notification service point:

Modify the description, SOAP Version, and JAX-WS handler list properties of a Version 7.0
WS-Notification service point, and follow links to complete advanced configuration such as modifying the
administered subscribers, applying policy sets to enable WS-ReliableMessaging, publishing the WSDL files
to compressed files, and configuring the enterprise application that is associated with this service point.

About this task

A WS-Notification service point defines access to a WS-Notification service on a given bus member
through a specified web service binding (for example SOAP over HTTP). Applications use the bus
members associated with the WS-Notification service point to connect to the WS-Notification service. The
existence of a WS-Notification service point on a bus member implies that a WS-Notification web service
is exposed from that bus member, and causes web service endpoints for the notification broker,
subscription manager and publisher registration manager for this WS-Notification service to be exposed on
the bus member with which the service point is associated. WS-Notification applications use these
endpoints to interact with the WS-Notification service.

Procedure

1. Start the administrative console.

2. Navigate to Service integration -> WS-Notification -> Services -> service_name -> [Additional
Properties] WS-Notification service points or Service integration -> Buses -> bus_name ->
[Services] WS-Notification services -> service_name -> [Additional Properties] WS-Notification
service points. The “WS-Notification service points [Collection]” on page 3141 form is displayed. This
form shows all the service points configured for this Version 7.0 WS-Notification service.

3. In the content pane, click the name of a Version 7.0 WS-Notification service point in the list. The
current settings for this Version 7.0 WS-Notification service point are displayed in the “WS-Notification
service points [Settings]” on page 3142 form.

4. Modify the following general properties:

Description
An optional description of the WS-Notification service point.

Chapter 28. Administering web services - Notification (WS-Notification) 3101



Associated bus member
The name of the bus member on which this WS-Notification service point is deployed.

SOAP Version

Defines the version of SOAP supported by the service point. This affects the WSDL definition
that will be exposed by the web service. Permitted values are 1.1 for SOAP 1.1 (the default),
and 1.2 for SOAP 1.2.

NotificationBroker JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
NotificationBroker endpoint of the WS-Notification service point.

SubscriptionManager JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
SubscriptionManager endpoint of the WS-Notification service point.

PublisherRegistrationManager JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
PublisherRegistrationManager endpoint of the WS-Notification service point.

5. Modify the additional properties:

Administered subscribers
An administered subscriber provides a mechanism for the WS-Notification service point to
subscribe to an external notification producer at server startup time. For more information, see
“Modifying a WS-Notification administered subscriber” on page 3108.

Custom properties
Select this link to configure additional custom properties for this WS-Notification service point.

Policy set configuration
The policy set configuration associated with this WS-Notification service point. You can
configure policy set and binding information for each port relating to this service point. For
more information, see “Configuring a Version 7.0 WS-Notification service with Web service
QoS” on page 3072.

Publish WSDL files to zip
Publish the WSDL files for this service point to a compressed file.

Note: When you run the wsimport command against the exported
PublisherRegistrationManager.wsdl file you must include the ibm-wsn-jaxws.xml file as
an argument to wsimport.

For more information, see “Publishing the WSDL files for a WS-Notification application to a
compressed file” on page 3082.

Service point application
The application associated with this WS-Notification service point. For Version 7.0
WS-Notification services, enterprise applications are used to expose the web services
associated with the WS-Notification service.

6. Apply any changes, then click OK. If the processing completes successfully, the list of WS-Notification
service points for this Version 7.0 WS-Notification service is redisplayed. Otherwise, an error message
is displayed.

7. Save your changes to the master configuration.

What to do next

You can also use the administrative console to work with runtime information for service points. For more
information, see “Interacting at run time with WS-Notification” on page 3080.

3102 Administering WebSphere applications



Deleting WS-Notification service points:

Delete one or more WS-Notification service points and the associated resources (Version 7.0 service point
provider applications, or Version 6.1 inbound services and endpoint listeners).

Before you begin

Decide which method to use to configure these resources. You can delete a WS-Notification service point
by using the administrative console as described in this task, or by using the “deleteWSNServicePoint
command” on page 3162.

Do not use this task to delete service points as part of the process of deleting a WS-Notification service.
When you delete a WS-Notification service, the associated service points and resources are automatically
deleted.

About this task

A WS-Notification service point defines access to a WS-Notification service on a given bus member
through a specified web service binding (for example SOAP over HTTP). Applications use the bus
members associated with the WS-Notification service point to connect to the WS-Notification service.
When you delete a WS-Notification service point, the associated resources (Version 7.0 service point
provider applications, or Version 6.1 inbound services and endpoint listeners) are automatically deleted. Do
not delete these resources manually, because this might leave the associated configuration information in
an inconsistent state.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> WS-Notification -> Services -> service_name ->
[Additional Properties] WS-Notification service points or Service integration -> Buses ->
bus_name -> [Services] WS-Notification services -> service_name -> [Additional Properties]
WS-Notification service points. A list of all the WS-Notification service points is displayed in a
“WS-Notification service points [Collection]” on page 3141 form.

3. Select the check box for every WS-Notification service point that you want to remove.

4. Click Delete. If the processing completes successfully, the list of WS-Notification service points for this
WS-Notification service is updated. Otherwise, an error message is displayed.

5. Save your changes to the master configuration.

Creating a new Version 6.1 WS-Notification service point:

You can add an additional Version 6.1 WS-Notification service point to an existing Version 6.1
WS-Notification service. A WS-Notification service point defines access to a WS-Notification service on a
given bus member through a specified web service binding (for example SOAP over HTTP). Applications
use the bus members associated with the WS-Notification service point to connect to the WS-Notification
service. The existence of a WS-Notification service point on a bus member implies that a WS-Notification
web service is exposed from that bus member, and causes web service endpoints for the notification
broker, subscription manager and publisher registration manager for this WS-Notification service to be
exposed on the bus member with which the service point is associated. WS-Notification applications use
these endpoints to interact with the WS-Notification service.

Before you begin

Decide which method to use to configure these resources. You can create a new Version 6.1
WS-Notification service point by using the administrative console as described in this task, or by using the
“createWSNServicePoint command” on page 3159.

Chapter 28. Administering web services - Notification (WS-Notification) 3103



About this task

You can define any number of WS-Notification service points for a given WS-Notification service. Each
service point defined for the same WS-Notification service represents an alternative entry point to the
service. Event notifications published to a particular WS-Notification service point are received by all
applications connected to any service point of the same WS-Notification service (subject to subscription on
the correct topic) regardless of the particular service point to which they are connected. For more
information, see Reasons to create multiple WS-Notification service points.

When you create a Version 6.1 WS-Notification service point you select a bus member on which the
WS-Notification service point is configured. You allocate a service point to a given bus member by
specifying an endpoint listener that is configured for that bus member. You also choose the type of web
service binding (SOAP over HTTP or SOAP over JMS) that is used for the WS-Notification service point.

The existence of a WS-Notification service point on a bus member implies that a WS-Notification web
service is exposed from that bus member, and causes web service endpoints for the notification broker,
subscription manager and publisher registration manager for this WS-Notification service to be exposed on
the bus member with which the service point is associated. WS-Notification applications use these
endpoints to interact with the WS-Notification service.

Procedure

1. Start the administrative console

2. Navigate to Service integration -> WS-Notification -> Services -> service_name -> [Additional
Properties] WS-Notification service points or Service integration -> Buses -> bus_name ->
[Services] WS-Notification services -> service_name -> [Additional Properties] WS-Notification
service points. The “WS-Notification service points [Collection]” on page 3141 form is displayed. This
form shows all the Version 6.1 WS-Notification service points configured for this Version 6.1
WS-Notification service.

3. In the content pane, click New. The New WS-Notification service point wizard is displayed. For more
information about the properties that you set with the wizard, see “WS-Notification service points
[Settings]” on page 3142.

4. Use the wizard to create the new Version 6.1 WS-Notification service point configuration by completing
the following steps.

a. Supply a name and (optional) description for the WS-Notification service point, and from the
drop-down list select the bus member on which the service point is to be configured, then click
Next. The service point name forms part of the URL used to access the service point (that is, the
address of the web service that is exposed on the chosen server). On a single server system there
is only one bus member in the list.

b. Select a listener application to use to expose the service. Either select an existing endpoint listener
for this bus member, or Create a new endpoint listener. For more information, see “Creating a
new endpoint listener configuration” on page 2881.

5. Click Finish. If the processing completes successfully, the list of Version 6.1 WS-Notification service
points for this Version 6.1 WS-Notification service is updated to include the new service point.
Otherwise, an error message is displayed.

6. Save your changes to the master configuration.

What to do next

You can also use the administrative console to work with runtime information for service points. For more
information, see “Interacting at run time with WS-Notification” on page 3080.

Modifying a Version 6.1 WS-Notification service point:

3104 Administering WebSphere applications



Modify an existing WS-Notification service point. A WS-Notification service point defines access to a
WS-Notification service on a given bus member through a specified web service binding (for example
SOAP over HTTP). Applications use the bus members associated with the WS-Notification service point to
connect to the WS-Notification service.

About this task

You can define any number of WS-Notification service points for a given WS-Notification service. Each
service point defined for the same WS-Notification service represents an alternative entry point to the
service. Event notifications published to a particular WS-Notification service point are received by all
applications connected to any service point of the same WS-Notification service (subject to subscription on
the correct topic) regardless of the particular service point to which they are connected. For more
information, see Reasons to create multiple WS-Notification service points.

The existence of a WS-Notification service point on a bus member implies that a WS-Notification web
service is exposed from that bus member, and causes web service endpoints for the notification broker,
subscription manager and publisher registration manager for this WS-Notification service to be exposed on
the bus member with which the service point is associated. WS-Notification applications use these
endpoints to interact with the WS-Notification service.

To modify a WS-Notification service point use the administrative console to complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> WS-Notification -> Services -> service_name ->
[Additional Properties] WS-Notification service points or Service integration -> Buses ->
bus_name -> [Services] WS-Notification services -> service_name -> [Additional Properties]
WS-Notification service points. The “WS-Notification service points [Collection]” on page 3141 form
is displayed. This form shows all the WS-Notification service points configured for this WS-Notification
service.

2. In the content pane, click the name of a WS-Notification service point in the list. The current settings
for this WS-Notification service point are displayed in the “WS-Notification service points [Settings]” on
page 3142 form.

3. Modify the general properties. The only general property that you can modify is the description
property.

4. Modify the additional properties:

a. Modify the administered subscribers that are associated with this WS-Notification service point. An
administered subscriber provides a mechanism for the WS-Notification service point to subscribe to
an external notification producer at server startup time. For more information, see “Modifying a
WS-Notification administered subscriber” on page 3108.

b. Modify the custom properties, if any, that you have set for this WS-Notification service point. These
custom properties are name and value pairs that you can use to set internal system configuration
properties. In each pair, the name is a property key and the value is a string value.

a. Modify the inbound ports that are associated with this WS-Notification service point.

An inbound port describes the web service enablement of a service destination on a specific
endpoint listener, with associated configuration. Each inbound port is associated with an endpoint
listener, and you can control which groups of users can access a particular inbound service by
making the service available only through specific endpoint listeners. For more information, see
Endpoint listeners and inbound ports: Entry points to the service integration bus.

You can use a JAX-RPC handler list to monitor activity at the port, and take appropriate action (for
example logging, or rerouting) depending upon the sender and content of each message that
passes through the port. For more information, see Bus-enabled web services and JAX-RPC
handlers.

Chapter 28. Administering web services - Notification (WS-Notification) 3105



You can use WS-Security to set the levels of security to be applied to messages. The security level
can be set independently for request and response messages. For more information, see Service
integration technologies and WS-Security.

See also Inbound ports settings.

5. Apply any changes, then click OK. If the processing completes successfully, the list of WS-Notification
service points for this WS-Notification service is redisplayed. Otherwise, an error message is displayed.

6. Save your changes to the master configuration.

What to do next

You can also use the administrative console to work with runtime information for service points. For more
information, see “Interacting at run time with WS-Notification” on page 3080.

Deleting WS-Notification service points:

Delete one or more WS-Notification service points and the associated resources (Version 7.0 service point
provider applications, or Version 6.1 inbound services and endpoint listeners).

Before you begin

Decide which method to use to configure these resources. You can delete a WS-Notification service point
by using the administrative console as described in this task, or by using the “deleteWSNServicePoint
command” on page 3162.

Do not use this task to delete service points as part of the process of deleting a WS-Notification service.
When you delete a WS-Notification service, the associated service points and resources are automatically
deleted.

About this task

A WS-Notification service point defines access to a WS-Notification service on a given bus member
through a specified web service binding (for example SOAP over HTTP). Applications use the bus
members associated with the WS-Notification service point to connect to the WS-Notification service.
When you delete a WS-Notification service point, the associated resources (Version 7.0 service point
provider applications, or Version 6.1 inbound services and endpoint listeners) are automatically deleted. Do
not delete these resources manually, because this might leave the associated configuration information in
an inconsistent state.

Procedure

1. Start the administrative console.

2. In the navigation pane, click Service integration -> WS-Notification -> Services -> service_name ->
[Additional Properties] WS-Notification service points or Service integration -> Buses ->
bus_name -> [Services] WS-Notification services -> service_name -> [Additional Properties]
WS-Notification service points. A list of all the WS-Notification service points is displayed in a
“WS-Notification service points [Collection]” on page 3141 form.

3. Select the check box for every WS-Notification service point that you want to remove.

4. Click Delete. If the processing completes successfully, the list of WS-Notification service points for this
WS-Notification service is updated. Otherwise, an error message is displayed.

5. Save your changes to the master configuration.

Creating a new WS-Notification administered subscriber:

3106 Administering WebSphere applications



As part of the configuration of a WS-Notification service point you can configure any number of
administered subscribers for that service point. An administered subscriber provides a mechanism for the
WS-Notification service point to subscribe to an external notification producer at server startup time.

Before you begin

Decide which method to use to configure these resources. You can create a new administered subscriber
by using the administrative console as described in this task, or by using the
“createWSNAdministeredSubscriber command” on page 3166.

You should not define an administered subscriber for any of the endpoints exposed by the WS-Notification
service on which it is being defined, because this would result in infinite looping of messages through the
notification broker.

About this task

An administered subscriber contains the name of a NotificationProducer application or a (different)
NotificationBroker endpoint and details of a subscription request (for example topic) that the
WS-Notification service point should register as part of the server startup procedure. This enables you to
pre-configure links between the NotificationBroker and a NotificationProducer, which can be a remote
NotificationBroker or a NotificationProducer application.

To create a new administered subscriber, use the administrative console to complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> WS-Notification -> Services -> service_name ->
[Additional Properties] WS-Notification service points -> point_name -> Administered
subscribers or Service integration -> Buses -> bus_name -> [Services] WS-Notification services
-> service_name -> [Additional Properties] WS-Notification service points -> point_name ->
Administered subscribers. The “Administered subscribers [Collection]” on page 3131 form is
displayed.

2. In the content pane, click New.

3. Specify the following properties for this administered subscriber.

External web service endpoint
The URL of the external web service to which the service should subscribe. That is, the
endpoint reference (web address) of a notification producer or notification broker application.
For example http://remoteproducer.com.

Dialect
The dialect in which the topic is expressed. The options are Simple, Concrete, or Full, as
defined by the WS-Topics standard.

Topic The topic on which the service should subscribe. This describes the class of notification
messages that are delivered to the WS-Notification service point. For example stock/IBM. This
property can include wildcards if they are supported by the topic dialect that you select.

Topic namespace
The URI that describes the topic namespace in which the specified topic is defined.

Remote subscription timeout
The length of time in hours after which the remote subscription will expire if not renewed by
the server. This timeout minimizes the potential for orphaned subscriptions in the remote web
service if the local server is uninstalled. Note that this field does not indicate the time at which
the remote subscription is due to expire. Set the timeout length to something larger than the
maximum length of time that the server is expected to remain offline, otherwise the stream of
messages from the remote web service might be interrupted. While the server is running it

Chapter 28. Administering web services - Notification (WS-Notification) 3107



occasionally renews the remote subscription termination time (with the specified timeout) to
prevent it from expiring during normal operation. If not specified, this timeout defaults to 24
(hours).

4. Click OK. If the processing completes successfully, the list of administered subscribers associated with
the WS-Notification service point is updated to include the new administered subscriber. Otherwise, an
error message is displayed.

5. Save your changes to the master configuration.

What to do next

You can also use the administrative console to list runtime information for administered subscribers. For
more information, see “Listing active WS-Notification administered subscribers” on page 3129.

Modifying a WS-Notification administered subscriber:

As part of the configuration of a WS-Notification service point you can configure any number of
administered subscribers for that service point. An administered subscriber provides a mechanism for the
WS-Notification service point to subscribe to an external notification producer at server startup time.

About this task

An administered subscriber contains the name of a NotificationProducer application or a (different)
NotificationBroker endpoint and details of a subscription request (for example topic) that the
WS-Notification service point should register as part of the server startup procedure. This enables you to
pre-configure links between the NotificationBroker and a NotificationProducer, which can be a remote
NotificationBroker or a NotificationProducer application.

To modify an administered subscriber, use the administrative console to complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> WS-Notification -> Services -> service_name ->
[Additional Properties] WS-Notification service points -> point_name -> Administered
subscribers or Service integration -> Buses -> bus_name -> [Services] WS-Notification services
-> service_name -> [Additional Properties] WS-Notification service points -> point_name ->
Administered subscribers. The “Administered subscribers [Collection]” on page 3131 form is
displayed. This form shows all the administered subscribers configured for this WS-Notification service
point.

2. In the content pane, click the name of an administered subscriber in the list. The current settings for
this administered subscriber are displayed in the Configuration panel.

3. Modify the properties for this administered subscriber.

External web service endpoint
The URL of the external web service to which the service should subscribe. That is, the
endpoint reference (web address) of a notification producer or notification broker application.
For example http://remoteproducer.com.

Dialect
The dialect in which the topic is expressed. The options are Simple, Concrete, or Full, as
defined by the WS-Topics standard.

Topic The topic on which the service should subscribe. This describes the class of notification
messages that are delivered to the WS-Notification service point. For example stock/IBM. This
property can include wildcards if they are supported by the topic dialect that you select.

Topic namespace
The URI that describes the topic namespace in which the specified topic is defined.

3108 Administering WebSphere applications



Remote subscription timeout
The length of time in hours after which the remote subscription will expire if not renewed by
the server. This timeout minimizes the potential for orphaned subscriptions in the remote web
service if the local server is uninstalled. Note that this field does not indicate the time at which
the remote subscription is due to expire. Set the timeout length to something larger than the
maximum length of time that the server is expected to remain offline, otherwise the stream of
messages from the remote web service might be interrupted. While the server is running it
occasionally renews the remote subscription termination time (with the specified timeout) to
prevent it from expiring during normal operation. If not specified, this timeout defaults to 24
(hours).

4. Apply any changes, then click OK. If the processing completes successfully, the list of administered
subscribers associated with the WS-Notification service point is redisplayed. Otherwise, an error
message is displayed.

5. Save your changes to the master configuration.

What to do next

You can also use the administrative console to list runtime information for administered subscribers. For
more information, see “Listing active WS-Notification administered subscribers” on page 3129.

Deleting WS-Notification administered subscribers:

Delete one or more WS-Notification administered subscribers. An administered subscriber provides a
mechanism for the WS-Notification service point to subscribe to an external notification producer at server
startup time.

Before you begin

Decide which method to use to configure these resources. You can delete an administered subscriber by
using the administrative console as described in this task, or by using the
“deleteWSNAdministeredSubscriber command” on page 3168.

About this task

To delete one or more administered subscribers, use the administrative console to complete the following
steps :

Procedure

1. In the navigation pane, click Service integration -> WS-Notification -> Services -> service_name ->
[Additional Properties] WS-Notification service points -> point_name -> Administered
subscribers or Service integration -> Buses -> bus_name -> [Services] WS-Notification services
-> service_name -> [Additional Properties] WS-Notification service points -> point_name ->
Administered subscribers. A list of all the administered subscribers is displayed in an “Administered
subscribers [Collection]” on page 3131 form.

2. Select the check box for every administered subscriber that you want to remove.

3. Click Delete. If the processing completes successfully, the list of administered subscribers for this
WS-Notification service is updated. Otherwise, an error message is displayed.

4. Save your changes to the master configuration.

Creating a new WS-Notification permanent topic namespace:

Create a new permanent topic namespace. A topic namespace is a grouping of topics that allows
information to be shared between applications. You use a permanent topic namespace to statically define
the association between a WS-Notification topic namespace URI and a service integration bus topic space
destination.

Chapter 28. Administering web services - Notification (WS-Notification) 3109



Before you begin

Decide which method to use to configure these resources. You can create a new WS-Notification
permanent topic namespace by using the administrative console as described in this task, or by using the
“createWSNTopicNamespace command” on page 3172.

You can create many to many relationships between the set of permanent topic namespaces defined in a
cell (that is for all WS-Notification services defined in that cell) and the service integration bus topic spaces
with which they are associated. These relationships can become quite complex depending upon the
topologies required by the applications that connect to the WS-Notification service. For guidance on when
certain configurations might or might not be appropriate, see Options for associating a permanent topic
namespace with a bus topic space.

About this task

A permanent topic namespace has the following characteristics:

v You can use it to expose an existing service integration bus topic space for use by WS-Notification
clients, thus permitting interoperation between the WS-Notification applications and existing publish and
subscribe applications connected to the bus such as JMS.

v You can use it to restrict the structure and content of the topic namespace by applying one or more
topic namespace documents that describe the required structure.

v You can use it as part of a topic space mapping configured on a service integration bus link (between
two service integration buses) or a topic mapping as part of a publish and subscribe bridge between a
service integration bus and a WebSphere MQ network.

When you create a new WS-Notification permanent topic namespace, you specify the namespace and
associate it with one of the service integration bus topic spaces configured on the bus on which the parent
WS-Notification service is defined. You cannot modify a permanent topic namespace after it has been
created, other than to apply or remove topic namespace documents.

You can also set a configuration attribute of a permanent topic namespace to control the reliability setting
(persistence or non persistence) that is applied to any messages that use a given topic namespace.

To create a new WS-Notification permanent topic namespace, use the administrative console to complete
the following steps:

Procedure

1. In the navigation pane, click Service integration -> WS-Notification -> Services -> service_name ->
Permanent topic namespaces or Service integration -> Buses -> bus_name -> [Services]
WS-Notification services -> service_name -> Permanent topic namespaces. The “Permanent topic
namespaces [Collection]” on page 3133 form is displayed.

2. In the content pane, click New.

3. Specify the following properties for this permanent WS-Notification topic namespace:

a. Enter a name for the permanent topic namespace. The URI string by which this topic namespace
is known. That is, the namespace URI by which WS-Notification applications refer to topics hosted
by this namespace. For example http://widgetproducer.com/prices.

b. Associate this new permanent topic namespace with the service integration bus topic space that
you want to use to publish and receive messages. From the service integration bus topic space
drop-down list, complete one of the following actions:

v Select the name of an existing bus topic space.

v Select the offered default name of this_service_nameTopicSpace for a new bus topic space.

v Select the option to Create a new topic space, then enter a name for the new topic space.

3110 Administering WebSphere applications



c. Select from the drop-down list the service integration bus reliability (quality of service) that is
assigned to messages published through this topic namespace. You can choose one of five values.
Each value represents one of the service integration bus message reliability levels. The default
value is reliable persistent, which is the value used by default for JMS Persistent messages.

4. Click OK. If the processing completes successfully, the list of permanent WS-Notification topic
namespaces is updated to include the new topic namespace. Otherwise, an error message is
displayed.

5. Save your changes to the master configuration.

What to do next

To view the configuration of the associated service integration bus topic space, see “Showing the
properties of a permanent WS-Notification topic namespace.” To apply a topic namespace document, see
“Applying a WS-Notification topic namespace document” on page 3113

Showing the properties of a permanent WS-Notification topic namespace:

A topic namespace is a grouping of topics that allows information to be shared between applications.You
use a permanent topic namespace to statically define the association between a WS-Notification topic
namespace URI and a service integration bus topic space destination.

Before you begin

Decide which method to use to configure these resources. You can show the properties of a permanent
WS-Notification topic namespace by using the administrative console as described in this task, or by using
the “showWSNTopicNamespace command” on page 3176.

About this task

A permanent topic namespace has the following characteristics:

v You can use it to expose an existing service integration bus topic space for use by WS-Notification
clients, thus permitting interoperation between the WS-Notification applications and existing publish and
subscribe applications connected to the bus such as JMS.

v You can use it to restrict the structure and content of the topic namespace by applying one or more
topic namespace documents that describe the required structure.

v You can use it as part of a topic space mapping configured on a service integration bus link (between
two service integration buses) or a topic mapping as part of a publish and subscribe bridge between a
service integration bus and a WebSphere MQ network.

When you create a new WS-Notification permanent topic namespace, you specify the namespace and
associate it with one of the service integration bus topic spaces configured on the bus on which the parent
WS-Notification service is defined. You cannot modify a permanent topic namespace after it has been
created, other than to apply or remove topic namespace documents.

To show the properties of a permanent WS-Notification topic namespace, use the administrative console to
complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> WS-Notification -> Services -> service_name ->
Permanent topic namespaces or Service integration -> Buses -> bus_name -> [Services]
WS-Notification services -> service_name -> Permanent topic namespaces. The “Permanent topic
namespaces [Collection]” on page 3133 form is displayed. This form shows all the permanent topic
namespaces configured for this WS-Notification service.

Chapter 28. Administering web services - Notification (WS-Notification) 3111



2. Optional: To view the configuration of the service integration bus topic space that is associated with a
given permanent topic namespace, click the link in the Service integration bus topic space column.
For more information, see “Topic space [Settings]” on page 2270

3. Optional: To view the configuration of the namespace documents that are associated with a given
permanent topic namespace, click the link in the Namespace documents column.

Note: This link also shows the number of namespace documents (0 or more) that are currently
applied.

The “Topic namespace document [Collection]” on page 3139 form is displayed. Use this form to apply,
show or delete topic namespace documents.

Deleting WS-Notification permanent topic namespaces:

Delete topic namespace definitions from a WS-Notification service. A topic namespace is a grouping of
topics that allows information to be shared between applications.You use a permanent topic namespace to
statically define the association between a WS-Notification topic namespace URI and a service integration
bus topic space destination.

Before you begin

Decide which method to use to configure these resources. You can delete a WS-Notification permanent
topic namespace using the administrative console as described in this task, or you can delete a
WS-Notification permanent topic namespace using the wsadmin tool.

About this task

Deleting the topic namespace mapping that was used to establish a (currently active) subscription has the
same effect as deleting the underlying service integration bus topic space, and subscriptions that were
created using this namespace mapping are deleted. For more information about the effect that deleting a
topic namespace has upon new and existing WS-Notification applications, see Failures as a result of
changes in topic space and topic namespace configurations.

To delete one or more permanent topic namespaces, use the administrative console to complete the
following steps:

Procedure

1. In the navigation pane, click Service integration -> WS-Notification -> Services -> service_name ->
Permanent topic namespaces or Service integration -> Buses -> bus_name -> [Services]
WS-Notification services -> service_name -> Permanent topic namespaces. A list of all the
permanent topic namespaces for this WS-Notification service is displayed in a “Permanent topic
namespaces [Collection]” on page 3133 form.

2. Select the check box for every permanent topic namespace that you want to remove.

3. Click Delete.

For each selected namespace, if the associated service integration bus topic space was created
explicitly by the permanent topic namespace then you are asked whether or not to automatically delete
the bus topic space. If the bus topic space was not created by the permanent topic namespace then
you are not asked this question and the topic space is not deleted.

Note: Deleting a service integration bus topic space causes exception messages to be generated for
WS-Notification applications that reference the topic space, as described in Failures as a result
of changes in topic space and topic namespace configurations.

If the processing completes successfully, the list of permanent topic namespaces for this
WS-Notification service is updated. Otherwise, an error message is displayed.

4. Save your changes to the master configuration.

3112 Administering WebSphere applications



Applying a WS-Notification topic namespace document:

A topic namespace can optionally have topic namespace documents applied to it that define the structure
of the topics that are permitted within the namespace. Use the administrative console to apply a topic
namespace document to an existing topic namespace.

Before you begin

This task assumes that you have already created the topic namespace document that you want to apply.

Decide which method to use to configure these resources. You can apply a topic namespace document by
using the administrative console as described in this task, or by using the “createWSNTopicDocument
command” on page 3177.

About this task

For more information about the relationship between a permanent topic namespace and a topic
namespace document, see Chapter 5 of the WS-Topics standard.

To apply a topic namespace document to an existing topic namespace, use the administrative console to
complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> WS-Notification -> Services -> service_name ->
Permanent topic namespaces -> namespace_name -> Topic namespace documents or Service
integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name ->
Permanent topic namespaces -> namespace_name -> Topic namespace documents. The “Topic
namespace document [Collection]” on page 3139 form is displayed. This form shows all the topic
namespace documents configured for this permanent topic namespace.

2. In the content pane, click New. The “Topic namespace document [Settings]” on page 3140 form is
displayed.

3. Specify the following properties for this topic namespace document:

a. URL of topic namespace document The URL of the topic namespace document that should be
loaded.

b. Optional: Description An optional description of the topic namespace document.

4. Click OK. If the processing completes successfully, the list of topic namespace documents for this
permanent topic namespace is updated to include the new document. Otherwise, an error message is
displayed.

5. Save your changes to the master configuration.

Showing the contents of a WS-Notification topic namespace document:

A topic namespace can optionally have topic namespace documents applied to it that define the structure
of the topics that are permitted within the namespace. Use the administrative console to show the contents
of a topic namespace document.

Before you begin

Decide which method to use to configure these resources. You can show the contents of a topic
namespace document by using the administrative console as described in this task, or by using the
“showWSNTopicDocument command” on page 3181.

Chapter 28. Administering web services - Notification (WS-Notification) 3113



About this task

For more information about the relationship between a permanent topic namespace and a topic
namespace document, see Chapter 5 of the WS-Topics standard.

To show the contents of a WS-Notification topic namespace document, use the administrative console to
complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> WS-Notification -> Services -> service_name ->
Permanent topic namespaces -> namespace_name -> Topic namespace documents or Service
integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name ->
Permanent topic namespaces -> namespace_name -> Topic namespace documents. The “Topic
namespace document [Collection]” on page 3139 form is displayed. This form shows all the topic
namespace documents configured for this permanent topic namespace.

2. In the content pane, click the name of a topic namespace document in the list. The contents of this
topic namespace document are displayed.

Deleting WS-Notification topic namespace documents:

A topic namespace can optionally have topic namespace documents applied to it that define the structure
of the topics that are permitted within the namespace. Use the administrative console to delete one or
more WS-Notification topic namespace documents.

Before you begin

Decide which method to use to configure these resources. You can delete a WS-Notification topic
namespace document by using the administrative console as described in this task, or by using the
“deleteWSNTopicDocument command” on page 3178.

About this task

To delete one or more WS-Notification topic namespace documents, use the administrative console to
complete the following steps:

Procedure

1. In the navigation pane, click Service integration -> WS-Notification -> Services -> service_name ->
Permanent topic namespaces -> namespace_name -> Topic namespace documents or Service
integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name ->
Permanent topic namespaces -> namespace_name -> Topic namespace documents. A list of all
the WS-Notification topic namespace documents is displayed in a “Topic namespace document
[Collection]” on page 3139 form.

2. Select the check box for every WS-Notification topic namespace document that you want to remove.

3. Click Delete. If the processing completes successfully, the list of WS-Notification topic namespace
documents for this WS-Notification topic namespace is updated. Otherwise, an error message is
displayed.

4. Save your changes to the master configuration.

Publishing the WSDL files for a WS-Notification application to a compressed file:

Use the administrative console to download a compressed file with a .zip file extension that contains the
published WSDL files for a WS-Notification application.

3114 Administering WebSphere applications



About this task

The ability to publish these WSDL files to a compressed file is particularly useful in the following
circumstances:

v Writing a WS-Notification application that invokes web service operations against the NotificationBroker
application, as described in Writing a WS-Notification application that does not expose a web service
endpoint.

v Running the wsimport command against the exported PublisherRegistrationManager.wsdl file to
generate a client stub for the PublisherRegistrationManager.

v Viewing the endpoint URLs to which WS-Notification applications connect, by looking in the WSDL file
for the NotificationBroker application for Version 7.0 services, or the inbound service for Version 6.1
services.

Note:

When you run the wsimport command against the exported PublisherRegistrationManager.wsdl
file you must include the ibm-wsn-jaxws.xml file as an argument to wsimport. If you omit this
bindings file, the wsimport command fails with a naming conflict error concerning the
ResourceNotDestroyedFault elements referred to in the PublisherRegistrationManager.wsdl file.
For more information about why this exception occurs, see the following troubleshooting tip: The
PublisherRegistrationManager.wsdl file is not successfully parsed by wsimport unless you include a
JAX-WS bindings file.

The ibm-wsn-jaxws.xml file is located in the app_server_root/util directory. For example:
c:\was\util\ibm-wsn-jaxws.xml. This bindings file expects to find the WSDL file to which it refers
in the same directory as itself, so before you run the wsimport command you must copy the
bindings file to the directory that holds your PublisherRegistrationManager.wsdl file. Here is an
example of how to run the wsimport command to include the ibm-wsn-jaxws.xml file:
c:\was\bin\wsimport -b ibm-wsn-jaxws.xml -keep PublisherRegistrationManager.wsdl

Procedure

1. Start the administrative console.

2. Navigate to the “Publish WSDL files to .zip file [Settings]” form for the WS-Notification application.

For JAX-WS based Version 7.0 WS-Notification services, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name -> [Additional Properties] Publish WSDL files to
zip

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services ->
service_name -> [Additional Properties] WS-Notification service points -> point_name ->
[Additional Properties] Publish WSDL files to zip

For JAX-RPC based Version 6.1 WS-Notification services, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> [Related Items]
Notification broker inbound service settings > [Additional Properties] Publish WSDL files to
ZIP file

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services ->
service_name -> [Related Items] Notification broker inbound service settings > [Additional
Properties] Publish WSDL files to ZIP file

3. Click on the file name to download a zip file that contains the application's published WSDL files.

Configuring JAX-WS handlers:

A JAX-WS handler is a Java class that performs a range of handling tasks. For example: logging
messages, or transforming their contents, or terminating an incoming request. You can create JAX-WS

Chapter 28. Administering web services - Notification (WS-Notification) 3115



handlers, chain them together in the form of a handler list, then apply the handler list to a JAX-WS based
Version 7.0 WS-Notification service point (for inbound invocation handling) or WS-Notification service (for
outbound invocation handling).

About this task

The Java API for XML-based Web Services (JAX-WS) provides you with a standard way of developing
interoperable and portable web services. To create a JAX-WS handler, you can use a tool such as IBM
Rational Application Developer. To enable handlers to undertake more complex operations, you chain them
together into handler lists. You associate each handler list with one or more JAX-WS based Version 7.0
WS-Notification services or service points, so that the handler list can monitor WS-Notification activity and
take appropriate action depending upon the sender and content of each inbound or outbound message.

Detailed instructions on how to configure JAX-WS handlers and handler lists for use with JAX-WS based
Version 7.0 WS-Notification services are provided in the following topics:

Procedure

v Load JAX-WS handler classes.

v Create a new JAX-WS handler configuration.

v Modify an existing JAX-WS handler configuration.

v Delete JAX-WS handler configurations.

v Create a new JAX-WS handler list.

v Modify an existing JAX-WS handler list.

v Delete JAX-WS handler lists.

Loading JAX-WS handler classes:

A JAX-WS handler interacts with messages through a JAX-WS based Version 7.0 WS-Notification service
point (for inbound invocation handling) or WS-Notification service (for outbound invocation handling),
therefore you must make the handler class available to the server or cluster that hosts the WS-Notification
service point or service that you want to monitor.

Before you begin

This task assumes that you have already created your handler. You can do this by using IBM Rational
Application Developer or a similar tool.

About this task

Before you can configure a JAX-WS handler for use with WS-Notification, you must make the handler
class available to the server or cluster that hosts the WS-Notification service point or service that you want
to monitor. To do this, you create a shared library for the class then add the shared library to the class
loader for the server.

Procedure

1. Package the class file for your handler as a JAR file, then copy the JAR file into a convenient directory.

Make the handler class available to the application server in one of the following ways:

v Copy the individual class file into a directory structure under app_server_root/classes that matches
the package name of the class, where app_server_root is the root directory for the installation of
WebSphere Application Server. For example a handler class com.ibm.jaxws.handler.TestHandler is
copied into the app_server_root/classes/com/ibm/jaxws/handler directory.

v Package the class files for all your handlers as a JAR file, then copy it into the app_server_root/
lib/app directory.

3116 Administering WebSphere applications



2. Start the administrative console.

3. Create a shared library for the JAR file.

a. Navigate to Environment -> Shared libraries.

b. Set the scope at which you want the new library to be visible, then click New.

c. Give the new library a name.

d. Set the class path to the directory and file name for your handler JAR file.

e. Save your changes to the master configuration.

For more information, see Creating shared libraries.

4. Create a class loader for the server on which you want to make the JAR file available.

a. Navigate to Servers -> Server Types -> WebSphere application servers -> server_name ->
[Server Infrastructure] Java and Process Management -> Class loader.

b. Click New.

c. Click OK.

d. Save your changes to the master configuration.

For more information, see Configuring class loaders of a server.

5. Add the shared library to the class loader for the server.

a. Navigate to Servers -> Server Types -> WebSphere application servers -> server_name ->
[Server Infrastructure] Java and Process Management -> Class loader -> class_loader_name
> [Additional Properties] Shared library references.

b. Click Add.

c. Click on the name of your new library, then click OK.

d. Save your changes to the master configuration.

For more information, see Associating shared libraries with servers.

What to do next

You are now ready to create a new JAX-WS handler configuration by using the administrative console or
by using the “createJAXWSHandler command” on page 3184.

Creating a new JAX-WS handler configuration:

Create a Java API for XML-based Web Services (JAX-WS) handler configuration for use, as part of a
handler list, with JAX-WS based Version 7.0 WS-Notification services.

Before you begin

You can create a new JAX-WS handler configuration by using the administrative console as described in
this topic, or by using the “createJAXWSHandler command” on page 3184.

This task assumes that you have already created your handler. You can do this by using IBM Rational
Application Developer or a similar tool. You must also make the handler class available to the server or
cluster that hosts the WS-Notification service points (for inbound invocation handling) or WS-Notification
services (for outbound invocation handling) that you want to monitor, as detailed in “Loading JAX-WS
handler classes” on page 3116.

About this task

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. To make WebSphere Application Server aware of your handler, and to make the handler available

Chapter 28. Administering web services - Notification (WS-Notification) 3117



for inclusion in one or more handler lists, you use the administrative console to create a new handler
configuration.

Procedure

1. Start the administrative console.

2. Navigate to Service integration -> WS-Notification -> JAX-WS Handlers. The JAX-WS handlers
collection form is displayed.

3. Click New. The JAX-WS handlers settings form is displayed.

4. Type the following general properties:
Name Type the name by which the handler is known.

This name must be unique at cell scope, and it must obey the following syntax rules:
v It must not start with “.” (a period).
v It must not start or end with a space.
v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

For example TestHandler.
Description

Type the (optional) description of the handler.
Class name

Type the name of the class that is to be instantiated. This name must be a fully qualified java
class name. For example com.ibm.jaxws.handler.TestHandler.

Note: You can configure multiple instances of a handler by creating each instance with a
different handler name, and pointing to the same handler class.

5. Click OK. The general properties for this item are saved, and the additional properties options are
made available.

6. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handlers is updated to include the new handler.
Otherwise, an error message is displayed.

What to do next

To use this handler, add it to a handler list as described in Creating a new JAX-WS handler list or
Modifying an existing JAX-WS handler list.

Modifying an existing JAX-WS handler configuration:

Modify a Java API for XML-based Web Services (JAX-WS) handler configuration for a handler that is
used, as part of a handler list, with JAX-WS based Version 7.0 WS-Notification services.

Before you begin

You can modify a JAX-WS handler configuration by using the administrative console as described in this
topic, or by using the “modifyJAXWSHandler command” on page 3185.

If you modify a handler class but do not change the class name, you do not have to modify the handler
configuration as described in this topic. You just have to stop then restart the servers or clusters that host
the services or service points that this handler monitors.

3118 Administering WebSphere applications



About this task

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. You can use the administrative console to list existing handler configurations, and to view and
modify their configuration details.

Procedure

1. Start the administrative console.

2. Navigate to Service integration -> WS-Notification -> JAX-WS Handlers. A list of handlers is
displayed in a JAX-WS handlers collection form.

3. Click the name of a handler in the list. The current JAX-WS handlers settings for this handler are
displayed.

4. Modify the following general properties:
Name Modify the name of the handler.

This name must be unique at cell scope, and it must obey the following syntax rules:
v It must not start with “.” (a period).
v It must not start or end with a space.
v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Note: When you change a handler name, the system looks up all objects that refer to it and
updates the name.

Description
Modify the (optional) description of the handler.

Class name
Change the name of the class that is to be instantiated.

If you change the class name, you must also make the new handler class available to the
server or cluster that hosts the WS-Notification service points (for inbound invocation handling)
or WS-Notification services (for outbound invocation handling) that you want to monitor, as
detailed in “Loading JAX-WS handler classes” on page 3116.

Note: You can configure multiple instances of a handler by creating each instance with a
different handler name, and pointing to the same handler class.

5. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handlers is redisplayed. Otherwise, an error message
is displayed.

Deleting JAX-WS handler configurations:

Delete the configuration for one or more Java API for XML-based Web Services (JAX-WS) handlers that
are configured for use, as part of a handler list, with JAX-WS based Version 7.0 WS-Notification services.

Before you begin

You can delete a JAX-WS handler configuration by using the administrative console as described in this
topic, or by using the “deleteJAXWSHandler command” on page 3187.

Chapter 28. Administering web services - Notification (WS-Notification) 3119



About this task

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request.

When you remove a handler that is currently used by one or more web services on a service integration
bus, the system removes the handler from the handler lists for each associated web service.

You can use the administrative console to remove one or more handler configurations.

Procedure

1. Start the administrative console.

2. Navigate to Service integration -> WS-Notification -> JAX-WS Handlers. A list of handlers is
displayed in a JAX-WS handlers collection form.

3. Select the check box for every handler that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of handlers is updated. Otherwise, an error message is
displayed.

Creating a new JAX-WS handler list:

Create a Java API for XML-based Web Services (JAX-WS) handler list for use with JAX-WS based
Version 7.0 WS-Notification services.

Before you begin

You can create a new JAX-WS handler list by using the administrative console as described in this topic,
or by using the “createJAXWSHandlerList command” on page 3190.

You can only add previously-configured handlers to a handler list. To configure a handler, see “Creating a
new JAX-WS handler configuration” on page 3117.

About this task

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. To enable handlers to undertake more complex operations, you chain them together into handler
lists. The approach taken in WebSphere Application Server is to assign handler lists (rather than individual
handlers) to WS-Notification service points (for inbound invocation handling) or WS-Notification services
(for outbound invocation handling).

Procedure

1. Start the administrative console.

2. Navigate to Service integration -> WS-Notification -> JAX-WS Handler Lists. The JAX-WS handler
lists collection form is displayed.

3. Click New. The JAX-WS handler lists settings form is displayed.

4. Type the following general properties:
Name Type the name by which the handler list is known.

This name must be unique at cell scope, and it must obey the following syntax rules:
v It must not start with “.” (a period).

3120 Administering WebSphere applications



v It must not start or end with a space.
v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

For example TestList.
Description

Type the (optional) description of the handler list.
JAX-WS handlers

In the JAX-WS handlers pane, complete the following steps:
a. Select one or more handlers from the list of available JAX-WS handlers, then click Add to

move the selected handlers into the list of handlers for this JAX-WS handler list.
b. Select a handler in the list of handlers for this JAX-WS handler list, then click Up or Down

to change the position of the handler within the list.

Handlers are applied in the sequence in which they appear in the handler list.

Note: If you click Reset, only the Name and Description fields are reset to their state when the form
was first loaded. The two lists of available and assigned handlers are not reset.

5. Click OK. The general properties for this item are saved.

6. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handler lists is updated to include the new handler list.
Otherwise, an error message is displayed.

What to do next

To apply this handler list to inbound notification requests received at a Version 7.0 WS-Notification point,
associate it with the service point as described in “Creating a new Version 7.0 WS-Notification service
point” on page 3099 or “Modifying a Version 7.0 WS-Notification service point” on page 3101. To apply this
handler list to outbound notification requests sent by your Version 7.0 WS-Notification service, associate
the handler list with the service as described in “Creating a new Version 7.0 WS-Notification service” on
page 3085 or “Modifying a Version 7.0 WS-Notification service” on page 3089.

For an overview of the end-to-end task of creating JAX-WS handlers, chaining them together in a handler
list, then applying the handler list to a Version 7.0 WS-Notification service point or service, see “Applying a
JAX-WS handler list to a WS-Notification service” on page 3071.

Modifying an existing JAX-WS handler list:

Modify the configuration details for a Java API for XML-based Web Services (JAX-WS) handler list that is
configured for use with JAX-WS based Version 7.0 WS-Notification services.

Before you begin

You can modify a JAX-WS handler list by using the administrative console as described in this topic, or by
using the “modifyJAXWSHandlerList command” on page 3191.

You can only add previously-configured handlers to a handler list. To configure a handler, see “Creating a
new JAX-WS handler configuration” on page 3117.

About this task

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. To enable handlers to undertake more complex operations, you chain them together into handler

Chapter 28. Administering web services - Notification (WS-Notification) 3121



lists. The approach taken in WebSphere Application Server is to assign handler lists (rather than individual
handlers) to WS-Notification service points (for inbound invocation handling) or WS-Notification services
(for outbound invocation handling).

You can use the administrative console to list existing handler lists, and to view and modify their
configuration details.

Procedure

1. Start the administrative console.

2. Navigate to Service integration -> WS-Notification -> JAX-WS Handler Lists. A list of all the handler
lists is displayed in a JAX-WS handler lists collection form.

3. Click the name of a handler list in the list. The current JAX-WS handler lists settings for this handler
are displayed.

4. Modify the following general properties:
Name Modify the name of the handler list.

This name must be unique at cell scope, and it must obey the following syntax rules:
v It must not start with “.” (a period).
v It must not start or end with a space.
v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

When you change a handler list name, the system looks up all objects that refer to it and
updates the name.

Description
Modify the (optional) description of the handler list.

JAX-WS handlers
In the JAX-WS handlers pane, complete the following steps:
a. Select one or more previously-configured handlers from either the list of available JAX-WS

handlers or the list of handlers for this JAX-WS handler list, then click Add or Remove to
modify the list of handlers for this JAX-WS handler list.

b. Select a handler in the list of handlers for this JAX-WS handler list, then click Up or Down
to change the position of the handler within the list.

Handlers are applied in the sequence in which they appear in the handler list.

Note: If you click Reset, only the Name and Description fields are reset to their state when the form
was first loaded. The two lists of available and assigned handlers are not reset.

5. Save your changes to the master configuration.

Results

If the processing completes successfully, the list of handler lists is redisplayed. Otherwise, an error
message is displayed.

What to do next

To apply this handler list to inbound notification requests received at a Version 7.0 WS-Notification point,
associate it with the service point as described in “Creating a new Version 7.0 WS-Notification service
point” on page 3099 or “Modifying a Version 7.0 WS-Notification service point” on page 3101. To apply this
handler list to outbound notification requests sent by your Version 7.0 WS-Notification service, associate
the handler list with the service as described in “Creating a new Version 7.0 WS-Notification service” on
page 3085 or “Modifying a Version 7.0 WS-Notification service” on page 3089.

For an overview of the end-to-end task of creating JAX-WS handlers, chaining them together in a handler
list, then applying the handler list to a Version 7.0 WS-Notification service point or service, see “Applying a
JAX-WS handler list to a WS-Notification service” on page 3071.

3122 Administering WebSphere applications



Deleting JAX-WS handler lists:

DeleteJava API for XML-based Web Services (JAX-WS) handler lists that are configured for use with
JAX-WS based Version 7.0 WS-Notification services.

Before you begin

You can delete a JAX-WS handler list by using the administrative console as described in this topic, or by
using the “deleteJAXWSHandlerList command” on page 3192.

About this task

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request.

When you remove a handler list that is currently used by one or more web services on a service
integration bus, the system removes the handler list for each associated web service.

You can use the administrative console to remove one or more handler list configurations.

Procedure

1. Start the administrative console.

2. Navigate to Service integration -> WS-Notification -> JAX-WS Handler Lists. A list of handler lists
is displayed in a JAX-WS handler lists collection form.

3. Select the check box for every handler list that you want to remove.

4. Click Delete.

Results

If the processing completes successfully, the list of handler lists is updated. Otherwise, an error message
is displayed.

Interacting at run time with WS-Notification
View (and in some cases delete) at run time the active items associated with WS-Notification service
points.

Before you begin

This task assumes that you have a fully configured and operational WS-Notification service point.

About this task

A WS-Notification service point defines access to a WS-Notification service on a given bus member
through a specified web service binding (for example SOAP over HTTP). Applications use the bus
members associated with the WS-Notification service point to connect to the WS-Notification service. The
existence of a WS-Notification service point on a bus member implies that a WS-Notification web service
is exposed from that bus member, and causes web service endpoints for the notification broker,
subscription manager and publisher registration manager for this WS-Notification service to be exposed on
the bus member with which the service point is associated. WS-Notification applications use these
endpoints to interact with the WS-Notification service.

You can use the administrative console to interact at run time with the following active items associated
with WS-Notification service points:

Chapter 28. Administering web services - Notification (WS-Notification) 3123



Publisher registrations
A runtime list of existing publisher registrations is provided. This includes, for each publisher
registration, the information that was used to create it and when it will terminate.

Pull points
A runtime list is provided of the pull points that have been created. This includes, for each pull
point, its current termination time and a link to the associated subscription.

Subscriptions
A runtime view is provided for subscriptions that have been created by applications. This includes,
for each subscription, the information that was used to create it and an indication of its current
state.

Administered subscribers
A runtime list is provided of the administered subscribers for a given WS-Notification service point.
This includes, for each administered subscriber, an indication of its current state; for example
whether the subscription was successfully initialized at start time.

For each WS-Notification service point, runtime information is available for subscriptions, registrations,
pull points and administered subscribers. For each WS-Notification service, runtime information is
available - aggregated for all service points for the service - for subscriptions, registrations and pull points.
There is no aggregated view for administered subscribers at the WS-Notification service level.

To access and use the runtime information for active items associated with WS-Notification service points,
use the administrative console to complete the following steps:

Procedure
1. Choose between information for a particular service point, or information aggregated for all service

points for a particular service, by completing one of the following substeps:

a. Optional: For runtime information for a particular service point, navigate to either Service
integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name or Service integration -> Buses -> bus_name
-> [Services] WS-Notification services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name, then click the Runtime tab. A panel is displayed
that contains links to runtime information about subscriptions, registrations, pull points and
administered subscribers for this WS-Notification service point.

b. Optional: For runtime information aggregated for all service points for a particular service, navigate
to either Service integration -> WS-Notification -> Services -> service_name or Service
integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
then click the Runtime tab. A panel is displayed that contains links to runtime information about
subscriptions, registrations and pull points for this WS-Notification service.

2. Click Subscriptions , Publisher registrations, Pull points or (for a particular service point)
Administered subscribers.

v If you click Subscriptions, a panel is displayed that lists the durable subscriptions that have been
created by a WS-Notification service point in response to “Subscribe” requests from WS-Notification
applications. You can view the subscription name (ID), topic and other information associated with
the subscription, and you can view messages held on the durable subscription pending delivery. You
can also delete subscriptions.

Note: Both the WS-Notification subscription and publisher registration resources include the
concept of scheduled termination, in which the application indicates a period of time after
which the resource is destroyed. “Badly-behaved” in this case describes an application that
requests an infinite lifetime for a resource and then does not explicitly delete the resource
before it goes away (never to return).

3124 Administering WebSphere applications



v If you click Publisher registrations, a panel is displayed that lists the publisher registrations that
are currently in effect on this WS-Notification service or service point (that is, applications that have
registered as publishers). You can view the basic properties of the registration record. You can also
delete a publisher registration record.

v If you click Pull points, a panel is displayed that lists the pull points that are currently active on this
WS-Notification service or service point. You can view basic properties of the pull point such as the
subscription with which it is associated and the time at which it is currently set to expire, and you
can navigate to the associated subscriptions where appropriate. You can also delete pull points.

v For a particular service point, if you click Administered subscribers, a panel is displayed that lists
the administered subscribers that are currently in effect on this WS-Notification service point. You
can use this information to see whether a given subscriber has been successfully initialized.

What to do next

For more detailed information about working with individual runtime panels, see the following topics:

v “Listing or deleting active WS-Notification subscriptions.”

v “Listing or deleting active WS-Notification publisher registrations” on page 3127.

v “Listing or deleting active WS-Notification pull points” on page 3128.

v “Listing active WS-Notification administered subscribers” on page 3129.

Listing or deleting active WS-Notification subscriptions:

List the subscriptions that exist at run time for a particular WS-Notification service point, or for all service
points for a particular WS-Notification service.

About this task

The runtime panels for WS-Notification subscriptions list the durable subscriptions that have been created
by a WS-Notification service point in response to “Subscribe” requests from WS-Notification applications.
You can view the subscription name (ID), topic and other information associated with the subscription, and
you can view messages held on the durable subscription pending delivery. You can also delete
subscriptions. For example, to tidy up after a badly-behaved application.

Note: Both the WS-Notification subscription and publisher registration resources include the concept of
scheduled termination, in which the application indicates a period of time after which the resource is
destroyed. “Badly-behaved” in this case describes an application that requests an infinite lifetime for
a resource and then does not explicitly delete the resource before it goes away (never to return).

A subscription created by a WS-Notification application can contain more than one topic expression, and
each of these topic expressions can be in a different namespace, which can result in service integration
bus subscriptions being created in multiple topic spaces.

To display a list of WS-Notification subscriptions that exist at run time, use the administrative console to
complete the following steps:

Procedure

1. Choose between information for a particular service point, or information aggregated for all service
points for a particular service, by completing one of the following substeps:

a. Optional: For runtime information for a particular service point, navigate to either Service
integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name or Service integration -> Buses -> bus_name
-> [Services] WS-Notification services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name, then click the Runtime tab. A panel is displayed

Chapter 28. Administering web services - Notification (WS-Notification) 3125



that contains links to runtime information about subscriptions, registrations, pull points and
administered subscribers for this WS-Notification service point.

b. Optional: For runtime information aggregated for all service points for a particular service, navigate
to either Service integration -> WS-Notification -> Services -> service_name or Service
integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name,
then click the Runtime tab. A panel is displayed that contains links to runtime information about
subscriptions, registrations and pull points for this WS-Notification service.

2. Click Subscriptions The “Subscriptions [Collection]” on page 3138 form is displayed. This form shows
all the currently active subscriptions for this WS-Notification service point or service. This collection
form contains the following information about each list item:

Subscription id
The unique identifier of the subscription.

Topics
An array of topic names. Note that this will usually only contain one element.

Delivery state
The current runtime state of the subscription. In normal operation the subscription will show a
state of OK. Other states are PAUSED, indicating that the application has paused the
subscription as defined by the WS-Notification standards, or ERROR, indicating that the last
attempt to deliver an event notification to the notification consumer was not successful. In the
error case, more information about the cause of the failure can be found in the SystemOut log.

Note: This topic references one or more of the application server log files. As a recommended
alternative, you can configure the server to use the High Performance Extensible
Logging (HPEL) log and trace infrastructure instead of using SystemOut.log ,
SystemErr.log, trace.log, and activity.log files on distributed and IBM i systems.
You can also use HPEL in conjunction with your native z/OS logging facilities. If you are
using HPEL, you can access all of your log and trace information using the LogViewer
command-line tool from your server profile bin directory. See the information about
using HPEL to troubleshoot applications for more information on using HPEL.

Consumer EPR
The endpoint reference to which event notifications matching the subscription are sent. That is,
the endpoint reference to which notification messages are delivered as specified on the
subscribe call.

Creation time
The time at which the subscription was created.

Termination time
The time at which the subscription will be deleted.

Pull type
Indicates whether the subscription is being used in pull mode. That is, whether this
subscription is being accessed by a pull point. If the asynchronous (push) subscription model
is being used, this field displays “No”. If a pull point is being used, this field displays “Yes”.

Service integration bus subscriptions
The service integration bus durable subscription or subscriptions that are associated with the
WS-Notification subscription. This is a link to the service integration bus durable subscription
detail panel for the subscriptions that contain data for this object.

3. Optional: To observe the runtime state of each of the service integration bus durable subscriptions that
have been created, click the link in the SIBus subscriptions field.

If only one durable subscription has been created, the bus durable subscription detail panel is
displayed. For more information, see “Administering durable subscriptions” on page 2086.

If multiple durable subscriptions have been created, for example if the WS-Notification subscription is
spanned across multiple service integration bus topic spaces, a runtime collection form is displayed

3126 Administering WebSphere applications



that shows the individual bus durable subscriptions. This form shows all the currently active publisher
registrations for this WS-Notification service point or service.

SIBus subscription
The service integration bus durable subscription ID. This links to the associated bus durable
subscription detail panel. For more information, see “Administering durable subscriptions” on
page 2086.

Topics
The list of topics that are contained within a single service integration bus topic space (and
thus durable subscription).

What to do next

To delete one or more WS-Notification subscriptions, and the associated service integration bus durable
subscriptions, select the check box next to each subscription name then click Delete.

Listing or deleting active WS-Notification publisher registrations:

List the publisher registrations that exist at run time for a particular WS-Notification service point, or for all
service points for a particular WS-Notification service.

About this task

A WS-Notification application can register itself as a publisher in order to check that it is permitted to
publish on the specified list of topics, or to initiate the demand based publisher pattern.

The runtime panels for WS-Notification publisher registrations list the publisher registrations that are
currently in effect on this WS-Notification service or service point (that is, applications that have registered
as publishers). You can view the basic properties of the registration record. You can also delete a
publisher registration record. For example, to tidy up after a badly-behaved application.

Note: Both the WS-Notification subscription and publisher registration resources include the concept of
scheduled termination, in which the application indicates a period of time after which the resource is
destroyed. “Badly-behaved” in this case describes an application that requests an infinite lifetime for
a resource and then does not explicitly delete the resource before it goes away (never to return).

To display a list of WS-Notification publisher registrations that exist at run time, use the administrative
console to complete the following steps:

Procedure

1. Choose between information for a particular service point, or information aggregated for all service
points for a particular service, by completing one of the following substeps:

a. Optional: For runtime information for a particular service point, navigate to either Service
integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name or Service integration -> Buses -> bus_name
-> [Services] WS-Notification services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name, then click the Runtime tab. A panel is displayed
that contains links to runtime information about subscriptions, registrations, pull points and
administered subscribers for this WS-Notification service point.

b. Optional: For runtime information aggregated for all service points for a particular service, navigate
to either Service integration -> WS-Notification -> Services -> service_name or Service
integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name,
then click the Runtime tab. A panel is displayed that contains links to runtime information about
subscriptions, registrations and pull points for this WS-Notification service.

Chapter 28. Administering web services - Notification (WS-Notification) 3127



2. Click Publisher registrations The “Publisher registrations [Collection]” on page 3136 form is
displayed. This form shows all the currently active publisher registrations for this WS-Notification
service point or service. This collection form contains the following information about each list item:

Publisher ID
The unique identifier of this publisher registration.

Topic The topic on which the publisher is registered to publish. That is, the list of topics that are
contained within a single service integration bus topic space (and thus durable subscription).

Creation time
The time at which the registration was created.

Termination time
The time at which the registration will be deleted.

Demand based
Indicates whether this is a demand based publisher. This displays “Yes” or “No”.

Producer EPR
Additional publisher related data. The endpoint reference of the producer that created this
registration.

What to do next

To delete one or more publisher registrations, select the check box next to each registration ID then click
Delete.

Listing or deleting active WS-Notification pull points:

List the pull points that exist at run time for a particular WS-Notification service point, or for all service
points for a particular WS-Notification service.

About this task

To use the synchronous delivery mechanism described by the WS-Notification standards, a
WS-Notification application creates a pull point against the notification broker.

The runtime panels for WS-Notification pull points list the pull points that are currently active on this
WS-Notification service or service point. You can view basic properties of the pull point such as the
subscription with which it is associated and the time at which it is currently set to expire, and you can
navigate to the associated subscriptions where appropriate. You can also delete pull points.

To display a list of WS-Notification pull points that exist at run time, use the administrative console to
complete the following steps:

Procedure

1. Choose between information for a particular service point, or information aggregated for all service
points for a particular service, by completing one of the following substeps:

a. Optional: For runtime information for a particular service point, navigate to either Service
integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name or Service integration -> Buses -> bus_name
-> [Services] WS-Notification services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name, then click the Runtime tab. A panel is displayed
that contains links to runtime information about subscriptions, registrations, pull points and
administered subscribers for this WS-Notification service point.

b. Optional: For runtime information aggregated for all service points for a particular service, navigate
to either Service integration -> WS-Notification -> Services -> service_name or Service

3128 Administering WebSphere applications



integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name,
then click the Runtime tab. A panel is displayed that contains links to runtime information about
subscriptions, registrations and pull points for this WS-Notification service.

2. Click pull points The “Pull points [Collection]” on page 3137 form is displayed. This form shows all the
currently active pull points for this WS-Notification service point or service. This collection form
contains the following information about each list item:

Pull point id
The unique identifier of the pull point.

Creation time
The time at which the pull point was created.

Termination time
The time at which the pull point will be deleted.

Subscription id
The unique identifier of the subscription associated with the pull point. If the pull point has not
yet been supplied to a subscription, the text Not Associated is displayed.

What to do next

To delete one or more pull points, select the check box next to each pull point ID then click Delete.

Listing active WS-Notification administered subscribers:

List the administered subscribers that exist at run time for a particular WS-Notification service point. An
administered subscriber provides a mechanism for the WS-Notification service point to subscribe to an
external notification producer at server startup time.

About this task

The runtime panels for WS-Notification administered subscribers list the administered subscribers that are
currently in effect on this WS-Notification service point. You can use this information to see whether a
given subscriber has been successfully initialized.

Administered Subscribers are defined on individual WS-Notification service points. There is no aggregated
view for administered subscribers at the WS-Notification service level.

To display a list of WS-Notification administered subscribers that exist at run time, use the administrative
console to complete the following steps:

Procedure

1. For runtime information for a particular service point, navigate to either Service integration ->
WS-Notification -> Services -> service_name -> [Additional Properties] WS-Notification service
points -> point_name or Service integration -> Buses -> bus_name -> [Services] WS-Notification
services -> service_name -> [Additional Properties] WS-Notification service points ->
point_name, then click the Runtime tab. A panel is displayed that contains links to runtime information
about subscriptions, registrations, pull points and administered subscribers for this WS-Notification
service point.

2. Click Administered subscribers The “Administered subscribers [Collection]” on page 3131 form is
displayed. This form shows all the currently active administered subscribers for this WS-Notification
service point. This collection form contains the following information about each list item:

Producer EPR
The endpoint reference of the remote web service application from which event notifications
are received. That is, the endpoint reference (web address) of a notification producer or

Chapter 28. Administering web services - Notification (WS-Notification) 3129



notification broker application. For example http://remoteproducer.com. You provided this
reference when you created the administered subscriber.

Topic The topic for which event notifications have been requested.

Subscription reference
The string form of the endpoint reference that was returned by the remote service as a result
of the subscribe, if successfully created.

State The current runtime state of the administered subscriber. An icon indicator that displays either
green or red to indicate whether the administered subscriber is OK or has failed. Move the
mouse pointer over this icon to see a description of the current state. In the OK case, it
describes the last successful operation - initially the time at which the subscription was
contacted (for server startup) and subsequently the time the last message was received for
this subscriber. In the failed case, it describes the details of the last failure.

Subscription timeout
The length of time in hours after which the remote subscription will expire if not renewed by
the server. This timeout minimizes the potential for orphaned subscriptions in the remote web
service if the local server is uninstalled. Note that this field does not indicate the time at which
the remote subscription is due to expire. Set the timeout length to something larger than the
maximum length of time that the server is expected to remain offline, otherwise the stream of
messages from the remote web service might be interrupted. While the server is running it
occasionally renews the remote subscription termination time (with the specified timeout) to
prevent it from expiring during normal operation. If not specified, this timeout defaults to 24
(hours).

Configuring a JAX-WS client to resolve a WS-Notification service WSDL without
following web links
You can configure a Java API for XML-based Web Services (JAX-WS) WS-Notification application (that is,
a publisher, subscriber or consumer application) to resolve the WSDL parts for a Version 7.0
WS-Notification service from a local copy of the associated jax-ws-catalog.xml file and wsdl directory,
rather than by following a series of web links.

About this task

When a JAX-WS WS-Notification client application gets the WSDL file from a Version 7.0 WS-Notification
service, the client application expects to resolve the imported WSDL parts by following web links.
However, if you copy the jax-ws-catalog.xml file and the wsdl directory for the WS-Notification service
into the local file system for the client application, then the client application can resolve the imported
WSDL parts from the local copy.

Procedure
1. Open a command prompt.

2. Navigate to directory profile_root/config/cells/cell_name/buses/bus_name/wsn/wsn_service_name/
META-INF, where profile_root is the directory in which profile-specific information is stored.

3. Copy the jax-ws-catalog.xml file and the wsdl directory from this directory to the WEB-INF directory for
your application.

Results

Your JAX-WS WS-Notification client application can resolve the WSDL parts for the WS-Notification
service from the local copy of the catalog.

3130 Administering WebSphere applications



Administered subscribers [Collection]
An administered subscriber provides a mechanism for the WS-Notification service point to subscribe to an
external notification producer at server startup time.

To view this page in the console, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name -> Administered subscribers

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> [Additional Properties] WS-Notification service points -> point_name -> Administered
subscribers

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

An administered subscriber contains the name of a NotificationProducer application or a (different)
NotificationBroker endpoint and details of a subscription request (for example topic) that the
WS-Notification service point should register as part of the server startup procedure. This enables you to
pre-configure links between the NotificationBroker and a NotificationProducer, which can be a remote
NotificationBroker or a NotificationProducer application.

External web service endpoint
The URL of the external web service to which the service should subscribe.

Dialect
The dialect in which the topic is expressed.

Topic The topic on which the service should subscribe.

Buttons

Button Resulting action
New Create a new administrative object of this type.
Delete Delete the selected items.

Administered subscribers [Collection]
An administered subscriber provides a mechanism for the WS-Notification service point to subscribe to an
external notification producer at server startup time.

To view this page in the console, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name -> Runtime > Administered subscribers

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> [Additional Properties] WS-Notification service points -> point_name -> Runtime >
Administered subscribers

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

Chapter 28. Administering web services - Notification (WS-Notification) 3131



To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

External web service endpoint
The URL of the external web service to which the service should subscribe.

Topic The topic for which event notifications have been requested.

State The current runtime state of the administered subscriber.

Administered subscribers [Settings]
An administered subscriber provides a mechanism for the WS-Notification service point to subscribe to an
external notification producer at server startup time.

To view this page in the console, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name -> Administered subscribers -> subscriber_name

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> [Additional Properties] WS-Notification service points -> point_name -> Administered
subscribers -> subscriber_name

An administered subscriber contains the name of a NotificationProducer application or a (different)
NotificationBroker endpoint and details of a subscription request (for example topic) that the
WS-Notification service point should register as part of the server startup procedure. This enables you to
pre-configure links between the NotificationBroker and a NotificationProducer, which can be a remote
NotificationBroker or a NotificationProducer application.

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

External web service endpoint:

The URL of the external web service to which the service should subscribe.

That is, the endpoint reference (web address) of a notification producer or notification broker application.
For example http://remoteproducer.com.

Required Data type
Yes String

Dialect:

The dialect in which the topic is expressed.

Required Data type
Yes drop-down list

Topic:

The topic on which the service should subscribe.

3132 Administering WebSphere applications



This describes the class of notification messages that are delivered to the WS-Notification service point.
For example stock/IBM. This property can include wildcards if they are supported by the topic dialect that
you select.

Required Data type
Yes String

Topic namespace:

The URI that describes the topic namespace in which the specified topic is defined.

Required Data type
No Custom

Remote subscription timeout:

The length of time in hours after which the remote subscription will expire if not renewed by the server.

This timeout minimizes the potential for orphaned subscriptions in the remote web service if the local
server is uninstalled. Note that this field does not indicate the time at which the remote subscription is due
to expire. Set the timeout length to something larger than the maximum length of time that the server is
expected to remain offline, otherwise the stream of messages from the remote web service might be
interrupted. While the server is running it occasionally renews the remote subscription termination time
(with the specified timeout) to prevent it from expiring during normal operation. If not specified, this timeout
defaults to 24 (hours).

Required Data type Range
Yes Integer 1 through 2147483647

Permanent topic namespaces [Collection]
A topic namespace is a grouping of topics that allows information to be shared between applications.

To view this page in the console, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> Permanent topic
namespaces

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> Permanent topic namespaces

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

You use a permanent topic namespace to statically define the association between a WS-Notification topic
namespace URI and a service integration bus topic space destination.

A permanent topic namespace has the following characteristics:

v You can use it to expose an existing service integration bus topic space for use by WS-Notification
clients, thus permitting interoperation between the WS-Notification applications and existing publish and
subscribe applications connected to the bus such as JMS.

Chapter 28. Administering web services - Notification (WS-Notification) 3133



v You can use it to restrict the structure and content of the topic namespace by applying one or more
topic namespace documents that describe the required structure.

v You can use it as part of a topic space mapping configured on a service integration bus link (between
two service integration buses) or a topic mapping as part of a publish and subscribe bridge between a
service integration bus and a WebSphere MQ network.

When you create a new WS-Notification permanent topic namespace, you specify the namespace and
associate it with one of the service integration bus topic spaces configured on the bus on which the parent
WS-Notification service is defined. You cannot modify a permanent topic namespace after it has been
created, other than to apply or remove topic namespace documents.

Namespace
The URI string by which this topic namespace is known.

Service integration bus topic space
The service integration bus topic space with which this namespace is associated.

Message reliability
The service integration bus reliability to apply to messages published to this topic namespace.

Topic namespace documents
The collection of topic namespace documents that define the structure of the topic namespace.

Buttons

Button Resulting action
New Create a new administrative object of this type.
Delete Delete the selected items.

Permanent topic namespace [Settings]
A topic namespace is a grouping of topics that allows information to be shared between applications.

To view this page in the console, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> Permanent topic
namespaces -> namespace_name

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> Permanent topic namespaces -> namespace_name

You use a permanent topic namespace to statically define the association between a WS-Notification topic
namespace URI and a service integration bus topic space destination.

A permanent topic namespace has the following characteristics:

v You can use it to expose an existing service integration bus topic space for use by WS-Notification
clients, thus permitting interoperation between the WS-Notification applications and existing publish and
subscribe applications connected to the bus such as JMS.

v You can use it to restrict the structure and content of the topic namespace by applying one or more
topic namespace documents that describe the required structure.

v You can use it as part of a topic space mapping configured on a service integration bus link (between
two service integration buses) or a topic mapping as part of a publish and subscribe bridge between a
service integration bus and a WebSphere MQ network.

When you create a new WS-Notification permanent topic namespace, you specify the namespace and
associate it with one of the service integration bus topic spaces configured on the bus on which the parent
WS-Notification service is defined. You cannot modify a permanent topic namespace after it has been
created, other than to apply or remove topic namespace documents.

3134 Administering WebSphere applications



Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Namespace:

The URI string by which this topic namespace is known.

That is, the namespace URI by which WS-Notification applications refer to topics hosted by this
namespace. For example http://widgetproducer.com/prices.

Required Data type
Yes Text

Service integration bus topic space:

The service integration bus topic space with which this namespace is associated.

That is, the bus topic space that is used by this topic namespace.

Required Data type
Yes Custom

Message reliability:

The service integration bus reliability to apply to messages published to this topic namespace.

Chapter 28. Administering web services - Notification (WS-Notification) 3135



Required Data type Range
Yes drop-down list

Assured persistent
Messages are not discarded.

Reliable persistent
Messages might be
discarded when a messaging
engine fails.

Reliable non-persistent
Messages are discarded
when a messaging engine
stops or fails.

Express non-persistent
Messages are discarded
when a messaging engine
stops or fails. Messages
might also be discarded if a
connection used to send
them becomes unavailable.

Best effort non-persistent
Messages are discarded
when a messaging engine
stops or fails. Messages
might also be discarded if a
connection used to send
them becomes unavailable or
as a result of constrained
system resources.

Publisher registrations [Collection]
The set of applications that are currently registered as publishers with the notification broker.

To view this page in the console, click one of the following paths:

For information for a particular service point:

v Service integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name -> Runtime > Publisher registrations

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> [Additional Properties] WS-Notification service points -> point_name -> Runtime > Publisher
registrations

For information aggregated for all service points for a particular service:

v Service integration -> WS-Notification -> Services -> service_name > Runtime > Publisher
registrations

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> Runtime > Publisher registrations

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

3136 Administering WebSphere applications



To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Publisher ID
The unique identifier of this publisher registration.

Topic The topic on which the publisher is registered to publish.

Creation time
The time at which the registration was created.

Termination time
The time at which the registration will be deleted.

Demand based
Indicates whether this is a demand based publisher.

Producer EPR
Additional publisher related data.The endpoint reference of the producer that created this
registration.

Buttons

Button Resulting action
Delete Delete the selected items.

Pull points [Collection]
This collection lists the pull points that have been created on the associated bus member or members by
WS-Notification applications. Use this panel to view the information about a pull point, such as the
subscription with which it is associated and the time at which it is currently set to expire. You can also
delete a pull point using the button provided.

To view this page in the console, click one of the following paths:

For information for a particular service point:

v Service integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name -> Runtime > Pull points

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> [Additional Properties] WS-Notification service points -> point_name -> Runtime > Pull points

For information aggregated for all service points for a particular service:

v Service integration -> WS-Notification -> Services -> service_name -> Runtime > Pull points

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> Runtime > Pull points

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Pull point id
The unique identifier of the pull point.

Creation time
The time at which the pull point was created.

Chapter 28. Administering web services - Notification (WS-Notification) 3137



Termination time
The time at which the pull point will be deleted.

Subscription id
The unique identifier of the subscription associated with the pull point.

If the pull point has not yet been supplied to a subscription, the text Not Associated is displayed.

Buttons

Button Resulting action
Delete Delete the selected items.

Service integration bus subscriptions [Collection]
This collection lists the service integration bus subscriptions associated with the previously selected
WS-Notification subscription.

To view this pane in the console, complete the following steps:

1. Display “Subscriptions [Collection].” For example, click Service integration -> WS-Notification ->
Services -> service_name -> [Additional Properties] WS-Notification service points ->
point_name -> Runtime > Subscriptions

2. For a given WS-Notification service, click the link in the Service integration bus subscriptions column.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Subscription id
The unique identifier of the subscription.

Topic(s)
The topics on which the subscription is registered.

Subscriptions [Collection]
This collection lists the subscriptions that have been created on the associated bus member or members
by WS-Notification applications. Use this panel to view the information about a subscription, such as the
topic on which the subscription is registered and the time at which it is currently set to expire. You can also
delete a subscription using the button provided.

To view this page in the console, click one of the following paths:

For information for a particular service point:

v Service integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name -> Runtime > Subscriptions

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> [Additional Properties] WS-Notification service points -> point_name -> Runtime >
Subscriptions

For information aggregated for all service points for a particular service:

v Service integration -> WS-Notification -> Services -> service_name -> Runtime > Subscriptions

3138 Administering WebSphere applications



v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> Runtime > Subscriptions

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Subscription id
The unique identifier of the subscription.

Topic(s)
The topics on which the subscription is registered.

Delivery state
The current runtime state of the subscription.

Consumer EPR
The endpoint reference to which event notifications matching the subscription are sent.

Creation time
The time at which the subscription was created.

Termination time
The time at which the subscription will be deleted.

Pull type
Indicates whether the subscription is being used in pull mode.

Service integration bus subscriptions
The service integration bus durable subscription or subscriptions that are associated with the
WS-Notification subscription.

Buttons

Button Resulting action
Delete Delete the selected items.

Topic namespace document [Collection]
A topic namespace can optionally have topic namespace documents applied to it that define the structure
of the topics that are permitted within the namespace.

To view this page in the console, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> Permanent topic
namespaces -> namespace_name -> Topic namespace documents

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> Permanent topic namespaces -> namespace_name -> Topic namespace documents

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

Chapter 28. Administering web services - Notification (WS-Notification) 3139



Document name
The name of the file from which the topic namespace document was originally loaded.

Description
An optional description of the topic namespace document.

Buttons

Button Resulting action
New Create a new administrative object of this type.
Delete Delete the selected items.

Topic namespace document [Settings]
A topic namespace can optionally have topic namespace documents applied to it that define the structure
of the topics that are permitted within the namespace.

To view this page in the console, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> Permanent topic
namespaces -> namespace_name -> Topic namespace documents -> document_name > Upload

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> Permanent topic namespaces -> namespace_name -> Topic namespace documents ->
document_name > Upload

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Associated permanent topic namespace:

The topic namespace to which this document is applied.

Required Data type
No String

URL of topic namespace document:

The URL of the topic namespace document that should be loaded.

Required Data type
Yes Text

Description:

An optional description of the topic namespace document.

Required Data type
No Text area

3140 Administering WebSphere applications



Topic namespace document [Settings]
A topic namespace can optionally have topic namespace documents applied to it that define the structure
of the topics that are permitted within the namespace.

To view this page in the console, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> Permanent topic
namespaces -> namespace_name -> Topic namespace documents -> document_name > View

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> Permanent topic namespaces -> namespace_name -> Topic namespace documents ->
document_name > View

WS-Notification service points [Collection]
A WS-Notification service point defines access to a WS-Notification service on a given bus member
through a specified web service binding (for example SOAP over HTTP). Applications use the bus
members associated with the WS-Notification service point to connect to the WS-Notification service.

To view this page in the console, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> [Additional Properties] WS-Notification service points

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

You can define any number of WS-Notification service points for a given WS-Notification service. Each
service point defined for the same WS-Notification service represents an alternative entry point to the
service. Event notifications published to a particular WS-Notification service point are received by all
applications connected to any service point of the same WS-Notification service (subject to subscription on
the correct topic) regardless of the particular service point to which they are connected.

Name The name of the WS-Notification service point. This appears as part of the address of the web
service that is exposed on the chosen server.

Associated bus member
The name of the bus member on which this WS-Notification service point is deployed.

Description
An optional description of the WS-Notification service point.

Buttons

Button Resulting action
New Create a new service point.
Delete Delete the selected items.
Copy Copy the service point.

Chapter 28. Administering web services - Notification (WS-Notification) 3141



WS-Notification service points [Settings]
A WS-Notification service point defines access to a WS-Notification service on a given bus member
through a specified web service binding (for example SOAP over HTTP). Applications use the bus
members associated with the WS-Notification service point to connect to the WS-Notification service.

To view this page in the console, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name -> [Additional Properties]
WS-Notification service points -> point_name

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name
-> [Additional Properties] WS-Notification service points -> point_name

You can define any number of WS-Notification service points for a given WS-Notification service. Each
service point defined for the same WS-Notification service represents an alternative entry point to the
service. Event notifications published to a particular WS-Notification service point are received by all
applications connected to any service point of the same WS-Notification service (subject to subscription on
the correct topic) regardless of the particular service point to which they are connected.

The existence of a WS-Notification service point on a bus member implies that a WS-Notification web
service is exposed from that bus member, and causes web service endpoints for the notification broker,
subscription manager and publisher registration manager for this WS-Notification service to be exposed on
the bus member with which the service point is associated. WS-Notification applications use these
endpoints to interact with the WS-Notification service.

In this implementation of WS-Notification there are two types of WS-Notification service configuration:

v Version 7.0: Use this type of service if you want to compose a JAX-WS WS-Notification service with
web service qualities of service (QoS) via policy sets, or if you want to apply JAX-WS handlers to your
WS-Notification service. This is the recommended type of service for new deployments. This
WS-Notification option has been available in WebSphere Application Server from Version 7.0.

v Version 6.1: Use this type of service if you want to expose a JAX-RPC WS-Notification service that
uses the same technology provided in WebSphere Application Server Version 6.1, including the ability to
apply JAX-RPC handlers to the service. This WS-Notification option has been available in WebSphere
Application Server from Version 6.1.

Some of the fields are specific to the type of WS-Notification service that you are viewing.

v When you create a Version 6.1 WS-Notification service point you select a bus member on which the
WS-Notification service point is configured. You allocate a service point to a given bus member by
specifying an endpoint listener that is configured for that bus member. You also choose the type of web
service binding (SOAP over HTTP or SOAP over JMS) that is used for the WS-Notification service
point.

v When you create a Version 7.0 WS-Notification service point you select a bus member on which the
WS-Notification service point is configured. You also choose the SOAP version that is supported by the
service point, and (optionally) apply JAX-WS handler lists to the NotificationBroker, SubscriptionManager
or PublisherRegistrationManager that are exposed through this service point.

v “Configuration tab”

v “Runtime tab” on page 3144

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

3142 Administering WebSphere applications



General Properties

Name:

The name of the WS-Notification service point. This appears as part of the address of the web service that
is exposed on the chosen server.

You cannot modify the name.

Required Data type
Yes String

Description:

An optional description of the WS-Notification service point.

Required Data type
No Text area

Associated bus member:

The name of the bus member on which this WS-Notification service point is deployed.

Required Data type
No String

General properties that are specific to Version 7.0 WS-Notification service points:

SOAP Version

Defines the version of SOAP supported by the service point. This affects the WSDL definition that
will be exposed by the web service. Permitted values are 1.1 for SOAP 1.1 (the default), and 1.2
for SOAP 1.2.

Required Data type
No String

NotificationBroker JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
NotificationBroker endpoint of the WS-Notification service point.

Required Data type
No drop-down list

SubscriptionManager JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
SubscriptionManager endpoint of the WS-Notification service point.

Required Data type
No drop-down list

PublisherRegistrationManager JAX-WS handler list

The JAX-WS handler list that is applied to inbound requests from an application to the
PublisherRegistrationManager endpoint of the WS-Notification service point.

Chapter 28. Administering web services - Notification (WS-Notification) 3143



Required Data type
No drop-down list

Additional Properties
Administered subscribers

An administered subscriber provides a mechanism for the WS-Notification service point to
subscribe to an external notification producer at server startup time.

Custom properties
Select this link to configure additional custom properties for this WS-Notification service point.

Additional properties that are specific to Version 7.0 WS-Notification service points:

Policy set configuration
The policy set configuration associated with this WS-Notification service point. You can configure
policy set and binding information for each port relating to this service point.

Publish WSDL files to zip
Publish the WSDL files for this service point to a compressed file.

Note: When you run the wsimport command against the exported
PublisherRegistrationManager.wsdl file you must include the ibm-wsn-jaxws.xml file as an
argument to wsimport.

For more information, see “Publishing the WSDL files for a WS-Notification application to a
compressed file” on page 3082.

Service point application
The application associated with this WS-Notification service point. For Version 7.0 WS-Notification
services, enterprise applications are used to expose the web services associated with the
WS-Notification service.

Additional properties that are specific to Version 6.1 WS-Notification service points:

Notification broker inbound port settings
The inbound port defined for the notification broker role of this WS-Notification service point.

Publisher registration manager inbound port settings
The inbound port defined for the publisher registration manager role of this WS-Notification service
point.

Subscription manager instance inbound port settings
The inbound port defined for the subscription manager role of this WS-Notification service point.

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

Additional Properties
Subscriptions

This collection lists the subscriptions that have been created on the associated bus member or
members by WS-Notification applications. Use this panel to view the information about a
subscription, such as the topic on which the subscription is registered and the time at which it is
currently set to expire. You can also delete a subscription using the button provided.

3144 Administering WebSphere applications



Publisher registrations
The set of applications that are currently registered as publishers with the notification broker.

Pull points
This collection lists the pull points that have been created on the associated bus member or
members by WS-Notification applications. Use this panel to view the information about a pull point,
such as the subscription with which it is associated and the time at which it is currently set to
expire. You can also delete a pull point using the button provided.

Administered subscribers
An administered subscriber provides a mechanism for the WS-Notification service point to
subscribe to an external notification producer at server startup time.

WS-Notification services [Collection]
A WS-Notification service provides access to service integration bus resources for web services publish
and subscribe clients.

To view this page in the console, click one of the following paths:

v Service integration -> WS-Notification -> Services

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change which entries are listed, or to change the level of detail that is displayed for those entries, use
the Filter settings.

A WS-Notification service provides the ability to expose some or all of the messaging resources defined on
a service integration bus for use by WS-Notification applications.

Name The name of the WS-Notification service.

Service integration bus name
The name of the service integration bus with which the WS-Notification service is associated.

Type The type of the WS-Notification service.

v Version 7.0: Use this type of service if you want to compose a JAX-WS WS-Notification service
with web service qualities of service (QoS) via policy sets, or if you want to apply JAX-WS
handlers to your WS-Notification service. This is the recommended type of service for new
deployments. This WS-Notification option has been available in WebSphere Application Server
from Version 7.0.

v Version 6.1: Use this type of service if you want to expose a JAX-RPC WS-Notification service
that uses the same technology provided in WebSphere Application Server Version 6.1, including
the ability to apply JAX-RPC handlers to the service. This WS-Notification option has been
available in WebSphere Application Server from Version 6.1.

Description
An optional description of the WS-Notification service.

Buttons

Button Resulting action
New Create a new WS-Notification service.
Delete Delete the selected items.

Chapter 28. Administering web services - Notification (WS-Notification) 3145



WS-Notification services [Settings]
A WS-Notification service provides access to service integration bus resources for web services publish
and subscribe clients.

To view this page in the console, click one of the following paths:

v Service integration -> WS-Notification -> Services -> service_name

v Service integration -> Buses -> bus_name -> [Services] WS-Notification services -> service_name

A WS-Notification service provides the ability to expose some or all of the messaging resources defined on
a service integration bus for use by WS-Notification applications.

In this implementation of WS-Notification there are two types of WS-Notification service configuration:

v Version 7.0: Use this type of service if you want to compose a JAX-WS WS-Notification service with
web service qualities of service (QoS) via policy sets, or if you want to apply JAX-WS handlers to your
WS-Notification service. This is the recommended type of service for new deployments. This
WS-Notification option has been available in WebSphere Application Server from Version 7.0.

v Version 6.1: Use this type of service if you want to expose a JAX-RPC WS-Notification service that
uses the same technology provided in WebSphere Application Server Version 6.1, including the ability to
apply JAX-RPC handlers to the service. This WS-Notification option has been available in WebSphere
Application Server from Version 6.1.

Some of the fields are specific to the type of WS-Notification service that you are viewing. For example,
inbound service settings are specific to Version 6.1 WS-Notification services because Version 6.1
WS-Notification services use inbound services to expose the web services associated with the
WS-Notification service. For Version 7.0 WS-Notification services, enterprise applications are used to
expose the web services, and the configuration of these applications is accessed solely through the
service point panels.

v “Configuration tab”

v “Runtime tab” on page 3150

Configuration tab
The Configuration tab shows configuration properties for this object. These property values are preserved
even if the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Name:

The name of the WS-Notification service.

The name forms part of the endpoint on which the service is exposed (that is, the URL used to access the
WS-Notification service points that are defined under the service). You cannot modify the name. For
Version 6.1 WS-Notification services, the service name is unique within a bus. For Version 7.0
WS-Notification services the service name is unique within the cell, which matches the administration
model used for policy sets and therefore supports composition of Version 7.0 WS-Notification services with
WS-ReliableMessaging.

Required Data type
Required String

Service integration bus name:

3146 Administering WebSphere applications



The name of the service integration bus with which the WS-Notification service is associated.

You cannot modify the service integration bus name.

Required Data type
Yes String

Type:

The type of the WS-Notification service.

v Version 7.0: Use this type of service if you want to compose a JAX-WS WS-Notification service with
web service qualities of service (QoS) via policy sets, or if you want to apply JAX-WS handlers to your
WS-Notification service. This is the recommended type of service for new deployments. This
WS-Notification option has been available in WebSphere Application Server from Version 7.0.

v Version 6.1: Use this type of service if you want to expose a JAX-RPC WS-Notification service that
uses the same technology provided in WebSphere Application Server Version 6.1, including the ability to
apply JAX-RPC handlers to the service. This WS-Notification option has been available in WebSphere
Application Server from Version 6.1.

You choose the type when you create the service. You cannot modify the type for an existing service.

Required Data type
Yes String

Description:

An optional description of the WS-Notification service.

Required Data type
No Text area

Enable dynamic topic namespaces?:

Indicates whether dynamic topic namespaces can be used within the WS-Notification service.

That is, whether this service allows dynamic topic namespaces to be created at run time.

A dynamic topic namespace does not require manual administration by using the administration console or
scripting. A dynamic topic namespace is used automatically in response to a request from a
WS-Notification application for a topic namespace URI that has not been defined as a permanent topic
namespace (assuming the WS-Notification service has been configured to permit use of dynamic
namespaces).

A dynamic topic namespace has the following characteristics:

v It does not support interoperation between WS-Notification applications and other clients of the bus
such as JMS.

v It is not possible to apply topic namespace documents to this topic space, and thus the structure and
content of the topic space are unrestricted.

v It cannot be used as part of the configuration of service integration bus links or a publish and subscribe
bridge.

Use this option to tightly control the topic namespaces that are used when connecting to a particular
WS-Notification service (for example for security or auditing requirements). If you deselect this option, any

Chapter 28. Administering web services - Notification (WS-Notification) 3147



applications that connect to the WS-Notification service and request topics from a dynamic topic
namespace are stopped from publishing or receiving messages.

All messages published to a dynamic topic namespace are inserted with the default message reliability
setting of reliable persistent. If this value is not acceptable, create a permanent topic namespace and
manually configure the attribute to the appropriate value.

Note: The dynamic topic namespaces used on a particular WS-Notification service are backed by a
service integration bus topic space that is created automatically when you create the topic
namespace. The syntax of topics used within this topic space is internal to the WS-Notification
service implementation.

Required Data type
No Boolean

Dynamic topic space name:

The name of the service integration bus topic space to be used as the dynamic topic space for this
WS-Notification service.

That is, the name of the bus topic space that is used to host the ad-hoc topic namespace, and to host
dynamic topic namespaces if they are permitted. You cannot modify the dynamic topic space name.

Required Data type
No String

Requires registration:

Indicates whether publisher applications are required to register with the broker before they can publish
notifications.

Required Data type
No Boolean

Fixed topic set:

Indicates whether the list of topics supported by the notification broker is fixed or may vary at runtime.

You cannot modify the setting for the fixed topic set.

Required Data type
No Boolean

Topic expression dialects:

List of topic dialects supported by this WS-Notification service.

That is, the name of the chosen topic dialect as defined by the WS-Topics standard:

v Simple topics. That is, single-level root topics with no wildcards. For example “stock”.

v Concrete topics. That is, multi-level topics with no wildcards. For example “stock/IBM”,
“sport/football/results”.

v Full topics. That is, multi-level topics with wildcards and conjunctions. For example “stock//.”,
“sport/football/*”, “sport/*/results”, “t1/t3 | t3/t4”.

3148 Administering WebSphere applications



You cannot modify the list of supported topic dialects.

Required Data type
Yes Text area

General properties that are specific to Version 7.0 WS-Notification services:

JAX-WS handler list

The JAX-WS handler list that is applied to outbound requests from the WS-Notification service.

A handler list defines the handlers that are applied when making outbound web service
invocations, for example monitoring outbound event notification (in response to a subscribe
operation) and controlling demand-based publishers (subscribe, pause and resume).

Required Data type
No drop-down list

Query WSDL

Indicates whether the Version 7.0 WS-Notification service queries the WSDL of other
WS-Notification web services when interacting with them. By default, this option is enabled. By
clearing this option, you can improve performance by avoiding expensive WSDL queries. However,
you should note the following considerations when WSDL querying is not enabled:

v WS-Notification attempts to discover binding information (which is usually discovered through
the WSDL) by using other means. WS-Notification uses the SOAP version associated with the
WS-Notification service point where subscriptions were made (by other web services), or where
administered subscriptions were created (by an administrator).

v There are some circumstances in which WS-Notification might be unable to determine binding
information. This can happen when cleaning up subscriptions where the associated service
point has been deleted and configuration information is no longer available. Under these
circumstances WS-Notification makes a “best guess” at binding information to use to clean up
the subscriptions.

v There is one scenario where incorrect binding information is used. That is, when a subscriber
subscribes to use a particular SOAP binding, on behalf of a NotificationConsumer that expects
notifications through a different SOAP binding.

Required Data type
No Boolean

General properties that are specific to Version 6.1 WS-Notification services:

JAX-RPC handler list

The JAX-RPC handler list that is applied to outbound requests from the WS-Notification service -
for example the broker delivering notifications to a consumer.

A handler list defines the handlers that are applied when making outbound web service
invocations, for example monitoring outbound event notification (in response to a subscribe
operation) and controlling demand-based publishers (subscribe, pause and resume).

Required Data type
No drop-down list

Outbound security request binding

The security binding to be used with consumer notifications and remote publisher requests sent by
this WS-Notification service.

Chapter 28. Administering web services - Notification (WS-Notification) 3149



WS-Security bindings define the security policy that is used when making outbound web service
invocations, for example controlling demand-based publishers (subscribe, pause and resume).

Required Data type
No drop-down list

Outbound security response binding

The security binding to be used with remote publisher responses received by this WS-Notification
service.

Required Data type
No drop-down list

Outbound security configuration

Specifies the details of how security is applied to requests and responses.

Required Data type
No drop-down list

Additional Properties
WS-Notification service points

Select this link to configure the deployment of WS-Notification service points on one or more
servers.

Permanent topic namespaces
Select this link to configure permanent topic namespaces for the WS-Notification service.

Custom properties
Select this link to configure additional custom properties for this WS-Notification service.

Additional properties that are specific to Version 7.0 WS-Notification services:

Outbound request policy sets and bindings
The outbound request policy sets and bindings for the two WS-Notification service clients
associated with this WS-Notification service. For reliable web service transmission of notification
messages, use this option to associate the WS-Notification service client with a policy set that
enables WS-ReliableMessaging.

Additional properties that are specific to Version 6.1 WS-Notification services:

Notification broker inbound service settings
The inbound service defined for the notification broker role of this WS-Notification service.

Publisher registration manager inbound service settings
The inbound service defined for the publisher registration manager role of this WS-Notification
service.

Subscription manager inbound service settings
The inbound service defined for the subscription manager role of this WS-Notification service.

Runtime tab
The Runtime tab shows runtime properties for this object. These properties directly affect the current
runtime environment, but are not preserved when that environment is stopped. To preserve runtime
property values, change the equivalent property values on the Configuration tab. See the information
center task descriptions for information about how to apply configuration changes to the runtime
environment.

3150 Administering WebSphere applications



Additional Properties
Subscriptions

This collection lists the subscriptions that have been created on the associated bus member or
members by WS-Notification applications. Use this panel to view the information about a
subscription, such as the topic on which the subscription is registered and the time at which it is
currently set to expire. You can also delete a subscription using the button provided.

Publisher registrations
The set of applications that are currently registered as publishers with the notification broker.

Pull points
This collection lists the pull points that have been created on the associated bus member or
members by WS-Notification applications. Use this panel to view the information about a pull point,
such as the subscription with which it is associated and the time at which it is currently set to
expire. You can also delete a pull point using the button provided.

WSNotificationCommands command group for the AdminTask object

Decide which method to use to configure these resources. You can configure WS-Notification resources by
using wsadmin command scripts as described in this topic, or you can configure WS-Notification resources
by using the administrative console.

Although not part of the set of WS-Notification commands, the common task “Using a script to get up and
running quickly with WS-Notification” on page 3062 also involves running a wsadmin command.

To run these commands, use the AdminTask object of the wsadmin scripting client. Each command acts
on multiple objects in one operation. The commands are provided to allow you to make the most
commonly-required types of update in a consistent manner, where modifying the underlying objects directly
would be error-prone.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

The following administrative commands are available in this command group. Target objects and
parameters are required unless otherwise stated.

v “createWSNService command” on page 3152

v “deleteWSNService command” on page 3155

v “listWSNServices command” on page 3157

v “showWSNService command” on page 3158

v “createWSNServicePoint command” on page 3159

v “deleteWSNServicePoint command” on page 3162

v “listWSNServicePoints command” on page 3164

v “showWSNServicePoint command” on page 3165

v “createWSNTopicNamespace command” on page 3172

v “deleteWSNTopicNamespace command” on page 3173

Chapter 28. Administering web services - Notification (WS-Notification) 3151



v “listWSNTopicNamespaces command” on page 3175

v “showWSNTopicNamespace command” on page 3176

v “createWSNAdministeredSubscriber command” on page 3166

v “deleteWSNAdministeredSubscriber command” on page 3168

v “listWSNAdministeredSubscribers command” on page 3169

v “showWSNAdministeredSubscriber command” on page 3170

v “createWSNTopicDocument command” on page 3177

v “deleteWSNTopicDocument command” on page 3178

v “listWSNTopicDocuments command” on page 3180

v “showWSNTopicDocument command” on page 3181

v “getWSN_SIBWSInboundService command” on page 3182

v “getWSN_SIBWSInboundPort command” on page 3183

createWSNService command
Use the createWSNService command to create a new WS-Notification service and the associated objects
that form the infrastructure of the WS-Notification configuration. A WS-Notification service provides access
to service integration bus resources for web services publish and subscribe clients.

You can create a new WS-Notification service by using the wsadmin tool as described in this topic, or by
using the administrative console as described in “Creating a new Version 6.1 WS-Notification service” on
page 3093 and “Creating a new Version 7.0 WS-Notification service” on page 3085.

If you are creating a Version 6.1 WS-Notification service, you must first ensure that you have successfully
configured an SDO repository as described in “Installing and configuring the SDO repository” on page
2864. The SDO repository is used to store WSDL documents during the creation of the Version 6.1
WS-Notification service. If you do not configure the repository, an error message is displayed when you
create the service.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command creates a new WS-Notification service on a service integration bus. If you are creating a
Version 6.1 WS-Notification service, the command also creates the three service integration bus inbound
services that represent the three roles played by the broker, and creates the association between these
objects and the new WS-Notification service.

3152 Administering WebSphere applications



Target object

An existing service integration bus (conditional - must be provided if the bus parameter is not supplied).

Required parameters

-name
The name to be given to the new WS-Notification service. The name forms part of the endpoint on
which the service is exposed (that is, the URL used to access the WS-Notification service points that
are defined under the service).

For Version 6.1 WS-Notification services, the service name is unique within a bus. For Version 7.0
WS-Notification services the service name is unique within the cell, which matches the administration
model used for policy sets and therefore supports composition of Version 7.0 WS-Notification services
with WS-ReliableMessaging.

Conditional parameters

-bus
The name of the service integration bus that is to host the WS-Notification service. This can be an
existing bus, or the name of a new bus that you want the command to create for you. This parameter
should only be specified if a Target object is not provided.

Optional parameters

-type
The type of WS-Notification service that is created. Permitted values are V7.0 and V6.1 (the default).

v Version 7.0: Use this type of service if you want to compose a JAX-WS WS-Notification service
with web service qualities of service (QoS) via policy sets, or if you want to apply JAX-WS handlers
to your WS-Notification service. This is the recommended type of service for new deployments. This
WS-Notification option has been available in WebSphere Application Server from Version 7.0.

v Version 6.1: Use this type of service if you want to expose a JAX-RPC WS-Notification service that
uses the same technology provided in WebSphere Application Server Version 6.1, including the
ability to apply JAX-RPC handlers to the service. This WS-Notification option has been available in
WebSphere Application Server from Version 6.1.

Only specify the following optional parameters if the service type is Version 6.1:

v -jaxrpcHandlerList

v -outboundSecurityConfigName

v -outboundSecurityRequestBindingName

v -outboundSecurityResponseBindingName

Note: For Version 7.0 WS-Notification services, equivalent functions to the Version 6.1 outbound
security attributes are provided through policy set configuration.

Only specify the following optional parameters if the service type is Version 7.0:

v -jaxwsHandlerListName

v -queryWSDL

-description
An optional description of the WS-Notification service.

-permitsDynamicTopicNamespace

Indicates whether dynamic topic namespaces can be used within the WS-Notification service. That is,
whether this service allows dynamic topic namespaces to be created at run time. For more
information, see Dynamic topic namespace. Permitted values are TRUE (the default) and FALSE

Chapter 28. Administering web services - Notification (WS-Notification) 3153



Use this option to tightly control the topic namespaces that are used when connecting to a particular
WS-Notification service (for example for security or auditing requirements). If you deselect this option,
any applications that connect to the WS-Notification service and request topics from a dynamic topic
namespace are stopped from publishing or receiving messages.

All messages published to a dynamic topic namespace are inserted with the default message reliability
setting of reliable persistent. If this value is not acceptable, create a permanent topic namespace
and manually configure the attribute to the appropriate value.

Note: The dynamic topic namespaces used on a particular WS-Notification service are backed by a
service integration bus topic space that is created automatically when you create the topic
namespace. The syntax of topics used within this topic space is internal to the WS-Notification
service implementation.

-dynamicTopicSpace
The name of the service integration bus topic space to be used as the dynamic topic space for this
WS-Notification service. That is, the name of the bus topic space that is used to host the ad-hoc topic
namespace, and to host dynamic topic namespaces if they are permitted. If not specified, this value
defaults to WSN_dynamic_this_service_name.

-requiresRegistration
Boolean flag. Indicates whether publisher applications are required to register with the broker before
they can publish notifications. Permitted values are TRUE and FALSE (the default).

-jaxwsHandlerListName
The JAX-WS handler list that is applied to outbound requests from the WS-Notification service. A
handler list defines the handlers that are applied when making outbound web service invocations, for
example monitoring outbound event notification (in response to a subscribe operation) and controlling
demand-based publishers (subscribe, pause and resume). For more information about handler lists,
see “Configuring JAX-WS handlers” on page 3070.

Only specify this parameter for Version 7.0 WS-Notification services.

-jaxrpcHandlerListName
The JAX-RPC handler list that is applied to outbound requests from the WS-Notification service - for
example the broker delivering notifications to a consumer. For more information about handler lists,
see “Working with JAX-RPC handlers and clients” on page 2891.

Only specify this parameter for Version 6.1 WS-Notification services.

-outboundSecurityRequestBindingName
The security binding to be used with consumer notifications and remote publisher requests sent by this
WS-Notification service.

Only specify this parameter for Version 6.1 WS-Notification services.

-outboundSecurityResponseBindingName
The security binding to be used with remote publisher responses received by this WS-Notification
service.

Only specify this parameter for Version 6.1 WS-Notification services.

-outboundSecurityConfigName
Specifies the details of how security is applied to requests and responses.

Only specify this parameter for Version 6.1 WS-Notification services.

-queryWSDL
Boolean flag. Indicates whether the Version 7.0 WS-Notification service queries the WSDL of other
WS-Notification web services when interacting with them. Permitted values are TRUE (the default) and
FALSE.

3154 Administering WebSphere applications



By setting this parameter to FALSE you can improve performance by avoiding expensive WSDL
queries. However, you should note the following considerations when WSDL querying is not enabled:

v WS-Notification attempts to discover binding information (which is usually discovered through the
WSDL) by using other means. WS-Notification uses the SOAP version associated with the
WS-Notification service point where subscriptions were made (by other web services), or where
administered subscriptions were created (by an administrator).

v There are some circumstances in which WS-Notification might be unable to determine binding
information. This can happen when cleaning up subscriptions where the associated service point
has been deleted and configuration information is no longer available. Under these circumstances
WS-Notification makes a “best guess” at binding information to use to clean up the subscriptions.

v There is one scenario where incorrect binding information is used. That is, when a subscriber
subscribes to use a particular SOAP binding, on behalf of a NotificationConsumer that expects
notifications through a different SOAP binding.

Only specify this parameter for Version 7.0 WS-Notification services.

Examples

Create a Version 6.1 WS-Notification service (equivalent to omitting the -type parameter):
newService = AdminTask.createWSNService(["-bus", "bus1", "-name",
"NewWSNService", "-type", "V6.1"] )

Create a Version 7.0 WS-Notification service that allows composition with WS-ReliableMessaging:
newService = AdminTask.createWSNService(["-bus", "bus1", "-name",
"NewWSNService", "-type", "V7.0"] )

Create a Version 7.0 WS-Notification service with a non-null handler list:
newService = AdminTask.createWSNService(["-bus", "bus1", "-name",
"NewWSNService", "-type", "V7.0", "-jaxwsHandlerListName", "myHandlerList"] )

Create a Version 7.0 WS-Notification service that does not query WSDL:
newService = AdminTask.createWSNService(["-bus", "bus1", "-name",
"NewWSNService", "-type", "V7.0", "-queryWSDL", "false"] )

Set the custom property to enable strict topic checking on this WS-Notification service:

v Using Jython:
propName = ["name", "com.ibm.ws.sib.wsn.strictTopicChecking"]
propValue = ["value", "TRUE"]
propAttrs = [propName, propValue]
AdminConfig.create("Property", newService, propAttrs)

v Using Jacl:
set propName [list name "com.ibm.ws.sib.wsn.strictTopicChecking"]
set propValue [list value "TRUE"]
set propAttrs [list $propName $propValue]
$AdminConfig create Property $newService $propAttrs

deleteWSNService command
Use the deleteWSNService command to delete a WS-Notification service and associated resources. A
WS-Notification service provides access to service integration bus resources for web services publish and
subscribe clients.

You can delete a WS-Notification service by using the wsadmin tool as described in this topic, or by using
the administrative console as described in “Deleting WS-Notification services” on page 3092.

To run the command, use the AdminTask object of the wsadmin scripting client.

Chapter 28. Administering web services - Notification (WS-Notification) 3155



The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command deletes the specified WS-Notification service and all the objects configured on the service:

v For Version 7.0 WS-Notification services, the WS-Notification service points and the associated service
point application are deleted.

v For Version 6.1 WS-Notification services, the WS-Notification service points and the associated service
integration bus inbound ports are deleted.

v WS-Notification permanent topic namespaces and any service integration bus topic spaces that were
created by the topic namespace are deleted.

v Topic namespace documents defined for the permanent topic namespaces, and (for Version 6.1
WS-Notification services) the associated XML documents stored in an SDO repository are deleted.

Target object

WSNService

Required parameters

None.

Conditional parameters

None.

Optional parameters

-deleteSIBTopicSpaces
TRUE or FALSE. Indicates whether service integration bus topic spaces created by definition of a
WS-Notification permanent topic namespace should also be deleted (default is FALSE).

Example

Delete the WS-Notification service newService created in the example from topic “Creating a new
WS-Notification service by using the wsadmin tool”.

v Using Jython:
AdminTask.deleteWSNService(newService, [“-deleteSIBTopicSpaces”, “TRUE”])

v Using Jacl:
$AdminTask deleteWSNService $newService {-deleteSIBTopicSpaces TRUE}

3156 Administering WebSphere applications



listWSNServices command
Use the listWSNServices command to list WS-Notification services. A WS-Notification service provides
access to service integration bus resources for web services publish and subscribe clients.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists all the WS-Notification services in the configuration that match the specified input
parameters. This command can be used to obtain a reference to one or more WS-Notification services
that have already been created in the configuration in order to work with the service further, for example to
add a new WS-Notification topic namespace definition.

Target object

WS-Notification services that match the requested pattern.

Required parameters

None.

Conditional parameters

None.

Optional parameters

-bus
The name of the service integration bus by which the list of WS-Notification services is filtered.

-name
The name of the WS-Notification service by which the list of WS-Notification services is filtered.

-type
The type of WS-Notification service by which the list of WS-Notification services is filtered. Permitted
values are V7.0 and V6.1. By default, services of all types are listed.

Examples

List all WS-Notification services of any type on bus1:
wsnServiceList = AdminTask.listWSNServices(["-bus", "bus1"] )

List all Version 7.0 WS-Notification services on bus1:
wsnServiceList = AdminTask.listWSNServices(["-bus", "bus1", "-type", "V7.0"] )

Chapter 28. Administering web services - Notification (WS-Notification) 3157



showWSNService command
Use the showWSNService command to show the properties of a WS-Notification service. A WS-Notification
service provides access to service integration bus resources for web services publish and subscribe
clients.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command shows the properties of a WS-Notification service in a human-readable form. There are two
patterns for use of this command:

v The required WS-Notification service is determined by the target object used.

v The required WS-Notification service is determined by the values specified on the parameters.

Target object

WSNService (conditional - must be provided if the bus and name parameters are not provided).

Required parameters

None.

Conditional parameters

-bus
The name of the service integration bus on which the WS-Notification service is located. This must be
specified if a target object is not specified.

-name
The name of the WS-Notification service to be displayed. This must be specified if a target object is
not specified.

Optional parameters

None.

Examples

Display the WS-Notification service obtained in the example from topic “Listing WS-Notification services by
using the wsadmin tool”, by using the target object pattern.

v Using Jython:
AdminTask.showWSNService(wsnServiceList)

v Using Jacl:
$AdminTask showWSNService $wsnServiceList

3158 Administering WebSphere applications



Display the WS-Notification service obtained in the example from topic “Listing WS-Notification services by
using the wsadmin tool”, by using the parameters pattern.

v Using Jython:
AdminTask.showWSNService([“-bus”, “bus1”, “-name”, “NewWSNService”])

v Using Jacl:
$AdminTask showWSNService {-bus bus1 -name NewWSNService}

createWSNServicePoint command
Use the createWSNServicePoint command to create a new WS-Notification service point. A WS-Notification
service point defines access to a WS-Notification service on a given bus member through a specified web
service binding (for example SOAP over HTTP). Applications use the bus members associated with the
WS-Notification service point to connect to the WS-Notification service.

You can create a new WS-Notification service point by using the wsadmin tool as described in this topic,
or by using the administrative console as described in “Creating a new Version 6.1 WS-Notification service
point” on page 3103 and “Creating a new Version 7.0 WS-Notification service point” on page 3099.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The existence of a WS-Notification service point on a bus member implies that a WS-Notification web
service is exposed from that bus member, and causes web service endpoints for the notification broker,
subscription manager and publisher registration manager for this WS-Notification service to be exposed on
the bus member with which the service point is associated. WS-Notification applications use these
endpoints to interact with the WS-Notification service.

This command creates the following resources:

v It creates a new WS-Notification service point on a WS-Notification service.

v For a Version 7.0 WS-Notification service point, it causes Web service endpoints for the three roles
played by the broker to be exposed on the bus member.

v For a Version 6.1 WS-Notification service point, it creates the three service integration bus inbound
ports that represent the three roles played by the broker, it creates a service integration bus endpoint
listener if required, and it connects the new or existing endpoint listener to the service integration bus
with which the WS-Notification service is associated.

If the service type is Version 7.0, do not specify the following optional parameters, which relate to
JAX-RPC configuration:

Chapter 28. Administering web services - Notification (WS-Notification) 3159



-eplName
-eplURLRoot
-eplWSDLServingURLRoot

If the service type is Version 6.1, do not specify the following optional parameters, which relate to JAX-WS
configuration:

-transportURLRoot
-transportSoapVersion
-jaxwsHandlerListNB
-jaxwsHandlerListSM
-jaxwsHandlerListPRM

You can only create service points for Version 7.0 WS-Notification services on WebSphere Application
Server Version 7.0 or later bus members.

You can create service points for Version 6.1 WS-Notification services on WebSphere Application Server
Version 6.1 or later application servers.

Target object

WSNService

Required parameters

-name
The name of the WS-Notification service point. This appears as part of the address of the web service
that is exposed on the chosen server.

Conditional parameters

-server
Name of the server on which the WS-Notification service point is created.

v If you specify the copyServicePoint parameter, then you need not specify this parameter.

v If this parameter is used then the node parameter must be specified.

-node
Name of the node on which the server is located.

v If you specify the copyServicePoint parameter, then you need not specify this parameter.

v If this parameter is used then the server parameter must be specified.

For a Version 6.1 WS-Notification service, choose either to configure a new endpoint listener or use an
existing one:

-eplName
Name of an endpoint listener.

v If you specify the copyServicePoint parameter, then you need not specify this parameter.

v If this endpoint listener has already been defined on the chosen server, then the eplURLRoot and
eplWSDLServingURLRoot parameters should not be specified. Otherwise, the eplURLRoot and
eplWSDLServingURLRoot parameters must both be specified.

Only specify this parameter for Version 6.1 WS-Notification services.

-eplURLRoot
Root of the externally visible endpoint address URL for web services that are accessed through this
endpoint listener.

v If you specify the copyServicePoint parameter, then you need not specify this parameter.

3160 Administering WebSphere applications



v If the endpoint listener has already been defined on the chosen server, then this parameter should
not be specified.

Only specify this parameter for Version 6.1 WS-Notification services.

-eplWSDLServingURLRoot
Root of the externally visible HTTP URL where the WSDL file associated with this endpoint listener is
located. In most circumstances this is http://host_name:port_number/SIBWS. For more information,
see “Creating a new endpoint listener configuration” on page 2881 or “createSIBWSEndpointListener
command” on page 3046.

v If you specify the copyServicePoint parameter, then you need not specify this parameter.

v If the endpoint listener has already been defined on the chosen server, then this parameter should
not be specified.

Only specify this parameter for Version 6.1 WS-Notification services.

For a Version 7.0 WS-Notification service, configure the web service endpoint:

-transportURLRoot
Root of the externally visible endpoint address for the WS-Notification service point, in the following
format:
protocol://host_nameport_number/service_location

where protocol is either http or https. For example:
http://myhostname:9080/ctx123/mySvc

You can use this parameter to associate a particular external web address with the WS-Notification
service when you publish WSDL to a compressed file through the administrative console. Note that
this address might not be the same as the address at which the WS-Notification service is exposed.
This address is required when the WS-Notification service is accessed through a proxy.

If you do not specify this parameter, the underlying JAX-WS implementation creates an appropriate
URL based on information provided as part of the service point installation process.

If you specify the copyServicePoint parameter, then you need not specify this parameter.

This attribute is the equivalent of the eplURLRoot parameter for service points created on Version 6.1
WS-Notification services. Only specify this parameter for Version 7.0 WS-Notification services.

-transportSoapVersion
Defines the version of SOAP supported by the service point. This affects the WSDL definition that will
be exposed by the web service. Permitted values are 1.1 for SOAP 1.1 (the default), and 1.2 for
SOAP 1.2.

If you specify the copyServicePoint parameter, then you need not specify this parameter.

Only specify this parameter for Version 7.0 WS-Notification services.

Copy the configuration from an existing WS-Notification service point definition:

-copyServicePoint
The name of an existing service point configured on the WS-Notification Service from which the other
configuration attributes are copied. If you specify this parameter, then you only have to specify the
name parameter. All other values are taken from the nominated existing service point.

Optional parameters

-description
An optional description of the WS-Notification service point.

Chapter 28. Administering web services - Notification (WS-Notification) 3161



-jaxwsHandlerListNB
The JAX-WS handler list that is applied to inbound requests from an application to the
NotificationBroker endpoint of the WS-Notification service point.

If you specify the copyServicePoint parameter, then you need not specify this parameter.

Only specify this parameter for Version 7.0 WS-Notification services.

-jaxwsHandlerListSM
The JAX-WS handler list that is applied to inbound requests from an application to the
SubscriptionManager endpoint of the WS-Notification service point.

If you specify the copyServicePoint parameter, then you need not specify this parameter.

Only specify this parameter for Version 7.0 WS-Notification services.

-jaxwsHandlerListPRM
The JAX-WS handler list that is applied to inbound requests from an application to the
PublisherRegistrationManager endpoint of the WS-Notification service point.

If you specify the copyServicePoint parameter, then you need not specify this parameter.

Only specify this parameter for Version 7.0 WS-Notification services.

Examples

In the following examples, the WS-Notification service point uses the WS-Notification service newService
created in the example from topic “Creating a new WS-Notification service by using the wsadmin tool”.

Create a Version 6.1 WS-Notification service point on server1 on node1 and create a new endpoint listener
that uses SOAP over HTTP on channel 1, where the host address of the server is http://myHost:9080:
newServicePoint = AdminTask.createWSNServicePoint(newService,
[“-name”, “newServicePoint”, “-node”, “node1”, “-server”, “server1”, “-eplName”, “myNewEPL”,
“-eplURLRoot”, “http://myhost:9080/wsn”, “-eplWSDLServingURLRoot”, “http://myhost:9080/sibws”] )

Create a Version 7.0 WS-Notification service point on server1 on node1 (minimum set of parameters):
newServicePoint = AdminTask.createWSNServicePoint(newService,
[“-name”, “newServicePoint”, “-node”, “node1”, “-server”, “server1”,
“-transportURLRoot”, “http://myhost:9080/myWSN”] )

Create a Version 7.0 WS-Notification service point on server1 on node1 (full set of parameters):
newServicePoint = AdminTask.createWSNServicePoint(newService,
[“-name”, “newServicePoint”, “-node”, “node1”, “-server”, “server1”,
“-transportURLRoot”, “http://myhost:9080/myWSN”, “-transportSoapVersion”, “1.1”,
“-jaxwsHandlerListNB”, “nbList”, “-jaxwsHandlerListSM”, “smList”, “-jaxwsHandlerListPRM”, “prmList”] )

deleteWSNServicePoint command
Use the deleteWSNServicePoint command to delete a WS-Notification service point and the associated
resources. A WS-Notification service point defines access to a WS-Notification service on a given bus
member through a specified web service binding (for example SOAP over HTTP). Applications use the bus
members associated with the WS-Notification service point to connect to the WS-Notification service.

You can delete a WS-Notification service point by using the wsadmin tool as described in this topic, or by
using the administrative console as described in “Deleting WS-Notification service points” on page 3103.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

3162 Administering WebSphere applications



Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

The existence of a WS-Notification service point on a bus member implies that a WS-Notification web
service is exposed from that bus member, and causes web service endpoints for the notification broker,
subscription manager and publisher registration manager for this WS-Notification service to be exposed on
the bus member with which the service point is associated. WS-Notification applications use these
endpoints to interact with the WS-Notification service.

This command deletes the specified WS-Notification service point and all the objects configured on the
service point:

v For Version 7.0 WS-Notification services, the associated service point application is deleted.

v For Version 6.1 WS-Notification services, the associated service integration bus inbound ports are
deleted.

v For both versions, any associated WS-Notification administered subscribers are deleted.

Target object

WSNServicePoint and associated objects.

Required parameters

None.

Conditional parameters

None.

Optional parameters

None.

Example

Delete the WS-Notification service point newServicePoint, created in the example from topic “Creating a
new WS-Notification service point by using the wsadmin tool”.

v Using Jython:
AdminTask.deleteWSNServicePoint(newServicePoint)

v Using Jacl:
$AdminTask deleteWSNServicePoint $newServicePoint

Chapter 28. Administering web services - Notification (WS-Notification) 3163



listWSNServicePoints command
Use the listWSNServicePoints command to list the WS-Notification service points in the configuration of
the target WS-Notification service that match the specified input parameters. A WS-Notification service
point defines access to a WS-Notification service on a given bus member through a specified web service
binding (for example SOAP over HTTP). Applications use the bus members associated with the
WS-Notification service point to connect to the WS-Notification service.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

The existence of a WS-Notification service point on a bus member implies that a WS-Notification web
service is exposed from that bus member, and causes web service endpoints for the notification broker,
subscription manager and publisher registration manager for this WS-Notification service to be exposed on
the bus member with which the service point is associated. WS-Notification applications use these
endpoints to interact with the WS-Notification service.

This command lists all the WSNServicePoint objects in the configuration of the target WSNService that
match the specified input parameters. This command can be used to obtain a reference to one or more
WSNServicePoint objects that have already been created in the configuration in order to work with the
WSNServicePoint further - for example to add a new WSNTopicNamespace definition.

Target object

WSNServicePoint objects that match the requested pattern.

Required parameters

None.

Conditional parameters

None.

Optional parameters

-name
The name of the WSNServicePoint by which the list is filtered. Omitting this parameter results in the
listing of all WSNServicePointsfor the target WSNService.

Example

Obtain a reference to the first WSNServicePoint defined against the wsnService object.

v Using Jython:

3164 Administering WebSphere applications



wsnServicePointList = AdminTask.listWSNServicePoints(wsnService)
wsnServicePoint = wsnServicePointList.split("\n")[0].rstrip()

v Using Jacl:
set wsnServicePointList [$AdminTask listWSNServicePoints $wsnService]
set wsnServicePoint [ lindex $wsnServicePointList 0 ]

showWSNServicePoint command
Use the showWSNServicePoint command to show the properties of a WS-Notification service point. A
WS-Notification service point defines access to a WS-Notification service on a given bus member through
a specified web service binding (for example SOAP over HTTP). Applications use the bus members
associated with the WS-Notification service point to connect to the WS-Notification service.

Before you begin

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

The existence of a WS-Notification service point on a bus member implies that a WS-Notification web
service is exposed from that bus member, and causes web service endpoints for the notification broker,
subscription manager and publisher registration manager for this WS-Notification service to be exposed on
the bus member with which the service point is associated. WS-Notification applications use these
endpoints to interact with the WS-Notification service.

This command shows the properties of a WS-Notification service point in a human-readable form. There
are two patterns for use of this command:

v The required service point is determined by the target service point.

v The required service point is determined by a combination of the target WS-Notification service, and the
service point name provided as a parameter.

Target object

There are two choices for the target type of this command:

v WSNServicePoint (explicitly nominates the WS-Notification service point to be shown).

v WSNService (determines the required WS-Notification service; must be used in combination with the
name parameter).

Required parameters

None.

Chapter 28. Administering web services - Notification (WS-Notification) 3165



Conditional parameters

-name
The name of the WS-Notification service point to be displayed. This must be specified if the target type
is WSNService, and must not be specified if a WSNServicePoint target is supplied.

Optional parameters

None.

Examples

Show the properties of the WS-Notification service point newServicePoint created in the example from
topic “Creating a new WS-Notification service point by using the wsadmin tool”:

v Using Jython:
AdminTask.showWSNServicePoint(newServicePoint)

v Using Jacl:
$AdminTask showWSNServicePoint $newServicePoint

Show the properties of the WS-Notification service point newServicePoint, created in the example from
topic “Creating a new WS-Notification service point by using the wsadmin tool”, by using the WSNService
target pattern:

v Using Jython:
AdminTask.showWSNServicePoint(newService, [“-name”, “newServicePoint”])

v Using Jacl:
$AdminTask showWSNServicePoint $newService {-name newServicePoint}

createWSNAdministeredSubscriber command
Use the createWSNAdministeredSubscriber command to create a new administered subscriber. An
administered subscriber provides a mechanism for the WS-Notification service point to subscribe to an
external notification producer at server startup time.

You can create a new WS-Notification administered subscriber by using the wsadmin tool as described in
this topic, or by using the administrative console as described in “Creating a new WS-Notification
administered subscriber” on page 3106.

You should not define an administered subscriber for any of the endpoints exposed by the WS-Notification
service on which it is being defined, because this would result in infinite looping of messages through the
notification broker.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

3166 Administering WebSphere applications



AdminConfig.save()

Purpose

This command adds a new WS-Notification administered subscriber to the target WS-Notification service
point.

Target Object

WSNServicePoint

Required parameters

-endpoint
The URL of the external web service to which the service should subscribe. That is, the endpoint
reference (web address) of a notification producer or notification broker application. For example
http://remoteproducer.com.

-topic
The topic on which the service should subscribe. This describes the class of notification messages that
are delivered to the WS-Notification service point. For example stock/IBM. This property can include
wildcards if they are supported by the topic dialect that you select.

-dialect
The dialect in which the topic is expressed. That is, the name of the chosen topic dialect as defined by
the WS-Topics standard. Values of this parameter are SIMPLE, CONCRETE, FULL. For more information,
see WS-Topics.

Conditional parameters

None.

Optional parameters

-topicNamespace
The URI that describes the topic namespace in which the specified topic is defined. Omitting this field
indicates that the topic is contained in the ad-hoc topic namespace.

-remoteSubscriptionTimeout
The length of time in hours after which the remote subscription will expire if not renewed by the server.
This timeout minimizes the potential for orphaned subscriptions in the remote web service if the local
server is uninstalled. Note that this field does not indicate the time at which the remote subscription is
due to expire. Set the timeout length to something larger than the maximum length of time that the
server is expected to remain offline, otherwise the stream of messages from the remote web service
might be interrupted. While the server is running it occasionally renews the remote subscription
termination time (with the specified timeout) to prevent it from expiring during normal operation. If not
specified, this timeout defaults to 24 (hours).

Example

Create an administered subscriber on the WS-Notification service point newServicePoint created in the
example from topic “Creating a new WS-Notification service point by using the wsadmin tool”:

v Using Jython:
newAdminSub = AdminTask.createWSNAdministeredSubscriber(newServicePoint,
[“-endpoint”, “http://myremotehost:9080/producerEP”, “-dialect”, “SIMPLE”,
“-topic”, “stock”, “-topicNamespace”, “http://example.org/mynamespace”,
“-remoteSubscriptionTimeout”, 48] )

v Using Jacl:

Chapter 28. Administering web services - Notification (WS-Notification) 3167



set newAdminSub [ $AdminTask createWSNAdministeredSubscriber $newServicePoint
{ -endpoint http://myremotehost:9080/producerEP -dialect SIMPLE
-topic stock -topicNamespace http://example.org/mynamespace
-remoteSubscriptionTimeout 48 } ]

deleteWSNAdministeredSubscriber command
Use the deleteWSNAdministeredSubscriber command to delete a WS-Notification administered subscriber.
An administered subscriber provides a mechanism for the WS-Notification service point to subscribe to an
external notification producer at server startup time.

You can delete a WS-Notification administered subscriber by using the wsadmin tool as described in this
topic, or by using the administrative console as described in “Deleting WS-Notification administered
subscribers” on page 3109.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command deletes a WS-Notification administered subscriber.

Target object

WSNAdministeredSubscriber

Required parameters

None.

Conditional parameters

None.

Optional parameters

None.

Example

Delete the administered subscriber newAdminSub created in the example from topic “Creating a new
WS-Notification administered subscriber by using the wsadmin tool”:

3168 Administering WebSphere applications



v Using Jython:
AdminTask.deleteWSNAdministeredSubscriber(newAdminSub)

v Using Jacl:
$AdminTask deleteWSNAdministeredSubscriber $newAdminSub

listWSNAdministeredSubscribers command
Use the listWSNAdministeredSubscribers command to list the WS-Notification administered subscribers in
the configuration of the target WS-Notification service point that match the specified input parameters. An
administered subscriber provides a mechanism for the WS-Notification service point to subscribe to an
external notification producer at server startup time.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists all the administered subscribers in the configuration of the target WS-Notification
service point that match the specified input parameters. You can use this command to obtain a reference
to one or more administered subscribers that have already been created in the configuration in order to
work with the administered subscriber further, for example to delete the definition.

Target object

WSNServicePoint

Required parameters

None.

Conditional parameters

None.

Optional parameters

-endpoint
The remote web service endpoint by which the list is filtered. That is, the endpoint reference (web
address) of a notification producer or notification broker application. For example http://
remoteproducer.com.

-topic
Topic expression describing the class of notification messages by which the list is filtered. This
describes the class of notification messages that are delivered to the WS-Notification service point. For
example stock/IBM. This property can include wildcards if they are supported by the topic dialect that
you select.

Chapter 28. Administering web services - Notification (WS-Notification) 3169



-topicNamespace
The namespace URI by which the list is filtered.

-dialect
The dialect in which the topic is expressed. That is, the name of the chosen topic dialect as defined by
the WS-Topics standard, by which the list is filtered. Values of this parameter are SIMPLE, CONCRETE,
FULL. For more information, see WS-Topics.

Examples

Obtain a reference to the first administered subscriber defined against the newServicePoint object:

v Using Jython:
wsnSubscriberList = AdminTask.listWSNAdministeredSubscribers(newServicePoint)
wsnSubscriber = wsnSubscriberList.split("\n")[0].rstrip()

v Using Jacl:
set wsnSubscriberList [$AdminTask listWSNAdministeredSubscribers $newServicePoint]
set wsnSubscriber [ lindex $wsnSubscriberList 0 ]

Obtain a reference to the first administered subscriber defined against the newServicePoint object with a
given topic:

v Using Jython:
wsnSubscriberList = AdminTask.listWSNAdministeredSubscribers(newServicePoint, ["-topic", "stock"])
wsnSubscriber = wsnSubscriberList.split("\n")[0].rstrip()

v Using Jacl:
set wsnSubscriberList [$AdminTask listWSNAdministeredSubscribers $newServicePoint {-topic stock}]
set wsnSubscriber [ lindex $wsnSubscriberList 0 ]

showWSNAdministeredSubscriber command
Use the showWSNAdministeredSubscriber command to show the properties of an administered subscriber.
An administered subscriber provides a mechanism for the WS-Notification service point to subscribe to an
external notification producer at server startup time.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command shows the properties of a WS-Notification administered subscriber object in a
human-readable form. There are two patterns for use of this command:

v The required administered subscriber is determined by the target WSNAdministeredSubscriber object.

v The required administered subscriber is determined by a combination of the target WS-Notification
service point, and the endpoint, topic, topicNamespace and dialect provided as parameters.

3170 Administering WebSphere applications



Target object

There are two choices for the target type of this command:

v WSNAdministeredSubscriber (explicitly nominates the administered subscriber to be shown).

v WSNServicePoint (determines the required WS-Notification service point; must be used in combination
with the conditional parameters).

Required parameters

None.

Conditional parameters

-endpoint
The remote web service endpoint by which the list is filtered. That is, the endpoint reference (web
address) of a notification producer or notification broker application. For example http://
remoteproducer.com. This parameter must be specified if the target type is WSNServicePoint, and
must not be specified if a WSNAdministeredSubscriber target is supplied.

-topic
Topic expression describing the class of notification messages by which the list is filtered. This
describes the class of notification messages that are delivered to the WS-Notification service point. For
example stock/IBM. This property can include wildcards if they are supported by the topic dialect that
you select. This parameter must be specified if the target type is WSNServicePoint, and must not be
specified if a WSNAdministeredSubscriber target is supplied.

-topicNamespace
The namespace URI by which the list is filtered. This parameter must be specified if the target type is
WSNServicePoint, and must not be specified if a WSNAdministeredSubscriber target is supplied.

-dialect
The dialect in which the topic is expressed. That is, the name of the chosen topic dialect as defined by
the WS-Topics standard, by which the list is filtered. Values of this parameter are SIMPLE, CONCRETE,
FULL. For more information, see WS-Topics. This parameter must be specified if the target type is
WSNServicePoint, and must not be specified if a WSNAdministeredSubscriber target is supplied.

Optional parameters

None.

Examples

Show the properties of the administered subscriber newAdminSub created in the example from topic
“Creating a new WS-Notification administered subscriber by using the wsadmin tool”:

v Using Jython:
AdminTask.showWSNAdministeredSubscriber(newAdminSub)

v Using Jacl:
$AdminTask showWSNAdministeredSubscriber $newAdminSub

Show the properties of the administered subscriber newAdminSub, created in the example from topic
“Creating a new WS-Notification administered subscriber by using the wsadmin tool”, by using the
WSNServicePoint target pattern:

v Using Jython:
AdminTask.showWSNAdministeredSubscriber(newServicePoint, [“-topic”, “stock”])

v Using Jacl:
$AdminTask showWSNAdministeredSubscriber $newServicePoint {-topic stock}

Chapter 28. Administering web services - Notification (WS-Notification) 3171



createWSNTopicNamespace command
Use the createWSNTopicNamespace command to create a new WS-Notification permanent topic namespace.
A topic namespace is a grouping of topics that allows information to be shared between applications. You
use a permanent topic namespace to statically define the association between a WS-Notification topic
namespace URI and a service integration bus topic space destination.

You can create a new WS-Notification permanent topic namespace by using the wsadmin tool as
described in this topic, or by using the administrative console as described in “Creating a new
WS-Notification permanent topic namespace” on page 3109.

You can create many to many relationships between the set of permanent topic namespaces defined in a
cell (that is for all WS-Notification services defined in that cell) and the service integration bus topic spaces
with which they are associated. These relationships can become quite complex depending upon the
topologies required by the applications that connect to the WS-Notification service. For guidance on when
certain configurations might or might not be appropriate, see Options for associating a permanent topic
namespace with a bus topic space.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command creates the following resources:

v It creates a new WS-Notification topic namespace on a WS-Notification service and associates it with
the specified service integration bus topic space.

v It creates the specified service integration bus topic space if it does not already exist.

You can also set a configuration attribute of a permanent topic namespace to control the reliability setting
(persistence or non persistence) that is applied to any messages that use a given topic namespace.

Target Object

WSNService

Required parameters

-namespace
The URI string by which this topic namespace is known. That is, the namespace URI by which
WS-Notification applications refer to topics hosted by this namespace. For example
http://widgetproducer.com/prices.

3172 Administering WebSphere applications



-busTopicSpace
The service integration bus topic space with which this namespace is associated. That is, the bus topic
space that is used by this topic namespace.

Conditional parameters

None.

Optional parameters

-reliability
The service integration bus reliability to apply to messages published to this topic namespace. Valid
values for this property are as follows:

BEST_EFFORT_NONPERSISTENT

EXPRESS_NONPERSISTENT

RELIABLE_NONPERSISTENT

RELIABLE_PERSISTENT

ASSURED_PERSISTENT

Each value represents one of the service integration bus message reliability levels.

Examples

In the following examples, the WS-Notification topic namespace uses the WS-Notification service
newService created in the example from topic “Creating a new WS-Notification service by using the
wsadmin tool”.

Create a WS-Notification topic namespace on the WS-Notification service newService:

v Using Jython:
newTopicNamespace = AdminTask.createWSNTopicNamespace(newService,
[“-namespace”, “http://example.org/topicNamespace/example1”,
“-busTopicSpace”, “mySIBTopicspace”] )

v Using Jacl:
set newTopicNamespace [ $AdminTask createWSNTopicNamespace $newService
{ -namespace http://example.org/topicNamespace/example1
-busTopicSpace mySIBTopicspace } ]

Create a WS-Notification topic namespace on the WS-Notification service newService with a specific
reliability:

v Using Jython:
newTopicNamespace = AdminTask.createWSNTopicNamespace(newService,
[“-namespace”, “http://example.org/topicNamespace/example1”,
“-busTopicSpace”, “mySIBTopicspace”, “-reliability”, “EXPRESS_NONPERSISTENT”] )

v Using Jacl:
set newTopicNamespace [ $AdminTask createWSNTopicNamespace $newService
{ -namespace http://example.org/topicNamespace/example1
-busTopicSpace mySIBTopicspace -reliability EXPRESS_NONPERSISTENT} ]

deleteWSNTopicNamespace command
Use the deleteWSNTopicNamespace command to delete a WS-Notification permanent topic namespace and
the associated resources. A topic namespace is a grouping of topics that allows information to be shared
between applications. You use a permanent topic namespace to statically define the association between a
WS-Notification topic namespace URI and a service integration bus topic space destination.

Chapter 28. Administering web services - Notification (WS-Notification) 3173



You can delete WS-Notification permanent topic namespaces by using the wsadmin tool as described in
this topic, or by using the administrative console as described in “Deleting WS-Notification permanent topic
namespaces” on page 3112.

Deleting the topic namespace mapping that was used to establish a (currently active) subscription has the
same effect as deleting the underlying service integration bus topic space, and subscriptions that were
created using this namespace mapping are deleted. For more information about the effect that deleting a
topic namespace has upon new and existing WS-Notification applications, see Failures as a result of
changes in topic space and topic namespace configurations.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command deletes all the objects associated with the specified WS-Notification topic namespace,
including any linked topic namespace documents.

Target object

WSNTopicNamespace and associated objects.

Required parameters

None.

Conditional parameters

None.

Optional parameters

-deleteSIBTopicSpace
TRUE or FALSE. Indicates whether the associated service integration bus topic space is deleted with this
object if the WS-Notification topic namespace was responsible for creating it. If the bus topic space
existed before the WS-Notification topic namespace was created then this parameter has no effect and
the bus topic space is not deleted.

Example

Delete the WS-Notification topic namespace newTopicNamespace created in the example from topic
“Creating a new permanent WS-Notification topic namespace by using the wsadmin tool”.

3174 Administering WebSphere applications



v Using Jython:
AdminTask.deleteWSNTopicNamespace(newTopicNamespace)

v Using Jacl:
$AdminTask deleteWSNTopicNamespace $newTopicNamespace

listWSNTopicNamespaces command
Use the listWSNTopicNamespaces command to list the WS-Notification topic namespaces in the
configuration of the target WS-Notification service that match the specified input parameters. A topic
namespace is a grouping of topics that allows information to be shared between applications.You use a
permanent topic namespace to statically define the association between a WS-Notification topic
namespace URI and a service integration bus topic space destination.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists all the WS-Notification topic namespaces in the configuration of the target
WS-Notification service that match the specified input parameters. This command can be used to obtain a
reference to one or more WS-Notification topic namespaces that have already been created in the
configuration in order to work with the topic namespace further, for example to add a new topic
namespace document definition.

Target Object

WSNService

Required parameters

None.

Conditional parameters

None.

Optional parameters

-namespace
The namespace URI of the WS-Notification topic namespace by which the list should be filtered.
Omitting this parameter results in the listing of all WS-Notification topic namespaces for the target
WS-Notification service.

Chapter 28. Administering web services - Notification (WS-Notification) 3175



Examples

Obtain a reference to the first WS-Notification topic namespace defined against the wsnService object:

v Using Jython:
AdminTask.listWSNTopicNamespaces(wsnService)
wsnNamespace = wsnNamespaceList.split("\n")[0].rstrip()

v Using Jacl:
set wsnNamespaceList [$AdminTask listWSNTopicNamespaces $wsnService]
set wsnNamespace [ lindex $wsnNamespaceList 0 ]

Obtain a reference to the WS-Notification topic namespace defined against the wsnService object with a
given namespace:

v Using Jython:
wsnNamespaceList = AdminTask.listWSNTopicNamespaces(wsnService,
["-namespace", "http://example.org/topicNamespace/example1"] )
wsnNamespace = wsnNamespaceList.split("\n")[0].rstrip()

v Using Jacl:
set wsnNamespaceList [$AdminTask listWSNTopicNamespaces $wsnService
{-namespace http://example.org/topicNamespace/example1}]
set wsnNamespace [ lindex $wsnNamespaceList 0 ]

showWSNTopicNamespace command
Use the showWSNTopicNamespace command to show the properties of a WS-Notification topic namespace. A
topic namespace is a grouping of topics that allows information to be shared between applications.You use
a permanent topic namespace to statically define the association between a WS-Notification topic
namespace URI and a service integration bus topic space destination.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command shows the properties of a WS-Notification topic namespace in a human-readable form.
There are two patterns for use of this command:

v The required WS-Notification topic namespace is determined by the target WS-Notification topic
namespace.

v The required WS-Notification topic namespace is determined by a combination of the target
WS-Notification service, and the namespace of the WS-Notification topic namespace provided as a
parameter.

3176 Administering WebSphere applications



Target object

There are two choices for the target type of this command:

v WSNTopicNamespace (explicitly nominates the WS-Notification topic namespace to be shown).

v WSNService (determines the required WS-Notification service; must be used in combination with the
namespace parameter).

Required parameters

None.

Conditional parameters

-namespace
The namespace of the WS-Notification topic namespace to be displayed. This must be specified if the
target type is WSNService, and must not be specified if a WSNTopicNamespace target is supplied.

Optional parameters

None.

Examples

Show the properties of the WS-Notification topic namespace newTopicNamespace created in the example
from topic “Creating a new permanent WS-Notification topic namespace by using the wsadmin tool”:

v Using Jython:
AdminTask.showWSNTopicNamespace(newTopicNamespace)

v Using Jacl:
$AdminTask showWSNTopicNamespace $newTopicNamespace

Show the properties of the WS-Notification topic namespace newTopicNamespace created in the example
from topic “Creating a new permanent WS-Notification topic namespace by using the wsadmin tool” using
the WSNService target pattern:

v Using Jython:
AdminTask.showWSNTopicNamespace(newService,
[“-namespace”, “http://example.org/topicNamespace/example1”] )

v Using Jacl:
$AdminTask showWSNTopicNamespace $newService
{-namespace http://example.org/topicNamespace/example1 }

createWSNTopicDocument command
A topic namespace can optionally have topic namespace documents applied to it that define the structure
of the topics that are permitted within the namespace. Use the createWSNTopicDocument command to apply
a topic namespace document to an existing topic namespace.

You can apply a WS-Notification topic namespace document to an existing topic namespace by using the
wsadmin tool as described in this topic, or by using the administrative console as described in “Applying a
WS-Notification topic namespace document” on page 3113.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Chapter 28. Administering web services - Notification (WS-Notification) 3177



Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command adds a new WS-Notification topic namespace document to an existing WS-Notification
topic namespace.

Target object

WSNTopicNamespace

Required parameters

-url
The URL of the topic namespace document that should be loaded. This URL must address a valid
topic namespace document as defined in the WS-Topics Version 1.3 OASIS Standard

Conditional parameters

None.

Optional parameters

-description
An optional description of the topic namespace document.

Example

Create a new topic namespace document on the WS-Notification topic namespace newTopicNamespace
created in the example from topic “Creating a new permanent WS-Notification topic namespace by using
the wsadmin tool”:

v Using Jython:
newTopicDoc = AdminTask.createWSNTopicDocument(newTopicNamespace,
[“-url”, “http://www.example.org/instance_doc1.xml”] )

v Using Jacl:
set newTopicDoc [ $AdminTask createWSNTopicDocument $newTopicNamespace
{ -url http://www.example.org/instance_doc1.xml } ]

Note that you must change the url parameter to point to a valid topic namespace document as defined in
the WS-Topics Version 1.3 OASIS Standard.

deleteWSNTopicDocument command
A topic namespace can optionally have topic namespace documents applied to it that define the structure
of the topics that are permitted within the namespace. Use the deleteWSNTopicDocument command to
delete a WS-Notification topic namespace document and the associated resources.

3178 Administering WebSphere applications

http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf


You can delete a WS-Notification topic namespace document by using the wsadmin tool as described in
this topic, or by using the administrative console as described in “Deleting WS-Notification topic
namespace documents” on page 3114.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

This command removes the XML file associated with the WS-Notification topic namespace document.

Target object

WSNTopicDocument and associated objects.

Required parameters

None.

Conditional parameters

None.

Optional parameters

None.

Example

Delete the topic namespace document newTopicDoc created in the example from topic “Applying a
WS-Notification topic namespace document by using the wsadmin tool”:

v Using Jython:
AdminTask.deleteWSNTopicDocument(newTopicDoc)

v Using Jacl:
$AdminTask deleteWSNTopicDocument $newTopicDoc

Chapter 28. Administering web services - Notification (WS-Notification) 3179



listWSNTopicDocuments command
A topic namespace can optionally have topic namespace documents applied to it that define the structure
of the topics that are permitted within the namespace. Use the listWSNTopicDocuments command to list the
topic namespace documents in the configuration of the target WS-Notification topic namespace that match
the specified input parameters.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command lists all the topic namespace documents in the configuration of the target WS-Notification
topic namespace that match the specified input parameters. This command can be used to obtain a
reference to one or more topic namespace documents that have already been created in the configuration
in order to work with the topic namespace document further, for example to delete the definition.

Target object

WSNTopicNamespace documents that match the requested pattern.

Required parameters

None.

Conditional parameters

None.

Optional parameters

-url
The web address that was used to load the XML document.

Examples

Obtain a reference to the first topic namespace document defined against the newTopicNamespace object.

v Using Jython:
wsnDocList = AdminTask.listWSNTopicDocuments(newTopicNamespace)
wsnTopicDoc = wsnDocList.split("\n")[0].rstrip()

v Using Jacl:
set wsnDocList [$AdminTask listWSNTopicDocuments $newTopicNamespace]
set wsnTopicDoc [ lindex $wsnDocList 0 ]

Obtain a reference to the first topic namespace document defined against the newTopicNamespace object
with a given URL.

3180 Administering WebSphere applications



v Using Jython:
wsnDocList = AdminTask.listWSNTopicDocuments(newTopicNamespace,
["-url", "http://www.example.org/instance_doc1.xml"])
wsnTopicDoc = wsnDocList.split("\n")[0].rstrip()

v Using Jacl:
set wsnDocList [$AdminTask listWSNTopicDocuments $newTopicNamespace
{-url http://www.example.org/instance_doc1.xml}]
set wsnDoc [ lindex $wsnDocList 0 ]

showWSNTopicDocument command
A topic namespace can optionally have topic namespace documents applied to it that define the structure
of the topics that are permitted within the namespace. Use the showWSNTopicDocument command to show
the contents of a WS-Notification topic namespace document.

You can show the contents of a WS-Notification topic namespace document by using the wsadmin tool as
described in this topic, or by using the administrative console as described in “Showing the contents of a
WS-Notification topic namespace document” on page 3113.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command shows the XML contents of a WS-Notification topic namespace document. There are two
patterns for use of this command:

v The required topic namespace document is determined by the target topic namespace document.

v The required topic namespace document is determined by a combination of the target WS-Notification
topic namespace, and the url provided as a parameter.

Target object

There are two choices for the target type of this command:

v WSNTopicDocument (explicitly nominates the topic namespace document to be shown).

v WSNTopicNamespace (determines the required WS-Notification topic namespace; must be used in
combination with the url parameter).

Required parameters

None.

Chapter 28. Administering web services - Notification (WS-Notification) 3181



Conditional parameters

-url
The web address that was used to load the XML document. This parameter must be specified if the
target type is WSNTopicNamespace, and must not be specified if a WSNTopicDocument target is
supplied.

Optional parameters

None.

Examples

Show the contents of the topic namespace document newTopicDoc created in the example from topic
“Applying a WS-Notification topic namespace document by using the wsadmin tool”:

v Using Jython:
AdminTask.showWSNTopicDocument(newTopicDoc)

v Using Jacl:
$AdminTask showWSNTopicDocument $newTopicDoc

Show the contents of the topic namespace document newTopicDoc created in the example from topic
“Applying a WS-Notification topic namespace document by using the wsadmin tool”, by using the
WSNTopicNamespace target pattern:

v Using Jython:
AdminTask.showWSNTopicDocument(newTopicNamespace,
[“-url”, “http://www.example.org/instance_doc1.xml”])

v Using Jacl:
$AdminTask showWSNTopicDocument $newTopicNamespace
{ -url http://www.example.org/instance_doc1.xml }

getWSN_SIBWSInboundService command
Use the getWSN_SIBWSInboundService command to retrieve a reference to an inbound service that is
associated with a Version 6.1 WS-Notification service.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command retrieves a reference to a specified service integration bus inbound service associated with
a Version 6.1 WS-Notification service. Only use this command with Version 6.1 WS-Notification services.
There are no bus-enabled inbound services associated with a Version 7.0 WS-Notification service.

3182 Administering WebSphere applications



Target object

WSNService

Required parameters

-type
The type of inbound service to retrieve. Valid options are:

v BROKER (notification broker)

v SUB_MGR (subscription manager)

v PUB_REG_MGR (publisher registration manager)

Conditional parameters

None.

Optional parameters

None.

Example

Retrieve a reference to the notification broker inbound service from the Version 6.1 WS-Notification service
newService created in the example from topic “Creating a new WS-Notification service by using the
wsadmin tool”:
brokerInboundService = AdminTask.getWSN_SIBWSInboundService(newService, [“-type”, “BROKER”] )

getWSN_SIBWSInboundPort command
Use the getWSN_SIBWSInboundPort command to retrieve a reference to an inbound port associated with a
Version 6.1 WS-Notification service point.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

This command retrieves a reference to a specified service integration bus inbound port associated with a
Version 6.1 WS-Notification service point. Only use this command with Version 6.1 WS-Notification
services. There are no bus-enabled inbound ports associated with a Version 7.0 WS-Notification service
point..

Target object

WSNServicePoint

Chapter 28. Administering web services - Notification (WS-Notification) 3183



Required parameters

-type
The type of service integration bus inbound port to retrieve. Valid options are:

v BROKER (notification broker)

v SUB_MGR (subscription manager)

v PUB_REG_MGR (publisher registration manager)

Conditional parameters

None.

Optional parameters

None.

Example

Retrieve a reference to the subscription manager service integration bus inbound port from the Version 6.1
WS-Notification service point newServicePoint created in the example from topic “Creating a new
WS-Notification service point by using the wsadmin tool”:
subManInboundPort = AdminTask.getWSN_SIBWSInboundPort(newServicePoint, [“-type”, “SUB_MGR”] )

createJAXWSHandler command
Use the createJAXWSHandler command to create a new Java API for XML-based Web Services (JAX-WS)
handler configuration so that the handler can be used, as part of a handler list, with Version 7.0
WS-Notification services.

You can create a new JAX-WS handler configuration by using the wsadmin tool as described in this topic,
or by using the administrative console as described in “Creating a new JAX-WS handler configuration” on
page 3117.

This task assumes that you have already created your handler. You can do this by using IBM Rational
Application Developer or a similar tool. You must also make the handler class available to the server or
cluster that hosts the WS-Notification service points (for inbound invocation handling) or WS-Notification
services (for outbound invocation handling) that you want to monitor, as detailed in “Loading JAX-WS
handler classes” on page 3116.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

3184 Administering WebSphere applications



Purpose

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. This command creates a new JAX-WS handler configuration so that the handler can be used, as
part of a handler list, with Version 7.0 WS-Notification services.

The configuration object associates a unique name (the name parameter) with a Java class (the className
parameter) that refers to the JAX-WS handler implementation.

Target Object

A cell scope object.

Required parameters

-name
The name of the JAX-WS handler configuration object.

This name must be unique at cell scope, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

-className
The name of the JAX-WS handler class that this configuration object represents. This name must be a
fully qualified java class name. For example com.ibm.jaxws.handler.TestHandler.

Note: You can configure multiple instances of a handler by creating each instance with a different
handler name, and pointing to the same handler class.

Conditional parameters

None.

Optional parameters

-description
A description of the JAX-WS handler.

Example

Create the configuration for a particular JAX-WS handler class:

v Using Jython:
targetCell = AdminConfig.list(’Cell’)
JAXWSHandler = AdminTask.createJAXWSHandler(targetCell,
["-name", "handler1", "-className", "handlerClass", "-description", "desc"])

v Using Jacl:
$AdminTask createJAXWSHandler targetCell
{-name handler1 -className handlerClass -description desc}

modifyJAXWSHandler command
Use the modifyJAXWSHandler command to modify a Java API for XML-based Web Services (JAX-WS)
handler configuration for a handler that is used, as part of a handler list, with Version 7.0 WS-Notification
services.

Chapter 28. Administering web services - Notification (WS-Notification) 3185



You can modify a JAX-WS handler configuration by using the wsadmin tool as described in this topic, or
by using the administrative console as described in “Modifying an existing JAX-WS handler configuration”
on page 3118.

If you modify a handler class but do not change the class name, you do not have to modify the handler
configuration as described in this topic. You just have to stop then restart the servers or clusters that host
the services or service points that this handler monitors.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. This command modifies a JAX-WS handler configuration that can be used, as part of a handler
list, with Version 7.0 WS-Notification services.

The configuration object associates a unique name (the name parameter) with a Java class (the className
parameter) that refers to the JAX-WS handler implementation.

Target Object

A JAX-WS handler configuration object.

Required parameters

-name
The name of the JAX-WS handler configuration object.

This name must be unique at cell scope, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

Note: When you change a handler name, the system looks up all objects that refer to it and updates
the name.

-className
The name of the JAX-WS handler class that this configuration object represents. This name must be a
fully qualified java class name. For example com.ibm.jaxws.handler.TestHandler.

3186 Administering WebSphere applications



If you change the class name, you must also make the new handler class available to the server or
cluster that hosts the WS-Notification service points (for inbound invocation handling) or
WS-Notification services (for outbound invocation handling) that you want to monitor, as detailed in
“Loading JAX-WS handler classes” on page 3116.

Note: You can configure multiple instances of a handler by creating each instance with a different
handler name, and pointing to the same handler class.

Conditional parameters

None.

Optional parameters

-description
A description of the JAX-WS handler.

Example

Modify the configuration for a particular JAX-WS handler class:

v Using Jython:
AdminTask.modifyJAXWSHandler(JAXWSHandler,
["-name", "newHandler1", "-className", "newHandlerClass",
"-description", "newDesc"] )

v Using Jacl:
$AdminTask modifyJAXWSHandler JAXWSHandler
{-name newHandler1 -className newHandlerClass
-description newDesc}

deleteJAXWSHandler command
Use the deleteJAXWSHandler command to delete the configuration for a Java API for XML-based Web
Services (JAX-WS) handler that is configured for use, as part of a handler list, with Version 7.0
WS-Notification services.

You can delete a JAX-WS handler configuration by using the wsadmin tool as described in this topic, or by
using the administrative console as described in “Deleting JAX-WS handler configurations” on page 3119.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Chapter 28. Administering web services - Notification (WS-Notification) 3187



Purpose

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. This command deletes the specified JAX-WS handler configuration that enables the handler to be
used (as part of a handler list) with Version 7.0 WS-Notification services.

When you remove a handler that is currently used by one or more web services on a service integration
bus, the system removes the handler from the handler lists for each associated web service.

Target object

The JAX-WS handler configuration object that is to be deleted.

Parameters

None.

Example

Delete the JAX-WS handler configuration object JAXWSHandler.

v Using Jython:
AdminTask.deleteJAXWSHandler(JAXWSHandler)

v Using Jacl:
$AdminTask deleteJAXWSHandler JAXWSHandler

listJAXWSHandlers command
Use the listJAXWSHandlers command to list the Java API for XML-based Web Services (JAX-WS)
handlers that are configured for use, as part of a handler list, with Version 7.0 WS-Notification services.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. This command lists all the JAX-WS handlers, for a given cell, that are configured for use, as part
of a handler list, with Version 7.0 WS-Notification services.

Target Object

A cell scope object.

3188 Administering WebSphere applications



Parameters

None.

Example

List the JAX-WS Handler configuration objects for a given cell:

v Using Jython:
targetCell = AdminConfig.list(’Cell’)
AdminTask.listJAXWSHandlers(targetCell)

v Using Jacl:
$AdminTask listJAXWSHandlers targetCell

showJAXWSHandler command
Use the showJAXWSHandler command to show the properties of a Java API for XML-based Web Services
(JAX-WS) handler that is configured for use (as part of a handler list) with Version 7.0 WS-Notification
services.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. This command shows the properties of the specified JAX-WS handler configuration that enables
the handler to be used (as part of a handler list) with Version 7.0 WS-Notification services.

Target object

A JAX-WS handler configuration object.

Parameters

None.

Example

Show the properties of the JAX-WS handler configuration object JAXWSHandler.

v Using Jython:
AdminTask.showJAXWSHandler(JAXWSHandler)

v Using Jacl:
$AdminTask showJAXWSHandler JAXWSHandler

Chapter 28. Administering web services - Notification (WS-Notification) 3189



createJAXWSHandlerList command
Use the createJAXWSHandlerList command to create a Java API for XML-based Web Services (JAX-WS)
handler list for use with Version 7.0 WS-Notification services.

You can create a new JAX-WS handler list by using the wsadmin tool as described in this topic, or by
using the administrative console as described in “Creating a new JAX-WS handler list” on page 3120.

You can only add previously-configured handlers to a handler list. To configure a handler, see the
“createJAXWSHandler command” on page 3184.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. To enable handlers to undertake more complex operations, you chain them together into handler
lists. The approach taken in WebSphere Application Server is to assign handler lists (rather than individual
handlers) to WS-Notification service points (for inbound invocation handling) or WS-Notification services
(for outbound invocation handling).

Target Object

A cell scope object.

Required parameters

-name
The name of the JAX-WS handler list.

This name must be unique at cell scope, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

For example TestList.

Conditional parameters

None.

3190 Administering WebSphere applications



Optional parameters

-description
A description of the JAX-WS handler list.

-handlers
The list of JAX-WS handler names to be added to this list.

Each handler name supplied must exist as a JAX-WS handler object at cell scope. Handlers are
applied in the sequence in which they appear in the handler list.

Example

Create the configuration for a particular JAX-WS handler list class:

v Using Jython:
targetCell = AdminConfig.list(’Cell’)
JAXWSHandlerList = AdminTask.createJAXWSHandlerList(targetCell,
’[-name handlerList1 -description desc -handlers [[handler1] [handler2]]]’)

v Using Jacl:
$AdminTask createJAXWSHandlerList targetCell
{-name handlerList1 -description desc -handlers {{handler1}{handler2}} }

modifyJAXWSHandlerList command
Use the modifyJAXWSHandlerList command to modify the configuration details for a Java API for
XML-based Web Services (JAX-WS) handler list that has been configured for use with Version 7.0
WS-Notification services.

You can modify a JAX-WS handler list by using the wsadmin tool as described in this topic, or by using
the administrative console as described in “Modifying an existing JAX-WS handler list” on page 3121.

You can only add previously-configured handlers to a handler list. To configure a handler, see the
“createJAXWSHandler command” on page 3184.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. To enable handlers to undertake more complex operations, you chain them together into handler
lists. The approach taken in WebSphere Application Server is to assign handler lists (rather than individual

Chapter 28. Administering web services - Notification (WS-Notification) 3191



handlers) to WS-Notification service points (for inbound invocation handling) or WS-Notification services
(for outbound invocation handling).

Target Object

A JAX-WS handler list object.

Required parameters

-name
The name of the JAX-WS handler list.

This name must be unique at cell scope, and it must obey the following syntax rules:

v It must not start with “.” (a period).

v It must not start or end with a space.

v It must not contain any of the following characters: \ / , # $ @ : ; " * ? < > | = + & % ’

When you change a handler list name, the system looks up all objects that refer to it and updates the
name.

Conditional parameters

None.

Optional parameters

-description
A description of the JAX-WS handler list.

-handlers
The list of JAX-WS handler names to be added to this list.

Each handler name supplied must exist as a JAX-WS handler object at cell scope. Handlers are
applied in the sequence in which they appear in the handler list.

Example

Modify the configuration for a particular JAX-WS handler list class:

v Using Jython:
JAXWSHandlerList = AdminTask.modifyJAXWSHandlerList(JAXWSHandlerList,
’[-name newHandlerList1 -description newDesc -handlers [[handler1] [handler2]]]’)

v Using Jacl:
$AdminTask modifyJAXWSHandlerList JAXWSHandlerList
{-name handlerList1 -description newDesc -handlers {{handler1}{handler2}} }

deleteJAXWSHandlerList command
Use the deleteJAXWSHandlerList command to delete the configuration for a Java API for XML-based Web
Services (JAX-WS) handler list that is configured for use with Version 7.0 WS-Notification services.

You can delete a JAX-WS handler list by using the wsadmin tool as described in this topic, or by using the
administrative console as described in “Deleting JAX-WS handler lists” on page 3123.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

3192 Administering WebSphere applications



Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration by using the following command:

AdminConfig.save()

Purpose

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. This command deletes the specified JAX-WS handler list.

When you remove a handler that is currently used by one or more web services on a service integration
bus, the system removes the handler from the handler lists for each associated web service.

Target object

The JAX-WS handler list object that is to be deleted.

Parameters

None.

Example

Delete the JAX-WS handler list object JAXWSHandlerList:

v Using Jython:
AdminTask.deleteJAXWSHandlerList(JAXWSHandlerList)

v Using Jacl:
$AdminTask deleteJAXWSHandlerList JAXWSHandlerList

listJAXWSHandlerLists command
Use the listJAXWSHandlerLists command to list the Java API for XML-based Web Services (JAX-WS)
handler lists that are configured, for a given cell, for use with Version 7.0 WS-Notification services.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Chapter 28. Administering web services - Notification (WS-Notification) 3193



Purpose

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. To enable handlers to undertake more complex operations, you chain them together into handler
lists. This command lists all the JAX-WS handler lists for a given cell.

Target Object

A cell scope object.

Parameters

None.

Example

List the JAX-WS handler lists for a given cell:

v Using Jython:
targetCell = AdminConfig.list(’Cell’)
AdminTask.listJAXWSHandlerLists(targetCell)

v Using Jacl:
$AdminTask listJAXWSHandlerLists targetCell

showJAXWSHandlerList command
Use the showJAXWSHandlerList command to show the properties of a Java API for XML-based Web
Services (JAX-WS) handler list that is configured for use with Version 7.0 WS-Notification services.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see Configuring Qshell
to run WebSphere scripts using wsadmin scripting.

Command-line help is provided for service integration bus commands:

v For a list of the available WS-Notification commands, plus a brief description of each command, enter
the following command at the wsadmin prompt:

print AdminTask.help('WSNotificationCommands')

v For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

Purpose

A Java API for XML-based Web Services (JAX-WS) handler is a Java class that performs a range of
handling tasks. For example: logging messages, or transforming their contents, or terminating an incoming
request. To enable handlers to undertake more complex operations, you chain them together into handler
lists. This command shows the properties of the specified JAX-WS handler list.

Target object

A JAX-WS handler list object.

3194 Administering WebSphere applications



Parameters

None.

Example

Show the properties of the JAX-WS handler list JAXWSHandlerList:

v Using Jython:
AdminTask.showJAXWSHandlerList(JAXWSHandlerList)

v Using Jacl:
$AdminTask showJAXWSHandlerList JAXWSHandlerList

WS-Notification roles and goals
This topics lists a set of computing roles that members of your organization might perform, and explains
how you can use WS-Notification to help meet the goals of each role.

For a general description of each of the following roles, see WebSphere Application Server roles and
goals.

Enterprise architect

IT environments are currently evolving towards the following concepts:

v Service Oriented Architecture (SOA)

v Enterprise Service Bus (ESB)

The goal of the enterprise architect might be to guide their organization towards appropriate utilization of
these concepts to maximize the efficiency and responsiveness of the business as a whole.

WS-Notification enables publish and subscribe communication patterns (such as a stock ticker) to be
exposed by using web services in an SOA environment. This is done through open standards, enabling
straightforward replacement of the service implementation. It promotes easy exchange of data between
suppliers and customers through use of standard web service operations and prevents vendor lock-in or
adoption of proprietary standards.

WebSphere Application Server also allows WS-Notification to be used as an on- or off-ramp to an ESB,
providing seamless interchange of data between different types of client connected to the bus.

Solution architect

The main goal of the solution architect is to design a solution that supports the specification set by the
enterprise architect. This might include providing an environment in which web service applications can
participate in publish and subscribe messaging patterns. This participation might also include the
requirement to be able to exchange event notifications between web service clients and other clients of the
enterprise service bus.

To create a design, the solution architect completes the following broad steps:

v Learn about the support provided for WS-Notification in WebSphere Application Server.

v Select a hardware and software product combination for the enterprise that supports the WS-Notification
standards.

v Design a server topology to host the applications, in accordance with the particular WS-Notification
topologies that are to be implemented.

Chapter 28. Administering web services - Notification (WS-Notification) 3195



System administrator

For the specific steps that the system administrator performs to help implement common WS-Notification
tasks, see the following topics:

v “Using a script to get up and running quickly with WS-Notification” on page 3062.

v “Configuring a WS-Notification service for use only by WS-Notification applications” on page 3066.

v “Providing access for WS-Notification applications to an existing bus topic space” on page 3067.

v “Securing WS-Notification” on page 3068.

v “Configuring JAX-WS handlers” on page 3070.

v “Applying a JAX-WS handler list to a WS-Notification service” on page 3071.

v “Configuring a Version 7.0 WS-Notification service with Web service QoS” on page 3072.

v “Configuring WS-Notification for reliable notification” on page 3074.

v “Migrating a Version 6.1 WS-Notification configuration from WebSphere Application Server Version 6.1
to Version 7.0 or later” on page 3075.

v “Preparing a migrated Version 6.1 WS-Notification configuration for reliable notification” on page 3076.

v “Interacting at run time with WS-Notification” on page 3080.

v “Publishing the WSDL files for a WS-Notification application to a compressed file” on page 3082.

Application developer

If the solution architect specifies a requirement to insert event notifications into the system (that is publish
messages) or receive event notifications from the system as a result of creating a subscription containing
an interest profile, then the application developer can use WS-Notification to meet this requirement.

There are various patterns of producing and consuming application defined by WS-Notification that are
available for use by the application developer, depending upon the exact requirements of the application in
question. These options are explored in the following common WS-Notification tasks:

v Writing a WS-Notification application that exposes a web service endpoint.

v Writing a WS-Notification application that does not expose a web service endpoint.

See also Developing applications that use WS-Notification and Filtering the message content of
publications.

3196 Administering WebSphere applications



Chapter 29. Administering web services - Policy (WS-Policy)

WS-Policy is an interoperability standard that is used to describe and communicate the policies of a web
service so that service providers can export policy requirements in a standard format. Clients can combine
the service provider requirements with their own capabilities to establish the policies required for a specific
interaction. This product conforms to the WS-Policy specification, so that policy information can be
exchanged and received in accordance with the WS-Policy standard.

Web services are self-contained, modular applications that can be described, published, located, and
invoked over a network. They implement a services oriented architecture (SOA), which supports the
connecting or sharing of resources and data in a very flexible and standardized manner. Services are
described and organized to support their dynamic, automated discovery and reuse.

Using WS-Policy to exchange policies in a standard format
WS-Policy is an interoperability standard that is used to describe and communicate the policies of a web
service so that service providers can export policy requirements in a standard format. Clients can combine
the service provider requirements with their own capabilities to establish the policies required for a specific
interaction. WebSphere Application Server conforms to the WS-Policy specification, so that policy
information can be exchanged and received in accordance with the WS-Policy standard.

About this task

For more information about using WS-Policy, see the following topics.

Procedure
v Configure a service provider to share its policy configuration

v Configure the client policy to use a service provider policy

v Configure the client policy to use a service provider policy from a registry

v Configure a service provider to share its policy configuration by using wsadmin scripting

v Configure the client policy based on a service provider policy by using wsadmin scripting

v Configure security for a WS-MetadataExchange request

Configuring a service provider to share its policy configuration
A WebSphere Application Server service provider can share its policy configuration in published Web
Services Description Language (WSDL), or WSDL that is obtained by using an HTTP GET request or the
Web Services Metadata Exchange (WS-MetadataExchange) GetMetadata request.

Before you begin

You have developed a web services service provider that contains all the necessary artifacts and deployed
your web services application into your application server instance. You have attached the policy sets and
managed the associated bindings.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see the topic
about learning about WS-Policy.

About this task

You can make the policy configuration of a Java API for XML-Based Web Services (JAX-WS) service
endpoint available to share in the following ways:

v Include the policy configuration of the service provider in the WSDL. The WSDL is then available to
publish, or to obtain by using an HTTP GET request.

© IBM Corporation 2009 3197



v Enable the Web Services Metadata Exchange (WS-MetadataExchange) protocol so that the policy
configuration of the service provider is included in the WSDL and is available to a WS-
MetadataExchange GetMetadata request. An advantage of using the WS-MetadataExchange protocol is
that you can apply message-level security to WS-MetadataExchange GetMetadata requests by using a
suitable system policy set.

If the service provider application uses multipart WSDL, all the WSDL must be local to the web service
application. For more information about multipart WSDL, see the topic about WSDL.

You must configure a service provider to share its policy configuration because by default the policy
configuration is not available in its WSDL. You can configure the service provider to include the policy
configuration in its WSDL, to use WS-MetadataExchange so that the policy configuration is available, or
both. This topic describes how to configure a service provider to share its policy configuration by using the
administrative console. You can also configure a service provider to share its policy configuration by using
wsadmin commands or Rational Application Developer tools.

You can configure a service provider to share its policy configuration at application or service level. The
policy configuration that is represented by the policy sets attached to any lower levels will also be shared.
Policy sets that are attached at lower levels override the policy set configuration attached at a higher level.

Procedure
1. From the navigation pane of the administrative console, click Applications > Application Types >

WebSphere enterprise applications > service_provider_application_instance > [Web services
properties] Service provider policy sets and bindings.

2. In the row for the application or service where the provider policy that you want to share is attached,
click the link in the Policy sharing column. The link is either Enabled or Disabled. The Policy Sharing
pane is displayed.

3. To include the policy configuration of the service provider in its WSDL so that it can be either published
or obtained by using an HTTP GET request, select Exported WSDL.

4. To enable WS-MetadataExchange and make the policy configuration of the service provider available
to a WS-MetadataExchange GetMetada request, select WS-MetadataExchange request.

5. Optional: If you select WS-MetadataExchange request and you want to use message-level security,
select Attach a system policy set to the WS-MetadataExchange, then select a suitable policy set
and binding from the drop-down lists. See “Configuring security for a WS-MetadataExchange request”
on page 3209.

6. Click OK and save your changes to the master configuration.

Results

The policy configuration of the service provider is available to its clients. The WSDL of the service provider
contains the current policy configuration in WS-PolicyAttachments format so that it is available to other
clients, service registries, or services that support the Web Services Policy (WS-Policy) specification. The
link in the Policy Sharing column on the Service provider policy sets and bindings pane changes to
Enabled.

If the policy configuration cannot be shared, an error that describes the problem is written to the service
provider error log, and the following policy is attached to the WSDL of the service provider:
<wsp:Policy>
<wsp:ExactlyOne>
</wsp:ExactlyOne>
</wsp:Policy>

This policy notifies the client that there is no acceptable policy configuration for the service. Other aspects
of the WSDL are unaffected.

3198 Administering WebSphere applications



A service provider might not be able to share its policy configuration because the configuration cannot be
expressed in the standard WS-PolicyAttachments format. One reason might be because multiple
incompatible policies are defined for a particular attach point. Another reason might be because there is
not enough binding information to generate the standard policy. Policy configuration might include
bootstrap policy, for example, the policy to access a WS-Trust service, so the bootstrap policy must also
be expressed in WS-PolicyAttachments format.

Configuring a service provider to share its policy configuration using wsadmin
scripting
A WebSphere Application Server service provider can share its policy configuration in published Web
Services Description Language (WSDL), or WSDL that is obtained by using an HTTP GET request or the
Web Services Metadata Exchange (WS-MetadataExchange) GetMetadata request.

Before you begin

You have developed a web services service provider that contains all the necessary artifacts and deployed
your web services application into your application server instance. You have attached the policy sets and
managed the associated bindings.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see the topic
about learning about WS-Policy.

About this task

You can make the policy configuration of a Java API for XML-Based Web Services (JAX-WS) service
endpoint available to share in the following ways:

v Include the policy configuration of the service provider in the WSDL. The WSDL is then available to
publish, or to obtain by using an HTTP GET request.

v Enable the Web Services Metadata Exchange (WS-MetadataExchange) protocol so that the policy
configuration of the service provider is included in the WSDL and is available to a WS-
MetadataExchange GetMetadata request. An advantage of using the WS-MetadataExchange protocol is
that you can apply message-level security to WS-MetadataExchange GetMetadata requests by using a
suitable system policy set.

If the service provider application uses multipart WSDL, all the WSDL must be local to the web service
application. For more information about multipart WSDL, see the topic about WSDL.

You must configure a service provider to share its policy configuration because by default the policy
configuration is not available in its WSDL. You can configure the service provider to include the policy
configuration in its WSDL, to use WS-MetadataExchange so that the policy configuration is available, or
both. This topic describes how to configure a service provider to share its policy configuration by using
wsadmin commands. You can also use the administrative console or Rational Application Developer tools.

You can configure a service provider to share its policy configuration at application or service level. The
policy configuration that is represented by the policy sets attached to any lower levels will also be shared.
Policy sets that are attached at lower levels override the policy set configuration attached at a higher level.

Procedure
1. Start the wsadmin scripting client if it is not already running.

2. Use the SetProviderPolicySharingInfo command. For example:
AdminTask.setProviderPolicySharingInfo(’[-applicationName WebServiceProviderApplication
-resource WebService:/WebServiceProvider.war:{http://example_path/}Service1
-sharePolicyMethods [httpGet ]]’)

3. Save your changes to the master configuration.

To save your configuration changes, enter the following command:

Chapter 29. Administering web services - Policy (WS-Policy) 3199



AdminConfig.save()

Results

The policy configuration of the service provider is available to its clients. The WSDL of the service provider
contains the current policy configuration in WS-PolicyAttachments format so that it is available to other
clients, service registries, or services that support the Web Services Policy (WS-Policy) specification.

If the policy configuration cannot be shared, an error that describes the problem is written to the service
provider error log, and the following policy is attached to the WSDL of the service provider:
<wsp:Policy>
<wsp:ExactlyOne>
</wsp:ExactlyOne>
</wsp:Policy>

This policy notifies the client that there is no acceptable policy configuration for the service. Other aspects
of the WSDL are unaffected.

A service provider might not be able to share its policy configuration because the configuration cannot be
expressed in the standard WS-PolicyAttachments format. One reason might be because multiple
incompatible policies are defined for a particular attach point. Another reason might be because there is
not enough binding information to generate the standard policy. Policy configuration might include
bootstrap policy, for example, the policy to access a WS-Trust service, so the bootstrap policy must also
be expressed in WS-PolicyAttachments format.

What to do next

Optionally, you can publish the WSDL files.

setProviderPolicySharingInfo command:

Use the setProviderPolicySharingInfo command to set how an application or service that is a web
service provider can share its policy configuration with other clients, service registries, or services that
support the WS-Policy specification. You can set or remove this information about how a provider policy is
shared.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available policy set management administrative commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('PolicySetManagement')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

3200 Administering WebSphere applications



Purpose

Use the setProviderPolicySharingInfo command to set how an application, or a service in an application,
shares its policy configuration with clients, service registries, or services that support the WS-Policy
specification. The policy configuration is shared in WS-PolicyAttachments format.

The policy configuration of the resource can be shared with clients through a WS-MetadataExchange
request, through Web Services Description Language (WSDL) exported by a ?WSDL HTTP Get request, or
through both methods.

Target object

None.

Required parameters

-applicationName
The name of the application for which you want to set how the provider policy is shared. (String)

-resource
The name of the resource for which you want to set how the provider policy is shared. For all
resources in an application, specify WebService:/. For a service in an application, specify
WebService:/module:{namespace}service_name. Endpoints or operations inherit the settings of the
parent application or service. (String)

Optional parameters

-sharePolicyMethods
Specifies how the policy configuration of the resource can be shared. (String array)

Enter either or both of the following values:

httpGet
The resource can share its policy configuration through WSDL that is obtained by a ?WSDL
HTTP Get request.

wsMex The resource can share its policy configuration through a WS-MetadataExchange request.

-wsMexProperties
Specifies that message-level security is required for WS-MetadataExchange requests and specifies the
settings that provide the message-level security. (Properties)

Enter the following values, following each value with the setting that you require for that value:

wsMexPolicySetName
The name of the system policy set that specifies message-level security when the resource
shares its policy configuration through a WS-MetadataExchange request. Specify a system
policy set that contains only WS-Security policies, only WS-Addressing policies, or both. The
default policy set is SystemWSSecurityDefault.

wsMexPolicySetBinding
The name of the general binding for the policy set attachment when the resource shares its
policy configuration through a WS-MetadataExchange request. Specify a general binding that
is scoped to the global domain, or scoped to the security domain of this service. If you do not
specify this property, the default binding is used.

This parameter is valid only when you specify wsMex for the sharePolicyMethods parameter.

-remove
Specifies whether the information about how the provider policy is shared is removed from the
resource. (Boolean)

Chapter 29. Administering web services - Policy (WS-Policy) 3201



This parameter takes the following values:

true The information about how the provider policy is shared is removed from the resource.

false This value is the default. The information about how the provider policy is shared is not
removed from the resource.

Examples

The following example removes the information about how the provider policy is shared from the
WSSampleServices application:
AdminTask.setProviderPolicySharingInfo(’[-applicationName WSSampleServices
-resource WebService:/ -remove true]’)

The following example enables policy sharing, using WSDL exported by a ?WSDL HTTP Get request, for the
EchoService service in the WSSampleServices application:
AdminTask.setProviderPolicySharingInfo(’[-applicationName WSSampleServices
-resource WebService:/WSSampleServicesSei.war:{http://example_path/}EchoService
-sharePolicyMethods [httpGet ]]’)

The following example enables policy sharing, using a WS-MetadataExchange request with message-level
security, for the WSSampleServices application. Message level security is provided by the
SystemWSSecurityDefault policy set and the “Provider sample” general binding.
AdminTask.setProviderPolicySharingInfo(’[-applicationName WSSampleServices
-resource WebService:/ -sharePolicyMethods [wsMex ]
-wsMexProperties [ [wsMexPolicySetName [SystemWSSecurityDefault]]
[wsMexPolicySetBinding [Provider sample]] ]]’)

getProviderPolicySharingInfo command:

Use the getProviderPolicySharingInfo command to find out whether an application or service that is a
web service provider can share its policy configuration, and list the properties that apply to sharing that
configuration.

To run the command, use the AdminTask object of the wsadmin scripting client.

The wsadmin scripting client is run from Qshell. For more information, see the topic “Configure
Qshell to run WebSphere Application Server scripts”.

This command is valid only when it is used with WebSphere Application Server Version 7 and later
application servers. Do not use it with earlier versions.

For a list of the available policy set management administrative commands, plus a brief description of each
command, enter the following command at the wsadmin prompt:

print AdminTask.help('PolicySetManagement')

For overview help on a given command, enter the following command at the wsadmin prompt:

print AdminTask.help('command_name')

After using the command, save your changes to the master configuration. For example, use the following
command:

AdminConfig.save()

3202 Administering WebSphere applications



Purpose

Use the getProviderPolicySharingInfo command to find out how a web services application, or a service
in a Web services application, shares its policy configuration with clients, service registries, or services that
support the WS-Policy specification. The policy configuration is shared in WS-PolicyAttachments format.

The command returns properties that show whether the policy configuration of the resource can be shared
with clients through a WS-MetadataExchange request or through Web Services Description Language
(WSDL) that is obtained by a ?WSDL HTTP Get request.

Target object

None.

Required parameters

-applicationName
The name of the application for which you want to find out how it shares its policy configuration. The
application must be a service provider. (String)

Optional parameters

-resource
The name of the resource for which you want to find out how it shares its policy configuration. If you
specify this parameter, only the properties for that resource are returned. To retrieve information for the
application, specify WebService:/. Alternatively, you can specify a service, endpoint or operation.
However, policy sets are attached only at the application or service level, so the properties returned for
an endpoint or operation are the settings that are inherited from the service. (String)

Return value

Returns a list of properties that include the resource name and that show whether the policy configuration
of the resource can be shared. The following properties can be returned:

wsMexPolicySetName
The name of the policy set that specifies message-level security when the resource shares its policy
configuration through a WS-MetadataExchange request. This property is returned if the value of the
sharePolicyMethods property is wsMex and a policy set to provide message-level security was
specified.

wsMexPolicySetBinding
The name of the binding that is applied when the resource shares its policy configuration through a
WS-MetadataExchange request. This property is returned if the value of the sharePolicyMethods
property is wsMex and a binding to provide message-level security was specified.

resource
The resource that you specified.

directSetting
How the properties apply to the resource. Valid values for this property are:

true
The properties apply directly to the resource.

false
The properties are inherited from the parent application or service.

sharePolicyMethods
How the policy configuration of the resource can be shared. Valid values for this property are:

Chapter 29. Administering web services - Policy (WS-Policy) 3203



httpGet
The resource shares its policy configuration through an HTTP Get request.

wsMex
The resource shares its policy configuration through a WS-MetadataExchange request.

Example

The following command displays the policy sharing configuration properties for the EchoService service in
the WSSampleServices application. The provider is configured to share its policy through an HTTP Get
request, and a WS-MetadataExchange request with message-level security. Message-level security for the
WS-MetadataExchange request is provided by using the SystemWSSecurityDefault policy set and the
“Provider sample” general binding.
AdminTask.getProviderPolicySharingInfo([’-applicationName’, ’WSSampleServices’,
’-resource’, ’WebService:/SampleServicesSei.war:{http://example_path/}EchoService’])
.
.
[ [wsMexPolicySetName SystemWSSecurityDefault] [wsMexPolicySetBinding [Provider sample]]
[resource WebService:/SampleServicesSei.war:{http://example_path/}EchoService/]
[directSetting true] [sharePolicyMethods [httpGet wsMex]] ]

Configuring the client policy to use a service provider policy
An application that is a web service client can obtain the policy configuration of a web service provider and
use this information to establish a policy configuration that is acceptable to both the client and the service
provider.

Before you begin

You have developed a web service client that contains all the necessary artifacts, and deployed your web
services application into your application server instance. If you require them, you have attached the policy
sets and managed the associated bindings.

The service provider must publish its policy in its Web Services Description Language (WSDL) and that
policy must contain its policy configuration at run time in WS-PolicyAttachments format. The client must be
able to support those provider policies.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see the
WS-Policy topic.

About this task

You can administer the client to configure itself dynamically at run time, based on the policy of the service
provider in the standard WS-PolicyAttachments format. You can administer the client to apply dynamically
the provider policy at the application or service or service reference level. By default, endpoints and
operations inherit their policy configuration from the relevant service. However, it is possible to configure a
service reference to override the service, in which case the endpoints and operations inherit their policy
configuration from the service reference.

If the provider policy uses multipart WSDL, you can use an HTTP GET request to obtain the policy of the
provider, but you cannot use the WS-MetadataExchange protocol. For more information about multipart
WSDL, see the topic about WSDL.

Policy intersection is the comparison of a client policy and a provider policy to determine whether they are
compatible, and the calculation of a new policy, known as the effective policy, that complies with both their
requirements and capabilities.

3204 Administering WebSphere applications



This topic describes how to configure the client policy to use a service provider policy by using the
administrative console. You can also configure the client policy to use a service provider policy by using
wsadmin commands.

Procedure
1. From the navigation panel of the administrative console, click Applications > Application Types >

WebSphere enterprise applications > service_client_application_instance > [Web services
properties] Service client policy sets and bindings.

2. In the row for the application or service where you want to apply the policy, click the link in the Policies
Applied column. The Policies Applied panel is displayed.

3. Select one of the following options from the drop-down list:

v Provider policy only. Configure the client based solely on the policy of the service provider. This
option is available when a client policy set is not attached.

v Client and provider policy. Configure the client based on both the client policy set and the policy of
the service provider. This option is available when a client policy set is attached.

The other options in the list do not apply to this task.

4. Use the radio buttons to select which method to employ to obtain the provider policy: an HTTP GET
request (see step 5) or a WS-MetadataExchange request (see step 6).

5. Optional: To obtain the provider policy by using an HTTP GET request, click HTTP GET request. By
default, the HTTP GET request is targeted at the URL for the service endpoint followed by ?WSDL. For
example:

http://myhost:9080/WSSampleSei/EchoService?WSDL

When the policy set attach point is at the application level you cannot change this value.

a. Optional: If you are applying a policy to a service and the provider policy is located at the service
endpoint, ensure that Use the default request target is selected.

b. Optional: If you are applying a policy to a service and the provider policy is not located at the
service endpoint, click Specify request target, then enter the URL for the location of the provider
policy in the field. For example, you might change the target of the HTTP GET request if the
provider policy is located in a repository.

c. Optional: If you select HTTP GET request as the method to be used to obtain the provider policy
and if you select Specify request target and you want to configure transport-level security, select
Attach a system policy set to the HTTP GET request, then select a suitable policy set and
binding from the drop-down lists. Select the policy set you require from the Policy set list to provide
transport-level security for the HTTP GET request. Select from system policy sets that contain
solely HTTP transport policies, solely SSL transport policies, or both; the policy set cannot contain
other policy types. Select the binding you require from the Binding list for the HTTP GET request.
You can select from general bindings that are scoped to the global domain or scoped to the
security domain of this service.

6. Optional: To obtain the provider policy by using a Web Services Metadata Exchange
(WS-MetadataExchange) GetMetadata request, click WS-MetadataExchange request.

a. Optional: If you select WS-MetadataExchange request and want to use message-level security,
select Attach a system policy set to the WS-MetadataExchange request, then select a suitable
policy set and binding from the drop-down lists. See “Configuring security for a
WS-MetadataExchange request” on page 3209.

7. Click OK.

8. Save your changes to the master configuration.

Results

The web application client-side policy is calculated when it is required at run time, based either on the
policy of the service provider, or on the client policy set and the policy of the service provider, depending
on which option you selected. This calculated policy is known as the “effective policy” and is cached as a

Chapter 29. Administering web services - Policy (WS-Policy) 3205



runtime configuration. The effective policy is used for subsequent outbound web service requests to the
endpoint or operation for which the dynamic policy calculation was performed. The policy set configuration
of the client does not change.

The provider policy that the client holds for a service is refreshed the first time that the web service is
invoked after the application is loaded. After that, the provider policy is refreshed when the application
restarts, or if the application explicitly invokes a refresh. When the provider policy is refreshed, the
effective policy is recalculated.

Configuring the client policy to use a service provider policy by using wsadmin
scripting
An application that is a web service client can obtain the policy configuration of a web service provider and
use this information to establish a policy configuration that is acceptable to both the client and the service
provider.

Before you begin

You have developed a web service client that contains all the necessary artifacts, and deployed your web
services application into your application server instance. If you require them, you have attached the policy
sets and managed the associated bindings.

The service provider must publish its policy in its Web Services Description Language (WSDL) and that
policy must contain its policy configuration at run time in WS-PolicyAttachments format. The client must be
able to support those provider policies.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see the
WS-Policy topic.

About this task

You can administer the client to configure itself dynamically at run time, based on the policy of the service
provider in the standard WS-PolicyAttachments format. You can administer the client to dynamically apply
the provider policy at the application or service or service reference level.

Note: If you specify client dynamic policy control at the service reference level, you must use the new
name-value paired list format of the resource string. If you are not specifying client dynamic policy
control at service reference level, you can use either format.

Table 278. How to specify policy control at different levels of the application. For each applicable level of the
application, the table lists the relevant string format command and name-value pair format command needed to
specify policy control and summarizes the associated behavior.
Level String format Name-value pair list format (NEW) Behavior

Type "WebService:/" "type=WebService:/" Indicates all artifacts in the
application

Service "WebService:/myModule:{namespace}myService" "type=WebService:/,module=myModule,service={namespace}myService" Indicates all artifacts within
the web service

Endpoint
(under this
service)

"WebService:/myModule:{namespace}myService/
endpointA"

"type=WebService:/
,module=myModule,service={namespace}myService,endpoint=endpointA"

Indicates all operations for
this endpoint (under the
service)

Operation
(under this
service)

"WebService:/myModule:{namespace}myService/
endpointA/operation1"

"type=WebService:/
,module=myModule,service={namespace}myService,endpoint=endpointA,
operation=operation1"

Indicates a specific single
operation (under the
service)

Service
reference

[Not possible] "type=WebService:/
,module=myModule,service={namespace}myService,serviceRef=myServiceRef"

Indicates all artifacts within
the web service reference

Endpoint
(under this
service
reference)

[Not possible] "type=WebService:/
,module=myModule,service={namespace}myService,serviceRef=myServiceRef,
endpoint=endpointA"

Indicates all operations for
this endpoint (under the
service reference)

Operation
(under this
service
reference)

[Not possible] "type=WebService:/
,module=myModule,service={namespace}myService,serviceRef=myServiceRef,
endpoint=endpointA,operation=operation1"

Indicates a specific single
operation (under the
service reference)

3206 Administering WebSphere applications



If the provider policy uses multipart WSDL, you can use an HTTP GET request to obtain the policy of the
provider, but you cannot use the WS-MetadataExchange protocol. For more information about multipart
WSDL, see the topic about WSDL.

Policy intersection is the comparison of a client policy and a provider policy to determine whether they are
compatible, and the calculation of a new policy, known as the effective policy, that complies with both their
requirements and capabilities.

This topic describes how to configure the client policy to use a service provider policy by using wsadmin
commands. You can also configure the client policy to use a service provider policy by using the
administrative console.

Procedure
1. Start the wsadmin scripting client if it is not already running.

2. Use the SetClientDynamicPolicyControl command. For example:
AdminTask.setClientDynamicPolicyControl(’[-applicationName WebServiceClientApplication
-resource WebService:/ClientApplication.war:{http://example_path/}Service1
-acquireProviderPolicyMethod [httpGet ]
-httpGetProperties [httpGetTargetURI http://example_path]]’)

3. Save your changes to the master configuration.

To save your configuration changes, enter the following command:
AdminConfig.save()

Results

The web application client-side policy is calculated when it is required at run time, based either on the
policy of the service provider, or on the client policy set and the policy of the service provider, depending
on which option you selected. This calculated policy is known as the “effective policy” and is cached as a
runtime configuration. The effective policy is used for subsequent outbound web service requests to the
endpoint or operation for which the dynamic policy calculation was performed. The policy set configuration
of the client does not change.

The provider policy that the client holds for a service is refreshed the first time that the web service is
invoked after the application is loaded. After that, the provider policy is refreshed when the application
restarts, or if the application explicitly invokes a refresh. When the provider policy is refreshed, the
effective policy is recalculated.

Configuring the client policy to use a service provider policy from a registry
An application that is a web service client can obtain the policy configuration of a web service provider
from a registry, such as WebSphere Service Registry and Repository (WSRR), and use this information to
establish a policy configuration that is acceptable to both the client and the service provider.

Before you begin

You have developed a web service client that contains all the necessary artifacts, and deployed your web
services application into your application server instance. If you require them, you have attached the policy
sets and managed the associated bindings.

The Web Services Description Language (WSDL) for the policy of the service provider, and its
corresponding policies and policy attachments, are stored in a registry such as WSRR. That policy must
contain its policy configuration in WS-PolicyAttachments format. The client must be able to support those
provider policies.

Chapter 29. Administering web services - Policy (WS-Policy) 3207



The registry must support the use of HTTP GET requests to publish WSDL that contains WS-Policy
attachments, for example WSRR Version 6.2 or later.

For a list of WS-Policy assertion specifications and WS-Policy domains that are supported, see the
WS-Policy topic.

About this task

You can administer the client to configure itself dynamically at run time, based on the policy of a service
provider that is held in a registry. You can administer the client at the service or service reference level to
dynamically apply the provider policy that it obtains from a registry. By default, endpoints and operations
inherit their policy configuration from the relevant service. However, it is possible to configure a service
reference to override the service, in which case the endpoints and operations inherit their policy
configuration from the service reference. You cannot administer the client to apply dynamically the provider
policy that it obtains from a registry at the application level.

You can configure the client policy to use a service provider policy that is stored in a registry by using the
administrative console. You can also configure the client policy to use a service provider policy that is
stored in a registry by using wsadmin commands.

Procedure
1. From the navigation pane of the administrative console, click Applications > Application Types >

WebSphere enterprise applications.

2. Click the web service client application that you want to configure.

3. Click [Web services properties] Service client policy sets and bindings.

4. In the row for the service where you want to apply the policy, click the link in the Policies Applied
column. You cannot apply the policy at application level. The Policies Applied pane is displayed.

5. Select one of the following options from the drop-down list:

v Provider policy only. Configure the client based solely on the policy of the service provider. This
option is available when a client policy set is not attached.

v Client and provider policy. Configure the client based on both the client policy set and the policy of
the service provider. This option is available when a client policy set is attached.

The other options in the list do not apply to this task.

6. Click HTTP GET request.

7. Click Specify request target, then enter the URL for the location of the provider policy in the field,
that is, the address in the repository for the WSDL and policy. For information about using WSRR to
retrieve a WSDL document with embedded policies, and therefore obtain the required URL, see the
WSRR documentation. The following example shows a typical URL:

https://www.wsrr.host/WSRR/6.2/PolicyService/
WSDL?bsrURI=3b9b493b-278f-4f64.ba3f.dabd30da3f7e

8. Click OK.

9. Optional: If there is a secure connection that uses the Secure Sockets Layer (SSL) protocol between
the client and the registry, ensure that trust is established between the application server and the
registry server. To access the registry, the client uses the SSL transport policy that is part of its
service-level application policy. For example, for WSRR, you can enter the URL for the WSRR server
in a browser window. If the WSRR server is not already trusted, a message is displayed stating that
the security certificate is not trusted. To establish trust, use the following steps:

a. Retrieve and store the X509 certificate from the WSRR server. Use the options on the message
to view details of the certificate and save those details to a file, using distinguished encoding rules
(DER) encoded binary format.

3208 Administering WebSphere applications



b. Find out the key store that the client uses, that is, the key store that is shown by the SSL security
transport bindings of the client application policy set. See Configuring the SSL transport policy.
For example, the key store might be the default trust store for the node.

c. Add the signer certificate that you saved in step a. to the key store that the client uses. See
“Adding a signer certificate to a keystore” on page 1904.

10. Optional: To access the registry, the client uses the transport policy that is part of its service-level
application policy. If the registry requires authentication using the HTTP protocol, configure a valid
user name and password as part of the application-level transport policy binding configuration. It is
advisable to secure any authorization credentials, because they are used for interactions with both
the web service endpoint and the registry.

a. Ensure that the client has a policy set that contains the HTTP transport policy attached to the
application or service level. See the relevant steps in “Managing policy sets and bindings for
service clients at the application level using the administrative console” on page 2760.

b. Configure the HTTP transport client bindings for the binding named Client sample and enter the
user name and password that the registry requires to authenticate outbound service requests.
See the relevant steps in “Configuring the HTTP transport policy” on page 2811.

11. Save your changes to the master configuration.

Results

The web application client-side policy is calculated when it is required at run time, based either on the
policy of the service provider, or on the client policy set and the policy of the service provider, depending
on which option you selected. This calculated policy is known as the “effective policy” and is cached as a
runtime configuration. The effective policy is used for subsequent outbound web service requests to the
endpoint or operation for which the dynamic policy calculation was performed. The policy set configuration
of the client does not change.

The provider policy that the client holds for a service is refreshed the first time that the web service is
invoked after the application is loaded. After that, the provider policy is refreshed when the application
restarts, or if the application explicitly invokes a refresh. When the provider policy is refreshed, the
effective policy is recalculated.

Configuring security for a WS-MetadataExchange request
You can configure message-level security for a Web Services Metadata Exchange (WS-
MetadataExchange) GetMetadata request by specifying a suitable policy set and binding. You do this when
you configure a web service provider to share its policies or a web service client to obtain the policies of a
service provider.

Before you begin

For a service provider, you have completed the procedure to configure a service provider to share its
policy configuration, up to and including the step to enable WS-MetadataExchange.

For a service client, you have completed the procedure to configure the client policy to use a service
provider policy, up to and including the step to use WS-MetadataExchange.

About this task

By default, the WS-MetadataExchange GetMetadata request uses the transport-level security configuration
of the application. You might want to apply message-level security if transport-level security is not available
on the application endpoint, or if transport-level security is not adequate for your requirements. An
advantage of message-level security is that it provides end-to-end security, which is especially important
for the exchange of security metadata.

Chapter 29. Administering web services - Policy (WS-Policy) 3209



You can configure security for a WS-MetadataExchange request by using the administrative console. You
can also configure security for a WS-MetadataExchange request by using wsadmin commands.

Procedure
1. For a service provider, in the Policy Sharing panel on the administrative console, select Attach a

system policy set to the WS-MetadataExchange. For a service client, in the Policies Applied panel
on the administrative console, select Attach a system policy set to the WS-MetadataExchange.

2. Select a system policy set to provide message-level security from the Policy set list. You can select
from system policy sets that contain only WS-Security policies, only WS-Addressing policies, or both.
The default policy set is SystemWSSecurityDefault. If the policy sets that are listed are not suitable for
your requirements, create your own system policy set, then return to this procedure.

3. Select a general binding for the policy set attachment from the Binding list. You can select from
general bindings that are scoped to the global domain, or the security domain of this service. If the
bindings that are listed are not suitable for your requirements, create your own general binding, then
return to this procedure.

4. Click OK.

5. Save your changes to the master configuration.

Results

Message-level security is applied to the WS-MetadataExchange GetMetadata request.

3210 Administering WebSphere applications



Chapter 30. Administering web services - Reliable messaging
(WS-ReliableMessaging)

To configure a web service application to use WS-ReliableMessaging, you attach a policy set that contains
a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed
persistent, managed non-persistent, or unmanaged non-persistent.

Administering reliable web services
To configure a web service application to use WS-ReliableMessaging, you attach a policy set that contains
a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed
persistent, managed non-persistent, or unmanaged non-persistent.

About this task

WS-ReliableMessaging is an interoperability standard for the reliable transmission of messages between
two endpoints. To administer WS-ReliableMessaging for an application, you take the following broad
actions:

1. Attach a reliable messaging policy set (either a default policy set or one that you have created) to an
aspect of your application (that is, application level or web service level). Policy sets define the
reliability level (quality of service) and other configuration options that you want to apply to your reliable
messaging application.

2. Define the bindings for each attachment to a policy set that specifies a managed quality of service.
That is, choose the service integration bus and messaging engine to use to maintain the state for the
managed persistent and managed non-persistent qualities of service.

At any stage, you can set a property that configures endpoints to only support clients that use reliable
messaging. This setting is reflected by WS-Policy if engaged.

If your WS-ReliableMessaging application runs inside the web container and uses a managed quality of
service, you can also use WS-ReliableMessaging to provide transactional recoverable messaging.

Procedure
v Configure a WS-ReliableMessaging policy set.

You can do this using the administrative console or using the wsadmin tool. You can also configure
WS-SecureConversation to work with WS-ReliableMessaging.

v Attach and bind a WS-ReliableMessaging policy set to a web service application

You can do this using the administrative console or using the wsadmin tool.

v Configure endpoints to only support clients that use reliable messaging.

v Provide transactional recoverable messaging through WS-ReliableMessaging.

Configuring a WS-ReliableMessaging policy set by using the
administrative console
To configure a web service application to use WS-ReliableMessaging, you attach a policy set that contains
a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed
persistent, managed non-persistent, or unmanaged non-persistent. Use the administrative console to
configure a policy set for reliable messaging.

Before you begin

You can configure a reliable messaging policy set by using the administrative console as described in this
task, or you can configure a reliable messaging policy set by using the wsadmin tool.

© IBM Corporation 2009 3211



The following default policy sets work with WS-ReliableMessaging applications:

v WS-I RSP

v WS-I RSP ND

v LTPA WS-I RSP

v Username WS-I RSP

v WSReliableMessaging 1_0

v WSReliableMessaging default

v WSReliableMessaging persistent

For more information, see “WS-ReliableMessaging default policy sets” on page 2776.

If you can use any of these default policy sets without needing to modify their configuration, you need not
complete this task. You are ready to attach and bind the default policy set to your application.

At any stage - that is, before or after you have built your reliable web service application, or configured
your policy sets - you can set a property that configures endpoints to only support clients that use reliable
messaging. This setting is reflected by WS-Policy if engaged.

About this task

To configure a reliable messaging policy set by using the administrative console, complete the following
steps:

Procedure
1. Create a policy set. You can create a new policy set, or copy and rename an existing policy set - either

one that you have previously created, or one of the WS-ReliableMessaging default policy sets.

2. Check that your policy set includes the policy types WS-ReliableMessaging and WS-Addressing.
Add these policy types if necessary. These policy types contain the configuration options that support
WS-ReliableMessaging. WS-Addressing provides the asynchronous request and reply capabilities for
WS-ReliableMessaging, and is also required for WS-ReliableMessaging Version 1.1 synchronous
messaging.

Notes:

v If you want to use secure conversation and reliable messaging policies in the same policy
set, the secure conversation bindings must be configured to require that the reliable
messaging headers are signed. The reliable secure profile default policy sets (WS-I RSP
and WS-I RSP ND) are specifically designed and configured to use secure conversation and
reliable messaging in the same policy set. If you use a copy of one of the reliable secure
profile default policy sets (WS-I RSP and WS-I RSP ND), no further configuration of the
secure conversation bindings is required. Otherwise, see “Configuring WS-
SecureConversation to work with WS-ReliableMessaging” on page 3215.

v WS-ReliableMessaging Version 1.1 messaging requires WS-Addressing to be mandatory. If
you use a policy set that includes WS-ReliableMessaging and WS-Addressing policies, and
the WS-Addressing policy is configured as optional, then WebSphere Application Server
overrides the WS-Addressing setting and automatically enables WS-Addressing.

3. Configure the WS-ReliableMessaging policy type attributes. For the WS-ReliableMessaging policy you
can configure the version of the WS-ReliableMessaging standard that you want to use, the order in
which messages are delivered, and the required quality of service (the reliability level) for message
delivery.

Note: In WebSphere Application Server Version 6.1, you could also configure whether or not to use
the WS-MakeConnection protocol. This configuration option has now been removed from the

3212 Administering WebSphere applications



administrative console panel, because the product now automatically determines whether
WS-MakeConnection is used, based on the following criteria:

v Whether you are using WS-ReliableMessaging Version 1.0 or Version 1.1.

v Whether the requester supports WS-MakeConnection.

v Whether the message exchange protocol is synchronous or asynchronous.

4. If required, configure the WS-Addressing policy type attributes. For example, the default
WS-Addressing policy messaging style is Synchronous and asynchronous, which specifies that
there is no restriction on the targeting of response messages. However if you enable policy sharing,
the WS-Policy framework determines which style to use, and has a preference for the synchronous
request-response pattern. Because the WS-Policy framework takes precedence, reliable messages are
sent in a synchronous request-response pattern even if your client invokes the service asynchronously.
To enforce asynchronous messaging, set the WS-Addressing policy messaging style to asynchronous
only.

5. Save your changes to the master configuration.

What to do next

You are now ready to attach your application to the policy set and define the bindings that you want to
use.

Configuring a WS-ReliableMessaging policy set by using the wsadmin tool
To configure a web service application to use WS-ReliableMessaging, you attach a policy set that contains
a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed
persistent, managed non-persistent, or unmanaged non-persistent. Use command scripts to configure a
policy set for reliable messaging.

Before you begin

You can configure a reliable messaging policy set by using the wsadmin tool as described in this task, or
you can configure a reliable messaging policy set by using the administrative console.

The following default policy sets work with WS-ReliableMessaging applications:

v WS-I RSP

v WS-I RSP ND

v LTPA WS-I RSP

v Username WS-I RSP

v WSReliableMessaging 1_0

v WSReliableMessaging default

v WSReliableMessaging persistent

For more information, see “WS-ReliableMessaging default policy sets” on page 2776.

If you can use any of these default policy sets without needing to modify their configuration, you need not
complete this task. You are ready to attach your application to the default policy set and define the
bindings that you want to use.

At any stage - that is, before or after you have built your reliable web service application, or configured
your policy sets - you can set a property that configures endpoints to only support clients that use reliable
messaging. This setting is reflected by WS-Policy if engaged.

About this task

To configure a reliable messaging policy set by using the wsadmin tool, complete the following steps:

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) 3213



Procedure
1. Create a policy set. Use the createPolicySet command to create a new policy set, or the

copyPolicySet command to copy and rename an existing policy set - either one that you have
previously created, or one of the two “WS-ReliableMessaging default policy sets” on page 2776. For
more information, see Creating and copying policy sets by using the wsadmin tool.

2. If the policy set does not include both the policy types WSReliableMessaging and WSAddressing, add
these policy types by using the addPolicyType command as described in Creating and copying policy
sets by using the wsadmin tool. For example:

AdminTask.addPolicyType(’[-policySet PolicySet1 -policyType WSReliableMessaging]’)
AdminTask.addPolicyType(’[-policySet PolicySet1 -policyType WSAddressing]’)

These policy types contain the configuration options that support WS-ReliableMessaging.
WS-Addressing provides the asynchronous request and reply capabilities for WS-ReliableMessaging,
and is also required for WS-ReliableMessaging Version 1.1 synchronous messaging.

Notes:

v If you want to use secure conversation and reliable messaging policies in the same policy
set, the secure conversation bindings must be configured to require that the reliable
messaging headers are signed. The reliable secure profile default policy sets (WS-I RSP
and WS-I RSP ND) are specifically designed and configured to use secure conversation and
reliable messaging in the same policy set. If you use a copy of one of the reliable secure
profile default policy sets (WS-I RSP and WS-I RSP ND), no further configuration of the
secure conversation bindings is required. Otherwise, see “Configuring WS-
SecureConversation to work with WS-ReliableMessaging” on page 3215.

v WS-ReliableMessaging Version 1.1 messaging requires WS-Addressing to be mandatory. If
you use a policy set that includes WS-ReliableMessaging and WS-Addressing policies, and
the WS-Addressing policy is configured as optional, then WebSphere Application Server
overrides the WS-Addressing setting and automatically enables WS-Addressing.

3. Configure the WS-ReliableMessaging policy type attributes.

For the WS-ReliableMessaging policy you can configure the version of the WS-ReliableMessaging
standard that you want to use, the order in which messages are delivered, and the required quality of
service (the reliability level) for message delivery. For detailed information about these configurable
attributes, see “WS-ReliableMessaging settings” on page 2807.

Use the setPolicyType command to configure these attributes. For example:
AdminTask.setPolicyType(’-policySet PolicySet1 -policyType WSReliableMessaging -attributes "[[inOrderDelivery false][specLevel 1.0]
[enabled true][qualityOfService managedPersistent][type WSReliableMessaging]]" -replace’

4. If required, configure the WS-Addressing policy type attributes. For example, the default
WS-Addressing policy messaging style is Synchronous and asynchronous, which specifies that
there is no restriction on the targeting of response messages. However if you enable policy sharing,
the WS-Policy framework determines which style to use, and has a preference for the synchronous
request-response pattern. Because the WS-Policy framework takes precedence, reliable messages are
sent in a synchronous request-response pattern even if your client invokes the service asynchronously.
To enforce asynchronous messaging, set the WS-Addressing policy messaging style to asynchronous
only.

Use the setPolicyType command to configure these attributes. For example:
AdminTask.setPolicyType(’[-policySet PolicySet1 -policyType WSAddressing
-attributes "[[wsaMode WSA_ASYNC]]"]’)

For detailed information about these configurable attributes, see “WS-Addressing policy settings” on
page 2810.

5. Save your changes to the master configuration.

To save your configuration changes, enter the following command:
AdminConfig.save()

3214 Administering WebSphere applications



What to do next

You are now ready to attach your application to the default policy set and define the bindings that you
want to use.

Configuring WS-SecureConversation to work with WS-ReliableMessaging
Configure secure conversation to expect the reliable messaging headers to be signed, and to ensure that
the scoping security context token does not expire before reliable messaging recovers and resends
persistent messages.

Procedure
v “Configure secure conversation to expect the reliable messaging headers to be signed”

v “Configure secure conversation to increase the timeout setting for the scoping security context token”

Configure secure conversation to expect the reliable messaging headers to be signed:
About this task

Although secure conversation allows message headers to remain unsigned, the reliable messaging policy
requires the reliable messaging headers to be signed. If you want to use secure conversation and reliable
messaging policies in the same policy set, the secure conversation bindings must be configured to require
that the reliable messaging headers are signed. To achieve this, complete one of the following steps:

Procedure

v Create your policy set from a copy of one of the reliable secure profile default policy sets (WS-I RSP
and WS-I RSP ND). These policy sets contain instances of the secure conversation and reliable
messaging policies that are configured to work together.

v Create your policy set from a copy of the secure conversation policy set:

1. Add the reliable messaging policy to your copy of the secure conversation policy set.

2. Specify in the secure conversation bindings that the reliable messaging headers must be signed.
For more information about how to do this, see “Defining and managing policy set bindings” on page
2785.

3. Save your changes to the master configuration.

Note: The reliable secure profile default policy sets (WS-I RSP and WS-I RSP ND) are specifically
designed and configured to use secure conversation and reliable messaging in the same policy
set. Only create your policy set from a copy of the secure conversation policy set if you have a
clear business need to do so. Otherwise, always use a copy of one of the reliable secure profile
default policy sets (WS-I RSP and WS-I RSP ND).

Configure secure conversation to increase the timeout setting for the scoping security context
token:
About this task

When you use a persistent WS-I RSP policy set, which includes WS-SecureConversation, if the scoping
security context token is expired when the server is restarted then WS-ReliableMessaging cannot resend
its messages and system messages are written to the log file stating that the reliable messaging sequence
was not secured using the correct security token.

To ensure that the scoping security context token does not expire before WS-ReliableMessaging can
recover and resend its messages, use the administrative console to complete the following steps:

Procedure

1. In the navigation pane, click Services > Security cache. The Security cache detail form is displayed.

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) 3215



2. Set the Time token is in cache after timeout property to a value of at least 120 minutes. This value
specifies the length of time to keep tokens after they expire. By default, this is 10 minutes. These
expired tokens can be used for reliable messaging recovery.

3. In the navigation pane, click Services > Trust service > Token providers. In the content pane, select
a security context token. The Security Context Token detail form is displayed.

4. Set the following values for the security context token:

a. Check that the Time in cache after expiration property is set to a value of at least 120 minutes.

b. Check that the Token timeout property is set to a value of at least 120 minutes.

c. Select the Allow renewal after timeout check box.

5. Save your changes to the master configuration.

Attaching and binding a WS-ReliableMessaging policy set to a web
service application by using the administrative console
To configure a web service application to use WS-ReliableMessaging, you attach a policy set that contains
a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed
persistent, managed non-persistent, or unmanaged non-persistent. Use the administrative console to
attach the policy set to your application, and (for managed qualities of service) define bindings to a service
integration bus and messaging engine.

Before you begin

You can attach a WS-ReliableMessaging policy set and define bindings by using the administrative
console as described in this task, or you can attach and bind a WS-ReliableMessaging policy set by using
the wsadmin tool.

This task assumes that you have already developed and installed the web service application to which you
want to attach a policy set.

The following default policy sets work with WS-ReliableMessaging applications:

v WS-I RSP

v WS-I RSP ND

v LTPA WS-I RSP

v Username WS-I RSP

v WSReliableMessaging 1_0

v WSReliableMessaging default

v WSReliableMessaging persistent

For more information, see “WS-ReliableMessaging default policy sets” on page 2776.

If you can use any of these default policy sets, or you have configured your own reliable messaging policy
set, then you are ready to complete this task.

About this task

Use this task to complete the following broad actions:

1. Attach a reliable messaging policy set (either a default policy set or one that you have created) to an
aspect of your application (that is, application level or web service level). Policy sets define the
reliability level (quality of service) and other configuration options that you want to apply to your reliable
messaging application.

2. Define the bindings for each attachment to a policy set that specifies a managed quality of service.
That is, choose the service integration bus and messaging engine to use to maintain the state for the
managed persistent and managed non-persistent qualities of service.

3216 Administering WebSphere applications



To attach a WS-ReliableMessaging policy set and define bindings by using the administrative console,
complete the following steps:

Procedure
1. Attach a policy set to your reliable messaging application at either application level or service level..

Note:

v You can attach one policy set at each level.

v You can only apply a WS-ReliableMessaging policy at application level or service level.

v If you apply reliable messaging at service level, then all services must use the same
WS-ReliableMessaging policy and bindings values.

v You can attach any policy set at operation level. For a policy set that includes the
WS-ReliableMessaging policy, attachment at the operation level configures the other
components of the policy set (for example WS-Security and WS-Addressing) but any
WS-ReliableMessaging configuration at operation level is ignored.

2. If your chosen policy set specifies a managed quality of service, define bindings to a service
integration bus and messaging engine.

If the policy set instance specifies managed non-persistent or managed persistent quality of service,
choose the service integration bus and messaging engine that is to manage the WS-
ReliableMessaging state. Use the “WS-ReliableMessaging policy binding” on page 2808 panel to select
or create the service integration bus and messaging engine that you want to use.

Note: When many applications use the same messaging engine, it can impact performance. Factors
to consider include the number of applications that are already binding to the messaging
engine, the CPU utilization, and the message throughput. To improve performance for a single
server configuration, create a new messaging engine to bind to your application.

To define the default WS-ReliableMessaging policy binding for provider and client policy set
attachments within WebSphere Application Server Version 6.1 applications, and for attachments to
service applications that are deployed to a Version 6.1 server, navigate to Services > Policy sets >
Default policy set bindings > Version 6.1 default policy set bindings > WS-ReliableMessaging.

To define the bindings for a WebSphere Application Server Version 7.0 or later provider or client policy
set, navigate to Services > Policy sets > General provider policy set bindings >
provider_policy_set_binding_name > WS-ReliableMessaging or Services > Policy sets > General
client policy set bindings > client_policy_set_binding_name > WS-ReliableMessaging

To define the bindings for an application that you have attached to a service provider policy set,
navigate to Applications > Application Types > WebSphere enterprise applications >
application_name > [Web Service Properties] Service provider policy sets and bindings and
follow the instructions given in “Managing policy sets and bindings for service providers at the
application level using the administrative console” on page 2738.

To define the bindings for an application that you have attached to a service client policy set, navigate
to Applications > Application Types > WebSphere enterprise applications > application_name >
[Web Service Properties] Service client policy sets and bindings and follow the instructions given
in “Managing policy sets and bindings for service clients at the application level using the
administrative console” on page 2760.

WS-Notification note: If the application that you have attached to a service client policy set is a
Version 7.0 WS-Notification service client, you can instead use the
context-specific version of the “Service client policy sets and bindings” panel
that can be reached through either of the following paths:

v Service integration > WS-Notification > Services > service_name > [Additional properties]
Outbound request policy sets and bindings

v Service integration > Buses > bus_name > [Services] WS-Notification services >
service_name > [Additional properties] Outbound request policy sets and bindings

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) 3217



If you want to configure policy set and binding details for a single Version 7.0 WS-Notification service
client, rather than for all clients for the service, you can instead use the following panel:

v Services > Service clients > ws-notification_service_client_name

This panel also gives you links to the associated service integration bus and WS-Notification service.

3. Save your changes to the master configuration.

Attaching and binding a WS-ReliableMessaging policy set to a web service
application by using the wsadmin tool
To configure a web service application to use WS-ReliableMessaging, you attach a policy set that contains
a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed
persistent, managed non-persistent, or unmanaged non-persistent. Use the wsadmin tool to attach the
policy set to your application, and (for managed qualities of service) to define bindings to a service
integration bus and messaging engine.

Before you begin

You can attach a WS-ReliableMessaging policy set and define bindings by using the wsadmin tool as
described in this task, or you can attach and bind a WS-ReliableMessaging policy set by using the
administrative console.

This task assumes that you have already developed and installed the web service application to which you
want to attach a policy set.

The following default policy sets work with WS-ReliableMessaging applications:

v WS-I RSP

v WS-I RSP ND

v LTPA WS-I RSP

v Username WS-I RSP

v WSReliableMessaging 1_0

v WSReliableMessaging default

v WSReliableMessaging persistent

For more information, see “WS-ReliableMessaging default policy sets” on page 2776.

If you can use any of these default policy sets, or you have configured your own reliable messaging policy
set, then you are ready to complete this task.

About this task

Use this task to complete the following broad actions:

1. Attach a reliable messaging policy set (either a default policy set or one that you have created) to an
aspect of your application (that is, application level or web service level). Policy sets define the
reliability level (quality of service) and other configuration options that you want to apply to your reliable
messaging application.

2. Define the bindings for each attachment to a policy set that specifies a managed quality of service.
That is, choose the service integration bus and messaging engine to use to maintain the state for the
managed persistent and managed non-persistent qualities of service.

To attach a WS-ReliableMessaging policy set and define bindings by using the wsadmin tool, complete the
following steps:

Procedure
1. Attach a policy set to your reliable messaging application at either application level or service level.

3218 Administering WebSphere applications



Use the createPolicySetAttachment command as described in Creating policy set attachments by
using the wsadmin tool. Set the -policySet parameter to the name of the reliable messaging policy set
that you want to use. For example: WS-I RSP ND

Note:

v You can attach one policy set at each level.

v You can only apply a WS-ReliableMessaging policy at application level or service level.

v If you apply reliable messaging at service level, then all services must use the same
WS-ReliableMessaging policy and bindings values.

v You can attach any policy set at operation level. For a policy set that includes the
WS-ReliableMessaging policy, attachment at the operation level configures the other
components of the policy set (for example WS-Security and WS-Addressing) but any
WS-ReliableMessaging configuration at operation level is ignored.

This command returns an attachment ID number. If your chosen policy set specifies a managed quality
of service, make a note of this number. In the next step you use it to define the binding.

2. If your chosen policy set specifies a managed quality of service, define bindings to a service
integration bus and messaging engine.

If the policy set instance specifies managed non-persistent or managed persistent quality of service,
choose the service integration bus and messaging engine that is to manage the WS-
ReliableMessaging state. Use the setBinding command as described in Creating policy set
attachments using the wsadmin tool. Set the -policyType parameter to WSReliableMessaging. Set the
bus name and the messaging engine name by using the following syntax for the -attributes
parameter:

-attributes "[[busName ReliableMessagingBus]
[messagingEngineName messaging_engine_name]]"

The messaging engine name is in the format nodeName.serverName-busName for a messaging
engine on a single server, or clusterName.nnn-busName for a messaging engine in a cluster.

Note: When many applications use the same messaging engine, it can impact performance. Factors
to consider include the number of applications that are already binding to the messaging
engine, the CPU utilization, and the message throughput. To improve performance for a single
server configuration, create a new messaging engine to bind to your application.

3. Save your changes to the master configuration.

To save your configuration changes, enter the following command:
AdminConfig.save()

Configuring endpoints to only support clients that use
WS-ReliableMessaging
By default, when a WS-ReliableMessaging enabled policy set is attached to an endpoint, the server
supports clients that use reliable messaging and clients that do not use reliable messaging. In this version
of the product, you can configure endpoints to only support clients that use reliable messaging.

About this task

You configure endpoints to only support clients that use reliable messaging by setting a property in either
of the following ways:

v Set a property when packaging the application.

v Set a property as a JVM argument for the server.

This setting is reflected by WS-Policy if engaged. For information about how to engage WS-Policy, see
“Using WS-Policy to exchange policies in a standard format” on page 3197.

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) 3219



Procedure
v When packaging the application, configure endpoints to only support clients that use reliable messaging

by setting the strictlyEnforceWSRM property in the META-INF/MANIFEST.MF of a WAR file or EJB
module.

v Using a JVM argument for the server, configure endpoints to only support clients that use reliable
messaging by defining the Java virtual machine custom property
com.ibm.ws.websvcs.rm.strictlyEnforceWSRM on the server. For more information, see Configuring the
JVM.

Providing transactional recoverable messaging through
WS-ReliableMessaging
If your WS-ReliableMessaging application runs inside the web container and uses a managed quality of
service, you can use WS-ReliableMessaging to provide transactional recoverable messaging.

About this task

The WS-ReliableMessaging transactional model is as follows:

v On the web service requester side, the transaction is between the application and the local managed
store.

v The WS-ReliableMessaging protocol delivers the message to the web service provider side, where a
different transaction is used between the second managed store and the application being dispatched.

For the outbound (requestor) case on a one-way message send, if the enableTransactionalOneWay
property is set to true, then the send is performed under any transactional context currently held by the
application thread. (Note that transactions are not supported under an outbound two-way message
exchange).

For the inbound (provider) case, if the inOrderDelivery property is set to true, then an inbound message
is dispatched to the application under a transaction. For an inbound two-way message exchange, the
response is also generated under that transaction and is not sent until that transaction has committed.

Note:

WS-ReliableMessaging transactions do not use the WS-AtomicTransactions protocol. The
relationship between these two protocols is as follows:

v WS-AtomicTransactions and WS-ReliableMessaging are mutually exclusive when
WS-ReliableMessaging is being used, with a managed store, to provide transactional recoverable
messaging.

v If WS-ReliableMessaging is configured to use an in-memory store, then there are cases where a
WS-AtomicTransaction can be flowed between the reliable messaging source and the reliable
messaging destination for two-way invocations. In this situation, WS-ReliableMessaging only
protects against network failures, not against server failure.

For more information, see WS-AtomicTransactions.

To provide transactional recoverable messaging through WS-ReliableMessaging, work through the steps
described in Adding assured delivery to web services through WS-ReliableMessaging and also complete
the following additional steps:

Procedure
v To enable transactional messaging for outbound (requester) one-way message sends, when you

develop your JAX-WS web service application set the enableTransactionalOneWay property to
Boolean.TRUE (or the string true) in the jaxWS request context map.

3220 Administering WebSphere applications



v To enable transactional messaging for inbound (provider) one-way and two-way message exchanges,
when you configure your WS-ReliableMessaging policy either use the administrative console to select
the option Deliver messages in the order that they were sent or use the wsadmin tool to set the
inOrderDelivery property to true.

WS-ReliableMessaging - administrative console panels
Links to topics that describe the contents of the administrative console panels that you can use to
configure and operate WS-ReliableMessaging. Each topic gives details of the purpose and use of a panel,
the administrative console navigation path to the panel, and the values that you can set in each field of the
panel.

Configuration panels
v “WS-ReliableMessaging settings” on page 2807

v “WS-ReliableMessaging policy binding” on page 2808

Runtime panels

This set of panels is available at any of the following scopes within the administrative console:

Cell: Services > Reliable messaging state

Application server:
Servers > Server Types > WebSphere application servers > server_name > [Additional
Properties] Reliable messaging state

Enterprise application:
Applications > Enterprise Applications > application_name > [Web Services Properties]
Reliable messaging state

Bus: Service integration > Buses > bus_name > [Services] Reliable messaging state

Messaging engine:
Service integration > Buses > bus_name > [Topology] Messaging engines >
messaging_engine_name > [Additional Properties] Reliable messaging state

At each of the previous scopes, the navigation structure is as follows:

v “Reliable messaging state settings” on page 3224

– “Message store collection” on page 3225

– “Inbound sequence collection” on page 3230

- “Inbound sequences settings” on page 3232

v “Acknowledgement state collection” on page 3234

v “Inbound message collection” on page 3234

– “Message settings” on page 3229

- “Export messages settings” on page 3235

– “Outbound sequence collection” on page 3225

- “Outbound sequences settings” on page 3227

v “Outbound message collection” on page 3229

– “Message settings” on page 3229

- “Export messages settings” on page 3235

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) 3221



WS-ReliableMessaging settings
For the WS-ReliableMessaging policy you can configure the version of the WS-ReliableMessaging
standard that you want to use, the order in which messages are delivered, and the required quality of
service (the reliability level) for message delivery. The product can enforce these policies on inbound
messages and applies them to outbound messages.

To view this page in the console, click the following path: Services > Policy sets > Application policy
sets > policy_set_name > WS-ReliableMessaging.

With WebSphere Application Server, you can use WS-ReliableMessaging with Java API for XML-Based
Web Services (JAX-WS) web services applications that use a SOAP over HTTP binding. Select the
WS-ReliableMessaging specification to use for reliable transmission of your messages.
WS-ReliableMessaging Version 1.1 is the default value. Select the WS-ReliableMessaging specification to
use for reliable transmission of your messages. WS-ReliableMessaging Version 1.1 is the default value.
Details of the supported WS-ReliableMessaging specifications are available at the following web
addresses:

v The WS-ReliableMessaging specification Version 1.0, February 2005.

v The OASIS WS-ReliableMessaging specification Version 1.1, February 2007.

Note: If you plan to invoke a .NET-based web service, you must select WS-ReliableMessaging Version
1.0.

Do not edit the policies associated with the provided default policy sets. If you have to modify the reliable
messaging policy settings, use a copy of a default policy set or create a new policy set.

At any stage - that is, before or after you have built your reliable web service application, or configured
your policy sets - you can set a property that configures endpoints to only support clients that use reliable
messaging. This setting is reflected by WS-Policy if engaged.

Standard: Select the WS-ReliableMessaging specification to use for reliable transmission of your
messages. WS-ReliableMessaging Version 1.1 is the default value. Select the WS-ReliableMessaging
specification to use for reliable transmission of your messages. WS-ReliableMessaging Version 1.1 is the
default value.

Deliver messages in the order that they were sent:

Select this option if the sender of a request has to receive a response before it sends the next request.

If you enable in-order delivery, you must also ensure that the requester application polls for the messages
in the order in which it is to receive them. For more information, see “Configuring the WS-
ReliableMessaging policy” on page 2805.

Specifying in-order delivery also marginally increases reliability if you are using the managed persistent
quality of service.

Quality of Service: Select one of the following qualities of service:

Unmanaged non-persistent - Tolerates network and remote system failures
You can configure web service applications to use WS-ReliableMessaging with a default
in-memory store. This quality of service requires minimal configuration. However it is
non-transactional and, although it allows for the resending of messages that are lost in the
network, if a server becomes unavailable you will lose messages. The default is Unmanaged
Non-Persistent.

Managed non-persistent - Tolerates system, network, and remote system failures, but state is
discarded after messaging engine restart

This in-memory quality of service option uses a messaging engine to manage the sequence state,

3222 Administering WebSphere applications

http://www.ibm.com/developerworks/library/specification/ws-rm/
http://docs.oasis-open.org/ws-rx/wsrm/200702


and messages are written to disk if memory is low. This quality of service allows for the re-sending
of messages that are lost in the network, and can also recover from server failure. However, state
is discarded after a messaging engine restart so in this case you will lose messages.

Managed persistent - Tolerates system, network, and remote system failures
This quality of service for asynchronous web service invocations is recoverable. This option also
uses a messaging engine and message store to manage the sequence state. Messages are
persisted at the web service requester server and at the web service provider server, and are
recoverable if the server becomes unavailable. Messages that have not been successfully
transmitted when a server becomes unavailable can continue to be transmitted after the server
restarts.

Note:

v All three qualities of service are supported when applications are deployed to the application
server. Thin client and client container applications use the first option only.

v For the unmanaged non-persistent quality of service, the messages are stored only in memory.
For both of the managed qualities of service, the messages are managed by a messaging
engine and stored in a message store. You specify a binding to a bus and messaging engine on
the “WS-ReliableMessaging policy binding” on page 2808 form. If your chosen quality of service
is Unmanaged Non-Persistent, which does not use a binding to a messaging engine, then any
binding that you specify is ignored.

WS-ReliableMessaging policy binding
To configure a web service application to use WS-ReliableMessaging, you attach a policy set that contains
a WS-ReliableMessaging policy type. This policy type offers a range of qualities of service: managed
persistent, managed non-persistent, or unmanaged non-persistent. The managed qualities of service,
managed persistent and managed non-persistent, are supported by the service integration bus. Use this
page to select the bus and messaging engine to use for the reliable messaging protocol state.

To view this page in the console, click one of the following paths:

v Services > Policy sets > Default policy set bindings > Version 6.1 default policy set bindings >
WS-ReliableMessaging (This is the default binding for client and provider policy set attachments within
WebSphere Application Server Version 6.1 applications, and attachments to service applications that are
deployed to a Version 6.1 server.)

v Services > Policy sets > General provider policy set bindings >
provider_policy_set_binding_name > WS-ReliableMessaging (This binding is used for the specified
provider policy set.)

v Services > Policy sets > General client policy set bindings > client_policy_set_binding_name >
WS-ReliableMessaging (This binding is used for the specified client policy set.)

Note:

v You only have to specify a binding to a bus and messaging engine if you are using a managed
quality of service. If your chosen quality of service is Unmanaged Non-Persistent, any binding
that you specify is ignored. The quality of service is defined on the “WS-ReliableMessaging
settings” on page 2807 form for your chosen policy set. For more information, see “Configuring
the WS-ReliableMessaging policy” on page 2805.

v When many applications use the same messaging engine, it can impact performance. Factors to
consider include the number of applications that are already binding to the messaging engine,
the CPU utilization, and the message throughput. To improve performance for a single server
configuration, create a new messaging engine to bind to your application.

Bus name:

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) 3223



Specifies a list of available service integration buses in the cell. Use the list to select a bus, or click
Manage buses, bus members, and messaging engines to add a new bus. The bus that you add is
selected for this binding configuration when you return to this panel.

Messaging engine:

Specifies a list of each bus member for the selected bus. Use the list to select a bus member, or click
Manage buses, bus members, and messaging engines to add a new bus member. The bus member
that you add is selected for this binding configuration when you return to this panel.

Reliable messaging state settings
This page provides an overview of the WS-ReliableMessaging runtime state. Use this page to manage
reliable messaging at run time.

To view this page in the console, click one of the paths to this panel. For example Servers > Server
Types > WebSphere application servers > server_name > [Additional Properties] Reliable
messaging state.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative
console. For more information, see “WS-ReliableMessaging - administrative console panels” on page
3221.

Runtime tab: Runtime properties for this object. These properties directly affect the current runtime
environment, but are not preserved when that environment is stopped. To preserve runtime property
values, change the equivalent property values on the Configuration tab. See the information center task
descriptions for information about how to apply configuration changes to the runtime environment.

Reliable messaging state

Select the aspect of WS-ReliableMessaging for which you want to view runtime information.

The following icons are displayed here and on several other reliable messaging runtime panels:

Icon Name Description

OK Everything here, and (if there is a link) in all runtime panels below this link, is running normally.

Warning Something here, or (if there is a link) in one of the runtime panels below this link, is in an unusual
state and you might have to take some action to resolve it.

For example, the system might be awaiting a response from an endpoint. In this case, either the
response will be received (in which case you need take no action and the runtime information will be
updated to “OK”) or the reliable messaging destination has stopped acknowledging messages (in
which case you have to take some action to resolve the failed sequence).

Error There is a definite error that you must take some action to resolve, either here or (if there is a link) in
one of the runtime panels below this link.

Note that for troubleshooting purposes you only have to follow links to the sub-panels if states other than
“OK” are displayed.

Message stores
This page displays the collection of reliable messaging storage managers for the current scope.

Inbound sequences
This page displays the collection of inbound sequences for the current scope. Each inbound
sequence is used to receive messages that have been transmitted reliably.

Outbound sequences
This page displays the collection of outbound sequences for the current scope. Outbound
sequences are used to transmit messages reliably from the local application to the remote
endpoint. Each sequence has a unique identifier.

3224 Administering WebSphere applications



Message store collection
This page displays the collection of reliable messaging storage managers for the current scope.

To view this page in the console, click one of the paths to this panel. For example Servers > Server
Types > WebSphere application servers > server_name > [Additional Properties] Reliable
messaging state > Runtime > Message store.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative
console. For more information, see “WS-ReliableMessaging - administrative console panels” on page
3221.

The following icons are displayed here and on several other reliable messaging runtime panels:

Icon Name Description

OK Everything here, and (if there is a link) in all runtime panels below this link, is running normally.

Warning Something here, or (if there is a link) in one of the runtime panels below this link, is in an unusual
state and you might have to take some action to resolve it.

For example, the system might be awaiting a response from an endpoint. In this case, either the
response will be received (in which case you need take no action and the runtime information will be
updated to “OK”) or the reliable messaging destination has stopped acknowledging messages (in
which case you have to take some action to resolve the failed sequence).

Error There is a definite error that you must take some action to resolve, either here or (if there is a link) in
one of the runtime panels below this link.

Note that for troubleshooting purposes you only have to follow links to the sub-panels if states other than
“OK” are displayed.

Message store type
For the managed qualities of service, the messages are written to a messaging engine. For the
unmanaged non-persistent quality of service, the messages are stored in memory.

Description
The quality of service being used and the application name.

Details
For in-memory stores the only possible value is "Running". For messages stored by a messaging
engine, the possible values are "Running" or "Messaging engine not contactable", probably
because the messaging engine is not running.

Status
The "OK" icon indicates that the message store is running. If the messaging engine is not
contactable, the "Error" icon is displayed.

Outbound sequence collection
This page displays the collection of outbound sequences for the current scope. Outbound sequences are
used to transmit messages reliably from the local application to the remote endpoint. Each sequence has
a unique identifier.

To view this page in the console, click one of the paths to this panel. For example Servers > Server
Types > WebSphere application servers > server_name > [Additional Properties] Reliable
messaging state > Runtime > Outbound sequences.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) 3225



To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative
console. For more information, see “WS-ReliableMessaging - administrative console panels” on page
3221.

The following icons are displayed here and on several other reliable messaging runtime panels:

Icon Name Description

OK Everything here, and (if there is a link) in all runtime panels below this link, is running normally.

Warning Something here, or (if there is a link) in one of the runtime panels below this link, is in an unusual
state and you might have to take some action to resolve it.

For example, the system might be awaiting a response from an endpoint. In this case, either the
response will be received (in which case you need take no action and the runtime information will be
updated to “OK”) or the reliable messaging destination has stopped acknowledging messages (in
which case you have to take some action to resolve the failed sequence).

Error There is a definite error that you must take some action to resolve, either here or (if there is a link) in
one of the runtime panels below this link.

Note that for troubleshooting purposes you only have to follow links to the sub-panels if states other than
“OK” are displayed.

Note:

You might see more sequences than you expect, due to sequence reallocation. If a sequence is
reallocated, the original and new sequences are both visible.

Sequence identifier
This URI is the unique identifier for the sequence.

Associated application
The application that created the sequence.

Target endpoint URI
The destination to which messages are transmitted.

Message depth
The count of messages, held by the reliable messaging layer, that have not yet been transferred.

Messages sent
The total count of messages sent by the application for this sequence.

Details
The current state of the sequence. "Establishing" indicates that the sequence is awaiting a
CreateSequenceResponse message from the reliable messaging destination; "Active" indicates
that the sequence has been established; "Cannot contact the remote endpoint" indicates that the
sequence has been established but the reliable messaging destination has stopped acknowledging
messages; "Sequence closing" indicates that the sequence is closing and will accept no new
messages; "Sequence closed" indicates that the sequence has been closed and will accept no
new messages; "Sequence terminating" indicates that the sequence is terminating and will accept
no new messages; "The inbound side has lost state in a terminate" indicates that the sequence
has terminated with unacknowledged messages outstanding; "The sequence has timed out"
indicates that the sequence has timed out.

Status
The icon indicates "OK", "Warning" or "Error" as previously described on this page. A more precise
indication of the sequence state is given in the "Details" column.

3226 Administering WebSphere applications



Buttons

Button Description

Export unsent messages Export the messages from the selected sequences to
compressed files. If you select any sequences that have
no messages to export, a warning or error message is
displayed.

Close sequence Close the selected sequences and send a
CloseSequence message to indicate that the sequence is
complete and will not be sending any further messages.
The close protocol does not delete the resources for the
sequence, so you can still access any undispatched or
unsent messages. If you are using Version 1.0 of the
WS-ReliableMessaging specification (which does not
support this option) an error message is displayed. For
more information about the reliable messaging close
protocol, see WS-ReliableMessaging: supported
specifications and standards.

Terminate sequence Close the selected sequences and send a
TerminateSequence message to indicate that the
sequence is complete and will not be sending any further
messages. The terminate protocol deletes all resources
for the sequence. For more information about the reliable
messaging terminate protocol, see WS-
ReliableMessaging: supported specifications and
standards.

Attention: Terminate sequences only if necessary.
Refer to the description of the Delete sequence button
for more information.

Delete sequence Delete the selected sequences and all their messages,
without sending a TerminateSequence message.

Attention: Delete or terminate sequences only if
necessary. If you delete or terminate an active sequence,
the resulting messaging behavior is unpredictable and
can cause loss of messages. If you are not sure whether
you can safely delete or terminate a sequence, do not
delete or terminate it; the system automatically deletes
sequences that have been inactive for 12 hours.

Outbound sequences settings
This page displays the collection of outbound sequences for the current scope. Outbound sequences are
used to transmit messages reliably from the local application to the remote endpoint. Each sequence has
a unique identifier.

To view this page in the console, click one of the paths to this panel. For example Servers > Server
Types > WebSphere application servers > server_name > [Additional Properties] Reliable
messaging state > Runtime > Outbound sequences > outbound_sequence_name.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative
console. For more information, see “WS-ReliableMessaging - administrative console panels” on page
3221.

Runtime tab: Runtime properties for this object. These properties directly affect the current runtime
environment, but are not preserved when that environment is stopped. To preserve runtime property

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) 3227



values, change the equivalent property values on the Configuration tab. See the information center task
descriptions for information about how to apply configuration changes to the runtime environment.

General properties

Sequence identifier
This URI is the unique identifier for the sequence.

Information Value
Required No
Data type Text

Runtime identifier
The identifier that is used within the application server runtime environment.

Information Value
Required No
Data type Text

Associated application
The application that created the sequence.

Information Value
Required No
Data type Text

WS-Addressing namespace
The WS-Addressing namespace that is associated with the sequence.

Information Value
Required No
Data type Text

WS-ReliableMessaging namespace
The namespace that is defined by the version of the WS-ReliableMessaging specification used by
the sequence.

Information Value
Required No
Data type Text

Target endpoint URI
The destination to which messages are transmitted.

Information Value
Required No
Data type Text

Reply to address
The WS-Addressing replyTo address that is used for WS-ReliableMessaging protocol messages.

Information Value
Required No
Data type Text

3228 Administering WebSphere applications



Acknowledgement address
The address used for WS-ReliableMessaging acknowledgements.

Information Value
Required No
Data type Text

Message depth
The count of messages, held by the reliable messaging layer, that have not yet been transferred.

Information Value
Required No
Data type Text

Messages sent
The total count of messages sent by the application for this sequence.

Information Value
Required No
Data type Text

Outbound message collection
The messages on the outbound sequence.

To view this page in the console, click one of the paths to this panel. For example Servers > Server
Types > WebSphere application servers > server_name > [Additional Properties] Reliable
messaging state > Runtime > Outbound sequences > outbound_sequence_name > [Additional
properties] Messages.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative
console. For more information, see “WS-ReliableMessaging - administrative console panels” on page
3221.

Message number
The index number of the message in the sequence.

State The two possible states are "Sendable" (indicating that it is expected to be sent soon) and
"Awaiting sequence initialization".

Buttons

Information Value

Refresh Refresh the list of items.

Delete Delete the selected items.

Message settings
The details of an individual message.

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) 3229



The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative
console. For more information, see “WS-ReliableMessaging - administrative console panels” on page
3221. At each scope, this panel is available for both inbound and outbound sequences. For example:

v Servers > Server Types > WebSphere application servers > server_name > [Additional
Properties] Reliable messaging state > Runtime > Inbound sequences >
inbound_sequence_name > [Additional properties] Messages > message_number

v Servers > Server Types > WebSphere application servers > server_name > [Additional
Properties] Reliable messaging state > Runtime > Outbound sequences >
outbound_sequence_name > [Additional properties] Messages > message_number

Runtime tab: Runtime properties for this object. These properties directly affect the current runtime
environment, but are not preserved when that environment is stopped. To preserve runtime property
values, change the equivalent property values on the Configuration tab. See the information center task
descriptions for information about how to apply configuration changes to the runtime environment.

General properties

Message number
The index number of the message in the sequence.

Information Value
Required No
Data type Text

Message contents
The contents of the message.

Information Value
Required No
Data type Custom

Inbound sequence collection
This page displays the collection of inbound sequences for the current scope. Each inbound sequence is
used to receive messages that have been transmitted reliably.

To view this page in the console, click one of the paths to this panel. For example Servers > Server
Types > WebSphere application servers > server_name > [Additional Properties] Reliable
messaging state > Runtime > Inbound sequences.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative
console. For more information, see “WS-ReliableMessaging - administrative console panels” on page
3221.

The following icons are displayed here and on several other reliable messaging runtime panels:

Icon Name Description

OK Everything here, and (if there is a link) in all runtime panels below this link, is running normally.

3230 Administering WebSphere applications



Icon Name Description

Warning Something here, or (if there is a link) in one of the runtime panels below this link, is in an unusual
state and you might have to take some action to resolve it.

For example, the system might be awaiting a response from an endpoint. In this case, either the
response will be received (in which case you need take no action and the runtime information will be
updated to “OK”) or the reliable messaging destination has stopped acknowledging messages (in
which case you have to take some action to resolve the failed sequence).

Error There is a definite error that you must take some action to resolve, either here or (if there is a link) in
one of the runtime panels below this link.

Note that for troubleshooting purposes you only have to follow links to the sub-panels if states other than
“OK” are displayed.

Note:

You might see more sequences than you expect, due to sequence reallocation. If a sequence is
reallocated, the original and new sequences are both visible.

Sequence identifier
This URI is the unique identifier for the sequence.

Associated application
The application that is receiving messages from the sequence.

Message depth
The count of messages, held by the reliable messaging layer, that have not yet been transferred.

Messages received
The total count of application messages received for the sequence since its creation.

Details
The current state of the sequence. "Connected" indicates that the sequence has been established;
"Awaiting redelivery of a missing msg." indicates that there is a gap in the sequence; "Closed"
indicates that the sequence has been closed; "Failed due to missing message" indicates that the
sequence terminated with a gap in the sequence.

Status
The icon indicates "OK", "Warning" or "Error" as previously described on this page. A more precise
indication of the sequence state is given in the "Details" column.

Buttons

Button Description

Dispatch messages to application Dispatch the messages on the selected sequences to the
associated applications.

Export undispatched messages Export the messages from the selected sequences to
compressed files. If you select any sequences that have
no messages to export, a warning or error message is
displayed.

Close sequence Close the selected sequences and send a
CloseSequence message to indicate that the sequence is
complete and will not be sending any further messages.
The close protocol does not delete the resources for the
sequence, so you can still access any undispatched or
unsent messages. If you are using Version 1.0 of the
WS-ReliableMessaging specification (which does not
support this option) an error message is displayed. For
more information about the reliable messaging close
protocol, see WS-ReliableMessaging: supported
specifications and standards.

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) 3231



Button Description

Terminate sequence Close the selected sequences and send a
TerminateSequence message to indicate that the
sequence is complete and will not be sending any further
messages. The terminate protocol deletes all resources
for the sequence. For more information about the reliable
messaging terminate protocol, see WS-
ReliableMessaging: supported specifications and
standards.

Attention: Terminate sequences only if necessary.
Refer to the description of the Delete sequence button
for more information.

Delete sequence and messages Delete the selected sequences and all their messages.
Use this in cases where the remote endpoint is unable to
respond to any reliable messaging protocol messages,
and therefore the sequence cannot be closed or
terminated.

Attention: Delete or terminate sequences only if
necessary. If you delete or terminate an active sequence,
the resulting messaging behavior is unpredictable and
can cause loss of messages. If you are not sure whether
you can safely delete or terminate a sequence, do not
delete or terminate it; the system automatically deletes
sequences that have been inactive for 12 hours.

Inbound sequences settings
This page displays the collection of inbound sequences for the current scope. Each inbound sequence is
used to receive messages that have been transmitted reliably.

To view this page in the console, click one of the paths to this panel. For example Servers > Server
Types > WebSphere application servers > server_name > [Additional Properties] Reliable
messaging state > Runtime > Inbound sequences > inbound_sequence_name.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative
console. For more information, see “WS-ReliableMessaging - administrative console panels” on page
3221.

Runtime tab: Runtime properties for this object. These properties directly affect the current runtime
environment, but are not preserved when that environment is stopped. To preserve runtime property
values, change the equivalent property values on the Configuration tab. See the information center task
descriptions for information about how to apply configuration changes to the runtime environment.

General properties

Sequence identifier
This URI is the unique identifier for the sequence.

Information Value
Required No
Data type Text

Associated application
The application that is receiving messages from the sequence.

3232 Administering WebSphere applications



Information Value
Required No
Data type Text

WS-Addressing namespace
The WS-Addressing namespace that is associated with the sequence.

Information Value
Required No
Data type Text

WS-ReliableMessaging namespace
The namespace that is defined by the version of the WS-ReliableMessaging specification used by
the sequence.

Information Value
Required No
Data type Text

Target endpoint URI
The destination to which messages are transmitted.

Information Value
Required No
Data type Text

Reply to address
The WS-Addressing replyTo address that is used for WS-ReliableMessaging protocol messages.

Information Value
Required No
Data type Text

Acknowledgement address
The address used for WS-ReliableMessaging acknowledgements.

Information Value
Required No
Data type Text

Message depth
The count of messages, held by the reliable messaging layer, that have not yet been transferred.

Information Value
Required No
Data type Text

Highest inbound message number
The highest message number that has been received within the sequence.

Information Value
Required No
Data type Text

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) 3233



In-order delivery
When this parameter is true, messages are dispatched to the application in the order that they
were assigned to the sequence.

Information Value
Required No
Data type Text

Inbound message collection
The messages on the inbound sequence.

To view this page in the console, click one of the paths to this panel. For example Servers > Server
Types > WebSphere application servers > server_name > [Additional Properties] Reliable
messaging state > Runtime > Inbound sequences > inbound_sequence_name > [Additional
properties] Messages.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative
console. For more information, see “WS-ReliableMessaging - administrative console panels” on page
3221.

Message number
The index number of the message in the sequence.

State The only possible state is "Awaiting dispatch to application".

Buttons

Button Description

Refresh Refresh the list of items.

Delete Delete the selected items.

Acknowledgement state collection
The ranges of message sequence numbers received from the WS-ReliableMessaging source. If more than
one range is displayed, this indicates a gap in the messages received. If "In-order delivery" is selected for
the sequence manager, messages with a sequence number greater than the lowest gap cannot be
delivered to the application until the gap is closed.

To view this page in the console, click one of the paths to this panel. For example Servers > Server
Types > WebSphere application servers > server_name > [Additional Properties] Reliable
messaging state > Runtime > Inbound sequences > inbound_sequence_name > [Additional
properties] Ack state.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

3234 Administering WebSphere applications



To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative
console. For more information, see “WS-ReliableMessaging - administrative console panels” on page
3221.

Low end of range
The message number for the lowest numbered message in this range.

High end of range
The message number for the highest numbered message in this range.

Buttons

Button Description

Refresh Refresh the list of items.

Export messages settings
Export the messages from the selected sequences to ZIP files.

The WS-ReliableMessaging runtime panels are available at many different scopes within the administrative
console. For more information, see “WS-ReliableMessaging - administrative console panels” on page
3221. At each scope, this panel is available for both inbound and outbound sequences. For example:

v Servers > Server Types > WebSphere application servers > server_name > [Additional
Properties] Reliable messaging state > Runtime > Inbound sequences > [Button bar] Export
undispatched messages

v Servers > Server Types > WebSphere application servers > server_name > [Additional
Properties] Reliable messaging state > Runtime > Outbound sequences > [Button bar] Export
unsent messages

General properties

Export messages
A list of the exported messages ZIP files that have been created. To save these ZIP files to your
file system, click each file individually then use your web browser "save file" option.

WS-Notification Service client settings
Use this page to manage policy sets and bindings or to access additional information for this
WS-Notification service client.

To view this page in the console, click the following path:

Services > Service clients > ws-notification_service_client_name

This page shows the policy set and binding configuration information for a single Version 7.0
WS-Notification service client (that is, a service client using the JAX-WS rather than a JAX-RPC
WS-Notification implementation), and also gives you links to the associated service integration bus and
WS-Notification service.

Note: The same policy set and binding configuration information can also be viewed and modified through
the “Service client policy sets and bindings” page, which gives an upper-level view of all service
clients associated with a particular WS-Notification service. Through the “Service client policy sets
and bindings” page, you can assign a policy set or binding to a specific service client, or to all
clients for the service. To view the “Service client policy sets and bindings” page for a given
WS-Notification service, click one of the following paths:

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) 3235



v Service integration > WS-Notification > Services > service_name > [Additional properties]
Outbound request policy sets and bindings

v Service integration > Buses > bus_name > [Services] WS-Notification services >
service_name > [Additional properties] Outbound request policy sets and bindings

Configuration tab: Configuration properties for this object. These property values are preserved even if
the runtime environment is stopped then restarted. See the information center task descriptions for
information about how to apply configuration changes to the runtime environment.

General Properties

Service client
Specifies the name of the service client that is displayed.

Additional Properties

Service integration bus
The system integration bus hosting this WS-Notification service web service client.

WS-Notification service
The WS-Notification service hosting this client.

Policy Set Attachments

This section allows you to attach a policy set to the WS-Notification service client. You can complete the
attachment by providing system-specific configuration when you assign the appropriate binding.

For more information about the policy set attachment options, see “Service client settings” on page 2750.

Note: For WS-Notification service clients, policy set attachments are not supported at the endpoint (port)
or operation level. Therefore, endpoints or operations are not selectable, and they are shown as
inheriting any policy set or binding that is attached to the service client.

To act on one or more of the listed items, select the check boxes next to the names of the items that you
want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the
Filter settings.

About policy set bindings

In this version of the product there are two types of bindings, application-specific bindings and general
bindings.

Application specific binding

You can create application-specific bindings only at a policy set attachment point. These bindings are
specific to and constrained to the characteristics of the defined policy. Application specific bindings are
capable of providing configuration for advanced policy requirements, such as multiple signatures; however,
these bindings are only reusable within an application. Furthermore, application-specific bindings have very
limited reuse across policy sets.

When you create an application-specific binding for a policy set attachment, the binding begins in a
completely unconfigured state. You must add each policy, such as WS-Security or HTTP transport, that
you want to override the default binding and fully configure the bindings for each policy that you have

3236 Administering WebSphere applications



added. For WS-Security policy, some high level configuration attributes such as TokenConsumer,
TokenGenerator, SigningInfo, or EncryptionInfo might be obtained from the default bindings if they are not
configured in the application-specific bindings.

For service providers, you can only create application-specific bindings by selecting Assign Binding >
New Application Specific Binding for service provider resources that have an attached policy set. See
service providers policy sets and bindings collection. Similarly, for service clients, you can only create
application-specific bindings by selecting Assign Binding > New Application Specific Binding for
service client resources that have an attached policy set. See service client policy set and bindings
collection.

General bindings

These bindings can be configured to be used across a range of policy sets and can be reused across
applications and for trust service attachments. Though general bindings are highly reusable, they are
however not able to provide configuration for advanced policy requirements, such as multiple signatures.
There are two types of general bindings:

v General provider policy set bindings

v General client policy set bindings

You can create general provider policy set bindings by accessing Services > Policy sets > General
provider policy set bindings > New in the general provider policy sets panel or by accessing Services >
Policy sets > General client policy set bindings > New in the general client policy set and bindings
panel. See “Defining and managing service client or provider bindings” on page 2790. General provider
policy set bindings might also be used for trust service attachments.

Buttons

Button Resulting action
Attach Client Policy Set View a list of policy sets available for attachment to the

selected WS-Notification service client. To attach the
policy set to the selected service client, select a policy set
from the drop-down list. To close the list, click Attach
Client Policy Set.

Detach Client Policy Set Detach a policy set from a selected WS-Notification
service client. After the policy set is detached, if there is
no policy set attached at the upper level (that is, at the
level of the WS-Notification service), the Attached Client
Policy Set column displays None and the Binding column
displays Not Applicable.

If there is a policy set attached at the level of the
WS-Notification service, the Attached Client Policy Set
column displays policy_set_name(inherited) for all
endpoints and operations. Similarly, for endpoints and
operations, the binding name is displayed with
(inherited) after it.

Assign Binding Select from a list of available bindings for the selected
policy set attachment. All the bindings are listed along with
the following options:

v Default

v New Application Specific Binding

For more information about these options, see “Service
client settings” on page 2750.

To close the drop-down list, click Assign Binding.

Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging) 3237



3238 Administering WebSphere applications



Chapter 31. Administering web services - RESTful services

You can use Java™ API for RESTful Web Services (JAX-RS) to develop services that follow
Representational State Transfer (REST) principles. RESTful services are based on manipulating
resources. Resources can contain static or dynamically updated data. By identifying the resources in your
application, you can make the service more useful and easier to develop.

Planning JAX-RS web applications

Planning to use JAX-RS to enable RESTful services
By using the Java API for RESTful Web Services (JAX-RS) API, application developers can quickly
develop RESTful applications. When planning to use JAX-RS to enable RESTful services, consider how to
best implement the capabilities and characteristics of a RESTful application with JAX-RS.

Before you begin

Read the overview of JAX-RS information to learn about REST services and the advantages of using
JAX-RS to build RESTful services.

About this task

JAX-RS is a programming model that provides a mechanism for developing services that follow
Representational State Transfer (REST) principles. Using JAX-RS, development of RESTful services is
simplified.

JAX-RS is a Java API for developing REST applications quickly. While JAX-RS provides a faster way for
developing web applications than servlets, the primary goal of JAX-RS is to build RESTful services.
JAX-RS 1.0 defines a server-side component API to build REST applications. IBM JAX-RS provides an
implementation of the JAX-RS (JSR 311) specification.

By using JAX-RS technology, REST applications are simpler to develop, simpler to consume, and simpler
to scale when compared to other types of distributed systems. Many popular and widely used Internet
services have successfully provided RESTful APIs to their applications. Third parties have used various
REST APIs to build their own businesses and applications.

Due to the simple consumption of RESTful services, you can write clients in many languages on different
platforms. Most languages require no third-party libraries as long as there is a method to use an HTTP
connection. Because of the pervasiveness of web browsers, the most prevalent clients are typically web
browsers. For example, many Web 2.0 properties use a JavaScript framework such as Dojo toolkit for
developing a client in a browser in conjunction with a RESTful server-side application that provides the
data for the client.

Procedure
1. Review existing business and middleware applications in your environment to determine which

services you want to implement as REST services.

2. Define the resources in your RESTful applications.

3. Determine the URL patterns, operations, and media type formats to use for each resource.

a. Define the URI patterns for resources in RESTful applications.

b. Define the client capabilities for RESTful applications using HTTP methods .

c. Define the HTTP headers and response codes for RESTful applications using HTTP methods.

© Copyright IBM Corp. 2012 3239



Results

You have a design plan for using JAX-RS to implementing REST services.

Defining the resources in RESTful applications
You can use Java API for RESTful Web Services (JAX-RS) to develop services that follow
Representational State Transfer (REST) principles. RESTful services are based on manipulating
resources. Resources can contain static or dynamically updated data. By identifying the resources in your
application, you can make the service more useful and easier to develop.

Before you begin

After you have identified the application that you want to expose as a RESTFUL service, you must first
define the resources for your RESTful application. When defining the resources for your application,
consider the type of data do you want to expose. Perhaps you already have a relational database that
contains information that you want to expose to users using REST technology. Do you already have a set
of Java classes defined for accessing that data?

For example, consider the case of an application defined to support a book store. This application
currently has a database with several tables that define the various items in the collection of books and
the inventory of each book. In this example, there are a number of ways to represent the data in the
database in a RESTful application. One approach is to consider each table as an individual resource, so
that each of the verbs in the RESTful request maps to the actions that the database supports on that table
such as select, insert, update, delete. This example is a simple approach to creating a RESTful
application. This approach using the book store example is also used in the documentation that describes
defining URL patterns for resources, resource methods, HTTP headers and response codes, media types,
and parameters for request representations to resources

In support of this database for the book store application, there might already be existing code that is
responsible for accessing the database and retrieving the data from each table. Even though the rows in
each of the tables logically represents each resource, the accessor classes are used to define the
resources. The implementing JAX-RS applications documentation provides more details on how these
classes are incorporated into your JAX-RS application.

Alternately, you might have more static content that does not reside in a database that you want to
distribute as resources. Whether it is a collection of documents in various formats or a resource-based
facade for other remote systems, using JAX-RS, you can distribute content from multiple sources.

About this task

Resources are the basic building block of a RESTful service. Examples of a resource from an online book
store application include a book, an order from a store, and a collection of users.

Resources are addressable by URLs and HTTP methods can perform operations on resources. Resources
can have multiple representations using different formats such as XML and JSON. You can use HTTP
headers and parameters to pass additional information that is relevant to the request and response.

With JAX-RS, you can annotate existing or new Plain Old Java objects (POJO) with JAX-RS specific
annotations. JAX-RS annotated resource classes and the annotated methods are invoked depending on
the URI patterns. You can use the annotated resource classes after these resource classes are added to
the list of resources returned by the overridden methods in the JAX-RS application class.

Procedure
1. Identify the types of resources in the application.

2. (optional) Identify existing Java classes that you can use as resource classes.

3240 Administering WebSphere applications



3. Create new Java classes for resources that do not have an existing Java class.

Results

You have defined the content that you want to expose as a collection of resources in your application.

What to do next

Based on the resources that you have defined, read about defining URL patterns for resources, resource
methods, HTTP headers and response codes, media types, and parameters for request representations to
resources to learn more about additional steps you can take to define the resources for your JAX-RS
application.

Defining the URI patterns for resources in RESTful applications
Representational State Transfer (REST) services are based on manipulating resources. Resources for
RESTful services are addressable, and URLs are the primary way of achieving addressability in REST.

Before you begin

Identify the resources in the application that you want to expose as a RESTful service.

About this task

URLs are used to specify the location of a resource. Interaction between the server and client is based on
issuing HTTP operations to URLs. Defining URL patterns is important because URLs often have a long
lifetime so that clients can directly address a resource long after the resource is initially discovered.

URLs are typically used when you enter addresses to web browsers, such as http://www.ibm.com/ or
http://www.example.com/bookstore/books/ISBN123. Although URLs are not required to be understandable
by users, RESTful services that provide logical URLs in understandable patterns enable client application
developers to work efficiently.

RESTful clients use URLs to manipulate resources. Each resource must have its own unique URL. Some
URL patterns have a collection path with a unique identifier appended. For example, you can use
http://www.example.com/bookstore/books as the collection resource URL, http://www.example.com/
bookstore/books/ISBN123 as a unique book resource URL, and you can use http://www.example.com/
bookstore/books/ISBN123/authors to retrieve a collection resource describing ISBN123 authors.

The application developer must carefully consider the granularity of URLs because it can affect usage of
the application and performance. For example, you can include the author information of a book as part of
the book resource or you can define the author information as a unique resource with its own URL that is
referenced in the book resource. Depending on the reuse of resources, it might be more efficient to define
a separate resource for the author information that is referenced in a hyperlink of the book resource for
cases when the author writes a different book.

After an initial URL is given to a client, subsequent related requests are discoverable by parsing the
current resource. In the book example, a GET request to http://www.example.com/bookstore/books/
retrieves a list of book URLs that can include http://www.example.com/bookstore/books/ISBN123.

Because systems rely on resources being available, URLs typically have longevity. Because HTTP has
built-in status codes for redirection, such as the 301 moved permanently code and the 307 temporarily
redirected code, users and clients with caches often reuse previously discovered URLs first. You can
additionally consider including a version identifier in the URL pattern, such as http://www.example.com/
bookstore/v2/books/ISBN123. Like the planning involved to define an interface using Java code, be sure to
carefully choose your URL patterns because of expected longevity.

Chapter 31. Administering web services - RESTful services 3241



In Java API for RESTful Web Services (JAX-RS), you must add @Path annotations to the Java class files
or the Java methods to define the relative URL of the resource. You can use JAX-RS subresource locators
and subresource methods to define resources. Use parameters, such as the path parameter or matrix
parameter, in the URL to identify the resource.

The value in the @Path annotation defines the relative part of the full URL to your resource. The base
URL is derived from the domain, port, application module context root, and any URL pattern mappings in
the web.xml file of the application module. For example, if the domain is www.example.com, the port is 9060,
the module context root is example, the servlet URL pattern is store/*, and the value of the @Path
annotation is /bookstore/books. The full URL is: http://www.example.com:9060/example/store/bookstore/
books.

Procedure
1. Identify the types of resources in the application. Suppose that you have two types of resources, a

BooksCollection and an individual Book object which have the following class definitions:
public class BooksCollection {

public BooksCollection() {
/* no argument constructor */

}

}

public class Book {
public Book(String ISBN) {

/* This constructor has an argument that will be annotated with a JAX-RS annotation.
See the JAX-RS specification for information on valid constructors. */

}
}

As defined in the JAX-RS specification, by default, resource instances are created per request. For
the JAX-RS runtime environment to create a resource instance, you must have either a constructor
with no argument or a constructor with only JAX-RS annotated parameters present.

2. Add a @javax.ws.rs.Path annotation to each resource class. For each @javax.ws.rs.Path annotation,
set the value as the part of the URL after the base URL of the application.

/*
* BooksCollection.java
* This Java class represents the books collection URL at /bookstore/books.
*/
@javax.ws.rs.Path("/bookstore/books/")
public class BooksCollection {

}

After completing the application, you can use the resource by visiting http://<host_name>:<port>/
<context_root>/<servlet_path>/bookstore/books. For this URL, specify the context root value as the
part of the URL after the context module. Specify the servlet path as any URL patterns in the web.xml
file, if it exists.

3. (optional) Determine if a resource needs to use part of the URL as a parameter. If a resource needs to
use part of the URL as a parameter, such as an identifier, you can use the @javax.ws.rs.Path
annotation with a regular expression. You can then add a @javax.ws.rs.PathParam annotation in
either the resource constructor or the resource method.

/*
* Book.java represents individual books.
*/

@javax.ws.rs.Path(“/bookstore/books/{bookID}”)
public class Book {

public Book(@javax.ws.rs.PathParam("bookID") String ISBN) {

}
}

When an HTTP request is made to http://<host_name>:<port>/<context_root>/<servlet_path>/
bookstore/books/ISBN_number, a Book instance is created with ISBN_number passed in to the ISBN
parameter of the constructor.

3242 Administering WebSphere applications



For more information about other possible parameters, read about defining parameters for requests to
resources in RESTful applications.

4. Create the javax.ws.rs.core.Application subclass to define to the JAX-RS runtime environment which
classes are part of the JAX-RS application. The resource classes are returned in the getClasses()
method; for example:

public class BookApplication extends javax.ws.rs.core.Application {
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(BooksCollection.class);
classes.add(Book.class);
return classes;

}
}

By defining the javax.ws.rs.core.Application subclass, classes returned from its methods are registered
to the JAX-RS runtime environment. When configuring the web.xml file, you must specify
the javax.ws.rs.core.Application subclass as a parameter to the servlet or filter. For more information,
read about configuring the web.xml file for JAX-RS applications.

Results

You have created a URL to identify your resources for your RESTful service. By considering issues with
URL patterns early in the application design, the RESTful service increases its usability and value over an
extended time.

What to do next

The resource at the defined URL exists. However, the resource does not yet have any methods to handle
HTTP method actions such as GET, POST, PUT, or DELETE. See the defining resource methods for
RESTful applications to learn more about defining capabilities of resources using supported HTTP
methods.

Defining resource methods for RESTful applications
Individual resources can define their capabilities using supported HTTP methods. In Representational
State Transfer (REST) services, the supported methods are GET, PUT, DELETE, and POST. All operations
are typically conducted by using one of the predefined HTTP methods with a resource.

Before you begin

Understand the predefined HTTP methods and their known attributes. Some HTTP methods are meant to
be safe, meaning that issuing the request does not change the resource, or idempotent, meaning that
multiple invocations of the operation do not change the result. While HTTP methods are defined to have
certain attributes, the service implementation follows the definitions. See the HTTP method definitions
information to learn more about the common set of methods for HTTP.

About this task

Clients use HTTP methods to perform certain operations. Unlike other distributed systems where unique
interfaces are defined by each system, RESTful systems based on HTTP mainly rely on predefined
methods. The four most common methods are GET, PUT, DELETE, and POST. Resources are not
required to permit all HTTP methods for all clients.

The HTTP GET method retrieves a resource representation. It is safe and idempotent. Repeated GET
requests do not change any resources.

The HTTP PUT method is often used to update resources or to create a new entity at a known URL.
When a resource must be updated or created, an HTTP PUT method is issued at the resource URL with
the new resource data as the request entity, also known as the message body. The HTTP PUT method is

Chapter 31. Administering web services - RESTful services 3243



idempotent so multiple identical PUT requests with the same entity to the same URL yields the same
result as if only one PUT request was issued. This method assumes that no other relevant requests were
made.

The HTTP DELETE method removes a resource at a given URL. It is also idempotent.

The HTTP POST method is often used when creating a resource in a collection when the final resource
URL is not known. For instance, an administrator issues a POST request to a /users collection resource
that creates a user with a unique ID such as 1234567890. The unique ID is then used as part of the URL
path to describe the new user resource, such as /users/1234567790. It is not safe and is not idempotent.
In this case, the multiple POST requests to the /users collection can continue creating a new unique ID
and adding this new ID to the users collection even if the user has the same information.

Because most RESTful services use well-known HTTP methods that provide expected results, you can
more easily create clients. RESTful service developers can take advantage of the expected behaviors of
HTTP methods. Resource methods can also use parameters, such as path parameters, query parameters,
or matrix parameters to identify the resource. Read about defining the use of parameters for request
representations to resources to learn more.

(optional) If you have a sub-resource method and a sub-resource locator method that have an @Path
annotation with the same value in the same resource class, the sub-resource locator is not considered
when determining the method to invoke by default. This is in compliance with the JAX-RS specification.

Use the wink.searchPolicyContinuedSearch property with a value of true to modify this behavior. This
results in sub-resource locators being used if no sub-resource methods match the request.

To enable the property, include a properties file in the WEB-INF directory of the module that has the
wink.searchPolicyContinuedSearch property and value specified. In the web.xml file of the application
module, include an init-param element with the propertiesLocation value for the param-name element.
The param-value element specifies the location of the properties file, for example, WEB-INF/
my_wink.properties.

The following example illustrates the web.xml file:
<servlet>

...

...
<init-param>

<param-name>propertiesLocation</param-name>
<param-value>/WEB-INF/my_wink.properties</param-value>

</init-param>
</servlet>

The following example illustrates the WEB-INF/my_wink.properties properties file:
wink.searchPolicyContinuedSearch=true

Procedure
1. Identify the types of resources in the application.

For each resource class, identify an existing method or create a method that you want to invoke for
each supported HTTP method. Methods that respond to HTTP requests are also known as resource
methods. For each resource method in the resource class, annotate the Java method with a single
JAX-RS HTTP method annotation such as @javax.ws.rs.GET, @javax.ws.rs.POST,
@javax.ws.rs.DELETE or @javax.ws.rs.PUT. For example, if an HTTP GET method is supported by
the BooksCollection class, then you can create and annotate a method like the following snippet:

@javax.ws.rs.Path("/bookstore/books/")
public class BooksCollection {

@javax.ws.rs.GET
public String getBooksCollection() {

String str = /* Construct a String representation of the resource. */
return str;

}
}

3244 Administering WebSphere applications



When issuing an HTTP GET request to http://<host_name>:<port>/<context_root>/<servlet_path>/
bookstore/books URL using a web browser or another HTTP client, the previous getBooksCollection()
method is invoked.

2. Ensure that the resource supports the required HTTP methods.

Each resource typically has multiple resource methods; for example:
@javax.ws.rs.Path(“/bookstore/books/{bookID}”)
public class Book {

/* This is a database key. */
private String ISBN;

public Book(@javax.ws.rs.PathParam("bookID") String ISBN) {
this.ISBN = ISBN;

}

@javax.ws.rs.GET
public String retrieveSpecificBookInformation() {

/* This code retrieves a book resource based on the ISBN key. */
}

@javax.ws.rs.PUT
public String updateBookInformation(String updatedBookInfo) {

/* This code updates the book resource based on ISBN key and the entity (message body) sent
in the request that is stored in updatedBookInfo. */

}

@javax.ws.rs.DELETE
public void removeBook() {

/* This code deletes a book resource based on ISBN key. */
}

}

When issuing an HTTP GET request to the http://<host_name>:<port>/<context_root>/
<servlet_path>/bookstore/books/<isbn_number> URL using a web browser or another HTTP client,
the retrieveSpecificBookInformation() method is invoked. Sending an HTTP PUT request to the same
URL invokes the updateBookInformation method and any content in the request message body is
passed as the value of the updatedBookInfo object. Finally, sending an HTTP DELETE request to the
same URL invokes the removeBook() method.

Note: According to the JAX-RS specification, you must not put multiple HTTP method annotations,
such as @javax.ws.rs.POST or @javax.ws.rs.PUT on the same resource method Because
HTTP methods have uniquely defined semantics, do not use a resource method for multiple
HTTP methods.

Results

You have defined valid operations for the resources.

Defining the HTTP headers and response codes for RESTful
applications
HTTP headers and status codes are useful to help intermediary and client programs understand
information about requests and responses for applications. HTTP headers contain metadata information.
HTTP status codes provide status information about the response.

Before you begin

See the HTTP 1.1 specification to become familiar with HTTP headers and HTTP status codes.

About this task

HTTP headers contain metadata information such as security authentication information, the user agent
that is used, and cache control metadata. Standard HTTP headers are defined in the HTTP specification;
however, you can use custom HTTP headers, if necessary.

Chapter 31. Administering web services - RESTful services 3245



You can read HTTP headers from the request and set the headers in the response. There are a set of
common request and response headers, but there are also unique request and unique response headers.
JAX-RS provides the HttpHeaders injectable interface and the @HeaderParam parameter annotation for
reading HTTP headers. If a javax.ws.rs.core.Response object is returned from a resource method, you can
set HTTP headers on the response. Also, you can set HTTP headers when an entity is written using the
MessageBodyWriter interface.

You can set HTTP response status codes to help client programs understand the response. While
responses can contain an error code in XML or other format, client programs can quickly and more easily
understand an HTTP response status code. The HTTP specification defines several status codes that are
typically understood by clients.

Procedure
v To read a specific request header, add a @javax.ws.rs.HeaderParam annotated parameter.
@javax.ws.rs.Path(“/bookstore/books/{bookID}”)
public class Book {

@javax.ws.rs.GET
public String retrieveSpecificBookInformation(@javax.ws.rs.HeaderParam(“User-Agent”) String theUserAgent) {

/* The book ID was sent in a HTTP request header with the name "bookID". */
}

}

v To read any request header, use the @javax.ws.rs.core.Context javax.ws.rs.core.HttpHeaders injected
object.

@javax.ws.rs.Path(“/bookstore/books/{bookID}”)
public class Book {

@javax.ws.rs.GET
public String retrieveSpecificBookInformation(@javax.ws.rs.core.Context HttpHeaders requestHeaders) {

/* Call methods on "requestHeaders" to get any request header sent by the client. */
List<String> bookIdValues = requestHeaders.getRequestHeader("User-Agent");

}
}

v To set a response status code or header, return a javax.ws.rs.core.Response object and build the
response with the appropriate status code and headers.

@javax.ws.rs.Path(“/bookstore/books/{bookID}”) public class Book {
@javax.ws.rs.GET public javax.ws.rs.core.Response retrieveSpecificBookInformation() {

return Response.status(200).header("responseHeaderName", "responseHeaderValue").header("anotherResponseHeaderName", "foo").build();
}

}

Results

You have used HTTP headers to read request headers and set response status codes and headers for
JAX-RS web applications.

Defining media types for resources in RESTful applications
Resources are represented by multiple formats. XML, JavaScript Object Notation (JSON), Atom, binary
formats such as PNG, JPEG, GIF, plain text, and proprietary formats are used to represent resources.
Representational State Transfer (REST) provides the flexibility to represent a single resource in multiple
formats.

Before you begin

Define the resources in the JAX-RS web application.

About this task

Resources have representations. A resource representation is the content in the HTTP message that is
sent to, or returned from the resource using the URI. Each representation that a resource supports has a
corresponding media type. For example, if a resource is going to return content formatted as XML, you
can use application/xml as the associated media type in the HTTP message.

3246 Administering WebSphere applications



Depending on the requirements of your application, resources can return representations in a preferred
single format or in multiple formats. For example, resources that are accessed using JavaScript clients
might prefer JSON representations because JSON is easy to consume.

JAX-RS provides @Consumes and @Produces annotations to declare the media types that are
acceptable for a resource method to read and write.

JAX-RS also maps Java types to and from resource representations using entity providers. A
MessageBodyReader entity provider reads a request entity and deserializes the request entity into a Java
type. A MessageBodyWriter entity provider serializes from a Java type into a response entity.

Table 279. Standard entity providers and basic Java types. This table includes the standard entity providers and
basic Java types that are included in the JAX-RS runtime environment, along with the corresponding supported
content types.

Java type MessageBodyReader MessageBodyWriter
Supported Content
types

byte[] X X */*

java.io.InputStream X X */*

java.io.Reader X X */*

java.lang.String X X */*

java.io.File X X */*

javax.activation.DataSource X X */*

javax.xml.transform.Source X X text/xml, application/xml,
application/*+xml

javax.ws.rs.core.MultivaluedMap X X application/x-www-form-
urlencoded

JAXB types X X text/xml, application/xml,
application/*+xml

javax.ws.rs.core.StreamingOutput X */*

If a String value is used as the request entity parameter, the MessageBodyReader entity provider
deserializes the request body into a new String. If a JAXB type is used as the return type on a resource
method, the MessageBodyWriter serializes the Java Architecture for XML Binding (JAXB) object into a
response body.

If you need a custom mapping from a Java type to a specific representation, see the information for using
an application-defined entity provider.

If your client can handle multiple formats and you want the server to determine the best resource
representation to return, read about using content negotiation in JAX-RS applications to serve multiple
content types.

The specifications for XML, JSON, and Atom provide details regarding the formats of resource
representations for applications. See the specifications to learn more about the formats of resource
representations.

Procedure
1. Determine the resource representation format such as XML, JSON, or ATOM to use for either the

request or the response.

2. Add the @Consumes and @Produces annotations appropriately to the resource method.

3. If the resource needs to read the content of the request, add a request entity parameter to the
resource method. The request entity parameter is a single Java parameter on the method that does
not have an annotation.

Chapter 31. Administering web services - RESTful services 3247



4. If the resource method returns content in the response, return a Java object that is writable by a
JAX-RS entity provider. This Java object is mapped to the response entity in the HTTP response. The
returned object must be a JAX-RS supported Java type or wrapped in a javax.ws.rs.core.Response or
javax.ws.rs.core.GenericEntity type.

Results

You have mapped the request entities to the resource method entity parameter and any response objects
that are returned are mapped to the response entity for the resource representation.

Example

The following example illustrates defining XML as the resource representation for a RESTful bookstore
application.

1. Identify the resource methods that you want to read the request entity or return a response entity.

In the retrieveSpecificBookInformation method example that follows, there is no request entity that is
read. However, there is a response object that is returned. This object wraps a JAXB object that
contains the entity information. Adding the @Produces annotation on the resource method with a
media type of application/xml indicates that the resource method always returns an XML
representation with a media type of application/xml.

Clients that have an Accept HTTP request header value compatible with the application/xml media
type invoke the method correctly.

Clients that do not have an Accept HTTP header value compatible with the application/xml media
type automatically receive a 406 Not Acceptable response status which indicates that the server
cannot produce an acceptable response.

The following example identifies the resource methods that read the request entity or return a
response entity:

/*
* Book.java
* This class represents individual books. The @Produces annotation specifies a media type of application/xml.
*/
@Path(“/bookstore/books/{bookID}”)
public class Book {
@GET
@Produces(“application/xml”)
public javax.ws.rs.core.Response retrieveSpecificBookInformation(@PathParam(“bookID”) String theBookID,
@Context javax.ws.rs.core.HttpHeaders headers) {
/* ... */
return
Response.ok(/* JAXB object to represent response body entity */).expires(/* Expires response header value*/).header(“CustomHeaderName”, “CustomHeaderValue”).build();
}
@PUT
public String updateBookInformation(@PathParam(“bookID”) String theBookID, String theRequestEntity,
@javax.ws.rs.HeaderParam(“Content-Length”) String contentLengthHeader) { /* ... */ }

@DELETE
public void removeBook(@PathParam(“bookID”) String theBookID) { /* ... */ }

}

2. Identify the resource methods that need to consume the request information.

In the following snippet, the PUT method on the book resource accepts the request entity content if a
media type of text/plain is sent, as defined in the @Consumes annotation. This method returns
content with a text/plain representation as specified in the @Produces annotations.

If a client does not send a message with a Content-Type value of text/plain, then the PUT resource
method is not invoked. If Content-Type: application/xml is sent in the HTTP request headers, the
updateBookInformation Java method is not be called.

The DELETE method neither reads a request entity nor returns a response entity; therefore, it does not
require either an @Consumes or an @Produces annotation.

The following example identifies the resource methods that consume the request information:
/*
* Book.java
* This class represents represent individual books with custom headers.
*/
@Path(“/bookstore/books/{bookID}”)
public class Book {
@GET
@Produces(“application/xml”)
public javax.ws.rs.core.Response retrieveSpecificBookInformation(@PathParam(“bookID”) String theBookID, @Context javax.ws.rs.core.HttpHeaders headers) {

3248 Administering WebSphere applications



/* ... */
return Response.ok(/* JAXB object to represent response body entity */).expires(/* Expires response header value).header(“CustomHeaderName”, “CustomHeaderValue”).build();

}
@PUT
@Consumes(“text/plain”)
@Produces(“text/plain”)
public String updateBookInformation(@PathParam(“bookID”) String theBookID, String theRequestEntity, @javax.ws.rs.HeaderParam(“Content-Length”) String contentLengthHeader) {
/* ... */
String responseEntity = /* a plain text representation */;
return responseEntity;

}

@DELETE
public void removeBook(@PathParam(“bookID”) String theBookID) { /* ... */ }

}

What to do next

See the JAX-RS specification for a list of all the standard media formats that are supported for
representations.

Advanced users might consider defining custom mappings of Java types to representations or using
content negotiation for clients to negotiate preferred resource representations. To learn more about these
options, see the using custom defined entity formats information or the serving multiple content types with
content negotiation information.

Defining parameters for request representations to resources in
RESTful applications
Parameters are used to pass and add additional information to a request. You can use parameters as part
of the URL or in the headers. Path parameters, matrix parameters, query parameters, header parameters,
and cookie parameters are useful for passing in additional information to a request.

About this task

Multiple parameters types exist. Java API for RESTful Web Services (JAX-RS) enables easy access to all
the types of parameters using annotated injected parameters.

You can use any basic Java primitive type including java.lang.String as parameters, as well as Java types
with a constructor that uses a single String or a valueOf(String) static method. Additionally, you can use
List, SortedSet, and Set interfaces where the generic type is one of the previously mentioned types, such
as a Set when a parameter can have multiple values. If you need to parse requests, then use String as
the parameter type to enable you to complete basic inspection and customization of error path responses.

JAX-RS provides the following annotations to use on resource method parameters to specify that the
resource method can be invoked with correct parameter values.

javax.ws.rs.PathParam annotation

Path parameters are part of the URL. For example, the URL can include /collection/{item},
where {item} is a path parameter that identifies the item in the collection. Because path
parameters are part of the URL, they are essential in identifying the request.

If parts of the URL are parameters, you can use a @javax.ws.rs.PathParam annotated parameter;
for example:

@javax.ws.rs.Path(“/bookstore/books/{bookId}”)
public class BooksCollection {

@javax.ws.rs.GET
public String getSpecificBookInfo(@javax.ws.rs.PathParam(“bookId”) String theBookId) {

/* theBookId would contain the next path segment after /bookstore/books/ */
}

}

In this example, requests to /bookstore/books/12345 assigns the value of 12345 to the theBookId
variable.

javax.ws.rs.MatrixParam annotation

Chapter 31. Administering web services - RESTful services 3249



Matrix parameters are part of the URL. For example, if the URL includes the path segment,
/collection;itemID=itemIDValue, the matrix parameter name is itemID and itemIDValue is the
value.

You can read matrix parameters with a @javax.ws.rs.MatrixParam annotated parameter; for
example:

@javax.ws.rs.Path(“/bookstore/books”)
public class BooksCollection {

@javax.ws.rs.GET
public String getBookCollectionInfo(@javax.ws.rs.MatrixParam(“page”) int page, @javax.ws.rs.MatrixParam(“filter”) String filter) {

/* This statement uses the page and filter parameters. */
}

}

In this example, requests to/bookstore/books;page=25;filter=test invoke the
getBookCollectionInfo parameter so that the value for the page variable is set to 25 and the value
for filter variable is set to test.

javax.ws.rs.QueryParam annotation

Query parameters are appended to the URL after a “?” with name-value pairs. For instance, if the
URL is http://example.com/collection?itemID=itemIDValue, the query parameter name is itemID
and itemIDValue is the value. Query parameters are often used when filtering or paging through
HTTP GET requests.

You can read query parameters with a @javax.ws.rs.QueryParam annotated parameter; for
example:

@javax.ws.rs.Path(“/bookstore/books”)
public class BooksCollection {

@javax.ws.rs.GET
public String getBookCollectionInfo(@javax.ws.rs.QueryParam(“page”) int page, @javax.ws.rs.QueryParam(“filter”) String filter) {

/* This statement uses the page and filter parameters. */
}

}

In this example, requests to/bookstore/books;page=25;filter=test invoke the
getBookCollectionInfo parameter so that the value for the page variable is set to 25 and the value
for filter variable is set to test.

javax.ws.rs.HeaderParam annotation

Header parameters are HTTP headers. While there are pre-defined HTTP headers, you can also
use custom headers. Headers often contain control metadata information for the client,
intermediary, or server.

If a HTTP request header must be read, use the @javax.ws.rs.HeaderParam annotation; for
example:

@javax.ws.rs.Path(“/bookstore/books/”)
public class BooksCollection {

@javax.ws.rs.GET
public String getBookCollectionInfo(@javax.ws.rs.HeaderParam(“Range”) String rangeValue) {

/* The rangeValue variable contains the value of the HTTP request header "Range" */
}

}

In this example, requests to /bookstore/books/ with a Range HTTP request header value of
bytes=0-499 invokes the method with bytes=0-499 as the value for the rangeValue variable.

javax.ws.rs.CookieParam annotation

Cookie parameters are special HTTP headers. While cookies are associated with storing session
identification or stateful data that is not accepted as RESTful, cookies can contain stateless
information.

If an HTTP cookie is sent, such as mycustomid=customvalue123, you can retrieve the value of the
mycustomid variable using the following example:

@javax.ws.rs.Path(“/bookstore/books/”)
public class BooksCollection {

@javax.ws.rs.GET

3250 Administering WebSphere applications



public String getBookCollectionInfo(@javax.ws.rs.CookieParam(“mycustomid”) String mycustomid) {
/* The cookie value is passed to the mycustomid variable. */

}
}

javax.ws.rs.FormParam annotation

Form parameters are used when submitting a HTML form from a browser with a media type of
application/x-www-form-urlencoded. The form parameters and values are encoded in the request
message body in the form like the following: firstParameter=firstValue
&secondParameter=secondValue. The javax.ws.rs.FormParam annotation enables easy access to
individual form parameter values.

If a form is submitted and the entity value is firstName=Bob&lastName=Smith, you can retrieve the
values of the form parameters using the following example:

@javax.ws.rs.Path(“/customer”)
public class Custommer {

@javax.ws.rs.POST
public String postCustomerInfo(@javax.ws.rs.FormParam(“firstName”) String firstName, @javax.ws.rs.FormParam("lastName") String lastName) {

/* firstName would be "Bob" and secondName would be "Smith" */
}

}

Note: You can either use a single unannotated parameter to represent the message body or use
multiple FormParam annotated parameters, but not both. Because the FormParam requires
the request message body to be read and the message body is represented as a byte
stream, the message body cannot be read again. The following code is not valid:

@javax.ws.rs.Path(“/bookstore/books”)
public class BooksCollection {

@javax.ws.rs.POST
public String postSpecificBookInfo(@javax.ws.rs.FormParam(“bookId”) String theBookId, String theRequestEntity) {

/* This code is invalid. Can only use FormParam or a request entity parameter like "String theRequestEntity" and not both */
}

}

Choose one of the following ways to define variables to read parameters.

Procedure
v Add a parameter to the resource method by using an appropriate JAX-RS parameter annotation on the

method to identify the type of parameter. You can read multiple types of parameters from a request; for
example:

@javax.ws.rs.Path(“/bookstore/books/”)
public class BooksCollection {

@javax.ws.rs.GET
public String getBookCollectionInfo(@javax.ws.rs.QueryParam(“page”) int page, @javax.ws.rs.QueryParam(“filter”) String filter) {

/* This statement uses the page and filter parameters. */
}

}

Issuing an HTTP GET request using a web browser or other HTTP client, such as http://
<host_name>:<port>/<context_root>/<servlet_path>/bookstore/books?page=10&filter=FilterValue,
invokes the getBookCollectionInfo() method with the page set to 10 and filter set to FilterValue.

v Add the parameter annotation on the fields, JavaBeans properties, and constructor arguments; for
example:

@javax.ws.rs.Path(“/bookstore/books/”)
public class BooksCollection {

@javax.ws.rs.QueryParam(“page”) int page;

String filter;

@javax.ws.rs.QueryParam(“filter”)
public void setFilter(String filter) {

this.filter = filter;
}

@javax.ws.rs.GET
public String getBookCollectionInfo() {

/* This statement uses the page and filter parameters. */
}

}

Chapter 31. Administering web services - RESTful services 3251



Issuing an HTTP GET request using a web browser or other HTTP client, such as http://
<host_name>:<port>/<context_root>/<servlet_path>/bookstore/books?page=10&filter=FilterValue,
also invokes the getBookCollectionInfo() method with the page set to 10 and filter set to FilterValue.

Results

Your resource methods are defined so that they can be invoked with appropriate parameter values.

Example

Defining exception mappers for resource exceptions and errors
Java API for RESTful Web Services (JAX-RS) applications can produce exceptions and errors. The default
behavior is to use the exception handling functionality of application container such as JavaServer Pages
(JSP) error pages. However, you can customize the error handling and send specific responses back
when an exception or error occurs.

About this task

JAX-RS resource methods, like any Java method, can throw checked and unchecked exceptions. By
default, an unchecked runtime exception or error occurs in the container again. A checked exception is
wrapped in a ServletException for resources running in the web container. Therefore, a developer can
use error handling facilities such as JSP error pages to handle exceptions thrown from a JAX-RS
application.

JAX-RS introduced the exception, javax.ws.rs.WebApplicationException. A developer can specify a
specific error class name or javax.ws.rs.core.Response object when creating a WebApplicationException.
When the WebApplicationException is thrown, the information included in the exception by way of a status
class name or Response object is used to serialize a response.

If you cannot throw the exception, WebApplicationException, in your code and you cannot use the error
handling facilities in the web container, but you want to use a custom error response, then you can create
a customized JAX-RS javax.ws.rs.ext.ExceptionMapper class to map exceptions to HTTP error
responses.

The following procedure illustrates how to write a custom ExceptionMapper class.

Procedure
1. Create a class that implements the javax.ws.rs.ext.ExceptionMapper class and annotate the class

with the javax.ws.rs.ext.Provider annotation. This step assumes that your JAX-RS resource can
throw the exception, MyCustomException, in its methods. The following example illustrates a simple
ExceptionMapper class:

import javax.ws.rs.core.Response;
import javax.ws.rs.ext.ExceptionMapper;
import javax.ws.rs.ext.Provider;

@Provider
public class CustomExceptionMapper implements ExceptionMapper<MyCustomException> {

public Response toResponse(MyCustomException exception) {
return null;

}

}

2. In the toResponse(MyCustomException) method, return a Response object that contains the customized
error response. The following example illustrates a customized
ExceptionMapper.toResponse(MyCustomException) method:

@Provider
public class CustomExceptionMapper implements ExceptionMapper<MyCustomException> {

public Response toResponse(MyCustomException exception) {
return Response.status(500).entity("Unfortunately, the application cannot

3252 Administering WebSphere applications



process your request at this time.").type("text/plain").build();
}

}

You can have additional code where you log an error, inspect the exception thrown, or use more
complex logic.

3. Package the compiled custom ExceptionMapper class with your web application project. If you rely on
the annotation scanning capabilities to find all of your JAX-RS classes in your web application, no
additional steps are required. However, if you return all of the relevant JAX-RS resource classes and
providers in a JAX-RS application subclass method, then you must also add the custom
ExceptionMapper class to the returned set. The following example illustrates a preexisting
javax.ws.rs.core.Application subclass:

import java.util.HashSet;
import java.util.Set;

import javax.ws.rs.core.Application;

public class MyApplication extends Application {

@Override
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();
classes.add(CustomExceptionMapper.class);
/* add your additional JAX-RS classes here */
return classes;

}
}

When exceptions occur in your JAX-RS resource methods, you can customize the HTTP error
response so that a user cannot see a stack trace or potentially confidential data. Use an
ExceptionMapper or the exception handling functionality in the web container to give more helpful
responses if the application is not behaving correctly.

Results

You have written a custom ExceptionMapper to handle exceptions in your JAX-RS web application.

Deploying JAX-RS web applications
After you assemble your Java API for RESTful Web Services (JAX-RS) web application, you can deploy
the web application archive (WAR) package or the enterprise archive (EAR) package onto the application
server.

Before you begin

To deploy a JAX-RS web application, you need a WAR package or EAR package that is configured and
enabled for RESTful services.

About this task

Every web application must have a context root for the web application to deploy successfully. A context
root for each Web module is defined in the application deployment descriptor during application assembly
or during application deployment. The context root is combined with the defined servlet mapping from the
WAR file to compose the full URL that users type to access the servlet. The context root for each
deployed web application must be unique on the server. The context root can also be empty. For instance,
if a Web application used a context root of sample/application/, the web application request URL begins
with http://<hostname>:<port>/sample/application/.

The URL pattern of a servlet is appended to the context root of the Web application. For example, if the
context root is sample/application/ and the servlet URL mapping is rest/api/*, the base URI for the
JAX-RS web application is http://<hostname>:<port>/sample/application/rest/api.

Chapter 31. Administering web services - RESTful services 3253



Procedure

Deploy the JAX-RS web application WAR package or EAR package onto the application server. Read
about installing enterprise application files to learn more about deploying web applications.

Results

The JAX-RS web application is deployed and ready for your business use.

Deployment of a Java API for RESTful Web Services (JAX-RS) web application is successful if you can
access the application by typing a Uniform Resource Locator (URL) in a browser or if you can access the
application by following a link. If you cannot access your application, follow these steps to eliminate some
common errors that can occur during deployment.

Note:

Use the following tips to resolve common errors during deployment of JAX-RS web applications.

An HTTP 404 Not Found error message is sent back to the client in the server response.

To resolve this problem, take the following actions:

v Verify that the root resource classes are annotated with a @javax.ws.rs.Path annotation
and that value in the annotation is correct. Root resource classes without a @Path
annotation are not registered with the JAX-RS runtime. To learn more, see the defining
the URI patterns for resources in RESTful applications information.

v Verify that the root resource class is added to the set of classes returned from the
getClasses() method for the subclasses of the javax.ws.rs.core.Application class. Classes
not registered in the subclasses of the javax.ws.rs.core.Application class are not
recognized by the JAX-RS runtime environment. To learn more, see the defining the URI
patterns for resources in RESTful applications information.

v Verify that the web.xml configuration is correct with the expected URL patterns. For
additional details, see the configuring the web.xml file for JAX-RS servlets and filters
information.

v Verify that the URL that is being used is correct and includes the context root. If you are
using a servlet, the servlet URL pattern is a part of the final URL. Using a filter might be
more suitable in your web application. For additional details, see the configuring the
web.xml file for JAX-RS servlets and filters information.

An HTTP 406 Not Acceptable error message is automatically being sent back to the client in
the server response.

To resolve this problem, take the following actions:

v Verify that the Accept HTTP request header in the incoming request is correct. To learn
more, see the Implementing content negotiation based on HTTP headers information.

v Verify that the @javax.ws.rs.Produces value on the resource method or resource class is
compatible with the incoming Accept HTTP request header. To learn more, see the
defining media types for resources in RESTful applications.

An HTTP 415 Unsupported Media Type error message is automatically being sent back to the
client in the server response.

To resolve this problem, take the following actions:

v Verify that that the Content-Type HTTP request header in the incoming request is correct
and is being sent. To learn more, see the defining media types for resources in RESTful
applications.

v Verify that the @javax.ws.rs.Consumes value on the resource method or resource class
is compatible with the incoming Content-Type HTTP request header.

3254 Administering WebSphere applications



An HTTP 204 No Content response status is automatically being sent back to the client in
the server response.

To resolve this problem, take the following action:

v If the object returned from a resource method is a null value, then a 204 No Content
status response code is sent back from the server runtime automatically.

For information about known problems and their resolution, see the IBM Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Chapter 31. Administering web services - RESTful services 3255



3256 Administering WebSphere applications



Chapter 32. Administering web services - Security
(WS-Security)

The Web Services Security specification defines core facilities for protecting the integrity and confidentiality
of a message, and provides mechanisms for associating security-related claims with a message.

Deploying applications that use SAML
After SAML policy sets and bindings have been configured, and SAML tokens created, the SAML token
information can be sent from the original login server to other servers using the SAML propagation feature.
You can also extract SAML attributes from an existing SAML token and then create additional tokens using
the extracted attributes.

About this task

Use the SAML propagation feature of WebSphere Application Server to send SAML token information
based on the original login to other servers using a SAML token. Four propagation methods are provided.
You can propagate the original SAML token, the SAML token identity and attributes, the WSCredential and
WSPrincipal information, or a pre-existing SAML token inserted in the RequestContext.

When SAML is installed on a WebSphere server, you can create SAML attributes using the SAML runtime
API. The SAML attributes are added to a CredentialConfig object, which is used to generate a SAML
token. The API also provides a function that extracts SAML attributes from an existing SAML token and
processes the attributes.

The following topics provide more information about deploying SAML applications.

Propagating SAML tokens
You can use various SAML token propagation methods to include SAML tokens in outbound web services
messages.

About this task

A web services client can include two types of tokens in outbound web services messages:

v Original SAML tokens the client received from inbound web services messages.

v New self-issued SAML tokens.

New SAML tokens can be generated using attributes from the original SAML tokens, or using attributes
from the WSPrincipal user name in the RunAs Subject. The web services policy configuration determines
which SAML tokens will be propagated. You can override the policy configuration by programmatically
inserting SAML tokens that you want to propagate into the Axis2 RequestContext object.

Four propagation methods are enabled. This table summarizes the propagation methods and the
associated binding options:

Table 280. Propagation methods and associated binding options. Use propagation to include SAML tokens in web
services messages.
SAML token propagation
method Binding option Implementation details

Propagate the original
SAML token.

The tokenRequest binding option is set to the value, propagation. Sends the original SAML token from the
server where the token was received to other
servers using WS-Security.

© IBM Corporation 2009 3257



Table 280. Propagation methods and associated binding options (continued). Use propagation to include SAML
tokens in web services messages.
SAML token propagation
method Binding option Implementation details

Propagate the user security
name, unique security
name, group IDs, and
security realm name.

The tokenRequest binding option is set to the value, issueByWSCredential. Overrides the default system implementation.

The self-issued SAML token contains user
security name, user unique security name,
group IDs, and security realm name that are
specified by the WSCredential object in user
security context.

Propagate the SAML token
identity and attributes.

No binding option is set. Default system implementation.

The server self-generates a new SAML token
containing the original SAML attributes,
Authentication method, and NameIdentifier or
SAML NameID, and sends the new
self-generated SAML token to downstream
servers using WS-Security. The new SAML
token issuer name, issuer signing certificate,
and lifetime are determined by the SAML
provider configuration properties.

Propagate the WSPrincipal. The tokenRequest binding option is set to the value, issueByWSPrincipal. Overrides the default system implementation.

The self-issued SAML token contains
WSPrincipal information in the RunAs
subject. The information is stored as
NameIdentity or NameID without copying
anything from the original SAML token, even
if the token exists in the subject.

Programmatically propagate
a pre-existing SAML token.

Insert the SAML token that you want to propagate into the RequestContext using the property,
com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.SAMLTOKEN_IN_MESSAGECONTEXT.

Overrides all other existing binding options.

Procedure
1. Propagate the original SAML token by setting the tokenRequest binding option to the value,

propagation, in the bindings.xml file, as shown in the steps. This method sends the original SAML
token to other servers using WS-Security. In order for the propagation to succeed, there must be a
valid SAML token in the RunAs subject. The server extracts the SAML token from the RunAs subject in
the current security context and validates the following conditions. If any of these conditions are invalid,
the WS-Security runtime environment does not propagate the SAML token, and the propagation
request fails.

v The SAML token has not expired, and the expiration time is within the time window of the
notOnOrAfter value.

v The ConfirmationMethod setting in the SAML token is the same as the confirmationMethod binding
option defined in the token generator configuration.

v The token ValueType in the SAML token matches the ValueType in the token generator
configuration.

Perform these steps to set the correct value for the tokenRequest binding option. This procedure
assumes that a web services client application named JaxWSServicesSamples is deployed, and that
the Saml Bearer Client sample binding is attached.

a. Click Applications > Application types > WebSphere enterprise Applications >
JaxWSServicesSamples > Service client policy sets and bindings > Saml Bearer Client
sample > WS-Security > Authentication and protection.

b. Click gen_saml11token in the Authentication tokens table.

c. Click Callback handler.

d. Add the custom property tokenRequest and set the property value to propagation.

2. To propagate the SAML token identity and attributes using a self-issuing SAML token, modify the
outbound tokenGenerator in the bindings.xml file. This method sends the original SAML attributes,
NameIdentifier or NameID, and authentication method from the original SAML token to other servers
using WS-Security. If there is no SAML token in the subject, the server uses the WSPrincipal, stored
as NameIdentifier or NameID, to create a self-issued SAML token. This propagation method is the
default system implementation. In this method, the binding option is not set.

3258 Administering WebSphere applications



The following limitations apply to the bindings.xml file when you are using this propagation method:

v Do not set the tokenRequest binding option in the bindings.xml file.

v Do not set the stsURI binding option in the bindings.xml file, or set the option to this value:
www.websphere.ibm.com/SAML/Issuer/Self.

3. To propagate the WSPrincipal, modify the bindings.xml file as shown in the steps. Set the
tokenRequest binding option to the value, issueByPrincipal, in the bindings.xml file. Using this
method, the self-issued SAML token is always based on the WSPrincipal even if there is a SAML
token in the subject. The new SAML token contains the WSPrincipal user name as the NameId or
NameIdentifier. The token does not contain any other attributes in the WSPrincipal or WSCredential
objects.

The following limitation applies to the bindings.xml file when you are using this propagation method:

v Do not set the stsURI binding option in the bindings.xml file, or set the option to the value,
www.websphere.ibm.com/SAML/Issuer/Self.

Perform these steps to set the correct value for the tokenRequest binding option. This procedure
assumes that a web services client application named JaxWSServicesSamples is deployed, and that
the Saml Bearer Client sample binding is attached.

a. Click Applications > Application types > WebSphere enterprise Applications >
JaxWSServicesSamples > Service client policy sets and bindings > Saml Bearer Client
sample > WS-Security > Authentication and protection.

b. Click gen_saml11token in the Authentication tokens table.

c. Click Callback handler.

d. Add the custom property tokenRequest and set the property value to issueByPrincipal.

4. To propagate a pre-existing SAML token by inserting SAMLToken in the RequestContext, follow these
steps. Use this method to send a SAML token that you created to downstream servers using
WS-Security. The propagation is automatically triggered if the WS-Security runtime detects a SAML
token in the RequestContext. The pre-existing token overrides any other existing binding options. To
use this propagation method, save the existing SAML token in the RequestContext by specifying
com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.SAMLTOKEN_IN_MESSAGECONTEXT as the
key, as shown in the steps.

a. Generate a SAML token using the method SAMLToken samlToken = <token type>, for example:
SAMLToken samlToken = samlFactory.newSAMLToken(cred, reqData, samlIssuerCfg);

b. Save the SAMLToken to the RequestContext, for example:
Map requestContext = ((BindingProvider)port).getRequestContext();

requestContext.put("com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.SAMLTOKEN_IN_MESSAGECONTEXT", samlToken );

This propagation option can co-exist with the other propagation methods, and overrides the other
methods. If the SAML token in the RequestContext is expired, or the token expiration time is less than
current time plus the cache cushion, the WS-Security runtime environment ignores the SAML token,
and uses one of the other three propagation methods that is configured in the bindings.xml file. To
avoid using the other three propagation methods, add the following binding option to the custom
properties under callback handler in the TokenGenerator configuration: failOverToTokenRequest =
false.

5. To propagate a user's group memberships, unique security name, and realm name contained in the
com.ibm.websphere.security.cred.WSCredential object, modify the bindings.xml file as shown in the
steps. Set the tokenRequest binding option to the value, issueByWSCredential, in the bindings.xml file.
Using this method, the self-issued SAML token is always based on the WSCredential even if there is a
SAML token in the subject.

The new SAML 1.1 token contains the following assertions:

v The NameIdentifier element contains the SecurityName value from WSCredential with the
NameQualifier element set to the realm name from WSCredential. The SecurityName is obtained by
calling the WSCredential.getSecurityName() method. The realm name is obtained by calling the
WSCredential.getRealmName() method.

Chapter 32. Administering web services - Security (WS-Security) 3259



v All attributes have an AttributeNamespace set to com.ibm.websphere.security.cred.WSCredential
as the value.

v The GroupIds attribute contains all group names that a user belongs to. The group names are
obtained by calling the WSCredential.getGroupIds() method.

v The UniqueSecurityName attribute contains the unique security name, which is obtained by calling
the WSCredential.getUniqueSecurityName() method.

v Optionally, you can assert the realm name from WSCredential by adding the includeRealmName=true
custom property in the callback handler.

The new SAML 2.0 token contains the following assertions:

v The NameID element contains the SecurityName value from WSCredential with the NameQualifier
element set to the realm name from WSCredential. The SecurityName is obtained by calling the
WSCredential.getSecurityName() method. The realm name is obtained by calling the
WSCredential.getRealmName() method.

v All attributes have a NameFormat set to com.ibm.websphere.security.cred.WSCredential as the
value.

v The GroupIds attribute contains all group names that a user belongs to. The group names are
obtained by calling the WSCredential.getGroupIds() method.

v The UniqueSecurityName attribute contains the unique security name, which is obtained by calling
the WSCredential.getUniqueSecurityName() method.

v Optionally, you can assert the realm name from WSCredential by adding the includeRealmName=true
custom property in the callback handler.

The following limitation applies to the bindings.xml file when you use the propagation method:

v Do not set the stsURI binding option in the bindings.xml file.

Perform these steps to set the correct value for the tokenRequest binding option. This procedure
assumes that a Web services client application named JaxWSServicesSamples is deployed, and that the
Saml Bearer Client sample binding is attached.

a. Click Applications > Application types > WebSphere enterprise Applications >
JaxWSServicesSamples > Service client policy sets and bindings > Saml Bearer Client
sample > WS-Security > Authentication and protection.

b. Click gen_saml11token in the Authentication tokens table.

c. Click Callback handler.

d. Add the tokenRequest custom property and set the property value to issueByWSCredential.

The following example illustrates the NameIdentifier and Attribute statement from a self-issued
SAML 1.1 assertion based on WSCredential.

<saml:AttributeStatement>
<saml:Subject>

<saml:NameIdentifier NameQualifier="ldap.acme.com:9080">uid=alice,dc=acme,dc=com</saml:NameIdentifier>
<saml:SubjectConfirmation>

<saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:bearer</saml:ConfirmationMethod>
</saml:SubjectConfirmation>

</saml:Subject>
<saml:Attribute AttributeName="UniqueSecurityName" AttributeNamespace="com.ibm.websphere.security.cred.WSCredential">

<saml:AttributeValue>uid=alice,dc=acme,dc=com</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute AttributeName="GroupIds" AttributeNamespace="com.ibm.websphere.security.cred.WSCredential">

<saml:AttributeValue>cn=development,dc=acme,dc=com</saml:AttributeValue>
<saml:AttributeValue>cn=deployment,dc=acme,dc=com</saml:AttributeValue>
<saml:AttributeValue>cn=test,dc=acme,dc=com</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

The following example illustrates the NameID and Attribute statement from a self-issued SAML 2.0
assertion based on WSCredential.

<saml2:AttributeStatement>
<saml2:Attribute Name="UniqueSecurityName"

NameFormat="com.ibm.websphere.security.cred.WSCredential">
<saml2:AttributeValue>uid=alice,dc=acme,dc=com</saml2:AttributeValue>

3260 Administering WebSphere applications



<saml2:Attribute>
<saml2:Attribute AttributeName="GroupIds"

NameFormat="com.ibm.websphere.security.cred.WSCredential">
<saml2:AttributeValue>cn=development,dc=acme,dc=com</saml2:AttributeValue>
<saml2:AttributeValue>cn=deployment,dc=acme,dc=com</saml2:AttributeValue>
<saml2:AttributeValue>cn=test,dc=acme,dc=com</saml2:AttributeValue>

</saml2:Attribute>
</saml2:AttributeStatement>

<saml2:NameID NameQualifier="ldap.acme.com:9060">alice</saml2:NameID>

Creating SAML attributes in SAML tokens
Using the SAML runtime API, you can create SAML tokens containing SAML attributes. You can also
extract the SAML attributes from an existing SAML token.

About this task

Using WebSphere Application Server, you can create SAML attributes using the SAML token library APIs.
The SAML attributes are added to a CredentialConfig object, which is used to generate a SAML token.
The API also provides a function that extracts SAML attributes from an existing SAML token and
processes the attributes.

To create a SAML token containing SAML attributes, perform the following steps:

Procedure
1. Initialize a com.ibm.wsspi.wssecurity.saml.data.SAMLAttribute object. This creates a SAML attribute

based on an address, for example:
SAMLAttribute sattribute =

new SAMLAttribute("urn:oid:2.5.4.20", //Name
new String[] {" any address"}, //Attribute Values
null, /*XML Attributes empty on this example*/
"urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500", //NameSpace
"urn:oasis:names:tc:SAML:2.0:attrname-format:uri", //format
"Address");

2. Use the SAMLTokenFactory to create a CredentialConfig object containing a SAML attribute. This
method requires the Java security permisson wssapi.SAMLTokenFactory.newCredentialConfig.

a. Create a com.ibm.wsspi.wssecurity.saml.config.CredentialConfig object and set a valid principal
name.

b. Create a SAML attribute.

c. Create a list of SAML attributes and add the SAML attribute to the list.

d. Add the SAML attribute list to the CredentialConfig object.

See the following example:
SAMLTokenFactory samlFactory =
SAMLTokenFactory.getInstance("http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0");//samlTokenType

CredentialConfig credentialConfig = samlFactory.newCredentialConfig();
credentialConfig.setRequesterNameID("any name");

SAMLAttribute sattribute =
new SAMLAttribute("urn:oid:2.5.4.20", //Name

new String[] {" any address"}, //Attribute Values
null, /*XML Attributes empty on this example*/
"urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500", //NameSpace
"urn:oasis:names:tc:SAML:2.0:attrname-format:uri", //format
"Address");

ArrayList<SAMLAttribute> al = new ArrayList<SAMLAttribute>();
al.add(sattribute);
credentialConfig.setSAMLAttributes(al);

3. Specifying the CredentialConfig as a parameter, use the
com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory newSAMLToken method to create a
SAML token containing the attributes. This step assumes that a RequesterConfig reqData object and a
ProviderConfig samlIssuerCfg object have already been created. For more information on these
objects, read about RequesterConfig and ProviderConfig.

Chapter 32. Administering web services - Security (WS-Security) 3261



a. Obtain an instance of the SAMLTokenFactory.

b. Create a SAML token using the newSAMLToken method from the SAMLTokenFactory, for example:
SAMLTokenFactory samlFactory =

SAMLTokenFactory.getInstance("http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1");

SAMLToken aSamlToken = samlFactory.newSAMLToken(credentialConfig, reqData, samlIssuerCfg);

4. Optional: Extract SAML attributes from an existing SAML token. This step is useful to extract the SAML
attributes from a received SAML token. You can use this step when a SAML assertion is received and
the attributes contained in the assertion need to be processed.

a. Invoke the getSAMLAttributes() method with the token as a parameter to obtain a list of the SAML
attributes in the token. This method requires the Java security permission
wssapi.SAMLToken.getSAMLAttributes.

b. Apply an iterator to the list.

c. Iterate through the list and perform any additional processing required for your application.

See the following example:
List<SAMLAttribute> aList = aSAMLToken.getSAMLAttributes();
java.util.Iterator<SAMLAttribute> i = aList.iterator();

while(i.hasNext()){

SAMLAttribute anAttribute = i.next();

//do something with namespace
String namespace = anAttribute.getAttributeNamespace();

//do something with name
String name = anAttribute.getName();

//do something with friendly name
String friendlyName = anAttribute.getFriendlyName();

//process sring attribute values
String[] stringAttributeValues = anAttribute.getStringAttributeValue();

//process XML attribute values
XMLStructure[] xmlAttributeValues = (XMLStructure[]) anAttribute.getXMLAttributeValue();

}

SAML user attributes
A SAML assertion can contain user attributes relating to the principal of the SAML token. A SAML
assertion can contain multiple user attributes.

You can include user attributes in the token to communicate the address of the person who is the SAML
assertion principal. This example shows a SAML assertion containing a user attribute:
<saml:AttributeStatement>

<saml:Attribute xmlns:x500=
"urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500"

NameFormat=
"urn:oasis:names:tc:SAML:2.0:attrname-format:uri"

Name="urn:oid:2.5.4.20"
FriendlyName="Address">

<saml:AttributeValue xsi:type="xs:string">
11111 Parker Lane, Austin, Texas, 78758

</saml:AttributeValue>
</saml:Attribute>

</saml:AttributeStatement>

This table describes the parameters used in the assertion:

Parameter Description

NameFormat Specifies how the attribute is interpreted.

Name Indicates the formal name of the attribute.

3262 Administering WebSphere applications



Parameter Description

FriendlyName Provides a user-friendly name for an attribute when the
Name parameter is cryptic.

AttributeValue The value of the user attribute. The value can be a string,
or a complex XML type.

Establishing security context for web services clients using SAML
security tokens
WebSphere Application Server supports two policy set caller binding configuration options to establish
client security context using SAML security tokens in web services SOAP request messages. The two
configuration options are mapping SAML tokens to a user entry in a local user repository and, asserting
SAML tokens based on a trust relationship.

Before you begin

This task assumes that you are familiar with WebSphere Application Server SAML technology.

About this task

This task describes setting the WebSphere Application Server policy set caller binding configuration option
to establish client security context using SAML security tokens in web services SOAP request messages.
You can either map SAML tokens to a user entry in a local user repository or assert SAML tokens based
on a trust relationship. The second configuration option does not require accessing the local user
repository. Instead, the WS-Security runtime environment populates the client security context entirely
using the contents of SAML security tokens. This process is based on a trust relationship to the SAML
token issuer. If a SAML tokens specifies the sender-vouches subject confirmation method. the process is
based on a trust relationship to the message sender.

Procedure
1. Configure a policy set caller binding and select the SAML token type to represent a web services client

request.

a. Click WebSphere enterprise applications > application_name > Service provider policy sets
and bindings > binding_name > WS-Security > Callers.

b. Click New to create the caller configuration.

c. Specify a Name, such as caller.

d. Enter a value for the Caller identity local part. For example, http://docs.oasis-open.org/wss/
oasis-wss-saml-token-profile-1.1#SAMLV2.0, which must match the local part of the CustomToken
element in the attached WS-Security policy.

e. Click Apply and Save.

2. Optional: Map SAML security tokens to a user entry in a local user repository. Mapping to a user entry
is the default behavior when you configure a caller binding without specifying a configuration option.
Alternatively and optionally, you can select this configuration option explicitly using the following steps:

a. On the caller binding configuration page, add a Callback handler:
com.ibm.websphere.wssecurity.callbackhandler.SAMLIdAssertionCallbackHandler.

b. Add a Callback handler custom property, crossDomainIdAssertion, and set its value to false.

3. Optional: Assert SAML security tokens based on trust relationship.

a. On the caller binding configuration page, add a Callback handler:
com.ibm.websphere.wssecurity.callbackhandler.SAMLIdAssertionCallbackHandler.

b. Add a Callback handler custom property, crossDomainIdAssertion, and set its value to true.

Chapter 32. Administering web services - Security (WS-Security) 3263



In WebSphere Application Server Version 7.0 Fix Pack 7 and later releases, the WS-Security runtime
environment takes a SAML token Issuer name to represent the foreign security realm name.
WS-Security takes the NameID element in the case of SAML 2.0 security tokens or the NameIdentifier
element in the case of SAML 1.1 security tokens to represent user security name. Alternatively, you
can explicitly specify which SAML token attribute to use to represent user security name. Moreover,
you can also specify which SAML token attribute to use to represent user group membership. Read
about SAML assertions across WebSphere Application Server security domains for a detailed
discussion of the SAML token assertion trust model and binding configuration.

Version 8.x supports propagating select security context data in SAML tokens. You must set a
tokenRequest custom property with an issueByWSCredential property value in the WS-Security binding
configuration of the web services client. Read about propagating SAML tokens for a detailed
description of this binding option. When the crossDomainIdAssertion property is set to true in Version
8.x, WS-Security checks whether a SAML token contains a SAML Attribute UniqueSecurityName with a
NameFormat element with a value of com.ibm.websphere.security.cred.WSCredential. If found,
WS-Security uses the NameQualifier attribute value of the NameID element or NameIdentifier element
to represent the user security realm name. WS-Security also uses the UniqueSecurityName attribute
value and the GroupIds attribute value to represent a unique user name and group membership. This
default behavior is different between Version 7 and Version 8.x of the product. You can add a
CallbackHandler property, IssuerNameForRealm, and set its value to true to configure Version 8.x to
preserve the Version 7 behavior. Alternatively, you can add a CallbackHandler property,
NameQualifierForRealm, and set its value to true to configure Version 8.x to always use the
NameQualifier attribute to represent the user security realm name.

Results

You have configured a web service to establish a client security context using the SAML security token in
the web services SOAP request messages.

Example

The following example illustrates the NameIdentifier and Attribute elements from a self-issued SAML 1.1
assertion based on WSCredential:
<saml:AttributeStatement>

<saml:Subject>
<saml:NameIdentifier NameQualifier="ldap.example.com:9080">uid=alice,dc=example,dc=com</saml:NameIdentifier>
<saml:SubjectConfirmation>

<saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:bearer</saml:ConfirmationMethod>
</saml:SubjectConfirmation>

</saml:Subject>
<saml:Attribute AttributeName="UniqueSecurityName" AttributeNamespace="com.ibm.websphere.security.cred.WSCredential">

<saml:AttributeValue>uid=alice,dc=example,dc=com</saml:AttributeValue>
</saml:Attribute>
<saml:Attribute AttributeName="GroupIds" AttributeNamespace="com.ibm.websphere.security.cred.WSCredential">

<saml:AttributeValue>cn=development,dc=example,dc=com</saml:AttributeValue>
<saml:AttributeValue>cn=deployment,dc=example,dc=com</saml:AttributeValue>
<saml:AttributeValue>cn=test,dc=example,dc=com</saml:AttributeValue>

</saml:Attribute>
</saml:AttributeStatement>

The following example illustrates the NameID and Attribute elements from a self-issued SAML 2.0
assertion based on WSCredential:
<saml2:AttributeStatement>

<saml2:Attribute Name="UniqueSecurityName" NameFormat="com.ibm.websphere.security.cred.WSCredential" />
<saml2:AttributeValue>uid=alice,dc=example,dc=com</saml2:AttributeValue>
<saml2:Attribute>

<saml2:Attribute AttributeName="GroupIds" NameFormat="com.ibm.websphere.security.cred.WSCredential" />
<saml2:AttributeValue>cn=development,dc=example,dc=com</saml2:AttributeValue>
<saml2:AttributeValue>cn=deployment,dc=example,dc=com</saml2:AttributeValue>
<saml2:AttributeValue>cn=test,dc=example,dc=com</saml2:AttributeValue>

</saml2:Attribute>
<saml2:AttributeStatement>

<saml2:NameID NameQualifier="ldap.example.com:9060">alice</saml2:NameID>

3264 Administering WebSphere applications



Administering Web Services Security
To secure web services, you must consider a broad set of security requirements, including authentication,
authorization, privacy, trust, integrity, confidentiality, secure communications channels, delegation, and
auditing across a spectrum of application and business topologies. You can choose to configure Web
Services Security for the application level, the server level or the cell level, depending upon your
environment and security needs.

Configuring HTTP outbound transport level security with the
administrative console
You can configure HTTP outbound transport level security with the administrative console.

Before you begin

This task is one of several ways that you can configure the HTTP outbound transport level security for a
web service acting as a client to another web service server. You can also configure the HTTP outbound
transport level security with an assembly tool or by using the Java properties. If you do not configure the
HTTP outbound transport level security, the web services runtime defers to the Web Services for Java
Platform, Enterprise Edition (Java EE) security runtime in the WebSphere product for an effective Secure
Sockets Layer (SSL) configuration. If there is no SSL configuration with the Java EE security runtime in
the WebSphere product, the Java Secure Socket Extension (JSSE) system properties are used.

About this task

If you choose to configure the HTTP outbound transport level security with the administrative console or
an assembly tool, the Web Services Security binding information is modified. You can use the
administrative console to configure the web services client security bindings if you have deployed or
installed the web services application into WebSphere Application Server. If you have not installed the web
services application, you can configure the HTTP SSL configuration with an assembly tool. This task
assumes that you have deployed the web services application into the WebSphere product. See the
deploying web services applications onto application servers information to learn more about deploying
web services.

If you configure the HTTP outbound transport level security using the standard Java properties for JSSE,
the properties are configured as system properties. The configuration specified in the binding takes
precedence over the Java properties. However, the configurations that are specified by the Java EE
security programming model , or that are associated the Dynamic selection , have higher precedence.

See the secure communications using Secure Sockets Layer information to learn more implementing
transport level security.

Configure the HTTP outbound transport level security with the following steps provided in this task section.

Procedure
1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Manage Modules >
module_instance . Under Web Services Security Properties, click Web Services: Client security
bindings.

3. Under the heading, HTTP SSL Configuration, click Edit to access the HTTP SSL configuration panel.
Select the Centrally-managed radio button so that the system runtime chooses the SSL configuration
that is based on the current context. Select the Specific to this Web service port radio button if you
want to choose the SSL configuration in the HTTP SSL configuration drop down box.

Chapter 32. Administering web services - Security (WS-Security) 3265



Results

You have configured the HTTP outbound transport level security for a web service acting as a client to
another web service with the administrative console.

HTTP SSL Configuration collection
Use this page to configure transport-level Secure Sockets Layer (SSL) security. You can use this
configuration when a web service is a client to another web service.

You can use transport-level security to enable HTTP SSL (or HTTPS). Transport-level security can be
enabled or disabled independently from message-level security. Because transport-level security provides
minimal security, use message-level security when security is essential to the web service application.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications > application_name
.

2. Click Manage modules > URI_file_name > Web Services: Client Security Bindings .

3. Under HTTP SSL Configuration, click Edit.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

SSL configuration: Select the Centrally-managed radio button so that the system runtime chooses the
SSL configuration that is based on the current context. Select the Specific to this web service port radio
button if you want to choose the SSL configuration in the HTTP SSL configuration drop down box.

HTTP SSL configuration: The HTTP SSL configuration drop down box lists the SSL configurations
used with the HTTP transport for a port. Use this drop down box if you want to select the SSL
configuration rather than using the SSL configuration that the runtime automatically selects. To use the
drop down box, select the Specific to the web service port radio button that is located in the SSL
configuration field. After you select the radio button, you can click the drop down box to view and select
an SSL configuration.

Configuring HTTP outbound transport level security using Java
properties
You can configure the HTTP outbound transport level security for a web service using Java properties.

Before you begin

This task is one of three ways that you can configure HTTP outbound transport-level security for a web
service that is acting as a client to another web service. You can also configure the HTTP outbound
transport level security with the administrative console or an assembly tool. However, you can also use
this task to configure the HTTP outbound transport-level security for a web service client.

About this task

If you choose to configure the HTTP outbound transport-level security with the administrative console or
an assembly tool, the Web Services Security binding information is modified.

If you configure the HTTP outbound transport-level security using Java properties, the properties are
configured as system properties. However, the configuration specified in the binding takes precedence
over the Java properties.

You can configure the HTTP outbound transport-level security using WebSphere SSL properties or JSSE
SSL properties. However, the WebSphere SSL properties take precedence over the JSSE SSL properties.

3266 Administering WebSphere applications



Configure the HTTP outbound transport-level security with the following steps provided in this task section.

Procedure
1. Create a property file that includes the following properties:
com.ibm.ssl.protocol
com.ibm.ssl.keyStoreType
com.ibm.ssl.keyStore
com.ibm.ssl.keyStorePassword
com.ibm.ssl.trustStoreType
com.ibm.ssl.trustStore
com.ibm.ssl.trustStorePassword

2. Set the com.ibm.webservices.sslConfigURL Java system property to the absolute path of the created
property file. If no WebSphere SSL properties are defined, the JSSE SSL properties are used. Set the
JSSE SSL properties as JVM custom properties. See Secure transports with JSSE and JCE
programming interfaces for more information about setting the JSSE SSL properties.

Results

You have configured the HTTP outbound transport-level security for a web service acting as a client to
another web service.

Configuring HTTP basic authentication for JAX-RPC web services with
the administrative console
You can configure HTTP basic authentication for Java API for XML-based RPC (JAX-RPC) web services
with the administrative console.

Before you begin

This task is one of three ways that you can configure HTTP basic authentication. You can also configure
HTTP basic authentication with an assembly tool or by modifying the HTTP properties programmatically.

If you choose to configure HTTP basic authentication with the administrative console or an assembly tool,
the Web Services Security binding information is modified. You can use the administrative console to
configure HTTP basic authentication if you have deployed or installed the web services application into
WebSphere Application Server. If you have not installed the web services application, then you can
configure the security bindings with an assembly tool. This task assumes that you have deployed the web
services application into the WebSphere product. To learn more about deploying web services, see the
deploying Web services applications onto application servers information.

If you configure HTTP basic authentication programmatically, the properties are configured in the Stub or
Call instance. The values set programmatically take precedence over the values defined in the binding.

About this task

The HTTP basic authentication that is discussed in this topic is orthogonal to WS-Security and is distinct
from basic authentication that WS-Security supports. WS-Security supports basic authentication token, not
HTTP basic authentication.

Configure HTTP basic authentication with the following steps provided in this task section.

Procedure

Open the administrative console.

1. Click Applications > Enterprise Applications > application_instance > Manage Modules >
module_instance > Web services: Client security bindings.

Chapter 32. Administering web services - Security (WS-Security) 3267



2. Click HTTP Basic Authentication to access the HTTP basic authentication panel. Enter the values in
the HTTP Basic Authentication panel.

Results

You have configured the HTTP basic authentication.

HTTP basic authentication collection
Use this page to specify a user name and password for transport-level basic authentication security for this
port. You can use this configuration when a web service is a client to another web service.

You can use transport-level security to enable basic authentication. Transport-level security can be
enabled or disabled independently from message-level security. Because transport-level security provides
minimal security, use message-level security when security is essential to the web service application.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications > application_name
.

2. Click Manage modules > URI_file_name > Web Services: Client Security Bindings .

3. Under HTTP basic authentication, click Edit.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

Basic authentication ID:

The user name for the HTTP basic authentication for this port is set in this field.

Use the Basic authentication ID field to specify the user name for the HTTP basic authentication for this
port.

Basic authentication password:

The password for the HTTP basic authentication for this port is set in this field.

Use the Basic authentication password field to specify the password for the HTTP basic authentication for
this port.

Configuring custom properties to secure web services
You can configure name-value pairs of data, where the name is a property key and the value is a string
value that you can use to set internal system configuration properties. Defining a new property enables
you to configure a setting beyond that which is available through options in the administrative console.

About this task

The Web Services Security custom properties topic provides the following information about each custom
property:

v Provides a detailed description of the property

v States the type of data that is needed to set the property

v Provides a list of possible values

v Lists the default value

Important: Custom properties that you set for the default consumer or default generator bindings take
precedence over general custom properties that you set as additional properties. However,
custom bindings take precedence over default bindings.

3268 Administering WebSphere applications



The following steps explain how to set custom properties to secure Web services:

Procedure
v Set custom properties for Java API for XML-based RPC (JAX-RPC) applications. You can set custom

properties to secure Web services for JAX-RPC applications in multiple locations within the
administrative console. You can set these custom properties for the default consumer, default generator,
or both bindings. Also, you can set custom properties as general additional properties. Collectively, the
default consumer bindings, the default generator bindings, and the additional properties are referred to
as the default bindings.

– Custom bindings

1. Expand Applications > Application Types.

2. Click WebSphere enterprise applications > application_name.

3. Under Modules, click Manage Modules > module_name.

4. Under Web Services Security Properties, click Web services: Server security bindings or Web
services: Client security bindings > Edit custom.

– Default consumer bindings

1. Expand Servers > Server types.

2. Click WebSphere applications servers > server_name.

3. Under Security, click JAX-WS and JAX-RPC security runtime.

4. Under JAX-RPC Default Consumer Bindings, click Properties.

– Default generator bindings

1. Expand Servers > Server types.

2. Click WebSphere applications servers > server_name.

3. Under Security, click JAX-WS and JAX-RPC security runtime.

4. Under JAX-RPC Default Generator Bindings, click Properties.

– Additional properties

1. Expand Servers > Server types.

2. Click WebSphere applications servers > server_name.

3. Under Security, click JAX-WS and JAX-RPC security runtime.

4. Under Custom properties, click Custom properties.

Order of precedence for custom properties with JAX-RPC applications: Custom properties that
you set in the WS-Security
extension and custom
bindings take precedence
over custom properties
that you set in the default
bindings. Custom
properties that you set in
the WS-Security bindings
take precedence over
custom properties that you
set in the WS-Security
extension. Custom
properties that you set in
the generator or sender
and consumer or receiver
bindings take precedence
over custom properties
that you set in the
additional properties.

Chapter 32. Administering web services - Security (WS-Security) 3269



v Set custom properties for Java API for XML-Based Web Services (JAX-WS) applications. You can set
custom properties to secure web services for JAX-WS applications in multiple locations within the
administrative console. You can set these custom properties in the custom bindings for an application, in
the WS-Security default bindings, or for inbound and outbound messages.

– Custom bindings for an application

1. Expand Services > Service clients or Services > Service providers.

2. Click service_name > binding_name.

3. Click WS-Security.

4. Under the Main message security policy bindings heading, click Custom properties.

– WS-Security default bindings

1. Expand Services > Policy sets .

2. Click General provider policy set bindings or General client policy set bindings >
binding_name > WS-Security.

3. Under Main Message Security Policy Bindings, click Custom properties.

– Inbound and outbound custom properties

1. Expand Services > Policy sets.

2. Click Default policy set bindings.

3. Under the Policy heading, click WS-Security.

4. Under the Main message security policy bindings heading, click Custom properties.

For more information, see the Inbound and outbound custom properties topic.

Alternatively, you can set these properties as parameters or inbound binding properties for your
JAX-WS application using wsadmin scripting. The following WS-Security policy type property names are
used in the setBinding function:

– application.parameters

– application.securityinboundbindingconfig.properties

– application.securityoutboundbindingconfig.properties

Note: Custom properties for policy set bindings can not be set using the Web Services Security API.
The custom properties must be set using the administrative console.

Web services security custom properties
You can configure name-value pairs of data, where the name is a property key and the value is a string
value that you can use to set internal system configuration properties. Defining a new property enables
you to configure a setting beyond that which is available through options in the administrative console.

Custom properties for web services security can be set in various levels of the application server and for
JAX-RPC versus JAX-WS applications. The following list of custom properties provides information on
where the custom property is set and how it is used.

The web services security generic security token login module custom properties and the Web services
security SAML token custom properties are documented in other information topics. Links to these topics
are provided in the Related reference section of this topic.

You can define the following web services security custom properties:

v “com.ibm.ws.wssecurity.createSTR” on page 3271

v “com.ibm.ws.wssecurity.sc.FaultCode” on page 3271

v “com.ibm.wsspi.wssecurity.Caller.assertionLoginConfig” on page 3272

v “com.ibm.wsspi.wssecurity.config.disableWSSIfApplicationSecurityDisabled” on page 3272

v “com.ibm.wsspi.wssecurity.config.gen.checkCacheUsernameTokens” on page 3272

3270 Administering WebSphere applications



v “com.ibm.wsspi.wssecurity.config.request.setMustUnderstand and
com.ibm.wsspi.wssecurity.config.response.forceMustUnderstandEqualsOne” on page 3273

v “com.ibm.wsspi.wssecurity.consumer.timestampRequired” on page 3274

v “com.ibm.wsspi.wssecurity.dsig.inclusiveNamespaces” on page 3275

v “com.ibm.wsspi.wssecurity.dsig.oldEnvelopedSignature” on page 3275

v “com.ibm.wsspi.wssecurity.generator.usewssobject” on page 3276

v “com.ibm.wsspi.wssecurity.token.forwardable” on page 3276

v “com.ibm.wsspi.wssecurity.token.username.addNonce and
com.ibm.wsspi.wssecurity.token.username.addTimestamp” on page 3276

v “com.ibm.wsspi.wssecurity.token.username.password.forwardable” on page 3276

v “com.ibm.wsspi.wssecurity.token.username.verifyNonce and
com.ibm.wsspi.wssecurity.token.username.verifyTimestamp” on page 3277

v “com.ibm.wsspi.wssecurity.token.UsernameToken.disableUserRegistryCheck” on page 3277

v “com.ibm.wsspi.wssecurity.tokenGenerator.ltpav1.pre.v7” on page 3277

com.ibm.ws.wssecurity.createSTR

The com.ibm.ws.wssecurity.createSTR property creates a security token reference to the security token in
the SOAP security header when you specify a True value.

You can set this property to True, the com.ibm.ws.wssecurity.createSTR property creates a security token
reference to the security token in the SOAP security header. Set this custom property to True when the
following conditions exist:

v The referencing mechanism for the token signature is the STR Dereference Transform,
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v The SignedParts element for the WS-Security policy contains an XPath value that represents the
SecurityTokenReference.

Information Value
Data type String
Values True, False
Default False

The value for this property is case-insensitive.

com.ibm.ws.wssecurity.sc.FaultCode

Use this custom property in a JAAS login module to set the SOAP fault code in the event of an error. If
this property is not specified, the SOAP fault code wsse:FailedAuthentication is always returned.

In the custom JAAS login module, set the com.ibm.ws.wssecurity.sc.FaultCode property on the wssecurity
context to the QName of the fault code that you want to use. For example:
fcQname = new QName(

"http://schemas.xmlsoap.org/ws/2003/06/secext",
"FailedCheck");

this._context = propertyCallback.getProperties();
_context.put("com.ibm.ws.wssecurity.sc.FaultCode", fcQname);

Information Value
Data type String
Default none

Chapter 32. Administering web services - Security (WS-Security) 3271



com.ibm.wsspi.wssecurity.Caller.assertionLoginConfig

The com.ibm.wsspi.wssecurity.Caller.assertionLoginConfig property, which is configured on the caller part,
specifies the name of the JAAS login configuration that is used by Web Services Security to obtain
WebSphere Application Server authorization credentials. You must configure this property using an
assembly tool such as the Rational Application Developer. For more information, see the "Configuring the
caller in consumer security constraints" topic for Rational Application Developer. Within this topic, this
custom property is set when you configure identity assertion.

Use this property with WS-Security V1.0 JAX-RPC applications only.

Information Value
Data type String
Default system.DEFAULT

com.ibm.wsspi.wssecurity.config.disableWSSIfApplicationSecurityDisabled

When you set the com.ibm.wsspi.wssecurity.config.disableWSSIfApplicationSecurityDisabled custom
property to true, Web Services Security does not enforce the configured WS-Security constraints if
application security is disabled on the application server. You can use this custom property to debug
services in a non-secure environment without needing to remove security constraints from web services
applications.

Note: Use this custom property for diagnosis purposes only. Do not use it in a production environment.

Information Value
Data type String
Values true, false
Defaultfalse false

You can set this custom property as an inbound custom property or an inbound and outbound custom
property for the policy set bindings. Complete the following steps in the administrative console to set the
custom property:

1. Expand Services > Policy sets.

2. Click General provider policy set bindings or General client policy set bindings.

3. Click the binding_name.

4. Under the Policy heading, click WS-Security > Custom properties.

You can also set this custom property as a parameter or as an inbound binding property on your
application using wsadmin tooling. The following WS-Security policy-type property names are used in
setBinding:

v application.parameters

v application.securityinboundbinding config.properties

com.ibm.wsspi.wssecurity.config.gen.checkCacheUsernameTokens

The com.ibm.wsspi.wssecurity.config.gen.checkCacheUsernameTokens custom property specifies whether
to cache UsernameTokens all of the time, which is the default behavior, or cache them as determined by a
set of rules. You can configure this custom property for the token generator or as an additional property.

3272 Administering WebSphere applications



When the com.ibm.wsspi.wssecurity.config.gen.checkCacheUsernameTokens custom property is set to
false, UsernameTokens are always cached on client threads. When you set this custom property to true,
the web services security run time determines whether UsernameTokens are cached based on the
following rules:

v Never cache UsernameTokens if the application is running on an application server.

v Cache UsernameTokens if the token generator for the UsernameToken has the following callback
handler configured: com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler.

This custom property applies to the JAX-RPC run time only. Use an assembly tool, such as Rational
Application Developer, to set the custom property within the encrypted message part bindings.

Information Value
Data type String
Values true, false
Default false

com.ibm.wsspi.wssecurity.config.request.setMustUnderstand and
com.ibm.wsspi.wssecurity.config.response.forceMustUnderstandEqualsOne

In WebSphere Application Server prior to Version 6.1x, the mustUnderstand=1 attribute in the
<wsse:Security> tag in the SOAP header on the request from the web services client was hardcoded. It
was not possible to configure the mustUnderstand attribute in the SOAP Web Services Security header. In
an update to the product, an administrator can configure the attribute using outbound generator custom
properties.

You can configure the following outbound generator custom properties for Web Services Security:

com.ibm.wsspi.wssecurity.config.request.setMustUnderstand custom property

The com.ibm.wsspi.wssecurity.config.request.setMustUnderstand custom property specifies the
mustUnderstand setting in outbound consumer requests. If the value of the property is set to zero
(0), no, or false, then the mustUnderstand attribute is not set in the WS-Security header within
outbound consumer requests.

Information Value
Data type String
Value Zero (0), no, false
Default true

In SOAP messages, the default value for the mustUnderstand attribute is zero (0). According to
the SOAP specification, if the intended value for the attribute is zero, then the attribute must not
be present in the message.

com.ibm.wsspi.wssecurity.config.response.forceMustUnderstandEqualsOne custom property

The com.ibm.wsspi.wssecurity.config.response.forceMustUnderstandEqualsOne custom property
specifies that the provider should always respond with a mustUnderstand="1" attribute in the SOAP
security header. If the value is set to one (1), yes, or true, the provider responds with the
mustUnderstand="1" attribute in the WS-Security header. The default value of the attribute is false.

Information Value
Data type String
Value One (1), yes, or true
Default false

Chapter 32. Administering web services - Security (WS-Security) 3273



By default, the response contains the same mustUnderstand attribute as the request. For example,
if the inbound request has mustUnderstand="1", the response also includes mustUnderstand="1".
If the request does not have a mustUnderstand attribute, the response does not include a
mustUnderstand attribute.

For JAX-RPC applications, you can specify both properties in the following locations within the
administrative console:

v Click Servers > Server Types > WebSphere application servers > server name. Under
Security, click JAX-WS and JAX-RPC security runtime. Under JAX-RPC Default Generator
Bindings, click Properties.

v Click Servers > Server Types > WebSphere application servers > server name . Under
Security, click JAX-WS and JAX-RPC security runtime. Under Custom properties, click
Custom properties.

If you are using an assembly tool with a JAX-RPC WS-Security version 1.0 application, you can set the
com.ibm.wsspi.wssecurity.config.request.setMustUnderstand custom property on the security request
generator extension or binding. You can set the
com.ibm.wsspi.wssecurity.config.response.forceMustUnderstandEqualsOne custom property on the
response generator extension or binding. A setting in the binding takes precedence over a setting in the
extension.

If using an assembly tool with a JAX-RPC WS-Security specification draft 13–level application, you can set
the com.ibm.wsspi.wssecurity.config.request.setMustUnderstand custom property as a parameter on
the port qualified name binding. You can set the
com.ibm.wsspi.wssecurity.config.response.forceMustUnderstandEqualsOne custom property as a
parameter on the port component binding.

If using a JAX-WS application , you can set the custom properties as outbound binding properties or
parameters on the application using wsadmin scripts. The following property names are used:

v application.parameters

v application.securityoutboundbindingconfig.properties

However, properties values in the application.securityoutboundbindingconfig.properties properties
take precedence over properties in application parameters. The follow example shows how to use Jython
wsadmin commands to obtain the ID of the policy set attachment for a consumer, then set the
com.ibm.wsspi.wssecurity.config.request.setMustUnderstand property to false in the outbound binding
configuration:
AdminTask.getPolicySetAttachments([-applicationName
HelloSvcClientEAR -attachmentType client])

AdminTask.setBinding([-policyType WSSecurity -bindingLocation "[
[application HelloSvcClientEAR] [attachmentId 1490] ]"
-attributes "[[application.securityoutboundbindingconfig.properties_999.name
com.ibm.wsspi.wssecurity.config.request.setMustUnderstand]
[application.securityoutboundbindingconfig.properties_999.value
false]]" -attachmentType client])

com.ibm.wsspi.wssecurity.consumer.timestampRequired

The com.ibm.wsspi.wssecurity.consumer.timestampRequired property specifies whether Timestamp is not
expected in the security header for the response when the Include timestamp in security header setting
is selected for the WS-Security policy.

The JAX-WS WS-Security runtime is updated to comply with the OASIS WS-SecurityPolicy 1.2
specification Timestamp Required requirement. If you want to configure an application to not require an
inbound time stamp when an outbound time stamp is configured you can add the
com.ibm.wsspi.wssecurity.consumer.timestampRequired custom property to your Web Services Security

3274 Administering WebSphere applications



settings and set that property to false. When this property is set to false, even if the Include timestamp
in security header is selected as a setting for the WS-Security policy, a Timestamp is not expected in the
security header for a response.

The default value for this property is true.

gotcha: On the custom properties panel, you can set this property as either an inbound or an
inbound/outbound custom property. It is not valid as an outbound custom property.

Information Value
Data type Boolean
Default true

com.ibm.wsspi.wssecurity.dsig.inclusiveNamespaces

This custom property, which applies to both the JAX-RPC and JAX-WS applications, specifies whether to
disable the inclusive namespace prefix list for XML digital signatures. WebSphere Application Server, by
default, includes the prefix in the digital signature for Web Services Security. You can set this custom
property to false if you do not want inclusive namespaces set as an element. Some implementations of
Web Services Security cannot handle this prefix list. If you experience a signature validation failure when a
signed SOAP message is sent and you are using another vendor in your environment, check with your
service provider for a possible fix to their implementation before you disable this property.

For JAX-RPC applications, you can set the custom property in the administrative console in the signing
information or as a web services security custom property in additional properties or in the default or
custom generator bindings. For more information, see the additional properties and generator sections of
the Configuring custom properties to secure web services topic. To add the custom property to the signing
information, complete the following steps:

1. Click Applications > Enterprise Applications > application_name.

2. Click Manage Modules > module_name.

3. Under Web Services Security Properties, click Web services: Client security bindings or Web
services: Server security bindings.

4. Under Request generator (sender) binding or Response generator (sender) binding, click Edit custom.

5. Under Required properties, click Signing information > signing_information_name > Properties.

6. Specify the custom property and its value.

For JAX-WS applications, you can configure this custom property in the outbound signing information. To
configure the custom property, complete the following steps:

1. Click Services > Service clients or Services > Service providers.

2. Click the service_name > binding_name.

3. Under Policy, click WS-Security

4. Under Message Security Policy Bindings, click Authentication and protection

5. Under either Request message signature and encryption protection or Response message signature
and encryption protection, click the signature_message_part_reference. When you click the
signature_message_part_reference name, you are accessing the configuration for the signed message
part binding.

6. Specify the custom property and its value.

com.ibm.wsspi.wssecurity.dsig.oldEnvelopedSignature

Use this property in conjunction with thecom.ibm.wsspi.wssecurity.dsig.enableEnvelopedSignatureProperty
JVM custom property to indicate to the WS-Security runtime that you want the WS-Security runtime to

Chapter 32. Administering web services - Security (WS-Security) 3275



verify an XML Digital Signature in the same manner as it did in Versions 7.0.0.21 and earlier. See the topic
Java Virtual Machine (JVM) custom properties for a description of when you might want to use this JVM
custom property.

This property is specified as either an Inbound, Outbound, or Inbound and Outbound custom property for
the WS-Security policy set bindings.

com.ibm.wsspi.wssecurity.generator.usewssobject

This custom property determines how the WS-Security run time builds the SOAP Security header that is
sent in an outbound SOAP message. By default, the run time uses a fast path using internal web services
security (WSS) object representations to build the Security header. Alternatively, the Axis2 run time and
objects can be used to build the Security header.

This property is set in the WS-Security policy set bindings as an outbound custom property or an inbound
and outbound custom property. This property can be set to true or false. When this property is set to
true, WSS Objects are used to build the Security header. When this property is set to false, Axis2 objects
are used to build the Security header.

When using both WS-Security and WS-Addressing policies for both inbound and outbound messages, a
problem might occur where the Body element appears in the header element in the outbound SOAP
message. If this error occurs, set the com.ibm.wsspi.wssecurity.generator.useWSSObject custom property
to false.

The default value is true.

com.ibm.wsspi.wssecurity.token.forwardable

When configuring SecurityToken consumer bindings for the JAX-WS programming model, use this custom
property to specify whether the receiving token is propagated to other servers. If you specify a value of
true for this property, you enable this token for propagating to other servers. If you specify a value of
false for this property, the token is not propagated to other servers. The default value is true, and the
value is not case sensitive.

com.ibm.wsspi.wssecurity.token.username.addNonce and
com.ibm.wsspi.wssecurity.token.username.addTimestamp

When configuring a username token for the JAX-WS programming model, to protect against replay attacks
it is strongly recommended that you add custom properties,
com.ibm.wsspi.wssecurity.token.username.addNonce and
com.ibm.wsspi.wssecurity.token.username.addTimestamp, to the callback handler configuration for token
generation. These custom properties enable and verify the nonce and timestamp for message
authentication. The value of the properties must be set to true.

com.ibm.wsspi.wssecurity.token.username.password.forwardable

When configuring UsernameToken consumer bindings for the JAX-WS programming model, use this
custom property to specify whether the password is propagated along with the UsernameToken to other
servers during UsernameToken propagation. If you specify a value of true for this property, the password
is preserved during propagation. If you specify a value of false for this property,the password must be
removed prior to UsernameToken propagation. The default value is true, and the value is not case
sensitive.

3276 Administering WebSphere applications



com.ibm.wsspi.wssecurity.token.username.verifyNonce and
com.ibm.wsspi.wssecurity.token.username.verifyTimestamp

When configuring a username token for the JAX-WS programming model, to protect against replay attacks
it is strongly recommended that you add custom properties,
com.ibm.wsspi.wssecurity.token.username.verifyNonce and
com.ibm.wsspi.wssecurity.token.username.verifyTimestamp, to the callback handler configuration for the
token consumer. These custom properties enable and verify the nonce and timestamp for message
authentication. The value of the properties must be set to true.

com.ibm.wsspi.wssecurity.token.UsernameToken.disableUserRegistryCheck

This propery allows the user registry check to be skipped for identity tokens. This means that the user
name associated with the identity token in an identity assertion scenario can pass through the
UNTConsumeLoginModule without generating a registry error. Typically an identity token must not contain
a password, and there might, or might not be a trust token. For example there might be a blind trust.

This property does not affect any UsernameToken that contains a password. If you need to bypass the
registry check for a UsernameToken that contains a password, the UNTConsumeLoginModule that is
provided with the product cannot be used. The following WS-Security custom property is added to the
UNTConsumeLoginModule to allow the user registry check to be skipped for identity tokens:

When the property is set to true, the UNTConsumeLoginModule does not validate the inbound
UsernameToken if, and only if, the UsernameToken does not contain a password.

Valid values for this property are true and false. The default value is false.

To configure this property, in the administrative console:

1. Expand Services > Policy sets.

2. Click General provider policy set bindings or General client policy set bindings.

3. Click the binding name.

4. Under the Policy heading, click WS-Security > Authentication and Protection > tokenName >
Callback Handler.

5. Add this property and its value in the Custom Properties Name and Value fields.

com.ibm.wsspi.wssecurity.tokenGenerator.ltpav1.pre.v7

Web services security supports both LTPA (Version 1) and LTPA Version 2 (LTPA2) tokens. The LTPA2
token, which is more secure than Version 1, is supported by the JAX-WS run time only. You can set the
Enforce token version interoperability option on the token generator to determine whether an LTPA
(Version 1) or an LTPA2 token is retrieved when a request message is received. However, if you want to
force the run time to use LTPA (Version 1) tokens only, you can set the
com.ibm.wsspi.wssecurity.tokenGenerator.ltpav1.pre.v7 custom property to true

To enable this custom property, complete the following steps in the administrative console:

1. Locate the binding that you want to configure.

2. Click the WS-Security policy in the Policies table.

3. Click the Authentication and protection link in the security policy bindings section.

4. Click the token generator that you want to configure.

5. Specify com.ibm.wsspi.wssecurity.tokenGenerator.ltpav1.pre.v7 to true in the Custom properties
section.

Chapter 32. Administering web services - Security (WS-Security) 3277



The following table explains how combinations of this custom property and the Enforce token version
interoperability option affect the runtime.

Table 281. LTPA interoperability. Table of the com.ibm.wsspi.wssecurity.tokenGenerator.ltpav1.pre.v7 custom property
and Enforce token version interoperability option values.
com.ibm.wsspi.wssecurity.tokenGenerator.ltpav1.pre.v7
custom property value Enforce token version value Result

false Disabled The run time can use both LTPA (Version
1) and LTPA2 tokens.

not specified, which implies a false value Disabled The run time can use both LTPA (Version
1) and LTPA2 tokens.

true Disabled The run time can use LTPA (Version 1)
tokens only.

true Enabled The run time can use LTPA (Version 1)
tokens only.

For more information, see the documentation about enabling or disabling single sign-on interoperability
mode for the LTPA token.

Web services security generic security token login module custom properties
When you configure a generic security token login module, you can configure name-value pairs of data,
where the name is a property key and the value is a string value that you can use to set internal system
configuration properties. You can use these configuration properties, along with the options provided in the
administrative console, to control how the token is generated or consumed.

To configure these custom properties for the callback handler in the administrative console, complete the
following steps:

1. Expand Services.

2. Select Service provider or Service client

3. Click on the appropriate application in the Name column.

4. Click on the appropriate binding in the Binding column.

You must have previously attached a policy set and assigned a binding.

or

1. Expand Applications > Application Types and click WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a
service client.

3. Under the Web Services Properties heading, click Service provider policy sets and bindings or
Service client policy sets and bindings.

4. Select a binding. You must have previously attached a policy set and assigned an application-specific
binding.

Then complete the following steps:

1. Click WS-Security in the Policies table.

2. Under the Main Message Security Policy Bindings heading, click Authentication and protection.

3. Under the Authentication tokens heading, click the name of the authentication token.

Note: You can use the token, which is processed by the generic security token login module, for
authentication only. You cannot use the token as a protection token.

4. Under the Additional Bindings heading, click Callback handler.

5. Under the Custom Properties heading, enter the name and value pairs.

v “Callback handler custom properties for both token generator and token consumer bindings” on page
3279

3278 Administering WebSphere applications



v “Callback handler custom properties for token generator bindings” on page 3280

v “Callback handler custom properties for token consumer bindings” on page 3282

Callback handler custom properties for both token generator and token consumer
bindings

The following table lists the callback handler custom properties that can be used to configure both token
generator and token consumer bindings.

Table 282. Callback handler custom properties for both token generator and token consumer bindings.. This table
contains the custom property name, its values, and a short description.
Name Values Description

clockSkew This custom property does not have a default
value.

Use this custom property to specify, in minutes,
an adjustment to the times in the self-issued
SAML token that the
SAMLGenerateLoginModule creates.

The clockSkew custom property is set on the
Callback handler of the SAML token generator
that uses the SAMLGenerateLoginModule class.
The value specified for this custom property
must be numeric and is specified in minutes.

When a value is specified for this custom
property, the following time adjustments are
made in the self-issued SAML token that the
SAMLGenerateLoginModule creates:

v The new NotBefore time setting equals the
initial NotBefore time setting, minus the
amount of time specified for the clockSkew
custom property.

v The new NotAfter time setting equals the
initial NotAfter time setting, plus the amount of
time specified for the clockSkew custom
property.

stsURI This custom property does not have a default
value.

Use this custom property to specify the Security
Token Service (STS) address.

This custom property is required for the token
consumer. However, this custom property is
optional for the token generator if the requested
token exists in the RunAs Subject and its
verification is not required.

wstrustClientBinding This custom property does not have a default
value.

Use this custom property to specify the binding
name for the WS-Trust client.

wstrustClientBindingScope You can specify an application or domain value. Use this custom property to specify the type of
bindings that are used for the WS-Trust client.

The following conditions apply:

v If you specify the domain value, general
bindings are used.

v If you specify the application value, custom
bindings are used.

v If you do not specify a value and application
bindings exist, those application bindings are
used.

v If you do not specify a value and general
bindings exist, those general bindings are
used.

v If neither application or general bindings exist,
the default bindings are used.

This custom property is optional.

wstrustClientPolicy This custom property does not have a default
value.

Use this custom property to specify the policy
set name for the WS-Trust client.

Chapter 32. Administering web services - Security (WS-Security) 3279



Table 282. Callback handler custom properties for both token generator and token consumer
bindings. (continued). This table contains the custom property name, its values, and a short description.
Name Values Description

wstrustClientSoapVersion You can specify a 1.1 or 1.2 value. Use this custom property to specify the SOAP
message version that the trust client uses to
generate the SOAP message. The SOAP
message is sent to the Security Token Service
(STS). If you do not define this custom property,
the generic security token login module uses the
SOAP version of the application when it
generates the SOAP message for the trust client
request.

The default value corresponds to the SOAP
version that is used by the application client.

This custom property is optional.

wstrustClientWSTNamespace Specify one of the following values:

Trust Version 1.3 (Default)

Specify 1.3 to use Trust Version 1.3
(Default).http://docs.oasis-
open.org/ws-sx/ws-trust/200512

Trust Version 1.2

Specify 1.2 to use Trust Version
1.2.http://schemas.xmlsoap.org/ws/
2005/02/trust

Use this custom property to specify which trust
client namespace the generic security token
login modules uses when it makes the WS-Trust
request.

wstrustValidateClientBinding By default, the value for this custom property is
the same value that is specified for the
wstrustClientBinding custom property.

Use this custom property to specify the bindings
that are used by the WS-Trust Validate request.

If you do not specify this custom property, the
WS-Trust Validate request uses the same
bindings that are used by WS-Trust Issue, which
are defined by the wstrustClientBinding
custom property.

wstrustValidateClientPolicy By default, the value for this custom property is
the same value that is specified for the
wstrustClientPolicy custom property.

Use this custom property to specify the policy
sets to use with the WS-Trust Validate request.

If you do not specify a value for this custom
property, WS-Trust Validate uses the same
policy set as WS-Trust Issue, which is defined
by the required wstrustClientPolicy custom
property.

wstrustIssuer You can use any string value. Use this custom property to specify the issuer
for the request token.

This custom property is optional

wstrustValidateTargetOption The default value is the WS-Trust Base element
extension.

You can specify a token value or a base value,
which is also the default value.

Use this custom property to specify whether the
WS-Trust client passes the validation token to
the WS-Trust Security Token Service using the
ValidateTarget or the Base element extension.

The following conditions apply:

v If you do not specify a value for this custom
property, the token is wrapped in the Base
element extension within the
RequestedSecurityToken element.

v If you specify the token value, the token is
wrapped in the ValidateTarget element within
the RequestedSecurityToken element.

Callback handler custom properties for token generator bindings

The following table lists the callback handler custom properties that can only be used to configure token
generator bindings.

3280 Administering WebSphere applications



Table 283. Callback handler custom properties for token generator bindings only.. This table contains the custom
property name, its values, and a short description.
Name Value Description

useRunAsSubject You can use a True or False value. By default, a
True value is used.

This value for this custom property is not case
sensitive.

Use this custom property to specify whether the
generic security token login modules use the
token from the RunAs Subject for the outgoing
request. By default, the login module uses the
validated tokens in the RunAs Subject first.

The following conditions apply:

v If you set this custom property to a false
value, the generic security token login module
does not use WS-Trust Validate to exchange
the token for the outbound request. Instead, it
uses WS-Trust Issue to request a token.

v If you do not specify this custom property, the
generic security token login module attempts
to use a token from the RunAs Subject and
WS-Trust Validate to exchange the token.

v If a token does not exist in the RunAs
Subject, the generic security token login
module uses WS-Trust Issue and is protected
by the trust client policy sets.

useRunAsSubjectOnly You can use a True or False value. By default, a
False value is used.

This value for this custom property is not case
sensitive.

Use this custom property to disable or enable
WS-Trust Issue in the generic security token
login module. If you set this custom property to a
true value, the generic security token login
module uses the token from the RunAs Subject
and WS-Trust Validate to exchange the tokens.
The generic security token login module does
not use WS-Trust Issue to request a token even
if WS-Trust Validate fails or it does not find a
matching token in the RunAs Subject.

useToken You can use any string value of the ValueType
value for the security token.

When you use a security token in a RunAs
Subject to validate and exchange tokens for an
outbound request, you can use this custom
property to specify which token ValueType value
in the RunAs Subject to validate and exchange
for the requested token.

For example, you might have a token with a
ValueType value of Token_1 in the RunAs
Subject. However, the ValueType value of
Token_2 is the required token. You can set this
custom property to Token_1 .

If you do not define this custom property, the
validation token is the token from the RunAs
Subject that has the same ValueType value as
the required token.

This custom property is optional.

validateUseToken You can use a True or False value. By default, a
True value is used.

This value for this custom property is not case
sensitive.

Use this custom property to specify whether the
token generator uses WS-Trust Validate to
validate the token from the RunAs Subject.

By default, the generic security token login
module validates a token from the RunAs
Subject against the Security Token Service
(STS) before sending the token in the SOAP
message to the service provider.

If you set this custom property value to false
and the generic security token login module
finds a matching token from the RunAs Subject,
the login module does not invoke WS-Trust
Validate to validate the matching token. Instead,
it sends the matching token to the downstream
service provider without validation.

Chapter 32. Administering web services - Security (WS-Security) 3281



Table 283. Callback handler custom properties for token generator bindings only. (continued). This table contains the
custom property name, its values, and a short description.
Name Value Description

wstrustIncludeTokenType You can use a True or False value. By default, a
True value is used.

This value for this custom property is not case
sensitive.

Use this custom property to specify whether the
WS-Trust RequestedSecurityToken token
includes the requested token ValueType value.

If you do not specify this custom property, the
generic security token login modules includes
the requested token type in the WS-Trust
RequestedSecurityToken token.

This custom property is optional.

Callback handler custom properties for token consumer bindings

The following table lists the callback handler custom properties that can only be used to configure token
consumer bindings.

Table 284. Callback handler custom properties for token consumer bindings only.. This table contains the custom
property name, its values, and a short description.
Name Value Description

exchangedTokenType The valid value for this custom property is the
string ValueType value for the token that is
supported by the system default login modules.

Use this custom property to specify the new
token with the defined ValueType value, which
the trust service must return after successful
validation.

If you do not specify a value for the custom
property, the generic security token login module
accepts whichever token the trust service
returns.

This custom property is optional.

Web services security SAML token custom properties
When you configure a web services security SAML token, you can configure name-value pairs of data,
where the name is a property key and the value is a string value that you can use to set internal system
configuration properties. You can use these configuration properties, along with the options provided in the
administrative console, to control how the SAML token is generated or consumed.

To configure these SAML custom properties, in the administrative console, either:

1. Expand Services.

2. Select Service provider or Service client

3. Click on the appropriate application in the Name column.

4. Click on the appropriate binding in the Binding column.

You must have previously attached a policy set and assigned a binding.

or

1. Expand Applications > Application Types and click WebSphere enterprise applications.

2. Select an application that contains Web services. The application must contain a service provider or a
service client.

3. Under the Web Services Properties heading, click Service provider policy sets and bindings or
Service client policy sets and bindings.

4. Select a binding. You must have previously attached a policy set and assigned an application-specific
binding.

Then complete the following steps:

1. Click WS-Security in the Policies table.

3282 Administering WebSphere applications



2. Under the Main Message Security Policy Bindings heading, click Authentication and protection.

3. Under the Authentication tokens heading, click the name of the authentication token.

Note: You can use the token, which is processed by the generic security token login module, for
authentication only. You cannot use the token as a protection token.

4. Under the Additional Bindings heading, click Callback handler.

5. Under the Custom Properties heading, enter the name and value pairs.

The following sections list the custom properties and indicate how each custom property is used.

v “SAML token generator custom properties”

v “SAML token consumer custom properties” on page 3284

v “SAML token custom properties for both token generator and token consumer” on page 3285

v “Trust client custom properties” on page 3286

SAML token generator custom properties

The following table lists the callback handler custom properties that can only be used to configure SAML
token generator bindings.

Table 285. SAML token callback handler custom properties for token generator bindings only.. This table contains the
custom property name, its values, and a short description.
Name Values Description

WSSGenerationContext This custom property does not have a default
value.

Use this custom property to specify the
WSSGenerationContext object that the WS-Trust
client uses to request a SAML token.

WSSConsumingContext This custom property does not have a default
value.

Use this custom property to specify the
WSSConsumingContext object that the WS-Trust
client uses to request a SAML token.

com.ibm.wsspi.wssecurity.saml.put.SamlToken This custom property does not have a default
value.

Use this custom property to set the SAML token
to RequestContext.

com.ibm.wsspi.wssecurity.saml.get.SamlToken This custom property does not have a default
value.

Use this custom property to get the SAML token
to RequestContext.

stsURI This custom property does not have a default
value.

Use this custom property to specify the
SecurityTokenService address.

keySize This custom property does not have a default
value.

Use this custom property to specify the KeySize
when requesting a SecretKey from STS.

tokenRequest Valid values include issue, propagation, and
issueByWSPrincipal. The default value is issue.

Use this custom property to specify the
SAMLToken request method.

confirmationMethod Valid values include bearer, holder-of-key, and
sender-vouches. This custom property does not
have a default value.

Use this custom property to specify a SAML
token subject ConfirmationMethod.

signToken This custom property does not have a default
value.

Use this custom property to specify whether a
SAML token should be signed with an
application message.

usekeyType This custom property is optional. The valid
values are KeyValue, X509Certificate, and
X509IssuerSerial.

Use this custom property to specify the Usekey
type, which tells the client to generate a specific
type of key Information.

cacheCushion The default value is 5 minutes. Use this custom property to specify, in minutes,
the amount of time during which a cached token
should not be reused, and a new token should
be issued.

cacheToken Valid values are true and false. The default
behavior is true, which allows SAML token
caching for reuse.

Use this custom property to specify whether a
SAML token can be cached for reuse.

com.ibm.wsspi.wssecurity.saml.client.SamlTokenCacheTimeoutThe default value is 60 minutes. Use this JVM custom property to specify, in
minutes, the length of time a SAML token could
be maintained in a client cache.

com.ibm.wsspi.wssecurity.saml.client.SamlTokenCacheEntriesThe default value is 250. Use this JVM custom property to specify the
maximum number of cache entries that can be
maintained.

Chapter 32. Administering web services - Security (WS-Security) 3283



Table 285. SAML token callback handler custom properties for token generator bindings only. (continued). This table
contains the custom property name, its values, and a short description.
Name Values Description

recipientAlias This custom property does not have a default
value.

Use this custom property to specify a target
service alias for a certificate.

failOverToTokenRequest Valid values are true or false. The default value
is true, which means that the web services
security runtime always issues a new SAML
token if the input token is invalid.

Use this custom property to specify whether the
web services security runtime should use the
attached policy set to issue a new SAML token if
the input SAML token in the RequestContext is
invalid.

tokenType This custom property does not have a default
value.

Use this custom property to set the required
token type to SAMLGenerateCallback

appliesTo This custom property does not have a default
value.

Use this custom property to specify the
AppliesTo for the requested SAML token when a
WSS API is used.

com.ibm.webservices.wssecurity.platform.SAMLIssuerConfigDataPathThis custom property does not have a default
value.

Use this custom property to specify the required
configuration data when generating a self-issued
SAML token.

sslConfigAlias If a value is not specified for this property, the
default SSL alias defined in your system's SSL
configuration is used.

This property is optional.

Use this custom property to specify the alias to
an SSL configuration that a WS-Trust client uses
to request a SAML token.

com.ibm.wsspi.wssecurity.saml.config.issuer.IssuerURIThis custom property does not have a default
value.

Use this custom property to specify the issuer
URL in the custom properties.

com.ibm.wsspi.wssecurity.saml.config.issuer.TimeToLiveMillisecondsThe default value is 3600000 (60 minutes). Use this custom property to specify, in
milliseconds, the amount of time that can elapse
before a token expires in the custom properties.

com.ibm.wsspi.wssecurity.saml.config.issuer.KeyStoreRefThis custom property does not have a default
value.

Use this custom property to specify a reference
to a centrally managed keystore in the custom
properties.

SAML token consumer custom properties

The following table lists the callback handler custom properties that can only be used to configure SAML
token consumer bindings.

Table 286. SAML token callback handler custom properties for token consumer bindings only.. This table contains
the custom property name, its values, and a short description.
Name Values Description

trustStoreRef This custom property does not have a default
value.

Use this custom property to specify the
truststore reference for a SAML consumer token.

trustStorePath This custom property does not have a default
value.

Use this custom property to specify the
truststore file path for a SAML consumer token.

trustStoreType This custom property does not have a default
value.

Use this custom property to specify the
truststore type name for a SAML consumer
token

trustStorePassword This custom property does not have a default
value.

Use this custom property to specify the
truststore password for a SAML consumer token.

trustedAlias This custom property does not have a default
value.

Use this custom property to specify the trusted
STS certificate's alias for a SAML consumer
token.

TtrustAnySigner The default value is false. Use this custom property to specify whether a
recipient can trust any certificate that signs a
SAML assertion.

signatureRequired The default value is true. Use this custom property to specify whether a
signature is required on a SAML assertion.

keyStoreRef This custom property does not have a default
value.

Use this custom property to specify the keystore
reference for a SAML consumer token.

keyStorePath This custom property does not have a default
value.

Use this custom property to specify the keystore
file path for a SAML consumer token.

keyStoreType This custom property does not have a default
value.

Use this custom property to specify the keystore
type for a SAML consumer token.

3284 Administering WebSphere applications



Table 286. SAML token callback handler custom properties for token consumer bindings only. (continued). This table
contains the custom property name, its values, and a short description.
Name Values Description

keyStorePassword This custom property does not have a default
value.

Use this custom property to specify the keystore
password for a SAML consumer token

keyAlias This custom property does not have a default
value.

Use this custom property to specify the key alias
for a SAML consumer token.

keyName This custom property does not have a default
value.

Use this custom property to specify the key
name for a SAML consumer token.

keyPassword This custom property does not have a default
value.

Use this custom property to specify the key
password for a SAML consumer token.

validateOneTimeUse Valid values are true or false. The default value
is true, which means that OneTimeUse
assertion validation is required.

Use this custom property to specify whether a
OneTimeUse assertion in SAML 2.0, or a
DoNotCacheCondition in SAML 1.1 must be
validated.

validateAudienceRestriction Valid values are true or false. The default value
is false which means that an
AudienceRestriction assertion validation is not
required.

Use this custom property specify whether an an
AudienceRestriction assertion must be validated.

trustedIssuer_ The name is specified as trustedIssuer_n
where n is an integer. This custom property does
not have a default value.

Use this custom property to specify the name of
a trusted issuer.

trustedSubjectDN_ The value specified must be in the format
trustedSubjectDN_n, where n is an integer. This
custom property does not have a default value.

Use this custom property to specify the
X509Certificate's SubjectDN name for the
trusted issuer.

X509PATH This custom property does not have a default
value.

Use this custom property to specify the
intermediate X509Certificate file path for a SAML
consumer token.

CRLPATH This custom property does not have a default
value.

Use this custom property to specify the file path
to the list of revoked certificates for a SAML
consumer token.

X509PATH_ The value specified must be in the format
X509_path_n, where n is an integer. This custom
property does not have a default value.

Use this custom property to specify the file path
for the intermediate X509 certificate for a SAML
consumer token.

CRLPATH_ The value specified must be in the format
trustedSubjectDN_n, where n is an integer. This
custom property does not have a default value.

Use this custom property to specify the file path
to the list of revoked X509 certificates for a
SAML consumer token.

com.ibm.wsspi.wssecurity.saml.signature.SignatureCacheTimeoutAn integer. The default value is 60 minutes. Use this custom property to specify how many
minutes a SAML token is to be cached. A
signature validation does not need to be
repeated while the SAML token is cached.

com.ibm.wsspi.wssecurity.saml.signature.SignatureCacheEntriesAn integer. The default value is 1000. Use this custom property to specify how many
signature cache entries can be maintained. for a
SAML consumer token.

SAML token custom properties for both token generator and token consumer

The following table lists the callback handler custom properties that can be used to configure both SAML
token generator and SAML token consumer bindings.

Chapter 32. Administering web services - Security (WS-Security) 3285



Table 287. SAML token callback handler custom properties for token generator and token consumer bindings.. This
table contains the custom property name, its values, and a short description.
Name Values Description

clockSkew The default value is 5 minutes. Use this custom property to specify, in minutes,
an adjustment to the times in the self-issued
SAML token that the
SAMLGenerateLoginModule creates.

The clockSkew custom property is set on the
Callback handler of the SAML token generator
that uses the SAMLGenerateLoginModule class.
The value specified for this custom property
must be numeric and is specified in minutes.

When a value is specified for this custom
property, the following time adjustments are
made in the self-issued SAML token that the
SAMLGenerateLoginModule creates:

v The new NotBefore time setting equals the
initial NotBefore time setting, minus the
amount of time specified for the clockSkew
custom property.

v The new NotAfter time setting equals the
initial NotAfter time setting, plus the amount of
time specified for the clockSkew custom
property.

requireDKT The default value is false. Use this custom property to specify an option for
the derived keys whenever a WSS API is used
with the requested SAML token.

useImpliedDKT The default value is false. Use this custom property to specify an option
that is used with Implied derived keys whenever
a WSS API is used with the requested SAML
token.

nonceLength The default value is 128. Use this custom property to specify, in bytes, the
derived nonce length to use for the derived keys
whenever a WSS API is used with the requested
SAML token.

keylength This custom property does not have a default
value.

Use this custom property to specify, in bytes, the
derived key length to use for the derived keys
whenever a WSS API is used with the requested
SAML token.

clientLabel This custom property does not have a default
value.

Use this custom property to specify, in bytes, the
client label to use for the derived keys whenever
a WSS API is used with the requested SAML
token.

serviceLabel This custom property does not have a default
value.

Use this custom property to specify, in bytes, the
service label to use for the derived keys
whenever a WSS API is used with the requested
SAML token.

Trust client custom properties

The following table lists the callback handler custom properties that can be used to configure trust client
generator bindings.

Table 288. Callback handler custom properties for the trust client generator bindings.. This table contains the custom
property name, its values, and a short description.
Name Values Description

wstrustClientPolicy This custom property does not have a default
value.

Use this custom property to specify the policy
set name for a WS-Trust client.

3286 Administering WebSphere applications



Table 288. Callback handler custom properties for the trust client generator bindings. (continued). This table contains
the custom property name, its values, and a short description.
Name Values Description

keyType The following keyTypes can be specified for
WS-Trust 1.2:
v

com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.WST12#KEYTYPE_PUBLICKEY
v

com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.WST12#KEYTYPE_SYMMETRICKEY

The following keyTypes can be specified for
WS-Trust 1.3:
v

com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.WST13#KEYTYPE_PUBLICKEY
v

com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.WST13#KEYTYPE_SYMMETRICKEY
v

com.ibm.wsspi.wssecurity.core.token.config.WSSConstants.WST13#KEYTYPE_BEARER

Use this custom property to specify the keyType
when making a WS-Trust request to STS.

wstrustClientBinding This custom property does not have a default
value.

Use this custom property to specify a binding
name for the WS-trust client.

wstrustClientSoapVersion Valid values are 1.1 and 1.2. If no value is
specified, the SOAP version defaults to SOAP
version that the application client is using.

Use this custom property to specify the SOAP
version in a WS-Trust request.

TwstrustClientBindingScope This custom property does not have a default
value.

Use this custom property to specify the binding
scope for the policy set that is attached to the
WS-Trust client.

wstrustClientWSTNamespace The default value is trust 13. Valid values are
trust12 and trust 13.

Use this custom property to specify the
WS-Trust namespace for a WS-Trust request.

com.ibm.wsspi.wssecurity.trust.client.TrustServiceCacheTimeoutThe default value is 60 minutes. Use this custom property to specify, in minutes,
the length of time an STS service instance can
be kept in a client side cache.

com.ibm.wsspi.wssecurity.trust.client.TrustServiceCacheEntriesThe default value is 1000. Use this custom property to specify the
maximum number of STS service instance
cache entries that can be maintained.

wstrustClientCollectionRequest Valid values are true or false. The default value
is false which means that a
RequestSecurityToken is used instead of a
RequestSecurityTokenCollection.

Use this custom property to specify whether a
RequestSecurityTokenCollection is required in a
WS-Trust request.

Administering message-level security for JAX-WS web services
Web Services Security standards and profiles describe how to provide security and protection for SOAP
messages that are exchanged in a web services environment. Using JAX-WS, development of web
services and clients is simplified with greater platform independence for Java applications through the use
of dynamic proxies and Java annotations.

Auditing the Web Services Security runtime
Security auditing provides tracking and archiving of auditable events for the web services runtime
operations. When security auditing is enabled for web services, the event generator utility collects and logs
signing, encryption, security, authentication, and delegation events in audit event records. You can analyze
the audit event records to identify possible security breaches or potential weaknesses in the security
configuration of your environment.

The audit security subsystem must be enabled for WebSphere Application Server before the event
generator can collect auditing records for the Web Services Security runtime. The recording of auditable
security events is achieved by enabled the security auditing subsystem. For more information about
enabling security auditing, read the topic “Enabling the security auditing subsystem.”

Web Services Security auditing is enabled for the JAX-WS runtime only. Several auditing events can occur
when a SOAP message is received. Auditing data is collected during various Web Services Security
runtime operations, such as validating the digital signature of a SOAP message, decrypting the message,
or checking the message security header. The auditing data is stored and managed by the event
generator, and stored in audit logs for later analysis.

Chapter 32. Administering web services - Security (WS-Security) 3287



Auditable events for web services include:

Signing

As the digital signature in each SOAP message part is validated, a SECURITY_SIGNING event is sent to
the event generator, along with an outcome, which can be SUCCESS or ERROR. Reason codes, either
VALID_SIGNATURE or INVALID_SIGNATURE, are also sent. The integrity of the message is audited, also
with a SECURITY_SIGNING event, with the outcome of SUCCESS or DENIED. Reason codes are
INTEGRITY or INTEGRITY_BAD. The following table summarizes the signing events:

Table 289. Signing audit events. Use the signing audit event records to identify possible security breaches or
weaknesses in the security configuration.
Event type Possible outcomes Reason codes

SECURITY_SIGNING (digital signature) SUCCESS
ERROR

VALID_SIGNATURE
INVALID_SIGNATURE

SECURITY_SIGNING (integrity) SUCCESS
DENIED

INTEGRITY
INTEGRITY_BAD

If the SECURITY_SIGNING event outcome is DENIED, and the reason code is INTEGRITY_BAD, this
means that at least one message part, which must be signed by the security policy, failed signature
validation. If the SECURITY_SIGNING event outcome is ERROR, and the reason code is
INVALID_SIGNATURE, this means that the digital signature validation failed. This could lead to an
INTEGRITY_BAD reason code in the audit record, depending on whether the digital signature is required
by the security policy.

Encryption

Encryption auditing is performed in two parts: first, the encrypted parts of the SOAP message are
processed, then the confidentiality of the message is audited. To audit each encrypted part of the
message, a SECURITY_ENCRYPTION event is sent. An event record is created only if the outcome of the
event is ERROR, meaning that an exception is encountered. The reason code is DECRYPTION_ERROR.
Next, the confidentiality of the message is checked with another SECURITY_ENCRYPTION event, which
has possible outcomes of SUCCESS or DENIED. Reason codes for this event are CONFIDENTIALITY or
CONFIDENTIALITY_BAD. The following table summarizes the encryption events:

Table 290. Encryption audit events. Use the encryption audit event records to identify possible security breaches or
weaknesses in the security configuration.
Event type Possible outcomes Reason codes

SECURITY_ENCRYPTION (encrypted message
parts)

ERROR DECRYPTION_ERROR

SECURITY_ENCRYPTION (confidentiality) SUCCESS
DENIED

CONFIDENTIALITY
CONFIDENTIALITY_BAD

If the SECURITY_ENCRYPTION event outcome is DENIED and the reason code is
CONFIDENTIALITY_BAD, this means that at least one message part, which is required to be encrypted, is
not correctly encrypted. A DECRYPTION_ERROR in the audit record could lead to a
CONFIDENTIALITY_BAD reason code, depending on whether message encryption is required.

Time stamp

For each SOAP message, the time stamp is audited when a SECURITY_RESOURCE_ACCESS event is
sent to the event generator. The possible outcomes of this event are SUCCESS or DENIED. Reason
codes are TIMESTAMP or TIMESTAMP_BAD. The following table summarizes the time stamp events:

Table 291. Time stamp audit event. Use the time stamp audit event record to identify possible security breaches or
weaknesses in the security configuration.
Event type Possible outcome Reason code

SECURITY_RESOURCE_ACCESS SUCCESS
DENIED

TIMESTAMP
TIMESTAMP_BAD

3288 Administering WebSphere applications



Security header

The security header is audited to make sure it is not missing from the SOAP message. A
SECURITY_RESOURCE_ACCESS event is sent, and if the header is missing, the outcome is DENIED,
with the reason code SECURITY_HEADER_MISSING. The following table summarizes the security header
event:

Table 292. Security header audit event. Use the security audit event record to identify possible security breaches or
weaknesses in the security configuration.
Event type Possible outcome Reason code

SECURITY_RESOURCE_ACCESS DENIED SECURITY_HEADER_MISSING

Authentication

The security token used to authenticate a message is audited to determine if authentication is successful,
and information about the authentication type, provider name and provider status are saved in the audit
event record. The token ID is also recorded, along with information that is specific to the token type, such
as username or keystore. Sensitive information such as the token itself, or the token password, is not
recorded in the audit event record. Information recorded for each token type is described in the following
table:

Table 293. Token information recorded in audit event record. Use the authentication audit event records to identify
possible security breaches or weaknesses in the security configuration.
Token type Recorded information

Username token Username
Password (null or not-null)
Token ID

LTPA Principal
Expiration
Token ID

LTPAPropagate Principal
Expiration
Token ID

SecureConversation UUID
Instance UUID
Token ID

DerivedKey Reference ID
Token ID

Kerberos Principal
SPN
pSHA1
Token ID

X509 Certificate
Subject
Issuer
Keystore
Token ID
TrustAny

PKP Path (public key infrastructure) Certificate
Subject
Issuer
Keystore
Token ID
TrustAny

PKCS7 (Public Key Cryptography Standards) Certificate
Subject
Issuer
Keystore
Token ID
TrustAny

Chapter 32. Administering web services - Security (WS-Security) 3289



Table 293. Token information recorded in audit event record (continued). Use the authentication audit event records
to identify possible security breaches or weaknesses in the security configuration.
Token type Recorded information

SAML token Principal
SAML Token Issuer Name
Confirmation Method

Message authentication is audited using a SECURITY_AUTHN event. Possible outcomes of the event are
SUCCESS, DENIED or FAILURE. Reason codes are AUTHN_SUCCESS, AUTHN_LOGIN_EXCEPTION
or AUTHN_PRIVILEDGE_ACTION_EXCEPTION. The following table summarizes the authentication
events:

Table 294. Authentication audit event. Use the authentication audit event records to identify possible security
breaches or weaknesses in the security configuration.
Event type Possible outcomes Reason codes

SECURITY_AUTHN SUCCESS
DENIED
FAILURE

AUTHN_SUCCESS
AUTHN_LOGIN_EXCEPTION
AUTHN_PRIVILEDGE_ACTION_EXCEPTION

Delegation

Authentication of a SOAP message can be delegated, and the delegation function is audited using a
SECURITY_AUTHN_DELEGATION event. This event is sent when the client identity is propagated or
when delegation involves the use of a special identity. In the Web Services Security runtime, auditing
events are recorded only when the delegation type is set to Identity Assertion. Possible outcomes are
SUCCESS or DENIED, with reason codes AUTHN_SUCCESS or AUTHN_DENIED. Additional information,
such as delegation type, role name and identity name, is collected and stored in the audit event record.
The following table summarizes the delegation events:

Table 295. Delegation audit event. Use the delegation audit event record to identify possible security breaches or
weaknesses in the security configuration.
Event type Possible outcomes Reason codes

SECURITY_AUTHN_DELEGATION SUCCESS
DENIED

AUTHN_SUCCESS
AUTHN_DENIED

Validation

As part of the generic security token login module support, a Security Token Service can validate a token
using a WS-Trust Validate request. This validation operation can return a token in exchange for a token
that is being validated. The information that is exchanged is located in the documentation on auditing for a
generic security token. The following table shows the token exchange information that is recorded.

Table 296. Token exchange. Use the token exchange information to trace the token exchange process.
Event Description

TokenSentForExchangeId This information identifies the token that is sent for validation and is exchanged.

TokenSentForExchangeType This information identifies the type of the token that is sent for validation and is
exchanged.

ExchangedTokenId This information identifies the token that is received in exchange during the
validation request.

ExchangedTokenType This information identifies the type of the token that is received in exchange during
the validation request.

If the token is validated without a token exchange, only the Token ID is recorded.

Securing web services using policy sets
Policy sets are assertions about how services are defined. They are used to simplify the quality of service
configuration for web services.

3290 Administering WebSphere applications



About this task

Policy sets combine configuration settings, including those for transport and message level configuration,
such as WS-Addressing, WS-ReliableMessaging, and WS-Security. There are two main types of policy
sets; application policy sets and system policy sets. Application policy sets are used for business-related
assertions. These assertions are related to the business operations that are defined in the Web Services
Description Language (WSDL) file. System policy sets, on the other hand, are used for
non-business-related system messages. These messages are not related to the business operations that
are defined in the WSDL, but instead refer to messages that are defined in other specifications which
apply qualities of service (QoS). Such QoS are the request security token (RST) messages that are
defined in WS-Trust, or create sequence messages that are defined in WS-Reliable Messaging metadata
exchange messages of the WS-MetadataExchange.

Note: You can use policy sets only with Java™ API for XML-Based Web Services (JAX-WS) or Service
Component Architecture (SCA) applications. You cannot use policy sets with Java API for
XML-based RPC (JAX-RPC) applications.

Policies are defined based on a quality of service. Policy definition is typically based on WS-Policy
standard language, for example, the WS-Security policy is based on the current WS-SecurityPolicy from
the Organization for the Advancement of Structured Information Standards (OASIS) standards.

Policy sets do not include environment or platform-specific information, such as keys for signing, keystore
information, or persistent store information. This type of information is defined in the binding. A policy set
attachment defines how a policy set is attached to service resources and bindings. The attachment
definition is outside the policy set definition and is defined as meta-data associated with application data.

To secure JAX-WS web services with message-level security using policy sets, follow these steps:

Procedure
1. Select, create, or copy and modify a policy set to specify the message-level protection required. The

policy specifies what protection will be applied, for example, what message parts to sign or encrypt
and the token types and algorithms to use.

v Select one of the web services policy sets.

v Create, copy, modify, import, export or delete a policy set. For more information, read about
managing policy sets using the administrative console

2. Attach the policy set to the application.

3. Create or select the policy set bindings to be used. The bindings are then attached to the application
along with the policy set. The bindings used can either be general bindings that can be shared among
applications or application specific bindings. For more information, read about defining and managing
policy set bindings.

4. If WS-SecureConversation is being used, specify the trust service system policy sets and bindings on
the application server.

Configuring a policy set and bindings for Asymmetric XML Digital Signature and/or XML
Encryption:

This procedure describes how to configure the message-level WS-Security policy set and bindings to sign
and encrypt a SOAP message using asymmetric XML Digital Signature and Encryption. As part of this
procedure you must specify whether you will sign and/or encrypt both the request and response
messages.

Chapter 32. Administering web services - Security (WS-Security) 3291



Before you begin

This task assumes that the service provider and client that you are configuring are in the
JaxWSServicesSamples application. Refer to the topic Accessing Samples for more information on how to
obtain and install this application.

You should use the following trace specification on your server. These specifications enable you to debug
any future configuration problems that might occur.
*=info:com.ibm.wsspi.wssecurity.*=all:com.ibm.ws.webservices.wssecurity.*=all:
com.ibm.ws.wssecurity.*=all: com.ibm.xml.soapsec.*=all: com.ibm.ws.webservices.trace.*=all:
com.ibm.ws.websvcs.trace.*=all:com.ibm.ws.wssecurity.platform.audit.*=off:

About this task

This procedure explains the actions you need to complete to configure a WS-Security policy set to use the
asymmetric XML-Digital Signature and Encryption WS-Security constraints. This procedure also explains
the actions you need to complete to configure asymmetric XML Digital Signature and Encryption
application specific custom bindings for a client and provider.

The keystores that are used in this procedure are provided with WebSphere Application Server and are
installed in every profile that is created. You can use the ${USER_INSTALL_ROOT} variable directly in the
configuration to conveniently point to the keystore locations without using a fully qualified path.
${USER_INSTALL_ROOT} resolves to a path such as c:/WebSphere/AppServer/profiles/AppSrv01.
${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks
${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks
${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks
${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks

Because of the nature of JaxWSServicesSamples, to apply the policy set and bindings to this application,
in the administrative console click Applications > Application types > WebSphere enterprise
applications > JaxWSServicesSamples. When using your own applications, you can use the following
paths as an alternative way to access the provider and client for attachment of the policy set and bindings:
* Services > Service Providers > (AppName)
* Services > Service clients > (AppName)

gotcha: Pay close attention to the names of the token consumers and generators in the administrative
console. The Initiator and recipient might not be what you think they should be for the tokens.
The usage column in the table specifies whether a token is a consumer token or a generator
token.

Procedure

1. Create the custom policy set.

a. In the administrative console, click Services > Policy sets > Application Policy sets.

b. Click New.

c. Specify Name=AsignEncPolicy.

d. Click Apply.

e. Under Policies, click Add > WS-Security.

2. Edit the custom policy set.

a. In the administrative console, click WS-Security > Main Policy.

By default, the policy will now have the following configuration:

v Timestamp sent in outbound messages

v Timestamp required in inbound messages

v Sign the request and the response (Body, WS-Addressing header, and Timestamp)

v Encrypt the request and the response (Body and Signature element in SOAP Security header)

3292 Administering WebSphere applications



If this is the configuration that you want, click Apply, then Save, and continue to the next step.

If you want to change this configuration, complete one or more of the following substeps.

b. Optional: Remove Timestamp from both request and response. You cannot do one-way
Timestamp.

To remove Timestamp from both request and response, unselect the Include timestamp in
security header setting, and then click Apply.

c. Optional: Remove request message parts.

1) Under Message level protection, click Request message part protection.

2) To remove the request encrypted part, click app_encparts, and then click Delete.

3) To remove the request signed part, click app_signparts, and then click Delete.

4) Click Done.

d. Optional: Remove response message parts.

1) Under Message level protection, click Response message part protection.

2) To remove the response encrypted part, click app_encparts, and then click Delete.

3) To remove the response signed part, click app_signparts, and then click Delete.

4) Click Done.

e. Optional: View or change parts that are being signed or encrypted in the request.

1) Under Message level protection, click Request message part protection.

2) To view or change the request encrypted part, click app_encparts, and then click Edit.

The Elements in Part page displays with the parts that will be encrypted in the request
message. You can update the settings on this page to add, change, or remove elements to
encrypt. By default, the Body and an XPath expression to the Signature are configured.

If you would like to add encryption of a UsernameToken, add the following XPath expression:
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Header’]
/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’ and local-name()=’Security’]
/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’ and local-name()=’UsernameToken’]

When you finish making your changes, click OK.

3) To view or change the request signed part, click app_signparts, and then click Edit.

The Elements in Part page displays with the parts that will be signed in the request
message. You can update the settings on this page to add, change, or remove elements to
sign. By default, the Body, the QNames for the WS-Addressing header, and XPath
expressions to the Timestamp are configured.

If you will be using the STR Dereference Transform (STR-Transform) to sign a security token,
add the following XPath expression:
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Envelope’]
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’ and local-name()=’Header’]
/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’ and local-name()=’Security’]
/*[namespace-uri()=’http://www.w3.org/2000/09/xmldsig#’ and local-name()=’Signature’]
/*[namespace-uri()=’http://www.w3.org/2000/09/xmldsig#’ and local-name()=’KeyInfo’]
/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’ and local-name()=’SecurityTokenReference’]

When you finish making your changes, click OK.

4) Click Done.

f. Optional: View or change parts that are being signed or encrypted in the response.

1) Under Message level protection, click Response message part protection.

2) To view or change the response encrypted part, click app_encparts, and then click Edit.

The Elements in Part page displays with the parts that will be encrypted in the response
message. You can update the settings on this page to add, change, or remove elements to
encrypt. By default, the Body and an XPath expression to the Signature are configured.

When you finish making your changes, click OK.

Chapter 32. Administering web services - Security (WS-Security) 3293



3) To view or change the response signed part, click app_signparts, and then click Edit.

The Elements in Part page displays with the parts that will be signed in the response
message. You can update the settings on this page to add, change, or remove elements to
sign. By default, the Body, the QNames for the WS-Addressing header, and XPath
expressions to the Timestamp are configured.

When you finish making your changes, click OK.

4) Click Done.

g. Click Apply.

h. Save the configuration.

3. Configure the client to use the AsignEncPolicy policy set.

a. In the administrative console, click Applications > Application types > WebSphere enterprise
applications > JaxWSServicesSamples > Service client policy sets and bindings.

b. Select the web services client resource (JaxWSServicesSamples).

c. Click Attach Policy Set.

d. Select AsignEncPolicy.

4. Create a custom binding for the client.

a. Select the web services resource again.

b. Click Assign Binding.

c. Click New Application Specific Binding to create an application-specific binding.

d. Specify the bindings configuration name.

name: signEncClientBinding

e. Click Add > WS-Security.

f. If the Main Message Security Policy Bindings panel does not display, select WS-Security.

5. Configure the client's custom bindings.

a. Configure a Certificate Store.

1) Click Keys and Certificates.

2) Under Certificate store, click New Inbound... .

3) Specify name=clientCertStore.

4) Specify Intermediate X.509 certificate=${USER_INSTALL_ROOT}/etc/ws-security/samples/
intca2.cer

5) Click OK.

b. Configure a Trust Anchor.

1) Under Trust anchor, click New...

2) Specify name=clientTrustAnchor

3) Click External Keystore .

4) Specify Full path=${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks.

5) Specify Password=client.

6) Click OK.

7) Click WS-Security in the navigation for this page.

c. Optional: If Signing the request message, complete the following actions.

1) Configure the Signature Generator.

a) Click Authentication and protection > AsymmetricBindingInitiatorSignatureToken0
(signature generator), and then click Apply.

b) Click Callback handler

c) Specify Keystore=custom.

d) Click Custom keystore configuration, and then specify

3294 Administering WebSphere applications



Full path==${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks
Keystore password=client
Name=client
Alias=soaprequester
Password=client

e) Click OK, OK, and OK.

2) Configure the request Signing Information.

a) Click request:app_signparts, and specify Name=clientReqSignInfo.

b) Under Signing Key Information, click New , and then specify:
Name=clientReqSignKeyInfo
Type=Security Token reference
Token generator or consumer name=AsymmetricBindingInitiatorSignatureToken0

c) Click OK, and then click Apply.

d) Under Message part reference, select request:app_signparts .

e) Click Edit.

f) Under Transform algorithms, click New

g) Specify URL=http://www.w3.org/2001/10/xml-exc-c14n#.

h) Click OK, OK, and OK.

d. Optional: If Signing the response message, complete the following actions.

1) Configure the Signature Consumer.

a) Click AsymmetricBindingRecipientSignatureToken0 (signature consumer), and then
click Apply.

b) Click Callback handler

c) Under Certificates, click the Certificate store radial button, and specify:

v Certificate store=clientCertStore

v Trusted anchor store=clientTrustAnchor

d) Click OK and OK.

2) Configure the response Signing Information.

a) Click response:app_signparts, and specify Name=clientRspSignInfo.

b) Click Apply.

c) Under Signing Key Information, click New, and then specify:
Name=clientReqSignKeyInfo
Token generator or consumer name=AsymmetricBindingInitiatorSignatureToken0

d) Click OK.

e) Under Signing Key Information, click clientRspSignKeyinfo, and then click Add.

f) Under Message part reference, select response:app_signparts .

g) Click Edit.

h) Under Transform algorithms, click New

i) Specify URL=http://www.w3.org/2001/10/xml-exc-c14n#.

j) Click OK, OK, and OK.

e. Optional: If Encrypting the request message, complete the following actions.

1) Configure the Encryption Generator.

a) Click AsymmetricBindingRecipientEncryptionToken0 (encryption generator), and then
click Apply.

b) Click Callback handler, and specify Keystore=custom.

c) Click Custom keystore configuration, and then specify
Full path==${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks

Chapter 32. Administering web services - Security (WS-Security) 3295



Type=JCEKS
Keystore password=storepass
Key Name=bob
Key Alias=bob

d) Click OK, OK, and OK.

2) Configure the request Encryption Information.

gotcha: The setting for Usage of key information references must be set to Key
encryption, which is the default value. Data encryption is used for Symmetric
encryption.

a) Click request:app_encparts, and specify Name=clientReqEncInfo.

b) Click Apply.

c) Under Key Information, click New, and then specify
Name=clientReqEncKeyInfo
Type=Key_identifier
Token generator or consumer name=AsymmetricBindingRecipientEncryptionToken0

d) Click OK.

e) Under Key Information, select clientReqEncKeyInfo, and then click OK.

f. Optional: If Encrypting the response message, complete the following actions.

1) Configure the Encryption Consumer.

a) Click AsymmetricBindingInitiatorEncryptionToken0 (encryption consumer), and then
click Apply.

b) Click Callback handler, and specify Keystore=custom.

c) Click Custom keystore configuration, and then specify
Full path==${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks
Type=JCEKS
Keystore password=storepass
Key Name=alice
Key Alias=alice
Key password=keypass

d) Click OK and OK.

2) Configure the response Encryption Information.

gotcha: The setting for Usage of key Information references must be set to Key
encryption, which is the default value. Data encryption is used for Symmetric
encryption.

a) Click response:app_encparts, and specify Name=clientRspEncInfo.

b) Click Apply.

c) Under Key Information, click New, and then specify
Name=clientRspEncKeyInfo
Token generator or consumer name=AsymmetricBindingRecipientEncryptionToken0

d) Click OK.

e) Under Key Information, select clientRspEncKeyInfo.

f) Click Add, and then click OK.

6. Configure the provider to use the AsignEncPolicy policy set.

a. In the administrative console, click Applications > Application types > WebSphere enterprise
applications > JaxWSServicesSamples > Service provider policy sets and bindings.

b. Select the web services provider resource (JaxWSServicesSamples).

c. Click Attach Policy Set.

d. Select AsignEncPolicy.

3296 Administering WebSphere applications



7. Create a custom binding for the provider.

a. Select the web services provider resource again.

b. Click Assign Binding.

c. Click New Application Specific Binding to create an application-specific binding.

d. Specify Bindings configuration name: signEncProviderBinding.

e. Click Add > WS-Security.

f. If the Main Message Security Policy Bindings panel does not display, select WS-Security.

8. Configure the custom bindings for the provider.

a. Configure a Certificate Store.

1) Click Keys and Certificates.

2) Under Certificate store, click New Inbound....

3) Specify:
Name=providerCertStore
Intermediate X.509 certificate=${USER_INSTALL_ROOT}/etc/ws-security/samples/
intca2.cer

4) Click OK.

b. Configure a Trust Anchor.

1) Under Trust anchor, click New...

2) Specify, Name=providerTrustAnchor.

3) Click External Keystore, and specify:
Full path=${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks
Password=server

4) Click OK, and then click WS-Security in the navigation for this page, and then click
Authentication and protection.

c. Optional: If Signing the request message, complete the following actions.

1) Configure the Signature consumer.

a) Click AsymmetricBindingInitiatorSignatureToken0 (signature consumer), and then click
Apply.

b) Click Callback handler.

c) Under Certificates, click the Certificate store radial button, and specify:
Certificate store=providerCertStore
Trusted anchor store=providerTrustAnchor

d) Click OK.

e) Click Authentication and protection in the navigation for this page.

2) Configure the request Signing Information.

a) Click request:app_signparts, and specify Name=reqSignInfo.

b) Click Apply.

c) Under Signing Key Information, click New, and specify:
Name=reqSignKeyInfo
Token generator or consumer
name=AsymmetricBindingInitiatorSignatureToken0

d) Click OK.

e) Under Signing Key Information, click reqSignKeyinfo, and then click Add.

f) Under Message part reference, select request:app_signparts.

g) Click Edit.

h) Under Transform algorithms, click New, and then specify URL=http://www.w3.org/2001/
10/xml-exc-c14n#.

Chapter 32. Administering web services - Security (WS-Security) 3297



i) Click OK, OK, and OK.

d. Optional: If Signing the response message, complete the following actions.

1) Configure the Signature Generator.

a) Click AsymmetricBindingRecipientSignatureToken0 (signature generator), and then
click Apply.

b) Click Callback handler > Custom keystore configuration, and specify:
Full path=${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks
Keystore password=server
Name=server
Alias=soapprovider
Password=server

c) Click OK, OK, and OK.

2) Configure the response Signing Information.

a) Click response:app_signparts, and specify Name=rspSignInfo.

b) Under Signing Key Information, click New, and specify:
Name=rspSignKeyInfo
Type=Security Token reference
Token generator or consumer
name=AsymmetricBindingRecipientSignatureToken0

c) Click OK, and then click Apply.

d) Under Message part reference, select response:app_signparts.

e) Click Edit.

f) Under Transform algorithms, click New, and then specify URL=http://www.w3.org/2001/10/
xml-exc-c14n#.

g) Click OK, OK, and OK.

e. Optional: If Encrypting the request message, complete the following actions.

1) Configure the Encryption Consumer.

a) Click AsymmetricBindingRecipientEncryptionToken0 (encryption consumer), and then
click Apply.

b) Click Callback handler, and specify Keystore=custom

c) Click Custom keystore configuration, and specify:
Full path==${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks
Type=JCEKS
Keystore password=storepass
Key Name=bob
Key Alias=bob
Key password=keypass

d) Click OK, OK, and OK.

2) Configure the request Encryption Information.

gotcha: The setting for Usage of key information references must be set to Key
encryption, which is the default value. Data encryption is used for Symmetric
encryption.

a) Click request:app_encparts, and specify Name=reqEncInfo.

b) Click APPLY

c) Under Key Information, click New, and specify:
Name=reqEncKeyInfo
Type=Key identifier
Token generator or consumer
name=AsymmetricBindingRecipientEncryptionToken0

3298 Administering WebSphere applications



d) Click OK.

e) Under Key Information, select reqEncKeyInfo.

f) Click Add, and then click OK.

f. Optional: If Encrypting the response message, complete the following actions.

1) Configure the Encryption Generator.

a) Click AsymmetricBindingInitiatorEncryptionToken0 (encryption generator), and then
click Apply.

b) Click Callback handler, and specify Keystore=custom

c) Click Custom keystore configuration, and specify:
Full path==${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks
Type=JCEKS
Keystore password=storepass
Key Name=alice
Key Alias=alicee

d) Click OK, OK, and OK.

2) Configure the request Encryption Information.

gotcha: The setting for Usage of key information references must be set to Key
encryption, which is the default value. Data encryption is used for Symmetric
encryption.

a) Click response:app_encparts, and specify Name=rspEncInfo.

b) Click APPLY

c) Under Key Information, click New, and specify:
Name=rspEncKeyInfo
Token generator or consumer
name=AsymmetricBindingInitiatorEncryptionToken0

d) Click OK.

e) Under Key Information, select rspEncKeyInfo.

f) Click OK.

9. Click Save to save your configuration changes.

10. Restart the client and provider.

a. Stop the client and the provider.

b. Restart the client and the provider.

11. Test the Service.

a. Point your web browser at the JaxWSServicesSamples:
http://localhost:9080/wssamplesei/demo

gotcha: Make sure you provide the correct hostname and port if your profile is not on the same
machine, or the port is not 9080.

b. Select Message Type Synchronous Echo.

c. Make sure Use SOAP 1.2 is not selected.

d. Enter a message and click Send Message.

The sample application should reply with JAXWS==>Message.

Results

The JaxWSServicesSamples web services application is configured to use asymmetrical XML Digital
Signature and Encryption to protect your SOAP requests and responses.

Chapter 32. Administering web services - Security (WS-Security) 3299



Configuring a policy set and bindings for XML Digital Signature with client and provider application
specific bindings:

You can create a custom policy set and application specific bindings for using XML Digital Signature to
sign the body of the request and response SOAP messages.

Before you begin

This task assumes that the service provider and client that you are configuring are in the
JaxWSServicesSamples application. Refer to the topic Accessing Samples for more information on how to
obtain and install this application.

Use the following trace specification on your server. These specifications enable you to debug any future
configuration problems that might occur.
*=info:com.ibm.wsspi.wssecurity.*=all:com.ibm.ws.webservices.wssecurity.*=all:
com.ibm.ws.wssecurity.*=all: com.ibm.xml.soapsec.*=all: com.ibm.ws.webservices.trace.*=all:
com.ibm.ws.websvcs.trace.*=all:com.ibm.ws.wssecurity.platform.audit.*=off:

About this task

This procedure explains the actions you need to complete to configure WS-Security policy set to use only
the XML-Digital Signature WS-Security constraint. This procedure also explains the actions you need to
complete to configure XML Digital Signature application specific custom bindings for a client and provider.

The keystores that are used in this procedure are provided with WebSphere Application Server and are
installed in every profile that is created. You can use the ${USER_INSTALL_ROOT} variable directly in the
configuration to conveniently point to the keystore locations without using a fully-qualified path.
${USER_INSTALL_ROOT} resolves to a path such as c:/WebSphere/AppServer/profiles/AppSrv01.
${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks
${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks

Because of the nature of JaxWSServicesSamples, to apply the policy set and bindings to this application,
in the administrative console click Applications > Application types > WebSphere enterprise
applications > JaxWSServicesSamples. When using your own applications, you can use the following
paths as an alternative way to access the provider and client for attachment of the policy set and bindings:
* Services > Service Providers > (AppName)
* Services > Service clients > (AppName)

gotcha: Pay close attention to the names of the token consumers and generators in the administrative
console. The Initiator and recipient might not be what you think they should be for the tokens.
The usage column in the table specifies whether a token is a consumer token or a generator
token.

Procedure

1. Create the custom policy set.

a. In the administrative console, click Services > Policy sets > Application Policy sets.

b. Click New.

c. Specify Name=AsignPolicy.

d. Click Apply.

e. Under Policies, click Add > WS-Security.

2. Edit the custom policy set to remove encryption and timestamp.

a. In the administrative console, click WS-Security > Main Policy.

b. Under Message level protection, click Request message part protection.

c. Click app_encparts.

3300 Administering WebSphere applications



d. Click Delete.

e. Click Done.

f. Click Response message part protection.

g. Click app_encparts.

h. Click Delete.

i. Click Done.

j. Unselect Include timestamp in security header.

k. Click Apply.

l. Save the configuration.

3. Configure the client to use the AsignPolicy policy set.

a. In the administrative console, click Applications > Application types > WebSphere enterprise
applications > JaxWSServicesSamples > Service client policy sets and bindings.

b. Select the web services client resource (JaxWSServicesSamples).

c. Click Attach Policy Set.

d. Select AsignPolicy.

4. Create a custom binding for the client.

a. Select the web services resource again.

b. Click Assign Binding.

c. Click New Application Specific Binding to create an application-specific binding.

d. Specify the bindings configuration name.

name: clientBinding

e. Click Add > WS-Security.

f. If the Main Message Security Policy Bindings' panel does not display, select WS-Security.

5. Configure the client's custom bindings.

a. Configure a Certificate Store.

1) Click Keys and Certificates.

2) Under Certificate store, click New Inbound... .

3) Specify name=clientCertStore.

4) Specify Intermediate X.509 certificate=${USER_INSTALL_ROOT}/etc/ws-security/samples/
intca2.cer.

5) Click OK.

b. Configure a Trust Anchor.

1) Under Trust anchor, click New...

2) Specify name=clientTrustAnchor.

3) Click External Keystore .

4) Specify Full path=${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks.

5) Specify Password=client.

6) Click OK.

7) Click WS-Security in the navigation for this page.

c. Configure the Signature Generator.

1) Click Authentication and protection > AsymmetricBindingInitiatorSignatureToken0
(signature generator), and then click Apply.

2) Click Callback handler

3) Specify Keystore=custom.

4) Click Custom keystore configuration, and then specify
Full path==${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks

Chapter 32. Administering web services - Security (WS-Security) 3301



Keystore password=client
Name=client
Alias=soaprequester
Password=client

5) Click OK, OK, and OK.

d. Configure the Signature Consumer.

1) Click AsymmetricBindingRecipientSignatureToken0 (signature consumer), and then click
Apply.

2) Click Callback handler.

3) Under Certificates, click the Certificate store radial button, and specify:
Certificate store=clientCertStore
Trusted anchor store=clientTrustAnchor

4) Click OK, and OK.

e. Configure the request Signing Information.

1) Click request:app_signparts, and specify Name=clientReqSignInfo.

2) Under Signing key information, click New , and then specify:
Name=clientReqSignKeyInfo
Type=Security Token reference
Token generator or consumer name=AsymmetricBindingInitiatorSignatureToken0

3) Click Ok, and then click Apply.

4) Under Message part reference, select request:app_signparts .

5) Click Edit.

6) Under Transform algorithms, click New

7) Specify URL=http://www.w3.org/2001/10/xml-exc-c14n#.

8) Click OK, OK, and OK.

f. Configure the response Signing Information.

1) Click response:app_signparts, and specify Name=clientRespSignInfo.

2) Click Apply.

3) Under Signing key information, click New , and then specify:
Name=clientRspSignKeyInfo
Token generator or consumer name=AsymmetricBindingRecipientSignatureToken0

4) Click Ok.

5) Under Signing key information, click clientRspSignKeyinfo , and then click Add.

6) Under Message part reference, select response:app_signparts .

7) Click Edit.

8) Under Transform algorithms, click New

9) Specify URL=http://www.w3.org/2001/10/xml-exc-c14n#.

10) Click OK, OK, and OK.

6. Configure the provider to use the AsignPolicy policy set.

a. In the administrative console, click Applications > Application types > WebSphere enterprise
applications > JaxWSServicesSamples > Service provider policy sets and bindings.

b. Select the web services provider resource (JaxWSServicesSamples).

c. Click Attach Policy Set.

d. Select AsignPolicy.

7. Create a custom binding for the provider.

a. Select the web services provider resource again.

b. Click Assign Binding.

3302 Administering WebSphere applications



c. Click New Application Specific Binding to create an application-specific binding.

d. Specify Bindings configuration name:providerBinding.

e. Click Add > WS-Security.

f. If the Main Message Security Policy Bindings' panel does not display, select WS-Security.

8. Configure the custom bindings for the provider.

a. Configure a Certificate Store.

1) Click Keys and Certificates.

2) Under Certificate store, click New Inbound....

3) Specify:
Name=providerCertStore
Intermediate X.509 certificate=${USER_INSTALL_ROOT}/etc/ws-security/samples/
intca2.cer

4) Click OK.

b. Configure a Trust Anchor.

1) Under Trust anchor, click New...

2) Specify, Name=providerTrustAnchor.

3) Click External Keystore, and specify:
Full path=${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks
Password=server

4) Click OK, and then click WS-Security in the navigation for this page.

c. Configure the Signature Generator.

1) Click Authentication and protection > AsymmetricBindingRecipientSignatureToken0
(signature generator), and then clickApply.

2) Click Callback handler

3) Specify Keystore=custom.

4) Click Custom keystore configuration, and then specify
Full path=${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks
Keystore password=server
Name=server
Alias=soapprovider
Password=server

5) Click OK, OK, and OK.

d. Configure the Signature Consumer.

1) Click AsymmetricBindingInitiatorSignatureToken0 (signature consumer), and then click
Apply.

2) Click Callback handler.

3) Under Certificates, click the Certificate store radial button, and specify:
Certificate store=providerCertStore
Trusted anchor store=providerTrustAnchor

4) Click OK.

5) Click Authentication and protection in the navigation for this page.

e. Configure the request Signing Information.

1) Click request:app_signparts, and specify Name=reqSignInf.

2) Click Apply.

3) Under Signing key information, click New , and then specify:
Name=reqSignKeyInfo
Token generator or consumer name=AsymmetricBindingInitiatorSignatureToken0

4) Click Ok.

Chapter 32. Administering web services - Security (WS-Security) 3303



5) Under Signing key information, click reqSignKeyinfo, and then click Add.

6) Under Message part reference, click request:app_signparts.

7) Click Edit.

8) Under Transform algorithms, click New, and then specify URL=http://www.w3.org/2001/10/
xml-exc-c14n#.

9) Click OK, OK, and OK.

f. Configure the response Signing Information.

1) Click response:app_signparts, and specify Name=rspSignInfo.

2) Click Apply.

3) Under Signing key information, click New , and then specify:
Name=rspSignKeyInfo
Type=Security Token reference
Token generator or consumer name=AsymmetricBindingRecipientSignatureToken0

4) Click Ok, and then click Apply.

5) Under Message part reference, select response:app_signparts .

6) Click Edit.

7) Under Transform algorithms, click New.

8) Specify URL=http://www.w3.org/2001/10/xml-exc-c14n#.

9) Click OK, OK, and OK.

9. Click Save to save your configuration changes.

10. Restart the client and provider.

a. Stop the client and the provider.

b. Restart the client and the provider.

11. Test the Service.

a. Point your web browser at the JaxWSServicesSamples:
http://localhost:9080/wssamplesei/demo

gotcha: Make sure you provide the correct hostname and port if your profile is not on the same
machine, or the port is not 9080.

b. Select Message Type Synchronous Echo.

c. Make sure Use SOAP 1.2 is not selected.

d. Enter a message and click Send Message.

The sample application should reply with JAXWS==>Message.

Results

The JaxWSServicesSamples web services application is configured to use XML Digital Signature to sign
the body for both the SOAP request and response.

Configuring the username and password for WS-Security Username or LTPA token
authentication
When using the Username WSSecurity default policy set, you must configure the username and password
for username token authentication separately from the security settings defined in the bindings.

About this task

When you install a JAX-WS application and attach the default Username WSSecurity default policy set,
the next step is to configure the general provider sample binding for the JAX-WS provider, and the general
client sample binding for the JAX-WS client. However, the binding file for the default client sample binding
does not include a username or password for token authentication. Since the username and password is

3304 Administering WebSphere applications



not available from the target deployed system, you must specify a valid username and password in your
environment using the administrative console.

Procedure
1. Log in to the administrative console, then click Services > Policy sets > General client policy set

bindings.

2. Click Client sample to edit the binding.

3. Click WS-Security.

Add basic authentication information, such as username and password, to the general client sample
bindings for any policy set that uses a Username token or LTPA token, including:

v Username SecureConversation

v Username WS-I RSP

v LTPA SecureConversation

v LTPA WS-I RSP

v LTPA WSSecurity default

4. Click Authentication and protection.

5. In the Authentication tokens table, click gen_signunametoken to edit the username token settings.

6. Click Callback handler in the Additional Bindings section.

7. Enter the appropriate username and password information for your environment in the User name and
Password fields.

8. Enter the password a second time in the Confirm Password field, then click Apply.

9. Repeat steps 5 through 8 for the gen_signltpatoken LTPA token generator.

Results

Note: This administrative console panel applies only to Java™ API for XML Web Services (JAX-WS) web
services.

Securing requests to the trust service using system policy sets
WebSphere Application Server provides message-level protection for its security token service, known as
the WebSphere Application Server trust service. For the trust service, you must use a special class of
policy sets known as system policy sets.

Before you begin

You can secure requests to the trust service by using two different configuration methods:

v Use the administrative console to define and attach a system policy set and binding to a trust service
operation that is associated with an endpoint.

v Use the wsadmin tool, which supports the Jython and Jacl scripting languages, to configure system
policy sets for the trust service. You can manage the policies for the Quality of Service (QoS) by
creating policy sets and managing associated policies.

About this task

For WebSphere Application Server trust service security, you must configure the system policy sets, the
bindings, the trust service attachments, and the security cache.

Perform the following high-level steps. The order of the tasks is not important but all high-level required
steps must be performed to complete the trust configuration.

Chapter 32. Administering web services - Security (WS-Security) 3305



Procedure
1. Define a new system policy set or manage existing system policy sets. To manage system policy sets,

you can perform the following tasks:

a. Define the system policy set and binding. The system policy set can be a new or existing policy
set. If you create a new system policy set, you must specify and configure the policy types. A
default binding configuration is associated with each policy type.

b. Modify the system policy set, as needed.

Other optional policy set-related tasks that you can perform include:

v Add, edit, or remove policy set attachments.

v Edit, enable, disable or remove policy types

v Create a system policy set by selecting and copying an existing system policy set. When
copying an existing system policy set, you also specify whether to move the existing
attachments to this new system policy set.

v Delete system policy sets. You cannot delete pre-configured system policy sets that are provided
by WebSphere Application Server by default.

v Archive a system policy set by selecting and exporting an existing system policy set. When
exporting an existing system policy set, you create a .zip archive file. The .zip file for exporting
the policy set is provided for downloading. For example, if you have a policy set named ABC_ps
and you want to export and move the archive file from ServerA to ServerB, first use the export
function to create the .zip file. Then, manually transfer the archive file to ServerB.

2. Create and manage explicit attachments. You can perform the following trust service attachment tasks:

a. Attach the system policy set and assign a binding to an endpoint. For an endpoint, you can create
explicit attachments for each of the four trust service operations to the respective Trust Service
Defaults policy sets and bindings. After you have created these initial attachments, you can view
and further modify existing policy set and binding configurations.

b. Modify existing policy set attachment and binding configurations, as needed.. The system policy set
can be a new or existing policy set. If you create a new system policy set, you must specify and
configure the policy types. A default binding configuration is associated with each policy type.

The system policy set that is attached to issue and renew must correspond to the client and
endpoint’s bootstrap policy set and the system policy set attached to validate and cancel must
correspond to the client and endpoint’s application policy set. The bootstrap policy set for the
endpoint service is only required if the endpoint service makes issue and renew requests to the
trust service.

Other optional attachment-related tasks that you can perform include:

v Change the system policy set and binding configurations.

v Create custom system policy sets and bindings.

v Attach each of the four default trust service operations to a system policy set and binding.

v Attach each of the four trust service operations associated with a specific endpoint to a system
policy set and binding.

v Specify that the selected trust service operations for an endpoint inherit the respective default
trust service policy set and binding.

v Assign the Default binding or a custom binding configuration to the selected policy set
attachment.

v Update the trust service runtime configuration.

3. Manage the security context token provider that the trust service provides. You can perform the
following trust service token provider tasks:

a. Modify the configuration of the Security Context Token provider, as needed..

Other optional token provider-related tasks that you can perform include:

v Update the trust service runtime configuration for any token provider configuration changes.

3306 Administering WebSphere applications



4. Manage the trust service default token provider and any endpoints that have an explicitly assigned
token (rather than inheriting from the default). Targets are endpoints that are assigned a specific token
provider. You can perform the following trust service target tasks:

a. Create a new trust service target by explicitly assigning a service endpoint URL to the default
token provider.. Performing this task creates an explicit assignment to the default trust service
token provider, the Security Context Token. All other endpoints inherit the trust service default token
provider.

b. Configure a target. WebSphere Application Server defines one default supported token provider,
the Security Context Token. Other tasks that you can perform for existing targets include:

v Modifying one or more endpoints that have a security context token provider explicitly assigned.

v Changing the token provider for an endpoint from inherited to explicitly assigned. Therefore, the
token provider for the endpoint does not change as the default trust service token provider
changes.

v Changing the token provider for an endpoint from explicitly assigned to inherited. Therefore, the
token provider for the endpoint is the default trust service token provider and changes as the
default changes.

v Updating the trust service runtime configuration.

5. Configure the security cache. You can change the behavior of client-side security caching.

6. Update the trust service runtime configuration. You must update the runtime configuration whenever
one or all of the following trust-related items are created or changed:

v Trust service attachments

v Token providers

v Targets

Results

After the configurations are completed and the trust service runtime configuration has been updated, you
have used the administrative console to secure requests to the trust service by using system policy sets.

Enabling secure conversation:

Use secure conversation to secure web services application messages.

Before you begin

Applications that contain web services must have been deployed.

About this task

The Organization for the Advancement of Structured Information Standards (OASIS) Web Services Secure
Conversation (WS-SecureConversation) draft specification describes ways to establish a secure session
between the initiator and recipient of SOAP messages. The WS-SecureConversation draft specification
also defines how to use the OASIS Web Services Trust (WS-Trust) protocol to establish a security context
token (SCT). For complete information, see the OASIS Web Services Secure Conversation specification.

WebSphere Application Server supports the ability of an endpoint to issue a security context token for
WS-SecureConversation, and thereby provides a secure session between the initiator and recipient of
SOAP messages.

The following figure describes the flow that is required to establish a secured context and to use
session-based security.

Chapter 32. Administering web services - Security (WS-Security) 3307



In the WS-SecureConversation specification, a security context is represented by the
<wsc:SecurityContextToken> security token. The following example represents the assertion syntax for a
<wsc:SecurityContextToken> element.
<wsc:SecurityContextToken wsu:Id="..." ...>

<wsc:Identifier>...</wsc:Identifier>
<wsc:Instance>...</wsc:Instance>
...

</wsc:SecurityContextToken>

The security context token does not support references to it by using key identifiers or key names. All
references must either use an ID (to a wsu:Id attribute) or a <wsse:Reference> to the <wsc:Identifier>
element.

WebSphere Application Server provides these pre-configured secure conversation-related polices:

v The SecureConveration policy set follows the WS-SecureConversation and WS-Security specifications
and provides a policy set with secure conversation enabled and using keys derived from security
context token for signing and encrypting the application messages.

v The Username SecureConversation policy set follows the WS-SecureConversation and WS-Security
specifications and adds authentication using the Username token.

v The LTPA SecureConversation policy follows the WS-SecureConversation and WS-Security
specifications and provides authentication using the Lightweight Third Party Authentication (LTPA)
tokens.

In this example, the default SecureConversation policy set, and the default WS-Security binding and
TrustServiceSecurityDefault binding are used to achieve the task of enabling secure conversation. The
default SecureConversation policy set has both the application policy (symmetricBinding) and the bootstrap

Figure 51. Displaying the flow between the client and the web service and security token service

3308 Administering WebSphere applications



policy (asymmetricBinding). The application policy is used to secure application messages and the
bootstrap policy is used to secure the RequestSecurityToken (RST) messages.

A trust service that issues a security context token is configured with the TrustServiceSecurityDefault
system policy and the TrustServiceSecurityDefault binding. The trust policy is responsible for securing
RequestSecurityTokenResponse (RSTR) messages. If the bootstrap policy is modified, the trust policy has
to be modified to match both of the configurations.

Note: The following steps are to be used only in development and test environments.

The Web Services Security (WS-Security) default bindings that are used here contain sample key files and
must be customized before use in a production. For the production environment, use of custom bindings is
advised. Also note that, if the profile is created by using the choice of Create the server using the
development template, you can skip steps 2 and 3.

To configure secure conversation, configure the policy set, and add a policy assertion to the policy,
complete the following steps:

Procedure

1. Make a copy of a default secure conversation policy so you can customize the policy set for your own
environment.

a. Launch the administrative console, and click Services > Policy sets > Application policy sets.

b. Select the check box next to an existing policy set that follows the WS-SecureConversation
specifications. For example, you might click the check box next to SecureConversation. This
policy set is one of the pre-configured secure conversation-related application policy sets that is
listed in the table. The SecureConversation policy set has a bootstrap policy to match the default
policy set for the trust service to issue and renew tokens.

c. Click Copy.

d. Enter a unique name for the new copy of the SecureConversation application policy set. For
example: CopyOfSCPolicySet

e. Optional: Change the description, as needed, for your customized version of this policy set.

2. Attach the policy set and binding to the application.

a. Click Applications > Application Types > WebSphere enterprise applications > application
name.

b. Click either Service provider policy sets and bindings or Service client policy sets and
bindings to attach resources to the CopyOfSCPolicySet policy set. The general binding is
assigned automatically as the default.

c. You can use the Attach Policy Set and Assign Binding menu lists to select a different policy set
or binding.

Results

After completing these steps, you have configured secure conversation.

What to do next

Next, review the example scenario about how to establish a security context token to secure a secure
conversation.

Web Services Secure Conversation:

Web Services Secure Conversation (WS-SecureConversation) provides a secured session for long running
message exchanges and leveraging of the symmetric cryptographic algorithm.

Chapter 32. Administering web services - Security (WS-Security) 3309



WS-SecureConversation provides session-based security. Session-based security optimizes long message
exchanges, as symmetric cryptography can be used to sign and encrypt the message. Typically, symmetric
cryptographic algorithm is less CPU intensive than the asymmetric cryptography. Symmetric cryptographic
algorithms should provide better performance and throughput when compared to the asymmetric
cryptographic algorithms.

The symmetric cryptographic algorithm also provides a means to secure other session-based protocol and
exchange patterns, such as Web Services Reliable Messaging (WS-ReliableMessaging).

Security context token for secure conversation

The Web Services Security specification defines the basic mechanisms for providing secure messaging.
The Web Services Trust (WS-Trust) specification defines extensions to Web Services Security that provide
ways to establish and broker trust relationships between two parties. The WS-Trust protocol defines the
syntax of the request that can be sent to a security token service and the corresponding or subsequent
response of the security token service. The security token service provided with WebSphere Application
Server is called the trust service.

Using the WS-Trust protocol, a party can request the trust service issue a security context token (SCT).
Then, this token can be used to establish a secure conversation (WS-SecureConversation). The request
for a security token is sent to an application endpoint. The request is intercepted by the WebSphere
Application Server and routed to the trust service.

A policy can be defined as the default for all trust issue operations, renew operations, validate operations,
or cancel operations. Additionally, a policy can be attached to a specific URL and operation pair.

WS-SecureConversation defines extensions to allow security context establishment and sharing, and
session key derivation, which allows contexts to be established and, potentially, more efficient keys, or
new key material, to be exchanged. The WebSphere Application Server support for WS-Trust and
WS-SecureConversation focuses on the issuing, renewing, validating, and cancelling of the security
context token for secure conversation.

Policy set and bootstrap policy

In addition to describing these functions, the OASIS WS-SecureConversation draft submission describes
multiple methods of establishing a secure session between the initiator and the recipient of the SOAP
messages.

The bootstrap security policy is the security policy for the initiating party to acquire the security token for
secure conversation from the trust service by using a token-issuing WS-Trust or WS-SecureConversation
protocol message. The policy set configuration consists of the security policy for communication with the
application service, and the bootstrap policy for communication with the trust service.

If sharing of a policy configuration (using WS-Policy) containing the secure conversation bootstrap policy
fails, it may be because the bootstrap request and response policies differ. The message part protection
for the bootstrap policy must be the same for both request and response bootstrap messages, because a
single policy is published for both request and response.

What is supported for Web Services Secure Conversation

The following list highlights some of the key functions that are supported in WebSphere Application Server.
The list is not exhaustive.

v A security context token (SCT) established between the initiating party and the recipient party.

v The WS-SecureConversation operations that are supported on the security context token (SCT), such
as Issue token, Renew token, and Cancel token. Validate token is supported using WS-Trust protocol.

3310 Administering WebSphere applications



v A derived key (explicit and implied)

What is not supported for Web Services Secure Conversation

The following list highlights some of the key functions that are not supported in WebSphere Application
Server. The list is not exhaustive.

v WS-SecureConversation does not support establishing a security context through the security context
token that is created by an external security token service (trust component). However, WebSphere
Application Server supports an internal security token service.

v WebSphere Application Server does not support establishing a security context through the security
context token that is created by one of the communicating parties and propagated with a message.

v WebSphere Application Server does not support amending a security context token.

v WebSphere Application Server does not support a client creating the security context token.

v WebSphere Application Server provides no support for exchange and negotiation.

Secure conversation scenarios

The following scenarios describe the WS-SecureConversation functions that WebSphere Application
Server supports:

v WS-SecureConversation

This scenario is based on establishing a security context token with the recipient and using the derived
key to sign and encrypt the message. It describes how to establish a security context by using
session-based security. Session-based security is where the flow of the initiator establishes the security
context token by using the WS-SecureConversation protocol with the recipient.

v WS-SecureConversation with WS-ReliableMessaging

This scenario is a composite scenario that includes functions that are required for the composition
scenario of Web Services Reliable Messaging (WS-ReliableMessaging), WS-SecureConversation, and
WS-Trust. This scenario describes how to use WS-SecureConversation with WS-ReliableMessaging
where the flow is similar to the previous scenario, but which is from the secure conversation
prospective. However, the main difference is that the WS-ReliableMessaging sequence is secured with
the security context token and scopes the WS-ReliableMessaging sequence to the security context
token. This description focuses on the message exchanges that are using the security context token in
the overall flow.

Scoping of Web Services Secure Conversation:

Web Services Secure Conversation supports two scoping mechanisms: the default and the Java API for
XML Web Services (JAX-WS) client service level.

Review the following information about the two scoping mechanisms to ensure the proper scoping of
secure conversation and policy set for WebSphere Application Server.

Default

The default scope is based on a cluster, an application, a module, and a target service endpoint. For a
client running in a thin client environment, it is considered to be a single application, cluster, and module.

In this scoping mode, all the instances of the JAX-WS client within a particular application, cluster, and
module to the same target service endpoint share the same secure conversation. For example, in the
following figure, the two client instances (Client 1 and Client 2) are in the same module. Client 1 and Client
2 share the same secured conversation with Service 1. The other two client instances (Client 3 and Client
4), which are in a different module than Clients 1 and 2 and which share a secured conversation with each
other but not with Clients 1 and 2.

Chapter 32. Administering web services - Security (WS-Security) 3311



JAX-WS client service level

Scope at the JAX-WS client service level is enabled by specifying a property in the token generator
binding configuration of the Secure Conversation Token (SCT)in the client application request (application
outbound). The binding is located in the META-INF of the deployed application.

For example, if the application is WSSampleClientBeta.ear and the binding directory is
SecureConversation123binding, the binding file would be located at:
$PROFILE_DIR/config/cells/<cellname>/WSSampleClientBeta.ear/deployments/WSSampleClientBeta
/META-INF/SecureConversation123binding/PolicyTypes/WSSecurity/bindings.xml.

An example of the configuration follows:
<tokenGenerator name="gen_enctgen"

classname="com.ibm.ws.wssecurity.wssapi.token.impl.CommonTokenGenerator">
<valueType localName="http://schemas.xmlsoap.org/ws/2005/02/sc/sct" uri="" />

<callbackHandler classname="com.ibm.ws.wssecurity.impl.auth.callback.WSTrustCallbackHandler">
<properties name="com.ibm.ws.wssecurity.sc.SCTScope" value="SERVICE_SCOPE"/>

</callbackHandler>
<properties name="com.ibm.ws.wssecurity.sc.dkt.ServiceLabel" value="WSC"/>
<properties name="com.ibm.ws.wssecurity.sc.dkt.ClientLabel" value="WSC"/>

<jAASConfig configName="system.wss.generate.sct"/>
</tokenGenerator>

3312 Administering WebSphere applications



The following code example demonstrate the behavior after the property in the token generator binding
configuration of the SCT in the client application request (application outbound) is enabled. In this mode,
Web Services Secure Conversation is scoped at the JAX-WS client service instance.
QName serviceQname = new QName("http://ws.apache.org/axis2", "EchoService");
QName portQname = new QName("http://ws.apache.org/axis2", "EchoServicePort");
String endpointUrl = "http://myhost/......";
Service svc1 = Service.create(serviceQname);
svc1.addPort(portQname, null, endpointUrl);
Dispatch<Source> dispatch = svc1.createDispatch(portQname, Source.class, null);
......
......
Service svc2 = Service.create(serviceQname);
svc2.addPort(portQname, null, endpointUrl);
Dispatch<Source> dispatch = svc2.createDispatch(portQname, Source.class, null);

where svc1 and svc2 are in two different secure conversations with the target service endpoint.

You can change the scope by using either the administrative console or by using scripting to add a
property.

Secure conversation client cache and trust service configuration:

For both distributed and local clients, the WebSphere Application Server secure conversation client cache
stores tokens on the client.

WebSphere Application Server supports caching of the security context token for both the distributed client
and local client. If the security context token is distributed, a client in the same replication domain uses the
same security context token. Distributed caching also supports disk offload to save the security context
token to disk for recovery. When the client runs applications using secure conversation, and is part of a
cluster setup, then the client can use the distributed cache mechanism to replicate the token data among
the cluster members.

To use the administrative console to modify the cache settings, click Services > Security Cache.

You can configure the cache settings, such as the following.

v Set the time that the token remains in the cache after timeout. The default value is 10 minutes. This
value is a time window to renew an expired token.

v Set the renewal interval before the token expires. The default value is 10 minutes, and the minimum
value is 3 minutes. Entering a number less than 3 minutes causes an error.

Important: This setting is critical. This setting represents the maximum roundtrip time for a client to
make a request, the transport request to go to the server, the server to process the request,
and the transport response (if applicable) back to the client. If the time specified is too small
and there is not enough time specified, then the token might expire during the roundtrip,
and the client receives a failure response. If the time specified is too large, then
performance diminishes.

If the security context token is renewed too often, it might cause Web Services Secure Conversation
(WS-SecureConversation) to fail or even cause an out-of-memory error to occur. It is required that you
set the renewal interval before the token expires value for the Secure conversation client cache to a
value less than the token timeout value for the security context token. It is also suggested that the token
timeout value be at least two times the renewal interval before the token expires value.

v Select the Enable distributed caching check box to support distributed clients. You must ensure that
the WebSphere Application Server dynamic cache service, and cache replication, are enabled. For more
information on enabling the dynamic cache service, refer to the topic Enabling the distributed cache
using synchronous update and token recovery.

v Define a custom property, edit, or remove existing custom properties.

Chapter 32. Administering web services - Security (WS-Security) 3313



The WS-SecureConversation client rejects a security context token that is issued at a future time. If you
cannot synchronize the clock between the client machine and service machine, the clock skew could be
configured to prevent the rejection of a valid token. The default clock skew is 3 minutes. To modify the
default clock skew setting, add the following custom property to the desired minutes:
clockSkewToleranceInMinutes

Alternatively, use the wsadmin commands to manage secure conversation client cache configurations.

Thin client

For a web service application client running outside WebSphere Application Server, the security context
token is cached only in the local Java process. The following system properties can be used to override
the default cache setting on the thin client:

com.ibm.wsspi.wssecurity.SC.cache.cushion
Specifies the time in minutes to renew a security context token to be used with
WS-SecureConversation on the client side so that the security context token has enough time to
complete the downstream call. The default value is 10 minutes, and the minimum value is 3
minutes.

com.ibm.wsspi.wssecurity.SC.token.clockSkewTolerance
Specifies the tolerant clock skew time for a token between two machines. The default value is 3
minutes.

WS-Reliable Messaging settings

When WebSphere Application Server applications use policies such as WS-I RSP with managed persistent
WS-Reliable Messaging, modify the cache and trust configuration values.

Set the cache configuration time value to 120 minutes.

1. In the WebSphere Application Server administrative console, click Services > Security Cache.

2. Modify the value of the Time token is in cache after timeout field from 10 to 120.

3. Click Apply, and then click Save.

Increasing the cache time value means that the token remains in the cache for a longer period after token
expiration, so that the token is available for renewal. The WS-Reliable Messaging runtime scopes the
CreateSequence message to the security context token. Therefore, it is important to maintain the same
security context for the life time of the Reliable Messaging sequence.

Enable distributed caching using the default option, Synchronous update of cluster members, to support
distributed clients. For more information, refer to the topic Enabling the distributed cache using
synchronous update and token recovery.

Additional recommended changes

Other important configuration changes are also recommended.

v Modify the life time of the Security Context Token by changing the value from the default of 120
minutes, to 600 minutes.

v Modify the Renew after expiration value by changing the value from false to true.

v Modify settings for the token providers, as follows:

1. In the administrative console, click on Services > Trust service > Token providers.

2. Click Security Context Token.

3. Change the value in the Token timeout field from 120 to 600.

4. Click the check box to select Allow renewal after timeout.

5. Click Apply, and then click Save.

3314 Administering WebSphere applications



Derived key token:

After establishing the security context and after the secret have been established (authenticated), derived
keys can be used to sign and encrypt the SOAP message to provide message level protection. You can
then use derived keys for each key that is used in the security context.

You can enable Web Services Secure Conversation (WS-SecureConversation) by using symmetric keys
that are derived from the security token for signing and encrypting the application messages.

Using WS-SecureConversation, the initiator can establish a security context token using the Web Services
Trust (WS-Trust) protocol with the recipient. A security context token implies or contains a shared secret.
Using a common secret, different key derivations can be defined. Then, using the security context token,
the <wsc:DerivedKeyToken> token can be used to derive keys from any security token that has a shared
secret, key, or key material. This secret can be used for signing or encrypting messages, but it is
recommended that derived keys be used for signing and encrypting messages that are associated only
with the security context.

Syntax for the <wsc:DerivedKeyToken> element

The <wsc:DerivedKeyToken> element is used to indicate that the key for a specific reference is generated
from the function so that explicit security tokens, secrets, or key material need not be exchanged as often.
The derived key token does not support references to it using key identifiers or key names. All references
must use an ID to a wsu:Id attribute or use a URI reference, <wsse:Reference>, to the <wsc:Identifier>
element in the security context token.

The syntax for <wsc:DerivedKeyToken> element is as follows:
<wsc:DerivedKeyToken wsu:Id="...">

<wsse:SecurityTokenReference>...</wsse:SecurityTokenReference>
<wsc:Label>...</wsc:Label>
<wsc:Nonce>...</wsc:Nonce>

</wsc:DerivedKeyToken>

Derived keys are expressed as security tokens and use different algorithms for deriving keys. The
following URI is used to represent the derived key token type:
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/dk

The nonce is processed as a binary octet sequence (the value prior to base64 encoding). The nonce seed
is required, and must be generated by one or more of the communicating parties. Use separate nonces
and have independently generated keys for signing and encrypting for request and response. New keys
should be derived for each message, meaning that a previous nonce should not be reused.

Implied derived key generation

Implied derived keys define a shortcut mechanism for referencing certain types of derived keys.
Specifically, an @wsc:Nonce attribute can be added to the security token reference (STR) that is defined
in the WS-Security specification. When present, an implied derived key indicates that the key is not in the
referenced token but, instead, is a key that is derived from the key or secret of the referenced token. It is
recommended that you do not use implied derived Keys in the <wsc:DerivedKeyToken> element.

The following example illustrates a message that is sent using two derived keys, one for signing and one
for encrypting:
<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..."

xmlns:xenc="..." xmlns:wsc="..." xmlns:ds="...">
<S11:Header>
<wsse:Security>
<wsc:SecurityContextToken wsu:Id="ctx2">
<wsc:Identifier>uuid:...UUID2...</wsc:Identifier>

</wsc:SecurityContextToken>
<wsc:DerivedKeyToken wsu:Id="dk2">
<wsse:SecurityTokenReference>
<wsse:Reference URI="#ctx2"/>

Chapter 32. Administering web services - Security (WS-Security) 3315



</wsse:SecurityTokenReference>
<wsc:Nonce>KJHFRE...</wsc:Nonce>

</wsc:DerivedKeyToken>
<xenc:ReferenceList>
...
<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#dk2"/>

</wsse:SecurityTokenReference>
</ds:KeyInfo>
...

</xenc:ReferenceList>
<wsc:SecurityContextToken wsu:Id="ctx1">
<wsc:Identifier>uuid:...UUID1...</wsc:Identifier>

</wsc:SecurityContextToken>
<wsc:DerivedKeyToken wsu:Id="dk1">
<wsse:SecurityTokenReference>
<wsse:Reference URI="#ctx1"/>

</wsse:SecurityTokenReference>
<wsc:Nonce>KJHFRE...</wsc:Nonce>

</wsc:DerivedKeyToken>
<xenc:ReferenceList>
...
<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#dk1"/>

</wsse:SecurityTokenReference>
</ds:KeyInfo>
...

</xenc:ReferenceList>
</wsse:Security>

...
</S11:Header>
<S11:Body>
...

</S11:Body>
</S11:Envelope>

Enabling secure conversation in a mixed cluster environment:

When Web Services Security applications using secure conversation run in a mixed cluster environment,
an interoperability property must be set for the WebSphere Application Server Version 8.5 nodes.

About this task

A mixed cluster environment consists of nodes running WebSphere Application Server Version 6.1 Feature
Pack for Web Services, and nodes running WebSphere Application Server V7 and later. To run Web
Services Security applications utilizing secure conversation in this environment, enable the following
property for the V7.0 and later nodes in the cluster:
com.ibm.ws.wssecurity.distributedcache.PreV70InteropMode.

This property ensures that the method for adding entries in the cache is consistent between the different
nodes, and also allows the applications to interoperate. To enable the property, follow these steps:

Procedure

1. In the WebSphere Application Server administrative console, click Servers > Server Types >
WebSphere application servers.

2. Click the server name.

3. Under the Security section, click JAX-WS and JAX-RPC security runtime.

4. Click Custom properties.

5. Click New.

6. Enter the property name, com.ibm.ws.wssecurity.distributedcache.PreV70InteropMode, in the
Property name field. Enter the property value of true in the Property value field, then click OK.

7. When the Properties panel is refreshed, the
com.ibm.ws.wssecurity.distributedcache.PreV70InteropMode property appears in the properties table.

8. Click Save to commit the change.

9. Restart the server to load the new property.

3316 Administering WebSphere applications



Results

Secure conversation is now enabled for Web Services Security applications running in a mixed cluster
environment.

Enabling distributed cache and session affinity when using Secure Conversation:

WebSphere Application Server provides message-level protection in a cluster environment. You can use
Web Services Secure Conversation (WS-SecureConversation) for message-level protection of Java API for
XML Web Services 2.0 (JAX-WS) Web services in a cluster environment.

Before you begin

A web services request that is protected with a Security Context Token (SCT) is routed to one server in a
cluster, but that SCT might have been issued or renewed by a different server in the cluster. If the
WebSphere Application Server distributed cache is not configured to replicate or does not replicate quickly
enough, the server processing the request might not have access to the SCT. The task steps described in
this topic need to be performed only if the replication setting for cluster members is set to asynchronous
update for the Web Services Security distributed cache.

For more information on cache update settings, read the topic Enabling the distributed cache using
synchronous update and token recovery. You can also enable the Web Services Security distributed cache
with the default setting, which enables synchronous update of cluster members.

About this task

Perform the following high-level steps to enable distributed cache and session affinity when using secure
conversation for message-level protection in a cluster environment.

Procedure

1. Enable the distributed cache for the Security Context Token.

a. In the administrative console for WebSphere Application Server, click Services > Security cache.

b. Select the Enable distributed caching check box.

c. Click the radio button to select Asynchronous update of cluster members.

d. Click Apply and then click Save to save the configuration.

2. Create a replication domain. Perform the following steps:

a. In the Administrative Console, click Environment > Replication domains > New.

b. Enter a name. For example, ABCDomain.

c. Under Number of replicas, select the Entire Domain option.

d. Click OK and then click Save to save the configuration.

3. Enable the dynamic cache. Perform the following steps for each server in the cluster:

a. In the Administrative Console, click Servers > Server Types > WebSphere application servers >
server_name > Container Services > Dynamic Cache Service.

b. Select the Enable cache replication option.

c. Select the replication domain name that you created. For example, ABCDomain.

d. Select the replication type as Both push and pull.

e. Click OK and then click Save to save the configuration.

4. Optional: Change the distributed cache batch update interval. By default, the distributed cache batch
update interval is 1,000 milliseconds. However, you can set this interval to a value that is less than
1,000 milliseconds. To change the value, complete the following steps for each server in the cluster:

Chapter 32. Administering web services - Security (WS-Security) 3317



a. In the Administrative Console, click Servers > Server Types > WebSphere application servers >
server_name > Java and Process Management > Process Definition > Java Virtual Machine >
Custom Properties > New.

b. Enter the com.ibm.ws.cache.CacheConfig.batchUpdateInterval property name.

c. Enter the property value.

d. Click OK and then click Save to save the configuration.

5. Install and configure a web server or proxy server that supports session affinity. The IBM HTTP Server
and WebSphere Application Server proxy server support session affinity. In the WebSphere Application
Server Information Center, read the topic “Communicating with Web servers”. for information on
installing and configuring the IBM HTTP Server.

6. Configure the client systems to send the web services requests to the host and port where the web
server or proxy server is running. The web server or proxy server then routes the requests to the
proper cluster member.

7. On the services that are receiving the web services requests, which are protected by using Web
Services Secure Conversation, select the HTTP transport Session enabled policy option. Complete the
policy set configuration by following these steps:

a. Add the HTTP Transport policy to the policy set that is being used by the services.

b. In the configuration panel for the HTTP Transport policy, select Session enabled.

c. Click OK and then click Save to save the configuration.

8. On the client systems that are sending the web services requests and are protected by Secure
Conversation, enable the HTTP transport Maintain session property. Complete the policy set
configuration or set the property programmatically. If you are using a policy set with your configuration,
follow these steps:

a. Add the HTTP Transport policy to the policy set that is being used by the clients.

b. At the HTTP Transport policy configuration panel, select the Session enabled option.

c. Click OK and then click Save to save the configuration.

Results

After the configurations are completed, you have enabled the distributed cache and session affinity when
using secure conversation in a cluster environment. If the server processing the request does not have
access to the SCT, it will fail the request with the error of Either null SCT or invalid SCT.

Example

The following example, which is a code snippet, demonstrates how to programmatically set the Maintain
session property on the correct JAX-WS object:
Map<String> rc = ((BindingProvider) port).getRequestContext();
...
rc.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, Boolean.TRUE);
... </String>

Flow for establishing a security context token to secure conversations:

This example scenario describes the flow of how the initiator establishes the security context token (SCT)
by using the WS-Trust protocol for session-based security with the recipient. After establishing the security
context token, derived keys from the security context token are used to sign and encrypt the SOAP
message to provide message-level protection. This examples focuses on the message exchanges using
the security context token in the overall flow of the SOAP messages.

The Organization for the Advancement of Structured Information Standards (OASIS) Web Services Secure
Conversation (WS-SecureConversation) specification describes ways to establish a secure session
between the initiator and recipient of SOAP messages. The WS-SecureConversation specification also

3318 Administering WebSphere applications



defines how to use Web Services Trust (WS-Trust) protocol to establish a security context token. The
product supports both Version 1.3, and the draft version, of the WS-SecureConversation specification.

WebSphere Application Server supports the ability of an endpoint to issue a security context token for
WS-SecureConversation and thereby provides a secure session between the initiator and recipient of
SOAP messages.

The following figure describes the flow that is required to establish a secured context and to use
session-based security.

Exchanging messages between the initiator and the recipient

The following figure shows how the messages are exchanged between the initiator and the recipient to
establish the security context token. The two WS-Trust protocols, RequestSecurityToken (RST) and
RequestSecurityTokenResponse (RSTR), are used to request the security context token from the recipient
endpoint.

The bootstrap policy is used to secure the RST and validate the RSTR request, which is typically different
from the application security policy.

Figure 52. Displaying the flow between the client and the Web service and security token service

Chapter 32. Administering web services - Security (WS-Security) 3319



Scenario describing how to use secure conversation

Typically, to use secure conversation, the following steps are involved;

1. The client sends a RequestSecurityToken (RST) trust request for a security context token to an
application endpoint with its secret key (entropy and target key size) and requests the target service
secret key.

This request is typically secured with asymmetric Web Service Security that is defined in the bootstrap
policy.

2. The RST is processed by the trust service and, if the request is trusted based on the security policy,
the trust service returns the security context token with the target service secret key by using a
WS-Trust RequestSecurityTokenResponse (RSTR).

This request is typically secured with asymmetric Web Service Security. The client verifies whether the
RSTR can be trusted, based on the bootstrap policy.

3. If the RequestSecurityTokenResponse is trusted, the client secures (signs and encrypts) the
subsequent application messages by using the session keys.

The session keys are derived from secret of the security context token that is obtained from the initial
WS-Trust RequestSecurityToken and RequestSecurityTokenResponse messages that are exchanged
between the initiator and the recipient.

4. The specification defines an algorithm of how to derive the key based on the initial secret. The target
web service calculates the derive key from the metadata contained in the security header of the SOAP
message and the initial secret.

5. The target web service uses the derived key to verify and decrypt the message based on the
application security policy.

6. The target web service uses the derived key from the secret to sign and encrypt the response based
on the application security policy.

7. Repeat of steps 3 through 6 until the message exchange has completed.

Figure 53. Using WS-Trust protocols RST and RSTR to establish the SCT between the initiator and the recipient

3320 Administering WebSphere applications



Using keys that are derived from the secret of the security context token

After the security context token is established, the application messages are secured with message
protection by using keys that are derived from the secret of the security context token. The derived keys
are used to secure the application messages by signing and encrypting the application messages. The
security context token contains a UUID, which is used as identification of a shared secret. The token UUID
can be used in the SOAP message to identify the security context token for the message exchanges. The
secret must be kept in memory by the session participants (in this case the initiator and the recipient) and
protected. Compromising the secret undermines the secure conversation between the participants.

A similar scenario except with Web Services Reliable Messaging (WS-ReliableMessaging) is possible from
the WS-SecureConversation prospective. See the example for establishing a security context token to
secure reliable messaging.

Flow for establishing a security context token to secure reliable messaging:

This example scenario includes functions that are required for the composite scenario of Web Services
Reliable Messaging (WS-ReliableMessaging), WS-SecureConversation, and WS-Trust. The scenario
describes how to use WS-SecureConversation with WS-ReliableMessaging, the scenario is described from
the WS-SecureConversation perspective.

The flow of this Web Services Reliable Messaging (WS-ReliableMessaging) scenario is very similar to the
flow of the WS-SecureConversation scenario, and the exchange of the application messages is very
similar to the Secure Conversation scenarios. The main difference in the two example scenarios is that the
WS-ReliableMessaging sequence is secured with the security context token and scopes the
WS-ReliableMessaging sequence to the security context token.

The following figure describes a summary of the message flows that are required to establish a security
context token to secure reliable messaging.

Figure 54. Securing application messages with keys derived from secret of the security context token

Chapter 32. Administering web services - Security (WS-Security) 3321



Scenario

The WS-ReliableMessaging sequence is secured with the security context token and is scoping the
WS-ReliableMessaging sequence to the security context token. This scenario focuses on the message
exchanges that are using the security context token in the overall flow.

Note: The exact detail of how WS-ReliableMessaging is validating the WS-ReliableMessaging sequence,
with respect to the security context token scoping, is not described.

Typically, to use secure conversation and a security context token to secure reliable messaging, the
following steps are involved;

v The WS-ReliableMessaging run time calls APIs from the Web Services Security run time to get the
UUID of the security context token for the session and also the API for serializing and deserializing the
security context token for managed persistent for reliable recovery.

Because of the security nature of the security context token, the WS-ReliableMessaging protocol makes
sure that the serialized security context token in persistent store is protected.

v If there is already a security context token established the UUID of the existing security context token is
returned to WS-ReliableMessaging. If there is no security context token already established, the Web
Services Security run time initiates a call to the recipient to establish the security context token.

The latter case is similar to the Secure Conversation scenario.

v After the WS-ReliableMessaging run time acquires the UUID of the security context token, the
WS-ReliableMessaging run time scopes the CreateSequence message to the security context token by
using the SecurityTokenReference (STR) argument in the CreateSequence message and responds with
the CreateSequenceResponse message.

The exchange of the application messages is very similar to the WS-SecureConversation scenario.

v The WS-ReliableMessaging run time responds with the CreateSequenceResponse message.

The exchange of the messages is very similar to the exchange in the WS-SecureConversation scenario.

v The WS-ReliableMessaging run time sends a SequenceAcknowledgement message to acknowledge
that the message is properly delivered and secured by the security context token.

Figure 55. Messages exchange for the SCT and reliable messaging

3322 Administering WebSphere applications



v Finally, the WS-ReliableMessaging run time sends a TerminateSequence message to terminate the
sequence and is secured by the security context token.

Enabling the distributed cache using synchronous update and token recovery:

To support secure conversation in a cluster environment, the distributed cache stores the shared state
information. Version 7.0 and later of WebSphere Application Server uses MBeans to improve synchronous
update of the cache across the cluster. In addition, persistent token support is provided by storing the
token data in a database.

About this task

Synchronous update of shared information in the distributed cache is implemented in the product using an
MBean solution. When update of the shared state information across cluster members is required, a
synchronous blocking call is issued to replicate the token state changes to all the servers in the cluster.
This solution removes the limitations of using session affinity for secure conversation in a cluster
environment.

Perform the following high-level steps to enable distributed cache when using secure conversation for
message-level protection in a cluster environment.

Procedure

1. In the administrative console for WebSphere Application Server, click Services > Security cache.

2. Click the check box to select the Enable distributed cache setting.

3. The distributed cache setting has three options. The first option is Synchronous update of cluster
members. This option is selected by default, enabling the runtime to update all the cluster members
with token information synchronously. If this is selected, then session affinity does not have to be
enabled.

The second option is Asynchronous update of cluster members, which you can select by clicking
the corresponding radio button. For this option to work successfully, session affinity must be enabled.
For information on enabling session affinity, read the topic Enable distributed cache and session affinity
when using Secure Conversation. If Asynchronous update of cluster members is selected, skip steps 4
and 5.

The third option is Token recovery support. To enable this option, click the corresponding radio
button, then select a data source (database) from the Cell level data sources menu list. To create a
data source, click the Manage data sources link. If Token recovery support is selected, skip steps 4
and 5.

4. This step is needed only if Synchronous update of cluster members is selected. Create a replication
domain, as follows:

a. In the administrative console, click Environment > Replication domains > New.

b. Enter a name for the domain. For example, ABCDomain.

c. In the Number of replicas section, click the radio button to select the Entire Domain option.

d. Click OK, then Save, to save the modified configuration.

5. This step is needed only if Synchronous update of cluster members is selected. Enable the dynamic
cache by performing the following steps for each server in the cluster:

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name > Container Services > Dynamic cache service.

b. Select the Enable cache replication option.

c. Select the replication domain name that you created in the previous step. For example,
ABCDomain.

d. Under Replication type. select Both push and pull from the menu list.

e. Click OK, then click Save to save the modified configuration.

Chapter 32. Administering web services - Security (WS-Security) 3323



Different clusters should use different replication domains. Likewise, cluster members from the same
cluster should use the same replication domain. This ensures that synchronous update of cluster
members performed by the Web Services Security runtime, and dynamic replication service updates of
cluster members performed by the WebSphere Application Server dynamic cache runtime, are in sync.

Results

When the configuration steps are complete, you have enabled the distributed cache with either the default
option, which is synchronous update of cluster members, or with asynchronous cluster update or with
token recovery support. The token recovery support option uses a JDBC database to store the token state.
This provides failover support for high availability of the token. If the server processing the request does
not have access to the secure conversation token, the request fails, producing an error such as “null
secure conversation token” or “invalid secure conversation token”.

Configuring the token generator and token consumer to use a specific level of WS-SecureConversation:

Use the administrative console to configure the token generator or token consumer to use a specific level
of the WS-SecureConversation OASIS specification standard. Select one of the two levels of token types
supported: Secure Conversation Token v200502, or Secure Conversation Token v1.3.

About this task

WebSphere Application Server supports two levels of the OASIS standard for WS-SecureConversation
including both the submission draft version (February 2005 draft specification) and version 1.3 of the
standard, which was approved on March 1, 2007. Using the administrative console, configure the token
generator so that the appropriate token type for a specific level of the standard is issued when a security
token is requested.

Procedure

1. Log on to the administrative console and navigate to the panel where the token generator is configured
by clicking Services > Policy sets > General provider policy set bindings or General client policy
set bindings.

2. Click on the name of the binding you want to edit.

3. Click the WS-Security policy in the Policies table.

4. Click the Authentication and protection link in the Main message security policy bindings section.

5. Click New token to create a new token generator or consumer, or click an existing token link from the
Protection Tokens table.

6. Enter a token name, then use the Token type drop-down menu to select a secure conversation token
type.

v To specify a submission draft token type, select Secure Conversation Token v200502.

v To specify a version 1.3 token type, select Secure Conversation Token v1.3.

7. The local name is populated according to the token type you selected, as follows:

v Local name for the submission draft token type: http://schemas.xmlsoap.org/ws/2005/02/sc/sct

v Local name for the version 1.3 token type: http://docs.oasis-open.org/ws-sx/ws-secureconversation/
200512

The URI field is also filled in based on the token type.

8. Click to deselect the option Tolerate Secure Conversation Token v200502 if you want to enforce use
of only the version 1.3 tokens. This option specifies whether the provider should handle both Secure
Conversation Token version 1.3 and Secure Conversation Token v200502. By default, the provider
handles both versions.

9. Click Apply to create a secure conversation token of the selected type.

3324 Administering WebSphere applications



Web Services Secure Conversation standard:

Web Services Secure Conversation (WS-SecureConversation) is a proposed Organization for the
Advancement of Structured Information Standards (OASIS) standard that defines mechanisms for
establishing and sharing security contexts, and deriving keys from security contexts, to enable a secure
conversation.

The base Web Services Security (WS-Security) standard from OASIS defines how to digitally sign and
encrypt the SOAP message to provide message level protection. The standard also defines how to attach
and reference a security token for digital signature and encryption. However, it does not provide
session-based protection when a long series of related messages were exchanged. The WS-Security
specification focuses on the message authentication model. This approach, while useful in many
situations, could be subject to several forms of attack.

The WS-SecureConversation specification introduces the concept of a security context and its usage. The
security context token is a new WS-Security token type that represents the security context abstract
concept. The token is identified by a URI and consists of negotiated keys as well as other security related
properties. The context authentication model authenticates a series of messages and, therefore, addresses
these concerns. The context authentication model increases the overall performance and security of the
subsequent exchanges, but it requires additional communications when authentication happens prior to
normal application exchanges.

Version 1.0 of the OASIS WS-SecureConversation specification defines extensions that build on the Web
Services Security (WS-Security) and Web Services Trust (WS-Trust) standards to provide secure
communication across one or more messages.

IBM, Microsoft, and other vendors have been working on the WS-SecureConversation specification since
2004. A draft of this document was jointly published in February, 2005. The WS-SecureConversation draft
was submitted to the OASIS Web Service Secure Exchange Technical Committee (WS-SX TC), which was
formed in December 2005, along with Web Services Trust (WS-Trust) and Web Services Security Policy
(WS-SecurityPolicy) drafts in order to begin the standardization process.

A revised Version 1.1 draft of the WS-SecureConversation specification standard was submitted to OASIS
in February 2005 and further defines the extensions in Version 1.0. This specification defines extensions to
allow security context establishment and sharing, and session key derivation. These extensions allow
contexts to be established and potentially more efficient keys or new key material to be exchanged.

The most recent version of the specification standard is version 1.3, which was approved by the WS-SX
TC on March 1, 2007. Key requirements in this level of the specification include derived keys and
per-message keys, and extensible security contexts. WebSphere Application Server adds support for
version 1.3 of WS-SecureConversation, providing improved error handling using the standard fault codes
as defined in the specification.

The Web Services Secure Conversation (WS-SecureConversation) standard is a building block that is
used in conjunction with the other web service and application-specific protocols such as Web Services
Security and Web Services Trust to accommodate a wide variety of security models and technologies.
WS-SecureConversation is built on top of the WS-Security and WS-Trust models to provide secure
communication between services. The WS-SecureConversation draft specification describes how to
establish a security context token between two parties, and the WS-Trust specification describes how to
issue and exchange security tokens.

This WS-SecureConversation draft specification includes extensions to Web Services Security and the
following:

v Describes the security context token.

v Defines how security contexts are established.

Chapter 32. Administering web services - Security (WS-Security) 3325



v Describes how security contexts are amended, renewed, and cancelled. Amending context is not
supported by WebSphere Application Server.

v Specifies how derived keys are computed.

v Specifies how to associate a specific security context with an action, if multiple security contexts exist.

WebSphere Application Server supports the client establishing a secured conversation with the target
service endpoint.

WebSphere Application Server supports the OASIS Version 1.1 submission draft, which became available
in February 2005. The WebSphere Application Server does not support all of the functions in the
submission draft. WebSphere Application Server support of WS-SecureConversation focuses on:

v A security context token that is established between the initiating party and the recipient party.

v The operations that are supported on security context token, such as Issue token, Renew token, and
Cancel token.

v The derived key (both explicit and implied)

Secure conversation provided with WebSphere Application Server does not provide support for a security
context token (SCT) that is acquired from a third-party trust server, and does not provide support for a
security context token that is created by the client.

For information about WS-SecureConversation:

v See the IBM developerWorks website.

v See the schema for this specification: WS-SecureConversation schema

v Refer to the following namespace prefixes that are used for WS-SecureConversation:
http://schemas.xmlsoap.org/ws/2005/02/sc and http://docs.oasis-open.org/ws-sx/ws-secureconversation/
200512

Trust service:

The security token service that is provided by WebSphere Application Server is called the trust service.
The WebSphere Application Server trust service uses the secure messaging mechanisms of Web Services
Trust (WS-Trust) to define additional extensions for the issuance, exchange, and validation of security
tokens.

Web Services Trust (WS-Trust) is an OASIS standard that enables security token interoperability by
defining a request/response protocol. This protocol allows SOAP actors, such as a web services client, to
request of some trusted authority that a particular security token be exchanged for another.

WebSphere Application Server is not providing a full security token service that implements all the
contents of the WS-Trust draft specification. The WebSphere Application Server support of WS-Trust
focuses on establishing a security context token for secure conversation. WebSphere Application Server
supports many of the security features described in version 1.3 of the WS-Trust OASIS standard, dated
March 19, 2007.

Third party WS-Trust client

WebSphere Application Server does not provide a WS-Trust client implementation. You can choose to use
a third-party WS-Trust-enabled client but, if you do, WebSphere Application Server does not support a
third-party trust-enabled client. A trust client can facilitate the generation of these soap messages and the
processing of the response, but the client is not required.

WebSphere Application Server focuses on the issuing, renewing, and canceling of the security context
token for Web Services Secure Conversation (WS-SecureConversation).

3326 Administering WebSphere applications

http://www.ibm.com/developerworks/library/specification/ws-secon/
http://schemas.xmlsoap.org/ws/2005/02/sc/ws-secureconversation.xsd
http://schemas.xmlsoap.org/ws/2005/02/sc
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512


The WS-Trust specification must be followed to make requests of the trust service. This specification
includes the use of Web Services Addressing (WS-Addressing) headers. The WS-Addressing headers are
specified in both the August 2004 or the August 2005 specifications. Per the specification, the SOAP body
must consist of a single RequestSecurityToken (RST) element. This element can contain sub-elements as
defined in the WS-Trust and WS-SecureConversation specifications.

You can secure the WS-Trust SOAP messages by using the bootstrap policy that is defined in the policy
set. The bootstrap security policy is invoked in the process of an initiator establishing communication with
an application service. Initial requests to services other than the application service are secured by using
the bootstrap policy. These initial requests typically involve one or more requests to a security token
service (STS), such as the WebSphere Application Server trust service. An example of a request might be
acquiring the security context token necessary for WS-SecureConversation. An initiator is the role that
initiates the original request and, in most cases, it is the client. The client bootstrap policy set must
correspond to the trust service issue and renew attached policy sets for the endpoint. The trust service
cancel and validate attached policy sets for the endpoint must correspond to the client's application policy
set.

Websphere Application Server provides two ways to secure SOAP messages that are destined for the
trust service. One way is to use the bootstrap policy that is defined in the policy set. A second way is to
use the Web Services Security API (WSS API). Your application might use the WSS API to acquire the
security context token for the programmatic, API-based WS-SecureConversation.

For Secure Conversation, a request from the client to an endpoint service is suspended while a new
(second) request is generated and processed by the trust service. The security context token returned with
the second request is used to derive keys that secure communications with the service.

High-level trust service functions

The following list includes WS-Trust-related functions that are currently supported in WebSphere
Application Server. The list is not exhaustive and it focuses only on the high-level functions.

v The trust service component is embedded into and available on each WebSphere Application Server
that processes the WS-Trust protocol messages.

v Communication is accomplished through the RequestSecurityToken (RST),
RequestSecurityTokenCollection (RSTC), RequestSecurityTokenResponse (RSTR), and
RequestSecurityTokenResponseCollection (RSTRC).

Note: An RST request can be made to an external security token service (trust service). However, the
restriction is that security context token, which is needed for WS-SecureConversation, must be
provided by the WebSphere Application Server trust service.

v A security policy for each of the WS-Trust operations (issue, cancel, validate, and renew).

v Pre-configured Security Context Token provider which issues tokens for specific URL.

v Specification of a token provider's token-specific parameters (for example, expiration time).

v A security context token for WS-SecureConversation.

v Caching support for the security context token in both cluster and non-cluster environments. WebSphere
Application Server issues security context tokens when requested if the request meets the security
requirements. However, WS-SecureConversation provided by WebSphere Application Server only
processes security context tokens that are issued by WebSphere Application Server.

v Note that WebSphere Application Server trust service only supports the security context token.

v Trust service supports both the Submission specification (2004/08) and the final specification (2005/08)
versions of WS-Addressing.

v Trust service uses a default policy set called TrustServiceSecurityDefault, which includes WS-Security
and WS-Addressing and provides default security for the issue and renew operations.

Chapter 32. Administering web services - Security (WS-Security) 3327



v Trust service uses a second default policy set called TrustServiceSymmetricDefault, which includes
WS-Security and WS-Addressing and provides default security for the cancel and validate operations.

Trust service functions that are not supported

The following high-level WS-Trust functions that are not supported in WebSphere Application Server. The
list is not exhaustive, and the list focuses only on key functions:

v No negotiation and exchange protocols are supported.

v No other token types are currently supported out of the box; only the security context token is
supported.

v No Trust10 specifications from WS-SecurityPolicySet are supported.

v No unsolicited RequestSecurityTokenResponse (RSTR) is supported.

v A Request Security Token (RST) request cannot be issued to an external security token service (STS)
to establish a secure conversation; only the embedded trust service is currently supported.

v Policy requests that are contained in the RST are not honored.

v The ability to amend a token (the amend operation) is not supported.

v A dedicated external endpoint for access to the token service is not supported; only the embedded trust
service is currently supported.

v The trust services does not support the entropy element that contains an EncryptedKey.

v Delegation and forwarding are not supported.

v The OnBehalfOf element is not supported.

v The Key Exchange Token (KET) binding is not supported.

Trust service operations

WebSphere Application Server specifically supports the ability of the trust service, on behalf of the
endpoint, to issue a security context token for WS-SecureConversation. The token-issuing support is
currently limited only to the security context token. There is also trust policy management for defining a
policy for the trust service to issue, cancel, validate, or renew tokens.

The token service supports the WS-Trust schema namespace. Within this namespace the following actions
are supported:

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew

The token service also supports the WS-SecureConversation schema namespace. Within this namespace
the following actions are supported:

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT/Cancel

v http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT/Renew

An inbound RST for the security context token issue operation must contain an Entropy element. The
Entropy element must contain a BinarySecret. The trust services does not support the Entropy element
that contains an EncryptedKey.

Note that the trust service does not support unsolicited RSTR actions. In addition, the ability to amend a
token is not supported by WebSphere Application Server. Also, see the section titled Trust service
functions that are not supported.

3328 Administering WebSphere applications

http://schemas.xmlsoap.org/ws/2005/02/trust/


Trust policy set-related files

The default trust service policy set for issue and renew is TrustServiceSecurityDefault. You can set up the
corresponding policy set and binding for each service endpoint URL.

Security context token:

Web Services Trust (WS-Trust) and Web Services Secure Conversation (WS-SecureConversation) support
in the application server provides the ability to issue a security context token (SCT). Requests for a
security context token are processed by the security token service.

The security token service for WebSphere Application Server is called the trust service. However, the
application server does not provide a full security token service that implements all the contents of the
WS-Trust specification.

The secure session is referred to as secure conversation because the message protocols that are used
are defined by WS-SecureConversation and WS-Trust. WebSphere Application Server supports secure
conversation.

To request a security context token, a RequestSecurityToken (RST), which is defined by WS-Trust and
WS-SecureConversation protocols, is sent to the service endpoint to which you are setting up a secure
conversation. These requests are transparently rerouted to the trust service. The trust service processes
the RST and responds with a RequestSecurityTokenResponse (RSTR). This response is returned to the
requestor as if it was generated by the endpoint service.

The WebSphere Application Server token provider support is limited to the Security Context Token
provider. WS-SecureConversation in the application server focuses on the establishing of the security
context token between the initiating party and the recipient party for secure conversation.

WebSphere Application Server includes caching support for the Security Context Token in both cluster and
non-cluster environments as well as on both the client and server. WebSphere Application Server also
provides trust policy set management for each of the trust service operations: issue, cancel, validate, and
renew. Trust system policy sets can be managed for each of these trust operations relative to an explicit
service endpoint or the trust service default. The default trust service policy set for a trust operation is
enforced when there is not an explicit attachment.

See the information about Web Services Trust for the WS-Trust functions that are supported.

For the security context token, you can:

v Configure the security context token provider for WS-SecureConversation, providing issue, renew and
cancel operations.

v Configure the trust service to issue a security context token for access to a specific endpoint service
(target).

v Configure the security requirements for access to the trust service and applications. WebSphere
Application Server provides pre-configured application policy sets and trust service policy sets to assist
with this configuration.

v Define a system policy for each of the four trust service operations: issue, cancel, validate, and renew.
These policies are configured for the default or a specific endpoint service. Note that the amend
operation is not supported.

The Security Context Token provider does not support the following operations:

v WS-SecureConversation amend

v Negotation to establish Secure Conversation

v WS-Trust key exchange requests

Chapter 32. Administering web services - Security (WS-Security) 3329



v Client-initiated RequestSecurityTokenResponse (RSTR) and RequestSecurityTokenResponseCollection
(RSTRC) requests

v WS-SecurityPolicy trust assertions

Definitions

To better understand security tokens, the following terms are defined:

security token
A security token represents a collection of claims.

security context
A security context is an abstract concept that refers to an established authentication state and
negotiated key or keys that can have additional security-related properties. A security context
needs to be created and shared by the communicating parties before being used. A security
context is shared among the communicating parties for the lifetime of a communications session
and a security context token is the wire representation of this abstract security context.

WebSphere Application Server does not support a security context token created by one of the
communicating parties and propagated with a messageWebSphere Application Server does not
support creating a security context token through negotiation and exchanges.

security context token
A security context token is a wire representation of that security context abstract concept, which
allows a context to be named by a URI and to be used with Web Services Security. A secured
communication with a security context token between two parties is realized with WS-Trust and
WS-SecureConversation.

security token service
A security token service (STS) is a web service that issues security tokens, meaning it makes
assertions that are based on evidence that it trusts, to whoever trusts it (or to specific recipients).

Trust service
The trust service is the security token service and supporting code that is provided by Websphere
Application Server.

RequestSecurityToken (RST)
A RST is a message sent to a security token service to request a security token.

RequestSecurityToken Response (RSTR)
A RSTR is a response to a request for a security token from a security token service to a
requestor after receiving an RST message.

To communicate trust, a service requires proof, such as a signature, to prove knowledge of a security
token or set of security tokens. A service itself can generate tokens or it can rely on a separate security
token service to issue a security token with its own trust statement. Note that, for some security token
formats, communicating trust can just be a re-issuance or a co-signature that forms the basis of trust
brokering.

Syntax for the <wsc:SecurityContextToken> element

A security context is shared among the communicating parties for the lifetime of a communications session
and a security context token is the wire representation of this abstract security context.

In the WS-SecureConversation specification, a security context is represented by the
<wsc:SecurityContextToken> security token. The following URI represents the security context token type
that is required to establish a secure conversation.
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct

The syntax for <wsc:SecurityContextToken> element is as follows:

3330 Administering WebSphere applications



<wsc:SecurityContextToken wsu:Id="..." ...>
<wsc:Identifier>...</wsc:Identifier>
<wsc:Instance>...</wsc:Instance>
...

</wsc:SecurityContextToken>

The security context token does not support references to it by using key identifiers or key names. All
references must use an ID (to a wsu:Id attribute) or use a URI reference, <wsse:Reference>, to the
<wsc:Identifier> element in the security context token.

RST and RSTR examples to issue a security token

This example shows a RST request to issue a security token. The URI http://docs.oasis-open.org/ws-
sx/ws-secureconversation/200512/sct, which is used in this example, represents the token type:
<wsc:SecurityContextToken>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header>
<wsa:To xmlns:wsa="http://www.w3.org/2005/08/addressing"
soapenv:mustUnderstand="0">
http://localhost:80/WSSampleSei/EchoService
</wsa:To>
<wsa:MessageID xmlns:wsa="http://www.w3.org/2005/08/addressing"
soapenv:mustUnderstand="0">
fc0632828e1252b4:487cee53:11cbfa7916e:-7fb6
</wsa:MessageID>
<wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing"
soapenv:mustUnderstand="0">
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/SCT
</wsa:Action>
</soapenv:Header>

<soapenv:Body>

<wst:RequestSecurityToken
xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
Context="http://www.ibm.com/login/">
<wst:TokenType>
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
</wst:RequestType>
<wsp:AppliesTo
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
-
<wsa:EndpointReference
xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Address>
http://localhost:80/WSSampleSei/EchoService
</wsa:Address>
</wsa:EndpointReference>
</wsp:AppliesTo>
<wst:Entropy>
<wst:BinarySecret
Type="http://docs.oasis-open.org/ws-sx/ws-trust/200512/Nonce">
zb//KsawV6DmfC8kB6vNOQ==
</wst:BinarySecret>
</wst:Entropy>
<wst:KeySize>128</wst:KeySize>
</wst:RequestSecurityToken>
</soapenv:Body>
</soapenv:Envelope>

This example shows a RSTR request to issue a security token:
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Action>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/SCT
</wsa:Action>

Chapter 32. Administering web services - Security (WS-Security) 3331



<wsa:RelatesTo>
fc0632828e1252b4:487cee53:11cbfa7916e:-7fb6
</wsa:RelatesTo>
</soapenv:Header>

<soapenv:Body>
<wst:RequestSecurityTokenResponseCollection
xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
<wst:RequestSecurityTokenResponse
Context="http://www.ibm.com/login/">
<wst:RequestedSecurityToken>
<wsc:SecurityContextToken
xmlns:wsc="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="uuid:FFA51A32EB818FB6EA1222986227363">
<wsc:Identifier>
uuid:FFA51A32EB818FB6EA1222986227346
</wsc:Identifier>
<wsc:Instance>
uuid:FFA51A32EB818FB6EA1222986227345
</wsc:Instance>
</wsc:SecurityContextToken>
</wst:RequestedSecurityToken>
<wsp:AppliesTo
xmlns:wsp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
<wsa:EndpointReference
xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Address>
http://localhost:80/WSSampleSei/EchoService
</wsa:Address>
</wsa:EndpointReference>
</wsp:AppliesTo>
<wst:RequestedProofToken>
<wst:ComputedKey>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/CK/PSHA1
</wst:ComputedKey>
</wst:RequestedProofToken>
<wst:Entropy>
<wst:BinarySecret
Type="http://docs.oasis-open.org/ws-sx/ws-trust/200512/Nonce">
rF1Yp5zhRhamLQNPAOm4TA==
</wst:BinarySecret>
</wst:Entropy>
<wst:Lifetime>
<wsu:Created
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
2008-10-02T22:23:44.765Z
</wsu:Created>
<wsu:Expires
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
2008-10-02T22:35:44.765Z
</wsu:Expires>
</wst:Lifetime>
<wst:RequestedAttachedReference>
<wsse:SecurityTokenReference
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:Reference
URI="#uuid:FFA51A32EB818FB6EA1222986227363"
ValueType="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct" />

</wsse:SecurityTokenReference>
</wst:RequestedAttachedReference>
<wst:RequestedUnattachedReference>
<wsse:SecurityTokenReference
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:Reference
URI="uuid:FFA51A32EB818FB6EA1222986227346"
ValueType="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct" />

</wsse:SecurityTokenReference>
</wst:RequestedUnattachedReference>
<wst:Renewing Allow="true" OK="false" />
<wst:KeySize>128</wst:KeySize>
</wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>
</soapenv:Body>
</soapenv:Envelope>

3332 Administering WebSphere applications



RST and RSTR examples to cancel a security token

This example shows a RST request to cancel a security token.
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header>
<wsa:To xmlns:wsa="http://www.w3.org/2005/08/addressing"
soapenv:mustUnderstand="0">
http://localhost:80/WSSampleSei/EchoService
</wsa:To>
<wsa:MessageID xmlns:wsa="http://www.w3.org/2005/08/addressing"
soapenv:mustUnderstand="0">
fc0632828e1252b4:-270287b7:11cc22c16ed:-7fa8
</wsa:MessageID>
<wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing"
soapenv:mustUnderstand="0">
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Cancel
</wsa:Action>
</soapenv:Header>

<soapenv:Body>
<wst:RequestSecurityToken
xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
Context="http://www.ibm.com/login/">
<wst:TokenType>
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Cancel
</wst:RequestType>
<wsp:AppliesTo
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsa:EndpointReference
xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Address>
http://localhost:80/WSSampleSei/EchoService
</wsa:Address>
</wsa:EndpointReference>
</wsp:AppliesTo>
<wst:CancelTarget>
<wsc:SecurityContextToken
xmlns:wsc="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="uuid:AC4764EB4BE91011501223028453769">
<wsc:Identifier>
uuid:AC4764EB4BE91011501223028453768
</wsc:Identifier>
<wsc:Instance>
uuid:AC4764EB4BE91011501223028453751
</wsc:Instance>
</wsc:SecurityContextToken>
</wst:CancelTarget>
</wst:RequestSecurityToken>
</soapenv:Body>
</soapenv:Envelope>

This example shows a RSTR request to cancel a security token:
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsa="http://www.w3.org/2005/08/addressing">

<soapenv:Header>
<wsa:Action>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/Cancel

</wsa:Action>
<wsa:RelatesTo>

fc0632828e1252b4:-270287b7:11cc22c16ed:-7fa8
</wsa:RelatesTo>

</soapenv:Header>

<soapenv:Body>
<wst:RequestSecurityTokenResponse

Context="http://www.ibm.com/login/"
xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

Chapter 32. Administering web services - Security (WS-Security) 3333



<wst:RequestedTokenCancelled>
</wst:RequestSecurityTokenResponse>

</soapenv:Body>
</soapenv:Envelope>

RST and RSTR examples to renew a security token

This example shows a RST request to renew a security token.
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header>
<wsa:To xmlns:wsa="http://www.w3.org/2005/08/addressing"
soapenv:mustUnderstand="0">
http://localhost:80/WSSampleSei/EchoService
</wsa:To>
<wsa:MessageID xmlns:wsa="http://www.w3.org/2005/08/addressing"
soapenv:mustUnderstand="0">
fc0632828e1252b4:487cee53:11cbfa7916e:-7f8e
</wsa:MessageID>
<wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing"
soapenv:mustUnderstand="0">
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Renew
</wsa:Action>
</soapenv:Header>

<soapenv:Body>
<wst:RequestSecurityToken
xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
Context="http://www.ibm.com/login/">
<wst:TokenType>
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Renew
</wst:RequestType>
<wst:RenewTarget>
<wsc:SecurityContextToken
xmlns:wsc="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="uuid:FFA51A32EB818FB6EA1223026418869">
<wsc:Identifier>
uuid:FFA51A32EB818FB6EA1223026418868
</wsc:Identifier>
<wsc:Instance>
uuid:FFA51A32EB818FB6EA1223026418867
</wsc:Instance>
</wsc:SecurityContextToken>
</wst:RenewTarget>
<wsp:AppliesTo
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsa:EndpointReference
xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Address>
http://localhost:80/WSSampleSei/EchoService
</wsa:Address>
</wsa:EndpointReference>
</wsp:AppliesTo>
<wst:Entropy>
<wst:BinarySecret
Type="http://docs.oasis-open.org/ws-sx/ws-trust/200512/Nonce">
U8rH9l/wLV1gpsBf/yCooA==
</wst:BinarySecret>
</wst:Entropy>
<wst:KeySize>128</wst:KeySize>
</wst:RequestSecurityToken>
</soapenv:Body>
</soapenv:Envelope>

This example shows a RSTR request to renew a security token:
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Action>

3334 Administering WebSphere applications



http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/RenewFinal
</wsa:Action>
<wsa:RelatesTo>
fc0632828e1252b4:487cee53:11cbfa7916e:-7f8e
</wsa:RelatesTo>
</soapenv:Header>

<soapenv:Body>
<wst:RequestSecurityTokenResponse
xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
Context="http://www.ibm.com/login/">
<wst:RequestedSecurityToken>
<wsc:SecurityContextToken
xmlns:wsc="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="uuid:FFA51A32EB818FB6EA1223026990448">
<wsc:Identifier>
uuid:FFA51A32EB818FB6EA1223026418868
</wsc:Identifier>
<wsc:Instance>
uuid:FFA51A32EB818FB6EA1223026990447
</wsc:Instance>
</wsc:SecurityContextToken>
</wst:RequestedSecurityToken>
<wst:Entropy>
<wst:BinarySecret
Type="http://docs.oasis-open.org/ws-sx/ws-trust/200512/Nonce">
lFkKSI/pajtTZzRpQalNMA==
</wst:BinarySecret>
</wst:Entropy>
<wst:Lifetime>
<wsu:Created
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
2008-10-03T09:43:07.421Z
</wsu:Created>
<wsu:Expires
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
2008-10-03T09:55:07.421Z
</wsu:Expires>
</wst:Lifetime>
<wst:RequestedAttachedReference>
<wsse:SecurityTokenReference
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:Reference
URI="#uuid:FFA51A32EB818FB6EA1223026990448"
ValueType="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct">
</wsse:Reference>
</wsse:SecurityTokenReference>
</wst:RequestedAttachedReference>
<wst:Renewing Allow="true" OK="false"></wst:Renewing>
</wst:RequestSecurityTokenResponse>
</soapenv:Body>
</soapenv:Envelope>

RST and RSTR examples to validate a security token

This example shows a RST request to validate a security token.
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header>
<wsa:To xmlns:wsa="http://www.w3.org/2005/08/addressing"
soapenv:mustUnderstand="0">
http://localhost:80/WSSampleSei/EchoService
</wsa:To>
<wsa:MessageID xmlns:wsa="http://www.w3.org/2005/08/addressing"
soapenv:mustUnderstand="0">
fc0632828e1252b4:-673f2c18:11cc328886a:-7fa7
</wsa:MessageID>
<wsa:Action xmlns:wsa="http://www.w3.org/2005/08/addressing"
soapenv:mustUnderstand="0">
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Validate
</wsa:Action>
</soapenv:Header>

<soapenv:Body>
<wst:RequestSecurityToken

Chapter 32. Administering web services - Security (WS-Security) 3335



xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
Context="http://www.ibm.com/login/">
<wst:TokenType>
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct
</wst:TokenType>
<wst:RequestType>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/Validate
</wst:RequestType>
<wst:ValidateTarget>
<wsc:SecurityContextToken
xmlns:wsc="http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="uuid:6B77A2DA28C1E523BD1223045150688">
<wsc:Identifier>
uuid:6B77A2DA28C1E523BD1223045150687
</wsc:Identifier>
<wsc:Instance>
uuid:6B77A2DA28C1E523BD1223045150670
</wsc:Instance>
</wsc:SecurityContextToken>
</wst:ValidateTarget>
<wsp:AppliesTo
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<wsa:EndpointReference
xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Address>
http://localhost:80/WSSampleSei/EchoService
</wsa:Address>
</wsa:EndpointReference>
</wsp:AppliesTo>
</wst:RequestSecurityToken>
</soapenv:Body>
</soapenv:Envelope>

This example shows a RSTR request to validate a security token:
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:Action>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTR/ValidateFinal
</wsa:Action>
<wsa:RelatesTo>
fc0632828e1252b4:-673f2c18:11cc328886a:-7fa7
</wsa:RelatesTo>
</soapenv:Header>

<soapenv:Body>
<wst:RequestSecurityTokenResponse
xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
Context="http://www.ibm.com/login/">
<wst:Status>
<wst:Code>
http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/valid
</wst:Code>
</wst:Status>
</wst:RequestSecurityTokenResponse>
</soapenv:Body>
</soapenv:Envelope>

For additional information, review the two example scenario topics that discuss establishing the security
context token.

System policy sets:

A policy set is a named collection of Quality of Service (QoS) policies. You can use either the
administrative console or the wsadmin commands to manage system policy sets. Policy sets can be
created, deleted, copied, imported or exported.

A policy set can be shared by multiple resources, such as applications, services, inbound or outbound
service endpoints, and operations. Default policy sets are installed using profile augmentation. A policy set

3336 Administering WebSphere applications



can also be imported. A policy set does not have its own bindings. You must attach a policy set to a
resource, and then assign a binding to the attachment.

Note: When attempting to connect to a web service from a thin client, verify that the resources that you
are specifying are valid before running the updatePolicySetAttachment command. No configuration
changes are made if the requested resource does not match a resource in the attachment file for
the application.

A client application can dynamically select a policy suite (reference by name from an application-level
policy suites list). Options shown in the administrative console list are based on the type of template that is
selected to create the policy set. For example, the SecureConversation policy type is made up of policies
for both WSSecurity and WSAddressing.

There are two types of policy sets:

v Application policy sets

v System/trust policy sets

WebSphere Application Server provides predefined system policy sets. For example, WebSphere
Application Server provides the following system policy sets by default for the security trust service:

v TrustServiceSecurityDefault

This trust policy set specifies the asymmetric algorithm as well as the public and private keys to provide
message security. Message integrity is provided by digitally signing the body, time stamp, and
WS-Addressing headers using RSA. Message confidentiality is provided by encrypting the body and
signature using RSA. This policy set follows the WS-Security specifications for the issue and renew trust
operation requests.

v TrustServiceSymmetricDefault

This policy set specifies the symmetric algorithm as well as the derived keys to provide message
security. Message integrity is provided by digitally signing the body, time stamp, and WS-Addressing
headers using HMAC-SHA1. Message confidentiality is provided by encrypting the body and signature
using AES. This policy set follows the WS-Security and Secure Conversation specifications for validate
and cancel trust operation requests.

v SystemWSSecurityDefault

This policy set specifies the asymmetric algorithm and both the public and private keys to provide
message security. Message integrity is provided by digitally signing the body, time stamp, and
WS-Addressing headers using RSA encryption. Message confidentiality is provided by encrypting the
body and signature using RSA encryption

You cannot edit default system policy sets. However, you can create your own custom system policy set,
which can be edited later. Copy or export a default or existing custom system policy set to create the new
custom policy set. System policy sets can also be imported from a predefined location, or from the default
repository. Add one or more policies to each policy set. For example, add any of the following existing
policies:

v Custom properties

v HTTP transport

v JMS transport

v SSL Transport

v WS-Addressing

v WS-Security

The HTTP transport policy can be used for HTTPS, basic authorization, compression, and binary encoding
transport methods.

Web Services Trust standard:

Chapter 32. Administering web services - Security (WS-Security) 3337



Web Services Trust (WS-Trust) is a proposed Organization for the Advancement of Structured Information
Standards (OASIS) standard that enables security token interoperability by defining a request/response
protocol. This protocol allows SOAP actors, such as a web services client, to request of some trusted
authority that a particular security token be exchanged for another. The trust service, which is provided
with WebSphere Application Service, uses the secure messaging mechanisms of WS-Trust to define
additional extensions for the issuance, exchange, and validation of security tokens.

WS-Trust defines a request and response protocol for security token exchange. A client sends a
RequestSecurityToken (RST) to a security token service. The request includes the security token that the
client is asking to be exchanged. The security token service responds back with a
RequestSecurityTokenResponse (RSTR) that contains the new token.

In addition to the token exchange, the WS-Trust request/response protocol is general enough to support
token issuance, where the client presents a claim to the trust service for the service to authorize through
the issuance of a corresponding security token. Token validation is where the client presents a token to the
trust service and asks that its validity be determined.

Also, WS-Trust enables the issuance and dissemination of credentials within different trust domains. To
secure a communication between two parties, the two parties must exchange security credentials (either
directly or indirectly). Each party must first determine if they can trust the asserted credentials of the other
party.

The OASIS WS-Trust specification defines extensions to Web Services Security (WS-Security) for issuing
and exchanging security tokens and for providing ways to establish and access the presence of trust
relationships. Using these extensions, applications can engage in secure communication, and these
extensions are designed to work with the general web services framework. The general web services
framework includes the WSDL service descriptions, UDDI businessServices and bindingTemplates, and
SOAP messages.

The WebSphere Application Server support of WS-Trust focuses on establishing a security context token
for Web Services Secure Conversation (WS-SecureConversation). The WS-Trust support focuses on the
four actions for the security context token: issue, renew, validate, and cancel. Also supported for WS-Trust
Version 1.3 are collection requests for the same actions: issue, renew, validate and cancel. The major
component for WS-Trust that WebSphere Application Server supports is the security token service, which
is referred to as the trust service.

Support for submission draft and approved levels of the WS-Trust standard

Version 6.1 and later of WebSphere Application Server supports the WS-Trust 2005 Submission Draft
specification (Version 1.1). However, WebSphere Application Server does not provide a full security token
service that implements all the contents of the WS-Trust draft specification.

Support for the approved version 1.3 specification, which is dated March 2007, is provided for WebSphere
Application Server version 7.0 and later. The Security Context Token (SCT) provider supports the OASIS
version 1.3 specifications for WS-Trust and WS-SecureConversation. There is a configuration option that
allows support for the two different levels of the WS-Trust standard to co-exist on the same server. This
provides interoperability between systems and products that support different specification levels. See the
topic Configuring the security context token provider for the trust service using the administrative console
for details.

A setting is also provided to specifically disable support for the WS-Trust 2005 Submission Draft
specification (Version 1.1) for the Security Context Token provider. For more information about this
property, refer to the topic Disabling the draft standard level for the Security Context Token.

Processing a trust service request depends on the specifications referenced in the request. Also, the trust
service response is determined by the level of the specification used in the request.

3338 Administering WebSphere applications



For more information about WS-Trust:

v See the IBM developerWorks website.

v See the schema for the specification: http://docs.oasis-open.org/ws-sx/ws-trust/200512

v Refer to the wst namespace prefix that is used for WS-Trust in the Web Services Trust Language
(WS-Trust) specification dated March 2007.

Configuring system policy sets using the administrative console:

By defining a custom policy set or defining assertions about how services are defined, you can configure
Web Services Security. You can use the administrative console to manage custom policy sets.

Before you begin

A policy set specifies a set of common message policy assertions that can be specified within a policy. For
example, a policy set can define general security policy assertions that apply to other protocols, such as
Web Services Security (WS-Security), SOAP messages, Web Services Secure Conversation (WS-Secure
Conversation) and Web Services Trust (WS-Trust).

There are two main types of policy sets; application policy sets and system policy sets. Application policy
sets are used for business-related assertions. These assertions are related to the business operations that
are defined in the Web Services Description Language (WSDL) file. System policy sets, on the other hand,
are used for non-business-related system messages. These messages are defined in other specifications
which apply qualities of service (QoS). Examples of QoS are the request security token (RST) messages
that are defined in WS-Trust, the create sequence messages that are defined in WS-Reliable Messaging,
and the metadata exchange messages defined by WS-MetadataExchange.

Important: Use system policy sets with the trust service, or Web Services MetadataExhange (WS-MEX).
The requestor (client) must utilize Java API for XML-Based Web Services (JAX-WS) only.
Requestors which use Java API for XML-based remote procedure calls (JAX-RPC) are
incompatible with the policy set QOS.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

About this task

Only custom policy sets can be modified. Default system policy sets are read only and cannot be changed.

Procedure

1. To define system policy sets, click Services > Policy sets > System policy sets.

2. Click one of the following actions to work with the system policy set configurations:

New To create a system policy set configuration. Enter a unique name for the system policy set
configuration in the Name field. For example, you might specify
EcommerceTrustServiceSecurity.

Delete To delete an existing configuration. Select the check box next to an existing policy set name,
and click Delete.

Copy To copy an existing configuration. Select the check box next to an existing policy set name,
and click Copy.

Import
To import an existing configuration. Select the check box next to an existing policy set name,
and click Import. For more information, read about importing policy sets using the
administrative console.

Chapter 32. Administering web services - Security (WS-Security) 3339

http://www.ibm.com/developerworks/library/specification/ws-trust/
http://docs.oasis-open.org/ws-sx/ws-trust/200512


Export
To export an existing configuration. Select the check box next to an existing policy set name,
and click Export. For more information, read about exporting policy sets using the
administrative console.

3. To edit the settings of an existing policy set configuration, click the link for the existing custom system
policy set that you want to change. Use the administrative console to modify existing custom policy
sets that have been created.

4. Optional: If creating a policy set, enter a short description for the new policy set. Default policy sets
can only be viewed. For a custom policy set, edit the brief description of the policy set in the
Description field. This description displays in the list on the System policy sets panel. The description
should be meaningful to you and other potential users of this policy set.

5. If creating a new policy set, click Apply. The policy set name must be applied before you can add
policy types to the new policy set.

6. Optional: If needed, add the policy type information, or change the policy types for an existing system
policy set. You can add, delete, enable, or disable policy types for the selected policy set. You can add
any valid policy types to the policy set collection. The following are available policy types for system
policy sets:

v HTTP transport - for HTTP transport policies

v SSL transport - for HTTPS transport policies

v WS-Addressing - for endpoint addressing policies

v WS-Security - for secure SOAP messages policies

7. Click OK and then click Save to save the information directly to the master configuration.

Results

You have provided the basic information to create a system policy set. You can also create a new or
update an existing system policy set for the WebSphere Application Server trust service, or Web Services
MetadataExhange (WS-MEX), using the wsadmin tool. The wsadmin tool examples are written in the
Jython scripting language.

What to do next

After creating a system policy set and adding the policy types, attach the system policy set to a trust
service operation for an endpoint, or attach it to one of the trust service default operations.

Defining a new system policy set using the administrative console:

Use policy sets, or assertions, to define system service operations, for your Web Services Security
configuration. Whenever you create a new policy set, you must add policy types to the policy set. You can
add HTTP Transport, WS-Addressing, WS-Security, and SSL Transport policy types to the system policy
set collection.

Before you begin

A policy set specifies a set of common message policy assertions that can be specified within a policy. For
example, a policy set can define general security policy assertions that apply to other protocols such as
Web Services Security (WS-Security), SOAP messages, Web Services Trust (WS-Trust), and Web
Services Secure Conversation (WS-SecureConversation).

Important: Use system policy sets with the trust service only. The requestor (client) must utilize Java API
for XML-Based Web Services (JAX-WS) only. Requestors which use Java API for XML-based
remote procedure calls (JAX-RPC) are incompatible with the policy set QOS.

3340 Administering WebSphere applications



About this task

Use the system policy sets to configure access to the WebSphere Application Server trust service. You
can create and define a custom system policy set.

Procedure

1. Using the administrative console, click Services > Policy sets > System policy sets .

2. To create a system policy set and add a policy type, click New.

3. Enter a name for the policy set in the Name field. The name must be unique for the new system policy
set. For example: EcommerceTrustServiceSecurity

4. Enter a brief description of the policy set in the Description field. This description displays in the
System Policy Sets collection. The description should be descriptive enough for you and other potential
users to identify the policy set.

5. Click Apply to apply the name and description information.

6. Click Add to add a trust policy by selecting one from the policies listed. The following policies are
available to use for system policy sets:

v HTTP transport - for HTTP transport policies

v SSL transport - for HTTPS transport policies

v WS-Addressing - for endpoint addressing policies

v WS-Security - for secure SOAP messages policies

7. Click Save to save directly to the master configuration.

Results

You have provided the basic information to create or modify a policy set. You can also create a new or
update an existing policy set for the WebSphere Application Server trust service using the wsadmin tool.
The wsadmin tool examples are written in the Jython scripting language.

What to do next

After creating or modifying a system policy set and adding the policy types, attach the policy set to an
endpoint operation or attach it to one of the trust service default operations.

System policy set collection:

Use this panel to create and manage policy sets. A policy set is a named collection of policies. System
policy sets, or assertions about how services are defined, are used to configure access to the trust
service.

There are two main types of policy sets; application policy sets and system policy sets. Application policy
sets are used for business-related assertions. These assertions are related to the business operations that
are defined in the Web Services Description Language (WSDL) file. System policy sets, on the other hand,
are used for non-business-related system messages. These messages are defined in other specifications
which apply qualities of service (QoS). Examples of QoS are the request security token (RST) messages
that are defined in WS-Trust, the create sequence messages that are defined in WS-Reliable Messaging,
and the metadata exchange messages defined by WS-MetadataExchange.

To view this administrative console page, click Services > Policy sets > System policy sets.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Chapter 32. Administering web services - Security (WS-Security) 3341



Select:

Provides a check box next to the name of an existing system policy set that you want to select for further
actions.

To manage existing system policy sets, select the check box for a system policy set and then select one of
the following actions:

Actions Description
Delete Removes one or more selected system policy sets.
Copy Opens a new panel where you can create a copy of the

selected existing policy set. Provide a unique name and,
optionally, a description for the copied policy set. You must
also specify whether to transfer the attachment and
binding from the original version to the copy. You can
select only one policy set to be copied at one time.

Import Imports a policy set. This is a menu item with the option of
importing a policy set from a default repository or a
selected location. You can select and import the default
policy sets from the default repository. The default
repository for the import function in the administrative
console is the directory which contains the default policy
sets. The administrative console also displays the default
policy sets in a list which includes descriptions, to allow
you to select the desired policy set that you want to
import.

Export Opens a new panel where you can export the selected
policy set. You can select only one policy set to be
exported at one time.

New:

Specifies to create and define a custom system policy set.

Name:

Provides a list of available system policy sets.

This column displays a list of default and custom system policy set names. WebSphere Application Server
provides several default system policy sets:

v TrustServiceSecurityDefault is a default trust policy set. This trust policy set specifies the asymmetric
algorithm as well as the public and private keys to provide message security. Message integrity is
provided by digitally signing the body, time stamp, and WS-Addressing headers using RSA. Message
confidentiality is provided by encrypting the body and signature using RSA. This policy set follows the
WS-Security specifications for the issue and renew trust operation requests.

v TrustServiceSymmetricDefault is a default trust policy set. This trust policy set specifies the symmetric
algorithm as well as the derived key algorithms to provide message security. Message integrity is
provided by digitally signing the body, time stamp, and WS-Addressing headers using HMAC-SHA1.
Message confidentiality is provided by encrypting the body and signature using AES. This policy set
follows the WS-Security and WS-SecureConversation specifications for the validate and cancel trust
operation requests.

v SystemWSSecurityDefault is a default system policy set that specifies the asymmetric algorithm and
both the public and private keys to provide message security. Message integrity is provided by digitally
signing the body, time stamp, and WS-Addressing headers using RSA encryption. Message
confidentiality is provided by encrypting the body and signature using RSA encryption.

3342 Administering WebSphere applications



All custom system policy sets are also displayed in the list. Click the system policy set name to view
additional details about the selected policy set.

Information Value
Data type: String
Defaults: TrustServiceSecurityDefault,

TrustServiceSymmetricDefault or
SystemWSSecurityDefault

Editable:

Provides information as to whether the system policy set can be edited.

This column shows whether the policy set is a user-defined, custom policy set that can be edited or
whether the policy set is a default policy set that is not editable. Values displayed in this field are: Editable
or Not editable. You can change the properties for a default, not editable policy set by copying it, and
then modifying the properties of the copy. For more information, read about copying default policy set and
bindings settings.

Important: Even though a policy set is identified as not editable, it is deletable. For example, you cannot
edit information for the default system policy set, but you can delete the policy set.

Information Value
Data type: String
Default: Not editable

Description:

Provides brief descriptions of the system policy sets that currently exist.

This column provides a brief description of the policy sets that are available. You cannot edit information
for the default system policy sets. For custom policy sets that you create, you can create the description
when you create the policy set. Or, you can edit any custom policy set and modify the description on the
details panel at any time. The description field is optional.

System policy set settings:

Use this panel to create a new system policy set or to edit information about an existing custom system
policy set. System policy sets, or assertions about how services are defined, are used to configure access
to the trust service.

To view this administrative console page, complete one of the following procedures:

v Services > Policy sets > System policy sets > policyset_name

v Services > Policy sets > System policy sets > New

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Important: You can edit the fields on this page only if the policy set is a custom trust policy set. You
cannot edit default trust policy sets.

Name:

Specifies the name of the trust policy set.

Chapter 32. Administering web services - Security (WS-Security) 3343



This field displays the name of the existing custom policy set that you selected. If a new policy set is being
created, this field is blank. Enter a policy set name.

Information Value
Data type: String

Description:

Specifies a brief description of the new or existing custom policy set.

This field provides a brief description for the existing policy set that is displayed in the Name field. If a new
policy set is being created, this field is blank. Enter a brief policy set description to help distinguish it from
other policy sets. You cannot change the descriptions of the default policy sets.

Information Value
Data type: String

Policies:

Specifies a collection of trust-related policies.

The Policies section displays a list of pre-configured system-level trust policies. If the system policy set is
a default trust policy set, policies cannot be added, deleted, enabled, or disabled. If the system policy set
is an existing custom trust policy set, you can change the policies. If you are creating a new custom trust
policy set, you can add new policies. You can also delete, enable, or disable any policies that are added.

Select:

Specifies that you want to select an existing policy for further actions.

Click Add to display a list of valid policies that you can add to the named trust policy set.

To manage existing system policies, select the check box for a policy and select one of the following
actions:

Actions Description
Delete Removes one or more policies from the named custom

policy set.
Enable Specifies that the policy is enabled for the policy set and

displays Enabled in the State column.
Disable Specifies that the policy is disabled for the policy set. The

policy remains in the list but displays Disabled in the State
column.

Policy:

Specifies the name of the policy.

This column displays one or more of these trust policies:

v Custom properties – for custom property policies

v HTTP transport – for HTTP transport policies

v SSL transport – for HTTPS transport policies

v WS-Addressing – for endpoint addressing policies

v WS-Security – for secure SOAP messages policies

3344 Administering WebSphere applications



State:

Specifies an enabled or disabled state for each policy.

This column displays whether the policy is enabled or disabled for each of the policies that are listed in the
Policy column. For example, to change the state of the policy from enabled to disabled, select the check
box for the policy, and click Disable.

Description:

Displays a brief description of the policy.

You can view these descriptions only.

Configuring attachments for the trust service using the administrative console:

You can attach the trust service operations for a service endpoint to a system policy set and binding. Each
new endpoint that is specified initially has the following four operations: issue, renew, cancel, and validate.
By default, all endpoints inherit the policy set and binding that are attached to the respective trust service
operation under Trust Service Defaults. However, you can explicitly attach a different policy set.

Before you begin

First you must define your policy sets and bindings. Policies describe the protection or quality of service
that is provided (such as message security, transport and so forth). Bindings specify some details about
how to implement the policy, such as: the path for the keystore file, the class name of the token generator,
or the JAAS configuration name.

Important: Use system policy sets with the trust service only. The requestor (client) must utilize Java API
for XML-Based Web Services (JAX-WS) only. Requestors which use Java API for XML-based
remote procedure calls (JAX-RPC) are incompatible with the policy set QOS.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

About this task

You can attach the trust service operations for a new endpoint to an existing policy set and binding. For
each new service endpoint that is specified, four trust service operations (cancel, renew, validate and
issue) change from having inherited attachments to being explicitly attached. The four operations are
attached to the respective policy set and binding as specified in Trust Service Defaults. Then you can
change the attachment to the desired existing policy set and binding.

An endpoint policy set consists of two sections: a bootstrap section and an application section. The system
policy set attached to the Issue and renew trust service operations for a specific endpoint must correspond
to the bootstrap section of the policy set for that endpoint. The system policy set attached to the Cancel
and Validate trust service operations for a specific endpoint must correspond to the application section of
the policy set for that endpoint.

This task describes how to manage trust service operations for service endpoint URLs that you want to
attach to a system policy set and binding. To complete the configuration of the WebSphere Application
Server trust service, you must also complete the following task:

v Create or manage targets. You can create explicit assignments for new service endpoints (targets) or
manage endpoints that have a security token explicitly assigned or that inherit the Trust Service Default
token.

Chapter 32. Administering web services - Security (WS-Security) 3345



The sample general bindings that are provided with the product are initially set as the global security (cell)
default bindings. The default service provider binding and the default service client bindings are used when
no application specific bindings or trust service bindings are assigned to a policy set attachment. For trust
service attachments, the default bindings are used when no trust specific bindings are assigned. If you do
not want to use the provided Provider sample as the default service provider binding, you can select an
existing general provider binding or create a new general provider binding to meet your business needs.
Likewise, if you do not want to use the provided Client sample as the default service client binding, you
can select an existing general client binding or create a new general client binding. To specify your global
security (cell) default bindings, use the administrative console and click Services > Policy sets > Default
policy set bindings. For environments with multiple security domains, you can optionally choose the
general provider and general client bindings that you want to use as the default bindings for a domain. For
more information about default bindings see the topic Setting default policy set bindings.

Procedure

1. To manage system policy set attachments for trust service operations, click Services > Trust service
> Trust service attachments. The list displays all endpoints that have at least one operation with a
policy set attached as well as Trust Service Defaults. The list also displays the system policy set and
the binding for each operation.

2. Select one or more of the following actions to configure the trust service attachments:

New Attachment
Opens a new panel where you can specify the service endpoint URL. For each new service
endpoint that is specified, four trust service operations (cancel, renew, validate and issue)
change from having inherited attachments to being explicitly attached. The four operations are
attached to the respective policy set and binding as specified in Trust Service Defaults. These
initial attachments can be changed.

Attach
Displays a list of existing system policy sets, including the default trust-related system policy
sets, to which each of the four trust service operations for a service endpoint can be attached.
First, select the operation (for example, Cancel token) and then click Attach to display the list
of available system policy sets. Select a default or custom system policy set to attach. When
you change the policy set attachment, the binding automatically changes to Default. Select the
operation and click Assign Binding to change the binding.

The pre-configured system policy sets that you can select include:

v TrustServiceSecurityDefault

This trust policy set specifies the asymmetric algorithm as well as the public and private
keys to provide message security. Message integrity is provided by digitally signing the
body, time stamp, and WS-Addressing headers using RSA. Message confidentiality is
provided by encrypting the body and signature using RSA. This policy set follows the
WS-Security specification for the issue and renew trust operation requests.

v TrustServiceSymmetricDefault

This trust policy set specifies the symmetric algorithm as well as the derived key algorithms
to provide message security. Message integrity is provided by digitally signing the body, time
stamp, and WS-Addressing headers using HMAC-SHA1. Message confidentiality is provided
by encrypting the body and signature using AES. This policy set follows the WS-Security
and WS-SecureConversation specifications for the validate and cancel trust operation
requests.

v SystemWSSecurityDefault

This system policy set specifies the asymmetric algorithm and both the public and private
keys to provide message security. Message integrity is provided by digitally signing the
body, time stamp, and WS-Addressing headers using RSA encryption. Message
confidentiality is provided by encrypting the body and signature using RSA encryption.

3346 Administering WebSphere applications



Inherit Operation Defaults
Sets the operation to inherit the respective trust service default trust service policy set
attachment and binding. If you select the attachments to modify and then click Inherit
Operation Defaults, the explicit attachment for both the policy set and the binding is removed.
Thereafter, the operation inherits any change to the default trust service policy set and binding.

Assign Binding
Changes the existing binding. You can create and assign a new binding, assign the Default
binding, or assign an existing trust service specific binding to each of the selected trust service
attachments.

Update Runtime
Updates the trust service runtime with any configuration changes that are made to the trust
service attachments, token providers, and targets.

3. Optional: Modify the custom policy set by clicking the name of a custom policy set from the list. Edit
the settings for custom policy sets, as needed. Default trust service policy set information can only be
viewed.

You cannot edit the default policy sets: TrustServiceSecurityDefault and TrustServiceSymmetricDefault,
or SystemWSSecurityDefault. TrustServiceSecurityDefault is the default for the issue and renew
operations. TrustServiceSymmetricDefault is the default for the cancel and validate operations.

At least one trust service operation for the endpoint service URL must be explicitly attached for the
endpoint service URL to be displayed. If an operation is explicitly attached, the system policy set name
appears. If no policy set is explicitly attached, the respective default trust service policy set appears,
followed by the text (inherited).

4. Optional: Modify the trust service specific binding by clicking the name of a binding from the list, as
needed. Edit the settings for the trust service specific binding, as needed. Any modifications to a trust
service binding affect all trust service attachments that reference the binding.

If the resource has a policy set directly attached, either the bindings name appears or Default
appears.

5. Save your changes before applying the changes to the trust service runtime configuration.

6. Click Update Runtime to update the trust service runtime configuration with any data changes for
token providers, trust service attachments, and targets. Whether the confirmation window appears
depends on whether you select the Show confirmation for update runtime command check box.
Expand Preferences to view the check box.

7. Optional: Confirm or cancel if the confirmation window appears. If you deselected the Show
confirmation for update runtime command check box, all changes are made immediately without
displaying the confirmation window.

Results

You have provided the basic information to create or update a trust service attachment. You have
configured trust service operation attachments to system policy sets and bindings.

What to do next

You can also create a new attachment for the WebSphere Application Server trust service using the
wsadmin tool. The wsadmin tool examples are written in the Jython scripting language.

Creating a service endpoint attachment using the administrative console:

You can attach the trust service operations for a new service endpoint URL to system policy sets and
bindings. The operations for each new endpoint are attached to the Trust Service Default policy sets and
bindings. Each new endpoint initially has the following four operations: issue, renew, cancel, and validate.

Chapter 32. Administering web services - Security (WS-Security) 3347



Before you begin

First you must define your policy sets and their bindings. Policy sets describe the protection or quality of
service that is provided (such as message security, transport and so forth). Bindings specify some details
about how to implement the policy set, such as: the path for the keystore file, the class name of the token
generator, or the JAAS configuration name.

Important: Only use system policy sets with the trust service. The requestor (client) must utilize only Java
API for XML-Based Web Services (JAX-WS). Requestors that use Java API for XML-based
remote procedure calls (JAX-RPC) are incompatible with the policy set QOS.

About this task

Attaching the trust service operations for a new endpoint to existing policy sets and bindings requires two
steps. After initially attaching the endpoint, the following four operations are configured: issue, renew,
cancel, and validate. These four operations explicitly attach to Trust Service Defaults. You can then modify
these attachments to existing policy sets and bindings.

This task describes how to create or manage service endpoint URLs that you want to attach to the policy
set and binding. To complete the configuration for the WebSphere Application Server trust service, you
must also create or manage targets.

If no explicit bindings are attached, WebSphere Application Server uses the cell-level default binding,
referred to as Default.

Procedure

1. To view existing trust service attachments, click Services > Trust service > Trust service
attachments. Until you create the first attachment, only the default attachments for each operation are
displayed.

2. To create an attachment, click New Attachment.

3. Enter the service endpoint URL in a valid format. Note that when the URL in the trust service
attachment does not match the URL, including matching the case, to which the trust service request is
sent, the policy set that is defined in the attachment is not applied. Instead, IBM WebSphere
Application Server uses the policy set that is attached to the default for the trust operation.

For example, where demo is the endpoint, you might enter: http://localhost:9080/wssamplebeta/demo

4. Click Attach to attach the URL and to return to the Trust service attachments panel. After you click
Attach, the Trust service attachments panel displays the new service endpoint URL and the initial four
operations. The service endpoint URL that you specified is listed in the Trust service attachments
collection. These four token operations (cancel, renew, validate and issue) for the specified endpoint
are initially attached to Trust Service Defaults.

5. On the Trust service attachments panel, change the policy set or binding attachment, as needed. You
can return any operation to its initial state by inheriting Trust Service Defaults.

Note: Changing the policy set forces the binding to change to Default.

6. Save your changes before applying the changes to the Web Services Security runtime configuration.

7. Click Update Runtime to update the Web Services Security runtime configuration with any data
changes for token providers, trust service attachments, and targets. Whether the confirmation window
appears depends on whether you selected the Show confirmation for update runtime command
check box. Expand Preferences to view the check box.

8. Optional: Confirm or cancel if the confirmation window appears. If you deselected the Show
confirmation for update runtime command check box, all changes are made immediately without
displaying the confirmation window.

3348 Administering WebSphere applications



Results

You have provided the basic information to create a trust service attachment and to configure a policy set,
a binding, and the operation information.

What to do next

You can also create a new attachment for the trust service using the wsadmin tool. The wsadmin tool
examples are written in the Jython scripting language.

Next, configure the security context token provider or configure targets to complete the trust service
configuration.

Trust service attachments collection:

Use this page to view information about or manage system policy set attachments and bindings. Endpoints
with at least one operation directly attached to a policy set are displayed.

This page displays each endpoint that has at least one operation that is directly attached to a system
policy set. The operations for other endpoints inherit the trust service default policy set and binding data.
You can click New Attachment to create explicit attachments for endpoints not displayed, or click Attach
to change the policy set for an operation. Changing the system policy set for an operation removes the
binding data for that operation, and resets that data to the system default binding settings. You can also
click Assign Binding to create a new binding configuration or change the existing binding configuration for
the selected operation.

To view this administrative console page, click Services > Trust service > Trust service attachments.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Show confirmation for update runtime command:

Specifies whether to enable or disable the display of the confirmation window before the Web Services
Security runtime configuration is updated for supported tokens, targets, and trust service attachments.

Click Preferences to expand the information. You can select or clear the Show confirmation for update
runtime command check box. If you do not select this check box, updates to the security runtime
configuration are made without first displaying a confirmation window. If you select the check box, the
confirmation window is displayed before updates to the security runtime configuration are made.

Information Value
Data type: Check box
Default: Enabled (check box is selected)

Retain filter criteria:

Specifies whether to retain the filter criteria.

Click Preferences to expand the information. You can select or deselect the Retain filter criteria check
box. This check box determines whether Endpoint URL is used as the filter criteria to reduce the
displayed list of endpoints.

Information Value
Data type: String

Chapter 32. Administering web services - Security (WS-Security) 3349



Information Value
Default: All (check box is not selected)

Search terms:

Specifies the search criteria to use to reduce the displayed list of endpoints.

Click Preferences to expand the information. Type the search term you want to use in the Search terms
field. Use the asterisk (*) as a wildcard character for all terms. You can also search for multiple unknown
or partial characters within the term. For example, typing the search term par* returns partly,
participate, partial, and all other terms beginning with the letters par.

Information Value
Data type: String
Default: * (search for all)

Select:

Specifies that you want to select an existing resource, such as an endpoint or an operation, for further
actions.

For existing endpoints, select the check box next to an operation, and then select one of the following
actions:

Actions Description
Attach Displays a list of policy sets that are available to be

attached to an endpoint operation (cancel, reset, validate,
or issue) or to one of the trust service default operations.
Highlight and click the policy set to attach the policy set to
the selected operation. You cannot attach a policy set to
an endpoint.

Inherit operation defaults Detaches the currently attached policy set and binding for
each selected operation and sets the operation to inherit
the trust service default policy set and binding for each
operation.

Assign binding Lists the bindings that are available to select for the policy
set to which you want to attach the binding. You can also
create a new binding.

v Select Default to create and assign the system default
binding to the selected policy set attachment. When you
select this binding the runtime uses the default binding
for the server, cell or in the multiple security domain
environment to which the service resource is deployed.

v Select New Trust Service Specific Binding to create
a binding that is specific to the policy set and shares
the characteristics of the policy set. This type of binding
is reusable only for trust service attachments.

v Select an existing general binding to assign the binding
to the selected policy set attachment.

Multiple selection is valid only when all the resources have
the same policy set attached.

New attachment:

3350 Administering WebSphere applications



Specifies that you want to create an explicit policy set attachment.

Click New Attachment to access a new panel where you can enter an endpoint URL to create
attachments for each of the four endpoint operations of the provided URL. Initially, the attachment consists
of the policy set and binding that are listed as the Trust Service Default for that operation.

Information Value
Data type: Button

Update runtime:

Updates the trust service configuration for any changed attachments, targets, and token information.

If the Show confirmation for update runtime command preference is enabled, then a panel is displayed
where you can confirm that you want to update the trust service configuration. If the preference is
disabled, the trust service configuration is updated immediately without any confirmation.

Information Value
Data type: Button

Service endpoint URL / Operation:

Displays a list of the trust service default operation attachments and every service endpoint URL that has
at least one operation with a policy set attached.

Each endpoint has four operations: issue, cancel, renew, and validate. Each of the operations for all other
endpoints inherits the trust service default policy set and binding.

When the URL in the trust service attachment does not match the URL to which the trust service request
is sent, the policy set that is defined in the attachment is not applied. Instead, IBM WebSphere Application
Server uses the policy set that is attached to the default for the trust operation.

Information Value
Data type: String
Default: Trust Service Default

Policy set:

Displays the attached or inherited policy set for each operation of all endpoint URLs. Any endpoint URL
that is not displayed inherits the trust service default policy set for each operation. Provides a list of default
and custom system policy sets that are attached to the service endpoint URL.

The policy set names are displayed in this column for each operation. If the policy set is inherited from the
trust service default, rather than being explicitly attached, inherited is displayed in parentheses following
the policy set name. Because only operations can have a policy set attachment, the Policy Set column for
each endpoint URL row displays Not applicable.

Click the system policy set name to view or edit the policy set details information. Note that you can view,
but not edit, the default policy sets. Default policy sets cannot be changed.

Information Value
Data type: String
Defaults: TrustServiceSecurityDefault,

TrustServiceSymmetricDefault or
SystemWSSecurityDefault

Chapter 32. Administering web services - Security (WS-Security) 3351



Binding:

Displays the binding that is assigned to each policy set attachment for each operation of the listed
endpoint URLs. Any endpoint URL that is not displayed inherits the trust service default binding for each of
the four operations.

The name of the assigned binding for each policy set attachment is displayed in this column for each
operation. If the attachment is inherited from the trust service default, inherited is displayed in
parentheses following the binding name. If you select Assign Binding > Default, the system default
binding is applied to the policy set attachment, and the word Default is displayed in this column. If the
system default binding is inherited, then inherited is displayed in parentheses following Default.

The system default binding is also assigned when you attach a new policy set to an operation. Because
only operations can have policy set attachments, the binding column for each endpoint URL row displays
Not applicable. Rows that are not directly related to a token and display the trust service default, display
the text, Not applicable, for the binding. Additionally, rows that are not directly related to a token and
display only the service endpoint URL display the text, Not applicable, for the binding.

Click the trust service specific binding name to view or edit the binding information. You can view, but not
edit, the TrustServiceSecurityDefault, TrustServiceSymmetricDefault or SystemWSSecurityDefault bindings.

Information Value
Data type: String
Default: TrustServiceSecurityDefault,

TrustServiceSymmetricDefault or
SystemWSSecurityDefault

Trust service attachments settings:

Use this page to create a new attachment to the current Trust Service Defaults policy set and binding for
the four token operations: cancel, issue, renew, and validate.

To view this administrative console page, complete the following procedure:

v Click Services > Trust service > Trust service attachments > New Attachment .

Service endpoint URL:

Specifies the service endpoint URL that you want to attach to the policy set and binding for the trust
service default operations.

Use this field to specify a service endpoint URL. The URL must be specified in a valid format, such as
http://www.mybusiness.com.

Note that when the URL in the trust service attachment does not match the URL to which the trust service
request is sent, the policy set that is defined in the attachment is not applied. Instead, IBM WebSphere
Application Server uses the policy set that is attached to the default for the trust operation.

After you enter the URL and click Attach, the custom service endpoint URL is displayed in a list of
explicitly attached service endpoint URLs on the Trust service attachments panel. In addition to the new
service endpoint URL, the Trust service attachments panel displays a list of the corresponding four
operations (cancel, issue, renew and validate).

3352 Administering WebSphere applications



On the Trust service attachments panel, you can change the Trust Service Default policy set and binding
attachments for any of the four operations. These policy sets apply to any URL not displayed, and
therefore not explicitly attached to a policy set and binding. Changing the policy set for a URL operation
resets a custom binding setting to the default value.

On the Trust service attachments panel, if you want to remove the explicit policy set attachments and
binding assignments, select each of the URL operations, and click Inherit Operation Defaults. If all four
operations are changed to inherit the Trust Service Default policy set and binding, then the URL no longer
displays on this panel.

Information Value
Data type: String (URL format)

Configuring the security context token provider for the trust service using the administrative
console:

Configure the WebSphere Application Server trust service to issue a specific security token to the
requestor for communication with an endpoint. Use the administrative console to configure the security
context token provider that the trust service provides.

Before you begin

WebSphere Application Server provides a trust service. The trust service provides both a security token
service and additional WebSphere Application Server trust-related functionality. To configure the trust
service, in addition to managing the security context token provider, you must first complete the following
tasks:

v Create or manage supported targets. You can create explicit assignments for new service endpoints
(targets) or manage endpoints that have the security context token provider explicitly assigned or that
inherit the token provider designated as the Trust Service default.

v Create or manage the attachment of token operations for service endpoints to policy sets and bindings.

The order in which you complete these tasks is not important.

About this task

This task describes how to manage the security context token provider and how to define or modify the
properties of the security context token provider.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Procedure

1. To manage the security context token provider, click Services > Trust service > Token providers.

2. To edit the settings of the security context token provider configuration, click the link for the token
provider name. You cannot edit the name, class name, or token type schema URI when modifying the
token provider information.

a. The format of the token type schema Uniform Resource Identifier (URI) is in the standard URI
format. For example, for a version 1.3 security context token, the URI is: http://docs.oasis-open.org/
ws-sx/ws-secureconversation/200512/sct

b. Change the amount of time, in minutes, in the Time in cache after timeout field that the expired
token is kept in cache and where the token can still be renewed. The default value is 120 minutes.
This value cannot be less than 10 minutes.

Chapter 32. Administering web services - Security (WS-Security) 3353



c. Change the amount of time, in minutes, in the Token timeout field that the issued token is valid.
The default value is 10 minutes. This value cannot be less than 10 minutes.

d. Select the Allow renewal after timeout check box to enable the renewal of a token after the token
has expired. If selected, the amount of time, within which an expired token can still be renewed, is
specified in minutes in the Time in cache after expiration field.

e. Select the Allow postdated tokens check box to enable postdated tokens. Use postdated tokens
to specify whether a client can request a token to become valid at a later time.

f. Select the Support Secure Conversation Token v200502 to enable use of the older draft
submission specification level of the security context token. The correct URI for this level of the
token type schema appears in the field under the check box: http://schemas.xmlsoap.org/ws/2005/
02/sc/sct.

g. Click New to define a new custom property or click Edit to modify the custom property. Specify
these settings using the Custom Properties setting. Custom properties are used to set internal
system configuration properties. Custom properties are arbitrary name-value pairs of data, where
the name might be a property key or a class implementation, and where the value might be a
string or the value might be a true or false value.

h. If you define a custom property, type a name. Refer to the documentation for the token provider for
valid custom property names.

i. If you define a custom property, type a value. Refer to the documentation for the token provider for
the values for a property name.

j. Repeat defining the name and the value for each custom property that you add.

k. Click OK. You are returned to the Token providers panel.

3. Save your changes before applying the changes to the Web Services Security runtime configuration.

4. Click Update Runtime to update the Web Services Security runtime configuration with any data
changes for token providers, trust service attachments, and targets. Whether the confirmation window
is displayed depends on whether you select the Show confirmation for update runtime command
check box. Expand Preferences to view the check box.

5. Optional: Confirm or click Cancel when the confirmation window appears. If you deselected the Show
confirmation for update runtime command check box, all changes are made immediately without
displaying the confirmation window.

Results

You have completed the required steps to modify the security context token provider configuration and to
update the Web Services Security runtime configuration. You can also update the security context token
provider configuration for the trust service using the wsadmin tool. The wsadmin tool examples are written
in the Jython scripting language.

What to do next

Next, if you have not done so already, you must also configure targets or configure attachments to
complete the trust service configuration.

Modifying the security context token provider configuration for the trust service using the administrative
console:

WebSphere Application Server provides a pre-configured token, the Security Context Token (SCT). Use
the administrative console to modify the configuration of the security context token provider.

3354 Administering WebSphere applications



Before you begin

WebSphere Application Server provides a trust service. The trust service provides both a security token
service and additional WebSphere Application Server trust-related functionality. To configure the trust
service, in addition to managing the security context token provider, you must first complete the following
tasks:

v Create or manage supported targets. You can create explicit assignments for new service endpoints
(targets) or manage endpoints that have a security token provider explicitly assigned or that inherit the
token provider designated as the Trust Service default.

v Create or manage the attachment of token operations for service endpoints to policy sets and bindings.

The order in which you complete these tasks is not important.

About this task

This task describes how to configure the security context token provider and how to define the token
provider properties.

Procedure

1. To configure the security context token provider, click Services > Trust services > Token providers.

2. To change the configuration of the security context token provider, click the link for the token provider
name (Security Context Token). For an existing token, the token name, class name and URI are
displayed, but are not editable.

3. Optional: Change the amount of time, in minutes, in the Time in cache after expiration field that the
expired token is kept in cache and where the token can still be renewed. The default value is 120
minutes, and you cannot type a value that is less than 10 minutes.

4. Optional: Change the amount of time, in minutes, in the Token timeout field that the issued token is
valid. The default value is 120 minutes, and you cannot type a value that is less than 10 minutes.

5. Optional: Select the Allow renewal after timeout check box to enable the renewal of a token, after
the timeout time has expired. If selected, the amount of time, within which an expired token can still
be renewed, is specified in the Time in cache after expiration field.

6. Optional: Select the Allow postdated tokens check box to enable postdated tokens. Use postdated
tokens to specify whether a client can request a token to become valid at a later time.

7. Optional: Select the Support Secure Conversation Token v200502 check box to enable use of the
older draft submission specification level of the security context token. The correct URI for this level
of the token type schema appears in the field under the check box: http://schemas.xmlsoap.org/ws/
2005/02/sc/sct.

8. Click New if you want to define a new custom property. Specify additional configuration using the
Custom Properties setting. Custom properties are used to set internal system configuration
properties. Custom properties are arbitrary name-value pairs of data, where the name might be a
property key or a class implementation, and where the value might be a string or Boolean value.

a. If defining a new custom property, type a name. For example, for a custom property, type:
com.ibm.wsspi.wssecurity.trust.keySize

b. If defining a new custom property, type a value. For example, the following value: 128

c. Repeat the name and value steps for each new custom property.

9. Click OK. You are returned to the Token provider panel.

10. Save your changes before applying the changes to the Web Services Security runtime configuration.

11. On the Token provider panel, click Update Runtime to update the Web Services Security runtime
configuration with any data changes for token providers, trust service attachments, and targets.
Whether the confirmation window is displayed depends on whether you select the Show
confirmation for update runtime command check box. Expand Preferences to view the check box.

Chapter 32. Administering web services - Security (WS-Security) 3355



12. Optional: Confirm or click Cancel when the confirmation window appears. If you deselected the Show
confirmation for update runtime command check box, all changes are made immediately without
displaying the confirmation window.

Results

You have completed the required steps to modify the configuration of the security context token provider
and to update the Web Services Security runtime configuration. You can also modify the configuration of
the security context token provider for the trust service using the wsadmin tool. The wsadmin tool
examples are written in the Jython scripting language.

What to do next

If you have not done so already, you must also configure targets or configure attachments to complete the
trust service configuration.

Trust service token custom properties:

WebSphere Application Server trust service provides several custom properties by default to define the
default security context token (SCT).

Custom properties are name-value pairs of data that are passed to the token provider during configuration.

The Property name column displays the name of the custom property. The name must match the name of
a configuration property or setting that the provider understands and expects. The Property value column
displays the configuration setting that is passed to the provider during configuration.

These custom properties are provided by default by WebSphere Application Server, for you to configure
when using the Services > Trust service > Token providers > Security Context Token page.

algorithm:

The value is AES.

keySize:

The value is 128.

Provider:

The value is IBMJCE.

Disabling the submission draft level for the security context token provider:

Use the administrative console to configure the security context token provider that the trust service
provides. Two levels of the token are supported on WebSphere Application Server: the token defined by
the WS-Trust February 2005 Submission Draft specification, and the token defined by the OASIS
WS-Trust Standard version 1.3. You can disable a setting so that the server will not accept a trust request
that specifies the submission draft level of the token.

About this task

Disable the Security Context Token provider support for the submission draft specification using the
administrative console.

3356 Administering WebSphere applications



Procedure

1. Log on to the administrative console and navigate to the Token providers panel by clicking Services >
Trust service > Token providers.

2. Click on Security Context Token.

3. Click to clear the Support Secure Conversation Token v200502 check box.

4. Click Apply to save the changed setting.

Results

For more information, see the topic Modifying the security context token provider configuration for the trust
service using the administrative console.

Trust service token provider settings:

Use this page to modify information for an existing token provider.

To view this administrative console page, complete the following actions:

v Services > Trust service > Token providers > token_provider_name

Name:

Specifies the name of the token provider.

This field displays the unique name of the token provider (for example, Security Context Token). You
cannot change the name for any existing token provider.

Information Value
Data type: String

Class name:

Specifies the package and class name of the trust service's Security Context Token provider.

This field displays the configuration class name, including the package information (for example,
com.ibm.ws.wssecurity.trust.server.sts.ext.sct.SCTHandlerFactory).

You cannot change the class name for any existing token provider.

Information Value
Data type: String

Token type schema URI:

Specifies the Uniform Resource Identifier (URI) for the token type schema.

This field displays the unique token type schema URI. Use a valid URI format, such as:
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct.

You cannot change the schema URI for any existing token provider.

Information Value
Data type: String

Chapter 32. Administering web services - Security (WS-Security) 3357



Time in cache after expiration:

Specifies the number of minutes that a token remains in the token cache after the token expires.

This field displays the time, in minutes, that the expired token is kept cached and can still be renewed.

Information Value
Data type: Integer
Default: 120
Minimum: 10
Maximum: 2147483647

Token timeout:

Specifies the amount of time, in minutes, that the issued token is valid.

This field displays the maximum timeout, in minutes, for a token to be considered valid.

Information Value
Data type: Integer
Default: 120
Minimum: 10
Maximum: 2147483647

Allow renewal after timeout:

Specifies to enable or disable the renewal of a token.

This check box specifies whether to allow a client to renew an expired token. Note the Time in cache
after expiration field specifies the amount of time within which an expired token can still be renewed.

Information Value
Data type: Check box
Default: Do not allow (unchecked)

Allow postdated tokens:

Specifies to enable or disable the use of postdated tokens.

This check box specifies whether a client can request a token to become valid at some point in the future.

Information Value
Data type: Check box
Default: Do not allow (unchecked)

Support Secure Conversation Token v200502: This check box specifies whether support for the WS-Trust
and WS-Secure Conversation Feb 2005 Submission Draft OASIS specification is enabled. The default URI
for the token type schema is provided in the non-editable field below the check box.

Information Value
Data type: Check box
Default: Enabled (checked)

3358 Administering WebSphere applications



Custom Properties:

Specifies additional configuration settings that the token provider might require.

This table lists custom properties. Use custom properties to set internal system configuration properties.

The Secure Context Token default configuration settings are :

Property Name Property Value
com.ibm.wsspi.wssecurity.trust.algorithm AES
com.ibm.wsspi.wssecurity.trust.keySize 128
com.ibm.wsspi.wssecurity.trust.provider IBMJCE

Select:

Specifies custom properties that you can add to, edit, or delete from the token provider.

Click New to add and define a new custom property.

For existing custom properties, first select the check box for the name of the custom property, and click
one of the following actions:

Actions Description
Edit Specifies whether to modify existing custom properties.

This action requires one or more custom properties to be
selected.

Delete Removes the selected existing property from the listing in
the Name column. This action requires one or more
custom properties to be selected.

Name:

Displays the names of the custom properties that have been defined for the token provider.

This column displays the name of the custom property (for example,
com.ibm.wsspi.wssecurity.trust.keySize). Custom properties are name-value pairs of data that are
passed to the token provider during configuration. The name that you specify must match the name of a
configuration property or setting that the provider understands and expects.

Information Value
Data type: String

Value:

Specifies the value for the custom property.

This column displays the value for the custom property (for example, true). Custom properties are
name-value pairs of data. The value, which is represented as a string, is a configuration setting that is
passed to the provider during configuration.

Information Value
Data type: String or Boolean

Trust service token providers collection:

Chapter 32. Administering web services - Security (WS-Security) 3359



Use this page to view information about or manage token providers for the trust service.

To view this administrative console page, click Services > Trust service > Token providers.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Show confirmation for update runtime command:

Specifies to enable or disable the display of the confirmation window before the trust service configuration
is updated when you click Update Runtime.

Click Preferences and then select the Show confirmation for update runtime command check box. If
you select this check box, the confirmation window is displayed before updates to the security trust service
configuration are made. If you do not select this check box, clicking Update Runtime updates the security
trust service configuration without first displaying a confirmation window.

Information Value
Data type: Check box
Default: Enabled (checked)

Update Runtime:

Updates the trust service configuration for any changed attachments, targets, and token information.

If the Show confirmation for update runtime command preference is enabled, then a panel is displayed
where you can confirm that you want to update the trust service configuration. If the preference is
disabled, updates to the trust service configuration are applied immediately without any confirmation.

Information Value
Data type: Button

Token Provider Name:

Lists available token providers.

This column displays the names of the pre-configured token providers. The pre-configured token provider
is the Security Context Token (SCT). Click a token provider name link to view additional details.

Information Value
Data type: String
Default: Security Context Token

Token Type Schema URI:

Provides the Uniform Resource Identifier (URI) for the token type schema.

This column displays the URIs of all pre-configured token providers.

Information Value
Data type: String

Configuring trust service endpoint targets using the administrative console:

3360 Administering WebSphere applications



The Trust Service manages tokens on behalf of service endpoints. A token provider is either explicitly or
implicitly associated with each service endpoint. A specific token can be explicitly assigned to be issued
when access to an endpoint is requested. Otherwise, the Trust Service Default token is issued.

Before you begin

The Web Services Secure Conversation specification defines the protocol for a client to establish a secure
session with a target service. The security token service that WebSphere Application Server provides,
referred to as the trust service, issues only the Security Context Token (SCT). The security context token
is used for Web Services Secure Conversation (WS-SecureConversation).

About this task

This task describes how to create new or manage existing assignments of tokens to be issued for
endpoint targets. You can create explicit assignments for new service endpoints (targets) or manage
existing token assignments.

To complete the configuration for the trust service, you must have performed the following tasks:

v Manage the security context token provider.

v Create or manage service endpoint URLs that you want to attach to the policy set and binding.

The order in which you complete these tasks is not important.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Procedure

1. To configure new and existing trust service endpoint targets, click Services > Trust service > Targets.
A list of all service endpoints that have a security token provider explicitly defined is displayed. The
token provider assigned to the Trust Service Default by default handles requests to issue tokens to
access an endpoint.

2. Click one of the following actions to manage a new or existing endpoint target configuration:

New Assignment
Opens a new panel where you can specify a custom service endpoint URL and explicitly
assign the token provider, which is specified as the Trust Service Default, to be issued for
access to the endpoint.

Change Token
Changes an explicitly assigned token to be issued for the service endpoint to the security
context token. Select an endpoint and then click Change Token. Select the Security Context
Token.

Also, removes the explicit assignment of a token to be issued; therefore, the token that is
issued is inherited from the Trust Service Default. Select an endpoint and then click Change
Token. Click Inherit Default to remove a token provider assignment for the selected endpoint
and to return the issued token to be the token that is specified as the Trust Service Default. If
the token that is issued is inherited, the endpoint is no longer displayed in the list because the
token provider is no longer explicitly assigned to the endpoint.

3. Click the token name link for an existing endpoint target to modify the token provider configuration
information. You can modify the token type schema URI, or change custom properties.

4. Save your changes before applying the changes to the Web Services Security runtime configuration.

5. Click Update Runtime to update the Web Services Security runtime configuration with any data
changes for token providers, trust service attachments, and targets. Whether the confirmation window

Chapter 32. Administering web services - Security (WS-Security) 3361



is displayed depends on whether you select the Show confirmation for update runtime command
check box. Expand Preferences to view the check box.

6. Optional: Confirm or click Cancel when the confirmation window appears. If you deselected the Show
confirmation for update runtime command check box, all changes are made immediately without
displaying the confirmation window.

Results

When you complete these steps, the service endpoint URL displays in the Targets collection, unless you
changed the token to inherit the default value. You can also configure the trust service to issue tokens for
individual endpoint targets using the wsadmin tool. The wsadmin tool examples are written in the Jython
scripting language.

What to do next

You have completed the required steps to create or manage existing trust service targets, to assign the
security token provider to an endpoint target, and to update the Web Services Security runtime
configuration. Next, if you have not competed these tasks already, configure the security context token
provider or configure attachments to the policy set and binding to complete the trust service configuration.

Assigning a new target for the trust service using the administrative console:

You can associate a security token provider with a service endpoint using the administrative console. After
entering the service endpoint URL, the token provider configured as the Trust Service Default is explicitly
associated with the service endpoint.

Before you begin

The Web Services Secure Conversation specification defines the protocol for a client to establish a secure
session with a target service. The security token service that WebSphere Application Server provides,
referred to as the trust service, issues the Security Context Token (SCT). The security context token is
required for Web Services Secure Conversation (WS-SecureConversation).

About this task

This task describes how to register a service endpoint (target) with the trust service. Registration of an
service endpoint with the trust service initially associates the token provider configured as the Trust
Service Default with that service endpoint.

To complete the configuration for the trust service, you must have completed the following tasks:

v Manage the Security Context Token.

v Create or manage service endpoint URLs that you want to attach to the policy set and binding.

The order in which you complete these tasks is not important.

Procedure

1. To configure a custom endpoint target, click Services > Trust service > Targets > New Assignment.

2. At the New assignment panel, enter the Universal Resource Locator (URL) for the service endpoint,
and click Assign. You are returned to the Targets panel where the custom service endpoint URL is
displayed in the list. Initially, the token that is explicitly assigned to the custom endpoint is the token
that is assigned as the Trust Service Default.

3. At the Targets panel, select the check box for a service endpoint, click Change Token, and select one
of the following:

3362 Administering WebSphere applications



a. Security Context Token (SCT). A security context token is defined by the WS-SecureConversation
specification.

b. Inherit Default if you want the token that is issued to be the token assigned as the Trust Service
Default. The endpoint is not displayed in the list when the assignment is inherited because the
token is no longer explicitly assigned to the endpoint.

4. At the targets panel, click the token name link for an existing endpoint target to modify the token
provider configuration information.

5. Save your changes before applying the changes to the Web Services Security runtime configuration.

6. Click Update Runtime to update the Web Services Security runtime configuration with any data
changes for token providers, trust service attachments, and targets. Whether the confirmation window
is displayed depends on whether you select the Show confirmation for update runtime command
check box. Expand Preferences to view the check box.

7. Optional: Confirm or click Cancel when the confirmation window appears. If you deselected the Show
confirmation for update runtime command check box, all changes are made immediately without
displaying the confirmation window.

Results

When you complete these steps, service endpoints explicitly associated with a token provider are
displayed in the Targets collection. Service endpoints that have been changed to inherit the token provider
configured as the Trust Service Default are not displayed. You can also configure the security token
service to issue a specific token for access to a target using the wsadmin tool. The wsadmin tool
examples are written in the Jython scripting language.

What to do next

You have completed the required steps to create a service endpoint URL, to assign the token to be issued
for access to the target, and to update the Web Services Security runtime configuration. Next, if you have
not completed these tasks already, configure the Security Context Token provider or configure attachments
to the policy set and binding to complete the trust service configuration.

Trust service targets collection:

Use this page to view a list of targets, which are application server service endpoints. You can manage
tokens by specifying which token is to be issued when access to a specific endpoint is requested.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

To view this administrative console page, click Services > Trust service > Targets.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Show confirmation for update runtime command:

Specifies to enable or disable the display of the confirmation window before the WebSphere Application
Server trust service configuration is updated when you click Update Runtime.

Click Preferences and then select the Show confirmation for update runtime command check box. If
you select this check box, the confirmation window is displayed before updates to the trust service
configuration are made. If you do not select this check box, clicking Update Runtime updates the trust
service configuration without first displaying a confirmation window.

Chapter 32. Administering web services - Security (WS-Security) 3363



Information Value
Data type: Check box
Default: Enabled (checked)

Select:

Specifies a check box for the service endpoint Universal Resource Locator (URL) that you want to select
for further actions.

For existing endpoints, select the checkbox for the service endpoint and select one of the following
actions:

Actions Description
Change Token Changes the token that is issued when access to an

endpoint is requested. Selecting Inherit Default in the
Change Token menu causes the following actions to
occur:

v The security token assignment is removed for the
endpoint.

v The token assigned as the Trust Service Default is
issued for access to the endpoint.

v The endpoint is no longer displayed in the list of
endpoints that have tokens explicitly assigned.

Only endpoints that are explicitly assigned a security
token are displayed in the list. Endpoints that inherit the
default do not display in the list.

New Assignment:

Defines a new service endpoint.

Initially, each endpoint is explicitly assigned the Trust Service Default token. By default, the pre-configured
Security Context Token (SCT) is assigned, but that can be changed.

Information Value
Data type: Button

Update Runtime:

Updates the trust service configuration for any changed attachments, targets, and token information.

If the Show confirmation for update runtime command preference is enabled, then a panel is displayed
where you can confirm that you want to update the trust service configuration. If the preference is
disabled, updates the trust service configuration immediately without any confirmation.

Information Value
Data type: Button

Service Endpoint URL:

Specifies the Universal Resource Locator (URL) of the service endpoint for the explicitly assigned token.

3364 Administering WebSphere applications



This column lists the default service endpoint, Trust Service Default, and any custom service endpoints
that have a token that is explicitly assigned to the endpoint, such as: http://localhost:9080/
EcommerceSTS.

Information Value
Data type: String
Default: Trust Service Default

Token Name:

Displays the name of the token to be issued when access to the endpoint is requested.

To inherit the default token, select the check box for a custom service endpoint URL, click Change Token
> Inherit Default.

You can change the token type that is explicitly assigned as the Trust Service Default, but the token type
cannot be left unassigned. If the token is not explicitly assigned, then the endpoint inherits the token that is
assigned as the Trust Service Default token.

Click a token name link to access detailed information about the token. You can modify the token
information, except for the token name. It is recommended that you do not modify the class name or the
token type schema URI for the default token type, Security Context Token.

Changes to token properties apply to all tokens of this type that are issued for any endpoint.

Information Value
Data type: String
Default: Security Context Token

Token Type Schema URI:

Specifies the schema Uniform Resource Identifier (URI) for the token type.

This column displays the schema URI for the explicitly assigned token type (for example, Security Context
Token) in a valid URI format. The token type schema URI is a property of the token name and describes
the version of the specification that is implemented for the security token.

Information Value
Data type: String
Default value: http://docs.oasis-open.org/ws-sx/ws-secureconversation/

200512/sct

Trust service targets settings:

Use this page to specify a custom service endpoint Universal Resource Locator (URL) and to assign a
custom token type to the endpoint URL.

To view this administrative console page, click Services > Trust service > Targets > New Assignment.

Service endpoint URL:

Specifies the URL for the service endpoint.

Chapter 32. Administering web services - Security (WS-Security) 3365



Use this field to specify a custom service endpoint URL. The URL must be specified in a valid format, such
as http://localhost:9080/EcommerceSTS. After you enter the URL and click Assign, the endpoint URL is
explicitly assigned to the security token that is assigned the Trust Service Default.

The service endpoint URL is added to the list that displays on the Targets panel. Only endpoints that are
explicitly assigned a security token are displayed in the list. Endpoints that inherit the default do not
display in the list.

By default, the Trust Service Default token is the Security Context Token (SCT).

After clicking Assign and returning to the Targets panel, if you want to remove the explicit token
assignment (and thereby change the token to be issued back to the default value), select the custom
endpoint URL, and click Inherit Default. Then the following actions occur:

v The security token assignment is removed for the endpoint.

v The token assigned as the Trust Service Default is issued for access to the endpoint.

v The endpoint is no longer displayed in the list of endpoints that have tokens explicitly assigned.

Information Value
Data type: String (URL format)

Updating the Web Services Security runtime configuration:

Update Web Services Security runtime configuration with any data changes that you make and save for
token providers, trust service attachments, and targets.

Before you begin

Before you update the Web Services Security runtime configuration, make your required data changes for
token providers, trust service attachments, and targets. Save your changes before applying the changes to
the Web Services Security runtime configuration.

About this task

Whether the confirmation window appears depends on whether the Show confirmation for update
runtime command check box is selected. Expand Preferences from the Token providers panel, the Trust
service attachments panel, or the Targets panel to see the Show confirmation for update runtime
command check box. Preferences are collapsed by default.

v If you select the check box, then the confirmation window is displayed before updates to the security
runtime configuration are made. The check box is selected by default.

v If you do not select the check box, then updates to the security runtime configuration are made
immediately, without first displaying the confirmation window. The confirmation window does not appear
again until you re-select the checkbox located under Preferences.

Or, instead of deselecting the check box under Preferences, you can select the Do not show this
message again check box on the Update runtime confirmation panel.

Procedure

1. Perform one of the following tasks:

v Services > Trust service > Trust service attachments

v Services > Trust service > Token providers

v Services > Trust service > Targets

2. Click Update Runtime. If you did not select the Show confirmation for update runtime command
check box, all changes are made immediately without displaying the confirmation window.

3366 Administering WebSphere applications



3. Optional: Confirm or cancel when the confirmation window appears. If you selected the Show
confirmation for update runtime command check box, all changes require confirmation and the
confirmation window is displayed.

Results

After clicking Update Runtime, the configuration changes you made on the Token providers, the Trust
service attachments, or the Targets panel are updated for the Web Services Security runtime configuration.

What to do next

You can also manage and administer the trust service using the wsadmin tool. The wsadmin tool examples
are written in the Jython scripting language.

After configuring the trust service targets, attachments, and tokens, next configure the secure conversation
client cache, if you have not already completed this step.

Web services update runtime settings:

Use this page to confirm that the web services trust service runtime should be updated with the most
recent configuration changes.

To view this administrative console page, complete one of the following procedures:

v Services > Trust service > Trust service attachments

v Services > Trust service > Supported tokens

v Services > Trust service > Targets

Make changes to attachments, tokens, or targets, save the changes, and click .Update Runtime.

Do not show this message again:

Specifies to enable or disable the confirmation panel before the Web Services Security runtime
configuration is updated.

Click OK to confirm that you want to make the configuration changes effective immediately for the web
services trust service runtime.

Information Value
Data type: Check box
Default Enabled (checked)

Configuring the Web Services Security distributed cache using the administrative console:

You can configure the Web Services Security runtime to use the security distributed cache to store security
tokens.

About this task

Web Services Security functions such as secure conversation, trust, and nonce use the distributed cache
to store security tokens when the distributed cache is enabled. If the distributed cache option is not
selected, then a local cache is used to store the tokens. WebSphere Application Server Version supports
distributed caching for the tokens in both cluster and non-cluster environments. In a cluster environment,
you can configure the security cache to be distributed. If the cache is distributed, then all servers in the
cluster share information about issued tokens.

Chapter 32. Administering web services - Security (WS-Security) 3367



Procedure

1. To configure the secure conversation client cache, click Services > Security cache.

2. Change the time in minutes in the Time token is in cache after timeout field. The default value is
120 minutes. The minimum allowable time is 10 minutes, meaning you cannot enter a value that is
less than 10 minutes. This field specifies the number of minutes that the token is in cache after the
token expiration time expires (cache persist period).

3. Change the time in minutes in the Renewal interval before token timeout field. The default value
and minimum allowable time is 10 minutes. You cannot enter a value that is less than 10 minutes. This
field specifies the time period before the token expires when the client attempts to renew the token.
This window of time is just before token expires where, if the token is accessed, then the client
attempts to renew the token so that a downstream call can complete.

It is important that this setting be set to a length of time that is longer than the longest possible
transaction. This value must include the time it takes to transport to and from the server, the time that
is needed by the server to process the request, and the time that is cached by reliable messaging, if
appropriate. Setting this value to a length of time that is too small might result in the token expiring in
the middle of a transaction and might prevent the transaction from completing.

If the Security Context Token is renewed too often, it might cause Web Services Secure Conversation
(WS-SecureConversation) to fail or even cause an out-of-memory error to occur. It is required that you
set the renewal interval before the token expires value for the Secure conversation client cache to a
value less than the token timeout value for the Security Context Token. It is also suggested that the
token timeout value be at least two times the renewal interval before the token expires value.

4. Select the Enable distributed caching check box, if you want to share the tokens across the cluster.
When the checkbox is selected to enable distributed caching, choose one of the following settings for
updating the caches.

v Synchronous update of cluster members: performs synchronous update of cache objects on cluster
members (default).

v Asynchronous update of cluster members: performs a non-synchronous update of the cache on
cluster members. This setting allows interoperability with cluster members that use the older style of
updating as implemented in versions of WebSphere Application Server prior to version 7.0.

v Token recovery support: assigns a shared data source as the distributed cache.

If token recovery support is selected as the update method, then you must select a cell level data
source using the drop-down list. Token state data is saved in the database defined as the data source.
If there are no available data sources in the list, click on Manage data sources to add one or more
new data source objects. The data source object supplies an application with connections for
accessing the database.

5. To create a new custom property, click New. For example, you might add the cancelActionRST custom
property with a value of http://schemas.xmlsoap.org/ws/2005/02/trust/RST/SCT/Cancel.

6. To edit an existing custom property, select the check box for the name of the existing custom property,
and then click Edit. For example, you might change the name or the value of the cancelActionRST
custom property.

7. Click Apply to save and apply the changes.

Results

You have provided the basic information to configure the Web Services Security distributed cache. Use
either the administrative console or the wsadmin tool to modify the security cache configuration.

What to do next

You can also add or delete custom properties for the trust service using the wsadmin tool. The wsadmin
tool examples are written in the Jython scripting language.

Security cache settings:

3368 Administering WebSphere applications



Use this page to configure the Web Services Secure Conversation (WS-SecureConversation) security local
and distributed cache settings using the administrative console.

To view this administrative console page, click Services > Security cache.

Time token is in cache after timeout:

Sets the time that the token remains in cache after the token times out.

This field specifies the number of minutes for the time the token is in cache after the token expiration time
expires (cache persist period). For example, if you specify 30 minutes, the token is kept in cache for this
time period after the token expiration time. The default value is 10 minutes, which is the minimum number
of minutes that is allowed.

Information Value
Data type: Integer
Default: 10 (minutes)

Renewal interval before token timeout:

Sets the time period before expiration that the client attempts to renew the token.

This field specifies the period of time, in minutes, before expiration that the client attempts to renew the
token. This setting must specify a period of time that is longer than the time for the longest transaction or
else the token might expire during the transaction. This time must include time for transport to and from
the server, processing by the server, and any time delay that is because of time used for reliable
messaging, when applicable. The default value is 10 minutes, which is the minimum number of minutes
that is allowed.

If the Security Context Token is renewed too often, it might cause Web Services Secure Conversation
(WS-SecureConversation) to fail or even cause an out-of-memory error to occur. It is required that you set
the renewal interval before the token expires value for the security cache to a value less than the token
timeout value for the Security Context Token. It is also suggested that the token timeout value be at least
two times the renewal interval before the token expires value.

Information Value
Data type: Integer
Default: 10 (minutes)

Enable distributed caching:

Specifies whether distributed caching is enabled or disabled. If distributed caching is enabled, select
distributed cache settings.

Use this check box to specify whether to use distributed caching when the server is in a clustered
environment and when the tokens are shared across the cluster.

Information Value
Data type: Check box
Default: No distributed caching (unchecked)

When the checkbox is selected to enable distributed caching, choose one of the following settings for
updating the caches.

Chapter 32. Administering web services - Security (WS-Security) 3369



Button Resulting Action
Synchronous update of cluster members Performs synchronous update of cache objects on cluster

members (default).
Asynchronous update of cluster members Performs a non-synchronous update of the cache on

cluster members. This setting allows interoperability with
cluster members that use the older style of updating as
implemented in versions of IBM WebSphere Application
Server prior to version 7.0.

Token recovery support Assigns a shared data source as the distributed cache.

If token recovery support is selected as the update method, then you must select a cell level data source
using the drop-down list. Token state data is saved in the database defined as the data source. If there are
no available data sources in the list, click on Manage data sources to add one or more new data source
objects. The data source object supplies an application with connections for accessing the database.

Custom Properties:

Specifies additional configuration settings that the secure conversation client might require.

This table lists custom properties. Use custom properties to set internal system configuration properties.
This collection is empty until the first custom property is defined.

Information Value
Data type: String

Select:

Specifies that you want to select further actions.

Use this check box to select custom properties for further actions. To manage existing custom properties,
select the check box beside the name, and then select one of the following actions:

Actions Description
Edit Select to modify an existing custom property.

This action is not displayed until you have added at least
one custom property.

Delete Select to remove an existing custom property.

Information Value
Data type: Check box

New:

Specifies that you want to add and define a new custom property.

Click New to define a new custom property.

Information Value
Data type: Button

Name:

Lists available custom properties.

3370 Administering WebSphere applications



This column displays the names of the custom properties that you can use with the secure conversation
client (for example, exampleProperty). Custom properties are name-value pairs of data, where the name is
a string representation of a property that is expected by the secure conversation client.

Information Value
Data type: String

Value:

Lists the values of the custom properties.

This column displays the values of the custom properties (for example, true). Custom properties are
name-value pairs of data, where the value is a string representation of the property setting.

Information Value
Data type: String

Configuring the Kerberos token for Web Services Security
Use this topic to configure the Kerberos token for message-level Web Services Security.

Before you begin

Before you can use Kerberos with Web Service Security, you must configure Kerberos in the IBM
WebSphere Application Server. You do not need to enable Kerberos as the authentication mechanism.
However, the Kerberos configuration file, krb5.conf or krb5.ini, and the Kerberos keytab file,
krb5.keytab, are required.

The initial setup and configuration processes to use Kerberos with Web Services Security are identical to
the configuration processes for using Kerberos with the security function. Therefore, you must set up and
configure Kerberos before continuing with the steps in this topic.

The “Kerberos (KRB5) authentication mechanism support for security” topic provides an overview of the
Kerberos functionality and provides the initial steps for setting up and configuring Kerberos for
authentication purposes. Within this topic, you must complete the steps in the section “Setting up Kerberos
as the authentication mechanism for WebSphere Application Server”. Use that topic to configure Kerberos,
the service principal, and the keytab files. In addition, that topic provides references to the process for
configuring Kerberos as the authentication mechanism using the administrative console or commands. You
can also find information on how to setup up Kerberos when the Key Distribution Center (KDC) and the
Application Server do not use the same user registry.

About this task

The Kerberos token for JAX-WS applications is configured using policy sets and bindings. The JAX-WS
application is attached with a custom policy and the Kerberos token is configured as a message protection
token or an authentication token.

The implemented Kerberos functionality for Web Services Security also leverages existing tools and
frameworks for the Kerberos token profile configuration for authentication and message protection. The
support for Kerberos with Web Services Security in the product is based on the OASIS Web Services
Security Kerberos Token Profile 1.1 specification.

To configure Kerberos with Web Service Security, complete the following steps:

Procedure
1. Enable the Kerberos token profile for JAX-WS applications.

Chapter 32. Administering web services - Security (WS-Security) 3371



The JAX-WS application is attached with a custom policy that has a Kerberos token, which is
configured with a message protection token or an authentication token. For more information, see
“Configuring the Kerberos token policy set for JAX-WS applications.”

2. Select the customized Kerberos token type. You can define key bindings for request message
protection and response message protection. You can use the key type, such as the key identifier or
security token reference, for the outbound key information. If you use a derived key, use a security
token reference in both the outbound and inbound key information. If you use a Kerberos session key,
you can use a security token reference in the outbound key information and a key identifier in the
inbound key information for the client bindings. Then, use a key identifier in the outbound key
information and a security token reference in the inbound key information for the provider bindings.

3. Select the customized Kerberos token types for the token generator or token consumer.

4. Configure the bindings for Kerberos message protection for JAX-WS applications. For more
information, see the “Configuring the bindings for message protection for Kerberos” on page 3374.

What to do next

Using this task, you have configured the Kerberos token for WebSphere Application Server.

Configuring the Kerberos token policy set for JAX-WS applications:

Use this topic to enable the Kerberos token policy set for JAX-WS applications.

Before you begin

Prior to beginning this task, you must specify the Kerberos configuration information for IBM WebSphere
Application Server. For more information, see Kerberos (KRB5) authentication mechanism support for
security.

The configuration model for the Kerberos token enables you to choose from the following existing
WebSphere Application Server frameworks:

v For JAX-RPC applications, the deployment descriptor and bindings are used in the configuration.
JAX-RPC application includes the deployment descriptor for a Kerberos custom token, which is
configured with authentication tokens.

v For JAX-WS applications, the configuration uses a policy set and bindings. The JAX-WS application is
attached by a custom policy with the Kerberos token configured with authentication tokens, message
protection tokens, or both.

Note: Fix packs that include updates to the Software Development Kit (SDK) might overwrite unrestricted
policy files. Back up unrestricted policy files before you apply a fix pack and reapply these files after
the fix pack is applied.

About this task

Complete the following steps to configure the Kerberos token policy set for JAX-WS applications using the
administrative console for WebSphere Application Server. In these steps, the Main policy configuation
panel references the administrative console panel that is available after you complete the first five steps.

Procedure

1. Expand Services > Policy sets and click Application policy sets > New to create a new policy set.

2. Specify a name and a short description for the new policy set and click Apply.

3. From the Policies heading, click Add and then select the WS-Security security policy type.

4. Click OK and click Save to save the new configuration directly to the master configuration.

5. In the Policies field, click WS-Security and click Main policy on the WS-Security panel to configure
the main policy for the Kerberos token policy set.

3372 Administering WebSphere applications



6. From the Key Symmetry heading, select Use symmetric tokens for message protection.

7. Click Symmetric signature and encryption policies to configure the Kerberos custom token type
or clear the Message level protection check box if you are configuring an authentication token only.

Important: You do not need to configure the request token policy if you are using the Kerberos token
for message protection. If you are configuring the authentication token only, proceed to
the next step. If you are not configuring the request token policy for the authentication
token, skip the next step.

8. On the Main policy configuration panel, configure the policy for the request token if you are
configuring the authentication token.

a. From the Policy Details heading, click Request token policies.

b. Click Add token type and select Custom.

c. Specify the name of the custom token in the Custom token name field.

d. Specify the local part value in the Local part field. For interoperability with other web services
technologies, specify the following local part: http://docs.oasis-open.org/wss/oasis-wss-
kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ. If you are not concerned with
interoperability issues, you can specify one of the following local name values:

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ4120

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ4120

These alternative values depend on the specification level for the Kerberos AP-REQ token that is
generated by the Key Distribution Center (KDC). For more information about when to use these
values, see Token type settings.

e. Do not specify a value for the Namespace URI field if you are generating a Kerberos token.

f. Click OK and Save to save the configuration directly to the master configuration.

This step completes the configuration process for configuring the request token policy for the
authentication token. You do not need to complete the next two steps. Complete the next steps to
configure encryption and symmetric signature policies.

9. Return to the main policy configuration panel for the application policy set and click Symmetric
signature and encryption policies to configure the encryption and symmetric signature policies.

a. From the Message Integrity heading, click the Action menu list beside the Token type for
signing and validating messages field and select Custom.

b. From the Message Confidentiality heading, select the Use same token for confidentiality that is
used for integrity option.

c. Click OK and Save to save the configuration changes.

d. From the Message Integrity heading, click the Action menu list beside the Token type for
signing and validating messages field and select Edit Selected Type Policy.

e. Edit the custom token type for the signature and encryption by specifying the local part for the
Kerberos custom token.

For example, specify http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ for the local part value. Do not specify a Namespace URI value.

f. Click OK and then click the Save link to save the configuration changes.

10. Return to the main policy configuration panel for the application policy set and click Algorithms for
symmetric tokens to configure the symmetric token algorithm.

Chapter 32. Administering web services - Security (WS-Security) 3373



a. Select the algorithm suite to use for the symmetric tokens from the Algorithm suite menu list.
Select the Advanced Encryption Standard (AES) algorithms for a Kerberos token that is compliant
with RFC-4120.

The symmetric key wrap, or private key cryptography, algorithms include:

v Triple DES key wrap: http://www.w3.org/2001/04/xmlenc#kw-tripledes

v AES key wrap (aes128): http://www.w3.org/2001/04/xmlenc#kw-aes128

v AES key wrap (aes256): http://www.w3.org/2001/04/xmlenc#kw-aes256

Restriction: To use the 256–bit AES encryption algorithm, you must apply the unlimited
jurisdiction policy files. To remain in compliance, see Basic Security Profile
compliance tips.

Important: Your country of origin might have restrictions on the import, possession, use, or
re-export to another country, of encryption software. Before downloading or using the
unrestricted policy files, you must check the laws of your country, its regulations, and
its policies concerning the import, possession, use, and re-export of encryption
software, to determine if it is permitted.

For application server platforms using IBM Developer Kit, Java Technology Edition Version 5, you
can obtain unlimited jurisdiction policy files by completing the following steps:

1) Visit the IBM developerWorks: Security Information website.

2) Click Java 5.

3) Click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 5 website is displayed.

4) Enter your user ID and password or register with IBM to download the policy files. The policy
files are downloaded onto your workstation.

5) Re-mount your product HFS as read/only.

For more information on the algorithm suite components, see Algorithms settings.

b. Select either the Exclusive cannonicalization or Inclusive cannonicalization value for the
Cannonicalization algorithm menu list. For more information, see XML digital signature.

c. Specify the XPath 1.0 or XPathfilter 2.0 version to use from the XPath version menu list.

What to do next

Configure the bindings for message protection for Kerberos for JAX-WS applications. For more
information, see “Configuring the bindings for message protection for Kerberos.”

Configuring the bindings for message protection for Kerberos:

To set up bindings for message protection with JAX-WS applications, you must create a custom binding.
Complete this task to set the bindings for a Kerberos token as defined in the OASIS Web Services
Security Specification for Kerberos Token Profile Version 1.1.

Before you begin

You must configure Kerberos for IBM WebSphere Application Server. For more information, see Kerberos
(KRB5) authentication mechanism support for security. In addition, you must configure the Kerberos token
policy set for JAX-WS applications. For more information, see Configuring the Kerberos token policy set
for JAX-WS applications.

About this task

You can leverage existing frameworks including the policy set and bindings for JAX-WS applications.

3374 Administering WebSphere applications



You can configure a symmetric protection token or an authentication token. Both symmetric protection
token and authentication token configurations use similar configuration data. However, you do not need to
configure the authentication token if you intend to use a Kerberos symmetric protection token. For
whichever token type you use, configure the token generator and the token consumer as indicated in the
following list:

v Symmetric protection token

– Token generator

– Token consumer

v Authentication token

– Token generator

– Token consumer

Use the administrative console to configure the application-specific bindings to use a Kerberos token in
web services message protection.

Procedure

1. Expand Applications > Application Types.

2. Click WebSphere enterprise applications > application name .

3. From the Web Services Properties heading, click Service provider policy sets and bindings to
configure the service bindings or click Service client policy sets and bindings to configure the client
bindings.

4. Select the resource to attach to the Kerberos token policy set and select Attach Policy Set > policy
set name. To configure the Kerberos token policy set, see “Configuring the Kerberos token policy set
for JAX-WS applications” on page 3372.

5. Click Assign bindings and select the application-specific binding or select New Application Specific
Binding to create a new binding. To create a new binding, complete the following actions.

a. Enter a name for the new binding in the Binding configuration name field and optionally enter a
description for the binding in the Description field.

b. Click Add and select WS-Security to specify a new policy set.

c. Click Authentication and protection > New.

d. Optional: Define a symmetric protection token for the token generator.

Important: If you configure a symmetric protection token for the token generator, you must define
a complimentary symmetric protection token for the token consumer.

1) From the Protection tokens heading, click New and select Token Generator.

2) Specify the name of the protection token in the Name field.

3) Select Custom from the values in the Token type menu list.

4) Specify the local name value in the Local name field.

For interoperability with other web services technologies, specify the following local name:
http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ. If you are not concerned with interoperability issues, you can
specify one of the following local name values:

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ4120

Chapter 32. Administering web services - Security (WS-Security) 3375



v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ4120

These alternative values depend on the specification level for the Kerberos token that is
generated by the Key Distribution Center (KDC). For more information about when to use
these values, see Protection token settings (generator or consumer).

5) Do not specify a value for the Namespace URI field.

6) Select the wss.generate.KRB5BST value from the JAAS login menu list.

If you have previously defined your own Java Authentication and Authorization Service (JAAS)
login module, you can select your login module to handle the Kerberos custom token. To
define a custom JAAS login module, click New Application Login > New, specify an alias for
the new module, and click Apply. For more information, see Login module settings for Java
Authentication and Authorization Service.

Attention: Although the information in the “Login module settings for Java Authentication and
Authorization Service” topic refers to security and not Web Services Security, the
configuration for a login module for Web Services Security is identical to security.

7) Specify the token generator custom properties for the target service name, host, and realm.

The combination of the target service name and host values forms the Service Principal Name
(SPN), which represents the target Kerberos service principal name. The Kerberos client
requests the initial Kerberos AP_REQ token for the SPN. Specify the following custom
properties.

Table 297. Target service custom properties. Use these properties to specify the token generator information.
Name Value Type

com.ibm.wsspi.wssecurity.krbtoken.targetServiceName Specify the name of the target service. Required

com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost Specify the host name that is associated with the target
service in the following format: myhost.mycompany.com

Required

com.ibm.wsspi.wssecurity.krbtoken.targetServiceRealm Specify the name of the realm that is associated with the
target service.

(Optional: If the
targetServiceRealm
property is not
specified, the default
realm name from the
Kerberos
configuration file is
used as the realm
name. )

To use Kerberos token security in a cross or trusted realm environment, you must provide a
value for the targetServiceRealm property.
To specify multiple custom property name and value pairs, click New.

8) Click Apply.

9) From the Additional bindings heading, click Callback handler.

10) From the Class Name heading, select the Use custom option and specify
com.ibm.websphere.wssecurity.callbackhandler.KRBTokenGenerateCallbackHandler in the
associated field.

11) From the Basic Authentication heading, specify the appropriate values for the User name,
Password, and Confirm password fields.

The user name specifies the default user ID that is passed to the constructor of the callback
handler; for example, kerberosuser.

12) Specify the token generator custom properties for Kerberos client principal name and
password to initiate the Kerberos login.

These custom properties control the prompt and establish the token based on the credential
cache. Specify the following custom properties.

3376 Administering WebSphere applications



Table 298. Kerberos login custom properties. Use this property to specify the token generator information.
Name Value Type

com.ibm.wsspi.wssecurity.krbtoken.loginPrompt Enables the Kerberos login when the value is True. The default
value is False.

Optional

To specify multiple custom property name and value pairs, click New.

13) Click Apply and OK.

When you return to the Authentication and protection panel in the next step, a new protection token
is defined for the token generator. To edit the configuration for this new token, click its name on the
panel.

e. Optional: Return to the Authentication and protection panel to define a symmetric protection token
for the token consumer. To return to the Authentication and protection panel, click the
Authentication and protection link after the messages section of the panel.

Important: If you configure a symmetric protection token for the token consumer, ensure that you
have previously defined a complimentary symmetric protection token for the token
generator.

1) From the Protection tokens heading, click New and select Token Consumer.

2) Specify the name of the protection token in the Name field.

3) Select Custom from the values in the Token type menu list.

4) Specify the local name value in the Local name field.

For interoperability with other web services technologies, specify the following local name:
http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ. If you are not concerned with interoperability issues, you can
specify one of the following local name values:

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ4120

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ4120

These alternative values depend on the specification level for the Kerberos token that is
generated by the Key Distribution Center (KDC). For more information about when to use
these values, see Protection token settings (generator or consumer).

5) Do not specify a value for the Namespace URI field.

6) Select the wss.consume.KRB5BST value from the JAAS login drop-down menu.

If you have previously defined your own Java Authentication and Authorization Service (JAAS)
login module, you can select this login module to handle the Kerberos custom token. To
define a custom JAAS login module, click New Application Login > New, specify an alias for
the new module, and click Apply. For more information, see Login module settings for Java
Authentication and Authorization Service.

Attention: Although the information in the Login module settings for Java Authentication and
Authorization Service topic refers to security and not Web Services Security, the
configuration for a login module for Web Services Security is identical to security.

7) Click Apply.

8) From the Additional bindings heading, click Callback handler.

Chapter 32. Administering web services - Security (WS-Security) 3377



9) From the Class Name heading, select the Use custom option and specify
com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler in the
associated field.

10) Click Apply and OK.

When you return to the Authentication and protection panel in the next step, you will see a new
protection token defined for the token consumer. To edit the configuration for this new token, click
its name on the panel.

f. Optional: Return to the Authentication and protection panel to define an authentication token
configuration for the token generator. To return to the Authentication and protection panel, click the
Authentication and protection link after the messages section of the panel.

Authentication tokens are sent in messages to prove or assert an identity.

Important: If you configure an authentication token for the token generator, you must define a
complimentary authentication token for the token consumer.

1) From the Authentication tokens heading, click New and select Token Generator.

2) Specify the name of the authentication token in the Name field.

3) Select Custom from the values in the Token type menu list.

4) Specify the local name value in the Local name field.

For interoperability with other web services technologies, specify the following local name:
http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ. If you are not concerned with interoperability issues, you can
specify one of the following local name values:

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ4120

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ4120

These alternative values depend on the specification level for the Kerberos token that is
generated by the Key Distribution Center (KDC). For more information about when to use
these values, see Authentication generator or consumer token settings.

5) Do not specify a value for the Namespace URI field.

6) Select the wss.generate.KRB5BST value from the JAAS login menu list.

If you have previously defined your own Java Authentication and Authorization Service (JAAS)
login module, you can select this login module to handle the Kerberos custom token. To define
a custom JAAS login module, click New Application Login > New, specify an alias for the
new module, and click Apply. For more information, see Login module settings for Java
Authentication and Authorization Service.

Attention: Although the information in the Login module settings for Java Authentication and
Authorization Service topic refers to security and not Web Services Security, the
configuration for a login module for Web Services Security is identical to security.

7) Specify the token generator custom properties for the target service name, host, and realm.

The combination of the target service name and host values forms the Service Principal Name
(SPN), which represents the target Kerberos service principal name. The Kerberos client
requests the initial Kerberos AP_REQ token for the SPN. Specify the following custom
properties.

3378 Administering WebSphere applications



Table 299. Target service custom properties. Use these custom properties to specify the token generator information.
Name Value Type

com.ibm.wsspi.wssecurity.krbtoken.targetServiceName Specify the name of the target service. Required

com.ibm.wsspi.wssecurity.krbtoken.targetServiceHost Specify the host name that is associated with the target service
in the following format: myhost.mycompany.com

Required

com.ibm.wsspi.wssecurity.krbtoken.targetServiceRealm Specify the name of the realm that is associated with the target
service.

Optional

To specify multiple custom property name and value pairs, click New.

8) Click Apply.

9) From the Additional bindings heading, click Callback handler.

10) From the Class Name heading, select the Use custom option and specify
com.ibm.websphere.wssecurity.callbackhandler.KRBTokenGenerateCallbackHandler in the
associated field.

11) From the Basic Authentication heading, specify the appropriate values for the User name,
Password, and Confirm password fields.

The user name specifies the default user ID that is passed to the constructor of the callback
handler. For example: kerberosuser

12) Specify the token generator custom properties for Kerberos client principal name and
password to initiate the Kerberos login.

These custom properties control the prompt and establish the token based on the credential
cache. Specify the following custom properties name and value pairs.

Table 300. Kerberos login custom properties. Use the custom properties to specify the token generator information.
Name Value Type

com.ibm.wsspi.wssecurity.krbtoken.loginPrompt Enables the Kerberos login when the value is True. The default
value is False.

Optional

com.ibm.wsspi.wssecurity.krbtoken.clientRealm Specify the name of the Kerberos realm associated with the
client

(Optional: The
clientRealm
property is optional
for a single
Kerberos realm
environment. )

When implementing Web Services Security in a cross or trusted Kerberos realm environment,
you must provide a value for the clientRealm property.
If an application generates or consumes a Kerberos V5 AP_REQ token for each web services
request message, set the com.ibm.wsspi.wssecurity.kerberos.attach.apreq custom property
to true in the token generator and the token consumer bindings for the application

To specify multiple custom property name and value pairs, click New.

13) Click Apply and OK.

When you return to the Authentication and protection panel in the next step, you will see a new
authentication token is defined for the token generator. To edit the configuration for this new token,
click its name on the panel.

g. Optional: Return to the Authentication and protection panel to define an authentication token
configuration for the token consumer. To return to the Authentication and protection panel, click the
Authentication and protection link after the messages section of the panel.

Important: If you configure an authentication token for the token consumer, ensure that you have
previously defined an authentication token for the token generator.

1) From the Authentication tokens heading, click New and select Token Consumer.

2) Specify the name of the authentication token in the Name field.

3) Select Custom from the values in the Token type menu list.

4) Specify the local name value in the Local name field.

Chapter 32. Administering web services - Security (WS-Security) 3379



For interoperability with other web services technologies, specify the following local name:
http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ. If you are not concerned with interoperability issues, you can
specify one of the following local name values:

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#Kerberosv5_AP_REQ4120

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ4120

These alternative values depend on the specification level for the Kerberos token that is
generated by the Key Distribution Center (KDC). For more information conditions under which
to use these values, see the related link for the “Authentication generator or consumer token
settings” topic.

5) Do not specify a value for the Namespace URI field.

6) Select the wss.consume.KRB5BST value from the JAAS login drop-down menu.

If you have previously defined your own Java Authentication and Authorization Service (JAAS)
login module, you can select this login module to handle the Kerberos custom token. To
define a custom JAAS login module, click New Application Login > New, specify an alias for
the new module, and click Apply. For more information, see Login module settings for Java
Authentication and Authorization Service.

Attention: Although the information in the Login module settings for Java Authentication and
Authorization Service topic refers to security and not Web Services Security, the
configuration for a login module for Web Services Security is identical to security.

7) Click Apply.

8) From the Additional bindings heading, click Callback handler.

9) From the Class Name heading, select the Use custom option and specify
com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler in the
associated field.

10) Click Apply and OK.

When you return to the Authentication and protection panel in the next step, you will see a new
authentication token is defined for the token consumer. To edit the configuration for this new token,
click its name on the panel.

What to do next

You can optionally define key bindings for the request message protection and response message
protection. If you choose to derive a key from the Kerberos token, configure the derived key information
when you configure the key information for signature and encryption.

Return to the steps in the Configuring the Kerberos token for Web Services Security topic to ensure you
have completed the steps for configuring the Kerberos token.

Updating the system JAAS login with the Kerberos login module:

Update the Kerberos system JAAS login module for JAX-WS applications.

3380 Administering WebSphere applications



About this task

If the Kerberos authentication mechanism is configured in the WebSphere Application Server security
configuration for JAX-WS applications, the JAAS login wss.caller must be updated with the system JAAS
login module for Kerberos. The login module is specified as
com.ibm.ws.security.auth.kerberos.WSKrb5LoginModule.

There are two methods to update the Kerberos system JAAS login module: using the administrative
console, or by running a Jython script.

Procedure

1. Using the administrative console, follow these steps:

a. Click Security > Global security > Java Authentication and Authorization Service > System
logins.

b. Click on wss.caller, then click New to create a new JAAS login module.

c. In the Module class name field, type com.ibm.ws.security.auth.kerberos.WSKrb5LoginModule.

d. Click OK.

e. In the wss.caller panel, click Set Order, then click on WSKrb5LoginModule.

f. Move WSKrb5LoginModule up in the list of modules so that it is after
com.ibm.ws.wssecurity.impl.auth.module.WSWSSLoginModule but before
com.ibm.ws.security.server.lm.ltpaLoginModule. The order of the modules in the list is important.
The finished list of modules should look like this:

com.ibm.ws.wssecurity.impl.auth.module.PreCallerLoginModule 1
com.ibm.ws.wssecurity.impl.auth.module.UNTCallerLoginModule 2
com.ibm.ws.wssecurity.impl.auth.module.X509CallerLoginModule 3
com.ibm.ws.wssecurity.impl.auth.module.LTPACallerLoginModule 4
com.ibm.ws.wssecurity.impl.auth.module.LTPAPropagationCallerLoginModule 5
com.ibm.ws.wssecurity.impl.auth.module.KRBCallerLoginModule 6
com.ibm.ws.wssecurity.impl.auth.module.WSWSSLoginModule 7
com.ibm.ws.security.auth.kerberos.WSKrb5LoginModule 8
com.ibm.ws.security.server.lm.ltpaLoginModule 9
com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule 10

g. Click OK, then click Save to save the changes.

h. Restart the server.

2. You can also run a Jython script to update the module. For each cell, run the script
addKrbLoginModuleWSSCaller.py, located in the app_server_root\bin directory, to update the
WSKrb5LoginModule login module in the security configuration.

a. Run the following command, where app_server_root is C:\WebSphere\AppServer:
wsadmin -conntype NONE -lang jython -f C:\WebSphere\AppServer\bin\addKrbLoginModuleWSSCaller.py

b. If the script is successful, the following message is displayed:
System JAAS login entry wss.caller has been updated.

c. Restart the server.

Configuring Kerberos policy sets and V2 general sample bindings:

Configure the Kerberos policy sets and V2 general sample bindings that are included with WebSphere
Application Server Version 7.0.0.1 and later.

Before you begin

In order to use the additional Kerberos policy sets and V2 general sample bindings that are included with
the product, you must create a new profile after installing the product. Existing profiles are not
automatically updated, and do not contain the Kerberos policy sets and V2 general sample bindings. You
can update existing profiles manually using the following steps.

Chapter 32. Administering web services - Security (WS-Security) 3381



About this task

To update existing profiles, perform the following manual steps. The deployment manager profile and the
stand-alone application server profile are the only profiles that you need to update.

Procedure

1. Copy the directories containing the additional Kerberos policy sets from the profile templates directory,
app_server_root/profileTemplates/default/documents/config/templates/PolicySets, to the profile
configuration directory, profile_root/config/templates/PolicySets. Each additional Kerberos policy set is
contained in a separate directory. The directories are:

v Kerberos V5 SecureConversation

v Kerberos V5 WSSecurity default

v TrustServiceKerberosDefault

2. Unpackage and copy the general bindings, Client sample V2 and Provider sample V2.

a. Extract the directories and files from the package file app_server_root/profileTemplates/default/
configArchives/AppSrv.car into a temporary directory.

b. Copy the general binding directories from the temporary directory <temp_dir>/cells/defaultCell/
bindings/, to the profile configuration directory for the cell, profile_root/config/cells/<cellName>/
bindings. Each general binding is contained in a separate directory. The directories are:

v Provider sample V2

v Client sample V2

3. Restart the server.

Securing messages using SAML
Configure policy sets, bindings, and SAML-specific tokens to secure web services and messages.

About this task

To secure messages using SAML, you can import the SAML default policy sets and modify them to enable
SAML function. Because WebSphere Application Server with SAML does not support attaching a policy set
directly to a Web services client, you must specify the policy sets and bindings used to enable SAML as
custom properties in the web services client binding document.

You can also create a SAML bearer token using the SAML library API. A bearer token contains a bearer
assertion, which is used to facilitate web browser single sign-on (SSO). Other SAML set up tasks
described in this section include configuring policy sets and bindings for a bearer token, or a holder-of-key
token, or to communicate with a Security Token Service (STS).

See the following topics for more information about securing messages using SAML.

Signing SAML tokens at the message level:

Secure SAML tokens at the message level by enabling assertion signing.

Before you begin

Before configuring signing for SAML tokens, you must configure SAML policy sets and bindings to create
SAML tokens as authentication supporting tokens, with message level integrity protection. For more
information, read about securing messages using SAML. In addition, the attached SAML bindings must be
application-specific bindings, not general bindings. The transform algorithm used for signing SAML
assertions is different from other signed parts, while only one transform algorithm is used with general
bindings.

3382 Administering WebSphere applications



About this task

This task specifically addresses steps for how to digitally sign a SAML token. This task does not address
any of the SAML Token Profile OASIS standard requirements for SAML sender-vouches or SAML bearer
tokens with regards to message parts that must be signed. To sign SAML assertions, a SOAP message
must include a <wsse:SecurityTokenReference> element in the <wsse:Security> header block. The
SecurityTokenReference (STR) is referenced by the message signature using a <ds:Reference> element.
The security token reference must include a <wsse:KeyIdentifier> element with the ValueType value,
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLID, or http://docs.oasis-open.org/
wss/oasis-wss-saml-token-profile-1.0#SAMLAssertionID, specifying the referenced assertion identifier. The
<ds:Reference> element must include the URI of the STR-transform algorithm, http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wsssoap-message-security-1.0#STR-Transform. Use of STR-transform ensures
that the SAML assertion itself is signed, not only the <wsse:SecurityTokenReference> element.

Follow these configuration steps to enable signing SAML tokens at the message level.

Procedure

1. Configure the message parts.

a. From the administrative console, edit the SAML policy set, then click WS-Security > Main policy >
Request message part protection.

b. Under Integrity protection, click Add.

c. Enter a part name for Name of part to be signed; for example, saml_part.

d. Under Elements in Part, click Add.

e. Select XPath Expression.

f. Add two XPath expressions.
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Header’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’
and local-name()=’Security’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’
and local-name()=’SecurityTokenReference’]

/*[namespace-uri()=’http://www.w3.org/2003/05/soap-envelope’
and local-name()=’Envelope’]/*[namespace-uri()=’http://www.w3.org/2003/05/soap-envelope’
and local-name()=’Header’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’
and local-name()=’Security’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’
and local-name()=’SecurityTokenReference’]

g. Click Apply and Save.

h. If an application has never been started using this policy, no further action is required. Otherwise,
either restart the application server or follow the instructions in the Refreshing policy set
configurations using wsadmin scripting article, for the application server to reload the policy set.

2. Modify the client bindings to sign the SAML token.

a. From the Service client policy set and bindings panel, click WS-Security > Authentication and
protection.

b. Modify the currently configured outbound Signed message part bindings to include the new SAML
part that you created.

Under Request message signature and encryption protection, select the part reference whose
status is set to Configured. This part reference will most likely be request:app_signparts.

1) From the Available list under Message part reference, select the name of the part to be
signed, as created in step 1; for example, saml_part.

2) Click Add, and then click Apply.

3) In the Assigned list under Message part reference, highlight the name of the part you added;
for example, saml_part.

4) Click Edit.

5) For the Transform algorithms setting, click New.

Chapter 32. Administering web services - Security (WS-Security) 3383



6) Select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#STR-Transform.

7) Click OK, click OK, and then click OK one more time.

c. Update the SAML token consumer with the custom property to indicate digital signature with
Security Token Reference

Under Authentication tokens, select and edit the SAML token you want to sign.

1) Under Custom property, click New.

2) Enter com.ibm.ws.wssecurity.createSTR as the custom property name.

3) Enter true as the value of the custom property.

4) Click Apply, and then click Save.

d. Restart the application.

3. Modify the provider bindings to accept a signed SAML token.

a. From the Service provider policy sets and bindings panel, click WS-Security > Authentication and
protection.

b. Modify the currently configured inbound Signed message part bindings to include the new SAML
part that you created.

Under Request message signature and encryption protection, select the part reference whose
status is set to Configured. This part reference will most likely be request:app_signparts.

1) From the Available list under Message part reference, select the name of the part to be
signed, as created in step 1; for example, saml_part.

2) Click Add, and then click Apply.

3) In the Assigned list under Message part reference, highlight the name of the part you added;
for example, saml_part.

4) Click Edit.

5) For the Transform algorithms setting, click New.

6) Select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#STR-Transform.

7) Click OK, click OK, and then click OK one more time.

8) Click Save.

c. Restart the application.

Configuring policy sets and bindings to communicate with STS:

Configure policy sets and binding documents to enable a web services client to request SAML assertions
from an external Security Token Service (STS).

Before you begin

After installing, you must create a new server profile, or add SAML configuration settings to an existing
profile. Read about setting up the SAML configuration for more information.

About this task

WebSphere Application Server with SAML supports web services clients using the Web Services Security
policy set and bindings when communicating with an external security token service (STS). Web services
clients use policy set and bindings to communicate with the target web services provider. A web services
client uses two sets of policy set attachments: one set of policy set attachments for communicating to the
target web services provider; and the other set of policy set attachments for communicating to the STS.
Policy sets and bindings that are used when communicating with the target web services provider are
attached to the web services client. In contrast, policy sets and bindings that enable STS communication
are not directly attached to the web services clients. Instead, policy sets and bindings that enable STS

3384 Administering WebSphere applications



communication are specified as custom properties in the web services client binding document. You can
use general bindings or application-specific bindings to communicate with an STS. Using a general binding
to access an STS is straightforward; simply specify the general binding name in the custom properties.

The procedure to configure application-specific bindings to access an STS is more involved. The
administrative console is designed to manage policy set attachments to communicate with a web service
provider. The console is not designed to manage a second set of policy set attachments to communicate
to an STS. However, you can use the administrative console to manage a policy set attachment to access
an STS, as described in the procedure.

Use the administrative console to attach the policy set that is used to access an STS to a web services
client, and then create and modify an application-specific binding. Once the binding configuration is
complete, detach the policy set and binding from the web services client. This procedure is necessary
because the next step is to attach the policy set and bindings to communicate to the target web services
provider. Detached application-specific bindings are not deleted from the file system, so the web services
client bindings custom properties can successfully refer to the detached application-specific bindings.

The procedure uses a default application policy set, Username WSHTTPS default, as an example to
describe the configuration steps to access the STS. The steps can also be applied to other policy sets.
The web services application, JaxWSServicesSamples, is used in the example. JaxWSServicesSamples is
not installed by default.

Procedure

1. Import the Username WSHTTPS default policy set. In this example, the Username WSHTTPS default
policy is used to demonstrate the procedure, but you can use a different policy set to configure the
bindings, if the policy set meets the policy requirements of the external STS.

a. Click Services > Policy sets > Application policy sets.

b. Click Import.

c. Select From Default Repository.

d. Select the WSHTTPS default policy set.

e. Click OK to import the policy set.

2. Attach a policy set for the trust client. Click Applications > Application types > WebSphere
enterprise applications > JaxWSServicesSamples > Service client policy sets and bindings. The
steps which pertain to attaching and detaching the policy set, and configuring the trust client binding,
are required only if an application-specific binding is used to access the external STS. You can skip
these steps, and go to the step that discusses configuring communication with the STS, if you use a
general binding to access the external STS.

a. Select the check box for the web services client resource.

b. Click Attach Client Policy Set.

c. Select the policy set, Username WSHTTPS default.

This step attaches the policy set to the web services trust client, as you would do to use this policy set
for the application client to access the target web services. However, since you plan to use the
Username WSHTTPS default policy set to access an external STS instead, the policy set is only
temporarily attached to the Web services client. The purpose of this step is to allow you to use the
administrative console to create or to modify the client binding document.

3. Configure the trust client binding.

a. Select the web services client resource again.

b. In the Service client policy sets and bindings panel, click Assign Binding.

c. Click New Application Specific Binding to create an application-specific binding.

d. Specify a binding configuration name for the new application-specific binding. In this example, the
binding name is SamlTCSample.

Chapter 32. Administering web services - Security (WS-Security) 3385



e. Add the SSL transport policy type to the binding. Optionally, you can modify the
NodeDefaultSSLSettings settings. Click Security > SSL certificate and key management > SSL
configurations > NodeDefaultSSLSettings.

4. Optional: You can create an HTTP transport binding using the previous steps if you want to configure a
user name and password to add to the HTTP header, or if you want to configure a proxy. If you elect
not to create an HTTP transport binding, the web services runtime environment uses the default HTTP
transport settings.

5. Add the WS-Security policy type to the binding, then modify the authentication settings.

a. Click Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service client policy sets and bindings > SamlTCSample > Add >
WS-Security > Authentication and protection > request:uname_token.

b. Click Apply.

c. Select Callback handler.

d. Specify a user name and password (and confirm the password) to authenticate the web services
client to the external STS.

e. Click OK and Save.

6. After the binding settings are saved, return to the Service client policy sets and bindings panel to
detach the policy set and bindings.

a. Click Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service client policy sets and bindings.

b. Click the check box for the web services client resource.

c. Click Detach client policy set.

The application-specific binding configuration you created in the previous steps is not deleted from the
file system when the policy set is detached. This means that you can still use the application-specific
binding you created to access the STS.

7. Import the SSL certificate from the external STS.

a. Click Security > SSL certificate and key management > Manage endpoint security
configurations > server_or_node_endpoint > Keystores and certificates >
NodeDefaultTrustStore > Signer certificates.

b. Click Retrieve from port.

c. Specify the host name and port number of the external STS server, and assign an alias to the
certificate. Use the SSL STS port.

d. Click Retrieve signer information.

e. Click Apply and Save to copy the retrieved certificate to the NodeDefaultTrustStore object.

8. Optional: If further modifications to the wstrustClientBinding configuration are needed, and the
wstrustClientBinding property is pointing to an application-specific binding, you must attach the
application-specific binding to the web services client before you can complete the modifications. The
attachment is temporary. As detailed in the previous steps, you can detach the modified
application-specific binding from the web service client after the modification is completed.

Results

After successfully completing the steps, the web services client is ready to send requests to the external
STS. To enable this function, the following conditions and settings were activated when you completed the
procedure:

v Attach a policy set and bindings that propagate SAML tokens. For example, attach the SAML11 Bearer
WSHTTPS default policy set and the Saml Bearer Client sample general binding to the web service
client.

v The Username WSHTTPS default policy set and an application-specific binding, SamlTCSample, are
referenced in the Saml Bearer Client sample binding, and are set up to access the external STS.

3386 Administering WebSphere applications



v The external STS SSL certificate has been retrieved and added to the NodeDefaultTrustStore truststore.

v To confirm that you successfully enabled the function, you can configure the trace setting,
com.ibm.ws.wssecurity.*=all=enabled. The trace shows that SAML assertions are issued by the external
STS, for example:

[8/23/09 18:26:59:252 CDT] 0000001f TrustSecurity 3 Security Token Service reponse:
[8/23/09 18:26:59:392 CDT] 0000001f TrustSecurity 3
<?xml version="1.0" encoding="UTF-8"?><s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

xmlns:a="http://www.w3.org/2005/08/addressing" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
<s:Header>

<a:Action s:mustUnderstand="1">http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal</a:Action>
<a:RelatesTo>urn:uuid:663A7B27BA8EB2CF9D1251070029934</a:RelatesTo>
<o:Security xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" s:mustUnderstand="1">

<u:Timestamp u:Id="_0">
<u:Created>2009-08-23T23:26:57.664Z</u:Created>
<u:Expires>2009-08-23T23:31:57.664Z</u:Expires>

</u:Timestamp>
</o:Security>

</s:Header>
<s:Body>
<trust:RequestSecurityTokenResponseCollection xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
<trust:RequestSecurityTokenResponse>
<trust:Lifetime>
<wsu:Created

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">2009-08-23T23:26:57.648Z</wsu:Created>
<wsu:Expires

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">2009-08-24T09:26:57.648Z</wsu:Expires>
</trust:Lifetime>

<wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
<a:EndpointReference>

<a:Address>https://taishan.austin.ibm.com:9443/WSSampleSei/EchoService12</a:Address>
</a:EndpointReference>

</wsp:AppliesTo>
<trust:RequestedSecurityToken>
<saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" MajorVersion="1" MinorVersion="1"

AssertionID="_3c656382-9916-4e5f-9a16-fe0287dfc409" Issuer="http://svt193.svt193domain.com/Trust" IssueInstant="2009-08-23T23:26:57.663Z">
<saml:Conditions NotBefore="2009-08-23T23:26:57.648Z" NotOnOrAfter="2009-08-24T09:26:57.648Z">
<saml:AudienceRestrictionCondition>
<saml:Audience>https://taishan.austin.ibm.com:9443/WSSampleSei/EchoService12</saml:Audience>
</saml:AudienceRestrictionCondition>
</saml:Conditions>
<saml:AuthenticationStatement AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"

AuthenticationInstant="2009-08-23T23:26:57.640Z">
<saml:Subject>
<saml:SubjectConfirmation>
<saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:bearer</saml:ConfirmationMethod>
</saml:SubjectConfirmation>
</saml:Subject>
</saml:AuthenticationStatement>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<ds:Reference URI="#_3c656382-9916-4e5f-9a16-fe0287dfc409">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
<ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<ds:DigestValue>YGySZX4VPv25R+oyzFpE0/T/tjs=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>

<ds:SignatureValue>eP68...Vr08=</ds:SignatureValue>
<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<X509Data>
<X509Certificate>MII...ymqg3</X509Certificate>

</X509Data>
</KeyInfo>

</ds:Signature>
</saml:Assertion>

</trust:RequestedSecurityToken>
<trust:RequestedAttachedReference>

<o:SecurityTokenReference xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
<o:KeyIdentifier

ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0#SAMLAssertionID">_3c656382-9916-4e5f-9a16-fe0287dfc409</o:KeyIdentifier>
</o:SecurityTokenReference>

</trust:RequestedAttachedReference>
<trust:RequestedUnattachedReference>
<o:SecurityTokenReference xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

<o:KeyIdentifier
ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0#SAMLAssertionID">_3c656382-9916-4e5f-9a16-fe0287dfc409</o:KeyIdentifier>

</o:SecurityTokenReference>
</trust:RequestedUnattachedReference>
<trust:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1</trust:TokenType>
<trust:RequestType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue</trust:RequestType>
<trust:KeyType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer</trust:KeyType>

Chapter 32. Administering web services - Security (WS-Security) 3387



</trust:RequestSecurityTokenResponse>
</trust:RequestSecurityTokenResponseCollection>

</s:Body>
</s:Envelope>

What to do next

Complete the web service client and web service provider configuration. Read about configuring client and
provider bindings for the SAML bearer token for more information.

Configuring client and provider bindings for the SAML bearer token:

A SAML bearer token is a SAML token that uses the Bearer subject confirmation method. In a bearer
subject confirmation method, a sender of SOAP messages is not required to establish correspondence
that binds a SAML token with contents of the containing SOAP message. You can configure the client and
provider policy set attachments and bindings for the SAML bearer token.

Before you begin

WebSphere Application Server with SAML provides numerous default SAML token application policy sets
and several general client and provider binding samples. Before you can configure the client and provider
bindings for the SAML bearer token, you must:

v Create one or more new server profiles that include SAML configuration settings, or add SAML
configuration settings to an existing profile. Read about setting up the SAML configuration for more
information about how to add SAML configuration settings to a profile.

v Import one of the following default policy sets:
– SAML20 Bearer WSHTTPS default
– SAML20 Bearer WSSecurity default
– SAML11 Bearer WSHTTPS default
– SAML11 Bearer WSSecurity default

The SAML11 policy sets are almost identical to the SAML20 policy sets, except that the SAML20 policy
sets support the SAML Version 2.0 token type, while the SAML11 policy sets support the Version 1.1
token type.

Two default policy sets are required. Therefore, you must import the Username WSHTTPS default
policy set, and one of the following bearer policy sets. Make sure that the bearer policy set you import
corresponds to your scenario; for example SAML 1.1 or 2.0 and HTTPS or non-HTTPS.
– SAML11 Bearer WSHTTPS default for SAML 1.1 tokens using HTTPS
– SAML20 Bearer WSHTTPS default for SAML 1.1 tokens using HTTPS
– SAML20 Bearer WSSecurity default for SAML 2.0 tokens using HTTP
– SAML11 Bearer WSSecurity default for SAML 2.0 tokens using HTTP

To import these policy sets, in the administrative console:

1. Click Services > Policy sets > Application policy sets.

2. Click Import.

3. Select From Default Repository.

4. Select the two desired default policy sets.

The SAML default policy set chosen in this step will be referred to as your appropriate SAML policy
in the following procedure steps.

5. Click OK to import the policy sets, and then click Save to save your changes.

v If the SAML assertions will be signed by the STS and you will require trust evaluation of the issuer (the
signer), a keystore file that can be used for trust evaluation of the issuer's X.509 certificate must be
available. This keystore can either contain the issuer's public certificate or all the information required to
build the certificate's path. Supported keys store types include: jks, jceks, and pkcs12. This file will be
referred to as the trust store file in the following procedure.

3388 Administering WebSphere applications



v The Username WSHTTPS default policy will be used to communicate with the STS. If the STS issuer
certificate for use with SSL has not been imported into NodeDefaultSSLSettings, see the topic
Retrieving signers from a remote SSL port for a description of how import this certificate. You also might
want to review the topic Secure installation for client signer retrieval in SSL for more general information
about STS issuer certificates.

About this task

A SAML token policy is defined by a CustomToken extension in the application server. To create the
CustomToken extension, you must define the SAML token configuration parameters in terms of custom
properties in the client and provider binding document. The Saml Bearer Client sample and the Saml
Bearer Provider sample for general bindings contain the essential configuration for the custom properties.

The client and provider sample bindings contain both SAML11 and SAML20 token type configuration
information. These samples can be used with both SAML11 and SAML20 policy sets. Depending on how
you plan to implement the SAML tokens, you must modify the property values in the installed binding
samples. Examples of the properties and property values are provided in the following procedure.

As the following procedure indicates, to modifying the binding sample, you must first configure the web
services client policy set attachment, and then modify the web services provider policy set attachment. The
example provided in the procedure uses the sample web services application JaxWSServicesSamples.

Procedure

1. Configure the trust client

If you will be using general bindings to access the external STS, skip to Attach the policy set and
bindings to the client application step.

If you will be using application specific bindings to access the external STS, complete the following
substeps.

a. Temporarily Attach a policy set for the trust client to the web services client application so that
bindings can be configured.

Attaching a policy set for the trust client allows you to use the administrative console to create, and
then modify the client binding document bindings. You only have to complete this action if an
application-specific binding is used to access the external STS.

1) In the administrative console, click Applications > Application types > WebSphere
enterprise applications > JaxWSServicesSamples > Service client policy sets and
bindings.

2) Select the web services client resource (JaxWSServicesSamples).

3) Click Attach Client Policy Set.

4) Select the policy set Username WSHTTPS default.

b. Create the trust client binding.

1) Select the web services client resource again (JaxWSServicesSamples).

2) Click Assign Binding.

3) Click New Application Specific Binding to create an application-specific binding.

4) Specify a binding configuration name for the new application-specific binding. In this example,
the binding name is SamlTCSample.

c. Add the SSL transport policy type to the binding,

Click Add > SSL transport and then click OK.

d. Add the WS-Security policy type to the binding, then modify the authentication settings for the trust
client.

Chapter 32. Administering web services - Security (WS-Security) 3389



1) If the he WS-Security policy type is not already in the SamlTCSample binding definition, click
Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service client policy sets and bindings > SamlTCSample.

2) Click Add > WS-Security > Authentication and protection > request:uname_token.

3) Click Apply.

4) Select Callback handler

5) Specify a user name and password for the web services client to authenticate to the external
STS.

6) Click OK, and then click Save.

e. After the binding settings are saved, return to the Service client policy sets and bindings panel,
and detach the policy set and bindings.

1) Click either Service client policy sets and bindings in the navigation for this page, or
Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service client policy sets and bindings.

2) Select the web services client resource (JaxWSServicesSamples), and then click Detach client
policy set.

The application-specific binding configuration you just created is not deleted from the file system
when the policy set is detached. Therefore, you can still use the application-specific binding you
created to access the STS with the trust client.

2. Attach the SAML policy set and bindings to the client application

a. Attach the desired SAML policy set to the web services client application.

1) If the SAML policy is not already on the Service client policy sets and bindings page for
JaxWSServicesSamples, click Applications > Application types > WebSphere enterprise
applications > JaxWSServicesSamples > Service client policy sets and bindings

2) Select the web services client resource.

3) Click Attach Client Policy Set.

4) Select your appropriate SAML policy for the web services client.

b. Attach the Saml Bearer Client sample general binding to the client.

1) Select the web services client resource again.

2) Click Assign Binding.

3) Select Saml Bearer Client sample.

3. Configure the web services client bindings.

Configure the STS endpoint URL in the sample binding.

a. Click Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service client policy sets and bindings > Saml Bearer Client
sample > WS-Security > Authentication and protection.

b. Click either gen_saml11token or gen_saml20token in the Authentication tokens table.

c. Click Callback handler.

d. Modify the stsURI property to specify the STS endpoint.

This property is not required for the self-issuer in an intermediate server. However if the property is
specified for the self-issuer in an intermediate server, it is set to www.websphere.ibm.com/SAML/
Issuer/Self.

e. Verify that the following properties are set to the required values.

If any of these properties are set to some other value, you must change the property setting to the
required value.

v The confirmationMethod property must be set to Bearer.

v The keyType property must be set to http://docs.oasis-open.org/ws-sx/ws-trust/200512/
Bearer.

3390 Administering WebSphere applications



v The wstrustClientPolicy property must be set to Username WSHTTPS default.

v The value specified for the wstrustClientBinding property must match the name of application
specific binding of your trust client created in the previous steps. For example, in the previous
steps, we created an application specific binding named SamlTCSample. In this scenario
SamlTCSample must be specified as the value for the wstrustClientBinding property

f. Optional: If you want to change how the application server searches for the binding, you can specify
the wstrustClientBindingScope property and set its value to either application or domain.

When the value is set to domain, the application server searches for the wstrustClientBinding at the
file system location that contains general binding documents.

When the value is set to application, the application server searches for the wstrustClientBinding at
the file system location that contains application-specific binding documents.

When the wstrustClientBindingScope property is not specified, the default behavior of the
application server is to search for application-specific bindings and then search for general bindings.

If the wstrustClientBinding cannot be located, the application server uses the default bindings.

g. Optional: If you want to modify the default trust client SOAP version, which is the same as the
application client, specify a new value for the wstrustClientSoapVersion custom property.

Set the wstrustClientSoapVersion custom property to 1.1 to change to SOAP Version 1.1.

Set the wstrustClientSoapVersion custom property to 1.2 to change to SOAP Version 1.2.

h. Click Apply and then click Save.

If further modifications to the wstrustClientBinding configuration are needed, and the
wstrustClientBinding property is pointing to an application-specific binding, for example in this case,
SamlTCSample, you must attach the application-specific binding to the web services client before you
can complete the modifications. The attachment is temporary. As detailed in the previous steps, you
can detach the modified application-specific binding from the web service client after the modification is
completed.

Before proceeding to the next step, verify that the SSL certificate from the external STS exists in the
NodeDefaultTrustStore. See the Before you begin section for more information.

4. Restart the web services client application so that the policy set attachment modifications can take
effect.

The policy set and binding attachment information are updated when the application restarts, but the
updated information in the general binding is not reflected at run time until all the general bindings are
refreshed.

The application must be restarted after the general bindings are reloaded to take advantage of any
updates. Refer to the Reload the Client and Provider general bindings and restart the applications step
that follows for more information.

5. Attach the SAML policy set and bindings to the provider application.

a. Attach the appropriate SAML policy set to the web services provider.

1) In the administrative console, click Applications > Application types > WebSphere
enterprise applications > JaxWSServicesSamples > Service provider policy sets and
bindings.

2) Select the web services provider resource (JaxWSServicesSamples).

3) Click Attach Policy Set.

4) Select the appropriate SAML policy for the web services provider.

b. Assign the Saml Bearer Provider sample general binding.

1) Select the web services provider resource again.

2) Click Assign Binding.

3) Select Saml Bearer Provider sample.

6. Configure the web services provider bindings.

Chapter 32. Administering web services - Security (WS-Security) 3391



a. If the web services provider bindings are not already on the service provider policy sets and
bindings page for JaxWSServicesSamples, click WebSphere enterprise applications >
JaxWSServicesSamples > Service provider policy sets and bindings > Saml Bearer Provider
sample.

b. Click WS-Security > Authentication and protection.

c. In the Authentication tokens table, click either con_saml11token, or con_saml20token.

d. Click Callback handler.

The Callback handler page of the administrative console is used to configure the SAML token
issuer digital signature validation binding data for the external STS.

e. Optional: Set the signatureRequired custom property to false if you want to waive digital signature
validation.

You can set the signatureRequired custom property to false, if you want to waive digital signature
validation. However, a good security practice is to require SAML assertions to be signed, and
always require issuer digital signature validation. False is the default value for this property.

f. Optional: Set the trustAnySigner custom property to true if you want to allow no signer certificate
validation.

The Trust Any certificate configuration setting is ignored for the purposes of SAML signature
validation. This property is only valid if the signatureRequired custom property is set to true, which
is the default value for that property.

g. Complete the following actions if assertions are signed by the STS, the signatureRequired custom
property is set to the default value of true, and the trustAnySigner custom property is set to the
default value of false.

v Add a certificate to the truststore for the provider that allows for the external STS signing
certificate to pass the trust validation, such as the STS signing certificate itself or its root CA
certificate.

v Set the trustStorePath custom property to a value that matches the trust store file name. This
value can be fully-qualified or use keywords such as ${USER_INSTALL_ROOT}.

v Set the trustStoreType custom property to a value that matches the key store type. Supported
keys store types include: jks, jceks, and pkcs12.

v Set the trustStorePassword custom property to a value that matches the truststore password.
The password is stored as a custom property and is encoded by the administrative console.

v Optional: Set the trustedAlias custom property to a value such as samlissuer. If this property is
specified, the X.509 certificate represented by the alias is the only STS certificate that is trusted
for SAML signature verification. If this custom property is not specified, the web services runtime
environment uses the signing certificate inside the SAML assertions to validate the SAML
signature and then verifies the certificate against the configured truststore.

h. Optional: Configure the recipient to validate either the issuer name or the certificate SubjectDN of
the issuer in the SAML assertion, or both.

You can create a list of trusted issuer names, or a list of trusted certificate SubjectDNs, or you can
create both types of lists. If you create both issuer name and SubjectDN lists, both issuer name
and SubjectDN are verified. If the received SAML issuer name or signer SubjectDN is not in the
trusted lists, SAML validation fails, and an exception is issued.

The following example shows how to create a list of trusted issuers and trusted SubjectDNs. For
each trusted issuer name, use trustedIssuer_n where n is a positive integer. For each trusted
SubjectDN, use trustedSubjectDN_n where n is a positive integer. If you create both types of lists,
the integer n must match in both lists for the same SAML assertion. The integer n starts with 1,
and increments by 1.

In this example, you trust a SAML assertion with the issuer name WebSphere/samlissuer,
regardless of the SubjectDN of the signer, so you add the following custom property:
<properties value="WebSphere/samlissuer" name="trustedIssuer_1"/>

3392 Administering WebSphere applications



In addition, you trust a SAML assertion issued by IBM/samlissuer, when the SubjectDN of the
signer is ou=websphere,o=ibm,c=us, so you add the following custom properties:
<properties value="IBM/samlissuer" name="trustedIssuer_2"/>
<properties value="ou=websphere,o=ibm,c=us" name="trustedSubjectDN_2"/>

i. Decrypt the SAML assertion.

If the SAML assertion is encrypted by the STS, the SAML token appears in the SOAP Security
header as an EncryptedAssertion element instead of an Assertion element. To decrypt the SAML
assertion, you must configure the private key that corresponds to the public key that was used to
encrypt the assertion on the STS.

The following callback handler custom properties must be set to the value described in the following
table for the recipient to decrypt the SAML assertion.

Custom property Value

keyStorePath Keystore location

keyStoreType Matching keystore type

Supported keystore types include: jks, jceks, and pkcs12

keyStorePassword Password for the keystore

keyAlias The alias of the private key used for SAML encryption

keyName The name of the private key used for SAML encryption

keyPassword The password for the key name

7. Optional: You can configure the caller binding to select a SAML token to represent the requester
identity. The Web Services Security runtime environment uses the specified JAAS login configuration to
acquire the user security name and group membership data from the user registry using the SAML
token NameId or NameIdentifier as the user name.

a. Click WebSphere enterprise applications > JaxWSServicesSamples > Service provider policy
sets and bindings > Saml Bearer Provider sample > WS-Security > Callers.

b. Click New to create the caller configuration

c. Specify a Name, such as caller.

d. Enter a value for the Caller identity local part.

For SAML 1.1 tokens enter:http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLV1.1

For SAML 2.0 tokens enter:http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLV2.0

e. Click Apply and Save.

8. Reload the Client and Provider general bindings and restart the applications.

When the information in general bindings is updated, the new settings are not immediately reflected at
run time. An updated general binding must be reloaded by the policy set manager in the application
server before any updates will take effect. You can reload any updated policy sets and general
bindings by stopping and restarting the application server or using the refresh command on the
PolicySetManager MBean in wsadmin. For more information on refreshing the policy set manager, see
the topic Refreshing policy set configurations using wsdamin scripting.

To reload the Client and Provider general bindings and restart the applications, complete one of the
following actions:

v Restart the application serve, or

v Refresh the PolicySetManager MBean, and then restart the Client and Provider web services
applications.

Chapter 32. Administering web services - Security (WS-Security) 3393



Results

When you have completed the procedure, the JaxWSServicesSamples web services application is ready
to use the SAML Bearer default policy set, the Saml Bearer Client sample, and the Saml Bearer Provider
sample general bindings.

Configuring client and provider bindings for the SAML holder-of-key symmetric key token:

Configure the client and provider policy set attachments and bindings for the SAML holder-of-key token.
This configuration scenario uses a symmetric key.

Before you begin

After installing, you must create one or more new server profiles, or add SAML configuration settings to an
existing profile. For example, in a network deployment environment, there are multiple profiles. Read about
setting up the SAML configuration for more information.

About this task

WebSphere Application Server with SAML provides numerous default SAML token application policy sets
and several general client and provider binding samples. Before you can configure the client and provider
bindings for the SAML holder-of-key token, you must import one of these default policy sets: SAML20 HoK
Symmetric WSSecurity default or SAML11 HoK Symmetric WSSecurity default. The SAML11 policy sets
are almost identical to the SAML20 policy sets, except that SAML20 HoK Symmetic WSSecurity default
policy set supports the SAML Version 2.0 token type, while the SAML11 HoK Symmetric WSSecurity
default policy set supports the Version 1.1 token type.

The SAML token policy is defined by a CustomToken extension in the application server. To create the
CustomToken extension, define the SAML token configuration parameters in terms of custom properties in
the client and provider binding document. The Saml HoK Symmetric Client sample and the Saml HoK
Symmetric Provider sample general bindings contain the essential configuration for the custom properties.
The client and provider sample bindings contain both SAML11 and SAML20 token type configuration
information and therefore can be used with both SAML11 and SAML20 policy sets. Depending on how you
plan to implement the SAML tokens, you must modify the property values in the installed binding samples.
Examples of the properties and property values are provided in the procedure.

The procedure for modifying the binding sample begins with configuring the web services client policy set
attachment, then configuring the web services provider policy set attachment. The example presented in
the procedure uses the sample web services application JaxWSServicesSamples.

Procedure

1. Import two default policy sets: SAML20 HoK Symmetric WSSecurity default, and the Username
WSHTTPS default.

a. Click Services > Policy sets > Application policy sets.

b. Click Import.

c. Select From Default Repository.

d. Select the two default policy sets.

e. Click OK to import the policy sets.

If you do not want the server to automatically request a SAML token from the Security Token Service
(STS) using the WS-Trust client, you can skip steps 2, 3, and 4, and continue to step 5. For example,
you can skip steps 2, 3, and 4, if web services act as a client and self-issues a SAML token based on
the original SAML token, or the web services client has already acquired a SAML token and cached
the SAML token in the RequestContext.

3394 Administering WebSphere applications



2. Attach a policy set for the trust client. Click Applications > Application types > WebSphere
enterprise applications > JaxWSServicesSamples > Service client policy sets and bindings.
The steps which pertain to attaching and detaching the policy set, and configuring the trust client
binding, are required only if an application-specific binding is used to access the external STS. You
can skip these steps, and go to the step that discusses configuring communication with the STS, if
you use a general binding to access the external STS.

a. Select the check box for the web services client resource.

b. Click Attach Client Policy Set.

c. Select the policy set, Username WSHTTPS default.

This step attaches the policy set to the web services trust client, as you would do to use this policy
set for the application client to access the target web services. However, since you plan to use the
Username WSHTTPS default policy set to access an external STS instead, the policy set is only
temporarily attached to the Web services client. The purpose of this step is to allow you to use the
administrative console to create or to modify the client binding document.

3. Configure the trust client binding.

a. Select the web services client resource again.

b. In the Service client policy sets and bindings panel, click Assign Binding.

c. Click New Application Specific Binding to create an application-specific binding.

d. Specify a binding configuration name for the new application-specific binding. In this example, the
binding name is SamlTCSample.

e. Add the SSL transport policy type to the binding. Optionally, you can modify the
NodeDefaultSSLSettings settings. Click Security > SSL certificate and key management > SSL
configurations > NodeDefaultSSLSettings.

4. Add the WS-Security policy type to the binding, then modify the authentication settings.

a. Click Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service client policy sets and bindings > SamlTCSample > Add >
WS-Security > Authentication and protection > request:uname_token.

b. Click Apply.

c. Select Callback handler.

d. Specify a user name and password (and confirm the password) to authenticate the web services
client to the external STS.

e. Click OK and Save.

5. After the binding settings are saved, return to the Service client policy sets and bindings panel to
detach the policy set and bindings.

a. Click Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service client policy sets and bindings.

b. Click the check box for the web services client resource.

c. Click Detach client policy set.

The application-specific binding configuration you created in the previous steps is not deleted from
the file system when the policy set is detached. This means that you can still use the
application-specific binding you created to access the STS.

6. Download the unrestricted jurisdiction policy file. The SAML20 HoK Symmetric WSSecurity default
security policy uses the 256 bit encryption key size, which requires the unrestricted Java
Cryptography Extension (JCE) policy file. For more information, read the section Using the
unrestricted JCE policy files in the Tuning Web Services Security topic.

7. Attach the SAML20 HoK Symmetric WSSecurity default policy set and assign the Saml HoK
Symmetric Client sample binding to the client resource.

a. Click Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service client policy sets and bindings.

Chapter 32. Administering web services - Security (WS-Security) 3395



b. Select the web services client resource.

c. Click Attach Client Policy Set.

d. Select the policy set, SAML20 HoK Symmetric WSSecurity default.

e. Select the web services client resource again.

f. In the Service client policy sets and bindings panel, click Assign Binding.

g. Select the Saml HoK Symmetric Client sample general binding.

h. Click Save.

8. Configure the STS endpoint URL and the user name and password to authenticate to the STS.

a. Click Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service client policy sets and bindings > Saml HoK Symmetric
Client sample > WS-Security > Authentication and protection.

b. Click gen_saml20token in the Protection tokens table.

c. Click Callback handler.

d. Modify the stsURI property and specify the STS endpoint. If you do not use an external STS, and
you want the application server to self-issue a holder-of-key assertion with a symmetric key, do
not complete this step and go to step 8i.

e. If necessary, modify the wstrustClientPolicy property and change the value to Username
WSHTTPS default.

f. Modify the wstrustClientBinding property and change the value to match the application-specific
binding created in the previous steps. For this example, the value is SamlTCSample. This step
attaches the WS-Trust client policy set. You can skip this step if you do not want the server to
automatically request a SAML token from the STS using the WS-Trust client.

g. Change the value of the wstrustClientBindingScope property, which controls how the
application server searches for the binding. Set the property value to either application or
domain. When the value is set to domain, the application server searches for the
wstrustClientBinding at the file system location that contains general binding documents. When
the value is set to application, the application server searches for the wstrustClientBinding at the
file system location that contains application-specific binding documents. When the
wstrustClientBindingScope property is not specified, the default behavior of the application server
is to search for application-specific bindings and then search for general bindings. If the
wstrustClientBinding can not be located, the application server uses the default bindings.

h. Verify that the value of the confirmationMethod property is Holder-of-key.

i. Verify that the value of the keyType property value is http://docs.oasis-open.org/ws-sx/ws-
trust/200512/SymmetricKey or the symmetrickey alias. The wstrustClientWSTNamespace property
determines how the symmetrickey alias is interpreted. In this case it is assumed that it is set to the
WS-Trust 1.3 namespace. If it had a value of WS-Trust 1.2, the symmetrickey alias is interpreted
as http://schemas.xmlsoap.org/ws/2005/02/trust/SymmetricKey.

j. Optional: You can modify the default trust client SOAP version, which is the same as the
application client. Set the custom property wstrustClientSoapVersion to the value 1.1 to change
to SOAP Version 1.1, or set the property to the value 1.2 to change to SOAP Version 1.2.

k. Optional: If you are not using an external STS, and you want the application server to self-issue a
holder-of-key assertion with a symmetric key, set the custom property recipientAlias to the value
of the key alias of the target service. Specifying this property protects the symmetric key for the
target service. This alias must be a valid key alias that is contained in the configured trust store of
the SAML issuer. The TrustStorePath property specifies the location of the trust store file. The
TrustStorePath property is defined in the SAMLIssuerConfig.properties file for the application
server. For example, the location of the SAMLIssuerConfig.properties file at the server level on a
WebSphere Application server is:

app_server_root/profiles/$PROFILE/config/cells/$CELLNAME/nodes/$NODENAME/servers/$SERVERNAME/SAMLIssuerConfig.properties

The location of this file at the cell level on a WebSphere Application server is:

3396 Administering WebSphere applications



app_server_root/profiles/$PROFILE/config/cells/$CELLNAME/sts/SAMLIssuerConfig.properties

l. Click Apply and Save.

9. Optional: If further modifications to the wstrustClientBinding configuration are needed, and the
wstrustClientBinding property is pointing to an application-specific binding, you must attach the
application-specific binding to the web services client before you can complete the modifications. The
attachment is temporary. As detailed in the previous steps, you can detach the modified
application-specific binding from the web service client after the modification is completed.

10. Import the SSL certificate from the external STS.

a. Click Security > SSL certificate and key management > Manage endpoint security
configurations > server_or_node_endpoint > Keystores and certificates >
NodeDefaultTrustStore > Signer certificates.

b. Click Retrieve from port.

c. Specify the host name and port number of the external STS server, and assign an alias to the
certificate. Use the SSL STS port.

d. Click Retrieve signer information.

e. Click Apply and Save to copy the retrieved certificate to the NodeDefaultTrustStore object.

11. Restart the web services client application so that the policy set attachment modifications can take
effect.

12. Attach the SAML20 HoK Symmetric WSSecurity default policy set to the web services provider.

13. Download the unrestricted jurisdiction policy file. The SAML20 HoK Symmetric WSSecurity default
security policy uses the 256 bit encryption key size, which requires the unrestricted Java
Cryptography Extension (JCE) policy file. For more information, read the section Using the
unrestricted JCE policy files in the Tuning Web Services Security applications topic.

14. Assign the Saml HoK Symmetric Provider sample general binding.

15. Click Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service provider policy sets and bindings > Saml HoK Symmetric
Provider sample > WS-Security > Authentication and protection.

a. Click con_saml20token in the Authentication tokens table.

b. Click the Callback handler link.

c. Use this panel to configure the embedded symmetric key decryption configuration, and the SAML
token issuer digital signature validation to the external STS, as described in the following step.

16. Configure the binding data to decrypt the embedded secret key, or the SAML assertion that is
protected by the public key from the recipient. The STS must have access to the public key of the
recipient. There are two options to configure the keys for decryption:

v Option 1: Configure the keystore and a private key, as follows:

a. Verify that the Keystore name field has the value custom.

b. Click Custom keystore configuration to view and edit the keystore configuration.

c. Verify that the initial value for the key file is app_server_root/etc/ws-security/samples/enc-
service.jceks.

v Option 2: Set the custom properties in the callback handler as follows:

Custom property Value

keyStorePath Keystore location

keyStoreType Matching keystore type

Supported keystore types include: jks, jceks, and pkcs12

keyStorePassword Password for the keystore

keyAlias The alias of the public key used for SAML encryption

keyName The name of the public key used for SAML encryption

Chapter 32. Administering web services - Security (WS-Security) 3397



Custom property Value

keyPassword The password for the key name

17. Add the external STS signing certificate to the truststore. This step is required if the SAML assertions
are signed by the STS and the signatureRequired custom property is not specified, or has a value
of true. This truststore is configured for the service provider.

a. Set the custom property trustStoreType to match the keystore type. Supported keystore types
include: jks, jceks, and pkcs12.

b. Set the custom property trustStorePath to the keystore file location. For example,
app_server_root/etc/ws-security/samples/dsig-issuer.jceks. The file dsig_issuer.jceks is not
provided when WebSphere Application Server is installed, so you must create the file.

c. Set the custom property trustStorePassword to the encoded value of the store password. The
password is stored as a custom property and is encoded by the administrative console.

d. Optional: You can set the custom property trustedAlias to a value such as samlissuer. Do not
set the trustedAlias property if the SAML token is signed by different signers, for example, if the
STS delegates token requests to different token providers, and each provider signs with a
certificate. If this custom property is not specified, the web services runtime environment uses the
signing certificate password in the SAML assertions to validate the signature and then verifies the
certificate against the configured truststore.

e. Optional: You can set the custom property trustAnySigner to the value true to allow no signer
certificate validation. The Trust Any certificate configuration setting is ignored for the purposes of
SAML signature validation.

f. Optional: You can set the custom property signatureRequired to false, which waives digital
signature validation. However, a good security practice is to require SAML assertions to be signed
and always require issuer digital signature validation.

g. Optional: You can configure the recipient to validate either the issuer name or the certificate
SubjectDN of the issuer in the SAML assertion, or you can validate both. Create a list of trusted
issuer names, or a list of trusted certificate SubjectDNs, or both types of lists. If you create both
issuer name and SubjectDN lists, both issuer name and SubjectDN are verified. If the received
SAML issuer name or signer SubjectDN is not in the trusted list, SAML validation fails, and an
exception is issued. This example shows how to create a list of trusted issuers and trusted
SubjectDNs.

For each trusted issuer name, use trustedIssuer_n where n is a positive integer. For each trusted
SubjectDN, use trustedSubjectDN_n where n is a positive integer. If you create both types of lists,
the integer n must match in both lists for the same SAML assertion. The integer n starts with 1,
and increments by 1.

In this example, you trust a SAML assertion with the issuer name WebSphere/samlissuer,
regardless of the SubjectDN of the signer, so you add the following custom property:

<properties value="WebSphere/samlissuer" name="trustedIssuer_1"/>

In addition, you trust a SAML assertion issued by IBM/samlissuer, when the SubjectDN of the
signer is ou=websphere,o=ibm,c=us, so you add the following custom properties:

<properties value="IBM/samlissuer" name="trustedIssuer_2"/>
<properties value="ou=websphere,o=ibm,c=us" name="trustedSubjectDN_2"/>

By default, WebSphere Application Server trusts all SAML issuers when you do not define a
trustedIssuer_n value. Without knowing this default behavior, you might mistakenly accept SAML
assertions that are issued by an authorized STS

h. Optional: You can add a list of non-root certificate authority (CA) certificates that can be used to
check the signature of the SAML token. To add non-root certificates, add a custom property
named X509PATH_n where n is a non-negative integer as the value for the non-root certificates.

i. Optional: You can add a list of certificate revocation lists (CRLs) that can be used to validate the
signature of the SAML token. To add CRLs, add a custom property named CRLPATH_n where n is a
non-negative integer as the value for the CRLs.

3398 Administering WebSphere applications



j. Click Apply and Save.

18. Optional: You can configure the caller binding to select a SAML token to represent the requester
identity. The Web Services Security runtime environment uses the specified JAAS login configuration
to acquire the user security name and group membership data from the user registry using the SAML
token NameId or NameIdentifier as the user name.

a. Click Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service provider policy sets and bindings > Saml HoK
Symmetric Provider sample > WS-Security > Callers.

b. Click New to create the caller configuration

c. Specify a Name, such as caller.

d. Enter a value for the Caller identity local part. For example, http://docs.oasis-open.org/wss/
oasis-wss-saml-token-profile-1.1#SAMLV2.0, which is the local part of the CustomToken element
in the attached WS-Security policy.

e. Click Apply and Save.

19. Restart the web services provider application so that the policy set attachment modifications can take
effect.

Results

When you have completed the procedure, the JaxWSServicesSamples web services application is ready
to use the SAML20 HoK Symmetric default policy set, the Saml HoK Symmetric Client sample, and the
Saml HoK Symmetric Provider sample general bindings.

SAMLIssuerConfig.properties file:

When creating a new SAML token, you can specify configuration properties to control how the token is
configured. The configuration properties are stored in a properties file containing name/value pairs. The
properties describe provider-side information such as the issuer location, and the keystore and truststore
file paths.

Starting with WebSphere Application Server version 8, you can also use the administrative console or the
setSAMLIssuerConfigInBinding command task to specify a self-issued SAML token's configuration as
custom properties in the requester's outbound configuration in the general bindings or in the
application-specific bindings. You can also specify a self-issued SAML token's configuration as custom
properties of com.ibm.websphere.wssecurity.wssapi.WSSGenerationContext objects when programming to
Web Services Security (WSS) Application Programming interfaces (APIs). Migrate self-issued SAML token
configuration data from the SAMLIssuerConfig.properties file to the bindings. Refer to the “Managing
self-issue SAML token configuration using wsadmin commands” section for additional information.

The SAMLIssuerConfig.properties file usage is deprecated in WebSphere Application Server version 8.
Do not specify a SAMLIssuerConfig.properties file using a Java System property. The
com.ibm.websphere.wssecurity.wssapi.token.SAMLTokenFactory.newDefaultProviderConfig() method
returns a com.ibm.wsspi.wssecurity.saml.config.ProviderConfig object with empty contents when no
SAMLIssuerConfig.properties file is specified, which is the recommended programming style. Use
ProviderConfig setter methods to populate its contents.

File Location

A single configuration file, SAMLIssuerConfig.properties, containing the provider-side properties is created
and stored on each server. On a WebSphere server, the file is located in the server-level repository, or in
the cell-level repository. In an environment that is not based on WebSphere, the file location is defined by
a Java system property. The name of this property is
com.ibm.webservices.wssecurity.platform.SAMLIssuerConfigDataPath.

Chapter 32. Administering web services - Security (WS-Security) 3399



For example, the location of the file at the server level on a WebSphere server is:
app_server_root/profiles/$PROFILE/config/cells/$CELLNAME/nodes/$NODENAME/servers/$SERVERNAME/SAMLIssuerConfig.properties

The location of the file at the cell level on a WebSphere server is:
app_server_root/profiles/$PROFILE/config/cells/$CELLNAME/sts/SAMLIssuerConfig.properties

SAML token properties

The following table describes the provider configuration properties.

Table 301. Properties to configure provider information for a new SAML token. Use these properties to control how
the token is created.
Property name Sample property value Property description

com.ibm.wsspi.wssecurity.
dsig.oldEnvelopedSignature

true Use only if you are setting the

com.ibm.wsspi.wssecurity.dsig.
enableEnvelopedSignatureProperty

JVM custom property to true. See the topic Java
Virtual Machine (JVM) custom properties for a
description of when you might want to use this
JVM custom property.

IssuerURI http://www.websphere.ibm.com/SAML/
SelfIssuer

The URI of the issuer.

TimeToLiveMilliseconds 3600000 Amount of time before expiration of the token.

KeyStoreRef MyKeyStoreRef A reference to a managed keystore from
security.xml.

KeyStorePath app_server_root/etc/ws-security/samples/dsig-
receiver.ks

The location of the keystore file.

Note: You must modify this value from the default
value to match the path location for your system.

KeyStoreType JKS The keystore type.

KeyStorePassword password The password of the keystore file (the password
must be XOR encoded). For more information,
read about encoding passwords in files.

KeyAlias soapprovider The alias of the key as defined in the keystore file.

KeyName CN=SOAPProvider, OU=TRL, O=IBM,
ST=Kanagawa, C=JP

The name of the key as defined in the keystore
file.

KeyPassword password The password of the private key as defined in the
keystore file (the password must be XOR
encoded).

TrustStoreRef MyTrustStoreRef A reference to a managed keystore from
security.xml.

TrustStorePath app_server_root/etc/ws-security/samples/dsig-
receiver.ks

The location of the truststore file.

Note: You must modify this value from the default
value to match the path location for your system.

TrustStoreType JKS The truststore type.

TrustStorePassword password The password of the truststore file.

AttributeProvider com.mycompany.SAML.AttributeProviderImpl Implementation class of attribute provider.

NameIDProvider com.mycompany.SAML.NameIDProviderImpl Implementation class of name ID provider.

Example

See the following example of a SAML token configuration properties file:
IssuerURI=http://www.websphere.ibm.com/SAML/SelfIssuer
TimeToLiveMilliseconds=3600000
KeyStorePath=${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks
KeyStoreType=JKS
KeyStorePassword={xor}LDotKTot
KeyAlias=soapprovider
KeyName=CN=SOAPProvider, OU=TRL, O=IBM, ST=Kanagawa, C=JP

3400 Administering WebSphere applications



KeyPassword={xor}LDotKTot
TrustStorePath=${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks
TrustStoreType=JKS
TrustStorePassword={xor}LDotKTot

Configuring client and provider bindings for the SAML sender-vouches token:

You can configure the client and provider policy set attachments and bindings for the SAML
sender-vouches token. A SAML sender-vouches token is a SAML token that uses the sender-vouches
subject confirmation method. The sender-vouches confirmation method is used when a server needs to
propagate the client identity or behavior of the client.

Before you begin

v Before you can use a SAML sender-vouches token, you must create one or more new server profiles,
or add SAML configuration settings to an existing profile.

Refer to the various topics that describe how to configure SAML for more information about how to add
SAML configuration settings to an existing profile.

v Determine which type of security you want to use to protect the integrity of SOAP messages and SAML
tokens so that a receiver can verify that the message contents and SAML tokens were not modified by
unauthorized parties. You must use either message-level security or HTTPS transport.

As stated in section 3.5.2.1 of the SAML Token Profile specification:

“To satisfy the associated confirmation method processing of the receiver, the attesting entity MUST
protect the vouched for SOAP message content such that the receiver can determine when it has been
altered by another party. The attesting entity MUST also cause the vouched for statements (as
necessary) and their binding to the message contents be protected such that unauthorized modification
be detected.”

You can use either transport-level or message-level security to meet this SAML sender-vouches
requirement:

You must use either message-level security or HTTPS transport to protect the sender-vouches token.

– To utilize HTTP transport-level security, configure the HTTPS transport.

– To utilize message-level security, the SAML Token Profile Specification suggests that the attesting
entity “sign the relevant message content and assertions”.

To sign the relevant message content and assertions, you must at least sign the SAML token (the
assertion). The relevant content is dependent on your application. The specification recommends that:

– The sender at least sign the SOAP Body and SAML Assertion together to meet the relevant
message content requirement.

– The consumer verify that the SAML token is signed with SOAP body when using SAML
sender-vouches.

About this task

This procedure describes the steps you must complete to digitally sign a SAML token. It does not describe
any of the SAML Token Profile OASIS standard requirements for SAML sender-vouches or SAML bearer
tokens regarding message parts that must be signed.

The example provided in this procedure uses the sample web services application
JaxWSServicesSamples.

The procedure for creating the sender-vouches policy set begins with creating a new SAML
sender-vouches policy.

Procedure

1. Create the SAML sender-vouches policy, and configure the message parts.

Chapter 32. Administering web services - Security (WS-Security) 3401



You must create a SAML sender-vouches policy set, based on the SAML bear policy before you can
configure the client and provider bindings for the SAML sender-vouches token, After you create the
policy set, you must attach the bindings to the JAX-WS client and provider applications. For more
information about the bearer policy sets, see the topic Configuring client and provider bindings for the
SAML bearer token.

Several default SAML token application policy sets and several general client and provider binding
samples are provided with the product. A policy set that is used for a SAML sender-vouches token is
similar to one that is used for a SAML bearer token . The following procedure describes how to create
a sender-vouches policy set based on a SAML bearer token policy set.

Unless they are imported as a copy, the SAML20 Bearer WSSecurity default and SAML20 Bearer
WSHTTPS default policies cannot be updated for use with SAML sender-vouches tokens. SAML20
Bearer WSSecurity default and SAML20 Bearer WSHTTPS default policies are not configured to sign
the SAML token. To meet the requirement of SAML sender-vouches, the policy must be updated to
sign the SAML token. Therefore, either the policy must be imported as a copy, or you must make a
copy of the policy. The following procedure makes a copy of the policy.

a. Import the required Policy Sets.

The Before you begin section of the topic Configuring client and provider bindings for the SAML
bearer token describes how to import the Username WSHTTPS default and the SAML Bearer
policy of the desired type. For example, SAML20 Bearer WSSecurity default is used for SAML 2.0
sender-vouches tokens using HTTP.

b. Make a copy of the desired imported SAML Bearer policy that you can edit.

1) In the administrative console, click Services > Policy sets > Application policy sets.

2) Select the imported SAML Bearer policy you want to copy.

For example, you might select SAML20 Bearer WSSecurity default.

3) Click Copy... .

4) Specify the desired name in the Name field. For example, you might specify SAML20
sender-vouches.

5) Click OK.

c. Edit the new SAML sender-vouches policy to add digital signature of the SAML token.

1) In the administrative console, click Services > Policy sets > Application policy sets .

2) Select the policy you just created.

Using the preceding example, you would select SAML20 sender-vouches.

d. From the administrative console, edit the SAML policy set, then click WS-Security > Main policy
> Request message part protection.

e. Under Integrity protection, click Add.

f. Enter a part name for Name of part to be signed; for example, saml_part.

g. Under Elements in Part, click Add.

h. Select XPath Expression.

i. Add two XPath expressions.
/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’
and local-name()=’Header’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’
and local-name()=’Security’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’
and local-name()=’SecurityTokenReference’]

/*[namespace-uri()=’http://www.w3.org/2003/05/soap-envelope’
and local-name()=’Envelope’]/*[namespace-uri()=’http://www.w3.org/2003/05/soap-envelope’
and local-name()=’Header’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’
and local-name()=’Security’]/*[namespace-uri()=’http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd’
and local-name()=’SecurityTokenReference’]

j. Click Apply and Save.

k. If an application has never been started using this policy, no further action is required. Otherwise,
either restart the application server or follow the instructions in the Refreshing policy set
configurations using wsadmin scripting article, for the application server to reload the policy set.

3402 Administering WebSphere applications



2. Configure the trust client

If you will be using general bindings to access the external STS, skip to Attach the policy set and
bindings to the client application step.

If you will be using application specific bindings to access the external STS, complete the following
substeps.

a. Temporarily Attach a policy set for the trust client to the web services client application so that
bindings can be configured.

Attaching a policy set for the trust client allows you to use the administrative console to create,
and then modify the client binding document bindings. You only have to complete this action if an
application-specific binding is used to access the external STS.

1) In the administrative console, click Applications > Application types > WebSphere
enterprise applications > JaxWSServicesSamples > Service client policy sets and
bindings.

2) Select the web services client resource (JaxWSServicesSamples).

3) Click Attach Client Policy Set.

4) Select the policy set Username WSHTTPS default.

b. Create the trust client binding.

1) Select the web services client resource again (JaxWSServicesSamples).

2) Click Assign Binding.

3) Click New Application Specific Binding to create an application-specific binding.

4) Specify a binding configuration name for the new application-specific binding. In this example,
the binding name is SamlTCSample.

c. Add the SSL transport policy type to the binding,

Click Add > SSL transport and then click OK.

d. Add the WS-Security policy type to the binding, then modify the authentication settings for the
trust client.

1) If the he WS-Security policy type is not already in the SamlTCSample binding definition, click
Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service client policy sets and bindings > SamlTCSample.

2) Click Add > WS-Security > Authentication and protection > request:uname_token.

3) Click Apply.

4) Select Callback handler

5) Specify a user name and password for the web services client to authenticate to the external
STS.

6) Click OK, and then click Save.

e. After the binding settings are saved, return to the Service client policy sets and bindings panel,
and detach the policy set and bindings.

1) Click either Service client policy sets and bindings in the navigation for this page, or
Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service client policy sets and bindings.

2) Select the web services client resource (JaxWSServicesSamples), and then click Detach
client policy set.

The application-specific binding configuration you just created is not deleted from the file system
when the policy set is detached. Therefore, you can still use the application-specific binding you
created to access the STS with the trust client.

3. Attach the SAML sender-vouches policy set and create new application specific bindings for the client
application

Chapter 32. Administering web services - Security (WS-Security) 3403



You must use application-specific custom bindings instead of general bindings for sender-vouches.
Therefore, if you configure sender-vouches policy sets and bindings from attached bearer token policy
sets and bindings, you must ensure that the assigned bindings are application-specific bindings.

a. Attach the desired SAML policy set to the web services client application.

1) Click Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service client policy sets and bindings.

2) Select the web services client resource (JaxWSServicesSamples).

3) Click Attach Client Policy Set.

4) Select the SAML policy that you created.

For example, you might select SAML20 sender-vouches.

b. Create new application specific bindings for the client.

1) Select the web services client resource again (JaxWSServicesSamples).

2) Click Assign Binding.

3) Select New Application Specific Binding....

4) Specify a binding configuration name for the new application-specific binding.

In this example, the binding name is SamlSenderVouchesClient.

5) Click Add > WS-Security.

4. Edit the SAML token generator in application specific client bindings.

a. Click Authentication and protection.

b. Under Authentication tokens, click either request:SAMLToken20Bearer or
request:SAMLToken11Bearer.

c. Click Apply.

d. Click Callback handler.

e. Add the following custom properties.

v confirmationMethod=sender-vouches

v keyType=http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer

v stsURI=SecurityTokenService_address

For example, you might specify https://example.com/Trust/13/UsernameMixed for
SecurityTokenService_address.

v wstrustClientPolicy=Username WSHTTPS default.

v wstrustClientBinding=value

The value you specify for wstrustClientBinding must match the name of the application specific
binding of the trust client that you created in the previous steps. For example, if in the previous
steps, you created an application specific binding named SamlTCSample, you must specify
SamlTCSample as the value for the wstrustClientBinding property.

v wstrustClientSoapVersion=value

Specify a value of 1.1 for this property if you want to use SOAP Version 1.1.

Specify a value of 1.2 for this property if you want to use SOAP Version 1.2.

f. Click OK.

g. Click WS-Security in the navigation for this page.

5. Configure general digital signature in the client bindings.

a. Configure a Certificate Store.

1) Click Keys and Certificates.

2) Under Certificate store, click New Inbound... .

3) Specify name=clientCertStore.

4) Specify Intermediate X.509 certificate=${USER_INSTALL_ROOT}/etc/ws-security/samples/
intca2.cer.

3404 Administering WebSphere applications



5) Click OK.

b. Configure a Trust Anchor.

1) Under Trust anchor, click New...

2) Specify name=clientTrustAnchor.

3) Click External Keystore .

4) Specify Full path=${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks.

5) Specify Password=client.

6) Click OK.

7) Click WS-Security in the navigation for this page.

c. Configure the Signature Generator.

1) Click Authentication and protection > AsymmetricBindingInitiatorSignatureToken0
(signature generator), and then click Apply.

2) Click Callback handler

3) Specify Keystore=custom.

4) Click Custom keystore configuration, and then specify
Full path==${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks
Keystore password=client
Name=client
Alias=soaprequester
Password=client

5) Click OK, OK, and OK.

d. Configure the Signature Consumer.

1) Click AsymmetricBindingRecipientSignatureToken0 (signature consumer), and then click
Apply.

2) Click Callback handler.

3) Under Certificates, click the Certificate store radial button, and specify:
Certificate store=clientCertStore
Trusted anchor store=clientTrustAnchor

4) Click OK, and OK.

e. Configure the request Signing Information.

1) Click request:app_signparts, and specify Name=clientReqSignInfo.

2) Under Signing key information, click New , and then specify:
Name=clientReqSignKeyInfo
Type=Security Token reference
Token generator or consumer name=AsymmetricBindingInitiatorSignatureToken0

3) Click Ok, and then click Apply.

4) Under Message part reference, select request:app_signparts .

5) Click Edit.

6) Under Transform algorithms, click New

7) Specify URL=http://www.w3.org/2001/10/xml-exc-c14n#.

8) Click OK, OK, and OK.

f. Configure the response Signing Information.

1) Click response:app_signparts, and specify Name=clientRespSignInfo.

2) Click Apply.

3) Under Signing key information, click New , and then specify:
Name=clientRspSignKeyInfo
Token generator or consumer name=AsymmetricBindingRecipientSignatureToken0

4) Click Ok.

Chapter 32. Administering web services - Security (WS-Security) 3405



5) Under Signing key information, click clientRspSignKeyinfo , and then click Add.

6) Under Message part reference, select response:app_signparts .

7) Click Edit.

8) Under Transform algorithms, click New

9) Specify URL=http://www.w3.org/2001/10/xml-exc-c14n#.

10) Click OK, OK, and OK.

6. Configure digital signature for the SAML token in the client bindings.

a. Modify the currently configured outbound Signed message part bindings to include the new
SAML part that you created.

Under Request message signature and encryption protection, select the part reference whose
status is set to Configured. This part reference will most likely be request:app_signparts.

1) From the Available list under Message part reference, select the name of the part to be
signed, as created in step 1; for example, saml_part.

2) Click Add, and then click Apply.

3) In the Assigned list under Message part reference, highlight the name of the part you added;
for example, saml_part.

4) Click Edit.

5) For the Transform algorithms setting, click New.

6) Select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#STR-Transform.

7) Click OK, click OK, and then click OK one more time.

b. Update the SAML token consumer with the custom property to indicate digital signature with
Security Token Reference

Under Authentication tokens, select and edit the SAML token you want to sign.

1) Under Custom property, click New.

2) Enter com.ibm.ws.wssecurity.createSTR as the custom property name.

3) Enter true as the value of the custom property.

4) Click Apply, and then click Save.

c. Restart the application.

7. Attach the SAML sender-vouches policy set, and create new application specific bindings for the
provider application.

a. Attach the desired SAML policy set to the web services client application.

1) Click Applications > Application types > WebSphere enterprise applications >
JaxWSServicesSamples > Service provider policy sets and bindings.

2) Select the web services client resource (JaxWSServicesSamples).

3) Click Attach Policy Set.

4) Select the SAML policy that you created.

For example, you might select SAML20 sender-vouches.

b. Create new application specific bindings for the provider.

1) Select the web services client resource again (JaxWSServicesSamples).

2) Click Assign Binding.

3) Select New Application Specific Binding....

4) Specify a binding configuration name for the new application-specific binding.

In this example, the binding name is SamlSenderVouchesProvider.

5) Click Add > WS-Security.

8. Edit the SAML token consumer in application specific provider bindings

3406 Administering WebSphere applications



a. Click Authentication and protection.

b. Under Authentication tokens, click either request:SAMLToken20Bearer or
request:SAMLToken11Bearer.

c. Click Apply.

d. Click Callback handler.

e. Add the following custom properties.

v confirmationMethod=sender-vouches

v keyType=http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer

v signatureRequired=true

f. Optional: Set the trustAnySigner custom property to true if you want to allow no signer certificate
validation.

The Trust Any certificate configuration setting is ignored for the purposes of SAML signature
validation. This property is only valid if the signatureRequired custom property is set to true, which
is the default value for that property.

g. Complete the following actions if assertions are signed by the STS, the signatureRequired custom
property is set to the default value of true, and the trustAnySigner custom property is set to the
default value of false.

v Add a certificate to the truststore for the provider that allows for the external STS signing
certificate to pass the trust validation, such as the STS signing certificate itself or its root CA
certificate.

v Set the trustStorePath custom property to a value that matches the trust store file name. This
value can be fully-qualified or use keywords such as ${USER_INSTALL_ROOT}.

v Set the trustStoreType custom property to a value that matches the key store type. Supported
keys store types include: jks, jceks, and pkcs12.

v Set the trustStorePassword custom property to a value that matches the truststore password.
The password is stored as a custom property and is encoded by the administrative console.

v Optional: Set the trustedAlias custom property to a value such as samlissuer. If this property is
specified, the X.509 certificate represented by the alias is the only STS certificate that is trusted
for SAML signature verification. If this custom property is not specified, the web services
runtime environment uses the signing certificate inside the SAML assertions to validate the
SAML signature and then verifies the certificate against the configured truststore.

h. Optional: Configure the recipient to validate either the issuer name or the certificate SubjectDN of
the issuer in the SAML assertion, or both.

You can create a list of trusted issuer names, or a list of trusted certificate SubjectDNs, or you
can create both types of lists. If you create both issuer name and SubjectDN lists, both issuer
name and SubjectDN are verified. If the received SAML issuer name or signer SubjectDN is not in
the trusted lists, SAML validation fails, and an exception is issued.

The following example shows how to create a list of trusted issuers and trusted SubjectDNs. For
each trusted issuer name, use trustedIssuer_n where n is a positive integer. For each trusted
SubjectDN, use trustedSubjectDN_n where n is a positive integer. If you create both types of lists,
the integer n must match in both lists for the same SAML assertion. The integer n starts with 1,
and increments by 1.

In this example, you trust a SAML assertion with the issuer name WebSphere/samlissuer,
regardless of the SubjectDN of the signer, so you add the following custom property:
<properties value="WebSphere/samlissuer" name="trustedIssuer_1"/>

In addition, you trust a SAML assertion issued by IBM/samlissuer, when the SubjectDN of the
signer is ou=websphere,o=ibm,c=us, so you add the following custom properties:
<properties value="IBM/samlissuer" name="trustedIssuer_2"/>
<properties value="ou=websphere,o=ibm,c=us" name="trustedSubjectDN_2"/>

i. Click APPLY.

Chapter 32. Administering web services - Security (WS-Security) 3407



j. Click WS-Security in the navigation for this page.

9. Configure general digital signature in the provider bindings.

a. Configure a Certificate Store.

1) Click Keys and Certificates.

2) Under Certificate store, click New Inbound....

3) Specify:
Name=providerCertStore
Intermediate X.509 certificate=${USER_INSTALL_ROOT}/etc/ws-security/samples/
intca2.cer

4) Click OK.

b. Configure a Trust Anchor.

1) Under Trust anchor, click New...

2) Specify, Name=providerTrustAnchor.

3) Click External Keystore, and specify:
Full path=${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks
Password=server

4) Click OK, and then click WS-Security in the navigation for this page.

c. Configure the Signature Generator.

1) Click Authentication and protection > AsymmetricBindingRecipientSignatureToken0
(signature generator), and then clickApply.

2) Click Callback handler

3) Specify Keystore=custom.

4) Click Custom keystore configuration, and then specify
Full path=${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks
Keystore password=server
Name=server
Alias=soapprovider
Password=server

5) Click OK, OK, and OK.

d. Configure the Signature Consumer.

1) Click AsymmetricBindingInitiatorSignatureToken0 (signature consumer), and then click
Apply.

2) Click Callback handler.

3) Under Certificates, click the Certificate store radial button, and specify:
Certificate store=providerCertStore
Trusted anchor store=providerTrustAnchor

4) Click OK.

5) Click Authentication and protection in the navigation for this page.

e. Configure the request Signing Information.

1) Click request:app_signparts, and specify Name=reqSignInf.

2) Click Apply.

3) Under Signing key information, click New , and then specify:
Name=reqSignKeyInfo
Token generator or consumer name=AsymmetricBindingInitiatorSignatureToken0

4) Click Ok.

5) Under Signing key information, click reqSignKeyinfo, and then click Add.

6) Under Message part reference, click request:app_signparts.

7) Click Edit.

3408 Administering WebSphere applications



8) Under Transform algorithms, click New, and then specify URL=http://www.w3.org/2001/10/
xml-exc-c14n#.

9) Click OK, OK, and OK.

f. Configure the response Signing Information.

1) Click response:app_signparts, and specify Name=rspSignInfo.

2) Click Apply.

3) Under Signing key information, click New , and then specify:
Name=rspSignKeyInfo
Type=Security Token reference
Token generator or consumer name=AsymmetricBindingRecipientSignatureToken0

4) Click Ok, and then click Apply.

5) Under Message part reference, select response:app_signparts .

6) Click Edit.

7) Under Transform algorithms, click New.

8) Specify URL=http://www.w3.org/2001/10/xml-exc-c14n#.

9) Click OK, OK, and OK.

10. Configure digital signature for the SAML token in the provider bindings.

a. Click WS-Security in the navigation for this page, and then click Authentication and protection.

b. Modify the currently configured inbound Signed message part bindings to include the new SAML
part that you created.

Under Request message signature and encryption protection, select the part reference whose
status is set to Configured. This part reference will most likely be request:app_signparts.

1) From the Available list under Message part reference, select the name of the part to be
signed, as created in step 1; for example, saml_part.

2) Click Add, and then click Apply.

3) In the Assigned list under Message part reference, highlight the name of the part you added;
for example, saml_part.

4) Click Edit.

5) For the Transform algorithms setting, click New.

6) Select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#STR-Transform.

7) Click OK, click OK, and then click OK one more time.

8) Click Save.

11. Optional: You can configure the caller binding to select a SAML token to represent the requester
identity. The Web Services Security runtime environment uses the specified JAAS login configuration
to acquire the user security name and group membership data from the user registry using the SAML
token NameId or NameIdentifier as the user name.

a. Click WebSphere enterprise applications > JaxWSServicesSamples > Service provider
policy sets and bindings > Saml Bearer Provider sample > WS-Security > Callers.

b. Click New to create the caller configuration

c. Specify a Name, such as caller.

d. Enter a value for the Caller identity local part.

For SAML 1.1 tokens enter:http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLV1.1

For SAML 2.0 tokens enter:http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLV2.0

e. Click Apply and Save.

Chapter 32. Administering web services - Security (WS-Security) 3409



12. Restart the web services provider application so that the policy set attachment modifications can take
effect.

Results

The JaxWSServicesSamples web services application is ready to use the new SAML sender-vouches
policy set, SAML sender-vouches application specific client binding, and SAML sender-vouches
application-specific provider binding.

Managing self-issue SAML token configuration using wsadmin commands:

The SAMLIssuerConfig.properties file usage is deprecated in WebSphere Application Server Version 8.
You can use the listSAMLIssuerConfig and updateSAMLIssuerConfig wsadmin command tasks to read
and modify the SAMLIssuerConfig.properties cell level and server level configuration files. Starting with
WebSphere Application Server Version 8, you should use the administrative console or the
setSAMLIssuerConfigInBinding command task to specify a self-issued SAML token's configuration as
custom properties in the requester's outbound configuration in the general bindings or in the
application-specific bindings. Do not use server level and cell level SAMLIssuerConfig.properties file.

Before you begin

The product provides an alternate way to specify a self-issued SAML token configuration in policy set
bindings. Migrate self-issued SAML token configuration data from the SAMLIssuerConfig.properties file to
the bindings. Specifying configuration data for creating self-issued SAML tokens in general bindings or
application-specific bindings provides management flexibility to specify the configuration at a finer grained
scope, in addition to the cell level and the server level. For example you can configure a specific SAML
token issuer for a particular web service application, for an arbitrary group of applications, or for a web
service application in a security domain.

Note: Self-issued SAML token configuration data that is defined in the bindings takes precedence over
data that is defined in the server level or the cell level SAMLIssuerConfig.properties file, in that
order. When a self-issued SAML token configuration data is defined in an attached policy set
bindings, the Web services security runtime environment will neglect the
SAMLIssuerConfig.properties files, both at the server level and at the cell level. So it is important
that when you migrate from the SAMLIssuerConfig.properties file to the bindings, you must migrate
all the required properties.

About this task

Two command tasks are available to manage the SAMLIssuerConfig.properties file-based SAML issuer
configuration. This file can be located at the cell level and the server level. These two tasks are:

v listSAMLIssuerConfig

v updateSAMLIssuerConfig

Procedure

1. Run the wsadmin command task in the interactive mode. The following Jython script illustrates how to
run the wsadmin command task in the interactive mode.

AdminTask.listSAMLIssuerConfig(’[-interactive]’)

To select the server level SAML issuer configuration, the serverName and nodeName parameters are
required. If these parameters are missing, then the command task lists the cell level SAML issuer
configuration.

2. Use the listSAMLIssuerConfig command task to display the server level SAML issuer configuration.
AdminTask.listSAMLIssuerConfig(’[-nodeName Node01 -serverName server1]’)

You need the “monitor” or above administrative role privilege to execute the listSAMLIssuerConfig
command.

3410 Administering WebSphere applications



3. Use the updateSAMLIssuerConfig command task to update the server level or cell level SAML issuer
configuration.

AdminTask.updateSAMLIssuerConfig(’[-IssuerURI My_Issuer
-TimeToLiveMilliseconds 3600000
-KeyStoreRef "name=myKeyStore managementScope=(cell):Node01Cell:(node):Node01"
-KeyAlias samlissuer
-KeyName "CN=SAMLIssuer, O=Acme, C=US" -KeyPassword *****
-TrustStoreRef "name=myKeyStore managementScope=(cell):Node01Cell:(node):Node01 "]’)

If the serverName and nodeName parameters are not specified, then the task updates the cell level
SAML issuer configuration.

You need the “administrator” administrative role privilege to execute the updateSAMLIssuerConfig
command.

Results

You have created command scripts to automate the process of updating the cell level or the server level
SAMLIssuerConfig.properties files, or you have created self-issued SAML token configuration data as
custom properties in the requester's outbound configuration in the general bindings or in the
application-specific bindings.

Example

The following example illustrates how to add or modify self-issued SAML token configuration data in the
application-specific bindings:
AdminTask.setSAMLIssuerConfigInBinding(’[-bindingName SAMLTestAppClientBinding
-bindingLocation [ [application JaxWSServicesSamples] [attachmentId 1904] ]
-com.ibm.wsspi.wssecurity.saml.config.issuer.IssuerURI My_Issuer
-com.ibm.wsspi.wssecurity.saml.config.issuer.TimeToLiveMilliseconds 3600000
-com.ibm.wsspi.wssecurity.saml.config.issuer.KeyStoreRef "name=myKeyStore managementScope=(cell):Node01Cell:(node):Node01 "
-com.ibm.wsspi.wssecurity.saml.config.issuer.KeyAlias samlissuer
-com.ibm.wsspi.wssecurity.saml.config.issuer.KeyName "CN=SAMLIssuer, O=Acme,C=US"
-com.ibm.wsspi.wssecurity.saml.config.issuer.KeyPassword *****
-com.ibm.wsspi.wssecurity.saml.config.issuer.TrustStoreRef "name=myKeyStore managementScope=(cell):Node01Cell:(node):Node01 "]’)

The following example illustrates how to modify the general bindings:
AdminTask.setSAMLIssuerConfigInBinding(’[-bindingName "Saml Bearer Client sample"
-bindingScope domain -bindingLocation -domainName global
-com.ibm.wsspi.wssecurity.saml.config.issuer.IssuerURI My_Issuer
-com.ibm.wsspi.wssecurity.saml.config.issuer.TimeToLiveMilliseconds 3600000
-com.ibm.wsspi.wssecurity.saml.config.issuer.KeyStorePath "profile_root/etc/ws-security/saml/saml-issuer.jceks
-com.ibm.wsspi.wssecurity.saml.config.issuer.KeyStoreType jceks
-com.ibm.wsspi.wssecurity.saml.config.issuer.KeyStorePassword *****
-com.ibm.wsspi.wssecurity.saml.config.issuer.KeyAlias samlissuer
-com.ibm.wsspi.wssecurity.saml.config.issuer.KeyName "CN=SAMLIssuer, O=Acme, C=US"
-com.ibm.wsspi.wssecurity.saml.config.issuer.KeyPassword *****
-com.ibm.wsspi.wssecurity.saml.config.issuer.TrustStorePath "profile_root/profiles/<server_name>/etc/ws-security/saml/saml-issuer.jceks
-com.ibm.wsspi.wssecurity.saml.config.issuer.TrustStoreType jceks
-com.ibm.wsspi.wssecurity.saml.config.issuer.TrustStorePassword *****]’)

When specifying the application bindings, bindingLocation is a required parameter and can be supplied
as a properties object. The property names are application and attachmentId. When specifying the
general bindings, bindingLocation, which can be null or have empty properties, is required. Additionally,
bindingScope is required if the scope is not global. Use the bindingName parameter to identify the binding
location. For more information about bindingLocation, bindingScope, and domainName, refer to the
setBinding or getBinding command tasks documentation.

To remove SAML issuer configuration custom properties from the bindings, use the administrative console
or the setBinding command task.

Configuring default Web Services Security bindings
WebSphere Application Server provides support for a set of default Web Services Security bindings for
applications. A set of bindings is a named object that is associated with a specific policy set and service
resource attached to the policy set.

Chapter 32. Administering web services - Security (WS-Security) 3411



About this task

Bindings contain environment and platform specific information, such as the following types of information:

v Keys used for signature and encryption

v Keystore information

v Authentication information

v Persistent information

In WebSphere Application Server Version 7.0 and later, there are two types of bindings, application
specific bindings and general bindings. Typically, bindings are specific to the application or the platform,
and they are not shared.

General bindings can be configured to be used across a range of policy sets and can be reused across
applications and for trust service attachments. Though general bindings are highly reusable, they are not
able to provide configuration for advanced policy requirements, such as multiple signatures. There are two
types of general bindings: general provider policy set bindings and general client policy set bindings. The
general bindings that are shipped with WebSphere Application Server are initially set as the default
bindings, but you can choose a different binding as the default, or change the level of binding that should
be used as the default, for example, from cell level binding to server level binding. Default bindings are
used when no application specific binding or trust service binding has been assigned to a policy set
attachment. For more information, see the topic General JAX-WS default bindings for Web Services
Security. For a description of the general sample bindings that are included with WebSphere Application
Server, and used with the JAX-WS programming model, read the topic General sample bindings for
JAX-WS applications.

To create general bindings:

Procedure
1. Log in to the administrative console and navigate to the general provider policy set and bindings panel,

or the general client policy set and bindings panel

v Click Services > Policy sets > General provider policy set bindings.

v Click Services > Policy sets > General client policy set bindings.

2. Click New.

Results

Policy set bindings contain platform-specific information, like keystore, authentication information or
persistent information, required by a policy set attachment. Each policy set attachment to a service
provider or service client must have exactly one binding. When you create a policy set attachment, the
general default bindings are used initially. When general bindings are used in association with a policy set
attachment, the cell-level general bindings are applied at run time. If application server level bindings exist,
the server-level general bindings override the cell-level definition. General bindings specify configuration
for both service client and service provider attachments and the general bindings are not tailored to a
specific policy set or application. When you define server-level general bindings, the binding begins in a
completely unconfigured state. You must add the policy, and then fully configure the bindings for each
added policy.

An application specific binding is a named binding that you create. Application specific bindings enable you
to provide platform-specific configuration information for specific policy set attachments. When you create
an application specific binding, the available binding configuration options are tailored to the definitions in
the attached policy set. You can reuse application specific bindings for multiple service resources within an
application. For example, if you create a trust service specific binding, that binding can be reused only for
trust service attachments. When you create an application specific binding for a policy set attachment, the

3412 Administering WebSphere applications



binding begins in a completely unconfigured state. For each policy, such as WS-Security or HTTP
Transport, where you want to override the general binding, you must add the policy, and then fully
configure the bindings for each added policy.

Important: Only use the sample default bindings in a testing environment. Do not use sample default
bindings in a production environment. Default bindings contain sample key files that must be
customized before use in a production environment.

See the topic Defining and managing service client or provider bindings for more information about
bindings.

General JAX-WS default bindings for Web Services Security
General bindings are used as the default bindings at the cell level or server level, or for multiple domains,
at the domain level. The general bindings that are included with WebSphere Application Server are initially
set as the default bindings. However, you can choose a different binding as the default, or change the
level of binding that is used as the default, for example, from cell-level binding to server-level binding.

Policy set bindings contain platform-specific information, such as keystore, authentication information or
persistent information, required by a policy set attachment. In WebSphere Application Server Version 7.0
and later, there are two types of bindings: application-specific bindings, and general bindings. Both types
of bindings are supported for WS-Security policy sets. General bindings can be used as default bindings,
and can also be shared across multiple applications and for trust service attachments. There are two types
of general bindings: one for service providers and one for service clients. You can define multiple general
bindings for the provider and also for the client. However, only one general provider binding and one
general client binding can be designated as the default.

Default bindings are used when no application-specific binding or trust service binding has been assigned
to a policy set attachment. You can choose the general provider and general client bindings, which are
used as the default bindings for the cell. These are the global security settings. Likewise, you can choose
the general provider and general client bindings, which are used as the default bindings for a server. For
specific information about selecting bindings, see the topic Defining and managing policy set bindings.

In an environment with multiple security domains, you can also choose the general provider and general
client bindings, which are used as the default bindings for a domain. If you do not choose a binding to be
the default for a server, the default bindings for the domain in which the server resides are used. If you do
not choose a binding to be the default for a domain, the default bindings for the cell (global security) are
used. You must choose default provider and default client bindings for the cell.

The general bindings that are included with WebSphere Application Server are initially set as the cell
default bindings. You cannot delete a binding that has been selected as the default binding for server, a
domain, or the cell. Before you delete a binding that is selected as the default, you must select a different
default binding, or specify that the defaults for the cell (global security) should be used.

The following default bindings are shipped with the product:

v Provider sample

v Client sample

v Version 6.1 default policy set bindings

The Version 6.1 bindings are used only if a WebSphere Application Server Version 6.1 Feature Pack for
Web Services application is installed within the WebSphere Application Server Version 7.0 and later
environment. For more information on these bindings, see the topic Version 6.1 default policy set
bindings.

Important: Do not use the provider and client sample bindings that are included with WebSphere
Application Server in their current state in a production environment. You must modify these
bindings to meet your security needs before using them in a production environment by

Chapter 32. Administering web services - Security (WS-Security) 3413



making a copy of the bindings and then modifying the copy. For example, change the key and
keystore settings to ensure security, and modify the binding settings to match your
environment.

For a detailed description of the general sample bindings, see the topic General sample bindings for
JAX-WS applications.

To define and manage general bindings, in the administrative console click Services > Policy sets >
General provider policy set bindings or Services > Policy sets > General client policy set bindings.
To manage bindings for the cell or the domain, click Services > Policy sets > Default policy set
bindings. The general service provider and client bindings have independent settings that you can
customize to meet the needs of your environment. To learn more about general bindings, read the topic
Defining and managing policy set bindings.

In addition to choosing default bindings for the cell (global security), you can also choose the general
provider and general client bindings that you want to use as the default bindings for a server. When are
using the JAX-WS programming model and want to specify the server default bindings, log on to the
administrative console and click Servers > Server Types > WebSphere application servers >
server_name. In the Security section of the console page, click Default policy set bindings.

Administering message-level security for JAX-RPC web services
The Java™ API for XML-based RPC (JAX-RPC) specification enables you to develop SOAP-based
interoperable and portable web services and web service clients. JAX-RPC simplifies development of web
services by shielding you from the underlying complexity of SOAP communication, and enables clients to
access a web service as if the web service was a local object mapped into the client's address space.

Securing messages using JAX-RPC at the request and response generators
You can secure messages with tokens and encryption to protect message integrity, authenticity, and
confidentiality.

About this task

To secure messages, you can:

v Configure generator signing to protect message integrity

v Configure encryption to protect message confidentiality at the server level and at the application level

v Configure tokens to protect message authenticity at the server level and at the application level

Procedure
v To configure generator signing to protect message integrity, see the steps outlined in “Configuring

generator signing using JAX-RPC to protect message integrity” on page 3415.

v To configure encryption to protect message confidentiality at the application level, see the steps outlined
in “Configuring encryption using JAX-RPC to protect message confidentiality at the application level” on
page 3475.

v To configure encryption to protect message confidentiality at the server level, see the steps outlined in
“Configuring encryption using JAX-RPC to protect message confidentiality at the server or cell level” on
page 3499.

v To configure tokens to protect message authenticity at the application level, see the steps outlined in
“Configuring token generators using JAX-RPC to protect message authenticity at the application level”
on page 3448.

v To configure tokens to protect message authenticity at the server level, see the steps outlined in
“Configuring token generators using JAX-RPC to protect message authenticity at the server level” on
page 3502.

3414 Administering WebSphere applications



Results

By completing the steps in the previous tasks, you have secured messages using tokens and encryption to
protect message integrity, authenticity, and confidentiality.

Securing messages using JAX-RPC at the request and response consumers
You can secure messages at the request and response consumer level to protect message confidentiality
and security.

About this task

To secure messages, you can:

v Configure signing to protect message confidentiality

v Configure encryption to protect message confidentiality at the server level and at the application level

v Configure tokens to protect message authenticity at the server level and at the application level

Procedure
v To configure consumer signing to protect message confidentiality, see the steps outlined in “Configuring

consumer signing using JAX-RPC to protect message integrity” on page 3430

v To configure encryption to protect message confidentiality at the application level, see the steps outlined
in “Configuring encryption to protect message confidentiality at the application level” on page 3487.

v To configure encryption to protect message confidentiality at the server level, see the steps outlined in
“Configuring encryption to protect message confidentiality at the server level” on page 3501.

v To configure tokens at the application level to protect message authenticity, see the steps outlined in
“Configuring token consumers using JAX-RPC to protect message authenticity at the application level”
on page 3466.

v To configure tokens at the server level to protect message authenticity, see the steps outlined in
“Configuring token consumers using JAX-RPC to protect message authenticity at the server level” on
page 3514.

Results

By completing the steps in the previous tasks, you have secured messages at the request and response
consumer level.

Configuring message-level security for JAX-RPC at the application level
Modify the application-level configurations in the administrative console.

Configuring generator signing using JAX-RPC to protect message integrity:

You can configure the generator key and signing information at the server and application level to protect
message integrity.

About this task

To protect message integrity, you can:

v Configure the signing information for the client-side request generator and the server-side response
generator bindings at the server level and at the application level

v Configure the key information for the request generator (client side) and the response generator (server
side) bindings on the server level and at the application level

Chapter 32. Administering web services - Security (WS-Security) 3415



Procedure

v To configure the signing information for the client-side request generator and the server-side response
generator bindings at the server , see the steps outlined in “Configuring the signing information using
JAX-RPC for the generator binding on the server level” on page 3489.

v To configure the signing information for the client-side request generator and the server-side response
generator bindings at the application level, see the steps outlined in “Configuring the signing information
using JAX-RPC for the generator binding on the application level”

v To configure the key information for the request generator (client side) and the response generator
(server side) bindings at the application level, see the steps outlined in “Configuring the key information
using JAX-RPC for the generator binding on the application level” on page 3435.

v To configure the key information for the generator binding on the server level, see the steps outlined in
“Configuring the key information for the generator binding using JAX-RPC on the server level” on page
3495.

Results

By completing the steps in these tasks, you have configured generator signing to protect the integrity of
messages.

Configuring the signing information using JAX-RPC for the generator binding on the application level:

You can configure the signing information for the client-side request generator and the server-side
response generator bindings at the application level.

Before you begin

Note: For WebSphere Application Server version 6.x or earlier only, in the server-side extensions file
(ibm-webservices-ext.xmi) and the client-side deployment descriptor extensions file
(ibm-webservicesclient-ext.xmi), you must specify which parts of the message are signed. Also,
you must configure the key information that is referenced by the key information references on the
signing information panel within the administrative console.

About this task

This task explains the required steps to configure the signing information for the client-side request
generator and the server-side response generator bindings at the application level. WebSphere Application
Server uses the signing information for the default generator to sign parts of the message including the
body, time stamp, and user name token. The Application Server provides default values for bindings.
However, an administrator must modify the defaults for a production environment. Complete the following
steps to configure the signing information for the generator sections of the bindings files on the application
level:

Procedure

1. Locate the signing information configuration panel in the administrative console.

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties, you can access the signing information for the request
generator and the response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.
Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

3416 Administering WebSphere applications



d. Under Required properties, click Signing information.

e. Click New to create a signing information configuration, select the box next to the configuration
and click Delete to delete an existing configuration, or click the name of an existing signing
information configuration to edit its settings. If you are creating a new configuration, enter a name
in the Signing information name field. For example, you might specify gen_signinfo.

2. Select a signature method algorithm from the Signature method field. The algorithm that is specified
for the generator, which is either the request generator or the response generator configuration, must
match the algorithm that is specified for the consumer, which is either the request consumer or
response consumer configuration. WebSphere Application Server supports the following
pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Restriction: Do not use this algorithm if you want the configured application to be compliant with
the Basic Security Profile (BSP).

Any ds:SignatureMethod/@Algorithm element in a SIGNATURE based on a symmetric key must
have a value of http://www.w3.org/2000/09/xmldsig#rsa-sha1 or http://www.w3.org/2000/09/
xmldsig#hmac-sha1.

3. Select a canonicalization method from the Canonicalization method field. The canonicalization
algorithm that you specify for the generator must match the algorithm for the consumer. WebSphere
Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

4. Select a key information signature type from the Key information signature type field. WebSphere
Application Server supports the following signature types:

None Specifies that the <KeyInfo> element is not signed.

Keyinfo
Specifies that the entire <KeyInfo> element is signed.

Keyinfochildelements
Specifies that the child elements of the <KeyInfo> element are signed.

The key information signature type for the generator must match the signature type for the consumer.
You might encounter the following situations:

v If you do not specify one of the previous signature types, WebSphere Application Server uses
keyinfo, by default.

v If you select Keyinfo or Keyinfochildelements and you select http://docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-soap-message-security-1.0#STR-Transform as the transform algorithm in a
subsequent step, WebSphere Application Server also signs the referenced token.

5. Select a signing key information reference from the Signing key information field. This selection is a
reference to the signing key that the Application Server uses to generate digital signatures.

6. Click OK and Save to save the configuration.

7. Click the name of the new signing information configuration. This configuration is the one that you
specified in a previous step.

8. Specify the part reference, digest algorithm, and transform algorithm. The part reference specifies
which parts of the message to digitally sign.

Chapter 32. Administering web services - Security (WS-Security) 3417

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1


a. Under Additional properties, click Part references > New to create a new part reference, click
Part references > Delete to delete an existing part reference, or click a part name to edit an
existing part reference.

b. Specify a unique part name for this part reference. For example, you might specify reqint.

c. Select a part reference from the Part reference field.

The part reference refers to the message part that is digitally signed. The part attribute refers to
the name of the <Integrity> element in the deployment descriptor when the <PartReference>
element is specified for the signature. You can specify multiple <PartReference> elements within
the <SigningInfo> element. The <PartReference> element has two child elements when it is
specified for the signature: <DigestTransform> and <Transform>.

d. Select a digest method algorithm from the menu. The digest method algorithm specified within the
<DigestMethod> element is used in the <SigningInfo> element.

WebSphere Application Server supports the following algorithms:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

e. Click OK to save the configuration.

f. Click the name of the new part reference configuration. This configuration is the one that you
specified in a previous step.

g. Under Additional Properties, click Transforms > New to create a new transform, click
Transforms > Delete to delete a transform, or click a transform name to edit an existing
transform. If you create a new transform configuration, specify a unique name. For example, you
might specify reqint_body_transform1.

h. Select a transform algorithm from the menu. The transform algorithm is that is specified within the
<Transform> element and specifies the transform algorithm for the signature. WebSphere
Application Server supports the following algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/TR/1999/REC-xpath-19991116

Restriction: Do not use this transform algorithm if you want your configured application to be
compliant with the Basic Security Profile (BSP). Instead use http://www.w3.org/
2002/06/xmldsig-filter2 to ensure compliance.

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the generator must match the transform algorithm that
you select for the consumer.

Important: If both of the following conditions are true, WebSphere Application Server signs the
referenced token:

v You previously selected the Keyinfo or the Keyinfochildelements option from the
Key information signature type field on the signing information panel.

v You select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0#STR-Transform as the transform algorithm.

9. Click Apply.

10. Optional: Determine whether to disable the Inclusive namespace prefix list. The Exclusive XML
Canonicalization Version 1.0 specification recommends that you include all of the namespace
declarations that correspond to the namespace prefix in the canonicalization form. For security

3418 Administering WebSphere applications

http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/xml-exc-c14n/


reasons, WebSphere Application Server, by default, includes the prefix in the digital signature for Web
Services Security. However, some implementations of Web Services Security cannot handle this
prefix list. WebSphere Application Server can handle digitally signed messages that either contain or
do not contain the prefix list. If you experience a signature validation failure when a signed Simple
Object Access Protocol (SOAP) message is sent and you are using another vendor in your
environment, check with your service provider for a possible fix to their implementation before you
disable this property. To disable this property, complete the following steps:

a. Under Additional properties, click Properties > New.

b. In the Property name field, enter the com.ibm.wsspi.wssecurity.dsig.inclusiveNamespaces
property.

c. In the Property value field, enter the false value.

d. Click OK.

You can set this property for both the request generator and the response generator configurations.

11. Click Save at the top of the panel to save your configuration.

Results

After completing these steps, the signing information is configured for the generator on the application
level.

What to do next

You must specify a similar signing information configuration for the consumer.

Signing information collection:

Use this page to view a list of signing parameters. Signing information is used to sign and validate parts of
a message including the body, time stamp, and user name token. You can also use these parameters for
X.509 validation when the authentication method is IDAssertion and the ID type is X509Certificate in the
server-level configuration. In such cases, you must fill in the certificate path fields only.

To view this administrative console page on the server level for signing information, complete the following
steps:

1. Click Servers > Server Types > WebSphere application Servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default Generator Bindings or JAX-RPC Default Consumer Bindings, click Signing
information.

4. Click New to create a signing parameter. Click Delete to delete a signing parameter.

To view this administrative console page on the application level for signing information, complete the
following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the signing information for the following
bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under
Request generator (sender) binding, click Edit custom.

Chapter 32. Administering web services - Security (WS-Security) 3419



v For Response consumer (receiver) binding, click Web services: Client security bindings. Under
Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

4. Under Required properties, click Signing information.

5. Under Additional properties, you can use this panel to configure the following bindings:

v For the Request receiver binding, click Web services: Server security bindings. Under Request
receiver binding, click Edit.

v For the Response receiver binding, click Web services: Client security bindings. Under Response
receiver binding, click Edit.

6. Under Additional properties, click Signing information.

7. Click New to create a signing parameter. Click Delete to delete a signing parameter.

Signing information name:

Specifies the unique name that is assigned to the signing configuration.

Signature method:

Specifies the signature method algorithm that is chosen for the signing configuration.

Canonicalization method:

Specifies the canonicalization method algorithm that is chosen for the signing configuration.

Signing information configuration settings:

Use this page to configure new signing parameters.

The specifications that are listed on this page for the signature method, digest method, and
canonicalization method are located in the World Wide Web Consortium (W3C) document entitled, XML
Signature Syntax and Specification: W3C Recommendation 12 Feb 2002.

To view this administrative console page on the server level for signing information, complete the following
steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default Generator Bindings or JAX-RPC Default Consumer Bindings, click Signing
information.

4. Click New to create a signing parameter or click the name of an existing configuration to modify its
settings.

To view this administrative console page on the application level for signing information, complete the
following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Click Manage modules > URI_name.

3420 Administering WebSphere applications



3. Under Web Services Security Properties, you can access the signing information for the following
bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under
Request generator (sender) binding, click Edit custom.

v For Response consumer (receiver) binding, click Web services: Client security bindings. Under
Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

4. Under Required properties, click Signing information.

5. Under Additional properties, you can access the signing information for the following bindings:

v For the Request receiver binding, click Web services: Server security bindings. Under Request
receiver binding, click Edit.

v For the Response receiver binding, click Web services: Client security bindings. Under Response
receiver binding, click Edit.

6. Under Additional properties, click Signing information.

7. Click New to create a signing parameter or click the name of an existing configuration to modify its
settings.

Signing information name:

Specifies the name that is assigned to the signing configuration.

Signature method:

Specifies the algorithm Uniform Resource Identifiers (URI) of the signature method.

The following pre-configured algorithms are supported:
v http://www.w3.org/2000/09/xmldsig#rsa-sha1
v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Do not use this algorithm if you want the configured application to be compliant with the Basic Security
Profile (BSP). Any ds:SignatureMethod/@Algorithm element in a signature based on a symmetric key
must have a value of http://www.w3.org/2000/09/xmldsig#rsa-sha1 or http://www.w3.org/2000/09/
xmldsig#hmac-sha1.

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

For Version 6.0.x applications, you can specify additional signature methods on the Algorithm URI panel.
To access the Algorithm URI panel, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Algorithm mappings > algorithm_factory_engine_class_name >
Algorithm URI > New.

When you specify the Algorithm URI, you also must specify an algorithm type. To have the algorithm
display as a selection in the Signature method field on the Signing information panel, you must select
Signature as the algorithm type.

This field is available for Version 6.x and later applications.

Chapter 32. Administering web services - Security (WS-Security) 3421

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1


Digest method:

Specifies the algorithm URI of the digest method.

The http://www.w3.org/2000/09/xmldsig#sha1 algorithm is supported.

Canonicalization method:

Specifies the algorithm URI of the canonicalization method.

The following pre-configured algorithms are supported:
v http://www.w3.org/2001/10/xml-exc-c14n#
v http://www.w3.org/2001/10/xml-exc-c14n#WithComments
v http://www.w3.org/TR/2001/REC-xml-c14n-20010315
v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

This field is for Version 6.x and later applications.

Key information signature type:

Specifies how to sign a KeyInfo element if dsigkey or enckey is specified for the signing part in the
deployment descriptor.

This product supports the following keywords:

keyinfo (default)
Specifies that the entire KeyInfo element is signed.

keyinfochildelements
Specifies that the child elements of the KeyInfo element is signed.

If you do not specify a keyword, the application server uses the KeyInfo value, by default.

The Key information signature type field is available for the token consumer binding.

For Version 6.0.x applications, this field is also available for the default consumer, request consumer, and
response consumer bindings.

Signing key information:

Specifies a reference to the key information that the application server uses to generate the digital
signature.

You can specify one signing key only for the default generator binding on the server level. However, you
can specify multiple signing keys for the default consumer bindings. The signing keys for the default
consumer bindings are specified using the Key Information references link under Additional properties on
the Signing information panel.

On the application level, you can specify only one signing key for the request generator and the response
generator. You can specify multiple signing keys for the request consumer and response generator. The
signing keys for the request consumer and the response consumer are specified using the Key information
references link under Additional properties.

You can specify a signing key configuration for the following bindings on the following levels:

3422 Administering WebSphere applications

http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/2001/10/xml-exc-c14n#WithComments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments


Table 302. Signing key binding information. The key is used for digital signature of messages.
Binding name Server level or application level Path

Default generator binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
WebSphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under JAX-RPC Default Generator Bindings, click Key
information.

Default consumer binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
WebSphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under JAX-RPC Default Consumer Bindings, click Key
information.

Certificate path:

Specifies the settings for the certificate path validation. When you select Trust any, this validation is
skipped and all incoming certificates are trusted.

The certificate path options are available in token consumer attributes.

Trust anchor

The application server searches for trust anchor configurations on the application and server levels and
lists the configurations in this menu.

You can specify trust anchors as an additional property for the response receiver binding and the request
receiver binding.

You can specify a trust anchor configuration for the following bindings on the following levels:

Table 303. Trust anchor binding information. The trust anchor is used for signing messages.
Binding name Server level or application level Path

Default generator binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
WebSphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under Additional properties, click Trust anchors > New.

Default consumer binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
WebSphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under Additional properties, click Trust anchors > New.

Chapter 32. Administering web services - Security (WS-Security) 3423



Table 303. Trust anchor binding information (continued). The trust anchor is used for signing messages.
Binding name Server level or application level Path

Response receiver Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Client security bindings.

4. Under the Response receiver binding, click Edit.

5. Under Additional properties, click Trust anchors > New.

Request receiver Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Click Web services: Server security bindings.

4. Under the Request receiver binding, click Edit.

5. Under Additional properties, click Trust anchors > New.

For an explanation of the fields on the trust anchor panel, see the help topic Trust anchor configuration
settings.

Certificate store

The application server searches for certificate store configurations on the application and server levels and
lists the configurations in this menu.

You can specify a certificate store configuration for the following bindings on the following levels:

Table 304. Certificate configurations for bindings. The certificate store is used for signing messages.
Binding name Server level or application level Path

Default generator binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
WebSphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under Additional properties, click Collection certificate
store > New.

Default consumer binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
WebSphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under Additional properties, click Collection certificate
store > New.

Response receiver Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Client security bindings.

4. Under the Response receiver binding, click Edit.

5. Under Additional properties, click Collection certificate
store > New.

3424 Administering WebSphere applications



Table 304. Certificate configurations for bindings (continued). The certificate store is used for signing messages.
Binding name Server level or application level Path

Request receiver Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Server security bindings.

4. Under the Request receiver binding, click Edit.

5. Under Additional properties, click Collection certificate
store > New.

For an explanation of the fields on the collection certificate store panel, see the help topic Collection
certificate store configuration settings.

Part reference collection:

Use this page to view the message part references for signature and encryption that are defined in the
deployment descriptors.

To view this administrative console page on the server level for signing information, complete the following
steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default Generator Bindings or JAX-RPC Default Consumer Bindings, click Signing
information > signing_information_name.

4. Under Additional properties, click Part references.

To view this administrative console page on the application level for signing information, complete the
following steps. Part references are available through the administrative console using Version 6.x and
later applications only.

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the signing information for the following
bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under
Request generator (sending) binding, click Edit custom.

v For Response consumer (receiver) binding, click Web services: Client security bindings. Under
Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

4. Under Required properties, click Signing information > signing_information_name.

5. Under Additional properties, click Part references.

Part name:

Specifies the name that is assigned to the part reference configuration.

Chapter 32. Administering web services - Security (WS-Security) 3425



Part reference name:

Specifies the name of the signed part that is defined in the deployment descriptor.

The Part reference name field is specified in the application binding configuration only.

Digest method algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the digest method that is used for the signed
part that is specified by the part reference.

Part reference configuration settings:

Use this page to specify a reference to the message parts for signature and encryption that are defined in
the deployment descriptors.

To view this administrative console page on the server level for signing information, complete the following
steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default Generator Bindings or JAX-RPC Default Consumer Bindings, click Signing
information > signing_information_name.

4. Under Additional properties, click Part references.

5. Click New to create a part reference or click the name of an existing configuration to modify its
settings.

To view this administrative console page on the application level for signing information, complete the
following steps.

Note: Part references are available through the administrative console using Version 6.x applications only.

1. Click Applications > Application Types > WebSphere enterprise applications > application_name
.

2. Click Manage modules > URI_name .

3. Under Web Services Security Properties, you can access the signing information for the following
bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under
Request generator (sending) binding, click Edit custom.

v For Response consumer (receiver) binding, click Web services: Client security bindings. Under
Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

4. Under Required properties, click Signing information > signing_information_name.

5. Under Additional properties, click Part references.

6. Click New to create a part reference or click the name of an existing configuration to modify its
settings.

3426 Administering WebSphere applications



You must specify a part name and select a part reference before specifying additional properties. Before
specifying the digest method properties that are accessible under Additional properties, specify a digest
method algorithm on this panel. If you specify none and click Digest method, an error message is
displayed.

Part name:

Specifies the name that is assigned to the part reference configuration.

Part reference name:

Specifies the name of the <integrity> or <requiredIntegrity> element for the signed part of the message or
it specifies the name of the <confidentiality> or <requiredConfidentiality> element for the encrypted part of
the message in the deployment descriptor.

The part names that are defined in the deployment descriptor are listed as options in this field. This field is
displayed for the binding configuration on the application level only.

Digest method algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the digest method that is used for the signed
part that is specified by the part reference.

This product provides the following predefined algorithm URIs:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

If you want to specify a custom algorithm, you must configure the custom algorithm in the Algorithm URI
panel before setting the digest method algorithm.

To access the Algorithm URI panel, complete the following steps for the server level:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Algorithm mappings > algorithm_factory_engine_class_name >
Algorithm URI > New.

The specified algorithms are listed as options for this field.

When you specify the Algorithm URI, you also must specify an algorithm type. To have the algorithm
display as a selection in the Digest method algorithm field on the Part reference panel, you must select
Digest value calculation (Message digest) as the algorithm type.

Transforms collection:

Use this page to view the transform algorithm that is used for processing the Web Services Security
message.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

Chapter 32. Administering web services - Security (WS-Security) 3427



2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default Generator Bindings or JAX-RPC Default Consumer Bindings, click Signing
information > signing_information_name.

4. Under Additional properties, click Part references > part_name.

5. Under Additional properties, click Transforms.

To view this administrative console page for the application level, complete the following steps.

Note: This option is available for Version 6 and later applications only.

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage Modules > URI_name.

3. Under Web Services Security Properties, you can access the transforms information for the following
bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under
Request generator (sender) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.
Under Request consumer (receiver) binding, click Edit custom.

4. Under Required properties, click Signing information > signing_information_name.

5. Under Additional properties, click Part references > part_nameTransforms .

Transform name:

Specifies the name that is assigned to the transform algorithm.

Transform algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the transform algorithm.

Transforms configuration settings:

Use this page to specify the transform algorithm that is used for processing the Web Services Security
message.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default Generator Bindings or JAX-RPC Default Consumer Bindings, click Signing
information > signing_information_name.

4. Under Additional properties, click Part references > part_name.

3428 Administering WebSphere applications



5. Under Additional properties, click Transforms.

6. Click New to create a transform configuration or click the name of an existing configuration to modify
its settings.

To view this administrative console page for the application level, complete the following steps. This option
is available for Version 6.x applications only.

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the transforms information for the following
bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under
Request generator (sender) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.
Under Request consumer (receiver) binding, click Edit custom.

4. Under Required properties, click Signing information > signing_information_name.

5. Under Additional properties, click Part references > part_name > Transforms.

6. Click New to create a transform configuration or click the name of an existing configuration to modify
its settings.

You must specify a transform name and select a transform algorithm before specifying additional
properties.

Transform name:

Specifies the name that is assigned to the transform algorithm.

Transform algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the transform algorithm.

This product supports the following algorithms:

http://www.w3.org/2001/10/xml-exc-c14n#
This algorithm specifies the World Wide Web Consortium (W3C) Exclusive Canonicalization
recommendation.

http://www.w3.org/TR/1999/REC-xpath-19991116
This algorithm specifies the W3C XML path language recommendation. If you specify this
algorithm, you must specify the property name and value by clicking Properties, which is
displayed under Additional properties. For example, you might specify the following information:

Property
com.ibm.wsspi.wssecurity.dsig.XPathExpression

Value not(ancestor-or-self::*[namespace-uri()=’http://www.w3.org/2000/09/xmldsig#’ and
local-name()=’Signature’])

Note: Do not use this transform algorithm if you want your configured application to be compliant
with the Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2
to ensure compliance.

Chapter 32. Administering web services - Security (WS-Security) 3429



http://www.w3.org/2002/06/xmldsig-filter2
This algorithm specifies the XML-Signature XPath Filter Version 2.0 proposed recommendation.

When you use this algorithm, you must specify a set of properties. You can use multiple property
sets for the XPath Filter Version 2. Therefore, it is recommended that your property names end
with the number of the property set, which is denoted by an asterisk in the following examples:

v To specify an XPath expression for the XPath filter2, you might use:
name com.ibm.wsspi.wssecurity.dsig.XPath2Expression_*

v To specify a filter type for each XPath, you might use:
name com.ibm.wsspi.wssecurity.dsig.XPath2Filter_*

Following this expression, you can have a value, [intersect], [subtract], or [union].

v To specify the processing order for each XPath, you might use:
name com.ibm.wsspi.wssecurity.dsig.XPath2Order_*

Following this expression, indicate the processing order of the XPath.

The following is a list of complete examples:
com.ibm.wsspi.wssecurity.dsig.XPath2Expression_2 = [XPath expression#1]
com.ibm.wsspi.wssecurity.dsig.XPath2Filter_1 = [intersect]
com.ibm.wsspi.wssecurity.dsig.XPath2Order_1 = [1]
com.ibm.wsspi.wssecurity.dsig.XPath2Expression_2 = [XPath expression#2]
com.ibm.wsspi.wssecurity.dsig.XPath2Filter_2 = [subtract]
com.ibm.wsspi.wssecurity.dsig.XPath2Order_2 = [2]

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

This algorithm specifies the enhancements to SOAP messaging that provide message integrity
and confidentiality.

http://www.w3.org/2002/07/decrypt#XML
This algorithm specifies the W3C decryption transform for XML Signature recommendation.

http://www.w3.org/2000/09/xmldsig#enveloped-signature
This algorithm specifies the W3C recommendation for XML digital signatures.

Configuring consumer signing using JAX-RPC to protect message integrity:

You can configure protect message integrity by configuring signing and key information at the server and
application level.

Before you begin

About this task

To protect message integrity, you can:

v Configure the signing information for the consumer binding on the application level or at the server level

v Configure the key information for the consumer binding on the application level or at the server level

Procedure

v To configure the signing information for the consumer binding on the application level, see the steps
outlined in “Configuring the signing information using JAX-RPC for the consumer binding on the
application level” on page 3431

v To configure the signing information for the consumer binding on the server level, see the steps outlined
in “Configuring the signing information using JAX-RPC for the consumer binding on the server level” on
page 3492

3430 Administering WebSphere applications



v To configure the key information for the consumer binding on the application level, see the steps
outlined in “Configuring the key information for the consumer binding on the application level” on page
3446

v To configure the key information for the consumer binding on the server level, see the steps outlined in
“Configuring the key information for the consumer binding using JAX-RPC on the server level” on page
3497

Results

By completing the steps in these tasks, you have configured the consumer signing to protect the integrity
of messages.

Configuring the signing information using JAX-RPC for the consumer binding on the application level:

You can configure the signing information for the server-side request consumer and the client-side
response consumer bindings at the application level.

Before you begin

Note: For WebSphere Application Server version 6.x or earlier only, in the server-side extensions file and
the client-side deployment descriptor extensions file, you must specify which parts of the message
are signed.

About this task

Configure the key information that is referenced by the key information references on the signing
information panel within the administrative console. WebSphere Application Server uses the signing
information on the consumer side to verify the integrity of the received SOAP message by validating that
the message parts are signed. Complete the following steps to configure the signing information for the
server-side request consumer and client-side response consumer sections of the bindings files on the
application level.

Procedure

1. Access the administrative console.

To access the administrative console, enter http://server_name:port_number/ibm/
console in your web browser unless you have changed the port number.

2. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

3. Under Manage modules, click URI_name.

4. Under Web Services Security Properties you can access the signing information for the request
generator and response generator bindings.

v To configure the request consumer signing information, click Web services: Server security
bindings. Under Request consumer (receiver) binding, click Edit custom.

v To configure the response consumer signing information, click Web services: Client security
bindings. Under Response consumer (receiver) binding, click Edit custom.

5. Under Required properties, click Signing information.

6. Click New to create a signing information configuration, click Delete to delete an existing
configuration, or click the name of an existing signing information configuration to edit its settings. If
you are creating a new configuration, enter a name in the Signing information name field.

7. Select a signature method algorithm from the Signature method field. The signature method is the
algorithm that is used to convert the canonicalized <SignedInfo> element in the binding file into the
<SignatureValue> element. The algorithm that is specified for the consumer, which is either the
request consumer or the response consumer configuration, must match the algorithm specified for the

Chapter 32. Administering web services - Security (WS-Security) 3431



generator, which is either the request generator or response generator configuration. WebSphere
Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Do not use this algorithm if you want the configured application to be compliant with the Basic
Security Profile (BSP). Any ds:SignatureMethod/@Algorithm element in a signature based on a
symmetric key must have a value of http://www.w3.org/2000/09/xmldsig#rsa-sha1 or
http://www.w3.org/2000/09/xmldsig#hmac-sha1.

8. Select a canonicalization method from the Canonicalization method field. The canonicalization method
algorithm is used to canonicalize the <SignedInfo> element before it is incorporated as part of the
digital signature operation. The canonicalization algorithm that you specify for the generator must
match the algorithm for the consumer. WebSphere Application Server supports the following
pre-configured algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

9. Select a key information signature type from the Key information signature type field. The key
information signature type specifies how the <KeyInfo> element in the SOAP message is digitally
signed. WebSphere Application Server supports the following signature types:

None Specifies that the key is not signed.

Keyinfo
Specifies that the entire KeyInfo element is signed.

Keyinfochildelements
Specifies that the child elements of the KeyInfo element are signed.

If you do not specify one of the previous signature types, WebSphere Application Server uses
keyinfo, by default. The key information signature type for the consumer must match the signature
type for the generator.

10. Under Additional properties, click Key information references.

a. Click New to create a key information reference or click the name of an existing entry to edit its
configuration. The Key information references panel is displayed.

b. Enter a name in the Name field.

c. Select a key information reference in the Key information reference field. This reference is the key
information configuration name that specifies the key information that is used by this signing
information configuration.

11. Return to the Signing information panel. Under Additional properties, click Part references. On the
Part references panel, you can specify references to the message parts that are defined in the
deployment descriptor extensions file.

a. Click New to create a new Part reference or click the name of an existing part reference to edit its
configuration. The Part reference panel is displayed.

b. Enter a name in the Part name field. This name is the name of the required integrity configuration
in the deployment descriptor extensions file and specifies the message parts that must be digitally
signed.

c. Select a digest method algorithm from the Digest method algorithm field.

WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

3432 Administering WebSphere applications

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/2001/10/xml-exc-c14n#WithComments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments


If you want to specify a custom algorithm, you must configure the custom algorithm in the
Algorithm URI panel before setting the digest method algorithm.

12. Under Additional properties, click Transforms.

a. Click New to create a new transform or click the name of an existing transform to edit its
configuration.

b. Enter a name in the Transform name field.

c. Select a transform algorithm from the Transform algorithm field. WebSphere Application Server
supports the following pre-configured algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/TR/1999/REC-xpath-19991116

Do not use this transform algorithm if you want your configured application to be compliant with
the Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to
ensure compliance.

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the consumer must match the transform algorithm that
you select for the generator. For each part reference in the signing information, specify both a
digest method algorithm and a transform algorithm.

13. Click OK.

14. Click Save at the top of the panel to save your configuration.

Results

After completing these steps, you have configured the signing information for the consumer.

What to do next

You must specify a similar signing information configuration for the generator.

Key information references collection:

Use this page to view the key information references that are needed for encryption or signing.

To view this administrative console page on the server level, complete the following steps. On the server
level, you can configure the key information references for the default consumer bindings only.

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default Consumer Bindings, click either of the following links:

v Click Encryption information > encryption_information_name.

v Click Signing information > signing_information_name.

4. Under Additional properties, click Key information reference.

To view this administrative console page on the application level, complete the following steps. On the
application level, you can configure the key information reference for the consumer bindings only.

1. Click Applications > Application Types > WebSphere enterprise applicationsapplication_name.

Chapter 32. Administering web services - Security (WS-Security) 3433



2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security properties, you can access the signing information for the following
bindings:

v For the Response consumer (receiver) binding, click Web services: Client security bindings.
Under Response consumer (receiver) binding, click Edit custom. Under Required properties, click
Encryption information. Click New to create a new encryption configuration or click the name of a
configuration to modify its settings.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom. Under Required properties, click
Encryption information. Click New to create a new encryption configuration or click the name of a
configuration to modify its settings.

Name:

Specifies the name of the Key information reference.

Key information reference:

Specifies a reference to the message parts that are signed or encrypted.

The value of this field is the name of the <requiredIntegrity> or the <requiredConfidentiality> element in the
deployment descriptor.

Key information reference configuration settings:

Use this page to specify a reference to the message parts for signature and encryption that is defined in
the deployment descriptors.

To view this administrative console page on the server level for the key information references, complete
the following steps. On the server level, you can configure the key information references for the default
consumer bindings only.

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default Consumer Bindings, click either of the following links:

v Click Encryption information > encryption_information_name.

v Click Signing information > signing_information_name.

4. Under Additional properties, click Key information references.

To view this administrative console page on the application level, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the key information references for the
following bindings:

v For the Response consumer (sender) binding, click Web services: Client security bindings. Under
Response consumer (sender) binding, click Edit custom. Under Required properties, click
Encryption information > encryption_information_name. Under Additional properties, click Key
information references.

3434 Administering WebSphere applications



v For the Request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom. Under Required properties, click
Encryption information > encryption_information_name. Under Additional properties, click Key
information references.

Name:

Specifies the name of the key information reference.

Key information reference:

Specifies a reference to the message parts that are signed or encrypted.

The value of this field is the name of the <requiredIntegrity> or the <requiredConfidentiality> element in the
deployment descriptor. You can specify a signing key configuration for the following bindings:

Table 305. Key information reference binding configurations. The key is used for signing or encrypting message
parts.
Binding name Server level or application level Path

Default consumer binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
Websphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under JAX-RPC Default Consumer Bindings, click Key
information.

Response consumer (receiver) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name .

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, click Web
services: Client security bindings.

4. Under Response consumer (receiver) binding, click Edit
custom.

5. Under Required properties, click Key information.

Request consumer (receiver) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, click Web
services: Server security bindings.

4. Under Request consumer (receiver) binding, click Edit
custom.

5. Under Required properties, click Key information.

Configuring the key information using JAX-RPC for the generator binding on the application level:

The key information is used to specify the configuration needed to generate the key for digital signature
and encryption. The signing information and the encryption information configurations can share the key
information, so they are both defined at the same level.

Before you begin

Before you begin this task, configure the key locators and the token consumers that are referenced by the
Key locator reference and Token reference fields within the key information panel.

Chapter 32. Administering web services - Security (WS-Security) 3435



About this task

This task provides the steps needed for configuring the key information for the request generator (client
side) and the response generator (server side) bindings at the application level.

Complete the following information to configure the key information for the generator binding on the
application level:

Procedure

1. Locate the key information configuration panel in the administrative console.

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties you can access the key information for the request
generator and response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.
Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

d. Under Required properties, click Key information.

e. Click New to create a key information configuration, select the box next to an existing configuration
and click Delete to delete the configuration, or click the name of an existing signing information
configuration to edit its settings. If you are creating a new configuration, enter a name in the Key
information name field. For example, you might specify gen_signkeyinfo.

2. Select a key information type from the Key information type field. The key information type specifies
how to reference the security tokens. WebSphere Application Server supports the following key
information types:

Key identifier
The security token is referenced using an opaque value that uniquely identifies the token. The
algorithm that is used for generating the <KeyIdentifier> element value depends upon the
token type. For example, a hash of the important elements of the security token is used for
generating the <KeyIdentifier> element value. The following <KeyInfo> element is generated in
the SOAP message for this key information type:

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<wsse:SecurityTokenReference>

<wsse:KeyIdentifier ValueType="wsse:X509v3">/62wXO...
</wsse:KeyIdentifier>

</wsse:SecurityTokenReference>
</ds:KeyInfo>

Key name
The security token is referenced using a name that matches an identity assertion within the
token. It is recommended that you do not use this key type as it might result in multiple
security tokens that match the specified name. The following <KeyInfo> element is generated
in the SOAP message for this key information type:

<ds:KeyInfo>
<ds:KeyName>CN=Group1</ds:KeyName>

</ds:KeyInfo>

Security token reference
The security token is directly referenced using Universal Resource Identifiers (URIs). The
following <KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>
<wsse:SecurityTokenReference>

<wsse:Reference URI="#mytoken" />
</wsse:SecurityTokenReference>

</ds:KeyInfo>

3436 Administering WebSphere applications



Embedded token
The security token is directly embedded within the <SecurityTokenReference> element. The
following <KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>
<wsse:SecurityTokenReference>

<wsse:Embedded wsu:Id=”tok1” />
...

</wsse:Embedded>
</wsse:SecurityTokenReference>

</ds:KeyInfo>

X509 issuer name and issuer serial
The security token is referenced by an issuer name and an issuer serial number of an X.509
certificate. The following <KeyInfo> element is generated in the SOAP message for this key
information type:

<ds:KeyInfo>
<wsse:SecurityTokenReference>
<ds:X509Data>

<ds:X509IssuerSerial>
<ds:X509IssuerName>CN=Jones, O=IBM, C=US
</ds:X509IssuerName>
<ds:X509SerialNumber>1040152879
</ds:X509SerialNumber>

</ds:X509IssuerSerial>
</ds:X509Data>

</wsse:SecurityTokenReference>
</ds:KeyInfo>

Each type of key information is described in the Web Services Security: SOAP Message Security 1.0
(WS-Security 2004) OASIS standard, which is located at: http://www.oasis-open.org/home/index.php
under Web Services Security.

3. Select a key locator reference from the Key locator reference field. This reference specifies a key
locator that WebSphere Application Server uses to locate the keys that are used for digital signature
and encryption. Before you can select a key locator, you must have configured a key locator. For more
information on configuring a key locator, see the following articles:

v “Configuring the key locator using JAX-RPC for the generator binding on the application level” on
page 3526

v “Configuring the key locator using JAX-RPC for the consumer binding on the application level” on
page 3533

4. Click Get keys to view a list of key name references. After you click Get keys, the key names that are
defined in the <sig_klocator> element are shown in the key name reference menu. If you change the
key locator reference, you must click Get keys again to display the list of key names associated with
the new key locator.

5. Select a key name reference from the Key name reference field. This reference specifies the name of
a key that is used for generating a digital signature and for encryption. The list of key names provided
comes from the key locator specified with the key locator reference.

6. Select a token reference from the Token reference field. This token reference specifies the name of
token generator that is used for processing the security token. However, WebSphere Application
Server requires this field only when you select Security token reference or Embedded token in the Key
information type field. Before specifying a token reference, you must configure a token generator. For
more information on configuring a token generator, see “Configuring token generators using JAX-RPC
to protect message authenticity at the application level” on page 3448.

7. Optional: If you select Key identifier as the key information type on this panel, you must specify an
encoding method, calculation method, value type namespace URI, and a value type local name.

a. Select an encoding method from the Encoding method field. The encoding method specifies the
encoding format for the key identifier. WebSphere Application Server supports the following
encoding methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary

Chapter 32. Administering web services - Security (WS-Security) 3437

http://www.oasis-open.org/home/index.php


v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#HexBinary

b. Select a calculation method from the Calculation method field. WebSphere Application Server
supports the following calculation methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#ITSHA1

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#IT60SHA1

c. Specify a value type namespace Uniform Resource Identifier (URI) in the Namespace URI field. In
this field, specify the namespace URI of the value type for a security token that is referenced by
the key identifier. When you specify the X.509 certificate token, you do not need to specify this
option. If you want to specify another token, you must specify the URI of the qualified name
(QName) for value type.

d. Specify a value type local name. This name is the local name of the value type for a security token
that is referenced by the key identifier. When this local name is used in conjunction with the
corresponding namespace URI, the information is called the value type qualified name or QName.

When you specify the X.509 certificate token, it is recommended that you use the predefined local
names. When you specify the predefined local names, you do not need to specify the namespace
URI of the value type. However, if you do not use one of the predefined local names, you must
specify both the uniform resource identifier (URI) and the local name. WebSphere Application
Server provides the following predefined local names:

X.509 certificate token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

X.509 certificates in a PKIPath
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

LTPA Lightweight Third-Party Authentication token. When you specify a value type local name of
LTPA, you must also specify a namespace URI of http://www.ibm.com/websphere/
appserver/tokentype/5.0.2.

LTPA_PROPAGATION
Lightweight Third-Party Authentication propagation token. When you specify a value type
local name of LTPA_PROPAGATION, you must also specify a namespace URI of
http://www.ibm.com/websphere/appserver/tokentype.

8. Click OK and then click Save to save the configuration.

Results

You have configured the key information for the generator binding at the application level

What to do next

You must specify a similar key information configuration for the consumer.

Key information collection:

Use this page to view the configurations that are currently available for generating or consuming the key
for XML digital signatures and XML encryption.

To view this administrative console page on the server level for the key information references, complete
the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

3438 Administering WebSphere applications



Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default Generator Bindings or the JAX-RPC Default Consumer Bindings, click Key
information.

To view this administrative console page on the application level for the key information references,
complete the following steps.

Note: This option is available on the application level for Version 6 and later applications.

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the signing information for the following
bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under
Request generator (sender) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.
Under Response consumer (receiver) binding, click Edit custom.

4. Under Required properties, click Key information.

Key information name:

Specifies the name that is given for the key configuration.

Key information class name:

Specifies the class name that is used for the key information type.

Key information type:

Specifies the type of mechanism used to reference the security token. The type corresponds to the class
name that is specified in the Key information class name field.

Key information configuration settings:

Use this page to specify the related configuration need to specify the key for XML digital signature or XML
encryption.

To view this administrative console page on the server level for the key information references, complete
the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default Generator Bindings or the JAX-RPC Default Consumer Bindings, click Key
information.

4. Click New to create a new configuration or click the configuration name to modify its contents.

Chapter 32. Administering web services - Security (WS-Security) 3439



To view this administrative console page on the application level for the key information references,
complete the following steps.

Note: This option is available on the application level for Version 6.x applications.

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Additional properties, you can access the signing information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under
Request generator (sender) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.
Under Response consumer (receiver) binding, click Edit custom.

4. Under Required properties, click Key information.

5. Click New to create a new configuration or click the configuration name to modify its contents.

Before clicking Properties under Additional properties, you must enter a value in the Key information
name field and select an option for the Key information type and Key locator reference options.

Key information name:

Specifies a name for the key information configuration.

Key information type:

Specifies the type of key information. The key information type specifies how to reference security tokens.

This product supports the following types of key information. Each type of key information is described in
Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

Table 306. Key information types. These types of key information are supported by the product.
Type Description

Key identifier The security token is referenced using an opaque value that uniquely identifies
the token.

Key name The security token is referenced using a name that matches an identity assertion
within the token.

Security token reference With this type, the security token is directly referenced.

Embedded token With this type, the security token reference is embedded.

X509 issuer name and issuer serial With this type, the security token is referenced by an issuer and serial number of
an X.509 certificate

The X.509 issuer name and issuer serial is described in Web Services Security: X.509 Certificate Token
Profile Version 1.0. The other types are described in Web Services Security: SOAP Message Security 1.0
(WS-Security 2004).

If you select Key identifier for the key information type, you can specify values in the following fields on
this panel:

v Encoding method

v Calculation method

v Value type namespace URI

v Value type local name

3440 Administering WebSphere applications

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf


Key locator reference:

Specifies the reference that is used to retrieve the key for digital signature and encryption.

Before specifying a key locator reference, you must configure a key locator. You can specify a signing key
configuration for the following bindings:

Table 307. Signing key binding configurations. The key is used during digital signature and encryption.
Binding name Server level or application

level
Path

Default generator binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.
Note: In a mixed node cell with a server using Websphere
Application Server version 6.1 or earlier, click Web services:
Default bindings for Web Services Security.

3. Click New to create a new key locator or click the name of a
configured key locator to modify its configuration.

Default consumer binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.
Note: In a mixed node cell with a server using Websphere
Application Server version 6.1 or earlier, click Web services:
Default bindings for Web Services Security.

3. Under Additional properties, click Key locators.

4. Click New to create a new key locator or click the name of a
configured key locator to modify its configuration.

Request sender binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Client security bindings. Under Request
sender binding, click Edit.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click the name of a
configured key locator to modify its configuration.

Response receiver binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Client security bindings. Under
Response receiver binding, click Edit.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click the name of a
configured key locator to modify its configuration.

Request receiver binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Server security bindings. Under Request
receiver binding, click Edit.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click the name of a
configured key locator to modify its configuration.

Response sender binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Server security bindings. Under
Response sender binding, click Edit.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click the name of a
configured key locator to modify its configuration.

Chapter 32. Administering web services - Security (WS-Security) 3441



Table 307. Signing key binding configurations (continued). The key is used during digital signature and encryption.
Binding name Server level or application

level
Path

Request generator (sender) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click the name of a
configured key locator to modify its configuration.

Response consumer (receiver) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Client security bindings. Under
Response consumer (receiver) binding, click Edit custom.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click the name of a
configured key locator to modify its configuration.

Request consumer (receiver) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click the name of a
configured key locator to modify its configuration.

Response generator (sender) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Server security bindings. Under
Response generator (sender) binding, click Edit custom.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click the name of a
configured key locator to modify its configuration.

Key name reference:

Specifies the name of the key that is used for generating digital signature and encryption.

This field is displayed for the default generator and is also displayed for the request generator and
response generator.

Table 308. Key name reference binding configurations. The key is used during digital signature and encryption.
Binding name Server level or application level Path

Default generator binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.
Note: In a mixed node cell with a server using Websphere
Application Server version 6.1 or earlier, click Web services:
Default bindings for Web Services Security.

3. Under Additional properties, click Key locators.

4. Click New to create a new key locator or click the name of a
configured key locator to modify its configuration.

3442 Administering WebSphere applications



Table 308. Key name reference binding configurations (continued). The key is used during digital signature and
encryption.
Binding name Server level or application level Path

Request generator (sender) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click the name of a
configured key locator to modify its configuration.

Response generator (sender) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Server security bindings. Under
Response generator (sender) binding, click Edit custom.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click the name of a
configured key locator to modify its configuration.

Token reference:

Specifies the name of a token generator or token consumer that is used for processing a security token.

The application server requires this field only when you specify Security token reference or Embedded
token in the Key information type field. The Token reference field is also required when you specify a
key identifier type for the consumer. Before specifying a token reference, you must configure a token
generator or token consumer. You can specify a token configuration for the following bindings on the
following levels:

Table 309. Token reference binding configurations. The reference information is used for a security token reference
or an embedded token.
Binding name Server level or application

level
Path

Default generator binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.
Note: In a mixed node cell with a server using Websphere
Application Server version 6.1 or earlier, click Web services:
Default bindings for Web Services Security.

3. Under JAX-RPC Default Generator Bindings, click Token
generator.

4. Click New to create a new token generator or click the name of
a configured token generator to modify its configuration.

Default consumer binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.
Note: In a mixed node cell with a server using Websphere
Application Server version 6.1 or earlier, click Web services:
Default bindings for Web Services Security.

3. Under JAX-RPC Default Consumer Bindings, click Token
consumer.

4. Click New to create a new token consumer or click the name of
a configured token consumer to modify its configuration.

Chapter 32. Administering web services - Security (WS-Security) 3443



Table 309. Token reference binding configurations (continued). The reference information is used for a security token
reference or an embedded token.
Binding name Server level or application

level
Path

Request generator (sender) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit custom.

4. Under Additional properties, click Token generators.

5. Click New to create a new token generator or click the name of
a configured token generator to modify its configuration.

Response consumer (receiver) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Client security bindings. Under
Response consumer (receiver) binding, click Edit custom.

4. Under Required properties, click Token consumers.

5. Click New to create a new token consumer or click the name of
a configured token consumer to modify its configuration.

Request consumer (receiver) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom.

4. Under Required properties, click Token consumers.

5. Click New to create a new token consumer or click the name of
a configured token consumer to modify its configuration.

Response generator (sender) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Server security bindings. Under
Response generator (sender) binding, click Edit custom.

4. Under Additional properties, click Token generators.

5. Click New to create a new token generator or click the name of
a configured token generator to modify its configuration.

Encoding method:

Specifies the encoding method that indicates the encoding format for the key identifier.

This field is valid when you specify Key identifier in the Key information type field. This product supports
the following encoding methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#HexBinary

This field is available for the default generator binding only.

Calculation method:

This field is valid when you specify Key identifier in the Key information type field. This product supports
the following calculation methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#ITSHA1

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#IT60SHA1

This field is available for the generator binding only.

3444 Administering WebSphere applications



Value type namespace URI:

Specifies the namespace Uniform Resource Identifier (URI) of the value type for a security token that is
referenced by the key identifier.

This field is valid when you specify Key identifier in the Key information type field. When you specify the
X.509 certificate token, you do not need to specify this option. If you want to specify another token, specify
the URI of QName for value type.

This product provides the following predefined value type URIs for the Lightweight Third Party
Authentication (LTPA) token:

v http://www.ibm.com/websphere/appserver/tokentype

v http://www.ibm.com/websphere/appserver/tokentype/5.0.2

This field is available for the generator binding only.

Value type local name:

Specifies the local name of the value type for a security token that is referenced by the key identifier.

When this local name is used with the corresponding namespace URI, the information is called the value
type qualified name or QName.

This field is valid when you specify Key identifier in the Key information type field. When you specify the
X.509 certificate token, it is recommended that you use the predefined local names. When you specify the
predefined local names, you do not need to specify the URI of the value type. This product provides the
following predefined local names:

X.509 certificate token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

X.509 certificates in a PKIPath
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

Lightweight Third Party Authentication (LTPA)

LTPA_PROPAGATION

Attention: For LTPA, the value type local name is LTPA. If you enter LTPA for the local name, you must
specify the http://www.ibm.com/websphere/appserver/tokentype/5.0.2 URI value in the Value type URI
field as well. For LTPA token propagation, the value type local name is LTPA_PROPAGATION. If you enter
LTPA_PROPAGATION for the local name, you must specify the http://www.ibm.com/websphere/appserver/
tokentype URI value in the Value type URI field as well. For the other predefined value types (User name
token, X509 certificate token, X509 certificates in a PKIPath, and a list of X509 certificates and CRLs in a
PKCS#7), the value for the Value type local name field begins with http://. For example, if you are
specifying the user name token for the value type, enter http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-username-token-profile-1.0#UsernameToken in the Value type local name field and then you
do not need to enter a value in the value type URI field.

When you specify a custom value type for custom tokens, you can specify the local name and the URI of
the quality name (QName) of the value type. For example, you might specify Custom for the local name
and http://www.ibm.com/custom for the URI.

This field is also available for the generator binding only.

Chapter 32. Administering web services - Security (WS-Security) 3445



Configuring the key information for the consumer binding on the application level:

You can configure the key information for the request consumer (server side) and the response consumer
(client side) bindings at the application level.

Before you begin

Configure the key locators and the token consumers that are referenced by the Key locator reference and
the Token reference fields within the key information panel.

About this task

This task provides the steps that are needed for configuring the key information for the request consumer
(server side) and the response consumer (client side) bindings at the application level. The key information
on the consumer side is used for specifying the information about the key, which is used for validating the
digital signature in the received message or for decrypting the encrypted parts of the message. Complete
the following steps to configure the key information for consumer binding on the application level.

Procedure

1. Locate the key information configuration panel in the administrative console.

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties, you can access the key information for the request
consumer and response consumer bindings.

v For the request consumer (receiver) binding, click Web services: Server security bindings.
Under request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.
Under response consumer (receiver) binding, click Edit custom.

d. Under Required properties, click Key information.

e. Click one of the following to work with key information configuration:

New To create a key information configuration. Enter a name in the Key information name field.
For example, you might specify con_signkeyinfo.

Delete To delete a configuration (selected in the box next to that configuration).

an existing key information configuration
To edit the settings of a key information configuration.

2. Select a key information type from the Key information type field. The key information types specify
different mechanisms for referencing security tokens using the <wsse:SecurityTokenReference>
element within the <ds:KeyInfo> element. WebSphere Application Server supports the following key
information types:

Key identifier
The security token is referenced using an opaque value that uniquely identifies the token. The
algorithm that is used for generating the <KeyIdentifier> element value depends upon the
token type. For example, you can use the identifier for the public keys that are defined in the
Internet Engineering Task Force (IETF) Request for Comment (RFC) 3280. The following
<KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<wsse:SecurityTokenReference>

<wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/2004/01
/oasis-200401-wss-x509-token-profile-1.0#X509v3SubjectKeyIdentifier">
/62wXO...
</wsse:KeyIdentifier>

</wsse:SecurityTokenReference>
</ds:KeyInfo>

3446 Administering WebSphere applications

http://www.ietf.org/rfc/rfc3280.txt


Key name
The security token is referenced using a name that matches an identity assertion within the
token. It is recommended that you do not use this key type as it might result in multiple
security tokens that match the specified name. The following <KeyInfo> element is generated
in the SOAP message for this key information type:

<ds:KeyInfo>
<ds:KeyName>CN=Group1</ds:KeyName>

</ds:KeyInfo>

In general, use a key name when you use a Key-Hashing Message Authentication Code
(HMAC) digital signature algorithm, such as http://www.w3.org/2000/09/xmldsig#hmac-sha1.

Security token reference
The security token is directly referenced using Universal Resource Identifiers (URIs). The
following <KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>
<wsse:SecurityTokenReference>

<wsse:Reference URI=’#SomeCert’
ValueType="http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-x509-token-profile-1.0#X509v3" />
</wsse:SecurityTokenReference>

</ds:KeyInfo>

Attention: As stated in the Web Services Interoperability Organization (WS-I) Basic Security
Profile Version 1 draft and shown in the previous example, the wsse:Reference element in a
SECURE_ENVELOPE must have a ValueType attribute.

Embedded token
The security token is directly embedded within the <SecurityTokenReference> element. The
following <KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>
<wsse:SecurityTokenReference>

<wsse:Embedded wsu:Id=”tok1” />
...

</wsse:Embedded>
</wsse:SecurityTokenReference>

</ds:KeyInfo>

X509 issuer name and issuer serial
The security token is referenced by an issuer name and an issuer serial number of an X.509
certificate. The following <KeyInfo> element is generated in the SOAP message for this key
information type:

<ds:KeyInfo>
<wsse:SecurityTokenReference>
<ds:X509Data>

<ds:X509IssuerSerial>
<ds:X509IssuerName>CN=Jones, O=IBM, C=US</ds:X509IssuerName>
<ds:X509SerialNumber>1040152879</ds:X509SerialNumber>

</ds:X509IssuerSerial>
</ds:X509Data>

</wsse:SecurityTokenReference>
</ds:KeyInfo>

Each type of key information is described in the Web Services Security: SOAP Message Security 1.0
(WS-Security 2004) OASIS standard, which is located at: http://www.oasis-open.org/home/index.php
under Web Services Security.

3. Select a key locator reference from the Key locator reference field. The value of this field is a
reference to a key locator that WebSphere Application Server uses to locate the keys that are used for
digital signature and encryption. Before you can select a key locator, you must configure a key locator.
For more information on configuring a key locator, see “Configuring the key locator using JAX-RPC for
the consumer binding on the application level” on page 3533.

4. Select a token reference from the Token reference field. The token reference specifies a reference to
a token consumer that is used for processing the security token in the message. However, WebSphere

Chapter 32. Administering web services - Security (WS-Security) 3447

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html
http://www.oasis-open.org/home/index.php


Application Server requires this field only when you select Security token reference or Embedded
token in the Key information type field. Before specifying a token reference, you must configure a
token consumer. For more information on configuring a token consumer, see “Configuring token
consumers using JAX-RPC to protect message authenticity at the application level” on page 3466.

Select (none) if a token consumer is not required for this key information configuration.

5. Click OK and Save to save this configuration.

Results

You have configured the key information for the request or response (or both) consumer binding at the
application level.

What to do next

If you have not configured the key information for the generator binding, you must specify a similar key
information configuration for the generator. After you configure the key information for both the consumer
and the generator, configure the signing information or encryption information, which references the key
information that is specified in this key information task.

Configuring token generators using JAX-RPC to protect message authenticity at the application
level:

When you specify the token generators at the application level, the information is used on the generator
side to generate the security token.

Before you begin

You need to understand that the keystore/alias information that you provide for the generator, and the
keystore/alias information that you provide for the consumer are used for different purposes. The main
difference applies to the Alias for an X.509 callback handler.

When used in association with an encryption generator, the alias supplied for the generator is used to
retrieve the public key to encrypt the message. A password is not required. The alias that is entered on a
callback handler associated with an encryption generator must be accessible without a password. This
means that the alias must not have private key information associated with it in the keystore. When used
in association with a signature generator, the alias supplied for the generator is used retrieve the private
key to sign the message. A password is required.

About this task

Complete the following steps to configure the token generator on the application level:

Procedure

1. Locate the token generator panel in the administrative console.

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties you can access the token generators for the following
bindings:

v For the request generator (sender) binding, click Web services: Client security bindings.
Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Token generators.

3448 Administering WebSphere applications



e. Click New to create a token generator configuration, select an existing configuration. Click Delete
to delete an existing configuration, or click the name of an existing token generator configuration
to edit its settings. If you are creating a new configuration, enter a unique name in the Token
generator name field. For example, you might specify gen_signtgen.

2. Specify a class name in the Token generator class name field. The token generator class must
implement the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface. The token
generator class name for the request generator and the response generator must be similar to the
token consumer class name for the request consumer and the response consumer. For example, if
your application requires a username token consumer, you can specify the
com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer class name on the token consumer panel
for the application level and the com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator class
name in this field.

3. Optional: Select a part reference in the Part reference field. The part reference indicates the name of
the security token that is defined in the deployment descriptor.

Important: On the application level, if you do not specify a security token in your deployment
descriptor, the Part reference field is not displayed. If you define a security token called
user_tgen in your deployment descriptor, user_tgen is displayed as an option in the Part
reference field. You can specify a security token in the deployment descriptor when you
assemble your application using an assembly tool.

4. Select either None or Dedicated signing information for the certificate path. Select None when the
token generator does not use the PKCS#7 token type. When the token generator uses the PKCS#7
token type and you want to package certificate revocation lists (CRLs) in the security token, select
Dedicated signing information and select a certificate store. To configure a collection certificate
store and certificate revocation lists for the generator bindings on the application level, complete the
following steps:

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional Properties you can access the collection certificate store configuration for the
following bindings:

v For the request generator (sender) binding, click Web services: Client security bindings.
Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Collection certificate store.

also see the information about configuring a collection certificate store.

5. Optional: Select the Add nonce option. This option indicates whether a nonce is included in the user
name token for the token generator. Nonce is a unique, cryptographic number that is embedded in a
message to help stop repeat, unauthorized attacks of user name tokens. The Add nonce option is
valid only when the generated token type is a user name token and is available only for the request
generator binding.

If you select the Add nonce option, you can specify the following properties under Additional
properties. These properties are used by the request consumer.

Table 310. Additional nonce properties. Use the nonce properties to include nonce in the user name token.
Property name Default value Explanation

com.ibm.ws.wssecurity.config.token.
BasicAuth.Nonce.cacheTimeout

600 seconds Specifies the timeout value, in seconds, for the nonce value that
is cached on the server.

com.ibm.ws.wssecurity.config.token. BasicAuth.Nonce.clockSkew 0 seconds Specifies the time, in seconds, before the nonce time stamp
expires.

com.ibm.ws.wssecurity.config.token. BasicAuth.Nonce.maxAge 300 seconds Specifies the clock skew value, in seconds, to consider when
WebSphere Application Server checks the timeliness of the
message.

Chapter 32. Administering web services - Security (WS-Security) 3449



On the server level, you can specify these additional properties for a nonce on the Default bindings
for Web Services Security panel within the administrative console. To access the panel, click Servers
> Server Types > WebSphere application servers > server_name. Under Security, click JAX-WS
and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

6. Optional: Select the Add timestamp option. This option indicates whether to insert a time stamp into
the user name token. The Add timestamp option is valid only when the generated token type is a
user name token and is available only for the request generator binding.

7. Specify the value type local name in the Local name field. For a user name token and an X.509
certificate security token, WebSphere Application Server provides predefined local names for the
value type. When you specify any of the following local names, you do not need to specify a value
type URI:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

This local name specifies a user name token.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3
This local name specifies an X.509 certificate token.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

This local name specifies X.509 certificates in a public key infrastructure (PKI) path.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7
This local name specifies a list of X.509 certificates and certificate revocation lists in a
PKCS#7 format.

For an LTPA token, you can use LTPA for the value type local name and http://www.ibm.com/
websphere/appserver/tokentype/5.0.2 for the value type Uniform Resource Identifier (URI). For
LTPA token propagation, you can use LTPA_PROPAGATION for the value type local name and
http://www.ibm.com/websphere/appserver/tokentype for the value type URI.

8. Optional: Specify the value type URI in the URI field. This entry specifies the namespace URI of the
value type for the generated token.

9. Click OK and Save to save the configuration.

10. Click the name of your token generator configuration.

11. Under Additional properties, click Callback handler.

12. Specify the settings for the callback handler.

a. Specify a class name in the Callback handler class name field. This class name is the name of
the callback handler implementation class that is used to plug-in a security token framework. The
specified callback handler class must implement the javax.security.auth.callback.CallbackHandler
interface and must provide a constructor using the following syntax:

MyCallbackHandler(String username, char[] password, java.util.Map properties)

Where:

username
Specifies the user name that is passed into the configuration.

password
Specifies the password that is passed into the configuration.

properties
Specifies the other configuration properties that are passed into the configuration.

3450 Administering WebSphere applications



This constructor is required if the callback handler needs a user name and a password. However,
if the callback handler does not need a user name and a password, such as
X509CallbackHandler, use a constructor with the following syntax:

MyCallbackHandler(java.util.Map properties)

WebSphere Application Server provides the following default callback handler implementations:

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler
This callback handler uses a login prompt to gather the user name and password
information. However, if you specify the user name and password on this panel, a prompt
is not displayed and WebSphere Application Server returns the user name and password
to the token generator. Use this implementation for a Java Platform, Enterprise Edition
(Java EE) application client only. If you use this implementation, you must provide a basic
authentication user ID and password on this panel.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler
This callback handler does not issue a prompt and returns the user name and password if
it is specified on this panel. You can use this callback handler when the web service is
acting as a client. If you use this implementation, you must provide a basic authentication
user ID and password on this panel.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler
This callback handler uses a standard-in prompt to gather the user name and password.
However, if the user name and password is specified on this panel, WebSphere
Application Server does not issue a prompt, but returns the user name and password to
the token generator. Use this implementation for a Java Platform, Enterprise Edition (Java
EE) application client only. If you use this implementation, you must provide a basic
authentication user ID and password on this panel.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler
This callback handler is used to obtain the Lightweight Third Party Authentication (LTPA)
security token from the Run As invocation Subject. This token is inserted in the Web
Services Security header within the SOAP message as a binary security token. However,
if the user name and password are specified on this panel, WebSphere Application Server
authenticates the user name and password to obtain the LTPA security token rather than
obtaining it from the Run As Subject. Use this callback handler only when the web service
is acting as a client on the application server. It is recommended that you do not use this
callback handler on a Java EE application client. If you use this implementation, you must
provide a basic authentication user ID and password on this panel.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler
This callback handler is used to create the X.509 certificate that is inserted in the Web
Services Security header within the SOAP message as a binary security token. A keystore
and a key definition is required for this callback handler. If you use this implementation,
you must provide a key store password, path, and type on this panel.

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler
This callback handler is used to create X.509 certificates encoded with the PKCS#7
format. The certificate is inserted in the Web Services Security header in the SOAP
message as a binary security token. A keystore is required for this callback handler. You
can specify a certificate revocation list (CRL) in the collection certificate store. The CRL is
encoded with the X.509 certificate in the PKCS#7 format. If you use this implementation,
you must provide a key store password, path, and type on this panel.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler
This callback handler is used to create X.509 certificates encoded with the PkiPath
format. The certificate is inserted in the Web Services Security header within the SOAP
message as a binary security token. A keystore is required for this callback handler. A

Chapter 32. Administering web services - Security (WS-Security) 3451



CRL is not supported by the callback handler; therefore, the collection certificate store is
not required or used. If you use this implementation, you must provide a key store
password, path, and type on this panel.

The callback handler implementation obtains the required security token and passes it to the
token generator. The token generator inserts the security token in the Web Services Security
header within the SOAP message. Also, the token generator is a plug-in point for the pluggable
security token framework. Service providers can provide their own implementation, but the
implementation must use the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent
interface.

b. Optional: Select the Use identity assertion option. Select this option if you have identity
assertion defined in the IBM extended deployment descriptor. This option indicates that only the
identity of the initial sender is required and inserted into the Web Services Security header within
the SOAP message. For example, WebSphere Application Server sends only the user name of
the original caller for a username token generator. For an X.509 token generator, the application
server sends the original signer certification only.

c. Optional: Select the Use RunAs identity option. Select this option if you have identity assertion
defined in the IBM extended deployment descriptor and you want to use the Run As identity
instead of the initial caller identity for identity assertion in a downstream call. This option is valid
only if you have configured Username TokenGenerator as a token generator.

d. Optional: Specify the basic authentication user ID in the Basic authentication user ID field. This
entry specifies the user name that is passed to the constructors of the callback handler
implementation. The basic authentication user name and password are used if you specified one
of the following default callback handler implementations in the Callback handler class name
field:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

e. Optional: Specify the basic authentication password in the Basic authentication password field.
This entry specifies the password that is passed to the constructors of the callback handler
implementation.

f. Optional: Specify the key store password in the Key store password field. This entry specifies the
password used to access the key store file. The key store and its configuration are used if you
select on of the following default callback handler implementations that are provided by
WebSphere Application Server:

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler
The keystore is used to build the X.509 certificate with the certificate path.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler
The keystore is used to build the X.509 certificate with the certificate path.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler
The keystore is used to retrieve the X.509 certificate.

g. Optional: Specify the key store path in the Path field. It is recommended that you use the
${USER_INSTALL_ROOT} in the path name as this variable expands to the WebSphere Application
Server path on your machine. To change the path used by this variable, click Environment >
WebSphere variables, and click USER_INSTALL_ROOT. This field is required when you use the
com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler,
com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler, or
com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler callback handler
implementations.

h. Optional: Select the key store type in the Type field. This selection indicates the format used by
the keystore file. You can select one of the following values for this field:

3452 Administering WebSphere applications



JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS
Use this option if the Java Cryptography Extension is configured in the software
development kit (SDK). The default IBM JCE is configured in WebSphere Application
Server. This option provides stronger protection for stored private keys by using Triple
DES encryption.

JCERACFKS
Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11KS (PKCS11)
Use this format if your keystore uses the PKCS#11 file format. Keystores using this format
might contain RSA keys on cryptographic hardware or might encrypt keys that use
cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)
Use this option if your keystore uses the PKCS#12 file format.

13. Click OK and then click Save to save the configuration.

14. Click the name of your token generator configuration.

15. Under Additional properties, click Callback handler > Keys.

16. Specify the key name, key alias, and the key password.

a. Click New to create a key configuration, click Delete to delete an existing configuration, or click
the name of an existing key configuration to edit its settings. If you are creating a new
configuration, enter a unique name in the Key name field. For digital signatures, the key name is
used by the request generator or response generator signing information to determine which key
is used to digitally sign the message. For encryption, the key name is used to determine the key
used for encryption. The key name must be a fully qualified, distinguished name. For example,
CN=Bob,O=IBM,C=US.

b. Specify the key alias in the Key alias field. The key alias is used by the key locator to find the
key within the keystore file.

c. Specify the key password in the Key password field. This password is needed to access the key
object within the keystore file.

17. Click OK and Save to save the configuration.

Results

You have configured the token generator for the application level.

What to do next

You must specify a similar token consumer configuration for the application level.

Request generator (sender) binding configuration settings:

Use this page to specify the binding configuration for the request generator.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications > application_name
.

2. Under Modules, click Manage modules.

3. Click the Uniform Resource Identifier (URI).

4. Under Web Services Security Properties, click Web services: Client security bindings.

5. Under Request generator (sender) binding, click Edit custom.

Chapter 32. Administering web services - Security (WS-Security) 3453



Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

The security constraints or bindings are defined using the application assembly process before the
application is installed.

This product provides assembly tools to assemble your application.

If the security constraints are defined in the application, you must either define the corresponding binding
information or select the Use defaults option on this panel and use the default binding information for the
server level. The default binding provided by this product is a sample. Do not use this sample in a
production environment without modifying the configuration. The security constraints define what is signed
or encrypted in the Web Services Security message. The bindings define how to enforce the requirements.

Digital signature security constraint (integrity)

The following table shows the required and optional binding information when the digital signature security
constraint (integrity) is defined in the deployment descriptor.

Table 311. Binding information for digital signature security constraints. The binding information is used for digitally
signing messages.
Information type Required or optional

Signing information Required

Key information Required

Key locators Optional

Collection certificate store Optional

Token generator Optional

Properties Optional

You can use the key locators and the collection certificate store that are defined at the server-level.

Encryption constraint (confidentiality)

The following table shows the required and optional binding information when the encryption constraint
(confidentiality) is defined in the deployment descriptor.

Table 312. Binding information for encryption constraints. The binding information is used for encrypting messages.
Information type Required or optional

Encryption information Required

Key information Required

Key locators Optional

Collection certificate store Optional

Token generator Optional

Properties Optional

You can use the key locators and the collection certificate store that are defined at the server-level.

Security token constraint

The following table shows the required and optional binding information when the security token constraint
is defined in the deployment descriptor.

3454 Administering WebSphere applications



Table 313. Binding information for security token constraints. The binding information is used for signing or
encrypting messages.
Information type Required or optional

Token generator Required

Collection certificate store Optional

Properties Optional

You can use the collection certificate store that is defined at the server-level.

Use defaults:

Select this option if you want to use the default binding information from the server-level.

Component:

Specifies the enterprise bean in an assembled EJB module.

Port:

Specifies the port in the web service that is defined during application assembly.

Web service:

Specifies the name of the web service that is defined during application assembly.

Response generator (sender) binding configuration settings:

Use this page to specify the binding configuration for the response generator or response sender.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Click Manage modules.

3. Click the Uniform Resource Identifier (URI).

4. Under Web Services Security Properties, click Web services: Server security bindings.

5. Under Response generator (sender) binding, click Edit custom.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

The security constraints or bindings are defined using the application assembly process before the
application is installed.

This product provides assembly tools to assemble your application.

If the security constraints are defined in the application, you must either define the corresponding binding
information or select the Use defaults option on this panel and use the default binding information for the
server-level. The default binding that is provided by this product is a sample. Do not use this sample in a
production environment without modifying the configuration. The security constraints define what is signed
or encrypted in the Web Services Security message. The bindings define how to enforce the requirements.

Chapter 32. Administering web services - Security (WS-Security) 3455



Digital signature security constraint (integrity)

The following table shows the required and optional binding information when the digital signature security
constraint (integrity) is defined in the deployment descriptor.

Table 314. Binding information for digital signature constraints. The binding information is used for digitally signing
messages.
Information type Required or optional

Signing information Required

Key information Required

Key locators Optional

Collection certificate store Optional

Token generator Optional

Properties Optional

You can use the key locators and the collection certificate store that are defined at the server-level.

Encryption constraint (confidentiality)

The following table shows the required and optional binding information when the encryption constraint
(confidentiality) is defined in the deployment descriptor.

Table 315. Binding information for encryption constraints. The binding information is used for encrypting messages.
Information type Required or optional

Encryption information Required

Key information Required

Key locators Optional

Collection certificate store Optional

Token generator Optional

Properties Optional

You can use the key locators and the collection certificate store that are defined at the server-level.

Security token constraint

The following table shows the required and optional binding information when the security token constraint
is defined in the deployment descriptor.

Table 316. Binding information for security token constraints. The binding information is used for signing and
encrypting messages.
Information type Required or optional

Token generator Required

Collection certificate store Optional

Properties Optional

You can use the collection certificate store that is defined at the server-level.

Use defaults:

Select this option if you want to use the default binding information from the server level.

Port:

Specifies the port number in the web service that is defined during application assembly.

3456 Administering WebSphere applications



Web service:

Specifies the name of the web service that is defined during application assembly.

Callback handler configuration settings for JAX-RPC:

Use this page to specify how to acquire the security token that is inserted in the Web Services Security
header for JAX-RPC within the SOAP message. The token acquisition is a pluggable framework that
leverages the Java Authentication and Authorization Service (JAAS)
javax.security.auth.callback.CallbackHandler interface for acquiring the security token.

gotcha: Before you specify values for the Keystore and Key properties on this page, you must
understand that the keystore/alias information that you provide for the generator, and the
keystore/alias information that you provide for the consumer are used for different purposes. The
main difference applies to the alias for an X.509 callback handler:

Generator
When used in association with an encryption generator, the alias supplied for the generator is
used to retrieve the public key to encrypt the message. A password is not required. The alias that
is entered on a callback handler associated with an encryption generator must be accessible
without a password. This means that the alias must not have private key information associated
with it in the keystore. When used in association with a signature generator, the alias supplied for
the generator is used retrieve the private key to sign the message. A password is required.

Consumer
When used in association with an encryption consumer, the alias supplied for the consumer is
used retrieve the private key to decrypt the message. A password is required.

When used in associated with a signature consumer, the alias supplied for the consumer is used
strictly to retrieve the public key that is used to resolve an X.509 certificate that is not passed in
the SOAP security header as a BinarySecurityToken. A password is not required.

The alias that is entered on a callback handler associated with an signature consumer must be
accessible without a password. This means that the alias must not have private key information
associated with it in the keystore.

When an X.509 certificate that is not passed in the SOAP security header as a
BinarySecurityToken, a SecurityTokenReference will appear in the KeyInfo element within the
Signature element in the SOAP security header that will be used to resolve the X.509 certificate.
The methods that can be used are Key identifier, X.509 issuer name and issuer serial, and
Thumbprint. The consumer will accept any of these three methods for resolving an X.509
certificate outside the message when a keystore/alias is configured for an X.509 token consumer
associated with a signature consumer.

Because only one alias can be configured on the X.509 token consumer, the WS-Security run time
can resolve only one certificate outside a message. For example, if the X.509 token consumer is
configured for certificate A, if client A sends the keyIdentifier for certificate A, the certificate can be
retrieved. However, if client B sends the keyIdentifier for certificate B, the certificate cannot be
retrieved and the message will be rejected.

When an X.509 certificate is sent in the SOAP security header as a BinarySecurityToken, if there
is a keystore/alias configured on the X.509 token consumer associated with a signature consumer,
the certificate that is configured on the consumer will be compared against the one that is passed
in the message. If they do not match, the message will be rejected. This behavior is different than
JAX-RPC. The certificate associated with the alias configured on the X.509 token consumer is not
used to evaluate trust on the inbound certificate. Only the trust store and cert stores are used for
that purpose.

Chapter 32. Administering web services - Security (WS-Security) 3457



If you want the certificate configured on the X.509 token consumer associated with a signature
consumer to be available for KeyInfo resolution, but not reject X.509 certificates that are passed in
the message that do not match, you can add the following custom property to the X.509 token
consumer callback handler:
com.ibm.wsspi.wssecurity.consumer.callbackHandlerKeystoreLimitsAccess=false

To view this administrative console page for the callback handler on the server level, complete the
following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name .

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default generator bindings, click Token generators > token_generator_name.

4. Under Additional properties, click Callback handler.

To view this administrative console page for the callback handler on the application level , complete the
following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage ModulesURI_name.

3. Under Web Services Security properties, you can access the callback handler information for the
following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under
Request generator (sender) binding, click Edit custom. Under Additional properties, click Token
generator. Click New to create a new token generator configuration or click the name of an existing
configuration to modify its settings. Under Additional properties, click Callback handler.

v For the Response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom. Under Additional properties, click
Token generator. Click New to create a new token generator configuration or click the name of an
existing configuration to modify its settings. Under Additional properties, click Callback handler.

Callback handler class name:

Specifies the name of the callback handler implementation class that is used to plug in a security token
framework.

The specified callback handler class must implement the javax.security.auth.callback.CallbackHandler
class. The implementation of the JAAS javax.security.auth.callback.CallbackHandler interface must
provide a constructor using the following syntax:
MyCallbackHandler(String username, char[] password,

java.util.Map properties)

Where:

username
Specifies the user name that is passed into the configuration.

password
Specifies the password that is passed into the configuration.

properties
Specifies the other configuration properties that are passed into the configuration.

The application server provides the following default callback handler implementations:

3458 Administering WebSphere applications



com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler
This callback handler uses a login prompt to gather user name and password information.
However, if you specify the user name and password on this panel, a prompt is not displayed and
the application server returns the user name and password to the token generator if it is specified
on this panel. Use this implementation for a Java Platform, Enterprise Edition (Java EE)
application client only.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler
This callback handler does not issue a prompt and returns the user name and password if it is
specified on this panel. You can use this callback handler when the web service is acting as a
client.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler
This callback handler uses a standard-in prompt to gather the user name and password. However,
if the user name and password is specified on this panel, the application server does not issue a
prompt, but returns the user name and password to the token generator. Use this implementation
for a Java Platform, Enterprise Edition (Java EE) application client only.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler
This callback handler uses a standard-in prompt to gather the user name and password. However,
if the user name and password is specified on this panel, the application server does not issue a
prompt, but returns the user name and password to the token generator. Use this implementation
for a Java Platform, Enterprise Edition (Java EE) application client only.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler
This callback handler is used to obtain the Lightweight Third Party Authentication (LTPA) security
token from the RunAs invocation Subject. This token is inserted in the Web Services Security
header within the SOAP message as a binary security token. However, if the user name and
password are specified on this panel, the application server authenticates the user name and
password to obtain the LTPA security token rather than obtaining it from the RunAs Subject. Use
this callback handler only when the web service is acting as a client on the application server. It is
recommended that you do not use this callback handler on a Java EE application client.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler
This callback handler is used to create the X.509 certificate that is inserted in the Web Services
Security header within the SOAP message as a binary security token. A keystore and a key
definition is required for this callback handler.

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler
This callback handler is used to create X.509 certificates encoded with the PKCS#7 format. The
certificate is inserted in the Web Services Security header in the SOAP message as a binary
security token. A keystore is required for this callback handler. You must specify a certificate
revocation list (CRL) in the collection certificate store. The CRL is encoded with the X.509
certificate in the PKCS#7 format.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler
This callback handler is used to create X.509 certificates encoded with the PkiPath format. The
certificate is inserted in the Web Services Security header within the SOAP message as a binary
security token. A keystore is required for this callback handler. A CRL is not supported by the
callback handler; therefore, the collection certificate store is not required or used.

The callback handler implementation obtains the required security token and passes it to the token
generator. The token generator inserts the security token in the Web Services Security header within the
SOAP message. Also, the token generator is the plug-in point for the pluggable security token framework.
Service providers can provide their own implementation, but the implementation must use the
com.ibm.websphere.wssecurity.wssapi.token.SecurityToken interface. The Java Authentication and
Authorization Service (JAAS) Login Module implementation is used to create the security token on the
generator side and to validate (authenticate) the security token on the consumer side, respectively.

Use identity assertion:

Chapter 32. Administering web services - Security (WS-Security) 3459



Select this option if you have identity assertion defined in the IBM extended deployment descriptor.

This option indicates that only the identity of the initial sender is required and inserted into the Web
Services Security header within the SOAP message. For example, the application server sends only the
user name of the original caller for a Username TokenGenerator. For an X.509 token generator, the
application server sends the original signer certification only.

Use RunAs identity:

Select this option if you have identity assertion defined in the IBM extended deployment descriptor and
you want to use the Run As identity instead of the initial caller identity for identity assertion for a
downstream call.

This option is valid only if you have Username TokenGenerator configured as a token generator.

Basic authentication user ID:

Specifies the user name that is passed to the constructors of the callback handler implementation.

The basic authentication user name and password are used if you select one of the following default
callback handler implementations provided by this product:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

These implementations are described in detail under the Callback handler class name field description in
this article.

Basic authentication password:

Specifies the password that is passed to the constructor of the callback handler.

The keystore and its related configuration are used if you select one of the following default callback
handler implementations provided by this product:

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler
The keystore is used to build the X.509 certificate with the certificate path.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler
The keystore is used to build the X.509 certificate with the certificate path.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler
The keystore is used to retrieve the X.509 certificate.

Keystore: Select None if no keystore is needed for this configuration.

Select Predefined keystore to choose predefined keystores with keystore configuration name.

Select User-defined keystore to use user-defined keystores.

The following information needs to be specified:

Key store configuration name:

Specifies the name of the key store configuration defined in the keystore settings in secure
communications.

3460 Administering WebSphere applications



Key store password:

Specifies the password that is used to access the keystore file.

Key store path:

Specifies the location of the keystore file.

Use ${USER_INSTALL_ROOT} in the path name because this variable expands to the product path on
your machine. To change the path used by this variable, click Environment > WebSphere variables and
click USER_INSTALL_ROOT.

Key store type:

Specifies the type of keystore file format

Choose one of the following values for this field:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS
Use this option if the Java Cryptography Extension is configured in the software development kit
(SDK). The default IBM JCE is configured in the application server. This option provides stronger
protection for stored private keys by using Triple DES encryption.

PKCS11KS (PKCS11)
Use this option if your keystore file uses the PKCS#11 file format. Keystore files that use this
format might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware or might
encrypt keys that use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)
Use this option if your keystore file uses the PKCS#12 file format.

Key collection:

Use this page to view a list of logical names that is mapped to a key alias in the keystore file.

To view this administrative console page for the key locator collection on the server level, complete the
following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name .

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default generator bindings, click Token Generators > token_generator_name .

4. Under Additional properties, click Callback handler > Keys.

Keys are also available from the JAX-WS and JAX-RPC security runtime panel by clicking Key locators >
key_locator_name. Under Additional properties, click Keys.

To use this administrative console page for the key locator collection on the application level, complete the
following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access key locators for the following bindings:

Chapter 32. Administering web services - Security (WS-Security) 3461



v For the Request generator, click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit custom > Key locators. Under Additional properties, click
Keys.

v For the Request consumer, click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom > Key locators. Under Additional properties, click
Keys.

v For the Response generator, click Web services: Server security bindings. Under Response
generator (sender) binding, click Edit custom > Key locators. Under Additional properties, click
Keys.

v For the Response consumer, click Web services: Client security bindings. Under Response
consumer (receiver) binding, click Edit custom > Key locators. Under Additional properties, click
Keys.

4. Under Additional properties, you can access key locators for the following bindings:

v For the Request sender, click Web services: Client security bindings. Under Request sender
binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Request receiver, click Web services: Server security bindings. Under Request receiver
binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Response sender, click Web services: Server security bindings. Under Response sender
binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Response receiver, click Web services: Client security bindings. Under Response
receiver binding, click Edit > Key locators. Under Additional properties, click Keys.

Key name:

Specifies the name of the key object that is found in the keystore file.

Key alias:

Specifies an alias for the key object.

The alias is used when the key locator searches for the key objects in the keystore file.

Key configuration settings:

Use this page to define the mapping of a logical name to a key alias in a keystore file.

To view this administrative console page for the key locator collection on the server level, complete the
following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default generator bindings, click Token Generators > token_generator_name.

4. Under Additional properties, click Callback handler > Keys.

5. Specify a new key configuration by clicking New or by clicking the key configuration name to modify
the settings.

Keys are also available from the JAX-WS and JAX-RPC security runtime panel by clicking Key locators >
key_locator_name. Under Additional properties, click Keys > New. Specify a new key configuration by
clicking New or by clicking the key configuration name to modify the settings.

3462 Administering WebSphere applications



To use this administrative console page for the key locator collection on the application level, complete the
following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Additional properties, you can access key locators for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit custom > Key locators. Under Additional properties, click
Keys.

v For the Request consumer, click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom > Key locators. Under Additional properties, click
Keys.

v For the Response generator, click Web services: Server security bindings. Under Response
generator (sender) binding, click Edit custom > Key locators. Under Additional properties, click
Keys.

v For the Response consumer, click Web services: Client security bindings. Under Response
consumer (receiver) binding, click Edit custom > Key locators. Under Additional properties, click
Keys.

4. Under Web Services Security Properties, you can access key locators for the following bindings:

v For the Request sender, click Web services: Client security bindings. Under Request sender
binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Request receiver, click Web services: Server security bindings. Under Request receiver
binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Response sender, click Web services: Server security bindings. Under Response sender
binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Response receiver, click Web services: Client security bindings. Under Response
receiver binding, click Edit > Key locators. Under Additional properties, click Keys.

5. Specify a new key configuration by clicking New or by clicking the key configuration name to modify
the settings.

Key name:

Specifies the name of the key object. For digital signatures, the key name is used by the request sender
or request generator signing information to determine which key is used to digitally sign the message. For
encryption, the key name is used to determine the key used for encryption.

Key alias:

Specifies the alias for the key object, which is used by the key locator to find the key within the keystore
file.

Key password:

Specifies the password that is needed to access the key object within the keystore file.

Web services: Client security bindings collection:

The key name must be a fully qualified, distinguished name. For example, CN:Bob,O=IBM,C=US.

Note: If you enter the distinguished name with spaces before or after commas and equal symbols, the
application server normalizes the distinguished names automatically during run time by removing
these extra spaces.

Chapter 32. Administering web services - Security (WS-Security) 3463



Use this page to view a list of application-level, client-side binding configurations for Web Services
Security. These bindings are used when a web service is a client to another web service.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, click Web services: Client security bindings.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Component:

Specifies the enterprise bean in an assembled Enterprise JavaBeans (EJB) module.

Port:

Specifies the port that is used to send messages to a server and receive messages from a server.

Web service:

Specifies the name of the web service that is defined during application assembly.

Request generator (sender) binding:

Specifies the binding configuration that is used to send request messages to the request consumer.

Click Edit custom to configure the required and additional properties such as signing information, key
information, token generators, key locators, and collection certificate stores.

The binding information for the request generator that is specified for the client must match the binding
information for the request consumer that is specified for the server.

Response consumer (receiver) binding:

Specifies the binding configuration that is used to receive response messages from the response
generator.

Click Edit custom to configure the required and additional properties such as signing information, key
information, token consumers, key locators, collection certificate stores, and trust anchors.

The binding information for the response consumer that is specified for the client must match the binding
information for the response generator that is specified for the server.

Request sender binding:

Specifies the binding configuration that is used to send request messages to the request receiver.

Click Edit to configure the additional properties for the request sender such as signing information, key
information, encryption information, key locators, and the login binding.

3464 Administering WebSphere applications



The binding information for the request sender that is specified for the client must match the binding
information for the request receiver that is specified for the server.

Response receiver binding:

Specifies the binding configuration that is used to receive response messages from the response sender.

Click Edit to configure the additional properties for the response receiver such as signing information,
encryption information, trust anchors, collection certificate stores, and key locators.

The binding information for the response receiver that is specified for the client must match the binding
information for the response sender that is specified for the server.

HTTP basic authentication:

Specifies the user name and password to use for this port with HTTP transport-level basic authentication.
You can enable transport-level authentication security independently of message-level security.

Although the name of this field is HTTP basic authentication, you can use this field to specify the user
name and password in conjunction with any transport method. This field is not specific to HTTP transport.
For example, you can use this same field with Java Message Service (JMS).

Click Edit to configure the basic authentication ID and password for transport-level authentication.

HTTP SSL configuration:

Enables and configures transport-level Secure Sockets Layer (SSL) security for this port. You can enable
transport-level SSL security independently of message-level security.

Click Edit to specify the settings for transport-level HTTP SSL configuration for this port.

Web services: Server security bindings collection:

Use this page to view a list of server-side binding configurations for Web Services Security.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, click Web services: Server security bindings.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

Port:

Specifies the port in which messages are received from the request generator.

Web service:

Specifies the name of the web service that is defined during application assembly.

Request consumer (receiver) binding:

Chapter 32. Administering web services - Security (WS-Security) 3465



Specifies the binding configuration that is used to receive request messages from the request generator
(sender) binding.

Click Edit custom to configure the required and additional information such as signing information, key
information, token consumers, key locators, intermediate certificates in the collection certificate store, and
trust anchors.

The binding information for the request consumer that is specified for the server must match the binding
information for the request generator that is specified for the client.

Response generator (sender) binding:

Specifies the binding configuration that is used to send response messages to the response consumer.

Click Edit custom to configure the required and additional information such as signing information, key
information, token generators, key locators, and intermediate certificates in the collection certificate store.

The binding information for the response generator that is specified for the server must match the binding
information for the response consumer that is specified for the client.

Request receiver binding:

Specifies the binding configuration that is used to receive request messages from the request sender
binding.

Click Edit to configure additional properties for the request receiver such as signing information, encryption
information, trust anchors, collection certificate stores, key locators, trusted ID evaluators, and login
mappings.

The binding information for the request receiver that is specified for the server must match the binding
information for the request sender that is specified for the client.

Response sender binding:

Specifies the binding configuration that is used to send response messages to the response receiver.

Click Edit to configure additional properties for the response sender such as signing information,
encryption information, and key locators.

The binding information for the response sender that is specified for the server must match the binding
information for the response receiver that is specified for the client.

Configuring token consumers using JAX-RPC to protect message authenticity at the application
level:

You can specify the token consumer on the application level. The token consumer information is used on
the consumer side to incorporate the security token.

Before you begin

You need to understand that the keystore/alias information that you provide for the generator, and the
keystore/alias information that you provide for the consumer are used for different purposes. The main
difference applies to the Alias for an X.509 callback handler.

When used in association with an encryption consumer, the alias supplied for the consumer is used to
retrieve the private key to decrypt the message. A password is required. When associated with a signature

3466 Administering WebSphere applications



consumer, the alias supplied for the consumer is used strictly to retrieve the public key that is used to
resolve an X.509 certificate that is not passed in the SOAP security header as a BinarySecurityToken. A
password is not required.

About this task

Complete the following steps to configure the token consumer on the application level.

Procedure

1. Locate the token consumer panel in the administrative console.

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

b. Under Modules, click Manage modules > URI_name.

c. Under Web Services Security Properties you can access the token consumer for the following
bindings:

v For the request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.
Under Response consumer (receiver) binding, click Edit custom.

d. Under Required properties, click Token consumer.

e. Click New to create a token consumer configuration, click Delete to delete an existing
configuration, or click the name of an existing token consumer configuration to edit its settings. If
you are creating a new configuration, enter a unique name in the Token consumer name field.
For example, you might specify con_signtcon.

2. Specify a class name in the Token consumer class name field. The Java Authentication and
Authorization Service (JAAS) Login Module implementation is used to validate (authenticate) the
security token on the consumer side.

The token consumer class name for the request consumer and the response consumer must be
similar to the token generator class name for the request generator and the response generator. For
example, if your application requires a user name token consumer, you can specify the
com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator class name on the Token generator panel
for application level and the com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer class name in
this field.

3. Optional: Select a part reference in the Part reference field. The part reference indicates the name of
the security token that is defined in the deployment descriptor. For example, if you receive a
username token in your request message, you might want to reference the token in the username
token consumer.

Important: On the application level, if you do not specify a security token in your deployment
descriptor, the Part reference field is not displayed. If you define a security token called
user_tcon in your deployment descriptor, user_tcon is displayed as an option in the Part
reference field.

4. Optional: In the certificate path section of the panel, select a certificate store type and indicate the
trust anchor and certificate store name, if necessary. These options and fields are necessary when
you specify com.ibm.wsspi.wssecurity.token.X509TokenConsumer as the token consumer class name.
The names of the trust anchor and the collection certificate store are created in the certificate path
under your token consumer.

Restriction: The com.ibm.wsspi.wssecurity.token.TokenConsumingComponent interface is not used
with JAX-WS web services. If you are using JAX-RPC web services, this interface is still
valid.

You can select one of the following options:

Chapter 32. Administering web services - Security (WS-Security) 3467



None If you select this option, the certificate path is not specified.

Trust any
If you select this option, any certificate is trusted. When the received token is consumed, the
Application Server does not validate the certificate path.

Dedicated signing information
If you select this option, you can select a trust anchor and a certificate store configuration.
When you select the trust anchor or the certificate store of a trusted certificate, you must
configure the trust anchor and the certificate store before setting the certificate path.

Trust anchor
A trust anchor specifies a list of key store configurations that contain trusted root
certificates. These configurations are used to validate the certificate path of incoming
X.509-formatted security tokens. Keystore objects within trust anchors contain trusted
root certificates that are used by the CertPath API to validate the trustworthiness of a
certificate chain. You must create the keystore file using the keytool utility. The
keytool utility is available using the QShell Interpreter.

You can configure trust anchors for the application level by completing the following
steps:

a. Click Applications > Application Types > WebSphere enterprise applications
> application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Access the token consumer from the following bindings:

v For the request consumer (receiver) binding, click Web services: Server
security bindings. Under Request consumer (receiver) binding, click Edit
custom.

v For the response consumer (receiver) binding, click Web services: Client
security bindings. Under Response consumer (receiver) binding, click Edit
custom.

d. Under Additional properties, click Trust anchors.

Collection certificate store
A collection certificate store includes a list of untrusted, intermediary certificates and
certificate revocation lists (CRLs). The collection certificate store is used to validate
the certificate path of the incoming X.509-formatted security tokens. You can
configure the collection certificate store for the application level by completing the
following steps:

a. Click Applications > Application Types > WebSphere enterprise applications
> application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Access the token consumer from the following bindings:

v For the request consumer (receiver) binding, click Web services: Server
security bindings. Under Request consumer (receiver) binding, click Edit
custom.

v For the response consumer (receiver) binding, click Web services: Client
security bindings. Under Response consumer (receiver) binding, click Edit
custom.

d. Under Additional properties, click Collection certificate store.

5. Optional: Specify a trusted ID evaluator. The trusted ID evaluator is used to determine whether to
trust the received ID. You can select one of the following options:

None If you select this option, the trusted ID evaluator is not specified.

3468 Administering WebSphere applications



Existing evaluator definition
If you select this option, you can select one of the configured trusted ID evaluators. For
example, you can select the SampleTrustedIDEvaluator, which is provided by WebSphere
Application Server as an example.

Binding evaluator definition
If you select this option, you can configure a new trusted ID evaluator by specifying a trusted
ID evaluator name and class name.

Trusted ID evaluator name
Specifies the name that is used by the application binding to refer to a trusted identity
(ID) evaluator that is defined in the default bindings.

Trusted ID evaluator class name
Species the class name of the trusted ID evaluator. The specified trusted ID evaluator
class name must implement the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator
interface. The default TrustedIDEvaluator class is
com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl. When you use this default
TrustedIDEvaluator class, you must specify the name and value properties for the
default trusted ID evaluator to create the trusted ID list for evaluation. To specify the
name and value properties, complete the following steps:

a. Under Additional properties, click Properties > New.

b. Specify the trusted ID evaluator name in the Property field. You must specify the
name in the form, trustedId_n where _n is an integer from 0 to n.

c. Specify the trusted ID in the Value field.

For example:
property name="trustedId_0", value="CN=Bob,O=ACME,C=US"
property name="trustedId_1, value="user1"

If the distinguished name (DN) is used, the space is removed for comparison. See
the programming model information in the documentation for an explanation of how to
implement the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface. For more
information, see Default implementations of the Web Services Security service
provider programming interfaces.

Note: Define the trusted ID evaluator on the server level instead of the application
level. To define the trusted ID evaluator on the server level, complete the
following steps:

a. Click Servers > Server Types > WebSphere application servers >
server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application
Server version 6.1 or earlier, click Web services: Default bindings
for Web Services Security.

c. Under Additional properties, click Trusted ID evaluators.

d. Click New to define a new trusted ID evaluator.

The trusted ID evaluator configuration is available only for the token consumer on the server-side
application level.

6. Optional: Select the Verify nonce option. This option indicates whether to verify a nonce in the user
name token if it is specified for the token consumer. Nonce is a unique, cryptographic number that is
embedded in a message to help stop repeat, unauthorized attacks of user name tokens. The Verify
nonce option is valid only when the incorporated token type is a user name token.

Chapter 32. Administering web services - Security (WS-Security) 3469



7. Optional: Select the Verify timestamp option. This option indicates whether to verify a time stamp in
the user name token. The Verify nonce option is valid only when the incorporated token type is a
user name token.

8. Specify the value type local name in the Local name field. This field specifies the local name of the
value type for the consumed token. For a user name token and an X.509 certificate security token,
WebSphere Application Server provides predefined local names for the value type.

Table 317. Uniform Resource Identifier (URI) and Local name combinations. The local name value indicates the type
of consumed token.
URI Local name Description

A namespace URI is not applicable. Specify http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509v3 as the local name
value.

Specifies the name of an X.509 certificate
token

A namespace URI is not applicable. Specify http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-x509-token-
profile-1.0#X509PKIPathv1 as the local
name value.

Specifies the name of the X.509 certificates
in a PKI path

A namespace URI is not applicable. Specify http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-x509-token-
profile-1.0#PKCS7 as the local name value.

Specifies a list of X509 certificates and
certificate revocation lists (CRL) in a
PKCS#7

Specify http://www.ibm.com/websphere/appserver/
tokentype/5.0.2 as the URI value.

Specify LTPA as the local name value. Specifies a binary security token that
contains an embedded Lightweight Third
Party Authentication (LTPA) token.

9. Optional: Specify the value type URI in the URI field. This entry specifies the namespace URI of the
value type for the consumed token.

Remember: If you specify the token consumer for a username token or an X.509 certificate security
token, you do not need to specify a value type URI.

If you want to specify another token, you must specify both the local name and the URI. For example,
if you have an implementation of your own custom token, you can specify CustomToken in the Local
name field and http://www.ibm.com/custom

10. Click OK and Save to save the configuration.

11. Click the name of your token consumer configuration.

12. Under Additional properties, click JAAS configuration. The Java Authentication and Authorization
Service (JAAS) configuration specifies the name of the JAAS configuration that is defined in the JAAS
login panel. The JAAS configuration specifies how the token logs in on the consumer side.

13. Select a JAAS configuration from the JAAS configuration name field. The field specifies the name
of the JAAS system of application login configuration. You can specify additional JAAS system and
application configurations by clicking Global security. Under Authentication, click Java
Authentication and Authorization Service and click either Application logins > New or System
logins > New. Do not remove the predefined system or application login configurations. However,
within these configurations, you can add module class names and specify the order in which
WebSphere Application Server loads each module. WebSphere Application Server provides the
following predefined JAAS configurations:

ClientContainer
This selection specifies the login configuration that is used by the client container
applications. The configuration uses the CallbackHandler application programming interface
(API) that is defined in the deployment descriptor for the client container. To modify this
configuration, see the JAAS configuration panel for application logins.

WSLogin
This selection specifies whether all of the applications can use the WSLogin configuration to
perform authentication for the security run time. To modify this configuration, see the JAAS
configuration panel for application logins.

3470 Administering WebSphere applications



DefaultPrincipalMapping
This selection specifies the login configuration that is used by Java 2 Connectors (J2C) to
map users to principals that are defined in the J2C authentication data entries. To modify this
configuration, see the JAAS configuration panel for application logins.

system.LTPA_WEB
This selection processes login requests that are used by the web container such as servlets
and JavaServer Pages (JSPs) files. To modify this configuration, see the JAAS configuration
panel for system logins.

system.RMI_OUTBOUND
This selection processes RMI requests that are sent outbound to another server when the
com.ibm.CSIOutboundPropagationEnabled property is true. This property is set in the CSIv2
authentication panel.

To access the panel, click Security > Global security. Under Authentication, click RMI/IIOP
security > CSIv2 Outbound authentication. To set the
com.ibm.CSIOutboundPropagationEnabled property, select Security attribute propagation. To
modify this JAAS login configuration, see the JAAS - System logins panel.

system.wssecurity.X509BST
This selection verifies an X.509 binary security token (BST) by checking the validity of the
certificate and the certificate path. To modify this configuration, see the JAAS configuration
panel for system logins.

system.wssecurity.PKCS7
This selection verifies an X.509 certificate within a PKCS7 object that might include a
certificate chain, a certificate revocation list, or both. To modify this configuration, see the
JAAS configuration panel for system logins.

system.wssecurity.PkiPath
This section verifies an X.509 certificate with a public key infrastructure (PKI) path. To modify
this configuration, see the JAAS configuration panel for system logins.

system.wssecurity.UsernameToken
This selection verifies the basic authentication (user name and password) data. To modify this
configuration, see the JAAS configuration panel for system logins.

system.wssecurity.IDAssertionUsernameToken
This selection supports the use of identity assertion in Versions 6 and later applications to
map a user name to a WebSphere Application Server credential principal. To modify this
configuration, see the JAAS configuration panel for system logins.

system.WSS_INBOUND
This selection specifies the login configuration for inbound or consumer requests for security
token propagation using Web Services Security. To modify this configuration, see the JAAS
configuration panel for system logins.

system.WSS_OUTBOUND
This selection specifies the login configuration for outbound or generator requests for security
token propagation using Web Services Security. To modify this configuration, see the JAAS
configuration panel for system logins.

None With this selection, you do not specify a JAAS login configuration.

14. Click OK and then click Save to save the configuration.

Results

You have configured the token consumer for the application level.

Chapter 32. Administering web services - Security (WS-Security) 3471



What to do next

You must specify a similar token generator configuration for the application level.

Request consumer (receiver) binding configuration settings:

Use this page to specify the binding configuration for the request consumer.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applicationsapplication_name.

2. Click Manage modules.

3. Click the Uniform Resource Identifier (URI).

4. Under Web Services Security Properties, click Web services: Server security bindings.

5. Under Request consumer (receiver) binding, click Edit custom.

Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

The security constraints or bindings are defined using the application assembly process before the
application is installed.

This product provides assembly tools to assemble your application.

If the security constraints are defined in the application, you must either define the corresponding binding
information or select the Use defaults option on this panel and use the default binding information for the
server level. The default binding that is provided by this product is a sample. Do not use this sample in a
production environment without modifying the configuration. The security constraints define what is signed
or encrypted in the Web Services Security message. The bindings define how to enforce the requirements.

Digital signature security constraint (integrity)

The following table shows the required and optional binding information when the digital signature security
constraint (integrity) is defined in the deployment descriptor.

Table 318. Binding information for digital signature security constraints. The binding information is used for signing or
encrypting messages.
Information type Required or optional

Signing information Required

Key information Required

Token consumer Required

Key locators Optional

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the key locators, collection certificate stores, and trust anchors that are defined at the server
level.

Encryption constraint (confidentiality)

The following table shows the required and optional binding information when the encryption constraint
(confidentiality) is defined in the deployment descriptor.

3472 Administering WebSphere applications



Table 319. Binding information for encryption constraints. The binding information is used for signing or encrypting
messages.
Information type Required or optional

Encryption information Required

Key information Required

Token consumer Required

Key locators Optional

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the key locators, collection certificate store, and trust anchors that are defined at the server
level.

Security token constraint

The following table shows the required and optional binding information when the security token constraint
is defined in the deployment descriptor.

Table 320. Binding information for security token constraints. The binding information is used for signing or
encrypting messages.
Information type Required or optional

Token consumer Required

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the collection certificate store and trust anchors that are defined at the server level.

Use defaults:

Select this option if you want to use the default binding information from the server level.

If you select this option, the application server checks for binding information on the server level.

Port:

Specifies the port in the web service that is defined during application assembly.

Web service:

Specifies the name of the web service that is defined during application assembly.

Response consumer (receiver) binding configuration settings:

Use this page to specify the binding configuration for the response consumer.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules.

3. Click the Uniform Resource Identifier (URI).

4. Under Web Services Security Properties, click Web services: Client security bindings.

5. Under Response consumer (receiver) binding, click Edit custom.

Chapter 32. Administering web services - Security (WS-Security) 3473



Depending on your assigned security role when security is enabled, you might not have access to text
entry fields or buttons to create or edit configuration data. Review the administrative roles documentation
to learn more about the valid roles for the application server.

The security constraints or bindings are defined using the application assembly process before the
application is installed.

This product provides assembly tools to assemble your application.

The default binding that is provided by this product is a sample. Do not use this sample in a production
environment without modifying the configuration. The security constraints define what is signed or
encrypted in the Web Services Security message. The bindings define how to enforce the requirements.

Digital signature security constraint (integrity)

The following table shows the required and optional binding information when the digital signature security
constraint (integrity) is defined in the deployment descriptor.

Table 321. Binding information for digital signature security constraints. The binding information is used for validating
digital signature.
Information type Required or optional

Signing information Required

Key information Required

Token consumer Optional

Key locators Optional

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the key locators, collection certificate stores, and trust anchors that are defined at the server
level.

Encryption constraint (confidentiality)

The following table shows the required and optional binding information when the encryption constraint
(confidentiality) is defined in the deployment descriptor.

Table 322. Binding information for encryption constraints. The binding information is used for decrypting messages.
Information type Required or optional

Encryption information Required

Key information Required

Token consumer Optional

Key locators Optional

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the key locators, collection certificate store, and trust anchors that are defined at the
application or server level.

Security token constraint

The following table shows the required and optional binding information when the security token constraint
is defined in the deployment descriptor.

3474 Administering WebSphere applications



Table 323. Binding information for security token constraints. The binding information is used for digital signature
verification and for decrypting messages.
Information type Required or optional

Token consumer Required

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the collection certificate store and trust anchors that are defined at the application or server
level.

Use defaults:

Select this option if you want to use the default binding information from the server level.

Component:

Specifies the enterprise bean in an assembled Enterprise JavaBeans (EJB) module.

Port:

Specifies the port in the web service that is defined during application assembly.

Web service:

Specifies the name of the web service that is defined during application assembly.

Configuring encryption using JAX-RPC to protect message confidentiality at the application level:

You can configure encryption information, used to specify how the generators (senders) encrypt outgoing
messages, for the request generator (client side) and the response generator (server side) bindings at the
application level.

Before you begin

Configure the key information that is referenced by the key information references in the encryption
information panel.

About this task

This task provides the steps that are needed for configuring encryption information for the request
generator (client side) and the response generator (server side) bindings at the application level. This
encryption information is used to specify how the generators (senders) encrypt outgoing messages.

Complete the following steps to configure the encryption information for the request generator or response
generator section of the bindings file on the application level:

Procedure

1. Locate the encryption information configuration panel in the administrative console.

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties, you can access the key information for the request
generator and response generator bindings.

Chapter 32. Administering web services - Security (WS-Security) 3475



v For the request generator (sender) binding, click Web services: Client security bindings.
Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

d. Under Required properties, click Encryption information.

e. Click New to create an encryption information configuration. Click Delete to delete an existing
configuration or click the name of an existing encryption information configuration to edit its
settings. If you are creating a new configuration, enter a name in the Encryption information
name field. For example, you might specify gen_encinfo.

2. Select a data encryption algorithm from the Data encryption algorithm field. The selection specifies
the algorithm that is used to encrypt parts of the message. WebSphere Application Server supports the
following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Restriction: Do not use the 192-bit key encryption algorithm if you want your configured application
to be in compliance with the Basic Security Profile (BSP).

Important: Your country of origin might have restrictions on the import, possession, use, or
re-export to another country, of encryption software. Before downloading or using the
unrestricted policy files, you must check the laws of your country, its regulations, and its
policies concerning the import, possession, use, and re-export of encryption software, to
determine if it is permitted.

The data encryption algorithm that you select for the generator side must match the data encryption
method that you select for the consumer side.

3. Select a key encryption algorithm from the Key encryption algorithm field. This selection specifies
the algorithm that is used to encrypt keys. WebSphere Application Server supports the following
pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport
algorithms does not include this one. This algorithm appears in the list of supported key transport
algorithms when running with SDK Version 1.5.

Restriction: This algorithm is not supported when the WebSphere Application Server is running in
Federal Information Processing Standard (FIPS) mode.

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a
message digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512
message digest algorithm by specifying a key encryption algorithm property. For the property name,
you can specify com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of
the following URIs of the digest method:

– http://www.w3.org/2001/04/xmlenc#sha256

– http://www.w3.org/2001/04/xmlenc#sha512

3476 Administering WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p


By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the
OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption
algorithm property. For the property name, you can specify
com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded
value of the octet string.

Important: You can set these digest method and OAEPParams properties on the generator side
only. On the consumer side, these properties are read from the incoming SOAP
message.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Restriction: Do not use the 192-bit key encryption algorithm if you want your configured application
to be in compliance with the Basic Security Profile (BSP).

The key encryption algorithm that you select for the generator side must match the key encryption
method that you select for the consumer side.

4. Select an encryption key information reference from the Encryption key information menu. This
selection is a reference to the encryption key that is used to encrypt parts of the message. To
configure the key information, see “Configuring the key information using JAX-RPC for the generator
binding on the application level” on page 3435.

5. Select a part reference from the Part reference field. This field specifies the name of the part
reference for the generator binding element in the deployment descriptor.

6. Click OK and then click Save to save the configuration.

Results

The encryption information is configured for the generator binding at the application level.

What to do next

You must specify a similar encryption information configuration for the consumer.

Encryption information collection:

Use this page to specify the configuration for the encrypting and decrypting parameters. This configuration
is used to encrypt and decrypt parts of the message, including the body and user name token.

To view the administrative console panel for the encryption information on the server level, complete the
following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

Chapter 32. Administering web services - Security (WS-Security) 3477

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html


3. Under either JAX-RPC Default Generator Bindings or JAX-RPC Default Consumer Bindings, click
Encryption information.

To view this administrative console page for the collection certificate store on the application level,
complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applicationsapplication_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access encryption information for the following
bindings:

v For the Request generator, click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit custom. Under Required properties, click Encryption
information.

v For the Request consumer, click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom. Under Required properties, click Encryption
information.

v For the Response generator, click Web services: Server security bindings. Under Response
generator (sender) binding, click Edit custom. Under Required properties, click Encryption
information.

v For the Response consumer, click Web services: Client security bindings. Under Response
consumer (receiver) binding, click Edit custom. Under Required properties, click Encryption
information.

4. Under Additional properties, you can access encryption information for the following bindings:

v For the Request receiver, click Web services: Server security bindings. Under Request receiver
binding, click Edit. Under Additional properties, click Encryption information.

v For the Response receiver, click Web services: Client security bindings. Under Response
receiver binding, click Edit. Under Additional properties, click Encryption information.

Encryption information name:

Specifies the name of the encryption information.

Key locator reference:

Specifies the name of the key locator configuration that retrieves the key for XML digital signature and
XML encryption.

Key encryption algorithm: Specifies the algorithm that is used to encrypt and decrypt keys.

Data encryption algorithm: Specifies the algorithm that is used to encrypt and decrypt data.

Encryption information configuration settings: Message parts:

Use this page to configure the encryption and decryption parameters. You can use these parameters to
encrypt and decrypt various parts of the message, including the body and the token.

To view the administrative console panel for the encryption information on the server level, complete the
following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3478 Administering WebSphere applications



3. Under either JAX-RPC Default Generator Bindings or JAX-RPC Default Consumer Bindings, click
Encryption information.

4. Click New to create a new encryption configuration or click the name of an existing encryption
configuration.

To view this administrative console page for the encryption information on the application level, complete
the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Module update > module_name.

3. Under Web Services Security Properties, you can access encryption information for the following
bindings:

v For the Request generator, click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit custom. Under Required properties, click Encryption
information.

v For the Request consumer, click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom. Under Required properties, click Encryption
information.

v For the Response generator, click Web services: Server security bindings. Under Response
generator (sender) binding, click Edit custom. Under Required properties, click Encryption
information.

v For the Response consumer, click Web services: Client security bindings. Under Response
consumer (receiver) binding, click Edit custom. Under Required properties, click Encryption
information.

4. Click either New to create a new encryption configuration or click the name of an existing encryption
configuration.

Note: Fix packs that include updates to the Software Development Kit (SDK) might overwrite unrestricted
policy files. Back up unrestricted policy files before you apply a fix pack and reapply these files after
the fix pack is applied.

Encryption information name:

Specifies the name for the encryption information.

Information Value
Data type String

Data encryption algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the data encryption method.

The following algorithms are supported:
v http://www.w3.org/2001/04/xmlenc#tripledes-cbc
v http://www.w3.org/2001/04/xmlenc#aes128-cbc
v http://www.w3.org/2001/04/xmlenc#aes256-cbc. To use this algorithm, you must download the

unrestricted Java Cryptography Extension (JCE) policy file from the following website:
http://www.ibm.com/developerworks/java/jdk/security/index.html. For more information, see “Encryption
information configuration settings: Methods” on page 3484.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc. To use this algorithm, you must download the
unrestricted JCE policy file from the following website: http://www.ibm.com/developerworks/java/jdk/
security/index.html. For more information, see the help topic Encryption information configuration
settings: Methods.

Chapter 32. Administering web services - Security (WS-Security) 3479

http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#aes192-cbc
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html


Restriction: Do not use the 192-bit data encryption algorithm if you want your configured application to
be in compliance with the Basic Security Profile (BSP).

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength ciphers. To
use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms, you must apply
unlimited jurisdiction policy files. For more information, see the Key encryption algorithm field
description.

Key locator reference:

Specifies the name of the key locator configuration that retrieves the key for XML digital signature and
XML encryption.

The Key locator reference field is displayed for the request receiver and response receiver bindings.

You can configure these key locator reference options on the server level and the application level. The
configurations that are listed in the field are a combination of the configurations on these two levels.

You can specify an encryption key configuration for the following bindings on the following levels:

Table 324. Encryption key binding configurations. Use these configurations to encrypt and decrypt various parts of a
message.
Binding name Server level or application level Path

Default generator binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
Websphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under Additional properties, click Key locators.

Default consumer binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
Websphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under Additional properties, click Key locators.

Request sender Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Client security bindings. Under
Request sender binding, click Edit.

4. Under Additional properties, click Key locators.

Request receiver Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Server security bindings. Under
Request receiver binding, click Edit.

4. Under Additional properties, click Key locators.

Response sender Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Server security bindings. Under
Response sender binding, click Edit.

4. Under Additional properties, click Key locators.

3480 Administering WebSphere applications



Table 324. Encryption key binding configurations (continued). Use these configurations to encrypt and decrypt
various parts of a message.
Binding name Server level or application level Path

Response receiver Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Click Web services: Client security bindings. Under
Response receiver binding, click Edit.

4. Under Additional properties, click Key locators.

Key encryption algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the key encryption method.

The following algorithms are provided by the application server:

v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport
algorithms does not include this one. This algorithm appears in the list of supported key transport
algorithms when running with Software Development Kit (SDK) Version 1.5 or later.

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a message
digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512 message
digest algorithm by specifying a key encryption algorithm property. The property name is:
com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the following URIs
of the digest method:

– http://www.w3.org/2001/04/xmlenc#sha256

– http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the
OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption
algorithm property. For the property name, you can specify
com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded value
of the octet string.

Important: You can set these digest method and OAEPParams properties on the generator side only.
On the consumer side, these properties are read from the incoming SOAP message.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes192

Restriction: Do not use the 192-bit data encryption algorithm if you want your configured application to
be in compliance with the Basic Security Profile (BSP).

v http://www.w3.org/2001/04/xmlenc#kw-aes256

IBM Software Development Kit Version 1.4:

For IBM i and IBM Software Development Kit Version 1.4, the tuning of Web Services Security is not
required. The unrestricted jurisdiction policy files for IBM Software Development Kit Version 1.4 are
automatically configured when the prerequisite software is installed.

v For IBM i (formerly known as IBM i V5R3) and IBM Software Development Kit Version 1.4, install
product 5722AC3, Crypto Access Provider 128-bit.

Chapter 32. Administering web services - Security (WS-Security) 3481

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#kw-aes128
http://www.w3.org/2001/04/xmlenc#kw-aes192
http://www.w3.org/2001/04/xmlenc#kw-aes256


v For IBM i 5.4 and IBM Software Development Kit Version 1.4, install product 5722SS1 Option 3,
Extended Base Directory Support.

IBM Software Development Kit Version 1.5:

For IBM i 5.4 and IBM i (formerly known as IBM i V5R3) and IBM Software Development Kit 1.5, the
restricted JCE jurisdiction policy files are configured, by default. You can download the unrestricted JCE
jurisdiction policy files from the following website: IBM developer works: Security Information, Version 5

Note: If Java Platform, Standard Edition 6 (Java SE 6) 32-bit for IBM i is the enabled Java virtual machine
(JVM) for your profile, substitute /QOpenSys/QIBM/ProdData/JavaVM/jdk50/32bit/jre for
/QIBM/ProdData/Java400/jdk15 as the path name in the following steps.

Important: Your country of origin might have restrictions on the import, possession, use, or re-export to
another country, of encryption software. Before downloading or using the unrestricted policy
files, you must check the laws of your country, its regulations, and its policies concerning the
import, possession, use, and re-export of encryption software, to determine if it is permitted.

To configure the unrestricted jurisdiction policy files for IBM i and the IBM Software Development Kit
Version 1.5:

1. Make backup copies of these files:
/QIBM/ProdData/Java400/jdk15/lib/security/local_policy.jar
/QIBM/ProdData/Java400/jdk15/lib/security/US_export_policy.jar

2. Download the unrestricted policy files from IBM developer works: Security Information to the
/QIBM/ProdData/Java400/jdk15/lib/security directory.

a. Go to this website: http://www.ibm.com/developerworks/java/jdk/security/index.html

b. Click J2SE 5.0.

c. Scroll down and click IBM SDK Policy files. The Unrestricted JCE Policy files for the SDK website
is displayed.

d. Click Sign in and provide your IBM intranet ID and password.

e. Select the appropriate unrestricted JCE policy files, and then click Continue.

f. View the license agreement, and then click I Agree.

g. Click Download Now.

3. Use the DSPAUT command to ensure *PUBLIC is granted*RX data authority but also ensure that no
object authority is provided to both the local_policy.jar and the US_export_policy.jar files in the
/QIBM/ProdData/Java400/jdk15/lib/security directory. For example:

DSPAUT OBJ(’/qibm/proddata/java400/jdk15/lib/security/local_policy.jar’)

4. Use the CHGAUT command to change authorization, if needed. For example:
CHGAUT OBJ(’/qibm/proddata/java400/jdk15/lib/security/local_policy.jar’)
USER(*PUBLIC) DTAAUT(*RX) OBJAUT(*NONE)

Custom algorithms on the server level

To specify custom algorithms on the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Algorithm mappings.

4. Click New to specify a new algorithm mapping or click the name of an existing configuration to modify
its settings.

3482 Administering WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/50
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html


5. Under Additional properties, click Algorithm URI.

6. Click New to create a new algorithm URI. You must specify Key encryption in the Algorithm type
field to have the configuration display in the Key encryption algorithm field on the Encryption
information configuration settings panel.

Encryption key information:

Specifies the name of the key information reference that is used for encryption. This reference is resolved
to the actual key by the specified key locator and defined in the key information.

You must specify either one or no encryption key configurations for the request generator and response
generator bindings.

For the response consumer and the request consumer bindings, you can configure multiple encryption key
references. To create a new encryption key reference, under Additional properties, click Key information
references.

You can specify an encryption key configuration for the following bindings on the following levels:

Table 325. Encryption key binding configurations. Use these configurations to encrypt and decrypt various parts of a
message.
Binding name Server level or application level Path

Default generator binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
Websphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under JAX-RPC Default generator binding, click Key
information.

Default consumer binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
Websphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under JAX-RPC Default consumer binding, click Key
information.

Request generator (sender) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, click Web
services: Client security bindings.

4. Under Request generator (sender) binding, click Edit
custom.

5. Under Required properties, click Key information.

Response generator (sender) binding Application level 1. Click Applications > Application Types > WebSphere
enterprise applications > application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, click Web
services: Server security bindings.

4. Under Response generator (sender) binding, click Edit
custom.

5. Under Required properties, click Key information.

Chapter 32. Administering web services - Security (WS-Security) 3483



Part Reference:

Specifies the name of the <confidentiality> element for the generator binding or the
<requiredConfidentiality> element for the consumer binding element in the deployment descriptor.

This field is available on the application level only.

Encryption information configuration settings: Methods:

Use this page to configure the encryption and decryption parameters for the signature method, digest
method, and canonicalization method.

The specifications that are listed on this page for the signature method, digest method, and
canonicalization method are located in the World Wide Web Consortium (W3C) document entitled, XML
Encryption Syntax and Processing: W3C Recommendation 10 Dec 2002.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications > application_name
and complete one of the following steps:

v Click Manage modules > URI_file_name > Web Services: Client Security Bindings. Under
Request sender binding, click Edit. Under Web Services Security Properties, click Encryption
Information.

v Under Modules, click Manage modules > URI_file_name > Web Services: Server Security
Bindings. Under Response sender binding, click Edit. Under Web Services Security Properties,
click Encryption Information.

2. Select None or Dedicated encryption information. The application server can have either one or no
encryption configurations for the request sender and the response sender bindings. If you are not
using encryption, select None. To configure encryption for either of these two bindings, select
Dedicated encryption information and specify the configuration settings using the fields that are
described in this topic.

Note: Fix packs that include updates to the Software Development Kit (SDK) might overwrite unrestricted
policy files. Back up unrestricted policy files before you apply a fix pack and reapply these files after
the fix pack is applied.

Encryption information name:

Specifies the name for the encryption information.

Key locator reference:

Specifies the name that is used to reference the key locator.

You can configure these key locator reference options on the server level and the application level. The
configurations that are listed in the field are a combination of the configurations on these two levels.

To configure the key locators on the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Key locators.

3484 Administering WebSphere applications



To configure the key locators on the application level, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the key locators for the following bindings:

v For the Request sender, click Web services: Client security bindings. Under Request sender
binding, click Edit. Under Additional properties, click Key locators.

v For the Request receiver, click Web services: Server security bindings. Under Request receiver
binding, click Edit. Under Additional properties, click Key locators.

v For the Response sender, click Web services: Server security bindings. Under Response sender
binding, click Edit. Under Additional properties, click Key locators.

v For the Response receiver, click Web services: Client security bindings. Under Response
receiver binding, click Edit. Under Additional properties, click Key locators.

Encryption key name:

Specifies the name of the encryption key that is resolved to the actual key by the specified key locator.

Information Value
Data type String

Key encryption algorithm:

Specifies the algorithm uniform resource identifier (URI) of the key encryption method.

The following algorithms are supported:
v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with IBM Software Development Kit (SDK) Version 1.4, the list of supported key transport
algorithms does not include this one. This algorithm appears in the list of supported key transport
algorithms when running with JDK 1.5 or later.

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a message
digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512 message
digest algorithm by specifying a key encryption algorithm property. The property name is:
com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the following URIs
of the digest method:
– http://www.w3.org/2001/04/xmlenc#sha256
– http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the
OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption
algorithm property. For the property name, you can specify
com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded value
of the octet string.

Important: You can set these digest method and OAEPParams properties on the generator side only.
On the consumer side, these properties are read from the incoming SOAP message.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5.
v http://www.w3.org/2001/04/xmlenc#kw-tripledes.
v http://www.w3.org/2001/04/xmlenc#kw-aes128.
v http://www.w3.org/2001/04/xmlenc#kw-aes192. To use the 192-bit key encryption algorithm, you must

download the unrestricted Java Cryptography Extension (JCE) policy file.

Restriction: Do not use the 192-bit key encryption algorithm if you want your configured application to
be in compliance with the Basic Security Profile (BSP).

Chapter 32. Administering web services - Security (WS-Security) 3485

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#kw-aes128
http://www.w3.org/2001/04/xmlenc#kw-aes192


v http://www.w3.org/2001/04/xmlenc#kw-aes256. To use the 256-bit key encryption algorithm, you must
download the unrestricted JCE policy file.

Note: If an InvalidKeyException error occurs and you are using the 129xxx or 256xxx encryption
algorithm, the unrestricted policy files might not exist in your configuration.

Java Cryptography Extension

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength ciphers. To
use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms, you must apply
unlimited jurisdiction policy files.

Important: Your country of origin might have restrictions on the import, possession, use, or re-export to
another country, of encryption software. Before downloading or using the unrestricted policy
files, you must check the laws of your country, its regulations, and its policies concerning the
import, possession, use, and re-export of encryption software, to determine if it is permitted.

To download the policy files, complete one of the following sets of steps:

After completing these steps, two Java archive (JAR) files are placed in the Java virtual machine (JVM)
jre/lib/security/ directory.

IBM i and IBM Software Development Kit 1.4

For the IBM i and IBM Software Development Kit Version 1.4, the tuning of Web Services Security is not
required. The unrestricted jurisdiction policy files for the IBM Software Development Kit Version 1.4 are
automatically configured when the prerequisite software is installed.

For the IBM i 5.4 operating system and IBM Software Development Kit Version 1.4, the unrestricted
jurisdiction policy files for the IBM Java Developer Kit 1.4 are automatically configured by installing product
5722SS1 Option 3, Extended Base Directory Support.

For IBM i (formerly known as IBM i V5R3) and IBM Software Development Kit Version 1.4, the unrestricted
jurisdiction policy files for the IBM Software Development Kit Version 1.4 are automatically configured by
installing product 5722AC3, Crypto Access Provider 128-bit.

IBM i and IBM Software Development Kit 1.5

For IBM i 5.4 and IBM i (formerly known as IBM i V5R3) and IBM Software Development Kit 1.5, the
restricted JCE jurisdiction policy files are configured, by default. You can download the unrestricted JCE
jurisdiction policy files from the following website: Security information: IBM J2SE 5 SDKs

To configure the unrestricted jurisdiction policy files for IBM i and the IBM Software Development Kit
Version 1.5:

1. Make backup copies of these files:
/QIBM/ProdData/Java400/jdk15/lib/security/local_policy.jar
/QIBM/ProdData/Java400/jdk15/lib/security/US_export_policy.jar

2. Download the unrestricted policy files from IBM developer kit: Security information to the
/QIBM/ProdData/Java400/jdk15/lib/security directory.

a. Go to this website: IBM developer kit: Security information

b. Click J2SE 5.0.

c. Scroll down and click IBM SDK Policy files. The Unrestricted JCE Policy files for the SDK website
is displayed.

3486 Administering WebSphere applications

http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.ibm.com/developerworks/java/jdk/security/50
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html


d. Click Sign in and provide your IBM intranet ID and password.

e. Select the appropriate unrestricted JCE policy files, and then click Continue.

f. View the license agreement, and then click I Agree.

g. Click Download Now.

3. Use the DSPAUT command to ensure *PUBLIC is granted*RX data authority but also ensure that no
object authority is provided to both the local_policy.jar and the US_export_policy.jar files in the
/QIBM/ProdData/Java400/jdk15/lib/security directory. For example:

DSPAUT OBJ(’/qibm/proddata/java400/jdk15/lib/security/local_policy.jar’)

4. Use the CHGAUT command to change authorization, if needed. For example:
CHGAUT OBJ(’/qibm/proddata/java400/jdk15/lib/security/local_policy.jar’)
USER(*PUBLIC) DTAAUT(*RX) OBJAUT(*NONE)

Data encryption algorithm:

Specifies the algorithm Uniform Resource Identifiers (URI) of the data encryption method.

The following algorithms are supported:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

Restriction: Do not use the 192-bit data encryption algorithm if you want your configured application to
be in compliance with the Basic Security Profile (BSP).

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

By default, the JCE ships with restricted or limited strength ciphers. To use 192-bit and 256- bit AES
encryption algorithms, you must apply unlimited jurisdiction policy files. For more information, see the Key
encryption algorithm field description.

Configuring encryption to protect message confidentiality at the application level:

You can configure the encryption information for the request consumer (server side) and response
consumer (client side) bindings at the application level.

Before you begin

Configure the key information that is referenced in the encryption information panel. For more information,
see “Configuring the key information for the consumer binding on the application level” on page 3446.

About this task

This task provides the steps that are needed for configuring the encryption information for the request
consumer (server side) and response consumer (client side) bindings at the application level. The
encryption information on the consumer side is used for decrypting the encrypted message parts in the
incoming SOAP message.

Complete the following steps to configure the encryption information for the request consumer or response
consumer section of the bindings file on the application level:

Procedure

1. Locate the Encryption information configuration panel in the administrative console.

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

Chapter 32. Administering web services - Security (WS-Security) 3487

http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes192-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc


b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties you can access the encryption information for the request
consumer and response consumer bindings.

v For the request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.
Under Response consumer (receiver) binding, click Edit custom.

d. Under Required properties, click Encryption information.

e. Click New to create an encryption information configuration, click Delete to delete an existing
configuration, or click the name of an existing encryption information configuration to edit its
settings. If you are creating a new configuration, enter a name in the Encryption information
name field. For example, you might specify cons_encinfo.

2. Select a data encryption algorithm from the Data encryption algorithm field. The data encryption
algorithm is used for encrypting or decrypting parts of a SOAP message such as the SOAP body or
the username token. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Restriction: Do not use the 192-bit key encryption algorithm if you want your configured application
to be in compliance with the Basic Security Profile (BSP).

Important: Your country of origin might have restrictions on the import, possession, use, or
re-export to another country, of encryption software. Before downloading or using the
unrestricted policy files, you must check the laws of your country, its regulations, and its
policies concerning the import, possession, use, and re-export of encryption software, to
determine if it is permitted.

The data encryption algorithm that you select for the consumer side must match the data encryption
method that you select for the generator side.

3. Select a key encryption algorithm from the Key encryption algorithm field. The key encryption
algorithm is used for encrypting the key that is used for encrypting the message parts within the SOAP
message. Select (none) if the data encryption key, which is the key that is used for encrypting the
message parts, is not encrypted. WebSphere Application Server supports the following pre-configured
algorithms:

v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport
algorithms does not include this one. This algorithm appears in the list of supported key transport
algorithms when running with SDK Version 1.5.

Restriction: This algorithm is not supported when the WebSphere Application Server is running in
Federal Information Processing Standard (FIPS) mode.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

3488 Administering WebSphere applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p


v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use the http://www.w3.org/2001/04/xmlenc#aes256-cbc algorithm, you must download the
unrestricted Java Cryptography Extension (JCE) policy file from the following website:
http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use the http://www.w3.org/2001/04/xmlenc#kw-aes192 algorithm, you must download the
unrestricted Java Cryptography Extension (JCE) policy file from the following website:
http://www.ibm.com/developerworks/java/jdk/security/index.html.

Restriction: Do not use the 192-bit key encryption algorithm if you want your configured application
to be in compliance with the Basic Security Profile (BSP).

The key encryption algorithm that you select for the consumer side must match the key encryption
method that you select for the generator side.

4. Optional: Select a part reference in the Part reference field. The part reference specifies the name of
the message part that is encrypted and is defined in the deployment descriptor. For example, you can
encrypt the bodycontent message part in the deployment descriptor. The name of this Required
Confidentiality part is conf_con. This message part is shown as an option in the Part reference field.

5. Under Additional properties, click Key information references.

6. Click New to create a key information configuration, click Delete to delete an existing configuration, or
click the name of an existing key information configuration to edit its settings. If you are creating a new
configuration, enter a name in the Name field. For example, you might specify con_ekeyinfo. This
entry is the name of the <encryptionKeyInfo> element in the binding file.

7. Select a key information reference from the Key information reference field. This reference is the
value of the keyinfoRef attribute of the <encryptionKeyInfo> element and it is the name of the
<keyInfo> element that is referenced by this key information reference. Each key information reference
entry generates an <encryptionKeyInfo> element under the <encryptionInfo> element in the binding
configuration file. For example, if you enter con_ekeyinfo in the Name field and dec_keyinfo in the
Key information reference field, the following <encryptionKeyInfo> element is generated in the
binding file:

<encryptionKeyInfo xmi:id="EncryptionKeyInfo_1085092248843"
keyinfoRef="dec_keyinfo” name="con_ekeyinfo"/>

8. Click OK and then click Save to save the configuration.

Results

You have configured the encryption information for the consumer binding at the application level

What to do next

You must specify a similar encryption information configuration for the generator.

Configuring message-level security for JAX-RPC at the server or cell level
Specify the server-level or cell-level configuration.

Configuring the signing information using JAX-RPC for the generator binding on the server level:

You can configure the signing information for the client-side request generator and the server-side
response generator bindings at the server level.

Before you begin

Note: For WebSphere Application Server version 6.x or earlier only, in the server-side extensions file
(ibm-webservices-ext.xmi) and the client-side deployment descriptor extensions file
(ibm-webservicesclient-ext.xmi), you must specify which parts of the message are signed. Also,

Chapter 32. Administering web services - Security (WS-Security) 3489

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html


you need to configure the key information that is referenced by the key information references on
the Signing information panel within the administrative console.

About this task

This task explains the steps that are needed for you to configure the signing information for the client-side
request generator and the server-side response generator bindings at the server level. WebSphere
Application Server uses the signing information for the default generator to sign parts of the message that
include the body, time stamp, and user name token if these bindings are not defined at the application
level. The Application Server provides default values for bindings. However, an administrator must modify
the defaults for a production environment.

Complete the following steps to configure the signing information for the generator sections of the bindings
files on the server level:

Procedure

1. Access the default bindings for the server level.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

2. Under Default generator bindings, click Signing information.

3. Click New to create a signing information configuration, click Delete to delete an existing
configuration, or click the name of an existing signing information configuration to edit the settings. If
you are creating a new configuration, enter a unique name for the signing configuration in the Signing
information name field. For example, you might specify gen_signinfo.

Note: If you create more than one signing information configuration, the WS-Security runtime
environment only honors the first configuration listed in the bindings file.

4. Select a signature method algorithm from the Signature method field. The algorithm that is specified
for the default generator must match the algorithm that is specified for the default consumer.
WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Do not use this algorithm if you want the configured application to be compliant with the Basic
Security Profile (BSP). Any ds:SignatureMethod/@Algorithm element in a SIGNATURE based on a
symmetric key must have a value of http://www.w3.org/2000/09/xmldsig#rsa-sha1 or
http://www.w3.org/2000/09/xmldsig#hmac-sha1.

5. Select a canonicalization method from the Canonicalization method field. The canonicalization
algorithm that you specify for the generator must match the algorithm for the consumer. WebSphere
Application Server supports the following pre-configured canonical XML and exclusive XML
canonicalization algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

6. Select a key information signature type from the Key information signature type field. The key
information signature type determines how to digitally sign the key. WebSphere Application server
supports the following signature types:

3490 Administering WebSphere applications

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1


None Specifies that the <KeyInfo> element is not signed.

Keyinfo
Specifies that the entire <KeyInfo> element is signed.

Keyinfochildelements
Specifies that the child elements of the <KeyInfo> element are signed.

The key information signature type for the generator must match the signature type for the consumer.
You might encounter the following situations:

v If you do not specify one of the previous signature types, WebSphere Application Server uses
keyinfo, by default.

v If you select Keyinfo or Keyinfochildelements and you select http://docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-soap-message-security-1.0#STR-Transform as the transform algorithm in a
subsequent step, WebSphere Application Server also signs the referenced token.

7. Select a signing key information reference from the Signing key information field. This selection is a
reference to the signing key that the Application Server uses to generate digital signatures. In the
binding files, this information is specified within the <signingKeyInfo> tag. The key that is used for
signing is specified by the key information element, which is defined at the same level as the signing
information. For more information, see “Configuring the key information for the generator binding
using JAX-RPC on the server level” on page 3495.

8. Click OK to save the configuration.

9. Click the name of the new signing information configuration. This configuration is the one that you
specified in the previous steps.

10. Specify the part reference, digest algorithm, and transform algorithm. The part reference specifies
which parts of the message to digitally sign.

a. Under Additional Properties, click Part references > New to create a new part reference, click
Part references > Delete to delete an existing part reference, or click a part name to edit an
existing part reference.

b. Specify a unique part name for the message part that needs signing. This message part is
specified on both the server side and the client side. You must specify an identical part name for
both the server side and the client side. For example, you might specify reqint for both the
generator and the consumer.

Important: You do not need to specify a value for the Part reference in the default bindings like
you specify on the application level because the part reference on the application
level points to a particular part of the message that is signed. Because the default
bindings for the server level is applicable to all of the services that are defined on a
particular server, you cannot specify this value.

c. Select a digest method algorithm in the Digest method algorithm field. The digest method
algorithm that is specified in the binding files within the <DigestMethod> element is used in the
<SigningInfo> element.

WebSphere Application Server supports the following algorithms:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

d. Click OK and Save to save the configuration.

e. Click the name of the new part reference configuration. This configuration is the one that you
specified in the previous steps.

f. Under Additional properties, click Transforms > New to create a new transform, click Transforms
> Delete to delete a transform, or click a transform name to edit an existing transform. If you
create a new transform configuration, specify a unique name. For example, you might specify
reqint_body_transform1.

Chapter 32. Administering web services - Security (WS-Security) 3491



g. Select a transform algorithm from the menu. The transform algorithm is specified within the
<Transform> element. This algorithm element specifies the transform algorithm for the digital
signature. WebSphere Application Server supports the following algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/TR/1999/REC-xpath-19991116

Restriction: Do not use this transform algorithm if you want your configured application to be
compliant with the Basic Security Profile (BSP). Instead use http://www.w3.org/
2002/06/xmldsig-filter2 to ensure compliance.

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the generator must match the transform algorithm that
you select for the consumer.

Important: If both of the following conditions are true, WebSphere Application Server signs the
referenced token:

v You previously selected the Keyinfo or the Keyinfochildelements option from the
Key information signature type field on the signing information panel.

v You select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0#STR-Transform as the transform algorithm.

11. Click Apply.

12. Click Save at the top of the panel to save your configuration.

Results

After completing these steps, you have configured the signing information for the generator on the server
level.

What to do next

You must specify a similar signing information configuration for the consumer.

Configuring the signing information using JAX-RPC for the consumer binding on the server level:

You can configure the signing information for the client-side request generator and server-side response
generator bindings at the server level.

Before you begin

Note: For WebSphere Application Server version 6.x or earlier only, in the server-side extensions file
(ibm-webservices-ext.xmi) and the client-side deployment descriptor extensions file
(ibm-webservicesclient-ext.xmi), you must specify which parts of the message are signed. Also,
you need to configure the key information that is referenced by the key information references on
the signing information panel within the administrative console.

About this task

This task explains the steps that are needed for you to configure the signing information for the client-side
request generator and server-side response generator bindings at the server level. WebSphere Application
Server uses the signing information for the default generator to sign parts of the message including the

3492 Administering WebSphere applications



body, time stamp, and user name token, if these bindings are not defined at the application level. The
Application Server provides default values for bindings. However, an administrator must modify the
defaults for a production environment.

Complete the following steps to configure the signing information for the consumer sections of the bindings
files on the server level:

Procedure

1. Access the default bindings for the server level.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

2. Under Default consumer bindings, click Signing information.

3. Click New to create a signing information configuration, click Delete to delete an existing
configuration, or click the name of an existing signing information configuration to edit the settings. If
you are creating a new configuration, enter a unique name for the signing configuration in the Signing
information name field. For example, you might specify gen_signinfo.

Note: If you create more than one signing information configuration, the WS-Security runtime
environment only honors the first configuration listed in the bindings file.

4. Select a signature method algorithm from the Signature method field. The algorithm that is specified
for the default consumer must match the algorithm that is specified for the default generator.
WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Do not use this algorithm if you want the configured application to be compliant with the Basic
Security Profile (BSP). Any ds:SignatureMethod/@Algorithm element in a SIGNATURE based on a
symmetric key must have a value of http://www.w3.org/2000/09/xmldsig#rsa-sha1 or
http://www.w3.org/2000/09/xmldsig#hmac-sha1.

5. Select a canonicalization method from the Canonicalization method field. The canonicalization
algorithm that you specify for the generator must match the algorithm for the consumer. WebSphere
Application Server supports the following pre-configured canonical XML and exclusive XML
canonicalization algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

6. Select a key information signature type from the Key information signature type field. The key
information signature type determines how to digitally sign the key. WebSphere Application Server
supports the following signature types:

None Specifies that the KeyInfo element is not signed.

Keyinfo
Specifies that the entire KeyInfo element is signed.

Keyinfochildelements
Specifies that the child elements of the KeyInfo element are signed.

The key information signature type for the consumer must match the signature type for the generator.
You might encounter the following situations:

Chapter 32. Administering web services - Security (WS-Security) 3493

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1


v If you do not specify one of the previous signature types, WebSphere Application Server uses
keyinfo, by default.

v If you select Keyinfo or Keyinfochildelements and you select http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform as the transform
algorithm in a subsequent step, WebSphere Application Server also signs the referenced token.

7. Click OK to save the configuration.

8. Click the name of the new signing information configuration. This configuration is the one that you
specified in the previous steps.

9. Specify the key information reference, part reference, digest algorithm, and transform algorithm.

a. Under Additional properties, click Key information references > New to create a new reference,
click Key information references > Delete to delete an existing reference, or click a reference
name to edit an existing key information reference.

b. Enter a name for the configuration in the Name field. For example, enter con_skeyinfo.

c. Select a key information reference from the Key information reference field. The key Information
reference points to the key that WebSphere Application Server uses for digital signing. In the
binding files, the reference is specified within the <signingKeyInfo> element. The key that is used
for signing is specified by the Key information element, which is defined at the same level as the
signing information. For more information, see “Configuring the key information for the consumer
binding on the application level” on page 3446.

d. Click OK and Save to save the configuration.

e. Under Additional Properties, click Part references > New to create a new part reference, click
Part references > Delete to delete an existing part reference, or click a part name to edit an
existing part reference. The part reference specifies which parts of the message to digitally sign.
The part attribute refers to the name of the <RequiredIntegrity> element in the deployment
descriptor when <PartReference> is specified for the digital signature. WebSphere Application
Server enables you to specify multiple <PartReference> elements for the <SigningInfo> element.
The <PartReference> element has two child elements: <DigestMethod> and <Transform>.

f. Specify a unique part name for this part reference. For example, you might specify reqint.

Important: You do not need to specify a value for the Part reference field like you specify on the
application level because the part reference on the application level points to a
particular part of the message that is signed. Because the default bindings for the
server level is applicable to all of the services that are defined on a particular server,
you cannot specify this value.

g. Select a digest method algorithm in the Digest method algorithm field. The digest method
algorithm specified within the <DigestMethod> element that is used in the <SigningInfo> element.

WebSphere Application Server supports the following algorithms:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

h. Click OK and Save to save the configuration.

i. Click the name of the new part reference configuration. This configuration is the one that you
specified in the previous steps.

j. Under Additional properties, click Transforms > New to create a new transform, click Transforms
> Delete to delete a transform, or click a transform name to edit an existing transform. If you
create a new transform configuration, specify a unique name. For example, you might specify
reqint_body_transform1.

k. Select a transform algorithm from the menu. The transform algorithm is specified within the
<Transform> element. It specifies the transform algorithm for the signature. WebSphere
Application Server supports the following algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

3494 Administering WebSphere applications



v http://www.w3.org/TR/1999/REC-xpath-19991116

Restriction: Do not use this transform algorithm if you want your configured application to be
compliant with the Basic Security Profile (BSP). Instead use http://www.w3.org/
2002/06/xmldsig-filter2 to ensure compliance.

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the consumer must match the transform algorithm that
you select for the generator.

Important: If both of the following conditions are true, WebSphere Application Server signs the
referenced token:

v You previously selected the Keyinfo or the Keyinfochildelements option from the
Key information signature type field on the signing information panel.

v You select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0#STR-Transform as the transform algorithm.

10. Click OK.

11. Click Save at the top of the panel to save your configuration.

Results

After completing these steps, you have configured the signing information for the consumer on the server
level.

What to do next

You must specify a similar signing information configuration for the generator.

Configuring the key information for the generator binding using JAX-RPC on the server level:

Use the key information for the default generator to specify the key that is used by the signing or the
encryption information configurations if these bindings are not defined at the application level.

About this task

The signing and encryption information configurations can share the same key information, which is why
they are both defined on the same level. WebSphere Application Server provides default values for these
bindings. However, an administrator must modify these values for a production environment.

Complete the following steps to configure the key information for the generator binding on the server level:

Procedure

1. Access the default bindings for the server level.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

2. Under Default generator bindings, click Key information.

Chapter 32. Administering web services - Security (WS-Security) 3495



3. Click New to create a key information configuration, click Delete to delete an existing configuration, or
click the name of an existing key information configuration to edit the settings. If you are creating a
new configuration, enter a unique name for the key configuration in the Key information name field.
For example, you might specify sig_keyinfo.

4. Select a key information type from the Key information type field. WebSphere Application Server
supports the following types of key information:

Key identifier
This key information type is used when two parties agree on how to create a key identifier.
For example, a field of X.509 certificates can be used for the key identifier according to the
X.509 profile.

Key name
This key information type is used when the sender and receiver agree on the name of the
key.

Security token reference
This key information type is typically used when an X.509 certificate is used for digital
signature.

Embedded token
This key information type is used to embed a security token in an embedded element.

X509 issuer name and issuer serial
This key information type specifies an X.509 certificate with its issuer name and serial
number.

Select Security token reference if you are using an X.509 certificate for the digital signature. In
these steps, it is assumed that Security token reference is selected for this field.

Important: This key information type must match the key information type that is specified for the
consumer.

5. Select a key locator reference from the Key locator reference menu. In these steps, assume that the
key locator reference is called sig_klocator. The key locator reference is the name of the key locator
that is used to generate the key for digital signature. You must configure a key locator before you can
select it in this field. For more information on configuring the key locator, see “Configuring the key
locator using JAX-RPC on the server level” on page 3535.

6. Click Get keys to view a list of key name references. After you click Get keys, the key names that
are defined in the <sig_klocator> element are shown in the key name reference menu. If you change
the key locator reference, you must click Get keys again to display the list of key names that are
associated with the new key locator.

7. Select a key name reference from the Key name reference menu. The key name reference specifies
the name of the key that is used for generating the digital signature or for encryption. The Key name
reference menu displays a list of key names that are defined for the selected key locator in the Key
locator reference field. For example, select signerkey. It is assumed that signer key is a key name
that is defined for the sig_klocator key locator.

8. Select a token reference from the Token reference field. The token reference refers to the name of a
configured token generator. When a security token is required in the deployment descriptor, the token
reference attribute is required. If you select Security token reference in the Key information type
field, the token reference is required and you can specify an X.509 token generator. To specify an
X.509 token generator, you must have an X.509 token generator configured. To configure an X.509
token generator, see “Configuring token generators using JAX-RPC to protect message authenticity at
the server level” on page 3502. For the remaining steps, it is assumed that an X.509 token generator
that is named gen_tcon is already configured.

9. Optional: Select an encoding method from the Encoding method field This field specifies the encoding
format for the key identifier. The encoding method attribute is valid when you select Key identifer as
the key information type. WebSphere Application Server supports the following encoding methods:

3496 Administering WebSphere applications



v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#HexBinary

10. Optional: Select a calculation method from the Calculation method field. The calculation method
specifies the calculation algorithm that is used for the key identifier. This attribute is valid when you
select Key identifier as the key information type. WebSphere Application Server supports the
following calculation methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#ITSHA1

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#IT60SHA1

11. Optional: Specify a Uniform Resource Identifier (URI) of the value type for a security token from the
Namespace URI field. The namespace URI is referenced by the key identifier. This attribute is valid
when you select Key identifier as the key information type. When you specify the X.509 certificate
token, you do not need to specify the namespace URI. If another token is specified, you must specify
the namespace URI. For example, you can specify http://www.ibm.com/websphere/appserver/
tokentype/5.0.2 for the Lightweight Third Party Authentication (LTPA) token and
http://www.ibm.com/websphere/appserver/tokentype for the LTPA_PROPAGATION token.

12. Optional: Specify the local name of the value type for a security token in the Local name field. The
local name is referenced by the key identifier. This attribute is valid when you select Key identifier as
the key information type. WebSphere Application Server supports the following local names:

For an X.509 certificate token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

For X.509 certificates in a PKIPath
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

For a list of X.509 certificates and CRLs in a PKCS#7
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

For LTPA
LTPA

For LTPA_PROPAGATION
LTPA_PROPAGATION

13. Click OK and Save to save the configuration.

Results

You have configured the key information for the generator binding at the server level.

What to do next

You must specify a similar key information configuration for the consumer.

Configuring the key information for the consumer binding using JAX-RPC on the server level:

The key information for the default consumer is used to specify the key for the signing or the encryption
information configurations if these bindings are not defined at the application level.

About this task

The signing and encryption information configurations can share the same key information, which is why
they are both defined on the same level. WebSphere Application Server provides default values for these
bindings. However, an administrator must modify these values for a production environment.

Complete the following steps to configure the key information for the consumer binding on the server level:

Chapter 32. Administering web services - Security (WS-Security) 3497



Procedure

1. Access the default bindings for the server level.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

2. Under Default consumer bindings, click Key information.

3. Click New to create a key information configuration, click Delete to delete an existing configuration, or
click the name of an existing key information configuration to edit the settings. If you are creating a
new configuration, enter a unique name for the key configuration in the Key information name field. For
example, you might specify con_signkeyinfo.

4. Select a key information type from the Key information type field. WebSphere Application Server
supports the following types of key information:

Key identifier
This key information type is used when two parties agree on how to create a key identifier. For
example, a field of X.509 certificates can be used for the key identifier according to the X.509
profile.

Key name
This key information type is used when the sender and receiver agree on the name of the key.

Security token reference
This key information type is typically used when an X.509 certificate is used for digital
signature.

Embedded token
This key information type is used to embed a security token in an embedded element.

X509 issuer name and issuer serial
This key information type specifies an X.509 certificate with its issuer name and serial number.

Select Security token reference if you are using an X.509 certificate for the digital signature. In these
steps, it is assumed that Security token reference is selected for this field.

Important: This key information type must match the key information type that is specified for the
generator.

5. Select a key locator reference from the Key locator reference menu. In these steps, assume that the
key locator reference is called sig_klocator. You must configure a key locator before you can select it
in this field. For more information on configuring the key locator, see “Configuring the key locator using
JAX-RPC on the server level” on page 3535.

6. Select a token reference from the Token reference field. The token reference refers to the name of a
configured token consumer. When a security token is required in the deployment descriptor, the token
reference attribute is required. If you select Security token reference in the Key information type field,
the token reference is required and you can specify an X.509 token consumer. To specify an X.509
token consumer, you must have an X.509 token consumer configured. To configure an X.509 token
consumer, see “Configuring token consumers using JAX-RPC to protect message authenticity at the
server level” on page 3514.

7. Click OK and Save to save the configuration.

Results

You have configured the key information for the consumer binding at the server level.

3498 Administering WebSphere applications



What to do next

You must specify a similar key information configuration for the generator.

Configuring encryption using JAX-RPC to protect message confidentiality at the server or cell
level:

You can configure the encryption information for the generator binding on the server or cell level.

About this task

The encryption information for the default generator specifies how to encrypt the information on the sender
side if these bindings are not defined at the application level. WebSphere Application Server provides
default values for the bindings. However, an administrator must modify the defaults for a production
environment.

Complete the following steps to configure the encryption information for the generator binding on the
server level:

Procedure

1. Access the default bindings for the server level.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

2. Under Default generator bindings, click Encryption information.

3. Click New to create an encryption information configuration, click Delete to delete an existing
configuration, or click the name of an existing encryption information configuration to edit the settings.
If you are creating a new configuration, enter a unique name for the encryption configuration in the
Encryption information name field. For example, you might specify gen_encinfo.

Note: If you create more than one encryption information configuration, the WS-Security runtime
environment only honors the first configuration listed in the bindings file.

4. Select a data encryption algorithm from the Data encryption algorithm field. This algorithm is used to
encrypt the data. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Restriction: Do not use this algorithm, the 192-bit key encryption algorithm, if you want your
configured application to be in compliance with the Basic Security Profile (BSP).

Important: Your country of origin might have restrictions on the import, possession, use, or re-export
to another country, of encryption software. Before downloading or using the unrestricted

Chapter 32. Administering web services - Security (WS-Security) 3499

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html


policy files, you must check the laws of your country, its regulations, and its policies
concerning the import, possession, use, and re-export of encryption software, to determine
if it is permitted.

The data encryption algorithm that you select for the generator side must match the data encryption
algorithm that you select for the consumer side.

5. Select a key encryption algorithm from the Key encryption algorithm field. This algorithm is used to
encrypt the key. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with JDK 1.4, the list of supported key transport algorithms will not include this one.
This algorithm will appear in the list of supported key transport algorithms when running with JDK
1.5.

Restriction: This algorithm is not supported when the WebSphere Application Server is running in
Federal Information Processing Standard (FIPS) mode.

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a
message digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512
message digest algorithm by specifying a key encryption algorithm property. The property name is:
com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the following
URIs of the digest method:

– http://www.w3.org/2001/04/xmlenc#sha256

– http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the
OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption
algorithm property. For the property name, you can specify
com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded
value of the octet string.

Important: You can set these digest method and OAEPParams properties on the generator side
only. On the consumer side, these properties are read from the incoming SOAP
message.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Restriction: Do not use this algorithm, the 192-bit key encryption algorithm, if you want your
configured application to be in compliance with the Basic Security Profile (BSP).

If you select None, the key is not encrypted.

The key encryption algorithm that you select for the generator side must match the key encryption
algorithm that you select for the consumer side.

6. Select a encryption key configuration from the Encryption key information field. This attribute specifies
the name of the key that is used to encrypt the message. To configure the key information, see
“Configuring the key information for the generator binding using JAX-RPC on the server level” on page
3495.

3500 Administering WebSphere applications

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html


7. Click OK and then click Save to save the configuration.

Results

You have configured the encryption information for the generator binding at the server or cell level.

What to do next

You must specify a similar encryption information configuration for the consumer.

Configuring encryption to protect message confidentiality at the server level:

The encryption information for the default consumer specifies how to process the encryption information on
the receiver side if these bindings are not defined at the application level. WebSphere Application Server
provides default values for the bindings. However, an administrator must modify the defaults for a
production environment.

About this task

Complete the following steps to configure the encryption information for the consumer binding on the
server level:

Procedure

1. Access the default bindings for the server level.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

2. Under Default consumer bindings, click Encryption information.

3. Click New to create an encryption information configuration, click Delete to delete an existing
configuration, or click the name of an existing encryption information configuration to edit the settings.
If you are creating a new configuration, enter a unique name for the encryption configuration in the
Encryption information name field. For example, you might specify con_encinfo.

Note: If you create more than one encryption information configuration, the WS-Security runtime
environment only honors the first configuration listed in the bindings file.

4. Select a data encryption algorithm from the Data encryption algorithm field. This algorithm is used to
encrypt the data. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Restriction: Do not use the 192-bit key encryption algorithm if you want your configured application
to be in compliance with the Basic Security Profile (BSP).

Chapter 32. Administering web services - Security (WS-Security) 3501

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html


Important: Your country of origin might have restrictions on the import, possession, use, or
re-export to another country, of encryption software. Before downloading or using the
unrestricted policy files, you must check the laws of your country, its regulations, and its
policies concerning the import, possession, use, and re-export of encryption software, to
determine if it is permitted.

The data encryption algorithm that you select for the consumer side must match the data encryption
algorithm that you select for the generator side.

5. Select a key encryption algorithm from the Key encryption algorithm field. This algorithm is used to
encrypt the key. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport
algorithms does not include this one. This algorithm appears in the list of supported key transport
algorithms when running with SDK Version 1.5.

Restriction: This algorithm is not supported when the WebSphere Application Server is running in
Federal Information Processing Standard (FIPS) mode.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)
policy file from the following website: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Restriction: Do not use the 192-bit key encryption algorithm if you want your configured application
to be in compliance with the Basic Security Profile (BSP).

If you select None, the key is not encrypted.

The key encryption algorithm that you select for the consumer side must match the key encryption
algorithm that you select for the generator side.

6. Under Additional properties, click Key information references.

7. Click New to create a key information configuration, click Delete to delete an existing configuration, or
click the name of an existing key information configuration to edit the settings. If you are creating a
new configuration, enter a unique name for the key information configuration in the name field. For
example, you might specify con_enckeyinfo.

8. Select a key information reference from the Key information reference field. This selection refers to the
name of the key information that is used for encryption. For more information, see “Configuring the key
information for the consumer binding using JAX-RPC on the server level” on page 3497.

9. Click OK and Save to save the configuration.

Results

You have configured the encryption information for the consumer binding at the server level.

What to do next

You must specify a similar encryption information configuration for the generator.

Configuring token generators using JAX-RPC to protect message authenticity at the server level:

3502 Administering WebSphere applications

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html


The token generator on the server level is used to specify the information for the token generator if these
bindings are not defined at the application level. The signing information and the encryption information
can share the token generator information, which is why they are all defined at the same level.

Before you begin

You need to understand that the keystore/alias information that you provide for the generator, and the
keystore/alias information that you provide for the consumer are used for different purposes. The main
difference applies to the Alias for an X.509 callback handler.

When used in association with an encryption generator, the alias supplied for the generator is used to
retrieve the public key to encrypt the message. A password is not required. The alias that is entered on a
callback handler associated with an encryption generator must be accessible without a password. This
means that the alias must not have private key information associated with it in the keystore. When used
in association with a signature generator, the alias supplied for the generator is used retrieve the private
key to sign the message. A password is required.

About this task

WebSphere Application Server provides default values for bindings. You must modify the defaults for a
production environment.

Complete the following steps to configure the token generators on the server level:

Procedure

1. Access the default bindings for the server level.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

2. Under Default generator bindings, click Token generators.

3. Click New to create a token generator configuration, click Delete to delete an existing configuration,
or click the name of an existing token generator configuration to edit its settings. If you are creating a
new configuration, enter a unique name for the token generator configuration in the Token generator
name field. For example, you might specify sig_tgen. This field specifies the name of the token
generator element.

4. Specify a class name in the Token generator class name field. The Java Authentication and
Authorization Service (JAAS) Login Module implementation is used to create the security token on the
generator side.

Restriction: The com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface is not used
with JAX-WS web services. If you are using JAX-RPC web services, this interface is still
valid.

The token generator class name must be similar to the token consumer class name. For example, if
your application requires an X.509 certificate token consumer, you can specify the
com.ibm.wsspi.wssecurity.token.X509TokenConsumer class name on the Token consumer panel and
the com.ibm.wsspi.wssecurity.token.X509TokenGenerator class name in this field. WebSphere
Application Server provides the following default token generator class implementations:

com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator
This implementation generates a username token.

com.ibm.wsspi.wssecurity.token.X509TokenGenerator
This implementation generates an X.509 certificate token.

Chapter 32. Administering web services - Security (WS-Security) 3503



com.ibm.wsspi.wssecurity.token.LTPATokenGenerator
This implementation generates a Lightweight Third Party Authentication (LTPA) token.

5. Select a certificate path option. The certificate path specifies the certificate revocation list (CRL),
which is used for generating a security token that is wrapped in a PKCS#7 with a CRL. WebSphere
Application Server provides the following certificate path options:

None Select this option in case the CRL is not used for generating a security token. You must
select this option when the token generator does not use the PKCS#7 token type.

Dedicated signing information
If the CRL is wrapped in a security token, select Dedicated signing information and select
a collection certificate store name from the Certificate store field. The Certificate store field
shows the names of collection certificate stores already defined.

6. Select the Add nonce option to include a nonce in the user name token for the token generator.
Nonce is a unique cryptographic number that is embedded in a message to help stop repeat,
unauthorized attacks of user name tokens. The Add nonce option is available if you specify a user
name token for the token generator.

7. Select the Add timestamp option to include a time stamp in the user name token for the token
generator.

8. Specify a value type local name in the Local name field. This entry specifies the local name of the
value type for a security token that is referenced by the key identifier. This attribute is valid when Key
identifier is selected as Key information type. To specify the Key information type, see “Configuring
the key information for the generator binding using JAX-RPC on the server level” on page 3495.
WebSphere Application Server provides the following predefined X.509 certificate token
configurations:

X.509 certificate token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

X.509 certificates in a PKIPath
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

A list of X.509 certificates and CRLs in a PKCS#7
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

LTPA For LTPA, the value type local name is LTPA. If you enter LTPA for the local name, you must
specify the http://www.ibm.com/websphere/appserver/tokentype/5.0.2 uniform resource
identifier (URI) value in the Value type URI field as well.

LTPA version 2
For LTPA version 2, the value type local name is LTPAv2. If you enter LTPAv2 for the local
name, you must specify the http://www.ibm.com/websphere/appserver/tokentype uniform
resource identifier (URI) value in the Value type URI field as well.

LTPA_PROPAGATION
For LTPA token propagation, the value type local name is LTPA_PROPAGATION. If you enter
LTPA_PROPAGATION for the local name, you must specify the http://www.ibm.com/websphere/
appserver/tokentype URI value in the Value type URI field as well.

For example, when an X.509 certificate token is specified, you can use http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3 for the local name.

9. Specify the value type URI in the URI field. This entry specifies the namespace URI of the value type
for a security token that is referenced by the key identifier. This attribute is valid when Key identifier
is selected as Key information type on the Key information panel for the default generator. When the
X.509 certificate token is specified, you do not need to specify the namespace URI. If another token
is specified, you must specify the namespace URI of the value type.

10. Click OK and then Save to save the configuration.

3504 Administering WebSphere applications



11. Click the name of your token generator configuration.

12. Under Additional properties, click Callback handler to configure the callback handler properties. The
callback handler specifies how to acquire the security token that is inserted in the Web Services
Security header within the SOAP message. The token acquisition is a pluggable framework that
leverages the Java Authentication and Authorization Service (JAAS)
javax.security.auth.callback.CallbackHandler interface for acquiring the security token.

a. Specify a callback handler class implementation in the Callback handler class name field. This
attribute specifies the name of the Callback handler class implementation that is used to plug in a
security token framework. The specified callback handler class must implement the
javax.security.auth.callback.CallbackHandler class. WebSphere Application Server provides
the following default callback handler implementations:

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler
This callback handler uses a login prompt to gather the user name and password
information. However, if you specify the user name and password on this panel, a prompt
is not displayed and WebSphere Application Server returns the user name and password
to the token generator. Use this implementation for a Java Platform, Enterprise Edition
(Java EE) application client only.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler
This callback handler does not issue a prompt and returns the user name and password if
it is specified in the basic authentication section of this panel. You can use this callback
handler when the web service is acting as a client.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler
This callback handler uses a standard-in prompt to gather the user name and password.
However, if the user name and password is specified in the basic authentication section of
this panel, WebSphere Application Server does not issue a prompt, but returns the user
name and password to the token generator. Use this implementation for a Java Platform,
Enterprise Edition (Java EE) application client only.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler
This callback handler is used to obtain the Lightweight Third Party Authentication (LTPA)
security token from the Run As invocation Subject. This token is inserted in the Web
Services Security header within the SOAP message as a binary security token. However,
if the user name and password are specified in the basic authentication section of this
panel, WebSphere Application Server authenticates the user name and password to
obtain the LTPA security token. It obtains the security token this way rather than obtaining
it from the Run As Subject. Use this callback handler only when the web service is acting
as a client on the application server. It is recommended that you do not use this callback
handler on a Java EE application client.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler
This callback handler is used to create the X.509 certificate that is inserted in the Web
Services Security header within the SOAP message as a binary security token. A keystore
file and a key definition are required for this callback handler.

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler
This callback handler is used to create X.509 certificates that are encoded with the
PKCS#7 format. The certificate is inserted in the Web Services Security header in the
SOAP message as a binary security token. A keystore file is required for this callback
handler. You must specify a certificate revocation list (CRL) in the collection certificate
store. The CRL is encoded with the X.509 certificate in the PKCS#7 format. For more
information on configuring the collection certificate store, see “Configuring the collection
certificate on the server level” on page 3554.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler
This callback handler is used to create X.509 certificates that are encoded with the
PkiPath format. The certificate is inserted in the Web Services Security header within the

Chapter 32. Administering web services - Security (WS-Security) 3505



SOAP message as a binary security token. A keystore file is required for this callback
handler. A CRL is not supported by the callback handler; therefore, the collection
certificate store is not required or used.

For an X.509 certificate token, you might specify the
com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler implementation.

b. Optional: Select the Use identity assertion option. Select this option if you have identity
assertion that is defined in the IBM extended deployment descriptor. This option indicates that
only the identity of the initial sender is required and inserted into the Web Services Security
header within the SOAP message. For example, WebSphere Application Server sends only the
user name of the original caller for a user name token generator. For an X.509 token generator,
the application server sends the original signer certification only.

c. Optional: Select the Use RunAs identity option. Select this option if the following conditions are
true:

v You have identity assertion defined in the IBM extended deployment descriptor.

v You want to use the Run As identity instead of the initial caller identity for identity assertion for
a downstream call.

d. Optional: Specify a basic authentication user ID and password in the User ID and Password
fields. This entry specifies the user name and password that is passed to the constructors of the
callback handler implementation. The basic authentication user ID and password are used if you
specify one of the following default callback handler implementations that are provided by
WebSphere Application Server:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

e. Optional: Specify a keystore password and path. The keystore and its related information are
necessary when the key or certificate is used for generating a token. For example, the keystore
information is required if you select one of the following default callback handler implementations
that are provided by WebSphere Application Server:

v com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

The keystore files contain public and private keys, root certificate authority (CA) certificates,
intermediate CA certificates, and so on. Keys that are retrieved from the keystore file are used to
sign and validate or encrypt and decrypt messages or message parts. To retrieve a key from a
keystore file, you must specify the keystore password, the keystore path, and the keystore type.

13. Select a keystore type from the Type field. WebSphere Application Server provides the following
options:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your keystore
file uses the Java Keystore (JKS) format.

JCEKS
Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)
Use this format if your keystore file uses the PKCS#11 file format. Key store files using this
format might contain RSA keys on cryptographic hardware or might encrypt the keys that use
cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)
Use this option if your keystore file uses the PKCS#12 file format.

14. Click OK and then Save to save the configuration.

3506 Administering WebSphere applications



15. Click the name of your token generator configuration.

16. Under Additional properties, click Callback handler > Keys.

17. Click New to create a key configuration, click Delete to delete an existing configuration, or click the
name of an existing key configuration to edit its settings. If you are creating a new configuration, enter
a unique name for the key configuration in the Key name field. This name refers to the name of the
key object that is stored within the keystore file.

18. Specify an alias for the key object in the Key alias field. Use the alias when the key locator searches
for the key objects in the keystore.

19. Specify the password that is associated with the key in the Key password field.

20. Click OK and Save to save the configuration.

Results

You have configured the token generators at the server level.

What to do next

You must specify a similar token consumer configuration.

Token generator collection:

Use this page to view the token generators. The information is used on the generator side only to
generate the security token.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default Generator Bindings, click Token generators.

Token generator name:

Specifies the name of the token generator configuration.

For example, the default X509 token generator names are either gen_enctgen for encrypting or
gen_signtgen for signing. Or a custom token generator name might be sig_tgen for signing.

Token generator class name:

Specifies the name of the token generator implementation class.

This class must implement the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface.

Token generator class name:

Specifies the name of the token generator implementation class.

The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to create
the security token on the generator side.

Token generator configuration settings:

Chapter 32. Administering web services - Security (WS-Security) 3507



Use this page to specify the information for the token generator. The information is used at the generator
side only to generate the security token.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default Generator Bindings, click Token generators > token_generator_name or
click New to create a new token generator.

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Additional properties, you can access the token generator information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under
Request generator (sender) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

4. Click New to create a new token generator or click the name of an existing token generator name to
specify its settings.

To view this administrative console page for the application level, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, click Web services: Client security bindings.

4. Under Request generator (sender) binding, click Edit custom.

5. Under Additional properties, click Token generators > New.

Before specifying additional properties, specify a value in the Token generator name and the Token
generator class name fields.

Token generator name:

Specifies the name of the token generator configuration.

For example, the default X509 token generator names are either gen_enctgen for encrypting or
gen_signtgen for signing. Or, a custom token generator name might be sig_tgen for signing.

Token generator class name:

Specifies the name of the token generator implementation class.

This class must implement the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface.

Token generator class name:

Specifies the name of the token generator implementation class.

Certificate path:

3508 Administering WebSphere applications



Specifies the certificate revocation list (CRL) that is used for generating a security token wrapped in a
PKCS#7 token type with CRL.

When the token generator is not for a PKCS#7 token type, you must select None. When the token
generator is for the PKCS#7 token type and you want to package CRL in the security token, select
Dedicated signing information and specify the CRL for the collection certificate store.

You can specify a certificate store configuration for the following bindings on the following levels:

Table 326. Certificate path binding settings. The certificate is used for signing messages.
Binding name Server level or application level Path

Default generator bindings Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
Websphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under Additional properties, click Collection certificate
store.

Using the collection certificate store, you can configure a related certificate revocation list by clicking
Certificate revocation list under Additional properties.

Add nonce:

Indicates whether nonce is included in the user name token for the token generator. Nonce is a unique
cryptographic number that is embedded in a message to help stop repeat, unauthorized attacks of user
name tokens.

On the application level, if you select the Add nonce option, you can specify the following properties
under Additional properties:

Table 327. Additional nonce properties. Nonce is used to add additional security to a message.
Property name Default value Explanation

com.ibm.ws.wssecurity.config.token.
BasicAuth.Nonce.cacheTimeout

600 seconds Specifies the timeout value, in seconds, for the nonce value
that is cached on the server.

com.ibm.ws.wssecurity.config.token. BasicAuth.Nonce.clockSkew 0 seconds Specifies the time, in seconds, before the nonce time
stamp expires.

com.ibm.ws.wssecurity.config.token. BasicAuth.Nonce.maxAge 300 seconds Specifies the clock skew value, in seconds, to consider
when the application server checks the timeliness of the
message.

These properties are available on the administrative console at the cell and server level. However, on the
application level, you can configure the properties under Additional properties.

This option is displayed on the cell, server, and application levels. This option is valid only when the
generated token type is a user name token.

Add timestamp:

Specifies whether to insert the time stamp into the user name token.

This option is displayed on the cell, server, and application levels. This option is valid only when the
generated token type is a user name token.

Value type local name:

Chapter 32. Administering web services - Security (WS-Security) 3509



Specifies the local name of the value type for the generated token.

For a user name token and an X.509 certificate security token, this product provides predefined value
types. When you specify the following local names, you do not need to specify the Uniform Resource
Identifier (URI) of value type.

Username token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

X509 certificate token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

X509 certificates in a PKIPath
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

Lightweight Third Party Authentication (LTPA)

LTPA_PROPAGATION

Important: For LTPA, the value type local name is LTPA. If you enter LTPA for the local name, you must
specify the http://www.ibm.com/websphere/appserver/tokentype/5.0.2 URI value in the
Value type URI field as well. For LTPA token propagation, the value type local name is
LTPA_PROPAGATION. If you enter LTPA_PROPAGATION for the local name, you must specify the
http://www.ibm.com/websphere/appserver/tokentype URI value in the Value type URI field as
well. For the other predefined value types (Username token, X509 certificate token, X509
certificates in a PKIPath, and a list of X509 certificates and CRLs in a PKCS#7), the value for
the local name field begins with http://. For example, if you are specifying the user name
token for the value type, enter http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#UsernameToken in the Value type local name field and then you
do not need to enter a value in the Value type URI field.

When you specify a custom value type for custom tokens, you can specify the local name and the URI of
the quality name (QName) of the value type. For example, you might specify Custom for the local name
and http://www.ibm.com/custom for the URI.

Value type URI:

Specifies the namespace URI of the value type for the generated token.

When you specify the token generator for the user name token or the X.509 certificate security token, you
do not need to specify this option. If you want to specify another token, specify the URI of the QName of
the value type.

The application server provides the following predefined value type URIs:

v For the LTPA token: http://www.ibm.com/websphere/appserver/tokentype/5.0.2

v For the LTPA token propagation: http://www.ibm.com/websphere/appserver/tokentype

Algorithm URI collection:

Use this page to view a list of uniform resource identifier (URI) algorithms for XML digital signature or XML
encryption that are mapped to an algorithm factory engine class. With algorithm mappings, service
providers can use other cryptographic algorithms for digest value calculation, digital signature signing and
verification, data encryption and decryption, and key encryption and decryption.

To view administrative console page on the server level, complete the following steps:

3510 Administering WebSphere applications



1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Algorithm mappings.

4. Click on an algorithm mapping name.

5. Under Additional properties, click Algorithm URI.

Algorithm URI:

Specifies the algorithm uniform resource identifier (URI) for the specified algorithm type.

Algorithm type:

Specifies the algorithm type.

Algorithm URI configuration settings:

Use this page to specify the algorithm uniform resource identifier (URI) and its usage type.

This product supports the following algorithm URI types:

Message digest
Specifies the algorithm URI that is used for digest value calculation.

Signature
Specifies the algorithm URI that is used for digital signature, including both signature and signing
verification.

Data encryption
Specifies the algorithm URI that is used for both encrypting and decrypting data.

Key encryption
Specifies the algorithm URI that is used for encrypting and decrypting the encryption key.

If the URI is used for multiple usage types, then you must define a mapping of the URI to each usage
type.

To view this administrative console page on the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Algorithm mappings.

Note: The Algorithm mappings feature is not supported when the Use the Federal Information
Processing Standard (FIPS) option has been selected on the SSL certificate and key
management panel of the administrative console. When this option is selected, the New button
in the Algorithm mappings panel is not available.

4. Click New.

5. Under Additional properties, click Algorithm URI > algorithm_URI_name.

To view the administrative console page on the cell level:

Chapter 32. Administering web services - Security (WS-Security) 3511



1. Click Security > JAX-WS and JAX-RPC security runtime, or Services > JAX-WS and JAX-RPC
security runtime.

2. Under Additional properties, click Algorithm mappings.

3. Click New.

4. Under Additional properties, click Algorithm URI > algorithm_URI_name.

Algorithm URI:

Specifies the algorithm uniform resource identifier (URI) for the specified algorithm type.

The algorithm URI that is defined on this page is available to the various binding configurations. For
example, if you specify an algorithm URI and select Signature from the Algorithm type field, the URI
displays in the Signature method field on the signing information panel.

Algorithm type:

Specifies the type of algorithm that is specified in the Algorithm URI field.

The following types of algorithms are supported by this product. The following list shows where
configurations that are specified on this panel are displayed for a binding configuration:

Table 328. Algorithm types. The algorithm types in the table are supported by the product.
Algorithm type Explanation Location of the configuration

Signature This algorithm type is used for digital
signatures.

This configuration displays in the Signature method field on the Signing
information panel. For information on how to access the Signing information
panel, see the help topic Signing information configuration settings.

Digest value calculation
(message digest)

This algorithm type is used for calculating
the digest value.

This configuration displays in the Digest method algorithm field on the Part
references panel. For information on how to access the Part references
panel, see the help topic Part reference configuration settings.

Data encryption This algorithm type is used for encrypting
data.

This configuration displays in the Data encryption algorithm field on the
Encryption information panel. For information on how to access the
Encryption information panel, see the help topic Encryption information
configuration settings: Message parts.

Key encryption This algorithm type is used for encrypting
the key that is used for data encryption.

This configuration displays in the Key encryption algorithm field on the
Encryption information panel. For information on how to access the
Encryption information panel, see the help topic Encryption information
configuration settings: Message parts.

The actual implementation of the algorithm is done in the implementation class for the engine factory.

Algorithm mapping collection:

You can view a list of custom uniform resource identifier (URI) algorithms for digest value calculation,
signature, key encryption, and data encryption. The application server maps these algorithms to an
implementation of the algorithm factory engine interface. With algorithm mappings, service providers can
extend the cryptographic algorithms for XML digital signature and XML encryption.

To view this administrative console page on the cell level, complete the following steps:

1. Click Security > JAX-WS and JAX-RPC security runtime.

2. Under Additional properties, click Algorithm mappings.

To view this administrative console page on the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3512 Administering WebSphere applications



3. Under Additional properties, click Algorithm mappings.

Algorithm factory engine class:

Specifies the custom class that implements the factory engine implementation class for the algorithm
factory engine.

The implementation class for the factory engine implements the cryptographic functions of the defined
uniform resource identifier (URI).

Note: The Algorithm mappings feature is not supported when the Use the Federal Information
Processing Standard (FIPS) algorithms option has been selected on the Global security panel of
the administrative console. When this option is selected, the New button in the Algorithm mappings
panel is not available.

Algorithm mapping configuration settings:

Use this page to view a list of custom uniform resource identifier (URI) algorithms for digest value
calculation, signature, key encryption, and data encryption. The application server maps these algorithms
to an implementation of the algorithm factory engine interface. With algorithm mappings, service providers
can extend the cryptographic algorithms for XML digital signature and XML encryption.

To view this administrative console page on the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Algorithm mappingsalgorithm_factory_engine_class_name.

Note: The Algorithm mappings feature is not supported when the Use the Federal Information
Processing Standard (FIPS) option has been selected on the SSL certificate and key
management panel of the administrative console. When this option is selected, the New button
in the Algorithm mappings panel is not available.

4. Click New.

To view this administrative console page on the cell level:

1. Click Security > JAX-WS and JAX-RPC security runtime, or Services > JAX-WS and JAX-RPC
security runtime.

2. Under Additional properties, click Algorithm mappings > algorithm_factory_engine_class_name.

3. Click New.

Algorithm factory engine class:

Specifies the custom class that implements the factory engine interface.

To use this algorithm mapping feature, you must specify a custom algorithm class in the Algorithm factory
engine class field for digital signature, data encryption, digest value calculation, and key encryption. The
algorithm factory engine provides a plug-in point for service providers to provide their implementation for
digest value calculation, digital signature, key encryption, and data encryption that is based on a specified
algorithm uniform resource identifier (URI). By clicking Algorithm URI under Additional properties, you can
specify the algorithm URI and its usage type. This product supports the following algorithm types:

Message digest
Specifies the algorithm URI that is used for digest value calculation.

Chapter 32. Administering web services - Security (WS-Security) 3513



Signature
Specifies the algorithm URI that is used for digital signatures including both signing and signature
verification.

Data encryption
Specifies the algorithm URI that is used for both encrypting and decrypting data.

Key encryption
Specifies the algorithm URI that is used for both encrypting and decrypting the encryption key.

If the URI is used for multiple usage types, then you must define a mapping of the URI to each usage
type. The actual implementation of the algorithm is provided by the custom class that implements the
factory engine interface. For more information, refer to the information center documentation on how to
implement a factory class.

By clicking Properties under Additional properties, you can specify name-value pair properties for the
factory class.

Configuring token consumers using JAX-RPC to protect message authenticity at the server level:

The token consumer on the server level is used to specify the information that is needed to process the
security token if it is not defined at the application level.

Before you begin

You need to understand that the keystore/alias information that you provide for the generator, and the
keystore/alias information that you provide for the consumer are used for different purposes. The main
difference applies to the Alias for an X.509 callback handler.

When used in association with an encryption consumer, the alias supplied for the consumer is used
retrieve the private key to decrypt the message. A password is required. When associated with a signature
consumer, the alias supplied for the consumer is used strictly to retrieve the public key that is used to
resolve an X.509 certificate that is not passed in the SOAP security header as a BinarySecurityToken. A
password is not required.

About this task

WebSphere Application Server provides default values for bindings. You must modify the defaults for a
production environment.

Complete the following steps to configure the token consumers on the server level.

Procedure

1. Access the default bindings for the server level.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

2. Under Default consumer bindings, click Token consumers.

3. Click New to create a token consumer configuration, click Delete to delete an existing configuration,
or click the name of an existing token consumer configuration to edit its settings. If you are creating a
new configuration, enter a unique name for the token consumer configuration in the Token consumer
name field. For example, you might specify sig_tcon. This field specifies the name of the token
consumer element.

3514 Administering WebSphere applications



4. Specify a class name in the Token consumer class name field. The Java Authentication and
Authorization Service (JAAS) Login Module implementation is used to validate (authenticate) the
security token on the consumer side.

Restriction: The com.ibm.wsspi.wssecurity.token.TokenConsumingComponent interface is not used
with JAX-WS web services. If you are using JAX-RPC web services, this interface is still
valid.

The token consumer class name must be similar to the token generator class name.

For example, if your application requires an X.509 certificate token consumer, you can specify the
com.ibm.wsspi.wssecurity.token.X509TokenGenerator class name on the Token generator panel and
the com.ibm.wsspi.wssecurity.token.X509TokenConsumer class name in this field. WebSphere
Application Server provides the following default token consumer class implementations:

com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer
This implementation integrates a user name token.

com.ibm.wsspi.wssecurity.token.X509TokenConsumer
This implementation integrates an X.509 certificate token.

com.ibm.wsspi.wssecurity.token.LTPATokenConsumer
This implementation integrates a Lightweight Third Party Authentication (LTPA) token.

com.ibm.wsspi.wssecurity.token.IDAssertionUsernameTokenConsumer
This implementation integrates an IDAssertionUsername token.

A corresponding token generator class does not exist for this implementation.

5. Select a certificate path option. The certificate path specifies the certificate revocation list (CRL) that
is used for generating a security token wrapped in a PKCS#7 with a CRL. WebSphere Application
Server provides the following certificate path options:

None If you select this option, the certificate path is not specified.

Trust any
If you select this option, any certificate is trusted. When the received token is consumed, the
certificate path validation is not processed.

Dedicated signing information
If you select this option, you can specify a trust anchor and a certificate store. When you
select the trust anchor or the certificate store of a trusted certificate, you must configure the
collection certificate store before setting the certificate path. To define a collection certificate
store on the server level, see “Configuring the collection certificate on the server level” on
page 3554.

a. Select a trust anchor in the Trust anchor field. WebSphere Application Server provides two
sample trust anchors. However, it is recommended that you configure your own trust anchors for
a production environment. For information on configuring a trust anchor, see “Configuring trust
anchors on the server level” on page 3543.

b. Select a collection certificate store in the Certificate store field. WebSphere Application Server
provides a sample collection certificate store. If you select None, the collection certificate store is
not specified. For information on specifying a list of certificate stores that contain untrusted,
intermediary certificate files awaiting validation, see “Configuring trusted ID evaluators on the
server level” on page 3556.

6. Select a trusted ID evaluator from the Trusted ID evaluation reference field. This field specifies a
reference to the Trusted ID evaluator class name that is defined in Trusted ID evaluators panel. The
trusted ID evaluator is used for evaluating whether the received ID is trusted. If you select None, the
trusted ID evaluator is not referenced in this token consumer configuration. To configure a trusted ID
evaluator, see “Configuring trusted ID evaluators on the server level” on page 3556.

7. Select the Verify nonce option if a nonce is included in a user name token on the generator side.
Nonce is a unique cryptographic number that is embedded in a message to help stop repeat,

Chapter 32. Administering web services - Security (WS-Security) 3515



unauthorized attacks of user name tokens. The Verify nonce option is available if you specify a user
name token for the token consumer and nonce is added to the user name token on the generator
side.

8. Select the Verify timestamp option if a time stamp is included in the user name token on the
generator side. The Verify Timestamp option is available if you specify a user name token for the
token consumer and a time stamp is added to the user name token on the generator side.

9. Specify the local name of the value type for the integrated token. This entry specifies the local name
of the value type for a security token that is referenced by the key identifier. This attribute is valid
when Key identifier is selected as the key information type. To specify the key information type, see
“Configuring the key information for the consumer binding using JAX-RPC on the server level” on
page 3497. WebSphere Application Server has predefined value type local names for the user name
token and the X.509 certificate security token. Enter one of the following local names for the user
name token and the X.509 certificate security token. When you specify the following local names, you
do not need to specify the URI of the value type:

Username token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

X.509 certificate token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

X.509 certificates in a PKIPath
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

A list of X.509 certificates and CRLs in a PKCS#7
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

Note: To specify Lightweight Third Party Authentication (LTPA) or token propagation
(LTPA_PROPAGATION), you must specify both the value type local name and the Uniform
Resource Identifier (URI). For LTPA, specify LTPA for the local name and http://www.ibm.com/
websphere/appserver/tokentype/5.0.2 for the URI. For LTPA token propagation, specify
LTPA_PROPAGATION for the local name and http://www.ibm.com/websphere/appserver/
tokentype for the URI.

For example, when an X.509 certificate token is specified, you can use http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3 for the local name. When you
specify the local name of another token, you must specify a value type Qname. For example:
uri=http://www.ibm.com/custom, localName=CustomToken

10. Specify the value type uniform resource identifier (URI) in the URI field. This entry specifies the
namespace URI of the value type for a security token that is referenced by the key identifier. This
attribute is valid when Key identifier is selected as the key information type on the Key information
panel for the default generator. When you specify the token consumer for the user name token or an
X.509 certificate security token, you do not need to specify this option. If you specify another token,
you need to specify the URI of the QName for the value type.

11. Click OK and then Save to save the configuration. After saving the token generator configuration, you
can specify a JAAS configuration for your token consumer.

12. Click the name of your token generator configuration.

13. Under Additional properties, click JAAS configuration.

14. Select a JAAS configuration from the JAAS configuration name field.

The field specifies the name of the JAAS system for application login configuration. You can specify
additional JAAS system and application configurations by clicking Security > Global security.
Expand Java Authentication and Authorization Service, then click Application logins > New or
System logins > New. Do not remove the predefined system or application login configurations.

3516 Administering WebSphere applications



However, within these configurations, you can add module class names and specify the order in
which WebSphere Application Server loads each module. WebSphere Application Server provides the
following predefined JAAS configurations:

ClientContainer
This selection specifies the login configuration that is used by the client container
applications. The configuration uses the CallbackHandler application programming interface
(API) that is defined in the deployment descriptor for the client container. To modify this
configuration, see the JAAS configuration panel for application logins.

WSLogin
This selection specifies whether all of the applications can use the WSLogin configuration to
perform authentication for the security run time. To modify this configuration, see the JAAS
configuration panel for application logins.

DefaultPrincipalMapping
This selection specifies the login configuration that is used by Java 2 Connectors (J2C) to
map users to principals that are defined in the J2C authentication data entries. To modify this
configuration, see the JAAS configuration panel for application logins.

system.wssecurity.IDAssertion
This selection enables a Version 5.x application to use identity assertion to map a user name
to a WebSphere Application Server credential principal. To modify this configuration, see the
JAAS configuration panel for system logins.

system.wssecurity.Signature
This selection enables a Version 5.x application to map a distinguished name (DN) in a
signed certificate to a WebSphere Application Server credential principal. To modify this
configuration, see the JAAS configuration panel for system logins.

system.LTPA_WEB
This selection processes login requests that are used by the web container such as servlets
and JavaServer Pages (JSP) files. To modify this configuration, see the JAAS configuration
panel for system logins.

system.WEB_INBOUND
This selection handles login requests for web applications, which include servlets and
JavaServer Pages (JSP) files. This login configuration is used by WebSphere Application
Server Version 5.1.1. To modify this configuration, see the JAAS configuration panel for
system logins.

system.RMI_INBOUND
This selection handles logins for inbound Remote Method Invocation (RMI) requests. This
login configuration is used by WebSphere Application Server Version 5.1.1. To modify this
configuration, see the JAAS configuration panel for system logins.

system.DEFAULT
This selection handles the logins for inbound requests that are made by internal
authentications and most of the other protocols except web applications and RMI requests.
This login configuration is used by WebSphere Application Server Version 5.1.1. To modify
this configuration, see the JAAS configuration panel for system logins.

system.RMI_OUTBOUND
This selection processes RMI requests that are sent outbound to another server when the
com.ibm.CSIOutboundPropagationEnabled property is true. This property is set in the CSIv2
authentication panel. To access the panel, click Security > Global security. Under
Authentication, expand RMI/IIOP security and click CSIv2 outbound authentication. To set
the com.ibm.CSIOutboundPropagationEnabled property, select Security attribute
propagation. To modify this JAAS login configuration, see the JAAS - System logins panel.

Chapter 32. Administering web services - Security (WS-Security) 3517



system.wssecurity.X509BST
This section verifies an X.509 binary security token (BST) by checking the validity of the
certificate and the certificate path. To modify this configuration, see the JAAS configuration
panel for system logins.

system.wssecurity.PKCS7
This selection verifies an X.509 certificate with a certificate revocation list in a PKCS7 object.
To modify this configuration, see the JAAS configuration panel for system logins.

system.wssecurity.PkiPath
This section verifies an X.509 certificate with a public key infrastructure (PKI) path. To modify
this configuration, see the JAAS configuration panel for system logins.

system.wssecurity.UsernameToken
This selection verifies the basic authentication (user name and password) data. To modify this
configuration, see the JAAS configuration panel for system logins.

system.wssecurity.IDAssertionUsernameToken
This selection enables Versions 6 and later applications to use identity assertion to map a
user name to a WebSphere Application Server credential principal. To modify this
configuration, see the JAAS configuration panel for system logins.

system.WSS_INBOUND
This selection specifies the login configuration for inbound or consumer requests for security
token propagation using Web Services Security. To modify this configuration, see the JAAS
configuration panel for system logins.

system.WSS_OUTBOUND
This selection specifies the login configuration for outbound or generator requests for security
token propagation using Web Services Security. To modify this configuration, see the JAAS
configuration panel for system logins.

None With this selection, you do not specify a JAAS login configuration.

15. Click OK and then Save to save the configuration.

Results

You have configured the token consumer at the server level.

What to do next

You must specify a similar token generator configuration for the server level.

Token consumer collection:

Use this page to view the token consumer. The information is used on the consumer side only to process
the security token.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Default Generator Bindings, click Token consumers.

To view this administrative console page for Version 6.x and later applications on the application level,
complete the following steps:

3518 Administering WebSphere applications



1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Click Manage modules > URI_name .

3. Under Web Services Security Properties, you can access the signing information for the following
bindings:

v For the Response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom. Under Required properties, click
Token consumers.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.
Under Response consumer (receiver) binding, click Edit custom. Under Required properties, click
Token consumers.

Token consumer name:

Specifies the name of the token consumer configuration.

For example, the default X509 token consumer names can be either con_enctcon for encrypting or
con_signtcon for signing. Or a custom token consumer name might be sig_tcon for signing.

Token consumer class name:

Specifies the name of the token consumer implementation class.

This class must implement the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface.

Token consumer class name:

Specifies the name of the token consumer implementation class.

The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
validate (authenticate) the security token on the consumer side.

Token consumer configuration settings:

Use this page to specify the information for the token consumer. The information is used at the consumer
side only to process the security token.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name .

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under JAX-RPC Default Consumer Bindings, click Token consumers > token_consumer_name or
click New to create a new token consumer.

To view this administrative console page for Version 6 and later applications on the application level,
complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the signing information for the following
bindings:

Chapter 32. Administering web services - Security (WS-Security) 3519



v For the Response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom. Under Required properties, click
Token consumers.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.
Under Response consumer (receiver) binding, click Edit custom. Under Required properties, click
Token consumers.

4. Click New to specify a new configuration or click the name of an existing configuration to modify its
settings.

Before specifying additional properties, specify a value in the Token consumer name, the Token consumer
class name, and the Value type local name fields.

Token consumer name:

Specifies the name of the token consumer configuration.

For example, the default X509 token consumer names are either con_enctcon for encrypting or
con_signtcon for signing. Or a custom, the token consumer name might be sig_tcon for signing.

Token consumer class name:

Specifies the name of the token consumer implementation class.

This class must implement the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface.

Token consumer class name:

Specifies the name of the token consumer implementation class.

The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
validate (authenticate) the security token on the consumer side.

Part reference:

Specifies a reference to the name of the security token that is defined in the deployment descriptor.

On the application level, when the security token is not specified in the deployment descriptor, the Part
reference field is not displayed.

Certificate path:

Specifies the trust anchor and the certificate store.

You can select the following options:

None If you select this option, the certificate path is not specified.

Trust any
If you select this option, any certificate is trusted. When the received token is incorporated, the
certificate path validation is not processed.

Dedicated signing information
If you select this option, you can specify the trust anchor and the certificate store. When you select
the trust anchor or the certificate store of a trusted certificate, you must configure the collection
certificate store before setting the certificate path.

3520 Administering WebSphere applications



Trust anchor

You can specify a trust anchor for the following bindings on the following levels:

Table 329. Trust anchor binding settings. The trust anchor is used for signing messages.
Binding name Server level or application level Path

Default consumer binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
Websphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under Additional properties, click Trust anchors.

Certificate store

You can specify a certificate path configuration for the following bindings on the following levels:

Table 330. Certificate store binding settings. The certificate is used for signing messages.
Binding name Server level or application level Path

Default consumer binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
Websphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under Additional properties, click Collection certificate
store.

Trusted ID evaluator reference:

Specifies the reference to the Trusted ID evaluator class name that is defined in the Trusted ID evaluators
panel. The trusted ID evaluator is used for determining whether the received ID is trusted.

You can select the following options:

None If you select this option, the trusted ID evaluator is not specified.

Existing evaluator definition
If you select this option, you can select one of the configured trusted ID evaluators.

You can specify a certificate path configuration for the following bindings on the following levels:

Table 331. Trusted ID evaluator bindings settings. The trusted ID evaluator is used to determine if a received ID is
trusted.
Binding name Server level or application level Path

Default consumer binding Server level 1. Click Servers > Server Types > WebSphere application
servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security
runtime.
Note: In a mixed node cell with a server using
Websphere Application Server version 6.1 or earlier, click
Web services: Default bindings for Web Services
Security.

3. Under Additional properties, click Trusted ID evaluators.

Chapter 32. Administering web services - Security (WS-Security) 3521



Binding evaluator definition
If you select this option, you can specify a new trusted ID evaluator and its class name.

When you select a trusted ID evaluator reference, you must configure the trusted ID evaluators before
setting the token consumer.

The Trusted ID evaluator field is displayed in the default binding configuration and the application server
binding configuration.

Verify nonce:

Specifies whether the nonce of the user name token is verified.

This option is displayed on the cell, server, and application levels. This option is valid only when the type
of incorporated token is the user name token.

Verify timestamp:

Specifies whether the time stamp of user name token is verified.

This option is displayed on the cell, server, and application levels. This option is valid only when the type
of incorporated token is the user name token.

Value type local name:

Specifies the local name of value type for the consumed token.

This product has predefined value type local names for the user name token and the X.509 certificate
security token. Use the following local names for the user name token and the X.509 certificate security
token. When you specify the following local names, you do not need to specify the Uniform Resource
Identifier (URI) of the value type:

Username token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

X509 certificate token
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

# X509 certificates in a PKIPath
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

Lightweight Third Party Authentication (LTPA)

LTPA_PROPAGATION

Important: For Lightweight Third Party Authentication (LTPA), the value type local name is LTPA. If you
enter LTPA for the local name, you must specify the http://www.ibm.com/websphere/
appserver/tokentype/5.0.2 URI value in the Value type URI field as well. For LTPA token
propagation, the value type local name is LTPA_PROPAGATION. If you enter LTPA_PROPAGATION for
the local name, you must specify the http://www.ibm.com/websphere/appserver/tokentype
URI value in the Value type URI field as well. For the other predefined value types (Username
token, X509 certificate token, X509 certificates in a PKIPath, and a list of X509 certificates and
CRLs in a PKCS#7), the value for the local name field begins with http://. For example, if
you are specifying the username token for the value type, enter http://docs.oasis-open.org/

3522 Administering WebSphere applications



wss/2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken in the value type
local name field and then you do not need to enter a value in the value type URI field.

When you specify a custom value type for custom tokens, you can specify the local name and the URI of
the Quality name (QName) of the value type. For example, you might specify Custom for the local name
and http://www.ibm.com/custom for the URI.

Value type URI:

Specifies the namespace URI of the value type for the integrated token.

When you specify the token consumer for the user name token or the X.509 certificate security token, you
do not need to specify this option. If you want to specify another token, specify the URI of the QName for
the value type.

The application server provides the following predefined value type URIs:

v For the LTPA token: http://www.ibm.com/websphere/appserver/tokentype/5.0.2

v For the LTPA token propagation: http://www.ibm.com/websphere/appserver/tokentype

Configuring Web Services Security using JAX-RPC at the platform level
In the platform configuration, general properties and additional properties can be specified, and the default
binding is included. You can configure security for web services at a platform level with a variety of tasks
including configuring key locators, trust anchors, and the collection certificate at the generator, consumer
binding, and sever levels.

Before you begin

best-practices: IBM WebSphere Application Server supports the Java API for XML-Based Web Services
(JAX-WS) programming model and the Java API for XML-based RPC (JAX-RPC)
programming model. JAX-WS is the next generation web services programming model
extending the foundation provided by the JAX-RPC programming model. Using the
strategic JAX-WS programming model, development of web services and clients is
simplified through support of a standards-based annotations model. Although the
JAX-RPC programming model and applications are still supported, take advantage of the
easy-to-implement JAX-WS programming model to develop new web services
applications and clients.

Besides the application-level constraints, there is a server-level Web Services Security (WSS)
configuration called a platform-level configuration:

v These configurations are global for all applications and include some configurations only for WebSphere
Application Server Version 5.x applications and some only for version 6.0.x applications.

v You can use the default binding as an application-level binding configuration so that applications do not
have to define the binding in the application. There is only one set of default bindings that can be
shared by multiple applications. This set is only available for WebSphere Application Server Version 6.x
applications.

Therefore, binding configuration files can be specified at these levels: application and server. Each binding
configuration overrides the next higher one. For any deployed application, the nearest configuration
binding is applied. The visibility scope of the binding depends on where the file is located. If the binding is
defined in an application, its visibility is scoped to that particular application. If it is located at the server
level, the visibility scope is all applications that are deployed on that server.

Chapter 32. Administering web services - Security (WS-Security) 3523



About this task

To ensure Web Services Security at the platform level, you can configure:

v A nonce on the server level

v The key locator for the generator or consumer binding on the application level or at the server level

v Trust anchors for the generator or consumer binding on the application level or at the server level

v The collection certificate store for the generator or consumer binding on the application level or server
level

v Trusted ID evaluators on the server level

v Hardware cryptographic devices for Web Services Security

v The rrdSecurity.props property file

Procedure
v To configure a nonce on the server level, see the steps in “Configuring a nonce on the server level”

v To configure the key locator for the generator binding on the application level, see the steps in
“Configuring the key locator using JAX-RPC for the generator binding on the application level” on page
3526

v To configure the key locator for the consumer binding on the application level, see the steps in
“Configuring the key locator using JAX-RPC for the consumer binding on the application level” on page
3533

v To configure the key locator on the server level, see the steps in “Configuring the key locator using
JAX-RPC on the server level” on page 3535

v To configure trust anchors for the generator binding on the application level, see the steps in
“Configuring trust anchors for the generator binding on the application level” on page 3537

v To configure trust anchors for the consumer binding on the application level, see the steps in
“Configuring trust anchors for the consumer binding on the application level” on page 3541

v To configure trust anchors on the server level, see the steps in “Configuring trust anchors on the server
level” on page 3543

v To configure the collection certificate store for the generator binding on the application level, see the
steps in “Configuring the collection certificate store for the generator binding on the application level” on
page 3544

v To configure the collection certificate store for the consumer binding on the application level, see the
steps in “Configuring the collection certificate store for the consumer binding on the application level” on
page 3553

v To configure the collection certificate on the server level, see the steps in “Configuring the collection
certificate on the server level” on page 3554

v To configure trusted ID evaluators on the server level, see the steps in “Configuring trusted ID
evaluators on the server level” on page 3556

v To enable hardware cryptographic devices for Web Services Security, see the steps in “Enabling
hardware cryptographic devices for Web Services Security” on page 3561

v To work with the rrdSecurity.props file, see “rrdSecurity.props file” on page 3559

Results

By completing these steps, you have configured Web Services Security at the platform level.

Configuring a nonce on the server level:

You can configure nonce for the server by using the WebSphere Application Server administrative console.

3524 Administering WebSphere applications



About this task

Nonce is a randomly generated, cryptographic token that is used to prevent replay attacks of user name
tokens that are used with SOAP messages. Typically, nonce is used with the user name token.

You can configure nonce at the application level and the server level. However, you must consider the
order of precedence.

The following list shows the order of precedence:

1. Application level

The application level settings for the nonce maximum age and nonce clock skew fields are specified
through the additional properties.

2. Server level

If you configure nonce on the application level and the server level, the values that are specified for the
application level take precedence over the values that are specified for the server level. Likewise, the
values that are specified for the application level take precedence over the values specified for the server
level. Complete the following steps to configure nonce on the server level:

Complete the following steps to configure a nonce on the server level:

Procedure

1. Access the default bindings for the server level.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

2. Specify a value, in seconds, for the Nonce cache timeout field. The value that is specified for the
Nonce cache timeout field indicates how long the nonce remains cached before it is discarded. You
must specify a minimum of 300 seconds. However, if you do not specify a value, the default is 600
seconds. This field is optional on the server level.

3. Specify a value, in seconds, for the Nonce maximum age field. The value that is specified for the
Nonce maximum age field indicates how long the nonce is valid. You must specify a minimum of 300
seconds, but the value cannot exceed the number of seconds that is specified for the Nonce cache
timeout field. If you do not specify a value, the default is 300 seconds. This field is optional on the
server level.

4. Specify a value, in seconds, for the Nonce clock skew field. The value that is specified for the Nonce
clock skew field specifies the amount of time, in seconds, to consider when the message receiver
checks the freshness of the value. Consider the following information when you set this value:

v Difference in time between the message sender and the message receiver, if the clocks are not
synchronized.

v Time that is needed to encrypt and transmit the message.

v Time that is needed to get through network congestion.

At a minimum, you must specify 0 seconds in this field. However, the maximum value cannot exceed
the number of seconds indicated in the Nonce maximum age field. If you do not specify a value, the
default is 0 seconds. This field is optional on the server level.

5. Optional: For WebSphere Application Server, Network Deployment only, select Distribute nonce
caching. This option enables you to distribute the caching for a nonce using a Data Replication
Service (DRS). In previous releases of WebSphere Application Server, the nonce was cached locally.
By selecting this option, the nonce is propagated to other servers in your environment. However, the
nonce might be subject to a one-second delay in propagation and subject to any network congestion.

Chapter 32. Administering web services - Security (WS-Security) 3525



6. Restart the server. If you change the nonce cache timeout value and do not restart the server, the
change is not recognized by the server.

Distributing nonce caching to servers in a cluster:

Distributed nonce caching enables you to distribute the cache for a nonce to different servers in a cluster.

Before you begin

Before configuring distributed nonce caching, configure cache replication.

About this task

In previous releases of WebSphere Application Server, the nonce was cached locally. To use this feature,
you must complete the following actions:

Procedure

1. Verify that you created an appropriate domain setting when you form a cluster.

2. Verify that replication domain is properly secured. The nonce cache is crucial to the integrity of the
nonce validation process. If the nonce cache is compromised, then you cannot trust the result of the
validation process.

3. In the administrative console for the server level, select the Distribute nonce caching option. You can
enable the option by completing the following steps:

a. Click Security > Web services.

b. Select the Distribute nonce caching option.

4. Restart the servers within your cluster.

Results

When you select the Distribute nonce caching option in the administrative console, the nonce is
propagated to other servers in your environment. However, the nonce might be subject to a one-second
delay in propagation and subject to any network congestion.

What to do next

For more information on distributed nonce caching, see Web Services Security enhancements.

Configuring the key locator using JAX-RPC for the generator binding on the application level:

The key locator information for the default generator specifies which key locator implementation is used to
locate the key to be used for signature and encryption information. The key locator information for the
generator specifies which key locator implementation is used to locate the key to be used for signature
validation or encryption.

About this task

WebSphere Application Server provides default values for the bindings. However, you must modify the
defaults for a production environment.

Complete the following steps to configure the key locator for the generator binding on the application level:

Procedure

1. Locate the encryption information configuration panel in the administrative console.

3526 Administering WebSphere applications



a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties you can access the key information for the request
generator and response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.
Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Key locators.

e. Click New to create a key locator configuration, select the box next to the configuration and click
Delete to delete an existing configuration, or click the name of an existing key locator configuration
to edit its settings. If you are creating a new configuration, enter a unique name in the Key locator
name field. For example, you might specify gen_keyloc.

2. Specify a class name for the key locator class implementation in the Key locator class name field.
The Java Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side. Specify a class name according to the requirements of
the application. For example, if the application requires that the key is read from a keystore file, specify
the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation. WebSphere Application
Server supports the following default key locator class implementations for Versions 6.0.x and later
applications that are available to use with the request generator or response generator:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator
This implementation locates and obtains the key from the specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator
This implementation uses the public key from the signer certificate and is used by the
response generator.

3. Specify the keystore password, the keystore location, and the keystore type. Keystore files contain
public and private keys, root certificate authority (CA) certificates, the intermediate CA certificate, and
so on. Keys retrieved from the keystore are used to sign and validate or encrypt and decrypt
messages or message parts. If you specified the
com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation for the key locator class
implementation, you must specify a keystore password, location, and type.

a. Specify a password in the keystore Password field. This password is used to access the keystore
file.

b. Specify the location of the keystore file in the keystore Path field.

c. Select a keystore type from the Type field. The Java Cryptography Extension (JCE) that is used by
IBM supports the following keystore types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your
keystore file uses the Java Keystore (JKS) format.

JCEKS
Use this option if you are using Java Cryptography Extensions.

JCERACFKS
Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11KS (PKCS11)
Use this format if your keystore uses the PKCS#11 file format. Keystores using this format
might contain RSA keys on cryptographic hardware or might encrypt keys that use
cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)
Use this option if your keystore uses the PKCS#12 file format.

Chapter 32. Administering web services - Security (WS-Security) 3527



WebSphere Application Server provides some sample keystore files in the ${USER_INSTALL_ROOT}/
etc/ws-security/samples directory. For example, you might use the enc-receiver.jceks keystore
file for encryption keys. The password for this file is Storepass and the type is JCEKS.

Restriction: Do not use the sample keystore files in a production environment. These samples are
provided for testing purposes only.

4. Click OK and then click Save to save the configuration.

5. Under Additional properties, click Keys.

6. Click New to create a key configuration, select the box next to the configuration and click Delete to
delete an existing configuration, or click the name of an existing key configuration to edit its settings.
This entry specifies the name of the key object within the keystore file. If you are creating a new
configuration, enter a unique name in the Key name field. For digital signatures, the key name is used
by the request generator or the response generator signing information to determine which key is used
to digitally sign the message.

You must use a fully qualified distinguished name for the key name. For example, you might use
CN=Bob,O=IBM,C=US.

Important: Do not use the sample key files in a production environment. These samples are provided
for testing purposes only.

7. Specify an alias in the Key alias field. The key alias is used by the key locator to search for key
objects in the keystore.

8. Specify a password in the Key password field. The password is used to access the key object within
the keystore file.

9. Click OK and Save to save the configuration.

Results

You have configured the key locator for the generator binding at the application level.

What to do next

You must specify a similar key information configuration for the consumer.

Key locator collection:

Use this page to view a list of key locator configurations that retrieve keys from the keystore for digital
signature and encryption. A key locator must implement the com.ibm.wsspi.wssecurity.config.KeyLocator
interface.

To view this administrative console page for the key locator collection on the server level, complete the
following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Key locators.

To use this administrative console page for the key locator collection on the application level, complete the
following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Click Manage modules > URI_name.

3528 Administering WebSphere applications



3. Under Web Services Security Properties, you can access key locators for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit custom > Key locators.

v For the Request consumer, click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom > Key locators.

v For the Response generator, click Web services: Server security bindings. Under Response
generator (sender) binding, click Edit custom > Key locators.

v For the Response consumer, click Web services: Client security bindings. Under Response
consumer (receiver) binding, click Edit custom > Key locators.

4. Under Additional properties, you can access key locators for the following bindings:

v For the Request sender, click Web services: Client security bindings. Under Request sender
binding, click Edit > Key locators.

v For the Request receiver, click Web services: Server security bindings. Under Request receiver
binding, click Edit > Key locators.

v For the Response sender, click Web services: Server security bindings. Under Response sender
binding, click Edit > Key locators.

v For the Response receiver, click Web services: Client security bindings. Under Response
receiver binding, click Edit > Key locators.

Tip: The bindings for a Version 6.x. or later application has a link that says Edit custom.

Using this Key locator collection panel, complete the following steps:

1. Specify a key locator name and a key locator class name on the panel.

2. Save your changes by clicking Save in the messages section at the top of the administrative console.
The administrative console home panel is displayed.

3. After saving your changes, update the Web Services Security run time with the default binding
information by clicking Update runtime. When you click Update runtime, the configuration changes
made to the other Web services also are updated in the Web Services Security run time.

4. After you define key locators, click the key locator name to specify additional properties and keys
under Additional Properties.

Key locator name:

Specifies the unique name of the key locator.

Key locator class name:

Specifies the class name of the key locator, which retrieves the key that is used for digital signing and
encryption.

Key locator configuration settings:

Use this page to specify the settings for a key locator configuration. The key locators retrieve keys from
the keystore file for digital signature and encryption. This product enables you to plug in a custom key
locator configuration.

To view this administrative console page for the key locator collection on the server level, complete the
following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Chapter 32. Administering web services - Security (WS-Security) 3529



Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Key locators.

4. Click New to create a new configuration or click the name of a configuration to modify its settings.

To use this administrative console page for the key locator collection on the application level, complete the
following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security properties, you can access key locators for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit custom > Key locators.

v For the Request consumer, click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom > Key locators.

v For the Response generator, click Web services: Server security bindings. Under Response
generator (sender) binding, click Edit custom > Key locators.

v For the Response consumer, click Web services: Client security bindings. Under Response
consumer (receiver) binding, click Edit custom > Key locators.

4. Click New to create a new configuration or click the name of a configuration to modify its settings.

Key locator name:

Specifies the name of the key locator.

Information Value
Data type String

Key locator class name:

Specifies the name for the key locator class implementation.

Key locators that are associated with Versions 6 and later applications must implement the
com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface. This product provides the following default key
locator class implementations for Versions 6 and later applications:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator
This implementation locates and obtains the key from the specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator
This implementation uses the public key from the certificate of the signer. This class
implementation is used by the response generator.

This property is for the JAX-RPC programming model only. To implement signer certificate
encryption for the JAX-WS programming model, set a custom property on the callback handler for
the encryption token generator. For more information, read the topic Callback handler settings.

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator
This implementation uses the X.509 security token from the sender message for digital signature
validation and encryption. This class implementation is used by the request consumer and the
response consumer.

Information Value
Data type String

3530 Administering WebSphere applications



Keystore: Specifies information about the key store that is used by this key locator configuration.

None Use this option if a key store is not required to be specified for this key locator configuration.

Predefined keystore
Use this option if you want to specify a predefined keystore for this key locator configuration.

User-defined keystore
Use this option if you want to specify a user-defined key store for this key locator configuration.

Keystore configuration name:

Specifies the name of the key store configuration that is defined in the keystore settings in secure
communications.

The keystore configuration name is located under the Predefined keystore field, which is located under
the Keystore section of the page.

Information Value
Data type String

Keystore password:

Specifies the password that is used to access the keystore file.

The keystore password is located under the User-defined keystore field, which is located under the
Keystore section of the page.

Information Value
Data type String

Keystore path:

Specifies the location of the keystore file.

The path is located under the User-defined keystore field, which is located under the Keystore section of
the page.

Information Value
Data type String

Keystore type:

Specifies the type of keystore file.

The type is located under the User-defined keystore field, which is located under the Keystore section of
the page.

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your keystore file
uses the Java Keystore (JKS) format.

JCEKS
Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)
Use this format if your keystore file uses the PKCS#11 file format. Keystores files that use this
format might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware or might
encrypt keys that use cryptographic hardware to ensure protection.

Chapter 32. Administering web services - Security (WS-Security) 3531



PKCS12KS (PKCS12)
Use this option if your keystore file uses the PKCS#12 file format.

Information Value
Default JKS
Range JKS, JCEKS, PKCS11KS (PKCS11), PKCS12KS

(PKCS12)

Web Services Security property collection:

Use this page to a view a list of additional properties for the configuration.

You can view a Web Services Security property collection panel at the cell level. Complete the following
steps to view one of these administrative console pages:

1. Click Security > JAX-WS and JAX-RPC security runtime.

2. Under JAX-RPC Default Generator Bindings or JAX-RPC Default Consumer Bindings, click
Properties.

3. Click New to create a new property.

4. Click Delete to a delete a property that you specified previously.

Property name:

Specifies the name of the property.

Property value:

Specifies the value for the property.

Web Services Security property configuration settings:

Use this page to configure additional security properties.

You can view a Web Services Security property configuration settings panel at the cell level. Complete the
following steps to view one of these administrative console pages:

1. Click Security > JAX-WS and JAX-RPC security runtime.

2. Under JAX-RPC Default Generator Bindings or JAX-RPC Default Consumer Bindings, click Properties
> New.

Property Name:

Specifies the name of the property.

Information Value
Data type: String

Property Value:

Specifies the value for the property.

Information Value
Data type: String

The following table lists the properties that you can configure by using the Web Services Security property
panels.

3532 Administering WebSphere applications



Table 332. Property configuration settings. The properties are used to secure web services.
Configuration panel name Property name Property value Description

JAAS configuration com.ibm.wsspi.wssecurity.
token.X509.issuerName

Specify the SubjectDN or the
IssuerDN of the issuer for the
X.509 certificate.

This property is used to specify the
issuer of the certificate in the token
consumer component.

JAAS configuration com.ibm.wsspi.wssecurity.
token.X509.issuerSerial

Specify the serial number of the
X.509 certificate.

This property is used to specify the
serial number of the certificate in the
token consumer component.

Key information com.ibm.wsspi.wssecurity.
keyinfo.EncodingNS

Specify the namespace Uniform
Resource Identifier (URI) for the
qualified name (QName).

This property is used to specify the
namespace URI part of the QName
that represents the encoding method.

Properties com.ibm.ws.wssecurity.handler.
hardwareCacheEntryRefreshHours

Specify a numeric value from 1 to
24 that represents the number of
hours that a temporary key is
valid.

This property is used to specify the
amount of time before a key is
retranslated. Temporary keys outside
the keystore typically expire in a short
period of time, measured in days or
hours. If the server is configured to
use a hardware acceleration card, but
not the hardware keystore, you can
configure it to translate the temporary
keys periodically before they expire. If
this property is not set, a key will be
retranslated after 8 hours. Setting this
value to 0 disables retranslation.

Request generator and Response
generator

com.ibm.wsspi.wssecurity.
timestamp.SOAPHeaderElement

Specify 1 or true. This property is used with the Add
nonce option to set the
mustUnderstand flag in the
deployment descriptor.

Request generator and Response
generator

com.ibm.wsspi.wssecurity.
timestamp.dialect

v A WebSphere Application
Server special keywords

v An XPath
v A WS-Policy function

The default value is dialect-was.
See the com.ibm.wsspi.wssecurity
Interface Constants for more
information about the values that
can be specified.

This property is used in conjunction
with the

com.ibm.wsspi.wssecurity.
timestamp.keyword

. The property is used to place the
timestamp header in a specific position
in a message.

Signing information com.ibm.wsspi.wssecurity.
dsig.dumpPath

Specify the path used to locate
the output file.

This property is used to specify an
output file for dumping the target
UTF-8 binary data before signing and
verifying messages.

Token generator com.ibm.wsspi.wssecurity.
token.username.timestampExpires

Specify 1 or true. This property is used to specify an
expiration date for the user name
token.

Transform algorithms com.ibm.wsspi.wssecurity.
dsig.XPathExpression

not(ancestor-or-self::*
[namespace-uri()=’http://www.
w3.org/2000/09/xmldsig#’
and local-name()=’Signature’])

This property is used with this
algorithm:

http://www.w3.org/TR/1999
/REC-xpath-19991116

Configuring the key locator using JAX-RPC for the consumer binding on the application level:

The key locator information for the consumer at the application level specifies which key locator
implementation is used. The key locator implementation locates the key to be used to validate the digital
signature or the encryption information by the application.

About this task

Complete the following steps to configure the key locator for the consumer binding on the application level:

Procedure

1. Locate the key locator configuration panel in the administrative console.

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

Chapter 32. Administering web services - Security (WS-Security) 3533



b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties, you can access the key information for the request
consumer and response consumer bindings.

v For the request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.
Under Response consumer (receiver) binding, click Edit custom.

d. Under Additional properties, click Key locators.

e. Click New to create a key locator configuration, click Delete and select the box next to the
configuration to delete an existing configuration, or click the name of an existing key locator
configuration to edit its settings. If you are creating a new configuration, enter a unique name in the
Key locator name field. For example, you might specify klocator.

2. Specify a name for the key locator class implementation. The Java Authentication and Authorization
Service (JAAS) Login Module implementation is used to validate (authenticate) the security token on
the consumer side. Specify a class name according to the requirements of the application. For
example, if the application requires that the key is read from a keystore file, specify the
com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation. WebSphere Application Server
provides the following default key locator class implementations for Version 6.0.x applications that are
available to use with the request consumer or response consumer:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator
This implementation locates and obtains the key from the specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator
This implementation uses the X.509 security token from the sender message for digital
signature validation and encryption. This class implementation is used by the request
consumer and the response consumer.

3. Specify the keystore password, the keystore location, and the keystore type. Keystore files contain
public and private keys, root certificate authority (CA) certificates, the intermediate CA certificate, and
so on. Keys that are retrieved from the keystore files are used to sign and validate or encrypt and
decrypt messages or message parts. If you specified the
com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation for the key locator class
implementation, you must specify a keystore password, location, and type.

a. Specify a password in the keystore Password field. This password is used to access the keystore
file.

b. Specify the location of the keystore file in the keystore Path field.

c. Select a keystore type from the keystore Type field. The Java Cryptography Extension (JCE) that is
used by IBM supports the following keystore types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your
keystore file uses the Java Keystore (JKS) format.

JCEKS
Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)
Use this format if your keystore file uses the PKCS#11 file format. Keystore files that use
this format might contain RSA keys on cryptographic hardware or might encrypt keys that
use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)
Use this option if your keystore uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the ${USER_INSTALL_ROOT}/
etc/ws-security/samples directory. For example, you might use the enc-receiver.jceks keystore
file for encryption keys. The password for this file is Storepass and the type is JCEKS.

3534 Administering WebSphere applications



Attention: Do not use these keystore files in a production environment. These samples are
provided for testing purposes only.

4. Click OK and Save to save the configuration.

5. Under Additional properties, click Keys.

6. Click New to create a key configuration, click Delete and select the box next to the configuration to
delete an existing configuration, or click the name of an existing key configuration to edit its settings.
This entry specifies the name of the key object within the keystore file. If you are creating a new
configuration, enter a unique name in the Key name field.

It is recommended that you use a fully qualified distinguished name for the key name. For example,
you might use CN=Bob,O=IBM,C=US.

7. Specify an alias in the Key alias field. The key alias is used by the key locator to search for key
objects in the keystore file.

8. Specify a password in the Key password field. The password is used to access the key object within
the keystore file.

9. Click OK and then click Save to save the configuration.

Results

You have configured the key locator for the consumer binding at the application level.

What to do next

You must specify a similar key information configuration for the generator.

Configuring the key locator using JAX-RPC on the server level:

The key locator information for the default generator bindings specifies which key locator implementation is
used to locate the key for signature and encryption information if these bindings are not defined at the
application level.

About this task

The key locator information for the default consumer bindings specifies which key locator implementation
is used to locate the key that is used for signature validation or decryption if these bindings are not defined
at the application level. WebSphere Application Server provides default values for the bindings. However,
you must modify the defaults for a production environment.

Complete the following steps to configure the key locator on the server level:

Procedure

1. Access the default bindings for the server level.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

2. Under Additional properties, click Key locator. You can configure the key locator configurations for
both the default generator and the default consumer in this location.

3. Click one of the following to work with the key locator configurations:

New To create a key locator configuration. Enter a unique name for the key locator configuration in
the Key locator name field. For example, you might specify sig_klocator.

Delete To delete an existing configuration

Chapter 32. Administering web services - Security (WS-Security) 3535



an existing key locator configuration
To edit the settings of an existing configuration.

4. Specify a name for the key locator class implementation in the Key locator class name field. The
key locators that are associated with Version 6.0.x applications must implement the
com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface.

Note: This interface is valid only for JAX-RPC applications. For JAX-WS applications, the Java
Authentication and Authorization Service (JAAS) Login Module implementation is used to
create the security token on the generator side and to validate (authenticate) the security token
on the consumer side.

WebSphere Application Server provides the following default key locator class implementations for
Version 6.0.x applications:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreLeyLocator
This implementation locates and obtains the key from a specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator
This implementation uses the public key from the certificate of the signer. This class
implementation is used by the response generator.

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator
This implementation uses the X.509 security token from the sender message for digital
signature validation and encryption. This class implementation is used by the request
consumer and the response consumer.

For example, you might specify the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreLeyLocator
implementation if you need the configuration to be the key locator for signing information.

5. Specify the keystore password, the keystore location, and the keystore type. Keystore files contain
public and private keys, root certificate authority (CA) certificates, the intermediate CA certificate, and
so on. Keys that are retrieved from the keystore file are used to sign and validate or encrypt and
decrypt messages or message parts. If you specified the
com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation for the key locator class
implementation, you must specify a key store password, location, and type.

a. Specify a password in the Key store password field. This password is used to access the
keystore file.

b. Specify the location of the keystore file in the Key store path field.

c. Select a keystore type from the Key store type field. The Java Cryptography Extension (JCE)
that is used supports the following key store types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your
keystore file uses the Java Keystore (JKS) format.

JCEKS
Use this option if you are using Java Cryptography Extensions.

PKCS11
Use this format if your keystore file uses the PKCS#11 file format. Keystore files that use
this format might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware
or might encrypt keys that use cryptographic hardware to ensure protection.

PKCS12
Use this option if your keystore file uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the ${USER_INSTALL_ROOT}/
etc/ws-security/samples directory. For example, you might use the enc-receiver.jceks keystore
file for encryption keys. The password for this file is storepass and the type is JCEKS.

Restriction: Do not use these keystore files in a production environment. These samples are
provided for testing purposes only.

3536 Administering WebSphere applications



6. Click OK and Save to save the configuration.

7. Under Additional properties, click Keys.

8. Click one of the following to work with the key configurations:

New To create a key configuration. Enter a unique name in the Key name field. You must use a
fully qualified distinguished name for the key name. For example, you might use
CN=Bob,O=IBM,C=US.

Delete To delete an existing configuration.

an existing key configuration
To edit the settings of the existing configuration.

This entry specifies the name of the key object within the keystore file.

9. Specify an alias in the Key alias field. The key alias is used by the key locator to search for key
objects in the keystore file.

10. Specify a password in the Key password field. The password is used to access the key object within
the keystore file.

11. Click OK and then click Save to save the configuration.

Results

You have configured the key locator for the server level.

What to do next

Configure the key information for the default generator and the default consumer bindings that reference
this key locator.

Configuring trust anchors for the generator binding on the application level:

A trust anchor specifies key stores that contain trusted root certificates, which validate the signer
certificate. These key stores are used by the request generator and the response generator (when web
services are acting as client) to generate the signer certificate for the digital signature. You can configure
trust anchors for the generator binding at the application level by using the administrative console.

Before you begin

You can configure a trust anchor using an assembly tool or the administrative console. This task describes
how to configure the application-level trust anchor using the administrative console. For more information
on assembly tools, see the related information.

About this task

The keystores are critical to the integrity of the digital signature validation. If they are tampered with, the
result of the digital signature verification is doubtful and comprised. Therefore, it is recommended that you
secure these keystores. The binding configuration that is specified for the request generator must match
the binding configuration for the response generator.

The trust anchor configuration for the request generator on the client must match the configuration for the
request consumer on the server. Also, the trust anchor configuration for the response generator on the
server must match the configuration for the response consumer on the client.

Complete the following steps to configure trust anchors for the generator binding on the application level:

Chapter 32. Administering web services - Security (WS-Security) 3537



Procedure

1. Locate the trust anchor panel in the administrative console.

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties you can access the trust anchor configuration for the
following bindings:

v For the request generator (sender) binding, click Web services: Client security bindings.
Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Trust anchors.

e. Click New to create a trust anchor configuration, click Delete to delete an existing configuration, or
click the name of an existing trust anchor configuration to edit its settings. If you are creating a new
configuration, enter a unique name in the Trust anchor name field.

2. Specify the keystore password, the keystore location, and the keystore type. Key store files contain
public and private keys, root certificate authority (CA) certificates, the intermediate CA certificate, and
so on. Keys retrieved from the keystore are used to sign and validate or encrypt and decrypt
messages or message parts. If you specified the
com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation for the key locator class
implementation, you must specify a key store password, location, and type.

a. Specify a password in the Key store password field. This password is used to access the
keystore file.

b. Specify the location of the key store file in the Key store path field.

c. Select a keystore type from the Key store type field. The Java Cryptography Extension (JCE)
used by IBM supports the following key store types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your
keystore file uses the Java Keystore (JKS) format.

JCEKS
Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)
Use this format if your keystore uses the PKCS#11 file format. Keystores using this format
might contain RSA keys on cryptographic hardware or might encrypt keys that use
cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)
Use this option if your keystore uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the following directory, using
the USER_INSTALL_ROOT variable:

For example, you might use the enc-receiver.jceks keystore file for encryption keys. The
password for this file is Storepass and the type is JCEKS.

Restriction: Do not use these keystore files in a production environment. These samples are
provided for testing purposes only.

Results

This task configures trust anchors for the generator binding at the application level.

3538 Administering WebSphere applications



What to do next

You must specify a similar trust anchor configuration for the consumer.

Trust anchor collection:

Use this page to view a list of keystore objects that contain trusted root certificates. These objects are
used for certificate path validation of incoming X.509-formatted security tokens. Keystore objects within
trust anchors contain trusted root certificates that are used by the CertPath API to validate the trust of a
certificate chain.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

To create the keystore file, use the keytool utility. The keytool utility is available using the
QShell Interpreter.

To view this administrative console page for trust anchors on the server level, complete the following
steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Trust anchors.

To view this administrative console page for trust anchors on the application level,

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access trust anchors information for the following
bindings:

v For the Response consumer (receiver) binding, click Web services: Client security bindings.
Under Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

4. Under Additional properties, you can access the trust anchors information for the following bindings:

v For the Response receiver binding, click Web services: Client security bindings. Under Response
receiver binding, click Edit.

v For the Request receiver binding, click Web services: Server security bindings. Under Request
receiver binding, click Edit.

5. Under Additional properties, click Trust anchors.

If you click Update runtime, the Web Services Security run time is updated with the default binding
information, which is contained in the ws-security.xml file that was previously saved. If you make
changes on this panel, you must complete the following steps:

1. Save your changes by clicking Save at the top of the administrative console. When you click Save,
you are returned to the administrative console home panel.

2. Return to the Trust anchors collection panel and click Update runtime. When you click Update
runtime, the configuration changes made to the other web services also are updated in the Web
Services Security run time.

Trust anchor name:

Chapter 32. Administering web services - Security (WS-Security) 3539



Specifies the unique name that is used to identify the trust anchor.

Key store path:

Specifies the location of the keystore file that contains the trust anchors.

Key store type:

Specifies the type of keystore file.

The value for this field is JKS, JCEKS, JCERACFKS (z/OS only), JCE4758RACFKS (z/OS only),
PKCS11KS (PKCS11), or PKCS12KS (PKCS12).

Trust anchor configuration settings:

Use this information to configure a trust anchor. Trust anchors point to keystores that contain trusted root
or self-signed certificates. This information enables you to specify a name for the trust anchor and the
information that is needed to access a keystore. The application binding uses this name to reference a
predefined trust anchor definition in the binding file (or the default).

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

To view this administrative console page for trust anchors on the server level, complete the following
steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Trust anchors.

4. Click New to create a trust anchor or click the name of an existing configuration to modify its settings.

To view this administrative console page for trust anchors on the application level,

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access trust anchors information for the following
bindings:

v For the Response consumer (receiver) binding, click Web services: Client security bindings.
Under Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

4. Under Additional properties, you can access the trust anchors information for the following bindings:

v For the Response receiver binding, click Web services: Client security bindings. Under Response
receiver binding, click Edit.

v For the Request receiver binding, click Web services: Server security bindings. Under Request
receiver binding, click Edit.

5. Under Additional properties, click Trust anchors.

6. Click New to create a trust anchor or click the name of an existing configuration to modify its settings.

Trust anchor name:

3540 Administering WebSphere applications



Specifies the unique name that is used by the application binding to reference a predefined trust anchor
definition in the default binding.

Key store configuration name:

Specifies the name of the key store configuration defined in the keystore settings in secure
communications.

Key store password:

Specifies the password that is needed to access the key store file.

Key store path:

Specifies the location of the keystore file.

Use ${USER_INSTALL_ROOT} as this path expands to the WebSphere Application Server path on your
machine.

Key store type:

Specifies the type of keystore file.

Choose from the following options:

JKS Use this option if you are not using Java Cryptography Extensions (JCE).

JCEKS
Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)
Use this format if your keystore uses the PKCS#11 file format. Keystores that use this format
might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware or might encrypt
keys that use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)
Use this option if your keystore uses the PKCS#12 file format.

Information Value
Default JKS
Range JKS, JCEKS, PKCS11KS (PKCS11), PKCS12KS

(PKCS12)

Configuring trust anchors for the consumer binding on the application level:

You can configure trust anchors for the consumer binding at the application level.

About this task

This article does not describe how to configure trust anchors at the server or cell level. Trust anchors that
are defined at the application level have a higher precedence over trust anchors that are defined at the
server or cell level. For more information on creating and configuring trust anchors on the server or cell
level, see “Configuring trust anchors on the server level” on page 3543.

You can configure a trust anchor at the application level using an assembly tool or the administrative
console. This article describes how to configure the application-level trust anchor using the administrative
console.

Chapter 32. Administering web services - Security (WS-Security) 3541



A trust anchor specifies key stores that contain trusted root Certificate Authority (CA) certificates, which
validate the signer certificate. These keystores are used by the request consumer (as defined in the
ibm-webservices-bnd.xmi file) and the response consumer (as defined in the ibm-webservicesclient-
bnd.xmi file when a web service is acting as a client) to validate the X.509 certificate in the SOAP
message. The keystores are critical to the integrity of the digital signature validation. If the keystores are
tampered with, the result of the digital signature verification is doubtful and comprised. Therefore, it is
recommended that you secure these keystores. The binding configuration specified for the request
consumer in the ibm-webservices-bnd.xmi file must match the binding configuration for the response
consumer in the ibm-webservicesclient-bnd.xmi file. The trust anchor configuration for the request
consumer on the server side must match the request generator configuration on the client side. Also, the
trust anchor configuration for the response consumer on the client side must match the response
generator configuration on the server side.

Complete the following steps to configure trust anchors for the consumer binding on the application level:

Procedure

1. Locate the trust anchor panel in the administrative console.

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties you can access the trust anchor configuration for the
following bindings:

v For the request consumer (receiver) binding, click Web services: Server security bindings.
Under Request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.
Under Response consumer (receiver) binding, click Edit custom.

d. Under Additional properties, click Trust anchors.

e. Click one of the following to work with trust anchor configuration:

New To create a trust anchor configuration. Enter a unique name in the Trust anchor name field.

Delete To delete the existing configuration selected in the box next to the configuration.

an existing trust anchor configuration
To edit the settings of an existing trust anchor configuration.

2. Specify the keystore password, the keystore location, and the keystore type. A trust anchor keystore
file contains the trusted root Certificate Authority (CA) certificates that are used for validating the X.509
certificate that is used in digital signature or XML encryption.

a. Specify a password in the Key store password field. This password is used to access the keystore
file.

b. Specify the location of the keystore file in the Key store path field.

c. Select a keystore type from the Key store type field. The Java Cryptography Extension (JCE) that
is used by IBM supports the following keystore types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your
keystore file uses the Java Keystore (JKS) format.

JCEKS
Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)
Use this format if your keystore file uses the PKCS#11 file format. Keystore files that use
this format might contain RSA keys on cryptographic hardware or might encrypt keys that
use cryptographic hardware to ensure protection.

3542 Administering WebSphere applications



PKCS12KS (PKCS12)
Use this option if your keystore file uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the following directory, using
the USER_INSTALL_ROOT variable:

For example, you might use the enc-receiver.jceks keystore file for encryption keys. The
password for this file is storepass and the type is JCEKS.

Restriction: Do not use these keystore files in a production environment. These samples are
provided for testing purposes only.

Results

You have configured trust anchors for the consumer binding at the application level.

What to do next

You must specify a similar trust anchor information for the generator.

Configuring trust anchors on the server level:

You can configure a list of keystore objects that contain trusted root certificates to be used for certificate
path validation of incoming X.509-formatted security tokens.

Before you begin

Prior to completing the steps to configure trust anchors, you must create the keystore file using
the keytool utility. The keytool utility is available using the QShell Interpreter.

About this task

This task provides the steps that are needed to configure a list of keystore objects that contain trusted root
certificates. These objects are used for certificate path validation of incoming X.509-formatted security
tokens. Keystore objects within trust anchors contain trusted root certificates that are used by the CertPath
application programming interface (API) to determine whether to trust a certificate chain.

Complete the following steps to configure the trust anchors on the server level:

Procedure

1. Access the default bindings for the server level.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

2. Under Additional properties, click Trust anchors.

3. Click one of the following to work with trust anchor configuration:

New To create a trust anchor configuration. Enter a unique name for the trust anchor in the Trust
anchor name field.

Delete To delete an existing configuration.

an existing trust anchor configuration
To edit the settings for an existing trust anchor.

4. Specify a password in the Key store password field that is used to access the keystore file.

Chapter 32. Administering web services - Security (WS-Security) 3543



5. Specify the absolute location of the keystore file in the Key store path field. It is recommended that
you use the USER_INSTALL_ROOT variable as a portion of the keystore path. To change this
predefined variable, click Environment > WebSphere variables. The USER_INSTALL_ROOT variable
might display on the second page of variables.

6. Specify the type of keystore file in the key store type field. WebSphere Application Server supports the
following keystore types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and your keystore file
uses the Java Key Store (JKS) format.

JCEKS
Use this option if you are using Java Cryptography Extensions.

PKCS11KS (PKCS11)
Use this option if your keystore file uses the PKCS#11 file format. Keystore files that use this
format might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware or might
encrypt keys that use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)
Use this option if your keystore file uses the PKCS#12 file format.

7. Click OK and Save to save your configuration.

Results

You have configured trust anchors at the server level.

Configuring the collection certificate store for the generator binding on the application level:

You can configure a collection certificate for the generator bindings on the application level.

About this task

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate
revocation lists (CRLs). This collection of CA certificates and CRLs is used to check for a valid signature in
a digitally signed SOAP message.

Complete the following steps to configure a collection certificate for the generator bindings on the
application level:

Procedure

1. Locate the collection certificate store configuration panel in the administrative console.

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties, you can access the key information for the request
generator and response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.
Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Collection certificate store.

2. Specify the Certificate store name. Click New to create a collection certificate store configuration,
select the box next to the configuration and click Delete to delete an existing configuration, .or click
the name of an existing collection certificate store configuration to edit its settings. If you are creating
a new configuration, enter a name in the Certificate store name field.

3544 Administering WebSphere applications



The name of the collection certificate store must be unique to the level of the application server. For
example, if you create the collection certificate store for the application level, the store name must be
unique to the application level. The name that is specified in the Certificate store name field is used
by other configurations to refer to a predefined collection certificate store. WebSphere Application
Server searches for the collection certificate store based on proximity.

For example, if an application binding refers to a collection certificate store named cert1, the
Application Server searches for cert1 at the application level before searching the server level.

3. Specify a certificate store provider in the Certificate store provider field. WebSphere Application
Server supports the IBMCertPath certificate store provider. To use another certificate store provider,
you must define the provider implementation in the provider list within the profile_root/properties/
java.security file. However, make sure that your provider supports the same requirements of the
certificate path algorithm as WebSphere Application Server.

4. Click OK and Save to save the configuration.

5. Click the name of your certificate store configuration. After you specify the certificate store provider,
you must specify either the location of a certificate revocation list or the X.509 certificates. However,
you can specify both a certificate revocation list and the X.509 certificates for your certificate store
configuration.

6. Under Additional properties, click Certificate revocation lists.

7. Click New to specify a certificate revocation list path, click Delete to delete an existing list reference,
or click the name of an existing reference to edit the path. You must specify the fully qualified path to
the location where WebSphere Application Server can find your list of certificates that are not valid.
For portability reasons, it is recommended that you use the WebSphere Application Server variables
to specify a relative path to the certificate revocation lists (CRL). This recommendation is especially
important when you are working in a WebSphere Application Server, Network Deployment
environment. For example, you might use the USER_INSTALL_ROOT variable to define a path such
as $USER_INSTALL_ROOT/mycertstore/mycrl1. For a list of supported variables, click Environment
> WebSphere variables in the administrative console. The following list provides recommendation for
using certificate revocation lists:

v If CRLs are added to the collection certificate store, add the CRLs for the root certificate authority
and each intermediate certificate, if applicable. When the CRL is in the certificate collection store,
the certificate revocation status for every certificate in the chain is checked against the CRL of the
issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the web service
application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the
old CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath)
build failure.

8. Click OK and Save to save the configuration.

9. Return to the collection certificate store configuration panel. To access the panel, complete the
following steps:

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security properties, you can access the key information for the request
generator and response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.
Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.
Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Collection certificate store > certificate_store_name.

10. Under Additional properties, click X.509 certificates.

Chapter 32. Administering web services - Security (WS-Security) 3545



11. Click New to create a X.509 certificate configuration, click Delete to delete an existing configuration,
or click the name of an existing X.509 certificate configuration to edit its settings. If you are creating a
new configuration, enter a name in the Certificate store name field.

12. Specify a path in the X.509 certificate path field. This entry is the absolute path to the location of the
X.509 certificate. The collection certificate store is used to validate the certificate path of incoming
X.509-formatted security tokens.

You can use the USER_INSTALL_ROOT variable as part of path name. For example, you might type:
USER_INSTALL_ROOT/etc/ws-security/samples/intca2.cer. Do not use this certificate path for
production use. You must obtain your own X.509 certificate from a certificate authority before putting
your WebSphere Application Server environment into production.

Click Environment > WebSphere variables in the administrative console to configure the
USER_INSTALL_ROOT variable.

13. Click OK and then Save to save your configuration.

Results

You have configured the collection certificate store for the generator binding.

What to do next

You must specify a similar collection certificate store configuration for the consumer.

Collection certificate store collection:

Use this page to view a list of certificate stores that contains untrusted, intermediary certificate files
awaiting validation. Validation might consist of checking to see if the certificate is on a certificate
revocation list (CRL), checking that the certificate is not expired, and checking that the certificate is issued
by a trusted signer.

The following list provides recommendations for using CRLs:

v If CRLs are added to the collection certificate store collection, add the CRLs for the root certificate
authority and each intermediate certificate, if applicable. When the CRL is in the certificate collection
store, the certificate revocation status for every certificate in the chain is checked against the CRL of the
issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the web service
application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the old
CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath) build
failure.

To view the administrative console panel for the collection certificate store on the server level, complete
the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Collection certificate store.

To view this administrative console page for the collection certificate store on the application level,
complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

3546 Administering WebSphere applications



2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access collection certificate stores for the following
bindings:

v For the Request generator, click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response
generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response
consumer (receiver) binding, click Edit custom > Collection certificate store.

4. Under Additional properties, you can access collection certificate stores for the following bindings:

v For the Request receiver binding, click Web services: Server security bindings. Under Response
receiver binding, click Edit > Collection certificate store.

v For the Response receiver binding, click Web services: Client security bindings. Under Response
receiver binding, click Edit > Collection certificate store.

Complete the following steps:

1. Click New to specify a new certificate store name and certificate store provider.

2. Click OK and messages display at the top of the administrative console panel.

3. Within the messages at the top of the administrative console panel, click Save.

4. Return to the collection certificate store collection panel and click Update runtime to update the Web
Services Security run time with the default binding information, which is found in the ws-security.xml
file. When you click Update runtime, the configuration changes made to the other web services are
also updated in the Web Services Security run time.

Certificate store name:

Specifies the name of the certificate store.

Certificate store provider:

Specifies the provider of the certificate store.

Collection certificate store configuration settings:

Use this page to specify the name and the provider for a collection certificate store. A collection certificate
store is a collection of non-root, certificate authority (CA) certificates and certificate revocation lists (CRLs).
This collection of CA certificates and CRLs is used to check the signature of a digitally signed SOAP
message.

To view the administrative console panel for the collection certificate store on the server level, complete
the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Collection certificate store.

4. Specify a new collection certificate store by clicking New or by clicking the collection certificate store
name to modify its settings.

Chapter 32. Administering web services - Security (WS-Security) 3547



To view this administrative console page for the collection certificate store on the application level,
complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access collection certificate stores for the following
bindings:

v For the Request generator, click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response
generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response
consumer (receiver) binding, click Edit custom > Collection certificate store.

4. Under Additional properties, you can access collection certificate stores for the following bindings:

v For the Request receiver binding click Edit > Collection certificate store.

v For the Response receiver binding, click Edit > Collection certificate store.

5. Specify a new collection certificate store by clicking New or by clicking the collection certificate store
name to modify its settings.

After configuring a collection certificate store, you can select the new configuration under Certificate store
on the token generator and token consumer panels. To access these panels, complete the following steps:

1. Click Security > JAX-WS and JAX-RPC security runtime.

2. Under JAX-RPC Default Generator Bindings, click Token generators or under JAX-RPC Default
Consumer Bindings, click Token consumers.

3. Click New to create a new token generator or token consumer, or click the name of an existing
configuration to make modifications.

After you configure your collection certificate store on this panel, you must click Apply before configuring
either the certificate revocation list or an X.509 certificate. After you configure your certificate revocation list
or X.509 certificate, complete the following steps:

1. Click Save, at the top of the administrative console panel, which returns you to the list of the
configured collection certificate stores.

2. Click Update runtime to update the Web Services Security run time with the default binding
information, which is found in the ws-security.xml file.

Certificate store name:

Specifies the name for the certificate store.

The name of the collection certificate store must be unique in the scope. For example, the name must be
unique at the server level. The name specified in Certificate store name field is used by other
configurations to refer to a pre-defined collection certificate store. For example, the application binding
refers to a collection certificate store that is defined on the server level. The application server looks up the
collection certificate store based on proximity. For example, if cert1 is defined as the name of the
certificate store on the cell and server levels and cert1 is referenced in the application binding, the
application server uses the server-level collection certificate store.

Certificate Store Provider:

Specifies the provider for the certificate store implementation.

3548 Administering WebSphere applications



This product supports the IBMCertPath certificate path provider. If you need to use another certificate path
provider, define the provider implementation in the provider list within the java.security file in the
Software Development Kit (SDK).

Information Value
Data type String
Default IBMCertPath

X.509 certificates collection:

Use this page to view a list of untrusted, intermediate certificate files. This collection certificate store is
used for certificate path validation of incoming X.509-formatted security tokens.

To view the administrative console page for the collection certificate store on the server level, complete the
following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store
first.

5. Under Additional properties, click X.509 certificates.

To view this administrative console page for an X.509 certificate on the application level, complete the
following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access collection certificate stores for the following
bindings:

v For the Request generator, click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response
generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response
consumer (receiver) binding, click Edit custom > Collection certificate store.

4. Under Additional properties, you can access the collection certificate stores for the following bindings.

v For the Response receiver binding, click Web services: Client security bindings. Under Response
receiver binding, click Edit > Collection certificate store.

v For the Request receiver binding, click Web services: Server security bindings. Under Request
receiver binding, click Edit > Collection certificate store.

5. Click the name of a configured collection certificate store or create a new collection certificate store
first.

6. Under Additional properties, click X.509 certificates.

X.509 certificate path:

Chapter 32. Administering web services - Security (WS-Security) 3549



Specifies the location of the X.509 certificate.

X.509 certificate configuration settings:

Use this page to specify a list of untrusted, intermediate certificate files. This collection certificate store is
used for certificate path validation of incoming X.509-formatted security tokens.

To view the administrative console page for the collection certificate store on the server level, complete the
following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store
first.

5. Under Additional properties, click X.509 certificates.

6. Specify a new X.509 certificate path by clicking New or by clicking the X.509 certificate path to modify
its settings.

To view this administrative console page for an X.509 certificate on the application level, complete the
following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access collection certificate stores for the following
bindings:

v For the Request generator, click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response
generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response
consumer (receiver) binding, click Edit custom > Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store
first.

5. Under Additional properties, click X.509 certificates.

6. Specify a new X.509 certificate path by clicking New or click the X.509 certificate path to modify its
settings.

X.509 Certificate Path:

Specifies the absolute path to the location of the X.509 certificate.

As shown in the following example, you can use the USER_INSTALL_ROOT variable as part of the path
name: {USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer. This X.509 certificate path is not for
production use. Obtain your own X.509 from a certificate authority before putting your application server
environment into production.

3550 Administering WebSphere applications



You can configure the USER_INSTALL_ROOT variable in the administrative console by clicking
Environment > WebSphere Variables.

Certificate revocation list collection:

Use this page to determine the location of the certificate revocation list (CRL) known to the application
server. The Application Server checks the CRL to determine the validity of the client certificate. A certificate
that is found in a certificate revocation list might not be expired, but is no longer trusted by the certificate
authority (CA) that issued the certificate. The CA might add the certificate to the certificate revocation list if
it believes that the client authority is compromised.

View the administrative console panel for the collection certificate store on the server level.

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store
first.

5. Under Additional properties, click Certificate revocation list > Newto specify the path to a new list or
click the name of the certificate revocation list to modify its path.

View the administrative console page for the collection certificate store on the application level.

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access collection certificate stores for the following
bindings:

v For the Request generator, click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response
generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response
consumer (receiver) binding, click Edit custom > Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store
first.

5. Under Additional properties, click Certificate revocation list > New to specify the path to a new list or
click the name of the certificate revocation list to modify its path.

6. Under Additional properties, you can access collection certificate stores for the following bindings:

v For the Response receiver binding, click Web services: Client security bindings. Under Response
receiver binding, click Edit.

7. Under Additional properties, click Collection certificate store > certificate_store_name.

8. Under Additional properties, click X.509 certificates.

9. Click New and specify the path to the certificate revocation list.

Certificate revocation list path:

Specifies the location where you can find the list of certificates that are not valid.

Chapter 32. Administering web services - Security (WS-Security) 3551



Certificate revocation list configuration settings:

Use this page to specify a list of certificate revocations that check the validity of a certificate. The
application server checks the certificate revocation lists (CRL) to determine the validity of the client
certificate. A certificate that is found in a certificate revocation list might not be expired, but is no longer
trusted by the certificate authority (CA) that issued the certificate. The CA might add the certificate to the
certificate revocation list if it believes that the client authority is compromised.

To view the administrative console panel for the collection certificate store on the server level, complete
the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store
first.

5. Under Additional properties, click Certificate revocation lists > New to specify the path to a new list
or click the name of a certificate revocation list to modify its path.

To view this administrative console page for the collection certificate store on the application level,
complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access collection certificate stores for the following
bindings:

v For the Request generator, click Web services: Client security bindings. Under Request
generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request
consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response
generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response
consumer (receiver) binding, click Edit custom > Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store
first.

5. Under Additional properties, click Certificate revocation lists > New to specify the path to a new list
or click the name of a certificate revocation list to modify its path.

Certificate revocation list path:

Specifies a fully qualified path to the location where you can find the list of certificates that are not valid.

For portability reasons, it is recommended that you use application server variables to specify a relative
path to the certificate revocation list. This recommendation is especially important when you are working in
a WebSphere Application Server, Network Deployment environment. For example, you might use the
USER_INSTALL_ROOT variable to define a path such as $USER_INSTALL_ROOT/mycertstore/mycrl where
mycertstore represents the name of your certificate store and mycrl represents the certificate revocation
list. For a list of the supported variables, click Environment > WebSphere variables in the administrative
console.

3552 Administering WebSphere applications



The following list provides recommendations for using CRLs:

v If CRLs are added to the collection certificate store collection, add the CRLs for the root certificate
authority and each intermediate certificate, if applicable. When the CRL is in the certificate collection
store, the certificate revocation status for every certificate in the chain is checked against the CRL of the
issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the web service
application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the old
CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath) build
failure.

Configuring the collection certificate store for the consumer binding on the application level:

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate
revocation lists (CRLs). This collection of CA certificates and CRLs is used to check for a valid signature in
a digitally signed SOAP message.

About this task

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate
revocation lists (CRLs) that can be used to check for a valid signature in a digitally signed SOAP
message. Complete the following steps to configure a collection certificate for the consumer bindings on
the application level:

Procedure

1. Locate the collection certificate store configuration panel in the administrative console.

a. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

b. Under Modules, click Manage modules > URI_name.

c. Under Web Services Security properties, you can access the collection certificate store
information for the response consumer and request consumer bindings.

v For the response consumer (receiver) binding, click Web services: Client security bindings.
Under Response consumer (receiver) binding, click Edit custom.

v For the request consumer (receiver) binding, click Web services: Server security bindings.
Under Response consumer (receiver) binding, click Edit custom.

d. Under Additional properties, click Collection certificate store.

2. Click New to create a collection certificate store configuration, click Delete to delete an existing
configuration, or click the name of an existing collection certificate store configuration to edit its
settings. If you are creating a new configuration, enter a name in the Certificate store name field.

The name of the collection certificate store must be unique to the level of the application server. For
example, if you create the collection certificate store for the application level, the store name must be
unique to the application level. The name that is specified in the Certificate store name field is used
by other configurations to refer to a predefined collection certificate store. WebSphere Application
Server searches for the collection certificate store based on proximity.

For example, if an application binding refers to a collection certificate store named cert1, the
Application Server searches for cert1 at the application level before searching the server level.

3. Specify a certificate store provider in the Certificate store provider field. WebSphere Application
Server supports the IBMCertPath certificate store provider. To use another certificate store provider,
you must define the provider implementation in the provider list within the profile_root/properties/
java.security file. However, make sure that your provider supports the same requirements of the
certificate path algorithm as WebSphere Application Server.

4. Click OK and Save to save the configuration.

Chapter 32. Administering web services - Security (WS-Security) 3553



5. Click the name of your certificate store configuration. After you specify the certificate store provider,
you must specify either the location of a certificate revocation list or the X.509 certificates. However,
you can specify both a certificate revocation list and the X.509 certificates for your certificate store
configuration.

6. Under Additional properties, click Certificate revocation lists.

7. Click New to specify a certificate revocation list path, click Delete to delete an existing list reference,
or click the name of an existing reference to edit the path. You must specify the fully qualified path to
the location where WebSphere Application Server can find your list of certificates that are not valid.
For portability reasons, it is recommended that you use the WebSphere Application Server variables
to specify a relative path to the certificate revocation lists (CRL). This recommendation is especially
important when you are working in a WebSphere Application Server, Network Deployment
environment. For example, you might use the USER_INSTALL_ROOT variable to define a path such
as $USER_INSTALL_ROOT/mycertstore/mycrl1. For a list of supported variables, click Environment
> WebSphere variables in the administrative console. The following list provides recommendation for
using certificate revocation lists:

v If CRLs are added to the collection certificate store, add the CRLs for the root certificate authority
and each intermediate certificate, if applicable. When the CRL is in the certificate collection store,
the certificate revocation status for every certificate in the chain is checked against the CRL of the
issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the web service
application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the
old CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath)
build failure.

8. Click OK and Save to save the configuration.

9. Return to the Collection certificate store configuration panel. See the first few steps of this article to
locate the collection certificate store panel.

10. Under Additional properties, click X.509 certificates.

11. Click New to create a new configuration for X.509 certificates, click Delete to delete an existing
configuration, or click the name of an existing X.509 certificate configuration to edit its settings. If you
are creating a new configuration, enter a name in the Certificate store name field.

12. Specify a path in the X.509 certificate path field. This entry is the absolute path to the location of the
X.509 certificates. The collection certificate store is used to validate the certificate path of incoming
X.509-formatted security tokens.

You can use the USER_INSTALL_ROOT variable as part of the path name. For example, you might
type: USER_INSTALL_ROOT/etc/ws-security/samples/intca2.cer. Do not use this certificate path for
production use. You must obtain your own X.509 certificate from a certificate authority before putting
your WebSphere Application Server environment into production.

Click Environment > WebSphere variables in the administrative console to configure the
USER_INSTALL_ROOT variable.

13. Click OK and then Save to save your configuration.

Results

You have configured the collection certificate store for the consumer binding.

What to do next

You must configure a token consumer configuration that references this certificate store configuration.

Configuring the collection certificate on the server level:

3554 Administering WebSphere applications



Collection certificate stores contain untrusted, intermediary certificate files awaiting validation. You can
configure the collection certificate store on the server level and the cell level.

About this task

Validation might consist of checking for a valid signature in a digitally signed SOAP message to see if the
certificate is on a certificate revocation list (CRLs), checking that the certificate is not expired, and
checking that the certificate is issued by a trusted signer.

Complete the following steps to configure a collection certificate store on the server level:

Procedure

1. Access the default bindings for the server level.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

2. Under Additional properties, click Collection certificate store.

3. Click New to create a collection certificate store configuration, click Delete to delete an existing
configuration, or click the name of an existing collection certificate store configuration to edit its
settings. If you are creating a new configuration, enter a name in the Certificate store name field. For
example, you might name your certificate store sig_certstore.

The name of the collection certificate store must be unique to the level of the application server. For
example, if you create the collection certificate store for the server level, the store name must be
unique to the server level. The name that is specified in the Certificate store name field is used by
other configurations to refer to a predefined collection certificate store. WebSphere Application Server
searches for the collection certificate store based on proximity.

For example, if an application binding refers to a collection certificate store named cert1, the
Application Server searches for cert1 at the application level before searching the server level.

4. Specify a certificate store provider in the Certificate store provider field. WebSphere Application
Server supports the IBMCertPath certificate store provider. To use another certificate store provider,
you must define the provider implementation in the provider list within the profile_root/properties/
java.security file. However, make sure that your provider supports the same requirements of the
certificate path algorithm as WebSphere Application Server.

5. Click OK and Save to save the configuration.

6. Click the name of your certificate store configuration. After you specify the certificate store provider,
you must specify either the location of a certificate revocation list or the X.509 certificates. However,
you can specify both a certificate revocation list and the X.509 certificates for your certificate store
configuration.

7. Under Additional properties, click Certificate revocation lists. For the generator binding, a certificate
revocation list (CRL) is used when it is included in a generated security token. For example, a
security token might be wrapped in a PKCS#7 format with a CRL. For more information on certificate
revocation lists, see Certificate revocation list.

8. Click New to specify a certificate revocation list path, click Delete to delete an existing list reference,
or click the name of an existing reference to edit the path. You must specify the fully qualified path to
the location where WebSphere Application Server can find your list of certificates that are not valid.
WebSphere Application Server uses the certificate revocation list to check the validity of the sender
certificate.

For portability reasons, it is recommended that you use the WebSphere Application Server variables
to specify a relative path to the certificate revocation lists. This recommendation is especially
important when you are working in a WebSphere Application Server, Network Deployment
environment.

Chapter 32. Administering web services - Security (WS-Security) 3555



For example, you might use the USER_INSTALL_ROOT variable to define a path such as
$USER_INSTALL_ROOT/mycertstore/mycrl1 where mycertstore represents the name of your certificate
store and mycrl1 represents the certificate revocation list. For a list of supported variables, click
Environment > WebSphere variables in the administrative console. The following list provides
recommendations for using certificate revocation lists:

v If CRLs are added to the collection certificate store, add the CRLs for the root certificate authority
and each intermediate certificate, if applicable. When the CRL is in the certificate collection store,
the certificate revocation status for every certificate in the chain is checked against the CRL of the
issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the web service
application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the
old CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath)
build failure.

9. Click OK and then Save to save the configuration.

10. Return to the Collection certificate store configuration panel.

11. Under Additional properties, click X.509 certificates. The X.509 certificate configuration specifies
intermediate certificate files that are used for certificate path validation of incoming X.509-formatted
security tokens.

12. Click New to create an X.509 certificate configuration, click Delete to delete an existing configuration,
or click the name of an existing X.509 certificate configuration to edit its settings. If you are creating a
new configuration, enter a name in the Certificate store name field.

13. Specify a path in the X.509 certificate path field. This entry is the absolute path to the location of the
X.509 certificate. The collection certificate store is used to validate the certificate path of the incoming
X.509-formatted security tokens.

You can use the USER_INSTALL_ROOT variable as part of path name. For example, you might type:
$USER_INSTALL_ROOT/etc/ws-security/samples/intca2.cer. Do not use this certificate path for
production use. You must obtain your own X.509 certificate from a certificate authority before putting
your WebSphere Application Server environment into production.

Click Environment > WebSphere variables in the administrative console to configure the
USER_INSTALL_ROOT variable.

14. Click OK and then Save to save your configuration.

15. Return to the Collection certificate store collection panel and click Update run time to update the
Web Services Security run time with the default binding information, which is located in the
ws-security.xml file. When you click Update run time, the configuration changes made to other web
services are also updated in the run time for Web Services Security. Policy sets can only be used
with JAX-WS applications. Policy sets cannot be used for JAX-RPC applications.

Results

You have configured the collection certificate store for the server level.

Configuring trusted ID evaluators on the server level:

You can configure trusted identity (ID) evaluators. The trusted ID evaluator determines whether or not to
trust the identity-asserting authority.

About this task

This task provides the steps that are needed to configure trusted identity (ID) evaluators. The trusted ID
evaluator determines whether to trust the identity-asserting authority. After the ID is trusted, the
WebSphere Application Server issues the proper credentials based on the identity, which are used in a

3556 Administering WebSphere applications



downstream call to another server for invoking resources. The trusted ID evaluator implements the
com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface.

Complete the following steps to configure the trusted ID evaluators on the server level:

Procedure

1. Access the default bindings for the server level.

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

2. Under Additional properties, click Trusted ID evaluators.

3. Click New to create a trusted ID evaluator configuration, click Delete to delete an existing
configuration, or click the name of an existing configuration to edit the settings. If you are creating a
new configuration, enter a unique name for the trusted ID evaluator configuration in the Trusted ID
evaluator name field. This field specifies the name that is used by the application binding to refer to a
trusted identity (ID) evaluator that is defined in the default binding.

4. Specify a class name in the Trusted ID evaluator class name field. The default class name is
com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl. The specified trusted ID evaluator class name
must implement the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator class. When you use the
default TrustedIDEvaluator class, you must specify the name and value properties for the default
trusted ID evaluator to create the trusted ID list for evaluation.

5. Under Additional properties, click Properties > New.

6. Specify the trusted ID evaluator name as a property name. You must specify the trusted ID evaluator
name in the form, trustedId_n, where _n is an integer from zero (0) to n.

7. Specify the trusted ID as a property value.
property name="trustedId_0", value="CN=Bob,O=ACME,C=US"
property name="trustedId_1, value="user1"

If a distinguished name (DN) is used, the space is removed for comparison.

8. Click OK and then Save.

Results

You have configured the trusted ID evaluators at the server level.

Trusted ID evaluator collection:

Use this page to view a list of trusted identity (ID) evaluators. The trusted ID evaluator determines whether
to trust the identity-asserting authority. After the ID is trusted, the application server issues the proper
credentials based on the identity, which are used in a downstream call for invoking resources. The trusted
ID evaluator implements the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

To view this administrative console page for trusted ID evaluators on the server level, complete the
following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Trusted ID evaluators.

Chapter 32. Administering web services - Security (WS-Security) 3557



4. Click New to create a trusted ID evaluator or click Delete to a delete a trusted ID evaluator.

To view this administrative console page for trusted ID evaluators on the application level, complete the
following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage Modules > URI_name.

3. Under Web Services Security Properties, click Web services: Server security bindings.

4. Under Request receiver binding, click Edit.

5. Click Trusted ID evaluators.

6. Click New to create a trusted ID evaluator or click Delete to delete a trusted ID evaluator.

Important: Trusted ID evaluators are only required for the request consumer (Version 6.x applications), if
identity assertion is configured.

Using this trusted ID evaluator collection panel, complete the following steps:

1. Specify a trusted ID evaluator name and a trusted ID evaluator class name.

2. Save your changes by clicking Save in the messages section at the top of the administrative console.

3. Click Update run time to update the Web Services Security run time with the default binding
information, which is found in the ws-security.xml file. The configuration changes made to the other
web services also are updated in the Web Services Security run time.

Trusted ID evaluator name:

Specifies the unique name of the trusted ID evaluator.

Trusted ID evaluator class name:

Specifies the class name of the trusted ID evaluator.

Trusted ID evaluator configuration settings:

Use this information to configure trust identity (ID) evaluators.

This administrative console page applies only to Java API for XML-based RPC (JAX-RPC) applications.

To view this administrative console page for trusted ID evaluators on the server level, complete the
following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Trusted ID evaluators.

4. Click New to create a trusted ID evaluator or click the name of an existing configuration to modify the
settings.

To view this administrative console page for trusted ID evaluators on the application level, complete the
following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3558 Administering WebSphere applications



3. Under Web Services Security Properties, click Web services: Server security bindings.

4. Under Request receiver binding, click Edit.

5. Click Trusted ID evaluators.

6. Click New to create a trusted ID evaluator or click Delete to delete a trusted ID evaluator.

Important: Trusted ID evaluators are only required for the request consumer (Version 6.x applications), if
identity assertion is configured.

You can specify one of the following options:

None Choose this option if you are not specifying a trusted ID evaluator.

Existing evaluator definition
Choose this option to specify a currently defined trusted ID evaluator.

Binding evaluator definition
Choose this option to specify a new trusted ID evaluator. A description of the required fields
follows.

Trusted ID evaluator name:

Specifies the name that is used by the application binding to refer to a trusted identity (ID) evaluator that is
defined in the default binding.

Trusted ID evaluator class name:

Specifies the class name of the trusted ID evaluator.

The specified trusted ID evaluator class name must implement the
com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface. The default TrustedIDEvaluator class is
com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl. When you use this default TrustedIDEvaluator
class, you must specify the name and the value properties for the default trusted ID evaluator to create the
trusted ID list for evaluation.

To specify the name and value properties, complete the following steps:

1. Under Additional properties, click Properties > New.

2. Specify the trusted ID evaluator name as a property name. You must specify the trusted ID evaluator
name in the form, trustedId_n, where _n is an integer from zero (0) to n.

3. Specify the trusted ID as a property value.

For example:
property name="trustedId_0", value="CN=Bob,O=ACME,C=US"
property name="trustedId_1", value="user1"

If a distinguished name (DN) is used, the space is removed for comparison.

Information Value
Default com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl

See the programming model information in the documentation for an explanation of how to implement the
com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface.

rrdSecurity.props file:

Chapter 32. Administering web services - Security (WS-Security) 3559



Remote request dispatcher (RRD) supports LTPA and security attribute propagation for Web Services
Security (WS-Security). You can enable token propagation in the <was_install>/profiles/<profileName>/
properties/rrdSecurity.props file.

The rrdSecurity.props file contains comments to describe the security attributes.

The following is the format of the rrdSecurity.props file. The default values are in bold face type.

v LTPAPropagation= ( True | False)

v SecurityAttributePropagation= ( True | False)

v SSLRequired= ( True | False)

The WS-Security run time inspects the run as (invocation) subject and propagates the security tokens in
the subject. The default setting is to only propagate the LTPA tokens.

Custom security tokens can be passed as attributes of the LTPA tokens. The security attribute propagation
support uses the same pluggable JAAS login module as the CSIv2 support. The security attribute is not
signed or encrypted, therefore, you should not send the attribute in clear text form. You must require SSL
to ensure integrity and confidentiality. If SSL is not required, RRD uses the same scheme, such as HTTP
or HTTPS, to make the web services call that the original request used.

You must also configure the target web service to validate the LTPA tokens and security attributes.

Enabling or disabling single sign-on interoperability mode for the LTPA token
You can set an interoperability flag on the token generator to determine whether an LTPA Version 1 token
or an LTPA Version 2 token is retrieved when a request message is received.

About this task

In WebSphere Application Server Version 7.0 and later, a flag is set in the global security settings to
enable single sign-on interoperability mode for the LTPA token. This option determines whether an LTPA
Version 1 token or an LTPA Version 2 token is sent when a message request is received. When the
interoperability flag is set to true, then the AuthenticationToken is an LTPA Version 1 token, and the
SingleSignonToken is an LTPA Version 2 token. When the interoperability flag is set to false, then both
the AuthenticationToken and the SingleSignonToken are LTPA Version 2 tokens.

When the interoperability mode is enabled (the flag is set to true), and the Web Services Security binding
configuration specifies LTPA Version 1 as the token, the AuthenticationToken is used to retrieve the token
that is sent with the message. If interoperability mode is not enabled (the flag is set to false), and the
Web Services Security binding configuration specifies LTPA Version 1 as the token, an exception error is
logged.

You can disable the interoperability checking function by setting the custom property,
com.ibm.wsspi.wssecurity.tokenGenerator.ltpav1.pre.v7, on the token generator. This setting determines
the LTPA token without checking the state of the interoperability flag, providing compatibility with servers
running WebSphere Application Server Version 6.1 and earlier.

To enforce use of the LTPA Version 2 token, edit the token settings, and set the Enforce token version
option for the token.

Procedure
1. Click Applications > Application Types > WebSphere enterprise applications.

2. Select an application that contains web services. The application must contain a service provider or a
service client.

3. Click the Service provider policy sets and bindings link or the Service client policy sets and
bindings link in the Web Services Properties section.

3560 Administering WebSphere applications



4. Select a binding. You must have previously attached a policy set and assigned an application specific
binding.

5. Click the WS-Security policy in the Policies table.

6. Click the Authentication and protection link in the Main message security policy bindings section.

7. Click a consumer or generator token link from the Protection Tokens table.

8. Select the Enforce token version check box after the Token type field.

Enabling cryptographic keys stored in hardware devices for Web
Services Security
You can enable Web Services Security by using cryptographic hardware devices for both web service
clients and web service providers that are running in the WebSphere® Application Server environment.

Enabling hardware cryptographic devices for Web Services Security
You can enable Web Services Security by using cryptographic hardware devices for both web service
clients and web service providers that are running in the WebSphere Application Server environment. A
cryptographic token is a hardware or software device with a built-in keystore implementation.
Cryptographic devices are used to manage certificates stored on the cryptographic tokens. These devices
are also called smartcards. You enable hardware cryptographic devices for Web Service Security by either
using keys that are stored in hardware devices or by using keys stored in a Java keystore file.

About this task

Web Services Security using cryptographic hardware devices is supported for both web (JavaServer
Pages (JSP) or servlet) and Enterprise JavaBeans (EJB) web service clients. You can enable Web
Services Security by using cryptographic hardware devices for both web service clients and web service
providers that are running in the WebSphere Application Server environment.

There are two ways to enable hardware cryptographic devices for Web Service Security: use keys that are
stored in hardware devices or use keys stored in a Java keystore file.

Procedure
1. Determine whether to use keys that are stored in hardware devices or in a Java keystore file for the

individual application.

2. Enable hardware cryptographic devices for Web Service Security by using one of the following two
methods:

v Enable cryptographic operations on hardware devices. See “Configuring hardware cryptographic
devices for Web Services Security” for more details.

v Enable cryptographic keys that are stored in hardware devices. See “Enabling cryptographic keys
stored in hardware devices in Web Services Security” on page 3562

Note: Hardware cryptographic devices for Web Services Security are not supported on the Java
Platform, Enterprise Edition (Java EE) Application Client on distributed platform.

Configuring hardware cryptographic devices for Web Services Security:

Before you can use a hardware cryptographic device, you must configure and enable it. You must first
configure a hardware cryptographic device using the Secure Sockets Layer (SSL) certificate and key
management panels in the administrative console. The key for the cryptographic operation can be stored
in an ordinary Java keystore file and need not be stored on the hardware devices.

Chapter 32. Administering web services - Security (WS-Security) 3561

|
|
|
|



Before you begin

You must first configure a hardware cryptographic device using the Secure Sockets Layer (SSL) certificate
and key management panels in the administrative console.

Note: Fix packs that include updates to the Software Development Kit (SDK) might overwrite unrestricted
policy files. Back up unrestricted policy files before you apply a fix pack and reapply these files after
the fix pack is applied.

trns: The unrestricted Java policy files are not required when using hardware cryptographic devices.
These policy files were required in some earlier versions of the product.

Procedure

1. In the administrative console, click Servers > Server Types > WebSphere application
servers and then select the server name.

2. Under Security, select JAX-WS and JAX-RPC security runtime.

3. Under Cryptographic Hardware, select Enable cryptographic operations on hardware
device and then specify the name of the hardware cryptographic device configuration name. For more
information, read about configuring a hardware cryptographic keystore.

4. Click OK.

Results

This procedure configures a hardware cryptographic device for all Web Services Security applications
running on this application server.

Enabling cryptographic keys stored in hardware devices in Web Services Security:

You can enable individual web service applications to use cryptographic keys stored in hardware devices
in Web Services Security.

Before you begin

You must first configure the hardware acceleration device using the key management panels in the
administrative console. See “Configuring hardware cryptographic devices for Web Services Security” on
page 3561

Procedure

1. In the administrative console, click Servers > Server types > WebSphere application servers and
then select the server name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

3. Under Additional properties, click key locators.

4. Select the key locator name.

5. Under Key store, specify the name of the keystore configuration.

If the keystore reference is specified to a hardware device configuration, the Web Services Security
runtime first attempts to obtain the cryptographic algorithm from the hardware device. If the hardware
device is not supported or if it fails, the runtime for Web Services Security obtains the cryptographic
algorithm from the security providers list. Read about creating a keystore configuration for a preexisting
keystore file for more information about how to create the name of a keystore configuration.

6. Click OK.

3562 Administering WebSphere applications

|
|



Results

If the name of the keystore reference is a Java keystore file, a hardware acceleration device that is
configured at the application server level (ws-security.xml) will be used for cryptographic operations.

Configuring XML digital signature for Version 5.x web services with
the administrative console
XML digital signature provides both message integrity and authentication capabilities when it is used with
SOAP messages. XML digital signature is one of the methods WebSphere® Application Server provides to
secure web services. You can use the WebSphere® Application Server administrative console to configure
XML digital signature.

Login mappings collection
Use this page to view a list of configurations for validating security tokens within incoming messages.
Login mappings map an authentication method to a Java Authentication and Authorization Service (JAAS)
login configuration to validate the security token. Four authentication methods are predefined in the
WebSphere Application Server: BasicAuth, Signature, IDAssertion, and Lightweight Third Party
Authentication (LTPA).

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications. Version 5.x applications are based on Java 2 platform,
Enterprise Edition (J2EE) 1.3.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Login mappings.

4. Click either New to create a new login mapping configuration or click the name of an existing
configuration.

To view this administrative console page for the application level, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security properties, click Web services: Server security bindings.

4. Click Edit under Request receiver binding.

5. Click Login mappings.

If you click Update runtime, the Web Services Security run time is updated with the default binding
information, which is contained in the ws-security.xml file that was previously saved. After you specify the
authentication method, the JAAS configuration name, and the Callback Handler Factory class name on
this panel, you must complete the following steps:

1. Click Save in the messages section at the top of the administrative console.

2. Click Update runtime. When you click Update runtime, the configuration changes made to the other
web services also are updated in the Web Services Security run time.

Chapter 32. Administering web services - Security (WS-Security) 3563



Important: If the login mapping configuration is not found on the application level, the web services run
time searches for the login mapping configuration on the server level.

Authentication method:

Specifies the authentication method used for validating the security tokens.

The following authentication methods are available:
BasicAuth

The basic authentication method includes both a user name and a password in the security token.
The information in the token is authenticated by the receiving server and is used to create a
credential.

Signature
The signature authentication method sends an X.509 certificate as a security token. For
Lightweight Directory Access Protocol (LDAP) registries, the distinguished name (DN) is mapped
to a credential, which is based on the LDAP certificate filter settings. For local OS registries, the
first attribute of the certificate, usually the common name (CN) is mapped directly to a user name
in the registry.

IDAssertion
The identity assertion method maps a trusted identity (ID) to a WebSphere Application Server
credential. This authentication method only includes a user name in the security token. An
additional token is included in the message for trust purposes. When the additional token is
trusted, the IDAssertion token user name is mapped to a credential.

LTPA Lightweight Third Party Authentication (LTPA) validates an LTPA token.

JAAS configuration name:

Specifies the name of the Java Authentication and Authorization Service (JAAS) configuration.

Callback handler factory class name:

Specifies the name of the factory for the CallbackHandler class.

Login mapping configuration settings
Use this page to specify the Java Authentication and Authorization Service (JAAS) login configuration
settings that are used to validate security tokens within incoming messages.

Important: There is an important distinction between Version 6 and later applications. The information in
this article supports Version 6.x applications only that are used with WebSphere Application
Server Version 6.x and later. The information does not apply to Version 6.0.x and later
applications.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

3. Under Additional properties, click Login mappings.

4. Click either New to create a new login mapping configuration or click the name of an existing
configuration.

To use this administrative console page for the application level, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

3564 Administering WebSphere applications



2. Under Modules, click Manage modules > URI_name.

3. Under Web Services Security Properties, click Web services: Server security bindings.

4. Click Edit under Request receiver binding.

5. Click Login mappings.

6. Click either New to create a new login mapping configuration or click the name of an existing
configuration.

Important: If the login mapping configuration is not found on the application level, the web services run
time searches for the login mapping configuration on the server level.

Authentication method:

Specifies the method of authentication.

You can use any string, but the string must match the element in the service-level configuration. The
following words are reserved and have special meanings:

BasicAuth
Uses both a user name and a password.

IDAssertion
Uses only a user name, but requires that additional trust is established on the receiving server
using a TrustedIDEvaluator mechanism.

Signature
Uses the distinguished name (DN) of the signer.

LTPA Validates a token.

JAAS configuration name:

Specifies the name of the Java Authentication and Authorization Service (JAAS) configuration.

Among the predefined system login configurations that you can use are the following:

system.wssecurity.IDAssertion
Enables a version 6.x application to use identity assertion to map a user name to a WebSphere
Application Server credential principal.

system.wssecurity.Signature
Enables a version 6.x application to map a distinguished name (DN) in a signed certificate to a
WebSphere Application Server credential principal.

system.LTPA_WEB
Processes login requests that are used by the web container such as servlets and JavaServer
Pages (JSP) files.

system.WEB_INBOUND
Handles logins for web application requests, which include servlets and JavaServer Pages..

system.RMI_INBOUND
Handles logins for inbound Remote Method Invocation (RMI) requests.

system.DEFAULT
Handles the logins for inbound requests made by internal authentications and most of the other
protocols except web applications and RMI requests.

system.RMI_OUTBOUND
Processes RMI requests that are sent outbound to another server when the
com.ibm.CSIOutboundPropagationEnabled property is true. This property is set in the CSIv2
authentication panel. To access the panel, click Security > Global security. Expand RMI/IIOP

Chapter 32. Administering web services - Security (WS-Security) 3565



security, then click on CSIv2 Outbound authentication. To set the
com.ibm.CSIOutboundPropagationEnabled property, select Security attribute propagation.

system.wssecurity.X509BST
Verifies an X.509 binary security token (BST) by checking the validity of the certificate and the
certificate path.

system.wssecurity.PKCS7
Verifies an X.509 certificate with a certificate revocation list in a PKCS7 object.

system.wssecurity.PkiPath
Verifies an X.509 certificate with a public key infrastructure (PKI) path.

system.wssecurity.UsernameToken
Verifies basic authentication (user name and password).

These system login configurations are defined on the System logins panel, which is accessible by
completing the following steps:

1. Click Security > Global security.

2. Expand Java Authentication and Authorization Service, then click System logins.

Attention: The predefined system login configurations are listed on the System logins configuration
panel without the system prefix. For example, the system.wssecurity.UsernameToken configuration listed in
the Java Authentication and Authorization Service (JAAS) configuration name option corresponds to the
wssecurity.UsernameToken configuration that is on the System logins configuration panel.

You can use the following predefined application login configurations:

ClientContainer
Specifies the login configuration that is used by the client container application, which uses the
CallbackHandler API that is defined in the deployment descriptor of the client container.

WSLogin
Specifies whether all applications can use the WSLogin configuration to perform authentication for
the WebSphere Application Server security run time.

DefaultPrincipalMapping
Specifies the login configuration used by Java 2 Connectors (J2C) to map users to principals that
are defined in the J2C authentication data entries.

These application login configurations are defined on the Application logins panel, which is accessible by
completing the following steps:

1. Click Security > Global security.

2. Expand Java Authentication and Authorization Service, then click Application logins.

Do not remove these predefined system or application login configurations. Within these configurations,
you can add module class names and specify the order in which WebSphere Application Server loads
each module.

Callback handler factory class name:

Specifies the name of the factory for the CallbackHandler class.

You must implement the com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory class in this
field.

Token type URI:

3566 Administering WebSphere applications



Specifies the namespace Uniform Resource Identifiers (URI), which denotes the type of security token that
is accepted.

If binary security tokens are accepted, the value denotes the ValueType attribute in the element. The
ValueType element identifies the type of security token and its namespace. If Extensible Markup Language
(XML) tokens are accepted, the value denotes the top-level element name of the XML token.

If the reserved words are specified previously in the Authentication method field, this field is ignored.

Information Value
Data type: Unicode characters except for non-ASCII characters, but

including the number sign (#), the percent sign (%), and
the square brackets ([ ]).

Token type local name:

Specifies the local name of the security token type, for example, X509v3.

If binary security tokens are accepted, the value denotes the ValueType attribute in the element. The
ValueType attribute identifies the type of security token and its namespace. If Extensible Markup Language
(XML) tokens are accepted, the value denotes the top-level element name of the XML token.

If the reserved words are specified previously in the Authentication method field, this field is ignored.

Nonce maximum age:

Specifies the time, in seconds, before the nonce timestamp expires. Nonce is a randomly generated value.

You must specify a minimum of 300 seconds for the Nonce maximum age field. However, the maximum
value cannot exceed the number of seconds specified in the Nonce cache timeout field for the server
level.

You can specify the Nonce maximum age value for the server level by completing the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

Important: The Nonce maximum age field on this panel is optional and only valid if the BasicAuth
authentication method is specified. If you specify another authentication method and attempt
to specify values for this field, the following error message displays and you must remove the
specified value: Nonce is not supported for authentication methods other than
BasicAuth.

If you specify the BasicAuth method, but do not specify values for the Nonce maximum age field, the Web
Services Security run time searches for a Nonce maximum age value on the server level.

Information Value
Default 300 seconds
Range 300 to Nonce cache timeout seconds

Nonce clock skew:

Chapter 32. Administering web services - Security (WS-Security) 3567



Specifies the clock skew value, in seconds, to consider when WebSphere Application Server checks the
freshness of the message. Nonce is a randomly generated value.

You can specify the Nonce clock skew value for the server level by completing the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

You must specify a minimum of zero (0) seconds for the Nonce Clock Skew field. However, the maximum
value cannot exceed the number of seconds that is specified in the Nonce maximum age field on this
Login mappings panel.

Important: The Nonce clock skew field on this panel is optional and only valid if the BasicAuth
authentication method is specified. If you specify another authentication method and attempt
to specify values for this field, the following error message displays and you must remove the
specified value: Nonce is not supported for authentication methods other than
BasicAuth.

Note: If you specify BasicAuth, but do not specify values for the Nonce clock skew field, WebSphere
Application Server searches for a Nonce clock skew value on the server level.

Information Value
Default 0 seconds
Range 0 to Nonce Maximum Age seconds

Configuring nonce using Web Services Security tokens
Nonce is a randomly generated, cryptographic token that is used to thwart the highjacking of user name
tokens, which are used with SOAP messages. Use nonce in conjunction with the BasicAuth authentication
method.

About this task

Important: The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

You can configure nonce at the application level and server level.

If you configure nonce on the application level and the server level, the values specified for the application
level take precedence over the values specified for the server level.

You must consider the order of precedence:

1. Application level

2. Server level

Complete these high-level tasks in the order listed:

Procedure
1. Configure nonce for the application level.

2. Configure nonce for the server level.

3568 Administering WebSphere applications



What to do next

After completing these steps, restart the server if it has not already been restarted.

Configuring nonce for the server level:

Nonce is a randomly generated, cryptographic token that is used to prevent the theft of username tokens,
which are used with SOAP messages. Nonce is used in conjunction with the basic authentication
(BasicAuth) method. You can configure nonce for the server level by using the WebSphere Application
Server administrative console.

About this task

Important: The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

You can configure nonce at the application level and the cell level.

However, you must consider the order of precedence:

1. Application level

2. Server level

If you configure nonce on the application level and the server level, the values specified for the application
level take precedence over the values specified for the server level.

In a WebSphere Application Server (base) or WebSphere Application Server, Express environment, you
must specify values for the Nonce cache timeout, Nonce maximum age, and Nonce clock skew fields on
the server level to use nonce effectively.

Complete the following steps to configure nonce on the server level:

Procedure

1. Connect to the administrative console.

Type http://server_name:port_number/ibm/console in your web browser unless you have
changed the port number.

2. Click Servers > Server Types > WebSphere application servers > server_level.

3. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

4. Specify a value, in seconds, for the Nonce cache timeout field. The value specified for the Nonce
cache timeout field indicates how long the nonce remains cached before it is expunged. You must
specify a minimum of 300 seconds. However, if you do not specify a value, the default is 600 seconds.
This field is required for the server level.

5. Specify (optional) a value, in seconds, for the Nonce maximum age field.

The value specified for the Nonce Maximum Age field indicates how long the nonce is valid. You must
specify a minimum of 300 seconds, but the value cannot exceed the number of seconds specified for
the Nonce cache timeout field on the server level.

This field is required for the server level.

6. Specify a value, in seconds, for the Nonce clock skew field. The value specified for the Nonce clock
skew field specifies the amount of time, in seconds, to consider when the message receiver checks the
timeliness of the value. Consider the following information when you set this value:

Chapter 32. Administering web services - Security (WS-Security) 3569



v Difference in time between the message sender and the message receiver if the clocks are not
synchronized.

v Time needed to encrypt and transmit the message.

v Time needed to get through network congestion.

You must specify at least 0 seconds for the Nonce clock skew field. However, the maximum value
cannot exceed the number of seconds specified in the Nonce maximum age field on the server level. If
you do not specify a value, the default is 0 seconds.

7. Restart the server. If you change the Nonce cache timeout value and do not restart the server, the
change is not recognized by the server.

Configuring nonce for the application level:

Nonce is a randomly generated, cryptographic token that is used to thwart the highjacking of Username
tokens, which are used with SOAP messages. Use nonce in conjunction with the basic authentication
(BasicAuth) method. You can configure nonce for the application level by using the WebSphere Application
Server administrative console.

About this task

Important: The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

You can configure nonce at the application level and server level.

However, you must consider the order of precedence:

1. Application level

2. Server level

If you configure nonce on the application level and the server level, the values specified for the application
level take precedence over the values specified for the server level.

Procedure

1. Connect to the administrative console.

Type http://server_name:port_number/ibm/console in your web browser unless you have
changed the port number.

2. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

3. Under Manage modules, click URI_name.

4. Under Web Services Security Properties, click Web services: Server security bindings.

5. Click Edit under Request receiver binding

6. Under Additional properties, click Login mappings > New.

7. Specify (optional) a value, in seconds, for the Nonce maximum age field. This panel is optional and
only valid if the BasicAuth authentication method is specified. If you specify another authentication
method and attempt to specify values for this field, the following error message displays and you must
remove the specified value:

Nonce is not supported for authentication methods other than
BasicAuth.

If you specify BasicAuth, but do not specify values for the Nonce maximum age field, the Web
Services Security runtime searches for a nonce maximum age value on the server level.

3570 Administering WebSphere applications



The value specified for the Nonce maximum age field indicates how long the nonce is valid. You must
specify a minimum of 300 seconds; however, the value cannot exceed the number of seconds that is
specified for the Nonce cache timeout field for the server level.

You can specify the nonce cache timeout value for the server level by completing the following steps:

a. Click Servers > Server Types > WebSphere application servers > server_name.

b. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or
earlier, click Web services: Default bindings for Web Services Security.

8. Specify (optional) a value, in seconds, for the Nonce clock skew field. The value specified for the
Nonce clock skew field specifies the amount of time, in seconds, to consider when the message
receiver checks the timeliness of the value. This panel is optional and only valid if the BasicAuth
authentication method is specified. If you specify another authentication method and attempt to specify
values for this field, the following error message displays and you must remove the specified value:

Nonce is not supported for authentication methods other than
BasicAuth.

If you specify BasicAuth, but do not specify values for the Nonce clock skew field, the Web Services
Security runtime searches for a Nonce clock skew value on the server level.

Consider the following information when you set this value:

v Difference in time between the message sender and the message receiver if the clocks are not
synchronized.

v Time needed to encrypt and transmit the message.

v Time needed to get through network congestion.

9. Restart the server.

Configuring trust anchors using the administrative console
Use the WebSphere Application Server administrative console to configure trust anchors that specify key
stores which contain trusted root certificates to validate the signer certificate.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

This document describes how to configure trust anchors or trust stores at the application level. It does not
describe how to configure trust anchors at the server or cell level. Trust anchors defined at the application
level have a higher precedence over trust anchors defined at the server or cell level. For more information
on creating and configuring trust anchors at the server or cell level, see either Configuring the server
security bindings using an assembly tool or “Configuring the server security bindings using the
administrative console” on page 3579.

You can configure an application-level trust anchor using an assembly tool or the administrative console.
This document describes how to configure the application-level trust anchor using the administrative
console.

About this task

A trust anchor specifies key stores that contain trusted root certificates, which validate the signer
certificate. These key stores are used by the request receiver (as defined in the ibm-webservices-bnd.xmi
file) and the response receiver (as defined in the ibm-webservicesclient-bnd.xmi file when web services
are acting as client) to validate the signer certificate of the digital signature. The keystores are critical to

Chapter 32. Administering web services - Security (WS-Security) 3571



the integrity of the digital signature validation. If they are tampered with, the result of the digital signature
verification is doubtful and comprised. Therefore, it is recommended that you secure these keystores. The
binding configuration specified for the request receiver in the ibm-webservices-bnd.xmi file must match the
binding configuration for the response receiver in the ibm-webservicesclient-bnd.xmi file.

The following steps are for the client-side response receiver, which is defined in the ibm-
webservicesclient-bnd.xmi file and the server-side request receiver, which is defined in the
ibm-webservices-bnd.xmi file.

Procedure
1. Configure an assembly tool to work with a Java Platform, Enterprise Edition (Java EE) enterprise

application. For more information, see the related information on Assembly Tools.

2. Create a web services-enabled Java EE enterprise application. See either Configuring the server
security bindings using an assembly tool or “Configuring the server security bindings using the
administrative console” on page 3579 for an introduction on how to manage Web Services Security
binding information on the server.

3. Click Applications > Application Types > WebSphere enterprise applications >
enterprise_application.

4. Under Manage modules, click URI_name.

5. Under Web Services Security Properties, click Web services: client security bindings to edit the
response receiver binding information, if web services are acting as a client.

a. Under Response receiver binding, click Edit.

b. Under Additional properties, click Trust anchors.

c. Click New to create a new trust anchor.

d. Enter a unique name within the request receiver binding for the Trust anchor name field. The name
is used to reference the trust anchor that is defined.

e. Enter the key store password, path, and key store type.

f. Click the trust anchor name link to edit the selected trust anchor.

g. Click Remove to remove the selected trust anchor or anchors.

When you start the application, the configuration is validated in the run time while the binding
information is loading.

6. Return to the web services-enabled module panel accessed in step 2.

7. Under Web Services Security Properties, click Web services: server security bindings to edit the
request receiver binding information.

a. Under Request receiver binding, click Edit.

b. Under Additional properties, click Trust anchors.

c. Click New to create a new trust anchor

Enter a unique name within the request receiver binding for the Trust anchor name field. The name
is used to reference the trust anchor that is defined.

Enter the key store password, path, and key store type.

Click the trust anchor name link to edit the selected trust anchor.

Click Remove to remove the selected trust anchor or anchors.

When you start the application, the configuration is validated in the run time while the binding
information is loading.

8. Save the changes.

Results

This procedure defines trust anchors that can be used by the request receiver or the response receiver (if
the web services is acting as client) to verify the signer certificate.

3572 Administering WebSphere applications



Example

The request receiver or the response receiver (if the web service is acting as a client) uses the defined
trust anchor to verify the signer certificate. The trust anchor is referenced using the trust anchor name.

What to do next

To complete the signing information configuration process for request receiver, complete the following
tasks:

1. Configuring the server for request digital signature verification: Verifying the message parts

2. Configuring the server for request digital signature verification: choosing the verification method

To complete the process for the response receiver, if the web services is acting as client, complete the
following tasks:

1. Configuring the client for response digital signature verification: verifying the message parts

2. Configuring the client for response digital signature verification: choosing the verification method

Configuring the client-side collection certificate store using the administrative
console
You can configure the client-side collection certificate store by using the administrative console.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6 and later applications.

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate
revocation lists (CRLs). This collection of CA certificates and CRLs are used to check the signature of a
digitally signed SOAP message.

You can configure the collection certificate either by using the assembly tools or the WebSphere
Application Server administrative console. Complete the following steps to configure the client-side
collection certificate store using the administrative console.

Procedure
1. Connect to the WebSphere Application Server administrative console.

You can connect to the administrative console by typing http://
server_name:port_number/ibm/console in your web browser unless you have changed the port
number.

2. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

3. Under Manage modules, click URI_name.

4. Under Web Services Security Properties, click Web services: Client security bindings to add the
collection certificate store to the client security bindings. If you do not see any entries, return to the
assembly tool and configure the security extensions for either the client or the server.

To configure the security extensions for the client, see the following topics:

v Configuring the client for response digital signature verification: verifying the message parts

v Configuring the client for response digital signature verification: choosing the verification method

5. Under Response receiver binding, click Edit to edit the client security bindings.

6. Click Collection certificate store.

Chapter 32. Administering web services - Security (WS-Security) 3573



7. Click a Certificate store name to edit an existing certificate store or click New to add a new certificate
store name.

8. Enter a name in the Certificate store name field. The name entered in this field is a name that is
referenced in the Certificate store field on the Signing information configuration page.

9. Leave the Certificate store provider field value as IBMCertPath.

10. Click Apply.

11. Under Additional properties, click X.509 certificates > New.

12. Enter the path to your certificate store. For example, the path might be: ${USER_INSTALL_ROOT}/etc/
ws-security/samples/intca2.cer. If you have any additional certificate store paths to enter, click New
and add the path names.

13. Click OK.

Configuring the server-side collection certificate store using the administrative
console
You can configure the collection certificate either by using an assembly tool or the WebSphere Application
Server administrative console.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6 and later applications.

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate
revocation lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a
digitally signed SOAP message.

Complete the following steps to configure the server-side collection certificate store using the
administrative console.

Procedure
1. Connect to the WebSphere Application Server administrative console.

You can connect to the administrative console by typing http://
server_name:port_number/ibm/console in your web browser unless you have changed the port
number.

2. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

3. Under Manage modules, click URI_name

4. Under Web Services Security Properties, click Web services: server security bindings to add the
collection certificate store to the server security bindings. If you do not see any entries, return to the
assembly tool and configure the security extensions for the server.

To configure the security extensions for the server, see the following topics:

v Configuring the server for request digital signature verification: Verifying the message parts

v Configuring the server for request digital signature verification: choosing the verification method

5. Click Edit under Request Receiver Binding to edit the server security bindings.

6. Click Collection certificate store.

7. Click a Certificate store name to edit an existing certificate store or click New to add a new certificate
store name.

8. Enter a name in the Certificate store name field. The name entered in this field is a name that is
referenced in the Certificate store field on the Signing information configuration page.

3574 Administering WebSphere applications



9. Leave the Certificate store provider field as IBMCertPath.

10. Click Apply.

11. Under Additional Properties, click X.509 Certificates > New.

12. Enter the path to your certificate store. For example, the path might be: ${USER_INSTALL_ROOT}/etc/
ws-security/samples/intca2.cer. If you have any additional certificate store paths to enter, click New
and add the path names.

13. Click OK.

Configuring default collection certificate stores at the server level in the
WebSphere Application Server administrative console
You can define a single collection certificate store for all of the applications that need to use the same
certificates. Use the WebSphere Application Server administrative console to configure the default
collection certificate store at the server level.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate
revocation lists (CRLs). This collection of CA certificates and CRLs are used to check the signature of a
digitally signed SOAP message. A certificate store typically refers to a certificate store located in the file
system. The location of the certificate store can vary from machine to machine, so you might configure a
default collection certificate store for a specific machine and reference it from within the signing
information. The signing information is found within the binding configurations of any application installed
on the machine. This suggestion enables you to define a single collection certificate store for all of the
applications that need to use the same certificates. You also can specify the default binding information at
the cell level.

Complete the following steps to configure the default collection certificate store at the server level using
the WebSphere Application Server administrative console:

Procedure
1. Connect to the administrative console.

You can access the administrative console by typing http://server_name:port_number/
ibm/console in your web browser unless you have changed the port number.

2. Click Servers > Server Types > WebSphere application servers > server_name.

3. Under Security, click JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using Websphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

4. Under Additional properties, click Collection certificate store.

5. Enter a name in the Certificate store name field. This name is referenced in the Certificate store
field on the Signing information configuration page.

6. Leave the Certificate store provider field value as IBMCertPath.

7. Click Apply.

8. Under Additional properties, click X.509 certificates > New.

9. Enter the path to your certificate store. For example, the path might be: ${USER_INSTALL_ROOT}/etc/
ws-security/samples/intca2.cer.

If you have any additional certificate store paths to enter, click New and add the path names.

Chapter 32. Administering web services - Security (WS-Security) 3575



10. Click OK.

Configuring key locators using the administrative console
You can configure binding information and key locators using the WebSphere Application Server
administrative console.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

This task provides instructions on how to configure key locators using the WebSphere Application Server
administrative console. You can configure binding information in the administrative console. You must use
an assembly tool to configure extensions. The following steps are used to configure a key locator in the
administrative console for a specific application:

Procedure
1. Open the administrative console.

Type http://server_name:port_number/ibm/console in your web browser unless you have
changed the port number.

2. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

3. Under Related Items, click either Web Modules or EJB Modules, depending on the type of module
you are securing.

4. Click the name of the module you are securing.

5. Under Additional Properties, click either Web services: Client security bindings or Web services:
Server security bindings, depending on whether you are adding the key locator to the client security
bindings or to the server security bindings. If you do not see any entries, return to the assembly tool
and configure the security extensions.

6. Edit the Request Sender Binding, Response Receiver Binding, Request Receiver Binding, or
Response Sender Binding.

v If you are editing your client security bindings, click Edit for either the Request Sender Binding or
the Response Receiver Binding.

v If you are editing your server security bindings, click Edit for either the Request Receiver Binding or
the Response Sender Binding.

7. Click Key Locators.

8. Click New to configure a new key locator, select the box next to a key locator name and click Delete
to delete a key locator, or click the name of a key locator to edit its configuration. If you are configuring
a new key locator or editing an existing one, complete the following steps:

a. Specify a name for the key locator in the Key Locator Name field.

b. Specify a name for the key locator class implementation in the Key Locator Classname field.
WebSphere Application Server has the following default key locator class implementations:

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator
This class is used by the response sender to map an authenticated identity to a key. If
encryption is used, this class is used to locate a key to encrypt the response message.
The com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator class has the
capability to map an authenticated identity from the invocation credential of the current
thread to a key that is used to encrypt the message. If an authenticated identity is present
on the current thread, the class maps the ID to the mapped name. For example, user1 is

3576 Administering WebSphere applications



mapped to mappedName_1. Otherwise, name="default". When a matching key is not found,
the authenticated identity is mapped to the default key specified in the binding file.

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator
This class is used by the response receiver, the request sender, and the request receiver
to map a name to an alias. Encryption uses this class to obtain a key to encrypt a
message and digital signature uses this class to obtain a key to sign a message. The
com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator class maps a logical name to a
key alias in the key store file. For example, key #105115176771 maps to CN=Alice, O=IBM,
C=US.

c. Specify the password used to access the key store password in the Key Store Password field.
This field is optional because the key locator does not use a key store.

d. Specify the path name used to access the key store in the Key Store Path field. This field is
optional because the key locator does not use a key store. Use ${USER_INSTALL_ROOT} because
this path expands to the WebSphere Application Server path on your machine.

e. Select a keystore type from the Key Store Type field. This field is optional because the key locator
does not use a key store. Use the JKS option if you are not using the Java Cryptography
Extensions (JCE) policy and use JCEKS if you are using the JCE policy.

Configuring the security bindings on a server acting as a client using the
administrative console
Use the web services client editor within an assembly tool to include the binding information, that
describes how to run the security specifications found in the extensions, in the client enterprise archive
(EAR) file.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

When configuring a client for Web Services Security, the bindings describe how to run the security
specifications found in the extensions. Use the web services client editor within an assembly tool to
include the binding information in the client enterprise archive (EAR) file.

You can configure the client-side bindings from a pure client accessing a web service or from a web
service accessing a downstream web service. Complete the following steps to find the location in which to
edit the client bindings from a web service that is running on the server. When a web service
communicates with another web service, you must configure client bindings to access the downstream
web service.

Procedure
1. Deploy the web service using the WebSphere Application Server administrative console. Click

Applications > Install New Application.

You can access the administrative console by typing http://server_name:port_number/
ibm/console in your web browser unless you have changed the port number.

For more information, read about installing a new application.

2. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

3. Under Manage modules, click URI_name.

4. Under Web Services Security Properties, click Web Services: Client security bindings. A table
displays with the following columns:

v Component Name

Chapter 32. Administering web services - Security (WS-Security) 3577



v Port

v Web Service

v Request Sender Binding

v Request Receiver Binding

v HTTP Basic Authentication

v HTTP SSL Configuration

For Web Services Security, you must edit the request sender binding and response receiver binding
configurations. You can use the defaults for some of the information at the server level. Default
bindings are convenient because you can configure commonly reused elements such as key locators
once and then reference their aliases in the application bindings.

5. View the default bindings for the server using the administrative console by clicking Servers > Server
Types > WebSphere application servers > server_name . Under Additional Properties, click
JAX-WS and JAX-RPC security runtime.

Note: In a mixed node cell with a server using WebSphere Application Server version 6.1 or earlier,
click Web services: Default bindings for Web Services Security.

You can configure the following sections. These topics are discussed in more detail in other sections of
the documentation.

v Request sender binding

– Signing parameter configuration settings

– “Encryption information configuration settings: Methods” on page 3484

– “Key locator configuration settings” on page 3529

– “Login bindings configuration settings” on page 3580

v Response receiver binding

– “Signing information configuration settings” on page 3420

– “Encryption information configuration settings: Message parts” on page 3478

– “Trust anchor configuration settings” on page 3540

– “Collection certificate store configuration settings” on page 3547

– “Key locator configuration settings” on page 3529

What to do next

Important: When configuring the security request sender binding configuration, you must synchronize the
information used to perform the specified security with the security request receiver binding
configuration, which is configured in the server EAR file. These two configurations must be
synchronized in all respects because there is no negotiation during run time to determine the
requirements of the server. For example, when configuring the encryption information in the
security request sender binding configuration, you must use the public key from the server for
encryption. Therefore, the key locator that you choose must contain the public key from the
server configuration. The server must contain the private key to decrypt the message. This
example illustrates the important relationship between the client and server configuration.
Additionally, when configuring the security response receiver binding configuration, the server
must send the response using security information known by this client security response
receiver binding configuration.

The following table shows the related configurations between the client and the server. The client request
sender and the server request receiver are relative configurations that must be synchronized with each
other. The server response sender and the client response receiver are related configurations that must be
synchronized with each other. Note that related configurations are end points for any request or response.
One end point must communicate its actions with the other end point because run time requirements are
not required.

3578 Administering WebSphere applications



Table 333. Related configurations. The configurations must be synchronized with each other.
Client configuration Server configuration

Request sender Request receiver

Response receiver Response sender

Configuring the server security bindings using the administrative console
Use the WebSphere Application Server administrative console to edit bindings for a web service after
these bindings are deployed on a server.

About this task

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Create an Enterprise JavaBeans (EJB) file Java archive (JAR) file or web application archive (WAR) file
containing the security binding file (ibm-webservices-bnd.xmi) and the security extension file
(ibm-webservices-ext.xmi). If this archive is acting as a client to a downstream service, you also need the
client-side binding file (ibm-webservicesclient-bnd.xmi) and the client-side extension file
(ibm-webservicesclient-ext.xmi). These files are generated using the WSDL2Java command. For more
information, read about the WSDL2Java command for JAX-RPC applications. You can edit these files using
the Web Services Editor in the assembly tools. For more information, read about assembly tools.

When configuring server-side security for Web Services Security, the security extensions configuration
specifies what security is to be performed while the security bindings configuration indicates how to
perform what is specified in the security extensions configuration. You can use the defaults for some
elements at the cell and server levels in the bindings configuration, including key locators, trust anchors,
the collection certificate store, trusted ID evaluators, and login mappings and reference them from the
WAR and JAR binding configurations.

The following steps describe how to edit bindings for a web service after these bindings are deployed on a
server. When one web service communicates with another web service, you also must configure the client
bindings to access the downstream web service.

Procedure
1. Deploy the web service using the WebSphere Application Server administrative console.

Type http://server_name:port_number/ibm/console in your web browser unless you have
changed the port number.

After you log into the administration console, click Applications > Install new application to deploy
the web service. For more information, read about installing enterprise application files with the
console.

2. After you deploy the web service, click Applications > Enterprise applications > application_name .

3. Under Manage modules, click URI_name.

4. Under Web Services Security Properties, click Web services: client security bindings for outbound
requests and inbound responses. Click Web services: server security bindings for inbound requests
and outbound responses.

5. If you click Web services: server security bindings, the following sections can be configured. These
topics are discussed in more detail in other sections of the documentation.

v Request receiver binding

– Signing information

– Encryption information

Chapter 32. Administering web services - Security (WS-Security) 3579



– Trust anchors

– Collection certificate store

– Key locator

– Trusted ID evaluator

– Login mappings

v Response sender binding

– Signing parameters

– Encryption information

– Key locator

Configuring XML encryption for Version 5.x web services with the
administrative console
XML encryption is one method that WebSphere® Application Server provides to secure web services. You
can use XML encryption in conjunction with XML digital signature to scramble the content while verifying
the authenticity of the message sender. Using XML encryption, you can encrypt an XML element, the
content of an XML element, or arbitrary data such as an XML document.

Login bindings configuration settings
Use this page to specify the Java Authentication and Authorization Service (JAAS) login configuration
settings that are used to validate security tokens within incoming messages.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications. Version 5.x applications are based on Java 2 platform,
Enterprise Edition (J2EE) 1.3.

The pluggable token uses the Java Authentication and Authorization Service (JAAS) CallBackHandler
(javax.security.auth.callback.CallBackHandler) interface to generate the token that is inserted into the
message. The following list describes the CallBack support implementations:

com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback
This implementation is used for generating binary tokens inserted as <wsse:BinarySecurityToken/
@ValueType> in the message.

javax.security.auth.callback.NameCallback and javax.security.auth.callback.PasswordCallback
This implementation is used for generating user name tokens inserted as <wsse:UsernameToken> in
the message.

com.ibm.wsspi.wssecurity.auth.callback.XMLTokenSenderCallback
This implementation is used to generate Extensible Markup Language (XML) tokens and is
inserted as the <SAML: Assertion> element in the message.

com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback
This implementation is used to obtain properties that are specified in the binding file.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_file_name. Under Web Services Security Properties,
click Web Services: Client security bindings.

3. Under Request Sender Bindings, click Edit.

4. Under Additional properties, click Login binding.

3580 Administering WebSphere applications



If the encryption information is not available, select None.

If the encryption information is available, select Dedicated login binding and specify the configuration in
the following fields:

Authentication method:

Specifies the unique name for the authentication method.

You can uses any string to name the authentication method. However, the string must match the element
in the server-level configuration. The following words are reserved by WebSphere Application Server:

BasicAuth
This method uses both a user name and a password.

IDAssertion
This method uses a user name, but it requires that additional trust is established by the receiving
server using a trusted ID evaluator mechanism.

Signature
This method uses the distinguished name (DN) of the signer.

LTPA This method validates the token.

Callback handler:

Specifies the name of the callback handler. The callback handler must implement the
javax.security.auth.callback.CallbackHandler interface.

Basic authentication user ID:

Specifies the user name for basic authentication. With the basic authentication method, you can define a
user name and a password in the binding file.

Basic authentication password:

Specifies the password for basic authentication.

Token type URI:

Specifies the namespace Uniform Resource Identifiers (URI), which denotes the type of security token that
is accepted.

The value of this field if is impacted by the following conditions:

v If binary security tokens are accepted, the value denotes the ValueType attribute in the element. The
ValueType element identifies the type of security token and its namespace.

v If Extensible Markup Language (XML) tokens are accepted, the value denotes the top-level element
name of the XML token.

v The Token type URI field is ignored if the reserved words, which are listed in the description of the
Authentication method field, are specified.

This information is inserted as <wsse:BinarySecurityToken>/ValueType for the <SAML: Assertion> XML
token.

Token type local name:

Specifies the local name of the security token type. For example, X509v3.

Chapter 32. Administering web services - Security (WS-Security) 3581



The value of this field if is impacted by the following conditions:

v If binary security tokens are accepted, the value denotes the ValueType attribute in the element. The
ValueType element identifies the type of security token and its namespace.

v If Extensible Markup Language (XML) tokens are accepted, the value denotes the top-level element
name of the XML token.

v The Token type URI field is ignored if the reserved words, which are listed in the description of the
Authentication method field, are specified.

This information is inserted as <wsse:BinarySecurityToken>/ValueType for the <SAML: Assertion> XML
token.

Request sender binding collection
Use this page to specify the binding configuration to send request messages for Web Services Security.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications. Version 5.x applications are based on Java 2 platform,
Enterprise Edition (J2EE) 1.3.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_file_name.

3. Under Web Services Security Properties, click Web services: Client security bindings.

4. Under Request sender binding, click Edit.

Web Services Security namespace: Specifies the namespace that is used by Web Services Security to
send a request. However, this field configures the namespace value only and does not enforce the
semantics of the specification related to the namespace. Web Services Security uses the processing
semantic only in draft 13 of the OASIS specification. The following schemas are available:

v http://schemas.xmlsoap.org/ws/2003/06/secext

v http://schemas.xmlsoap.org/ws/2002/07/secext

v http://schemas.xmlsoap.org/ws/2002/04/secext

v None

The namespace used by the response sender is based on the namespace of the incoming message in the
request receiver.

Signing information:

Specifies the configuration for the signing parameters. Signing information is used to sign and validate
parts of the message including the body and time stamp.

You can also use these parameters for X.509 validation when the Authentication method is IDAssertion
and the ID Type is X509Certificate, in the server-level configuration. In such cases, you must fill in the
Certificate Path fields only.

Encryption information:

Specifies the configuration for the encrypting and decrypting parameters. Encryption information is used for
encrypting and decrypting various parts of a message, including the body and user name token.

Key locators:

3582 Administering WebSphere applications



Specifies a list of key locator objects that retrieve the keys for digital signature and encryption from a
keystore file or a repository. The key locator maps a name or a logical name to an alias or maps an
authenticated identity to a key. This logical name is used to locate a key in a key locator implementation.

Login mappings:

Specifies a list of configurations for validating tokens within incoming messages.

Login mappings map the authentication method to the Java Authentication and Authorization Service
(JAAS) configuration.

To configure JAAS, complete the following steps:

1. Click Security > Global security.

2. Under the Java Authentication and Authorization Service field, select Application logins or System
logins.

Request receiver binding collection
Use this page to specify the binding configuration to receive request messages for Web Services Security.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications. Version 5.x applications are based on Java 2 platform,
Enterprise Edition (J2EE) 1.3.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications >
application_name.

2. Under Modules, click Manage modules > URI_file_name.

3. Under Web Services Security Properties, click Web services: Server security bindings.

4. Under Request receiver binding, click Edit.

Signing information:

Specifies the configuration for the signing parameters. Signing information is used to sign and validate
parts of a message including the body, the timestamp, and the user name token.

You also can use these parameters for X.509 certificate validation when the authentication method is
IDAssertion and the ID Type is X509Certificate in the server-level configuration. In such cases, you must
fill in the Certificate Path fields only.

Encryption information:

Specifies the configuration for the encrypting and decrypting parameters. This configuration is used to
encrypt and decrypt parts of the message that include the body and the user name token.

Trust anchors:

Specifies a list of keystore objects that contain the trusted root certificates that are issued by a certificate
authority (CA).

The certificate authority authenticates a user and issues a certificate. The CertPath API uses the certificate
to validate the certificate chain of incoming, X.509-formatted security tokens or trusted, self-signed
certificates.

Chapter 32. Administering web services - Security (WS-Security) 3583



Collection certificate store:

Specifies a list of the untrusted, intermediate certificate files.

The collection certificate store contains a chain of untrusted, intermediate certificates. The CertPath API
attempts to validate these certificates, which are based on the trust anchor.

Key locators:

Specifies a list of key locator objects that retrieve the keys for digital signature and encryption from a
keystore file or a repository. The key locator maps a name or a logical name to an alias or maps an
authenticated identity to a key. This logical name is used to locate a key in a key locator implementation.

Trusted ID evaluators:

Specifies a list of trusted ID evaluators that determine whether to trust the identity-asserting authority or
message sender.

The trusted ID evaluators are used to authenticate additional identities from one server to another server.
For example, a client sends the identity of user A to server 1 for authentication. Server 1 calls downstream
to server 2, asserts the identity of user A, and includes the user name and password of server 1. Server 2
attempts to establish trust with server 1 by authenticating its user name and password and checking the
trust based on the TrustedIDEvaluator implementation. If the authentication process and the trust check
are successful, server 2 trusts that server 1 authenticated user A and a credential is created for user A on
server 2 to invoke the request.

Login mappings:

Specifies a list of configurations for validating tokens within incoming messages.

Login mappings map the authentication method to the Java Authentication and Authorization Service
(JAAS) configuration.

To configure JAAS, complete the following steps:

1. Click Security > Global security.

2. Under the Java Authentication and Authorization Service, click Application logins or System logins.

Response sender binding collection
Use this page to specify the binding configuration for sender response messages for Web Services
Security.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications. Version 5.x applications are based on Java 2 platform,
Enterprise Edition (J2EE) 1.3.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applications > application_name
.

2. Under Modules, click Manage modules > URI_file_name.

3. Under Web Services Security Properties, click Web services: Server security bindings.

4. Under Response sender binding, click Edit.

Signing information:

3584 Administering WebSphere applications



Specifies the configuration for the signing parameters.

You also can use these parameters for X.509 certificate validation when the authentication method is
IDAssertion and the ID Type is X509Certificate in the server-level configuration. In such cases, you must
fill-in the Certificate Path fields only.

Encryption information:

Specifies the configuration for the encryption and decryption parameters.

Key locators:

Specifies a list of key locator objects that retrieve the keys for a digital signature and encryption from a
keystore file or a repository. The key locator maps a name or logical name to an alias or maps an
authenticated identity to a key. This logical name is used to locate a key in a key locator implementation.

Response receiver binding collection
Use this page to specify the binding configuration for receiver response messages for Web Services
Security.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications. Version 5.x applications are based on Java 2 platform,
Enterprise Edition (J2EE) 1.3.

To view this administrative console page, complete the following steps:

1. Click Applications > Application Types > WebSphere enterprise applicationsapplication_name.

2. Under Modules, click Manage modules > URI_file_name > Web Services: Client security bindings.

3. Under Response receiver binding, click Edit.

Signing information:

Specifies the configuration for the signing parameters. Signing information is used to sign and to validate
parts of the message including the body and the timestamp.

You can also use these parameters for X.509 validation when the authentication method is IDAssertion
and the ID type is X509Certificate, in the server-level configuration. In such cases, you must fill in the
certificate path fields only.

Encryption information:

Specifies the configuration for the encryption and decryption parameters.

Encryption information is used for encrypting and decrypting various parts of a message, including the
body and the user name token.

Trust anchors:

Specifies a list of keystore objects that contain the trusted root certificates that are self-signed or issued by
a certificate authority.

The certificate authority authenticates a user and issues a certificate. After the certificate is issued, the
keystore objects, which contain these certificates, use the certificate for certificate path or certificate chain
validation of incoming X.509-formatted security tokens.

Chapter 32. Administering web services - Security (WS-Security) 3585



Collection certificate store:

Specifies a list of the untrusted, intermediate certificate files.

The collection certificate store contains a chain of untrusted, intermediate certificates. The CertPath API
attempts to validate these certificates, which are based on the trust anchor.

Key locators:

Specifies a list of key locator objects that retrieve the keys for a digital signature and encryption from a
keystore file or a repository.

The key locator maps a name or a logical name to an alias or maps an authenticated identity to a key.
This logical name is used to locate a key in a key locator implementation.

Configuring pluggable tokens using the administrative console
You can configure the client-side request sender (ibm-webservicesclient-bnd.xmi file) or server-side
request receiver (ibm-webservices-bnd.xmi file) by using the WebSphere Application Server administrative
console.

Before you begin

Important: There is an important distinction between Version 5.x and Version 6 and later applications.
The information in this article supports Version 5.x applications only that are used with
WebSphere Application Server Version 6.0.x and later. The information does not apply to
Version 6.0.x and later applications.

Prior to completing these steps, it is assumed that you have already created a web service that is based
on the Java Platform, Enterprise Edition (Java EE) specification. See either of the following topics for an
introduction of how to manage Web Services Security binding information for the server:

v Configuring the server security bindings using an assembly tool

v “Configuring the server security bindings using the administrative console” on page 3579

About this task

This document describes how to configure a pluggable token in the request sender (ibm-
webservicesclient-ext.xmi and ibm-webservicesclient-bnd.xmi file) and request receiver
(ibm-webservices-ext.xmi and ibm-webservices-bnd.xmi file).

Important: The pluggable token is required for the request sender and request receiver as they are a
pair. The request sender and the request receiver must match for a request to be accepted by
the receiver.

Prior to completing these steps, it is assumed that you deployed a web services-enabled enterprise
application to the WebSphere Application Server.

Use the following steps to configure the client-side request sender (ibm-webservicesclient-bnd.xmi file) or
server-side request receiver (ibm-webservices-bnd.xmi file) using the WebSphere Application Server
administrative console.

1. Click Applications > Application Types > WebSphere enterprise applications >
enterprise_application.

2. Under Modules, click Manage modules > URI_name. The URI is the web services-enabled module.

a. Under Web Services Security Properties, click Web services: client security bindings to edit the
response sender binding information, if web services are acting as client.

1) Under Response sender binding, click Edit.

3586 Administering WebSphere applications



2) Under Additional Properties, click Login binding.

3) Select Dedicated login binding to define a new login binding.

a) Enter the authentication method, this must match the authentication method defined in IBM
extension deployment descriptor. The authentication method must be unique in the binding
file.

b) Enter an implementation of the JAAS javax.security.auth.callback.CallbackHandler
interface.

c) Enter the basic authentication information (User ID and Password) and the basic
authentication information is passed to the construct of the CallbackHandler
implementation. The usage of the basic authentication information is up to the
implementation of the CallbackHandler.

d) Enter the token value type, it is optional for BasicAuth, Signature and IDAssertion
authentication methods but required for any other authentication method. The token value
type is inserted into the <wsse:BinarySecurityToken>@ValueType for binary security token
and used as the namespace of the XML based token.

e) Click Properties. Define the property with name and value pairs. These pairs are passed to
the construct of the CallbackHandler implementation as java.util.Map.

Select None to deselect the login binding.

b. Under Web Services Security Properties, click Web services: server security bindings to edit the
request receiver binding information.

1) Under Request Receiver Binding, click Edit.

2) Under Additional Properties, click Login mappings.

3) Click New to create new login mapping.

a) Enter the authentication method, this must match the authentication method defined in the
IBM extension deployment descriptor. The authentication method must be unique in the
login mapping collection of the binding file.

b) Enter a JAAS Login Configuration name. The JAAS Login Configuration must be defined
under Security > Global security. Under Authentication, click Java Authentication and
Authorization Service > Application logins. For more information, read about configuring
programmatic logins for Java Authentication and Authorization Service.

c) Enter an implementation of the
com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory interface. This is a
mandatory field.

d) Enter the token value type, it is optional for BasicAuth, Signature and IDAssertion
authentication methods but required for any other authentication method. The token value
type is used to validate against the <wsse:BinarySecurityToken>@ValueType for binary
security token and against the namespace of the XML based token.

e) Enter the name and value pairs for the “Login Mapping Property” by clicking Properties .
These name and value pairs are available to the JAAS Login Module or Modules by
com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback JAAS Callback. Note: This is
true when editing existing login mappings but not when creating new login mappings.

f) Enter the name and value pairs for the “Callback Handler Factory Property”, this name and
value pairs is passed as java.util.Map to the
com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory.init() method. The
usage of these name and value pairs is up to the CallbackHandlerFactory implementation.

c. Click authentication method link to edit the selected login mapping.

d. Click Remove to remove the selected login mapping or mappings.

3. Click Save.

Chapter 32. Administering web services - Security (WS-Security) 3587



Results

The previous steps define how to configure the request sender to create security tokens in the SOAP
message and the request receiver to validate the security tokens found in the incoming SOAP message.
WebSphere Application Server supports pluggable security tokens.

You can use the authentication method defined in the login bindings and login mappings to generate
security tokens in the request sender and validate security tokens in the request receiver.

What to do next

After you have configured pluggable tokens, you must configure both the client and the server to support
pluggable tokens. See the following topics to configure the client and the server:

v Configuring the client for LTPA token authentication: specifying LTPA token authentication

v Configuring the client for LTPA token authentication: collecting the authentication method information

v Configuring the server to handle LTPA token authentication information

v Configuring the server to validate LTPA token authentication information

3588 Administering WebSphere applications



Chapter 33. Administering web services - Transaction support
(WS-Transaction)

WS-Transaction is an interoperability standard that includes the WS-AtomicTransaction,
WS-BusinessActivity, and WS-Coordination specifications. The Web Services Atomic Transaction (WS-AT)
support in the application server provides transactional quality of service to the web services environment.
Distributed web services applications, and the resources they use, can take part in distributed global
transactions. With Web Services Business Activity (WS-BA) support in the application server, web services
on different systems can coordinate activities that are more loosely coupled than atomic transactions. Such
activities can be difficult or impossible to roll back atomically, and therefore require a compensation
process if an error occurs. Web Services Coordination (WS-COOR) specifies a CoordinationContext and a
Registration service with which participant web services can enlist to take part in the protocols that are
offered by specific coordination types.

Using WS-Transaction policy to coordinate transactions or business
activities for web services
You can use WS-Transaction policy to configure how a Java API for XML Web Services (JAX-WS) service
or client handles Web Services Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA)
context.

About this task

The Web Services Atomic Transaction (WS-AT) support in the application server provides transactional
quality of service to the web services environment. Distributed web services applications, and the
resources they use, can take part in distributed global transactions. With Web Services Business Activity
(WS-BA) support in the application server, web services on different systems can coordinate activities that
are more loosely coupled than atomic transactions. Such activities can be difficult or impossible to roll
back atomically, and therefore require a compensation process if an error occurs.

Procedure
v Configure a JAX-WS client for WS-Transaction context.

v Configure a JAX-WS web service for WS-Transaction context.

v Configure the WS-Transaction policy.

v Configure a WS-Transaction policy set by using wsadmin scripting.

v Configure transaction properties for an application server.

v Configure the WS-Transaction specification level by using wsadmin scripting.

v Configure WS-Transaction support in a secure environment.

v Configure an intermediary node for web services transactions.

v Enable WebSphere Application Server to use an intermediary node for web services transactions.

v Configure a server to use business activity support.

Configuring a JAX-WS client for WS-Transaction context
You can configure the way that a Java API for XML Web Services (JAX-WS) client handles Web Services
Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA) context by configuring the Web
Services Transaction (WS-Transaction) policy type. You can specify that the client must send context, can
send context if it is available, or must not send context.

Before you begin

A JAX-WS client must be installed.

© Copyright IBM Corp. 2012 3589



About this task

You can configure a WS-Transaction policy set by using the administrative console, as described in this
task, or you can configure a WS-Transaction policy set by using wsadmin scripting.

To configure a JAX-WS client for WS-Transaction context by using the administrative console, complete
the following steps.

Procedure
1. Create a new policy set, or copy and rename an existing policy set. You can copy an existing

user-defined policy set, or one of the WS-Transaction default policy sets (WSTransaction or SSL
WSTransaction). See “Creating policy sets using the administrative console” on page 2773.

2. Check that your policy set includes the WS-Transaction policy type. If necessary, add the
WS-Transaction policy type. See “Adding policies to policy sets using the administrative console” on
page 2802.

3. Configure the WS-Transaction policy.

4. Associate the policy set with the JAX-WS client. See Managing policy sets and bindings for service
clients.

5. Choose a WS-Policy application rule that includes the configured policy of the client, that is, client only
or client and provider. See “Configuring the client policy to use a service provider policy” on page
3204.

6. Save your changes to the master configuration.

Results

The JAX-WS client is configured to use WS-Transaction context in the way that you specified.

Configuring a JAX-WS web service for WS-Transaction context
You can configure the way that a Java API for XML Web Services (JAX-WS) service handles Web
Services Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA) context by configuring
the Web Services Transaction (WS-Transaction) policy type. You can specify that the web service must
receive context, can receive context if it is available, or must not receive context.

Before you begin

A JAX-WS client must be installed.

About this task

You can configure a WS-Transaction policy set by using the administrative console as described in this
task, or you can configure a WS-Transaction policy set by using wsadmin scripting.

To configure a JAX-WS service for WS-Transaction context by using the administrative console, complete
the following steps.

Procedure
1. Create a new policy set, or copy and rename an existing policy set. You can copy an existing

user-defined policy set, or one of the WS-Transaction default policy sets (WSTransaction or SSL
WSTransaction). See “Creating policy sets using the administrative console” on page 2773.

2. Check that your policy set includes the WS-Transaction policy type. If necessary, add the
WS-Transaction policy type. See “Adding policies to policy sets using the administrative console” on
page 2802.

3. Configure the WS-Transaction policy.

3590 Administering WebSphere applications



4. Associate the policy set with the JAX-WS web service, endpoint, or operation for which the specified
behavior is required. See Managing policy sets and bindings for service providers.

5. Save your changes to the master configuration.

Results

The JAX-WS web service, endpoint, or operation is configured to use WS-Transaction context in the way
that you specified.

Configuring a WS-Transaction policy set by using wsadmin scripting
You can configure the way that a Java API for XML Web Services (JAX-WS) client or web service handles
Web Services Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA) context by
configuring the Web Services Transaction (WS-Transaction) policy type. You can specify that the client or
service must use context, can use context if it is available, or must not use context. Use command scripts
to configure a policy set for web services transactions.

About this task

You can configure a WS-Transaction policy set by using wsadmin scripting as described in this task, or
you can configure a WS-Transaction policy set by using the administrative console.

Procedure
1. Start the wsadmin scripting client if it is not already running.

2. Use the createPolicySet command to create a new policy set, or the copyPolicySet command to copy
and rename an existing policy set. You can copy an existing user-defined policy set, or one of the
WS-Transaction default policy sets (WSTransaction or SSL WSTransaction).

3. Check that your policy set includes the WS-Transaction policy type. If necessary, add the
WS-Transaction policy type. For example:

AdminTask.importPolicySet(’[-defaultPolicySet WSTransaction]’)
AdminTask.addPolicyType(’[-policySet policy_set_name
-policyType WSTransaction -enabled true]’)

4. Use the setPolicyType command to configure the WS-Transaction policy type attributes. The
WS-Transaction policy type has the following attributes:

v ATAssertion

v BAAtomicOutcomeAssertion

Each attribute can have the value supports, mandatory, or never. For detailed information about these
configurable attributes, see the topic about WS-Transaction policy settings. For example:

AdminTask.setPolicyType(’[-policySet policy_set_name
-policyType WSTransaction
-attributes "[ [BAAtomicOutcomeAssertion mandatory] [ATAssertion supports] ]"]
-replace’)

5. Save your changes to the master configuration. For example, enter the following command:
AdminConfig.save()

What to do next

You are now ready to associate the policy set with the JAX-WS client, or with the JAX-WS web service,
endpoint, or operation.

Chapter 33. Administering web services - Transaction support (WS-Transaction) 3591



Configuring Web Services Transaction support in a secure
environment
If you use Web Services Atomic Transaction (WS-AT) or Web Services Business Activity (WS-BA) support
when administrative security is enabled, you might have to change the default transaction service
configuration. You can disable the transaction coordination authorization setting, create a new web
container transport chain, or do both.

About this task

You might disable transaction coordination authorization if you want to interoperate with other
servers and you do not want to set up security for the transaction manager to support the Common
Criteria EAL4 evaluated configuration. When transaction coordination authorization is disabled, WebSphere
Application Server does not automatically reject secure WS-Transactions protocol messages.

You might configure a new web container transport chain for use by WS-Transactions in the following
situations:

v You want to use an alternative port number for WS-AT or WS-BA protocol messages.

v You want to interoperate with a non-WebSphere Application Server that requires client certificate
authentication on the Secure Sockets Layer (SSL) connection that is used for protocol messages.

The transaction service, by default, selects a suitable web container transport chain from the list of those
configured and uses it for protocol messages. You can configure a new transport chain and specify your
own settings. For example, you can specify an alternative SSL configuration that requires client certificate
authentication, which is then used specifically for WS-Transactions protocol messages.

Procedure
1. Optionally, use the following steps to disable transaction coordination authorization.

a. In the administrative console, click Servers > Server Types > WebSphere application servers >
server_name > [Container Settings] Container Services > Transaction Service.

b. Clear the Enable transaction coordination authorization check box.

c. Click Apply or OK.

d. Save your changes to the master configuration.

2. Optionally, use the following steps to create a new web container transport chain.

a. In the administrative console, click Servers > Application servers > server_name > [Container
Settings] Web Container Settings > Web container transport chains.

b. Click New to create a new transport chain.

c. Type a name for the transport chain.

d. From the Transport chain template list, select an appropriate template.

e. Click Next to select a new port for the chain.

f. Type a name, host, and port number for the port. For a secure chain, the host must match the
common name in the certificate that is used.

g. Click Next, confirm the settings, then click Finish.

h. Save your changes to the master configuration.

i. If necessary, create a new SSL configuration and associate it with the SSL channel associated with
your new chain. For more information, see “Creating a Secure Sockets Layer configuration” on page
1818. You are now ready to configure the transaction service to use the new transport chain.

j. Click Servers > Application servers > server_name > [Container Settings] Container Services
> Transaction Service.

k. In the External WS-Transaction HTTP(S) URL prefix section, click Select prefix, then select the
web container transport chain that you have just created from the list.

3592 Administering WebSphere applications



If you are using an intermediary, such an HTTP proxy, in front of the application server, click
Specify custom prefix, then type the external endpoint URL information for the intermediary node
in the field. For more information, see “Enabling WebSphere Application Server to use an
intermediary node for web services transactions” on page 3594.

l. Click Apply or OK, then save your changes to the master configuration.

3. After you save all the configuration changes, restart the server for the changes to take effect.

Results

You configured your system to use WS-AT or WS-BA in a secure environment.

Configuring an intermediary node for web services transactions
Intermediary nodes allow the exchange of Web Services Atomic Transaction (WS-AT) and Web Services
Business Activity (WS-BA) protocol messages across firewalls and outside the WebSphere Application
Server domain. You configure an intermediary node to specify which WebSphere Application servers the
node routes requests to.

Procedure
1. Configure the HTTP server so that it routes WS-AT and WS-BA requests that are targeted at

WebSphere Application Server to WebSphere Application Server, rather than processing them itself.

2.

3.

Results

You configured the intermediary node ready for use by WebSphere Application Server.

Example

What to do next

Configure WebSphere Application Server to use the intermediary node by specifying, for each server, the
appropriate virtual host of the intermediary node.

Example: Configuring IBM HTTP server as an intermediary node for web services
transactions
You can use an HTTP server intermediary nodes to enable the exchange of Web Services Atomic
Transaction and Web Services Business Activity protocol messages across firewalls and outside the
WebSphere Application Server domain. For IBM HTTP server, you achieve this behavior by modifying the
plugin-cfg.xml file of the IBM HTTP server node.

Routing requests to WebSphere Application Server

You can use the IBM HTTP server as a single intermediary node, or you can combine it with a Proxy
Server for IBM WebSphere Application Server. In both cases, update the plugin-cfg.xml file to indicate that
the HTTP server should route requests that are targeted at WebSphere Application Server, those of the
form http://host:port/_IBMSYSAPP/*, to WebSphere Application Server, rather than processing them itself.

To update the plugin-cfg.xml file, add a URI element with a name of _IBMSYSAPP, as shown in the
following example. Add this URI to all UriGroup elements in the plugin-cfg.xml file.
<UriGroup Name="default_host_server1_99T73NKNode01_Cluster_URIs">
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/snoop/*" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/hello" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/hitcount" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="*.jsp" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="*.jsv" />

Chapter 33. Administering web services - Transaction support (WS-Transaction) 3593



<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="*.jsw" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/j_security_check" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/ibm_security_logout" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/servlet/*" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/SamplesGallery/*" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/WSsamples/*" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/PlantsByWebSphere/*" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/PlantsByWebSphere/docs/*" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/_IBMSYSAPP/*" />
</UriGroup>

Configuring virtual host mapping

If you are using IBM HTTP as the only intermediary node, in other words you are not also using Proxy
Server for IBM WebSphere Application Server, configure virtual hosts to represent each WebSphere
Application Server that the HTTP node routes requests to. Update the plugin-cfg.xml file by adding
VirtualHostGroup, VirtualHost and Route elements.

The following example shows part of the plugin-cfg.xml file for a configuration in which the IBM HTTP
server routes requests to one of two servers, server1 and server2, in WebSphere Application Server.

The plugin-cfg.xml file contains two virtual host aliases, with names name1.acme.com and
name2.acme.com, that are defined using VirtualHost and VirtualHostGroup elements. The Route elements
define the association between the virtual hosts and the ServerCluster elements. When a request is made,
IBM HTTP server finds the best matching route to dispatch the request to. A request made to virtual host
name1.acme.com, with a URI that matches a pattern in the default_URIs URI group, is sent to the
server1_Cluster server cluster. This server cluster contains only one server, server1, so requests targeted
at virtual host name1.acme.com are sent to server1, and similarly, requests targeted at virtual host
name2.acme.com are sent to server2.
<UriGroup Name="default_URIs">
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/snoop/*" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/hello" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/hitcount" />
...
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/PlantsByWebSphere/*" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/PlantsByWebSphere/docs/*" />
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/_IBMSYSAPP/*" />

</UriGroup>

<ServerCluster CloneSeparatorChange="false" LoadBalance="Round Robin" Name="server1_Cluster" PostBufferSize="64"
PostSizeLimit="-1" RemoveSpecialHeaders="true" RetryInterval="60">

<Server ConnectTimeout="0" ExtendedHandshake="false" MaxConnections="-1" Name="server1" ServerIOTimeout="0" WaitForContinue="false">
...

</Server>
<PrimaryServers> <Server Name="server1"/> </PrimaryServers>

</ServerCluster>
<ServerCluster CloneSeparatorChange="false" LoadBalance="Round Robin" Name="server2_Cluster" PostBufferSize="64" PostSizeLimit="-1"
RemoveSpecialHeaders="true" RetryInterval="60">

<Server ConnectTimeout="0" ExtendedHandshake="false" MaxConnections="-1" Name="server2" ServerIOTimeout="0" WaitForContinue="false">
...

</Server>
<PrimaryServers> <Server Name="server2"/> </PrimaryServers>

</ServerCluster>
<VirtualHostGroup Name="vhost_server1"> <VirtualHost Name="name1.acme.com:9081"/> </VirtualHostGroup>
<VirtualHostGroup Name="vhost_server2"> <VirtualHost Name="name2.acme.com:9081"/> </VirtualHostGroup>
<Route ServerCluster="server1_Cluster" UriGroup="default_URIs" VirtualHostGroup=" vhost_server1 "/>
<Route ServerCluster="server2_Cluster" UriGroup="default_URIs" VirtualHostGroup=" vhost_server2"/>

Enabling WebSphere Application Server to use an intermediary node
for web services transactions
You can use intermediary nodes with Web Services Atomic Transactions (WS-AT) or Web Services
Business Activities (WS-BA) to support the exchange of associated requests across firewalls and outside
the WebSphere Application Server domain. You configure WebSphere Application Server to use an
intermediary node by specifying the external endpoint URL information for the intermediary node in each
server that is accessed through the intermediary.

3594 Administering WebSphere applications



Before you begin

Configure the intermediary node that you want to use, and ensure that you know the address or addresses
of the intermediary node that you want to map to servers in your WebSphere Application Server
configuration.

Configure the intermediary to listen on a specific port for protocol messages and to route these messages
to the specific WebSphere Application Server instance that you want to enable. See the related information
for an example configuration where an IBM HTTP server is the intermediary.

Procedure
1. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name > [Container Services] Transaction Service.

2. In the External WS-Transaction HTTP(S) URL prefix section, click Specify custom prefix, then type
the external endpoint URL information for the intermediary node in the field. Use one of the following
formats for the prefix, where host_name and port represent the intermediary node that is an HTTP or
HTTPS proxy for the server, and port is optional.
v

http://host_name:port

v

https://host_name:port

3. Click Apply or OK.

4. Save your changes to the master configuration.

5. Repeat the previous steps for each server that is accessed through the intermediary node.

6. Restart the servers.

Results

You configured your system to use an intermediary node. Test your configuration to ensure that messages
are routed as you expect.

Configuring a server to use business activity support
Business activity support provides compensation for activities such as sending an email, which can be
difficult or impossible to roll back atomically. With this compensation, applications on disparate systems
can coordinate activities that are more loosely coupled than atomic transactions. To use the business
activity support, you must first enable it on each server that you plan to use.

About this task

If an application component uses business activity support, you must enable the support on each server
that runs the application.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

Procedure
1. In the administrative console, click Servers > Server Types > WebSphere application servers >

server_name > [Container Settings] Container Services > Compensation Service.

2. Select the Enable service at server startup check box.

Chapter 33. Administering web services - Transaction support (WS-Transaction) 3595



3. If required, modify the compensation handler retry interval and limit. These values control the
frequency with which the compensation handler compensate and close methods are retried, when
either throw a RetryCompensationHandlerException exception, and the number of times that these
methods are retried.

4. Save your changes to the master configuration.

5. Repeat the previous steps for each server that you plan to use.

6. Restart all the servers for the changes to take effect.

Results

The business activity support is enabled for the application server. Verify a successful enablement by
checking for the message, CWSCP0005I: The Compensation service started successfully. in the
SystemOut.log file for the relevant server.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

What to do next

Deploy the business-activity-enabled application to the server.

3596 Administering WebSphere applications



Chapter 34. Administering web services - Transports

Transport chains represent a network protocol stack that is used for I/O operations within an application
server environment. Transport chains are part of the channel framework function that provides a common
networking service for all components.

Invoking JAX-WS web services asynchronously using the HTTP
transport

Using the JAX-WS asynchronous response servlet
Java API for XML-Based Web Services (JAX-WS) includes an asynchronous response servlet, which is
used within the application server environment to receive responses for JAX-WS requests that are invoked
asynchronously.

Before you begin

JAX-WS provides support for invoking web services using an asynchronous client invocation by using
either a callback or polling model. Both the callback model and the polling model are available on the
Dispatch client and the dynamic proxy client. When a JAX-WS client that is running within the application
server environment uses an asynchronous client invocation, the responses are received by the
asynchronous response servlet. To learn how to use the asynchronous client invocation model, read about
invoking JAX-WS web services asynchronously.

About this task

The asynchronous response servlet is used within an application server to handle incoming asynchronous
responses. The servlet uses the same secure and unsecure HTTP ports assigned to the application
server. The servlet starts automatically when the application server starts. Because the asynchronous
response servlet does not perform role-based authorization checks, only user authentication checks are
performed.

The asynchronous response servlet supports both the HTTP and HTTPS protocols. Since the servlet
inherits the SSL configuration of the application server, configuring the application server also configures
the servlet. The asynchronous response servlet is not affected by the custom HTTP and SSL port
properties used by the asynchronous response listener and only runs on the application ports for the
application server.

Procedure
1. Determine if you want the JAX-WS client to use the HTTP or HTTPS transport mechanism.

2. Configure the web container transport chains to modify the SSL configuration of the application server.
The servlet inherits these settings. Read about configuring transport chains to learn how to configure
the web container transport chains.

Results

The asynchronous response servlet is configured to enable your JAX-WS clients to receive asynchronous
responses on the HTTP or HTTPS transport protocol.

Note: When you add a new application server to your environment, the asynchronous response servlet is
automatically restarted so the deployment.xml file can be updated for the new application server. If
your application receives an incoming response when the asynchronous response servlet is
restarting, the incoming response might fail with an HTTP 404 error.

© IBM Corporation 2009 3597



Note: JAX-WS services do not successfully return asynchronous responses to clients that are installed in
application security-enabled WebSphere Application Servers. Because the Asynchronous Response
Servlet for WebSphere Application Server, which handles asynchronous web services responses, is
protected when application security is enabled, you must supply a credential together with the
JAX-WS service incoming response. Attach the HTTPTransport policy set binding to the JAX-WS
service in the service attachment. Additionally, enter a valid basic authentication user ID and
password, which are defined in the user registry of the client, into the Basic authentication for
outbound asynchronous service responses field.

Using the JAX-WS asynchronous response listener
Java API for XML-Based Web Services (JAX-WS) includes an asynchronous response listener, which is
used within the Thin Client for JAX-WS and application client environments to receive responses for
requests that are invoked asynchronously.

Before you begin

JAX-WS provides support for invoking web services using an asynchronous client invocation by using
either a callback or polling model. Both the callback model and the polling model are available on the
Dispatch client and the dynamic proxy client. When the JAX-WS client uses an asynchronous client
invocation, the responses are received by the asynchronous response listener. To learn how to use the
asynchronous client invocation model, read about invoking JAX-WS web services asynchronously.

About this task

The asynchronous response listener is used within a Web services client to handle incoming
asynchronous responses. You can use the listener in Thin Client for JAX-WS environments and application
client environments. By default, the listener opens a random port to listen for asynchronous responses or
you can optionally configure a specific port for the listener to use. The listener starts automatically in the
JAX-WS run time when the JAX-WS client is configured to expect an asynchronous response.

There are two versions of the asynchronous response listener. The unsecure version of the asynchronous
response listener supports the HTTP protocol, and the secure version of the asynchronous response
listener supports the HTTPS protocol. The correct asynchronous response listener is automatically started
based on the particular transport used by the JAX-WS client. To ensure that the correct Secure Sockets
Layer (SSL) handshaking occurs between the asynchronous response listener and the application server,
configure the SSL properties using the SSL transport policy or the Java system properties.

For web services clients running in the application server environment, use the asynchronous response
servlet for receiving asynchronous responses.

Procedure
1. Determine if you want the JAX-WS client to use the HTTP or HTTPS transport mechanism.

2. Configure the asynchronous response listener for unsecure communication using HTTP.

You can configure the HTTP port for the asynchronous response listener as a Java system property or
as a custom property within the transport policy. Properties that are defined in the policy set binding
files override any Java system property that might have been defined.

a. Define the com.ibm.websphere.webservices.http.listenerPort property as a Java system
property. If this property is set as a Java system property, then all asynchronous response listeners
within that Java Virtual Machine (JVM) are affected.

b. Define the com.ibm.websphere.webservices.http.listenerPort property within the HTTPTransport
transport policy set bindings files. If this property is set as a custom property within a transport
policy set binding, then only the services for which the policy set has been configured are affected.

3. Configure the asynchronous response listener for secure communication using HTTPS.

3598 Administering WebSphere applications



You can configure the HTTPS port for the asynchronous response listener as a Java system property
or as a custom property within the transport policy.

a. Define the com.ibm.websphere.webservices.https.listenerPort property as a Java system
property. If this property is set as a Java system property, thenall asynchronous response listeners
within that JVM are affected.

b. Define the com.ibm.websphere.webservices.https.listenerPort property within the SSLTransport
transport policy set bindings files. If this property is set as a custom property within a transport
policy set binding, then only the services for which the policy set has been configured are affected.

Results

Your JAX-WS web services client is configured to use the asynchronous response listener to receive
incoming asynchronous responses.

Example

The following examples demonstrate how to enable the asynchronous response listener when defining the
custom port of 9999:

v Use the following Java command to configure the custom HTTP port for the asynchronous response
listener in a thin client environment:
- java.exe -Dcom.ibm.websphere.webservices.http.listenerPort=9999 com.ibm.websphere.my_program

v Use the following launchClient command to configure the custom HTTP port for the asynchronous
response listener in an application client container:
- launchClient.bat MyClient.ear -CCDcom.ibm.websphere.webservices.http.listenerPort=9999

v The following is an excerpt from an HTTPTransport policy binding.xml file that includes the
asynchronous response listener properties:

</wsp:Policy>
</wsp:ExactlyOne>

</wsp:All>
<wshttp:outAsyncResponseProxy>
<wshttp:connectInfo host="" port=""></wshttp:connectInfo>

<wshttp:basicAuth userid="" password=""></wshttp:basicAuth>
</wshttp:outAsyncResponseProxy>
<wshttp:properties>

<wshttp:customProperty name="com.ibm.websphere.webservices.http.listenerPort" value="9999" />
</wshttp:properties>

</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>

What to do next

Run the JAX-WS client with the specified asynchronous response listener options.

Invoking JAX-WS web services asynchronously using the SOAP over
JMS transport

Using the JAX-WS JMS asynchronous response message listener
Java API for XML-Based Web Services (JAX-WS) includes a Java Message Service (JMS) asynchronous
response message listener, which is used to receive responses to asynchronous JAX-WS requests that
use the JMS transport. The JMS asynchronous response message listener is used in the application
server and application client environments.

Before you begin

JAX-WS provides support for invoking web service operations asynchronously by using either a callback or
a polling model. When the JAX-WS client uses the JMS transport to invoke asynchronous operations, the

Chapter 34. Administering web services - Transports 3599



responses are received by the asynchronous response message listener. To learn how to use the JAX-WS
asynchronous client invocation model, read about invoking JAX-WS web services asynchronously.

About this task

The JMS asynchronous response message listener is used within the web services client environment to
receive incoming asynchronous responses when the client application is using the JMS Transport. The
listener requires a connection factory and a queue to function correctly. Begin by configuring the
connection factory and queue, and then specify the JNDI names of the connection factory and queue to
the listener by setting Java system properties. The environment in which the client is running determines
how the system properties are set.

The JMS asynchronous response message listener is started automatically by the web services client
runtime environment when the client invokes the first asynchronous JAX-WS operation using the JMS
transport.

The connection factory and the queue configured with the asynchronous response message listener is
used for all requests that are invoked within a particular Java process such as for the application server or
an application client container. You can share the connection factory among different Java processes.
However, you cannot share a queue among Java processes.

Procedure
1. Determine if you want the JAX-WS client to use the JMS transport mechanism.

2. For each Java process that will use JMS as a transport for asynchronous JAX-WS requests, configure
the connection factory and queue that are used by the JMS asynchronous response listener for that
process. You can share a connection factory among multiple Java processes, but you cannot share a
queue among Java processes.

3. For each Java process, set the com.ibm.websphere.webservices.jms.AsyncReplyQueueName and
com.ibm.websphere.webservices.jms.AsyncReplyCFName Java system properties to specify the JNDI
names of the queue and connection factory that are used by the JMS asynchronous response
message listener for that process.

If the JNDI name of the queue is the default value, jms/DefaultAsyncReplyQueue, then you do not
need to set the AsyncReplyQueueName property. Likewise, if the JNDI name of the connection factory
is the default value, jms/DefaultAsyncReplyCF, then you do not need to set the AsyncReplyCFName
property as well.

If your client runs within the application server environment, then set the properties as application
server system properties by using the administrative console or the wsadmin command.

If your client runs within the application client container environment, then you should set the
properties by using the –CCD option on the launchClient command line.

Results

Your JAX-WS web services client is configured to use the JMS asynchronous response message listener
to receive asynchronous response messages when using the JMS transport.

Example

Suppose that you have a JAX-WS web services client that runs in the application client container
environment and uses the JMS transport to communicate with the server. Suppose also that the client
invokes asynchronous JAX-WS operations. You can create a connection factory with the JNDI name,
jms/MyAppCF, and a queue with the JNDI name, jms/MyAppAsyncReplyQueue. When you invoke the client
with the launchClient command, specify the JNDI names of the queue and connection factory as
illustrated in the following command:

3600 Administering WebSphere applications



launchClient MyAppClient.ear \
-CCDcom.ibm.websphere.webservices.jms.AsyncReplyQueueName=jms/MyAppReplyQueue \
-CCDcom.ibm.websphere.webservices.jms.AsyncReplyCFName=jms/MyAppCF \
<application arguments>

Chapter 34. Administering web services - Transports 3601



3602 Administering WebSphere applications



Chapter 35. Administering web services - UDDI registry

The Universal Description, Discovery, and Integration (UDDI) specification defines a way to publish and
discover information about web services. The UDDI specification defines a standard for the visibility,
reusability, and manageability that are essential for a service-oriented architecture (SOA) registry service.
The UDDI registry is a directory for web services that is implemented using the UDDI specification. It is a
component of WebSphere® Application Server.

Web services are self-contained, modular applications that can be described, published, located, and
invoked over a network. They implement a services oriented architecture (SOA), which supports the
connecting or sharing of resources and data in a very flexible and standardized manner. Services are
described and organized to support their dynamic, automated discovery and reuse.

Administering the UDDI registry
You can set up and deploy a UDDI registry, then remove, reinstall, or apply an upgrade to a UDDI registry.
You can configure SOAP API and GUI services for the UDDI registry. You can use the administrative
console or the Java Management Extensions (JMX) management interface to manage UDDI registries.

Procedure
v Set up and deploy a new UDDI registry

v Remove a UDDI registry node

v Reinstall the UDDI registry application

v Apply an upgrade to the UDDI registry

v Configure SOAP API and GUI services for the UDDI registry

v Manage the UDDI registry

Setting up and deploying a new UDDI registry
A UDDI registry node consists of the UDDI registry application (an enterprise application that is supplied
as part of WebSphere Application Server), a store of data (using a relational database management
system) referred to as the UDDI database, and a means to connect the application to the data (a data
source and related elements). To set up a new UDDI registry, you create the UDDI database and data
source, and deploy the supplied application.

Before you begin

Start WebSphere Application Server, and create a server to host the UDDI registry. Use the starting and
stopping quick reference information for information about starting WebSphere Application Server using
either commands or the administrative console.

About this task

The subtopics describe how to create the UDDI database (which can be local or remote) and data source,
and how to deploy the UDDI registry application.

You can create either a default UDDI node or a customized UDDI node. The main difference between the
two nodes is the number of mandatory UDDI registry properties, such as the UDDI node ID and
description, and the prefix to use for generated discovery URLs.

Default UDDI node
The mandatory properties are automatically set to default values and you cannot change them. A
default UDDI node is a suitable option for initial evaluation of the UDDI registry, and for
development and test purposes.

© Copyright IBM Corp. 2012 3603



Customized UDDI node
You must set the mandatory properties. After these properties are set, you cannot change them for
this configuration. With a customized UDDI node, you have more control over the database
management system that is used for the UDDI database, and the properties that are used to set
up the UDDI database. With a customized UDDI node, you create the UDDI database and data
source to your own specifications before deploying the UDDI registry application. A customized
node is a suitable option for production purposes. To move from a default UDDI node to a
customized UDDI node, see “Changing the UDDI registry application environment after
deployment” on page 3627.

Procedure
v To set up a UDDI registry quickly for test or development purposes, follow the instructions in “Setting up

a default UDDI node with a default data source.” The database, data source, and UDDI registry
application are created or deployed by a single script. The database type is embedded Apache Derby.

v To create a default UDDI registry with a database other than embedded Apache Derby, or to use an
embedded Apache Derby database but create the data source manually, follow the instructions in
“Setting up a default UDDI node” on page 3605.

v To create a customized UDDI registry, follow the instructions in “Setting up a customized UDDI node” on
page 3615.

Setting up a default UDDI node with a default data source
You can create a UDDI node with predetermined property values and an embedded Apache Derby
database. You can do this to set up a UDDI registry quickly for test or development purposes.

About this task

When you set up a default UDDI node with a default data source, the mandatory node properties, such as
node ID, are set automatically and you cannot change them. You run a single script to create the UDDI
database and data source, and to deploy the UDDI registry application. This type of node is suitable for
initial evaluation of the UDDI registry and for development and test purposes.

If you want to create a default UDDI node with an embedded Apache Derby database but a different data
source, or with a different database, see “Setting up a default UDDI node” on page 3605.

If you want to set up a UDDI node with your own properties, including the mandatory node properties, you
must set up a customized node. See “Setting up a customized UDDI node” on page 3615.

Procedure
1. Create the UDDI node by running the wsadmin script uddiDeploy.jacl from the app_server_root/bin

directory.

Use the following syntax:
wsadmin [-conntype none] [-profileName profile_name]

-wsadmin_classpath app_server_root/derby/lib
-f uddiDeploy.jacl
node_name
server_name
default

where:

v -profileName profile_name is optional, and is the name of the profile in which the UDDI application
is deployed. If you do not specify a profile, the default profile is used.

v -conntype none is optional, and is needed only if the application server is not running.

v app_server_root is the directory name of the WebSphere Application Server installation location.

3604 Administering WebSphere applications



v node_name is the name of the WebSphere node on which the target server runs. Note that the node
name is case sensitive.

v server_name is the name of the target server that deploys the UDDI registry, for example, server1.
The server name is case sensitive.

v default creates a UDDI node with default policies in an Apache Derby database and data source.
This option is specific to the Apache Derby database only and creates everything required to run a
UDDI node.

If the Apache Derby database already exists, you are asked if you want to re-create it. If you choose
to re-create the database, the existing database is deleted and a new one is created in its place. If
you choose not to re-create the database, the command exits and a new database is not created.

Note: If the application server has already accessed the existing Apache Derby database, the
uddiDeploy.jacl script cannot re-create the database. Use the uddiRemove.jacl script to
remove the database, as described in the topic about removing a UDDI registry node, restart
the server, and run the uddiDeploy.jacl script again.

For example, to create a UDDI node named MyNode on a server named server1 when server1 is
started, you might enter the following command. Enter the command on a single line.

wsadmin -profileName myProfile -wsadmin_classpath /QIBM/ProdData/WebSphere/
AppServer/was_version/Base/derby/lib -f uddiDeploy.jacl MyNode server1 default

To create a UDDI node named MyNode on a server named server1 when server1 is not started, you
might enter the following command. Enter the command on a single line.

wsadmin -conntype none -profileName myProfile -wsadmin_classpath /QIBM/ProdData/
WebSphere/AppServer/was_version/Base/derby/lib -f uddiDeploy.jacl MyNode server1 default

2. Click Applications > Application Types > WebSphere enterprise applications to display the
installed applications. Start the UDDI registry application by selecting the check box next to the
application name and clicking Start. Alternatively, if the application server is not already running, start
the application server. This action automatically starts the UDDI registry application. The UDDI node is
now active.

If you restart the UDDI application or the application server, the UDDI node always reactivates, even if
the node was previously deactivated.

3. Click UDDI > UDDI Nodes > UDDI_node_id to display the properties page for the UDDI registry node.
Set Prefix for generated discoveryURLs to a valid URL for your configuration. This property specifies
the URL prefix that is applied to generated discovery URLs that are used by the HTTP GET service for
UDDI Version 2.

What to do next

Follow the instructions in “Using the UDDI registry installation verification test (IVT)” on page 3626 to verify
that you have successfully set up the UDDI node.

Setting up a default UDDI node
You can create a UDDI node with predetermined property values. This UDDI node is suitable for initial
evaluation of the UDDI registry and for development and test purposes.

About this task

When you set up a default UDDI node, the mandatory node properties, such as node ID, are set
automatically and you cannot change them. You can create a default UDDI node with an embedded
Apache Derby database but a different data source, or with a database other than Apache Derby.

If you want to set up a UDDI node with your own properties, including the mandatory node properties, you
must set up a customized node. See “Setting up a customized UDDI node” on page 3615.

Chapter 35. Administering web services - UDDI registry 3605



Procedure
1. Create a database schema to hold the UDDI registry by completing one of the following tasks,

ensuring that you use the default node options where specified:

v “Creating a DB2 distributed database for the UDDI registry”

v “Creating a DB2 for i database for the UDDI registry” on page 3608

v “Creating an Apache Derby database for the UDDI registry” on page 3609

v “Creating an Oracle database for the UDDI registry” on page 3610

2. Set up a data source for the UDDI registry application to use to access the database, as described in
“Creating a data source for the UDDI registry” on page 3611.

3. Deploy the UDDI registry application, as described in “Deploying the UDDI registry application” on
page 3614.

4. Click Applications > Application Types > WebSphere enterprise applications to display the
installed applications. Start the UDDI registry application by selecting the check box next to the
application name and clicking Start. Alternatively, if the application server is not already running, start
the application server. This action automatically starts the UDDI registry application. The UDDI node is
now active.

If you restart the UDDI application or the application server, the UDDI node always reactivates, even if
the node was previously deactivated.

5. Click UDDI > UDDI Nodes > UDDI_node_id to display the properties page for the UDDI registry node.
Set Prefix for generated discoveryURLs to a valid URL for your configuration. This property specifies
the URL prefix that is applied to generated discovery URLs that are used by the HTTP GET service for
UDDI Version 2.

What to do next

Because you chose to use a default UDDI node, the node is initialized when the UDDI application is
started for the first time. Follow the instructions in “Using the UDDI registry installation verification test
(IVT)” on page 3626 to verify that you have successfully set up the UDDI node.

Creating a DB2 distributed database for the UDDI registry:

Complete this task if you want to use DB2 on the Windows, Linux, or UNIX operating systems as the
database store for your UDDI registry data.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for
these variables. The variables, and suggested values, are:

DataBaseName
The name of the UDDI registry database. A suggested value is UDDI30. The UDDI information
uses the suggested name of UDDI30, so if you use a different name, remember to substitute it
when you see UDDI30 in the UDDI information.

DB2UserID
A DB2 user ID with administrative privileges.

DB2Password
The password for the DB2 user ID.

BufferPoolName
The name of a buffer pool for the UDDI registry database to use. A suggested value is uddibp, but
you can use any name because the buffer pool is created as part of this task.

TableSpaceName
The name of a table space. A suggested value is uddits, but you can use any name.

3606 Administering WebSphere applications



TempTableSpaceName
The name of a temporary table space. A suggested value is udditstemp, but you can use any
name because the temporary table space is created as part of this task.

If you want to create a remote database, refer first to the database product documentation about the
relevant capabilities of the product.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

Procedure

1. Change the directory to app_server_root/UDDIReg/databaseScripts.

2. Start the DB2 Command Line Processor. Enter the following command at the command prompt:

db2

3. Set up the DB2 environment variables. Enter the following command:
set DB2CODEPAGE=1208

4. Create the DB2 database. Enter the following command:
create database DataBaseName using codeset UTF-8 territory en

5. Configure the DB2 database. Enter the following commands:
a.

connect to DataBaseName user DB2UserID using DB2Password

b.
update db cfg for DataBaseName using applheapsz 2048

c.
update db cfg for DataBaseName using logfilsiz 8192

d.
connect reset

e.
terminate

f.
force application all

g.
terminate

h.
stop

i.
start

6. Restart the DB2 Command Line Processor. For all operating systems except Windows, enter the
following command at the command prompt:
db2

7. Create further database structures. Enter the following commands:
a.

connect to DataBaseName user DB2UserID using DB2Password

b.
create regular tablespace uddits pagesize 32K managed by system using
(’TableSpaceName’) extentsize 64 prefetchsize 32 bufferpool BufferPoolName

c.
create system temporary tablespace TempTableSpacename pagesize 32K managed by
system using (’TempTableSpacename’) extentsize 32 overhead 14.06
prefetchsize 32 transferrate 0.33 bufferpool BufferPoolName

8. Define the database structures that are needed to store the UDDI data.

Exit the DB2 Command Line Processor and enter the following commands exactly as
shown. Note that one step uses -vf rather than -tvf.

Chapter 35. Administering web services - UDDI registry 3607



a.
db2 -tvf uddi30crt_10_prereq_db2.sql

b.
db2 -tvf uddi30crt_20_tables_generic.sql

c.
db2 -tvf uddi30crt_25_tables_db2udb.sql

d.
db2 -tvf uddi30crt_30_constraints_generic.sql

e.
db2 -tvf uddi30crt_35_constraints_db2udb.sql

f.
db2 -tvf uddi30crt_40_views_generic.sql

g.
db2 -tvf uddi30crt_45_views_db2udb.sql

h.
db2 -vf uddi30crt_50_triggers_db2udb.sql

i.
db2 -tvf uddi30crt_60_insert_initial_static_data.sql

9. Optional: To use the database as a default UDDI node, enter the following command:
db2 -tvf uddi30crt_70_insert_default_database_indicator.sql

10. Issue the following commands:
connect reset
terminate

11. Issue the following commands:
connect reset
terminate

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 for i database for the UDDI registry:

Complete this task if you want to use DB2 for i as the database store for your UDDI registry data.

Before you begin

The default names of the UDDI registry schema in the SQL scripts listed in the following topic are
IBMUDI30 and IBMUDS30. These names are the recommended values and are assumed throughout the
UDDI information. To use different names, modify the SQL files listed, then substitute the new names
when IBMUDI30 and IBMUDS30 are used in the information center.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

Procedure

1. Use IBM Navigator for i to run SQL scripts.

a. Open IBM Navigator for i.

b. Expand My Connections > iSeriesName > Databases.

c. Select iSeriesName.

d. Right-click Run SQL Scripts....

A Run SQL Scripts window opens.

2. Open the IBM i DB2 SQL files.

3608 Administering WebSphere applications



a. Map a network drive to the root directory of your IBM i server integrated file system.

b. In Windows Explorer, expand the WAS_HOME/UDDIReg/databaseScripts directory.

c. Open the following SQL files with a text editor (for example, Windows Notepad):

v uddi30crt_10_prereq_db2_iSeries.sql

v uddi30crt_20_tables_generic_iSeries.sql

v uddi30crt_25_tables_db2udb_iSeries.sql

v uddi30crt_30_constraints_generic_iSeries.sql

v uddi30crt_35_constraints_db2udb_iSeries.sql

v uddi30crt_40_views_generic_iSeries.sql

v uddi30crt_45_views_db2udb_iSeries.sql

v uddi30crt_50_triggers_db2udb_iSeries.sql

v uddi30crt_60_insert_initial_static_data_iSeries.sql

3. Copy the text to the Run SQL Scripts window.

a. In the text editor of the file uddi30crt_10_prereq_db2_iSeries.sql, click Edit > Select All.

b. Click Edit > Copy.

c. In the Run SQL Scripts window, click Edit > Paste.

d. Click Run > All.

e. After the script completes running, select all the SQL text and delete it from the Run SQL Scripts
window.

f. Repeat the previous steps for all the SQL scripts listed in step 2.

4. Optional: If you want to use the database as a default UDDI node, complete the following steps:

a. Open uddi30crt_70_insert_default_database_indicator.sql as described in step 2.

b. Copy and run uddi30crt_70_insert_default_database_indicator.sql as described in step 3.

What to do next

Continue to set up and deploy your UDDI registry node.

Creating an Apache Derby database for the UDDI registry:

Complete this task to use an Apache Derby database as the database store for your UDDI registry. You
can use an embedded or network Apache Derby database, and the database store can be local or remote.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for
these variables. The variables, and suggested values, are:

arg1 The path of the SQL files. On a standard installation, the path is app_server_root/UDDIReg/
databasescripts.

arg2 The path to the location where you want to install the Apache Derby database.

For example, profile_root/databases/com.ibm.uddi.

arg3 The name of the Apache Derby database. A recommended value is UDDI30, and this name is
assumed throughout the UDDI information. If you use another name, substitute that name when
UDDI30 is used in the UDDI information.

arg4 An optional argument. Either use the value DEFAULT, or omit this argument. Specify DEFAULT to
use the database as a default UDDI node. This argument is case sensitive.

Chapter 35. Administering web services - UDDI registry 3609



If you want to create a remote database, refer first to the database product documentation about the
relevant capabilities of the product.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

Procedure

1. Start a Qshell session. Enter the STRQSH command from the IBM i command line.

2. Create a UDDI Apache Derby database by using UDDIDerbyCreate.jar. Run the following Java -jar
command from the app_server_root/UDDIReg/databaseScripts directory.

java -Djava.ext.dirs=app_server_root/derby/lib:app_server_root/java/jre/lib/ext -jar UDDIDerbyCreate.jar
arg1 arg2 arg3 arg4

If the Apache Derby database already exists, you are asked if you want to re-create it. If you choose to
re-create the database, the existing database is deleted and a new one is created in its place. If you
choose not to re-create the database, the command exits and a new database is not created.

Note: If the application server has already accessed the existing Apache Derby database, the
uddiDeploy.jacl script cannot re-create the database. Use the uddiRemove.jacl script to remove
the database, as described in the topic about removing a UDDI registry node, restart the server,
and run the uddiDeploy.jacl script again.

3. If you are using a remote database, which requires network Apache Derby, or if you want to use
network Apache Derby for other reasons, for example, to use Apache Derby with a cluster, configure
the Apache Derby Network Server framework. For details, see the section about managing the Derby
Network Server in the Derby Server and Administration Guide.

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating an Oracle database for the UDDI registry:

Complete this task if you want to use Oracle as the database store for your UDDI registry data.

Before you begin

This task creates three new schemas: ibmuddi, ibmudi30 and ibmuds30. You cannot complete this task if
schemas with these names exist already.

The following steps use a number of variables. Before you start, decide appropriate values to use for
these variables. The variables, and suggested values, are:

OracleUserID
The Oracle user ID to use to create the database.

OraclePassword
The password for the Oracle user ID.

The Oracle database must be a remote database; you cannot create a local database. Refer
first to the database product documentation about the relevant capabilities of the product.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

3610 Administering WebSphere applications



The supported versions of Oracle are Version 9i and Version 10g. Each version has the following
restrictions:

Table 334. UDDI restrictions and Oracle versions. The table lists the Version 9i and Version 10g restrictions for
different UDDI parameters.

Version 9i restrictions Version 10g restrictions

discoveryURL (Business) maximum 4000 bytes UDDI specification 4096
characters

maximum 4000 bytes UDDI specification 4096
characters

accessPoint
(bindingTemplate)

maximum 4000 bytes UDDI specification 4096
characters

maximum 4000 bytes UDDI specification 4096
characters

instanceParms
(tModelInstanceInfo)

maximum 4000 bytes UDDI specification 8192
characters

overviewURL
(tModelInstanceInfo)

maximum 4000 bytes UDDI specification 4096
characters

Digital Signature maximum 4000 bytes

Procedure

1. Run the following commands:
a.

sqlplus OracleUserID/OraclePassword @ uddi30crt_10_prereq_oracle.sql

b.
sqlplus OracleUserID/OraclePassword @ uddi30crt_20_tables_generic.sql

2. Run one of the following commands, depending on the version of Oracle.

v For Oracle Version 9i:
sqlplus OracleUserID/OraclePassword @ uddi30crt_25_tables_oracle_pre10g.sql

v For Oracle Version 10g and later:
sqlplus OracleUserID/OraclePassword @ uddi30crt_25_tables_oracle.sql

3. Run the following commands:
a.

sqlplus OracleUserID/OraclePassword @ uddi30crt_30_constraints_generic.sql

b.
sqlplus OracleUserID/OraclePassword @ uddi30crt_35_constraints_oracle.sql

c.
sqlplus OracleUserID/OraclePassword @ uddi30crt_40_views_generic.sql

d.
sqlplus OracleUserID/OraclePassword @ uddi30crt_45_views_oracle.sql

e.
sqlplus OracleUserID/OraclePassword @ uddi30crt_50_triggers_oracle.sql

f.
sqlplus OracleUserID/OraclePassword @ uddi30crt_60_insert_initial_static_data.sql

4. Optional: To use the database as a default UDDI node, run the following command:
sqlplus OracleUserID/OraclePassword @ uddi30crt_70_insert_default_database_indicator.sql

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating a data source for the UDDI registry:

You create a data source so that the UDDI registry can use it to access the UDDI database.

Before you begin

You must have already created the database for the UDDI registry.

Chapter 35. Administering web services - UDDI registry 3611



About this task

Complete this task as part of setting up and deploying a new UDDI registry. The UDDI registry uses the
data source to access the UDDI database.

Procedure

1. Optional: For network Apache Derby, create a Java 2 Connector (J2C) authentication data entry. This
step is not required for embedded Apache Derby.

a. Click Security > Global security > [Authentication] Java Authentication and Authorization
Service > J2C authentication data.

b. Click New to create a new J2C authentication data entry.

c. Enter the following details:

Alias A suitable short name, for example UDDIAlias.

Userid

The database user ID, for example db2admin for DB2, or IBMUDDI for Oracle,
which is used to read and write to the UDDI registry database. For network Apache Derby,
the user ID can be any value.

Password
The password that is associated with the user ID specified previously. For network Apache
Derby, the password can be any value.

Description
A description of the user ID.

Click Apply, then save the changes to the master configuration.

2. Create a JDBC provider, if a suitable one does not already exist, by using the following table to
determine the provider type and implementation type for your chosen database.

Table 335. Provider types and implementation types. The table lists the correct provider type and implementation
type for each database.

Database Provider type Implementation type

DB2 DB2 UDB for iSeries (Native) Connection pool data source

Oracle Oracle JDBC Driver Connection pool data source

Embedded Apache Derby Derby JDBC Driver Connection pool data source

Network Apache Derby Derby Network Server JDBC Driver
provider

Connection pool data source

Microsoft SQL Server DataDirect Connect JDBC Driver

Microsoft SQL Server JDBC Driver

Connection pool data source

For details about how to create a JDBC provider, see the topic about configuring a JDBC provider by
using the administrative console.

3. Create the data source for the UDDI registry:

a. Click Resources > JDBC > JDBC Providers.

b. Select the scope of the JDBC provider that you selected or created earlier, that is, the level at
which the JDBC provider is defined. For example, for a JDBC provider that is defined at the level
of server1, select the following:

Node=Node01, Server=server1

All the JDBC providers that are defined at the selected scope are displayed.

c. Select the JDBC provider that you created earlier.

d. Under Additional Properties, select Data sources. Do not select the Data sources (WebSphere
Application Server V4) option.

3612 Administering WebSphere applications



e. Click New to create a new data source.

f. In the Create a data source wizard, enter the following data:

Name A suitable name, for example UDDI Datasource.

JNDI name
Enter datasources/uddids. This is a mandatory field.

You must not have any other data sources that use this Java Naming and Directory
Interface (JNDI) name. If another data source uses this JNDI name, you must either
remove it or change its JNDI name. For example, if you created a default UDDI node
previously that uses an Apache Derby database, before you continue, use the
uddiRemove.jacl script with the default option to remove the data source and the UDDI
application instance.

Component-managed authentication alias

v For DB2, Oracle, or network Apache Derby, select the alias that you created in step 2.
The alias is prefixed by the node name, for example MyNode/UDDIAlias.

v For embedded Apache Derby, select (none).

g. Click Next.

h. On the database-specific properties page of the wizard, enter the following data:

v For DB2:

Database name
The name of the database, for example *LOCAL.

v For Oracle:

URL The Uniform Resource Locator (URL) of the database from which the datasource
obtains connections, for example jdbc:oracle:oci8:@Oracle_database_name.

v For Apache Derby (embedded or network):

Database name
The name of the database, for example:

profile_root/databases/com.ibm.uddi/UDDI30

For network Apache Derby, ensure that the Server name and Port number values match the
network server.

Leave all other fields unchanged.

Use this Data Source in container-managed persistence (CMP)
Ensure that the check box is cleared.

i. Click Next, then check the summary and click Finish.

j. Click the data source to display its properties, and add the following information:

Description
A description of the data source.

Category
Enter uddi.

Data store helper class name
This value is provided automatically:

Table 336. Data store helper class names

Database Data store helper class name

DB2 com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Oracle
11g

com.ibm.websphere.rsadapter.Oracle11gDataStoreHelper

Chapter 35. Administering web services - UDDI registry 3613



Table 336. Data store helper class names (continued)

Database Data store helper class name

Embedded Apache
Derby

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

Network Apache Derby com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

Mapping-configuration alias
Select DefaultPrincipalMapping.

k. Click Apply.

l. Select Additional Properties > Custom Properties > libraries.

m. Enter IBMUDI30,IBMUDS30 in the Value field and click OK.

n. Save the changes to the master configuration.

4. Test the connection to your UDDI database by selecting the check box next to the data source and
clicking Test connection. A message similar to Test Connection for datasource UDDI Datasource on
server server1 at node Node01 was successful is displayed. If a different message is displayed, use
the information in that message to investigate and resolve the problem.

What to do next

Continue with setting up and deploying your UDDI registry node.

Deploying the UDDI registry application:

You deploy a UDDI registry application as part of setting up a UDDI node. You can use a supplied script,
the administrative console, or wsadmin scripting commands.

Before you begin

Before you deploy a UDDI registry application, you must create the database and data source for the
UDDI registry.

About this task

Use this task as part of setting up a default UDDI node or setting up a customized UDDI node. You can
deploy a UDDI registry application in two ways:

v You can use a script that performs all the necessary steps.

This script deploys the UDDI registry to a server that you specify.

v You can use the administrative console. You deploy the UDDI registry application, the uddi.ear file,
then complete additional steps, as described later in this topic. Alternatively, you can follow the same
procedure using wsadmin scripting commands.

Procedure

1. Optional: To deploy a UDDI registry application using the supplied script:

a. Start a Qshell session by entering the STRQSH command from the IBM i command
line.

b. Run the uddiDeploy.jacl wsadmin script as shown, from the app_server_root/bin directory.

wsadmin [-conntype none] [-profileName profile_name] -f uddiDeploy.jacl
node_name server_name

The attributes of the command are as follows:

v -conntype none is optional, and is needed only if the application server is not running.

3614 Administering WebSphere applications



v -profileName profile_name is optional, and is the name of the profile in which the UDDI
application is deployed. If you do not specify a profile, the default profile is used.

v node_name is the name of the WebSphere Application Server node on which the target server
runs. The node name is case sensitive.

v server_name is the name of the target server on which you want to deploy the UDDI registry, for
example, server1. The server name is case sensitive.

For example, to deploy UDDI on the node MyNode and the server server1, assuming
that server1 is already started:

wsadmin -f uddiDeploy.jacl MyNode server1

2. Optional: To deploy a UDDI registry application using the administrative console, use the following
steps.

a. Install the UDDI application (the uddi.ear file) to the server that you require.

b. Click Applications > Application Types > WebSphere enterprise applications >
uddi_application > [Detail Properties] Class loading and update detection.

c. Ensure that Class loader order is set to Classes loaded with local class loader first (parent
last).

d. Ensure that WAR class loader policy is set to Single class loader for application.

e. Click Apply, then save your changes to the master configuration.

What to do next

Continue setting up the UDDI node.

Setting up a customized UDDI node
You can set up a UDDI node with your own properties, including the mandatory node properties. This type
of UDDI node is suitable for production purposes.

About this task

You can set up a customized UDDI node with property values that you choose. After the node is initialized,
you cannot change the mandatory node properties, for example, the node ID.

Procedure
1. Review the information in Databases and production use of the UDDI registry to decide which

database system to use, then create a database schema to hold the UDDI registry by completing one
of the following tasks. Do not use the default node options where specified.

v “Creating a DB2 distributed database for the UDDI registry” on page 3606

v “Creating a DB2 for i database for the UDDI registry” on page 3608

v “Creating an Apache Derby database for the UDDI registry” on page 3609

v “Creating an Oracle database for the UDDI registry” on page 3610

2. Set up a data source for the UDDI registry application to use to access the database, as described in
“Creating a data source for the UDDI registry” on page 3611.

3. Deploy the UDDI registry application, as described in “Deploying the UDDI registry application” on
page 3614.

4. Click Applications > Application Types > WebSphere enterprise applications to display the
installed applications. Start the UDDI registry application by selecting the check box next to the
application name and clicking Start. Alternatively, if the application server is not already running, start
the application server. This action automatically starts the UDDI registry application. The UDDI node is
now active.

If you restart the UDDI application or the application server, the UDDI node always reactivates, even if
the node was previously deactivated.

Chapter 35. Administering web services - UDDI registry 3615



What to do next

Because you chose a user-customized UDDI node, you must set the properties for the UDDI node by
using UDDI administration, and initialize the node, before it is ready to accept UDDI requests. See
“Initializing the UDDI registry node” on page 3624 for details.

Creating a DB2 distributed database for the UDDI registry:

Complete this task if you want to use DB2 on the Windows, Linux, or UNIX operating systems as the
database store for your UDDI registry data.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for
these variables. The variables, and suggested values, are:

DataBaseName
The name of the UDDI registry database. A suggested value is UDDI30. The UDDI information
uses the suggested name of UDDI30, so if you use a different name, remember to substitute it
when you see UDDI30 in the UDDI information.

DB2UserID
A DB2 user ID with administrative privileges.

DB2Password
The password for the DB2 user ID.

BufferPoolName
The name of a buffer pool for the UDDI registry database to use. A suggested value is uddibp, but
you can use any name because the buffer pool is created as part of this task.

TableSpaceName
The name of a table space. A suggested value is uddits, but you can use any name.

TempTableSpaceName
The name of a temporary table space. A suggested value is udditstemp, but you can use any
name because the temporary table space is created as part of this task.

If you want to create a remote database, refer first to the database product documentation about the
relevant capabilities of the product.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

Procedure

1. Change the directory to app_server_root/UDDIReg/databaseScripts.

2. Start the DB2 Command Line Processor. Enter the following command at the command prompt:

db2

3. Set up the DB2 environment variables. Enter the following command:
set DB2CODEPAGE=1208

4. Create the DB2 database. Enter the following command:
create database DataBaseName using codeset UTF-8 territory en

5. Configure the DB2 database. Enter the following commands:
a.

connect to DataBaseName user DB2UserID using DB2Password

3616 Administering WebSphere applications



b.
update db cfg for DataBaseName using applheapsz 2048

c.
update db cfg for DataBaseName using logfilsiz 8192

d.
connect reset

e.
terminate

f.
force application all

g.
terminate

h.
stop

i.
start

6. Restart the DB2 Command Line Processor. For all operating systems except Windows, enter the
following command at the command prompt:
db2

7. Create further database structures. Enter the following commands:
a.

connect to DataBaseName user DB2UserID using DB2Password

b.
create regular tablespace uddits pagesize 32K managed by system using
(’TableSpaceName’) extentsize 64 prefetchsize 32 bufferpool BufferPoolName

c.
create system temporary tablespace TempTableSpacename pagesize 32K managed by
system using (’TempTableSpacename’) extentsize 32 overhead 14.06
prefetchsize 32 transferrate 0.33 bufferpool BufferPoolName

8. Define the database structures that are needed to store the UDDI data.

Exit the DB2 Command Line Processor and enter the following commands exactly as
shown. Note that one step uses -vf rather than -tvf.
a.

db2 -tvf uddi30crt_10_prereq_db2.sql

b.
db2 -tvf uddi30crt_20_tables_generic.sql

c.
db2 -tvf uddi30crt_25_tables_db2udb.sql

d.
db2 -tvf uddi30crt_30_constraints_generic.sql

e.
db2 -tvf uddi30crt_35_constraints_db2udb.sql

f.
db2 -tvf uddi30crt_40_views_generic.sql

g.
db2 -tvf uddi30crt_45_views_db2udb.sql

h.
db2 -vf uddi30crt_50_triggers_db2udb.sql

i.
db2 -tvf uddi30crt_60_insert_initial_static_data.sql

9. Optional: To use the database as a default UDDI node, enter the following command:
db2 -tvf uddi30crt_70_insert_default_database_indicator.sql

10. Issue the following commands:
connect reset
terminate

11. Issue the following commands:
connect reset
terminate

Chapter 35. Administering web services - UDDI registry 3617



What to do next

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 for i database for the UDDI registry:

Complete this task if you want to use DB2 for i as the database store for your UDDI registry data.

Before you begin

The default names of the UDDI registry schema in the SQL scripts listed in the following topic are
IBMUDI30 and IBMUDS30. These names are the recommended values and are assumed throughout the
UDDI information. To use different names, modify the SQL files listed, then substitute the new names
when IBMUDI30 and IBMUDS30 are used in the information center.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

Procedure

1. Use IBM Navigator for i to run SQL scripts.

a. Open IBM Navigator for i.

b. Expand My Connections > iSeriesName > Databases.

c. Select iSeriesName.

d. Right-click Run SQL Scripts....

A Run SQL Scripts window opens.

2. Open the IBM i DB2 SQL files.

a. Map a network drive to the root directory of your IBM i server integrated file system.

b. In Windows Explorer, expand the WAS_HOME/UDDIReg/databaseScripts directory.

c. Open the following SQL files with a text editor (for example, Windows Notepad):

v uddi30crt_10_prereq_db2_iSeries.sql

v uddi30crt_20_tables_generic_iSeries.sql

v uddi30crt_25_tables_db2udb_iSeries.sql

v uddi30crt_30_constraints_generic_iSeries.sql

v uddi30crt_35_constraints_db2udb_iSeries.sql

v uddi30crt_40_views_generic_iSeries.sql

v uddi30crt_45_views_db2udb_iSeries.sql

v uddi30crt_50_triggers_db2udb_iSeries.sql

v uddi30crt_60_insert_initial_static_data_iSeries.sql

3. Copy the text to the Run SQL Scripts window.

a. In the text editor of the file uddi30crt_10_prereq_db2_iSeries.sql, click Edit > Select All.

b. Click Edit > Copy.

c. In the Run SQL Scripts window, click Edit > Paste.

d. Click Run > All.

e. After the script completes running, select all the SQL text and delete it from the Run SQL Scripts
window.

f. Repeat the previous steps for all the SQL scripts listed in step 2.

4. Optional: If you want to use the database as a default UDDI node, complete the following steps:

3618 Administering WebSphere applications



a. Open uddi30crt_70_insert_default_database_indicator.sql as described in step 2.

b. Copy and run uddi30crt_70_insert_default_database_indicator.sql as described in step 3.

What to do next

Continue to set up and deploy your UDDI registry node.

Creating an Apache Derby database for the UDDI registry:

Complete this task to use an Apache Derby database as the database store for your UDDI registry. You
can use an embedded or network Apache Derby database, and the database store can be local or remote.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for
these variables. The variables, and suggested values, are:

arg1 The path of the SQL files. On a standard installation, the path is app_server_root/UDDIReg/
databasescripts.

arg2 The path to the location where you want to install the Apache Derby database.

For example, profile_root/databases/com.ibm.uddi.

arg3 The name of the Apache Derby database. A recommended value is UDDI30, and this name is
assumed throughout the UDDI information. If you use another name, substitute that name when
UDDI30 is used in the UDDI information.

arg4 An optional argument. Either use the value DEFAULT, or omit this argument. Specify DEFAULT to
use the database as a default UDDI node. This argument is case sensitive.

If you want to create a remote database, refer first to the database product documentation about the
relevant capabilities of the product.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

Procedure

1. Start a Qshell session. Enter the STRQSH command from the IBM i command line.

2. Create a UDDI Apache Derby database by using UDDIDerbyCreate.jar. Run the following Java -jar
command from the app_server_root/UDDIReg/databaseScripts directory.

java -Djava.ext.dirs=app_server_root/derby/lib:app_server_root/java/jre/lib/ext -jar UDDIDerbyCreate.jar
arg1 arg2 arg3 arg4

If the Apache Derby database already exists, you are asked if you want to re-create it. If you choose to
re-create the database, the existing database is deleted and a new one is created in its place. If you
choose not to re-create the database, the command exits and a new database is not created.

Note: If the application server has already accessed the existing Apache Derby database, the
uddiDeploy.jacl script cannot re-create the database. Use the uddiRemove.jacl script to remove
the database, as described in the topic about removing a UDDI registry node, restart the server,
and run the uddiDeploy.jacl script again.

3. If you are using a remote database, which requires network Apache Derby, or if you want to use
network Apache Derby for other reasons, for example, to use Apache Derby with a cluster, configure
the Apache Derby Network Server framework. For details, see the section about managing the Derby
Network Server in the Derby Server and Administration Guide.

Chapter 35. Administering web services - UDDI registry 3619



What to do next

Continue with setting up and deploying your UDDI registry node.

Creating an Oracle database for the UDDI registry:

Complete this task if you want to use Oracle as the database store for your UDDI registry data.

Before you begin

This task creates three new schemas: ibmuddi, ibmudi30 and ibmuds30. You cannot complete this task if
schemas with these names exist already.

The following steps use a number of variables. Before you start, decide appropriate values to use for
these variables. The variables, and suggested values, are:

OracleUserID
The Oracle user ID to use to create the database.

OraclePassword
The password for the Oracle user ID.

The Oracle database must be a remote database; you cannot create a local database. Refer
first to the database product documentation about the relevant capabilities of the product.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

The supported versions of Oracle are Version 9i and Version 10g. Each version has the following
restrictions:

Table 337. UDDI restrictions and Oracle versions. The table lists the Version 9i and Version 10g restrictions for
different UDDI parameters.

Version 9i restrictions Version 10g restrictions

discoveryURL (Business) maximum 4000 bytes UDDI specification 4096
characters

maximum 4000 bytes UDDI specification 4096
characters

accessPoint
(bindingTemplate)

maximum 4000 bytes UDDI specification 4096
characters

maximum 4000 bytes UDDI specification 4096
characters

instanceParms
(tModelInstanceInfo)

maximum 4000 bytes UDDI specification 8192
characters

overviewURL
(tModelInstanceInfo)

maximum 4000 bytes UDDI specification 4096
characters

Digital Signature maximum 4000 bytes

Procedure

1. Run the following commands:
a.

sqlplus OracleUserID/OraclePassword @ uddi30crt_10_prereq_oracle.sql

b.
sqlplus OracleUserID/OraclePassword @ uddi30crt_20_tables_generic.sql

2. Run one of the following commands, depending on the version of Oracle.

v For Oracle Version 9i:
sqlplus OracleUserID/OraclePassword @ uddi30crt_25_tables_oracle_pre10g.sql

v For Oracle Version 10g and later:

3620 Administering WebSphere applications



sqlplus OracleUserID/OraclePassword @ uddi30crt_25_tables_oracle.sql

3. Run the following commands:
a.

sqlplus OracleUserID/OraclePassword @ uddi30crt_30_constraints_generic.sql

b.
sqlplus OracleUserID/OraclePassword @ uddi30crt_35_constraints_oracle.sql

c.
sqlplus OracleUserID/OraclePassword @ uddi30crt_40_views_generic.sql

d.
sqlplus OracleUserID/OraclePassword @ uddi30crt_45_views_oracle.sql

e.
sqlplus OracleUserID/OraclePassword @ uddi30crt_50_triggers_oracle.sql

f.
sqlplus OracleUserID/OraclePassword @ uddi30crt_60_insert_initial_static_data.sql

4. Optional: To use the database as a default UDDI node, run the following command:
sqlplus OracleUserID/OraclePassword @ uddi30crt_70_insert_default_database_indicator.sql

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating a data source for the UDDI registry:

You create a data source so that the UDDI registry can use it to access the UDDI database.

Before you begin

You must have already created the database for the UDDI registry.

About this task

Complete this task as part of setting up and deploying a new UDDI registry. The UDDI registry uses the
data source to access the UDDI database.

Procedure

1. Optional: For network Apache Derby, create a Java 2 Connector (J2C) authentication data entry. This
step is not required for embedded Apache Derby.

a. Click Security > Global security > [Authentication] Java Authentication and Authorization
Service > J2C authentication data.

b. Click New to create a new J2C authentication data entry.

c. Enter the following details:

Alias A suitable short name, for example UDDIAlias.

Userid

The database user ID, for example db2admin for DB2, or IBMUDDI for Oracle,
which is used to read and write to the UDDI registry database. For network Apache Derby,
the user ID can be any value.

Password
The password that is associated with the user ID specified previously. For network Apache
Derby, the password can be any value.

Description
A description of the user ID.

Click Apply, then save the changes to the master configuration.

Chapter 35. Administering web services - UDDI registry 3621



2. Create a JDBC provider, if a suitable one does not already exist, by using the following table to
determine the provider type and implementation type for your chosen database.

Table 338. Provider types and implementation types. The table lists the correct provider type and implementation
type for each database.

Database Provider type Implementation type

DB2 DB2 UDB for iSeries (Native) Connection pool data source

Oracle Oracle JDBC Driver Connection pool data source

Embedded Apache Derby Derby JDBC Driver Connection pool data source

Network Apache Derby Derby Network Server JDBC Driver
provider

Connection pool data source

Microsoft SQL Server DataDirect Connect JDBC Driver

Microsoft SQL Server JDBC Driver

Connection pool data source

For details about how to create a JDBC provider, see the topic about configuring a JDBC provider by
using the administrative console.

3. Create the data source for the UDDI registry:

a. Click Resources > JDBC > JDBC Providers.

b. Select the scope of the JDBC provider that you selected or created earlier, that is, the level at
which the JDBC provider is defined. For example, for a JDBC provider that is defined at the level
of server1, select the following:

Node=Node01, Server=server1

All the JDBC providers that are defined at the selected scope are displayed.

c. Select the JDBC provider that you created earlier.

d. Under Additional Properties, select Data sources. Do not select the Data sources (WebSphere
Application Server V4) option.

e. Click New to create a new data source.

f. In the Create a data source wizard, enter the following data:

Name A suitable name, for example UDDI Datasource.

JNDI name
Enter datasources/uddids. This is a mandatory field.

You must not have any other data sources that use this Java Naming and Directory
Interface (JNDI) name. If another data source uses this JNDI name, you must either
remove it or change its JNDI name. For example, if you created a default UDDI node
previously that uses an Apache Derby database, before you continue, use the
uddiRemove.jacl script with the default option to remove the data source and the UDDI
application instance.

Component-managed authentication alias

v For DB2, Oracle, or network Apache Derby, select the alias that you created in step 2.
The alias is prefixed by the node name, for example MyNode/UDDIAlias.

v For embedded Apache Derby, select (none).

g. Click Next.

h. On the database-specific properties page of the wizard, enter the following data:

v For DB2:

Database name
The name of the database, for example *LOCAL.

v For Oracle:

3622 Administering WebSphere applications



URL The Uniform Resource Locator (URL) of the database from which the datasource
obtains connections, for example jdbc:oracle:oci8:@Oracle_database_name.

v For Apache Derby (embedded or network):

Database name
The name of the database, for example:

profile_root/databases/com.ibm.uddi/UDDI30

For network Apache Derby, ensure that the Server name and Port number values match the
network server.

Leave all other fields unchanged.

Use this Data Source in container-managed persistence (CMP)
Ensure that the check box is cleared.

i. Click Next, then check the summary and click Finish.

j. Click the data source to display its properties, and add the following information:

Description
A description of the data source.

Category
Enter uddi.

Data store helper class name
This value is provided automatically:

Table 339. Data store helper class names

Database Data store helper class name

DB2 com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Oracle
11g

com.ibm.websphere.rsadapter.Oracle11gDataStoreHelper

Embedded Apache
Derby

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

Network Apache Derby com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

Mapping-configuration alias
Select DefaultPrincipalMapping.

k. Click Apply.

l. Select Additional Properties > Custom Properties > libraries.

m. Enter IBMUDI30,IBMUDS30 in the Value field and click OK.

n. Save the changes to the master configuration.

4. Test the connection to your UDDI database by selecting the check box next to the data source and
clicking Test connection. A message similar to Test Connection for datasource UDDI Datasource on
server server1 at node Node01 was successful is displayed. If a different message is displayed, use
the information in that message to investigate and resolve the problem.

What to do next

Continue with setting up and deploying your UDDI registry node.

Deploying the UDDI registry application:

You deploy a UDDI registry application as part of setting up a UDDI node. You can use a supplied script,
the administrative console, or wsadmin scripting commands.

Chapter 35. Administering web services - UDDI registry 3623



Before you begin

Before you deploy a UDDI registry application, you must create the database and data source for the
UDDI registry.

About this task

Use this task as part of setting up a default UDDI node or setting up a customized UDDI node. You can
deploy a UDDI registry application in two ways:

v You can use a script that performs all the necessary steps.

This script deploys the UDDI registry to a server that you specify.

v You can use the administrative console. You deploy the UDDI registry application, the uddi.ear file,
then complete additional steps, as described later in this topic. Alternatively, you can follow the same
procedure using wsadmin scripting commands.

Procedure

1. Optional: To deploy a UDDI registry application using the supplied script:

a. Start a Qshell session by entering the STRQSH command from the IBM i command
line.

b. Run the uddiDeploy.jacl wsadmin script as shown, from the app_server_root/bin directory.

wsadmin [-conntype none] [-profileName profile_name] -f uddiDeploy.jacl
node_name server_name

The attributes of the command are as follows:

v -conntype none is optional, and is needed only if the application server is not running.

v -profileName profile_name is optional, and is the name of the profile in which the UDDI
application is deployed. If you do not specify a profile, the default profile is used.

v node_name is the name of the WebSphere Application Server node on which the target server
runs. The node name is case sensitive.

v server_name is the name of the target server on which you want to deploy the UDDI registry, for
example, server1. The server name is case sensitive.

For example, to deploy UDDI on the node MyNode and the server server1, assuming
that server1 is already started:

wsadmin -f uddiDeploy.jacl MyNode server1

2. Optional: To deploy a UDDI registry application using the administrative console, use the following
steps.

a. Install the UDDI application (the uddi.ear file) to the server that you require.

b. Click Applications > Application Types > WebSphere enterprise applications >
uddi_application > [Detail Properties] Class loading and update detection.

c. Ensure that Class loader order is set to Classes loaded with local class loader first (parent
last).

d. Ensure that WAR class loader policy is set to Single class loader for application.

e. Click Apply, then save your changes to the master configuration.

What to do next

Continue setting up the UDDI node.

Initializing the UDDI registry node:

Use this topic to initialize a UDDI registry node after setup or migration.

3624 Administering WebSphere applications



Before you begin

You must have a UDDI registry node set up, either as a new node, or to use for migrating a UDDI registry
Version 2 node.

About this task

You must set some of the properties of a UDDI registry node before you initialize the node. The UDDI
registry node properties are in two categories:

v Mandatory node properties that must be set before the UDDI node can be initialized. You can set these
properties as many times as you want before initialization. However, after the UDDI node is initialized,
these properties are read-only for the lifetime of that UDDI node. It is very important to set these
properties correctly.

v All other properties. You can set these properties before and after initialization.

You can configure these properties and initialize the node by using the UDDI administrative console or
Java Management Extensions (JMX) management interface.

Procedure

1. Click UDDI > UDDI Nodes > UDDI_node_id to display the properties page for the UDDI registry node.

2. Set the mandatory node properties to suitable, and valid, values. These properties are indicated by the
presence of an asterisk (*) next to the input field. The following list summarizes the properties. For
more information on each property, see the context help of the administrative console.

UDDI node ID
This property must be a text string that begins with uddi: and that is unique to this UDDI node.
The default value might be suitable, but ensure that it is unique to the UDDI node before you
use it.

UDDI node description
This property is a text string that describes the node.

Root key generator
This property must be a text string that begins with uddi: and that is unique to this UDDI node.
The default value might be suitable, but might contain text, such as keyspace_id, that you must
modify to match your system. If you use the default value, ensure that it is unique to this UDDI
node.

Prefix for generated discoveryURLs
This property must be a valid Uniform Resource Locator (URL).

3. If you are migrating from Version 2 of the UDDI registry, use the following table to complete the
following steps:

v Set any properties from the uddi.properties file that must remain the same as Version 2.

v Set any properties from the uddi.properties file that you want to keep the same value, for example,
dbMaxResultCount.

Table 340. Version 2 and Version 3 UDDI properties. The table lists the different UDDI properties for Version 2 and
Version 3, along with additional information about each one.

Version 2 UDDI property
(which is set in uddi.property
file)

Version 3 UDDI property
(which is set by using the
administrative console or
UDDI Administrative
Interface)

Recommended Version 3 UDDI property setting

dbMaxResultCount Maximum inquiry response set
size

You can retain the value from Version 2, change the value, or
use the default.

persister No equivalent Not applicable.

Chapter 35. Administering web services - UDDI registry 3625



Table 340. Version 2 and Version 3 UDDI properties (continued). The table lists the different UDDI properties for
Version 2 and Version 3, along with additional information about each one.

Version 2 UDDI property
(which is set in uddi.property
file)

Version 3 UDDI property
(which is set by using the
administrative console or
UDDI Administrative
Interface)

Recommended Version 3 UDDI property setting

defaultLanguage Default language code Retain the value from Version 2

operatorName UDDI node ID You must use a valid value for the UDDI node ID. This value is
applied to your Version 2 data as it is migrated.

maxSearchKeys Maximum search keys You can retain the value from Version 2, change the value, or
use the default.

getServletURLprefix Prefix for generated
discoveryURLs

Enter a valid value for your configuration, which is the same as
the value used for Version 2.

getServletName No equivalent Not applicable.

4. Set any other properties, such as policy values, that you want to change from the default settings. For
an explanation of policies and properties, see the topic about UDDI node settings. Remember that you
can also change these properties later.

5. Click Apply to save the changes.

Important: Ensure that the mandatory node properties are set to appropriate values and that you
have saved them, because you cannot change them after initialization. If you do not save
your changes before proceeding to the initialize step, you will have to delete and recreate
the database.

6. After saving the changes, initialize the UDDI node by clicking Initialize, at the top of the pane.

If you are migrating from Version 2 of the UDDI registry, the Version 2 data is migrated now. The
initialization might take some time to complete; to track its progress, return to the node collection page
and click the refresh icon at the top of the Status column. Alternatively, open a second administrative
console window, and use the refresh icon in the same way. The UDDI node goes through the following
states:

a. Initialization pending.

b. Initialization in progress.

c. Migration in progress. This state occurs only if you are migrating.

d. Value set creation in progress.

e. Activated.

What to do next

If you migrated the node from a previous version, return to the steps in the procedure to migrate to
Version 3 of the UDDI registry, to verify that the migration was successful. If you created a new node,
follow the steps in “Using the UDDI registry installation verification test (IVT)” to verify that you have
successfully set up the UDDI node.

Using the UDDI registry installation verification test (IVT)
You can use an installation verification test (IVT) to verify that you have successfully deployed a UDDI
registry.

Before you begin

You must have set up and deployed a new UDDI registry.

Procedure
1. Open a browser window and enter the URL that accesses the UDDI registry user interface.

3626 Administering WebSphere applications



2. Under the Quick Find heading on the Find tab, select the Business radio button and enter a percent
symbol (%) in the Starting with field.

3. Click Find. If you deployed your UDDI registry successfully, the detail frame shows the business entity
that represents this UDDI node. You can click on the business entity to see its detail.

What to do next

As a further installation verification test, you can publish and find more UDDI entities by using the UDDI
registry user interface. Alternatively, you can compile and run one or more of the UDDI registry samples
that are available.

Changing the UDDI registry application environment after deployment
You can change the environment of the UDDI registry application after you deploy it. For example, you can
evaluate a UDDI registry using one database, then put it into production using a different database.

About this task

After you deploy a UDDI registry application, you might want to change its environment. For example, you
might complete initial evaluation of the UDDI registry by using an Apache Derby database, and then put
the UDDI registry into production by using a DB2 database.

Procedure
1. Optional: To move from a default UDDI node to a customized UDDI node, delete the UDDI registry

database and recreate it by completing one of the following tasks, ensuring that you do not use the
default node options where specified:

v “Creating a DB2 distributed database for the UDDI registry” on page 3606

v “Creating a DB2 for i database for the UDDI registry” on page 3608

v “Creating an Apache Derby database for the UDDI registry” on page 3609

v “Creating an Oracle database for the UDDI registry” on page 3610

Note: Any data that is saved in the default node (policies, properties, and user data) is lost when you
delete the database. If you do not want to delete the database, create an entirely new
customized UDDI node in a separate application server. The default UDDI node still exists for
you to use for test purposes.

2. Optional: To change the database type for the UDDI registry, complete the following steps:

a. Stop the UDDI registry application. Click Applications > Application Types > WebSphere
enterprise applications, select the relevant check box, then click Stop.

b. Either change the Java Naming and Directory Interface (JNDI) name of the existing data source
from datasources/uddids to another value, or delete the data source. To display the data source
properties, click Resources > JDBC > JDBC providers > database_type JDBC Provider >
[Additional Properties] Data sources > uddi_datasource.

c. Create the new database by referring to one of the following topics:

v “Creating a DB2 distributed database for the UDDI registry” on page 3606

v “Creating a DB2 for i database for the UDDI registry” on page 3608

v “Creating an Apache Derby database for the UDDI registry” on page 3609

v “Creating an Oracle database for the UDDI registry” on page 3610

d. To transfer your UDDI data, use the capabilities of the database products to export the data from
the old database, and import it into the new one.

e. Create the new data source. See “Creating a data source for the UDDI registry” on page 3611.

f. Restart the UDDI registry application.

g. Check that you can access your UDDI data, for example use the UDDI registry installation
verification test, then delete the old database.

Chapter 35. Administering web services - UDDI registry 3627



Creating a DB2 distributed database for the UDDI registry:

Complete this task if you want to use DB2 on the Windows, Linux, or UNIX operating systems as the
database store for your UDDI registry data.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for
these variables. The variables, and suggested values, are:

DataBaseName
The name of the UDDI registry database. A suggested value is UDDI30. The UDDI information
uses the suggested name of UDDI30, so if you use a different name, remember to substitute it
when you see UDDI30 in the UDDI information.

DB2UserID
A DB2 user ID with administrative privileges.

DB2Password
The password for the DB2 user ID.

BufferPoolName
The name of a buffer pool for the UDDI registry database to use. A suggested value is uddibp, but
you can use any name because the buffer pool is created as part of this task.

TableSpaceName
The name of a table space. A suggested value is uddits, but you can use any name.

TempTableSpaceName
The name of a temporary table space. A suggested value is udditstemp, but you can use any
name because the temporary table space is created as part of this task.

If you want to create a remote database, refer first to the database product documentation about the
relevant capabilities of the product.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

Procedure

1. Change the directory to app_server_root/UDDIReg/databaseScripts.

2. Start the DB2 Command Line Processor. Enter the following command at the command prompt:

db2

3. Set up the DB2 environment variables. Enter the following command:
set DB2CODEPAGE=1208

4. Create the DB2 database. Enter the following command:
create database DataBaseName using codeset UTF-8 territory en

5. Configure the DB2 database. Enter the following commands:
a.

connect to DataBaseName user DB2UserID using DB2Password

b.
update db cfg for DataBaseName using applheapsz 2048

c.
update db cfg for DataBaseName using logfilsiz 8192

d.
connect reset

3628 Administering WebSphere applications



e.
terminate

f.
force application all

g.
terminate

h.
stop

i.
start

6. Restart the DB2 Command Line Processor. For all operating systems except Windows, enter the
following command at the command prompt:
db2

7. Create further database structures. Enter the following commands:
a.

connect to DataBaseName user DB2UserID using DB2Password

b.
create regular tablespace uddits pagesize 32K managed by system using
(’TableSpaceName’) extentsize 64 prefetchsize 32 bufferpool BufferPoolName

c.
create system temporary tablespace TempTableSpacename pagesize 32K managed by
system using (’TempTableSpacename’) extentsize 32 overhead 14.06
prefetchsize 32 transferrate 0.33 bufferpool BufferPoolName

8. Define the database structures that are needed to store the UDDI data.

Exit the DB2 Command Line Processor and enter the following commands exactly as
shown. Note that one step uses -vf rather than -tvf.
a.

db2 -tvf uddi30crt_10_prereq_db2.sql

b.
db2 -tvf uddi30crt_20_tables_generic.sql

c.
db2 -tvf uddi30crt_25_tables_db2udb.sql

d.
db2 -tvf uddi30crt_30_constraints_generic.sql

e.
db2 -tvf uddi30crt_35_constraints_db2udb.sql

f.
db2 -tvf uddi30crt_40_views_generic.sql

g.
db2 -tvf uddi30crt_45_views_db2udb.sql

h.
db2 -vf uddi30crt_50_triggers_db2udb.sql

i.
db2 -tvf uddi30crt_60_insert_initial_static_data.sql

9. Optional: To use the database as a default UDDI node, enter the following command:
db2 -tvf uddi30crt_70_insert_default_database_indicator.sql

10. Issue the following commands:
connect reset
terminate

11. Issue the following commands:
connect reset
terminate

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 for i database for the UDDI registry:

Chapter 35. Administering web services - UDDI registry 3629



Complete this task if you want to use DB2 for i as the database store for your UDDI registry data.

Before you begin

The default names of the UDDI registry schema in the SQL scripts listed in the following topic are
IBMUDI30 and IBMUDS30. These names are the recommended values and are assumed throughout the
UDDI information. To use different names, modify the SQL files listed, then substitute the new names
when IBMUDI30 and IBMUDS30 are used in the information center.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

Procedure

1. Use IBM Navigator for i to run SQL scripts.

a. Open IBM Navigator for i.

b. Expand My Connections > iSeriesName > Databases.

c. Select iSeriesName.

d. Right-click Run SQL Scripts....

A Run SQL Scripts window opens.

2. Open the IBM i DB2 SQL files.

a. Map a network drive to the root directory of your IBM i server integrated file system.

b. In Windows Explorer, expand the WAS_HOME/UDDIReg/databaseScripts directory.

c. Open the following SQL files with a text editor (for example, Windows Notepad):

v uddi30crt_10_prereq_db2_iSeries.sql

v uddi30crt_20_tables_generic_iSeries.sql

v uddi30crt_25_tables_db2udb_iSeries.sql

v uddi30crt_30_constraints_generic_iSeries.sql

v uddi30crt_35_constraints_db2udb_iSeries.sql

v uddi30crt_40_views_generic_iSeries.sql

v uddi30crt_45_views_db2udb_iSeries.sql

v uddi30crt_50_triggers_db2udb_iSeries.sql

v uddi30crt_60_insert_initial_static_data_iSeries.sql

3. Copy the text to the Run SQL Scripts window.

a. In the text editor of the file uddi30crt_10_prereq_db2_iSeries.sql, click Edit > Select All.

b. Click Edit > Copy.

c. In the Run SQL Scripts window, click Edit > Paste.

d. Click Run > All.

e. After the script completes running, select all the SQL text and delete it from the Run SQL Scripts
window.

f. Repeat the previous steps for all the SQL scripts listed in step 2.

4. Optional: If you want to use the database as a default UDDI node, complete the following steps:

a. Open uddi30crt_70_insert_default_database_indicator.sql as described in step 2.

b. Copy and run uddi30crt_70_insert_default_database_indicator.sql as described in step 3.

3630 Administering WebSphere applications



What to do next

Continue to set up and deploy your UDDI registry node.

Creating an Apache Derby database for the UDDI registry:

Complete this task to use an Apache Derby database as the database store for your UDDI registry. You
can use an embedded or network Apache Derby database, and the database store can be local or remote.

Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for
these variables. The variables, and suggested values, are:

arg1 The path of the SQL files. On a standard installation, the path is app_server_root/UDDIReg/
databasescripts.

arg2 The path to the location where you want to install the Apache Derby database.

For example, profile_root/databases/com.ibm.uddi.

arg3 The name of the Apache Derby database. A recommended value is UDDI30, and this name is
assumed throughout the UDDI information. If you use another name, substitute that name when
UDDI30 is used in the UDDI information.

arg4 An optional argument. Either use the value DEFAULT, or omit this argument. Specify DEFAULT to
use the database as a default UDDI node. This argument is case sensitive.

If you want to create a remote database, refer first to the database product documentation about the
relevant capabilities of the product.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

Procedure

1. Start a Qshell session. Enter the STRQSH command from the IBM i command line.

2. Create a UDDI Apache Derby database by using UDDIDerbyCreate.jar. Run the following Java -jar
command from the app_server_root/UDDIReg/databaseScripts directory.

java -Djava.ext.dirs=app_server_root/derby/lib:app_server_root/java/jre/lib/ext -jar UDDIDerbyCreate.jar
arg1 arg2 arg3 arg4

If the Apache Derby database already exists, you are asked if you want to re-create it. If you choose to
re-create the database, the existing database is deleted and a new one is created in its place. If you
choose not to re-create the database, the command exits and a new database is not created.

Note: If the application server has already accessed the existing Apache Derby database, the
uddiDeploy.jacl script cannot re-create the database. Use the uddiRemove.jacl script to remove
the database, as described in the topic about removing a UDDI registry node, restart the server,
and run the uddiDeploy.jacl script again.

3. If you are using a remote database, which requires network Apache Derby, or if you want to use
network Apache Derby for other reasons, for example, to use Apache Derby with a cluster, configure
the Apache Derby Network Server framework. For details, see the section about managing the Derby
Network Server in the Derby Server and Administration Guide.

Chapter 35. Administering web services - UDDI registry 3631



What to do next

Continue with setting up and deploying your UDDI registry node.

Creating an Oracle database for the UDDI registry:

Complete this task if you want to use Oracle as the database store for your UDDI registry data.

Before you begin

This task creates three new schemas: ibmuddi, ibmudi30 and ibmuds30. You cannot complete this task if
schemas with these names exist already.

The following steps use a number of variables. Before you start, decide appropriate values to use for
these variables. The variables, and suggested values, are:

OracleUserID
The Oracle user ID to use to create the database.

OraclePassword
The password for the Oracle user ID.

The Oracle database must be a remote database; you cannot create a local database. Refer
first to the database product documentation about the relevant capabilities of the product.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

The supported versions of Oracle are Version 9i and Version 10g. Each version has the following
restrictions:

Table 341. UDDI restrictions and Oracle versions. The table lists the Version 9i and Version 10g restrictions for
different UDDI parameters.

Version 9i restrictions Version 10g restrictions

discoveryURL (Business) maximum 4000 bytes UDDI specification 4096
characters

maximum 4000 bytes UDDI specification 4096
characters

accessPoint
(bindingTemplate)

maximum 4000 bytes UDDI specification 4096
characters

maximum 4000 bytes UDDI specification 4096
characters

instanceParms
(tModelInstanceInfo)

maximum 4000 bytes UDDI specification 8192
characters

overviewURL
(tModelInstanceInfo)

maximum 4000 bytes UDDI specification 4096
characters

Digital Signature maximum 4000 bytes

Procedure

1. Run the following commands:
a.

sqlplus OracleUserID/OraclePassword @ uddi30crt_10_prereq_oracle.sql

b.
sqlplus OracleUserID/OraclePassword @ uddi30crt_20_tables_generic.sql

2. Run one of the following commands, depending on the version of Oracle.

v For Oracle Version 9i:
sqlplus OracleUserID/OraclePassword @ uddi30crt_25_tables_oracle_pre10g.sql

v For Oracle Version 10g and later:

3632 Administering WebSphere applications



sqlplus OracleUserID/OraclePassword @ uddi30crt_25_tables_oracle.sql

3. Run the following commands:
a.

sqlplus OracleUserID/OraclePassword @ uddi30crt_30_constraints_generic.sql

b.
sqlplus OracleUserID/OraclePassword @ uddi30crt_35_constraints_oracle.sql

c.
sqlplus OracleUserID/OraclePassword @ uddi30crt_40_views_generic.sql

d.
sqlplus OracleUserID/OraclePassword @ uddi30crt_45_views_oracle.sql

e.
sqlplus OracleUserID/OraclePassword @ uddi30crt_50_triggers_oracle.sql

f.
sqlplus OracleUserID/OraclePassword @ uddi30crt_60_insert_initial_static_data.sql

4. Optional: To use the database as a default UDDI node, run the following command:
sqlplus OracleUserID/OraclePassword @ uddi30crt_70_insert_default_database_indicator.sql

What to do next

Continue with setting up and deploying your UDDI registry node.

Removing a UDDI registry node
You can remove the UDDI registry application, delete the UDDI registry database, move a UDDI registry to
another server or profile, or remove a UDDI registry node completely.

About this task

A UDDI registry node consists of the following elements:

v An enterprise application.

v A store of data that is referred to as the UDDI registry database and that uses a relational database
management system.

v A way to connect the application to the data, that is, a data source and related elements.

All the data that relates to UDDI is stored in the UDDI database and therefore that data is separate from
the UDDI application. Therefore, there are several options when you remove a UDDI registry node:

v You can remove a UDDI registry node from the application server without deleting the database. You
delete only the UDDI application and any associated resources, such as the data source, and J2EE
Connector Architecture (J2C) authentication data if it is used. You might do this for the following
reasons:

– You no longer want a UDDI facility on a particular application server. You can then move the UDDI
registry node to a different application server.

– You want to reinstall the application, for example to apply service changes or because the
application has been corrupted.

v You can delete the UDDI registry database. If you do this, all UDDI data for that UDDI registry is lost.
You might do this for the following reasons:

– You want to use a different database product as the persistence store for the UDDI data.

– You want to delete all the UDDI registry data and publish fresh data, for example after you complete
a test cycle.

– You want to initialize the UDDI registry node with new UDDI property settings, for example, to move
from a default UDDI node to a customized UDDI node.

v You can move a UDDI registry to another server or profile.

You might do this after you create a profile and you want to move the UDDI registry to the new profile.

Chapter 35. Administering web services - UDDI registry 3633



v You can remove a UDDI registry node completely from an application server. You remove the UDDI
registry application, the UDDI registry database, and the resources that are used to reference the UDDI
registry database.

You might do this to remove a UDDI registry that is used for testing after testing has finished.

To start a new UDDI registry node, you do not need to remove the UDDI application. Instead, you create a
new replacement node by changing the data source that the UDDI application uses to access the new
UDDI database.

Depending on what you want to do, complete one of the following steps.

Procedure
v To remove a UDDI registry node from the application server without deleting the database, complete the

following:

1. Start a Qshell session by entering the STRQSH command from the IBM i command line.

2. Run the uddiRemove.jacl wsadmin script from the app_server_root/bin directory.

The syntax of the command is as follows.
wsadmin [-profileName profile_name] -f uddiRemove.jacl

node_name server_name [default]

The attributes of the command are as follows:
– -profileName profile_name is optional, and is the name of the profile in which the UDDI

application is deployed. If you do not specify a profile, the default profile is used.
– node_name and server_name are the names of the WebSphere Application Server node and the

application server in which the UDDI application is deployed. These are the names that you
specified when you deployed the UDDI application, for example when you ran the
uddiDeploy.jacl script.

– default is optional. Use this option only for the Apache Derby database and only if you ran the
uddiDeploy.jacl script and used the default option to deploy the UDDI registry. This option
removes the UDDI Apache Derby data source but does not remove the UDDI Apache Derby
database.

3. Optional: By default, output is displayed on screen. To direct the output to a log file, add the
following to the end of the command, where removeuddi.log can be any name that you choose for
the log file:

> removeuddi.log

For example, to remove the UDDI application from server server1 that runs in node MyNode
and send any messages to the file removeuddi.log:

wsadmin -profileName myProfile -f uddiRemove.jacl MyNode server1 > removeuddi.log

Note: You can also remove the UDDI registry application by using the administrative console in the
usual way, by selecting the application in the Enterprise Applications view and clicking
Uninstall.

v To delete a UDDI registry database, complete the following steps. Remember that all UDDI data in the
UDDI registry is deleted.

1. Stop the server that hosts the UDDI registry application.

2. Delete the database.

– For DB2 for i, use either Navigator for i or a 5250 session to delete the IBMUDI30
and IBMUDS30 schemas.

– For Oracle, delete the IBMUDDI, IBMUDI30 and IBMUDS30 schemas.

– For Apache Derby, delete the directory tree that contains the UDDI database. By default, this
directory tree is in the profile_root/databases/com.ibm.uddi/UDDI30 directory.

v To move a UDDI registry node to another server or profile, complete the following steps:

3634 Administering WebSphere applications



1. Ensure that the UDDI registry database remains accessible after the move. You might need to copy
the database to a suitable new location. For example, if the database is remote, the new server
must be able to access it. Also, the database might be deleted after the move. This situation occurs
if you move the UDDI registry to a new profile and then delete the old profile, because any
databases that were stored in the profile are also deleted. An example of such a database is an
Apache Derby database that is created as part of creating default UDDI node.

2. Remove the UDDI registry application. See the step to remove a UDDI registry node from the
application server.

3. Optional: Delete the data source and related objects.

For the Apache Derby database, if you ran the uddiRemove.jacl script and used the default option
to remove the UDDI registry application, the data source and related objects are deleted already
and you do not need to complete this step. In all other situations, delete the following objects:

– The UDDI data source that references the UDDI registry database, that is, the data source that
was created when you set up the UDDI registry.

– Any UDDI JDBC provider that was created if you did not reuse an existing JDBC provider.

– Any J2C authentication data entry.

4. In the new server, if appropriate, create a J2C authentication data entry, and create a JDBC provider
and a data source to reference the existing database. See the relevant steps in Setting up a
customized UDDI node.

5. Deploy the UDDI registry application. See Deploying the UDDI registry application. If you use the
supplied script, do not use the default option even if you used this option previously to set up a
default UDDI node. Do not use the default option because an error might occur during deployment,
or, in some circumstances, existing UDDI data might be overwritten.

Note: The UDDI node name does not change. If the UDDI node name includes the node name and
server name of the original server, after the move there is a mismatch between the UDDI
node name, and the node name and server name of the new server. However, this mismatch
does not affect the UDDI registry node function.

6. Check that the UDDI data can be accessed. If you are using a copy of the original UDDI registry
database, you can now delete the original database. See the step to delete a UDDI registry
database.

v To remove a UDDI registry node completely, complete the following steps:

1. Remove the UDDI registry application. See the step to remove a UDDI registry node from the
application server.

2. Delete the UDDI registry database. See the step to delete a UDDI registry database.

3. Optional: Delete the data source and related objects.

For the Apache Derby database, if you ran the uddiRemove.jacl script and used the default option
to remove the UDDI registry application, the data source and related objects are deleted already
and you do not need to complete this step. In all other situations, delete the following objects:

– The UDDI data source that references the UDDI registry database, that is, the data source that
was created when you set up the UDDI registry.

– Any UDDI JDBC provider that was created if you did not reuse an existing JDBC provider.

– Any J2C authentication data entry.

What to do next

If you removed a UDDI registry node from the application server without deleting the database, you might
want to reinstall the UDDI registry application.

Chapter 35. Administering web services - UDDI registry 3635



Reinstalling the UDDI registry application
You can remove and reinstall an existing UDDI registry application to change the UDDI application code
but continue to provide UDDI services with the existing UDDI database.

About this task

A UDDI registry node consists of the following elements:

v A Java EE application.

v A store of data that is referred to as the UDDI database. The UDDI database uses a relational database
management system.

v A way to connect the application to the data (a data source and related elements).

All the data that relates to UDDI is stored in the UDDI database and therefore that data exists, regardless
of the UDDI application. Therefore, you can remove a UDDI registry node from the application server
without deleting the database, then reinstall the UDDI registry application. You might do this if an
application is corrupted, or to apply service changes.

Procedure
1. Note any changes that you made to the installed UDDI application that you want to keep, for example

changes to security role mappings, changes to the deployment descriptor (web.xml) in the v3soap.war,
v3gui.war, v3soap.war, or soap.war files, or customization of the UDDI user interface (GUI). All such
changes are lost during the reinstallation process, so you must reapply changes that you want to keep
later.

2. Remove the existing UDDI application and reinstall it by running the uddiDeploy.jacl wsadmin script
from the app_server_root/bin directory. Do not use the default option even if you used this option
previously to set up a default UDDI node. If you use the default option, an error might occur during
deployment, or, in some circumstances, existing UDDI data might be overwritten.

Enter the following command at a command prompt:
wsadmin [-conntype none] [-profileName profile_name] -f uddiDeploy.jacl

node_name server_name

where:
v -conntype none is optional, and is needed only if the application server is not running.
v -profileName profile_name is optional, and is the name of the profile in which the UDDI application

is deployed. If you do not specify a profile, the default profile is used.
v node_name and server_name are the names of the WebSphere Application server node and the

application server in which the UDDI application is deployed. These are the names that you
specified when you ran the uddiDeploy.jacl script to install the UDDI application.

Note: This procedure does not change the existing JDBC provider, data source and any J2EE
Connector Architecture (J2C) authentication data entry. Your existing UDDI registry data,
including UDDI entities, property settings, and policy settings, are also unaffected.

3. Optional: To direct the output to a log file, add the following option to the end of the command, where
log_name.log can be any name that you choose for the log file:

> log_name.log

4. If you noted any changes in step 1, reapply them now.

5. For the reapplied changes to take effect, start or restart the application server.

Creating a DB2 distributed database for the UDDI registry
Complete this task if you want to use DB2 on the Windows, Linux, or UNIX operating systems as the
database store for your UDDI registry data.

3636 Administering WebSphere applications



Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for
these variables. The variables, and suggested values, are:

DataBaseName
The name of the UDDI registry database. A suggested value is UDDI30. The UDDI information
uses the suggested name of UDDI30, so if you use a different name, remember to substitute it
when you see UDDI30 in the UDDI information.

DB2UserID
A DB2 user ID with administrative privileges.

DB2Password
The password for the DB2 user ID.

BufferPoolName
The name of a buffer pool for the UDDI registry database to use. A suggested value is uddibp, but
you can use any name because the buffer pool is created as part of this task.

TableSpaceName
The name of a table space. A suggested value is uddits, but you can use any name.

TempTableSpaceName
The name of a temporary table space. A suggested value is udditstemp, but you can use any
name because the temporary table space is created as part of this task.

If you want to create a remote database, refer first to the database product documentation about the
relevant capabilities of the product.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

Procedure
1. Change the directory to app_server_root/UDDIReg/databaseScripts.

2. Start the DB2 Command Line Processor. Enter the following command at the command prompt:

db2

3. Set up the DB2 environment variables. Enter the following command:
set DB2CODEPAGE=1208

4. Create the DB2 database. Enter the following command:
create database DataBaseName using codeset UTF-8 territory en

5. Configure the DB2 database. Enter the following commands:
a.

connect to DataBaseName user DB2UserID using DB2Password

b.
update db cfg for DataBaseName using applheapsz 2048

c.
update db cfg for DataBaseName using logfilsiz 8192

d.
connect reset

e.
terminate

f.
force application all

g.
terminate

Chapter 35. Administering web services - UDDI registry 3637



h.
stop

i.
start

6. Restart the DB2 Command Line Processor. For all operating systems except Windows, enter the
following command at the command prompt:
db2

7. Create further database structures. Enter the following commands:
a.

connect to DataBaseName user DB2UserID using DB2Password

b.
create regular tablespace uddits pagesize 32K managed by system using
(’TableSpaceName’) extentsize 64 prefetchsize 32 bufferpool BufferPoolName

c.
create system temporary tablespace TempTableSpacename pagesize 32K managed by
system using (’TempTableSpacename’) extentsize 32 overhead 14.06
prefetchsize 32 transferrate 0.33 bufferpool BufferPoolName

8. Define the database structures that are needed to store the UDDI data.

Exit the DB2 Command Line Processor and enter the following commands exactly as
shown. Note that one step uses -vf rather than -tvf.
a.

db2 -tvf uddi30crt_10_prereq_db2.sql

b.
db2 -tvf uddi30crt_20_tables_generic.sql

c.
db2 -tvf uddi30crt_25_tables_db2udb.sql

d.
db2 -tvf uddi30crt_30_constraints_generic.sql

e.
db2 -tvf uddi30crt_35_constraints_db2udb.sql

f.
db2 -tvf uddi30crt_40_views_generic.sql

g.
db2 -tvf uddi30crt_45_views_db2udb.sql

h.
db2 -vf uddi30crt_50_triggers_db2udb.sql

i.
db2 -tvf uddi30crt_60_insert_initial_static_data.sql

9. Optional: To use the database as a default UDDI node, enter the following command:
db2 -tvf uddi30crt_70_insert_default_database_indicator.sql

10. Issue the following commands:
connect reset
terminate

11. Issue the following commands:
connect reset
terminate

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 for i database for the UDDI registry
Complete this task if you want to use DB2 for i as the database store for your UDDI registry data.

Before you begin

The default names of the UDDI registry schema in the SQL scripts listed in the following topic are
IBMUDI30 and IBMUDS30. These names are the recommended values and are assumed throughout the

3638 Administering WebSphere applications



UDDI information. To use different names, modify the SQL files listed, then substitute the new names
when IBMUDI30 and IBMUDS30 are used in the information center.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

Procedure
1. Use IBM Navigator for i to run SQL scripts.

a. Open IBM Navigator for i.

b. Expand My Connections > iSeriesName > Databases.

c. Select iSeriesName.

d. Right-click Run SQL Scripts....

A Run SQL Scripts window opens.

2. Open the IBM i DB2 SQL files.

a. Map a network drive to the root directory of your IBM i server integrated file system.

b. In Windows Explorer, expand the WAS_HOME/UDDIReg/databaseScripts directory.

c. Open the following SQL files with a text editor (for example, Windows Notepad):

v uddi30crt_10_prereq_db2_iSeries.sql

v uddi30crt_20_tables_generic_iSeries.sql

v uddi30crt_25_tables_db2udb_iSeries.sql

v uddi30crt_30_constraints_generic_iSeries.sql

v uddi30crt_35_constraints_db2udb_iSeries.sql

v uddi30crt_40_views_generic_iSeries.sql

v uddi30crt_45_views_db2udb_iSeries.sql

v uddi30crt_50_triggers_db2udb_iSeries.sql

v uddi30crt_60_insert_initial_static_data_iSeries.sql

3. Copy the text to the Run SQL Scripts window.

a. In the text editor of the file uddi30crt_10_prereq_db2_iSeries.sql, click Edit > Select All.

b. Click Edit > Copy.

c. In the Run SQL Scripts window, click Edit > Paste.

d. Click Run > All.

e. After the script completes running, select all the SQL text and delete it from the Run SQL Scripts
window.

f. Repeat the previous steps for all the SQL scripts listed in step 2.

4. Optional: If you want to use the database as a default UDDI node, complete the following steps:

a. Open uddi30crt_70_insert_default_database_indicator.sql as described in step 2.

b. Copy and run uddi30crt_70_insert_default_database_indicator.sql as described in step 3.

What to do next

Continue to set up and deploy your UDDI registry node.

Creating an Apache Derby database for the UDDI registry
Complete this task to use an Apache Derby database as the database store for your UDDI registry. You
can use an embedded or network Apache Derby database, and the database store can be local or remote.

Chapter 35. Administering web services - UDDI registry 3639



Before you begin

The following steps use a number of variables. Before you start, decide appropriate values to use for
these variables. The variables, and suggested values, are:

arg1 The path of the SQL files. On a standard installation, the path is app_server_root/UDDIReg/
databasescripts.

arg2 The path to the location where you want to install the Apache Derby database.

For example, profile_root/databases/com.ibm.uddi.

arg3 The name of the Apache Derby database. A recommended value is UDDI30, and this name is
assumed throughout the UDDI information. If you use another name, substitute that name when
UDDI30 is used in the UDDI information.

arg4 An optional argument. Either use the value DEFAULT, or omit this argument. Specify DEFAULT to
use the database as a default UDDI node. This argument is case sensitive.

If you want to create a remote database, refer first to the database product documentation about the
relevant capabilities of the product.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

Procedure
1. Start a Qshell session. Enter the STRQSH command from the IBM i command line.

2. Create a UDDI Apache Derby database by using UDDIDerbyCreate.jar. Run the following Java -jar
command from the app_server_root/UDDIReg/databaseScripts directory.

java -Djava.ext.dirs=app_server_root/derby/lib:app_server_root/java/jre/lib/ext -jar UDDIDerbyCreate.jar
arg1 arg2 arg3 arg4

If the Apache Derby database already exists, you are asked if you want to re-create it. If you choose to
re-create the database, the existing database is deleted and a new one is created in its place. If you
choose not to re-create the database, the command exits and a new database is not created.

Note: If the application server has already accessed the existing Apache Derby database, the
uddiDeploy.jacl script cannot re-create the database. Use the uddiRemove.jacl script to remove
the database, as described in the topic about removing a UDDI registry node, restart the server,
and run the uddiDeploy.jacl script again.

3. If you are using a remote database, which requires network Apache Derby, or if you want to use
network Apache Derby for other reasons, for example, to use Apache Derby with a cluster, configure
the Apache Derby Network Server framework. For details, see the section about managing the Derby
Network Server in the Derby Server and Administration Guide.

What to do next

Continue with setting up and deploying your UDDI registry node.

Creating an Oracle database for the UDDI registry
Complete this task if you want to use Oracle as the database store for your UDDI registry data.

Before you begin

This task creates three new schemas: ibmuddi, ibmudi30 and ibmuds30. You cannot complete this task if
schemas with these names exist already.

3640 Administering WebSphere applications



The following steps use a number of variables. Before you start, decide appropriate values to use for
these variables. The variables, and suggested values, are:

OracleUserID
The Oracle user ID to use to create the database.

OraclePassword
The password for the Oracle user ID.

The Oracle database must be a remote database; you cannot create a local database. Refer
first to the database product documentation about the relevant capabilities of the product.

About this task

You complete this task only once for each UDDI registry, as part of setting up and deploying a UDDI
registry.

The supported versions of Oracle are Version 9i and Version 10g. Each version has the following
restrictions:

Table 342. UDDI restrictions and Oracle versions. The table lists the Version 9i and Version 10g restrictions for
different UDDI parameters.

Version 9i restrictions Version 10g restrictions

discoveryURL (Business) maximum 4000 bytes UDDI specification 4096
characters

maximum 4000 bytes UDDI specification 4096
characters

accessPoint
(bindingTemplate)

maximum 4000 bytes UDDI specification 4096
characters

maximum 4000 bytes UDDI specification 4096
characters

instanceParms
(tModelInstanceInfo)

maximum 4000 bytes UDDI specification 8192
characters

overviewURL
(tModelInstanceInfo)

maximum 4000 bytes UDDI specification 4096
characters

Digital Signature maximum 4000 bytes

Procedure
1. Run the following commands:

a.
sqlplus OracleUserID/OraclePassword @ uddi30crt_10_prereq_oracle.sql

b.
sqlplus OracleUserID/OraclePassword @ uddi30crt_20_tables_generic.sql

2. Run one of the following commands, depending on the version of Oracle.

v For Oracle Version 9i:
sqlplus OracleUserID/OraclePassword @ uddi30crt_25_tables_oracle_pre10g.sql

v For Oracle Version 10g and later:
sqlplus OracleUserID/OraclePassword @ uddi30crt_25_tables_oracle.sql

3. Run the following commands:
a.

sqlplus OracleUserID/OraclePassword @ uddi30crt_30_constraints_generic.sql

b.
sqlplus OracleUserID/OraclePassword @ uddi30crt_35_constraints_oracle.sql

c.
sqlplus OracleUserID/OraclePassword @ uddi30crt_40_views_generic.sql

d.
sqlplus OracleUserID/OraclePassword @ uddi30crt_45_views_oracle.sql

e.
sqlplus OracleUserID/OraclePassword @ uddi30crt_50_triggers_oracle.sql

Chapter 35. Administering web services - UDDI registry 3641



f.
sqlplus OracleUserID/OraclePassword @ uddi30crt_60_insert_initial_static_data.sql

4. Optional: To use the database as a default UDDI node, run the following command:
sqlplus OracleUserID/OraclePassword @ uddi30crt_70_insert_default_database_indicator.sql

What to do next

Continue with setting up and deploying your UDDI registry node.

Applying an upgrade to the UDDI registry
You can apply an interim fix, a fix pack, or a refresh pack to the UDDI registry.

Procedure
1. Apply the WebSphere Application Server interim fix, fix pack, or refresh pack to your application server,

or servers, by using the WebSphere Application Server Update Installer. Repeat this process for each
server that you want to apply the UDDI upgrade to. If you have not deployed a UDDI registry yet, no
further action is required, because updates to the UDDI registry take effect when you first deploy UDDI
into any of your application server profiles.

2. If you already deployed a UDDI registry to one or more application server profiles, to apply the
upgrade, redeploy the UDDI application, as described in Reinstalling the UDDI registry application. The
existing UDDI application is removed and the updated application is deployed.

What to do next

Some upgrades might require additional steps. Refer to the readme file for the upgrade to check whether
there are additional steps for this upgrade.

Configuring SOAP API and GUI services for the UDDI registry
For SOAP application programming interface (API) and graphical user interface (GUI) UDDI services, you
can configure whether the service is secure. For Version 1 and Version 2 SOAP API services, you can
also configure the default pool size.

Before you begin

The UDDI registry application must be installed.

About this task

For the Version 1 and Version 2 SOAP interface, you can configure the following properties:

v defaultPoolSize. The number of SOAP parsers with which to initialize the parser pool for the SOAP
interface. You can set this property independently for the Publish (uddipublish) and Inquiry (uddi) APIs.
For example, if you expect more inquiries than publish requests through the SOAP interface, you can
set a larger pool size for the Inquiry API. The default initial size for both APIs is 10.

v Whether the API is secure, that is, accessed using HTTPS, or insecure, that is, accessed using HTTP.
The default is to use HTTPS for the Publish API and HTTP for the Inquiry API.

For the Version 3 SOAP interface, you can specify whether Publish, Custody Transfer, Security and Inquiry
APIs are secure, that is, accessed using HTTPS, or insecure, that is, accessed using HTTP. The default is
to use HTTPS for the Publish, Custody Transfer, and Security APIs, and HTTP for the Inquiry API.

For the Version 3 GUI interface, you can specify whether the Publish and Inquiry services are secure, that
is, accessed using HTTPS, or insecure, that is, accessed using HTTP. The default is to use HTTPS for the
Publish service and HTTP for the Inquiry service.

3642 Administering WebSphere applications



Procedure
v Optional: To configure Version 1 and Version 2 SOAP API services, use the following steps.

1. Edit the active deployment descriptor, web.xml, for the Version 1 and Version 2 SOAP module,
soap.war. The web.xml file is in the following directory:

profile_root/config/cells/cell_name/applications/
UDDIRegistry.node_name.server_name.ear/deployments/
UDDIRegistry.node_name.server_name/soap.war/WEB-INF

2. To modify the defaultPoolSize parameter for the Version 1 or Version 2 Publish API, modify the
param-value element in the servlet with servlet-name = uddipublish.

3. To modify the defaultPoolSize parameter for the Version 1 or Version 2 Inquiry API, modify the
param-value element in the servlet with servlet-name = uddi.

4. To set whether the Publish service is secure or insecure for the Version 1 or Version 2 Publish API,
modify the user data constraint transport guarantee. Find the security-constraint element with id =
UDDIPublishTransportConstraint. Set the user-data-constraint transport-guarantee for that element
to CONFIDENTIAL, that is, the service is secure and is accessed using HTTPS, or NONE, that is,
the service is insecure and is accessed using HTTP.

5. Stop and restart the application server for the changes to take effect.

v Optional: For the Version 3 SOAP interface, specify whether the Publish, Custody Transfer, Security,
and Inquiry API services are secure or insecure by using the following steps. The default is to use
HTTPS for the Publish, Custody Transfer, and Security APIs, and HTTP for the Inquiry API.

1. Edit the active deployment descriptor, web.xml, for the Version 3 SOAP module, v3soap.war. The
web.xml file is in the following directory:

profile_root/config/cells/cell_name/applications/
UDDIRegistry.node_name.server_name.ear/deployments/
UDDIRegistry.node_name.server_name/v3soap.war/WEB-INF

Each type of service is represented by a <security-constraint> element in the web.xml file. Each
<security-constraint> element includes the <display-name> element and <user-data-constraint>
<transport-guarantee> element.

2. For each service that you want to modify, search the web.xml file for the relevant <display-name>
value (see the following table) to locate the <security-constraint> element for that service. Set the
<user-data-constraint> <transport-guarantee> for that element to CONFIDENTIAL, that is, the
service is secure and is accessed using HTTPS, or NONE, that is, the service is insecure and is
accessed using HTTP.

Table 343. Display name values in web.xml for UDDI services. The table lists the different types of UDDI service and
the value of the <security-constraint> <display-name> element for each one.

Type of UDDI service Value of <security-constraint> <display-name> element

Publish AxisServlet Publish Resource Collection

Custody transfer AxisServlet CustodyTransfer Resource Collection

Security AxisServlet Security Resource Collection

Inquiry AxisServlet Inquiry Resource Collection

3. Stop and restart the application server for the changes to take effect.

v Optional: For the Version 3 GUI interface, specify whether the Publish and Inquiry services are secure
or insecure by using the following steps. The default is to use HTTPS for the Publish service and HTTP
for the Inquiry service.

1. Edit the active deployment descriptor, web.xml, for the Version 3 GUI module, v3gui.war. The
web.xml file is in the following directory:

profile_root/config/cells/cell_name/applications/
UDDIRegistry.node_name.server_name.ear/deployments/
UDDIRegistry.node_name.server_name/v3gui.war/WEB-INF

2. For each service that you want to modify, search the web.xml file for the relevant
<user-data-constraint> value (see the following table). Set the <user-data-constraint>

Chapter 35. Administering web services - UDDI registry 3643



<transport-guarantee> for that element to CONFIDENTIAL, that is, the service is secure and is
accessed using HTTPS, or NONE, that is, the service is insecure and is accessed using HTTP.

Table 344. User data constraint ids in web.xml for UDDI services. The table lists the different types of UDDI service
and the value of the <user-data-constraint id> element for each one.

Type of UDDI service Value of <user-data-constraint id> element

Publish UDDIPublishTransportConstraint

Inquiry UDDIInquireTransportConstraint

3. Stop and restart the application server for the changes to take effect.

Managing the UDDI registry
You can use the WebSphere Application Server administrative console or the Java Management
Extensions (JMX) management interface to manage all the policies and properties of the UDDI registry.

About this task

You can use JMX to monitor and configure UDDI registries programmatically, and use the UDDI registry
administrative interface.

To manage UDDI nodes programmatically, you can use the following interfaces and tools:

v UDDI registry administrative (JMX) interface

The UDDI registry administrative (JMX) interface provides a Java API that you can use to manage
runtime configuration settings to control UDDI registry runtime behavior, such as setting the maximum
number of results that UDDI users can receive for inquiry requests, or creating publish limits for UDDI
publishers. Sample client code is provided for you to build on.

v User-defined value sets

The UDDI Version 3 registry provides tools that you can use to manage your own categorization value
sets, including loading value set data into a UDDI registry node. If you add custom value sets, UDDI
entities can be categorized more specifically when they are published, so that clients can find specific
data more efficiently.

v UDDI Utility Tools

The UDDI Utility Tools is a suite of functions and a Java API that you can use to promote Version 2
entities from one UDDI registry to another while retaining entity keys. This capability is particularly
useful for publishing canonical tModels with a predefined key.

To manage UDDI registries by using the WebSphere Application Server administrative console, start from
the UDDI link in the navigation pane of the administrative console. If administrative security is enabled,
you must log in to the administrative console and supply a valid user ID and password, to use the UDDI
management functions. You can complete the following operations:

Procedure
v View and manage the status of all UDDI nodes in a cell.

v Initialize UDDI nodes with required settings.

v Configure general properties that affect UDDI runtime behavior.

v Manage UDDI policy settings.

v Create, view and update UDDI publishers.

v Create, view and update publisher tiers that limit how many UDDI entries can be published.

v View and manage the status of value sets.

3644 Administering WebSphere applications



Backing up and restoring the UDDI registry database
If you want to protect the data in your UDDI registry database, you can back up and restore the database
by using the facilities of the database product that your UDDI node is on.

Procedure
v To back up an Apache Derby UDDI registry database, use the following steps:

1. Ensure that the UDDI application is stopped, and therefore is not accessing the Apache Derby
database.

2. Ensure that no other application is using the Apache Derby UDDI30 database.

3. Copy the UDDI30 directory by using the file system that the directory is in.

v To restore an Apache Derby UDDI registry database, replace the UDDI30 file structure with the backup
copy. Remember that any updates made after the backup was taken are lost.

v To back up a UDDI registry database that does not use Apache Derby, use the appropriate backup and
restore tools for the database. To use these tools, refer to the documentation for the database product.

UDDI node collection
You can manage the UDDI nodes in this cell. Each UDDI node represents an individual UDDI registry
application. A UDDI node is displayed in this list only if its underlying UDDI application is started. The
status of the UDDI node can indicate whether the node is activated (available to accept API requests),
deactivated (not allowing user requests), or not initialized. UDDI nodes that are not initialized require some
properties to be set before they can be initialized and activated.

To view this administrative console page, click UDDI > UDDI Nodes.

UDDI Node ID:

Specifies the identifier for the UDDI node.

To manage an individual UDDI node, click on the UDDI _node_id to display the UDDI node settings page,
where you can manage its general properties, initialize it if the status is set to Initialization Pending,
and access pages for managing policies, UDDI publishers, tiers and value sets.

Description:

Specifies the description of the UDDI node.

UDDI Application Location:

Specifies the server in which the UDDI registry application is deployed and running.

Status:

Specifies the status of the UDDI node.

The UDDI node can have one of the following statuses:

v Not initialized

v Initialization pending

v Initialization in progress

v Migration in progress

v Migration pending

v Value set creation in progress

v Value set creation pending

v Activated

Chapter 35. Administering web services - UDDI registry 3645



v Deactivated

If the status of a node is Initialization pending, you must initialize the node before you can activate it. If
you attempt to initialize the node and it remains in a pending state, an error occurred during migration or
initialization.

To activate UDDI nodes that are deactivated, select them using the corresponding check boxes and click
Activate. Similarly, to deactivate UDDI nodes, select them and click Deactivate.

Note: If you restart the UDDI application, or the application server, the UDDI node is always reactivated,
even if the node was previously deactivated.

UDDI node settings:

You can configure the general properties for a UDDI node.

To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id.

The UDDI node detail page displays general properties for the UDDI node. Depending on the status of the
node, you can edit some properties. Use the links on this page to view or change additional properties,
such as Value sets, Tiers and UDDI Publishers. Use the Policy Groups link on this page to view or change
UDDI node policy.

Unless the UDDI node is installed as a default UDDI node, you must set certain general properties before
you can initialize the UDDI node. These required properties are indicated by an asterisk (*) next to the
relevant fields. You can set these property values as many times as you want before you initialize the
UDDI node. However, after initialization, these properties become read-only for the lifetime of that UDDI
node. Therefore, it is important to set the required properties correctly. You can set other general
properties of the UDDI node both before and after initialization.

After you set the general properties to appropriate values, click OK to save your changes and exit the
page, or Apply to save your changes and remain on the same page. At this point, the changes are stored.

If the status of the UDDI node is “Not initialized”, an Initialize option is displayed. To initialize the UDDI
node, ensure that you save any changes to the general properties by clicking Apply or OK, then click
Initialize. This operation might take some time to complete.

UDDI node ID:

Specifies the unique identifier for a UDDI node in a UDDI registry. The node ID must be a valid UDDI key.
The value is also the domain key for the UDDI node.

Information Value
Required Yes
Data type String
Default uddi:cell_name:node_name:server_name:node_id

UDDI node description:

Specifies the description of this UDDI node.

Information Value
Required Yes
Data type String
Default WebSphere UDDI registry default node

3646 Administering WebSphere applications



Root key generator:

Specifies the root key space of the registry. For registries that can become affiliate registries, you might
want to specify a root key space in a partition below the root key generator of the parent root registry, for
example, uddi:thisregistry.com:keygenerator.

Information Value
Required Yes
Data type String
Default uddi:cell_name:node_name:server_name:keyspace_id:keygenerator

Prefix for generated discoveryURLs:

Specifies the URL prefix that is applied to generated discoveryURLs in businessEntity elements, so that
the discoveryURLs can be returned on HTTP GET requests. This property applies to UDDI version 2 API
requests only. Set this prefix to a valid URL for your configuration, and do not change it unless absolutely
necessary.

The format is http://hostname:port/uddisoap/, where uddisoap is the context root of the UDDI version 2
SOAP servlet.

Although this field is not required, you set it so that the required and valid URL is generated in response to
version 2 GET requests. After you set the prefix, do not change it unless it becomes invalid following a
later configuration change. If you change the prefix, any discoveryURLs that were generated by using the
earlier prefix no longer work.

Information Value
Required No
Data type String
Default http://localhost:9080/uddisoap

Host name for UDDI node services:

Specifies the host name root that the UDDI node uses to model API services in its own node business
entity. This value must be the fully qualified domain name, or IP address, of the network host.

The UDDI node provides web services that implement each of the UDDI API sets that it supports. The
host name is used to generate access point URLs in the bindingTemplate elements for each of the
services. The access point URL is generated by prefixing the host name value with a protocol, such as
http, and suffixing it with the corresponding host port number. The access point URL must resolve to a
valid URL.

Information Value
Data type String
Default localhost

Host HTTP port:

Specifies the port number that is used to access UDDI node services with HTTP. This port number must
match the WebSphere Application Server port for HTTP requests.

Information Value
Data type Integer
Default 9080

Chapter 35. Administering web services - UDDI registry 3647



Host HTTPS port:

Specifies the port number that is used to access UDDI node services with HTTPS. This port number must
match the WebSphere Application Server port for HTTPS requests.

Information Value
Data type Integer
Default 9443

Maximum inquiry result set size:

Specifies the maximum size of the result set that the registry processes for an inquiry API request.

If the result set exceeds this value, an E_resultSetTooLarge error is returned. If you set this value too low,
and users use imprecise search criteria, it is more likely that an E_resultSetTooLarge error is returned. If
you set this value higher, result sets are larger, but response times might increase.

Information Value
Data type Integer
Default 500
Range 0 to 1024

Maximum inquiry response set size:

Specifies the maximum number of results that are returned in each response for inquiry API requests. Do
not set this value higher than the value of Maximum inquiry result set size.

If the result set contains more results than this value, the response includes only a subset of those results.
The user can retrieve the remaining results by using the listDescription feature as described in the UDDI
specification. If you set this value too low, the user must make more requests to retrieve the remainder of
the result set.

Information Value
Data type Integer
Default 500
Range 0 to 1024

Maximum search names:

Specifies the maximum number of names that can be supplied in an inquiry API request. If you set higher
values, the UDDI node can process more complex requests, but complex requests can increase the
response times of the UDDI node significantly. Therefore, to avoid increasing UDDI node response times,
set this value to 8 or less.

Information Value
Data type Integer
Default 5
Range 1 to 64

Maximum search keys:

3648 Administering WebSphere applications



Specifies the maximum number of keys that can be supplied in an inquiry API request. If you set higher
values, the UDDI node can process more complex requests, but complex requests can increase the
response times of the UDDI node significantly. Therefore, to avoid increasing UDDI node response times,
set this value to 5 or less.

This value limits the number of references that can be specified in categoryBag, identifierBag, tModelBag
and discoveryURLs elements.

In exceptional cases, the UDDI node might reject complex requests with too many keys, even if the value
of maxSearchKeys is not exceeded.

Information Value
Data type Integer
Default 5
Range 1 to 64

Key space requests require digital signature:

Specifies whether tModel:keyGenerator requests must be digitally signed.

Information Value
Data type Boolean (check box)
Default False (cleared)

Use tier limits:

Specifies whether an approval manager is used to check publication tier limits. If you set this value to
false, an unlimited number of UDDI entities can be published.

Information Value
Data type Boolean (check box)
Default True (selected)

Use authInfo credentials if provided:

Specifies whether authInfo contents in UDDI API requests are used to validate users when WebSphere
Application Server administrative security is off. If you select this option, the UDDI node uses the authInfo
element in the request. If you clear this option, the UDDI node uses the default user name.

Information Value
Data type Boolean (check box)
Default True (selected)

Authentication token expiry period:

Specifies the period, in minutes, after which an authentication token is invalidated and a new
authentication token is required.

Set this value high enough to allow the registry to operate successfully, but be aware that high values can
increase the risk of illegal use of authentication tokens.

Information Value
Data type Integer
Default 30

Chapter 35. Administering web services - UDDI registry 3649



Information Value
Range 1 to 10080 minutes (10080 minutes = 1 week)

Automatically register UDDI publishers:

Specifies whether UDDI publishers are automatically registered and assigned to the default tier.
Automatically registered UDDI publishers are given default entitlements.

Information Value
Data type Boolean (check box)
Default True (selected)

Default user name:

Specifies the user name that is used for publish operations when WebSphere Application Server
administrative security is off and Use authInfo credentials if provided is set to false.

Information Value
Data type String
Default UNAUTHENTICATED

Default language code:

Specifies, for UDDI version 1 and version 2 requests, the default language code to be used for the
xml:lang element, when it is not otherwise specified.

Information Value
Data type String
Default en

Value set collection:

You can view and configure the value sets that are installed in a UDDI node.

To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id > Value Sets.

Value sets in a UDDI node are either supported or not supported by policy. By default, new value sets are
not supported. After you publish a value set tModel entity and load value set data, you can control whether
other UDDI entities can reference this value set tModel entity by setting the Supported policy.

To enable support for one or more value sets, select the value sets by using the corresponding check
boxes in the Select column, then click Enable Support. The Supported field for all the selected value sets
is updated to a value of true to show the new status.

You might need to remove support for a value set before you remove the value set from the UDDI node.
To remove support for a value set, select the corresponding check box, then click Disable Support. The
corresponding Supported field is updated to a value of false to show the new status.

To view the attributes of a value set, click on the value set name in the list to display the Value set settings
page.

Name:

Specifies the name of the tModel entity that represents this value set.

3650 Administering WebSphere applications



tModelkey:

Specifies the key for the tModel entity that represents this value set.

Supported:

Specifies whether this value set is supported by policy in this UDDI node, where true means supported,
and false means not supported.

Value set settings:

You can view the attributes of a value set in a UDDI node.

To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id > Value Sets >
value_set_name.

This page shows the values of the keyedReference elements in the tModel entity that represents this value
set. This page also shows the Supported status of the value set. All properties are read-only. To change
the Supported status, use the Value sets collection page.

Unvalidatable:

Specifies whether this value set is categorized as unvalidatable, as described in the UDDI specification.
The value set tModel publisher sets this value, to indicate whether the value set is available for use by
publish requests.

Checked:

Specifies whether this value set is categorized as checked, as described in the UDDI specification. When
this value is true, UDDI entities that reference this value set are validated to ensure that their values are
present in this value set.

Cached:

Specifies whether this value set is cached in this UDDI node.

Externally cacheable:

Specifies whether this value set is externally cacheable.

Externally validated:

Specifies whether this value set is externally validated.

Supported:

Specifies whether this value set is supported by policy in this UDDI node.

Last cached:

Specifies the date when this value set was last cached in the UDDI node.

Tier collection:

You can view a list of the available tiers for the UDDI node. You can create new tiers, modify tiers, set the
default tier, and delete tiers.

Chapter 35. Administering web services - UDDI registry 3651



To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id > Tiers.

To view or change the properties of a tier, click on the tier name in the list to display the UDDI Tier settings
page.

To create a tier, click New. The UDDI Tier settings page is displayed, where you can set properties for the
new tier.

One tier in the collection is marked as the default tier, indicated by the word (default) next to the tier
name. The default tier is assigned to UDDI publishers that are registered automatically when automatic
user registration is turned on. To set the default tier, select the tier by using the corresponding check box
in the Select column, then click Set default.

To delete a tier, select the tier by using the corresponding check box in the Select column, then click
Delete. You cannot delete a tier that is marked as the default tier, or that is currently assigned to a UDDI
publisher.

Name:

Specifies the name of the tier.

Description:

Specifies the description of the tier.

UDDI Tier settings:

You can configure the general properties of a UDDI publisher tier.

To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id > Tiers >
tier_name.

Name:

Specifies the name of the tier.

Information Value
Required Yes
Data type String
Default No default
Range 1 to 255

Description:

Specifies a description of the purpose or usage of this tier.

Information Value
Data type String
Default No default
Range 0 to 255

Maximum properties:

The data for each maximum property field has the following properties:

3652 Administering WebSphere applications



Information Value
Required Yes
Data type Integer
Default No default
Range 0 to 2147483647

Maximum businesses:

Specifies the maximum number of businesses that UDDI publishers in this tier can publish.

Maximum services per business:

Specifies the maximum number of services that UDDI publishers in this tier can publish for each business.

Maximum bindings per service:

Specifies the maximum number of bindings that UDDI publishers in this tier can publish for each service.

Maximum tModels:

Specifies the maximum number of tModels that UDDI publishers in this tier can publish.

Maximum publisher assertions:

Specifies the maximum number of publisher assertions that UDDI publishers in this tier can add.

UDDI Publisher collection:

You can view the users that are currently registered as UDDI publishers. You can create a UDDI publisher,
register a user as a UDDI publisher, assign a UDDI publisher to a tier, and delete a UDDI publisher.

To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id > [Additional
Properties] UDDI Publishers.

To create a UDDI publisher, click New. The UDDI Publisher settings page is displayed, where you can set
properties for the new UDDI publisher.

To register one or more existing WebSphere Application Server users as UDDI publishers, click Create
publishers. The Create UDDI publishers page is displayed, where you can select users and modify their
entitlements.

After users are registered as UDDI publishers, you can click on the user name to display the UDDI
Publisher settings page and view or edit their entitlements.

You can assign multiple UDDI publishers to a tier without editing each UDDI publisher individually, by
using the following steps:

1. Select the appropriate UDDI publishers by using the corresponding check boxes in the Select column.

2. From the tier list at the top of the collection table, select one of the tiers that is available on the UDDI
node.

3. Click Assign tier.

To delete one or more UDDI publishers, select the UDDI publishers using the corresponding check boxes
in the Select column, then click Delete.

User name:

Chapter 35. Administering web services - UDDI registry 3653



Specifies the name of the UDDI publisher.

Tier:

Specifies the tier to which the UDDI publisher is assigned.

Create UDDI Publishers:

Use this page to register one or more existing WebSphere Application Server users as UDDI publishers.

To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id > [Additional
Properties] UDDI Publishers > Create publishers.

To register as UDDI publishers one or more users that are known to the application server, complete the
following steps:

1. Enter a string to search for the required users. To find all users, use the * character.

2. Optionally, enter a number in the limit field to restrict the number of returned results.

3. Click Search to display a list of users that match the string.

4. Select the users that you want to register from the Available list and use the arrows to move them into
the Selected list.

5. Use the entitlements listed under General Properties to give the UDDI publishers permission to
undertake specific actions. Set the entitlements by selecting the check box next to each entitlement.

6. Select a tier for the users from the Tier list.

7. Click OK to register the users as UDDI publishers with the specified entitlements and tier.

Note: If you are using a Lightweight Directory Access Protocol (LDAP) user registry, the format of the
name that is given to each UDDI Publisher is defined by the User ID map value in the LDAP
advanced settings. To view the LDAP advanced settings, click Security > Global security, under
User account repository select Standalone LDAP registry and click Configure, then under
Additional Properties click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

After a user has been registered as a UDDI publisher, you can edit their entitlements by clicking the user
name.

Allowed to publish keyGenerator with derived key:

Specifies whether the UDDI publisher has permission to publish tModel: keyGenerator with a derived key.

The tModel:keyGenerator is a request for key space. An example of a legal derived key is
uddi:tempuri.com:fish:buyingService where the key is based on the derivedKey "uddi:tempuri.com:fish". the
string 'buyingService' is the key's key specific string (KSS).

Allowed to publish keyGenerator with domain keys:

Specifies whether the UDDI publisher has permission to publish tModel: keyGenerator with a domain key.

Allowed to publish keyGenerator:

Specifies whether the UDDI publisher has permission to publish tModel: keyGenerator.

If false, UDDI publishers cannot publish keyGenerators of any kind. In this situation all the entitlement
settings are disregarded, regardless of how they are set.

Allowed to publish with UUID key:

3654 Administering WebSphere applications



Specifies whether the UDDI publisher has permission to publish elements with a UUID key.

Allowed to publish keyGenerator with UUID keys:

Specifies whether the UDDI publisher has permission to publish tModel: keyGenerator with a UUID key.

Tier:

Specifies the tier to which the UDDI publisher is assigned.

UDDI Publisher settings:

You can view and edit the entitlements and publication limits tier for a UDDI publisher, or create a new
UDDI publisher.

To view this administrative console page, use one of the following options:

v To view and edit the properties of an existing UDDI publisher, click UDDI > UDDI Nodes >
UDDI_node_id > UDDI Publishers > user_name.

v To create a new UDDI publisher, click UDDI > UDDI Nodes > UDDI_node_id > UDDI Publishers >
New.

User name:

Specifies the name of the UDDI publisher.

For a new UDDI publisher, enter the name of a user that is known to the application server. For an
existing publisher, you cannot change the user name.

Allowed to publish keyGenerator with derived key:

Specifies whether the UDDI publisher has permission to publish a tModel:keyGenerator request with a
derived key.

The tModel:keyGenerator request is a request for key space. An example of a legal derived key is
uddi:tempuri.com:fish:buyingService, where the key is based on the derivedKey key uddi:tempuri.com:fish
and the string buyingService is the key-specific string (KSS) for that key.

Information Value
Data type Boolean
Default True (selected)

Allowed to publish keyGenerator with domain keys:

Specifies whether the UDDI publisher has permission to publish a tModel:keyGenerator request with a
domain key.

Information Value
Data type Boolean
Default True (selected)

Allowed to publish keyGenerator:

Specifies whether the UDDI publisher has permission to publish a tModel:keyGenerator request.

Chapter 35. Administering web services - UDDI registry 3655



If you set this value to false, the UDDI publisher cannot publish keyGenerator requests of any kind. In this
situation, the following settings are ignored, regardless of how they are set:

v Allowed to publish keyGenerator with derived key

v Allowed to publish keyGenerator with domain keys

v Allowed to publish with UUID key

v Allowed to publish keyGenerator with UUID keys

Information Value
Data type Boolean
Default True (selected)

Allowed to publish with UUID key:

Specifies whether the UDDI publisher has permission to publish elements with a UUID key.

Information Value
Data type Boolean
Default False (cleared)

Allowed to publish keyGenerator with UUID keys:

Specifies whether the UDDI publisher has permission to publish a tModel:keyGenerator request with a
UUID key.

Information Value
Data type Boolean
Default False (cleared)

Tier:

Specifies the tier to which the UDDI publisher is assigned.

Policy groups:

You can access the detailed settings information for every policy group that you can configure for a UDDI
registry node.

To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id.

The page shows a list of the policy groups that can be acted upon. Click a specific group to open the page
for the required group.

UDDI keying policy settings:

You can view or edit the UDDI keying settings for a UDDI registry.

To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id > Keying policies.

Registry key generation:

Specifies whether publishers are allowed to publish key generator tModel entities. You can manage how
publishers are allowed to publish key generator tModel entities by configuring the entitlements in the UDDI
Publishers page.

3656 Administering WebSphere applications



Information Value
Data type Boolean
Default True (selected)

Registry support of UUID keys:

Specifies whether publisher supplied uuidKeys keys are allowed in publish requests. You can manage how
publishers are allowed to use uuidKeys keys by configuring the entitlements in the UDDI Publishers page.

Information Value
Data type Boolean
Default False (cleared)

UDDI node API policy settings:

For UDDI Version 3, you can view or edit the API settings for a UDDI registry node.

To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id > API policies.

Note: This information applies only to UDDI Version 3; you cannot change the API settings for Versions 1
and 2. In Versions 1 and 2, authentication tokens are required for publish requests, but not for
inquiry requests. Versions 1 and 2 do not have custody transfer requests.

Authorization for inquiry:

Specifies whether authorization that uses the authInfo element is required for inquiry API requests. This
setting is relevant only if the V3SOAP_Inquiry_User_Role role is set to Everyone and WebSphere
Application Server administrative security is on.

If WebSphere Application Server administrative security is off, this setting is ignored. If WebSphere
Application Server administrative security is on, but the V3SOAP_Inquiry_User_Role role is not set to
Everyone, this setting is ignored.

If this option is selected, an authorization token is required to complete the request. If this option is
cleared, an authorization token is not required. If this option is cleared and an authorization token is
supplied, the token is ignored and the request is processed as if the default user that is defined in the
UDDI node settings made the request.

Typically, UDDI registries are configured to not require authorization for inquiry API requests.

Information Value
Data type Boolean
Default False (cleared)

Authorization for publish:

Specifies whether authorization that uses the authInfo element is required for publish API requests. This
setting is relevant only if the V3SOAP_Publish_User_Role role is set to Everyone and WebSphere
Application Server administrative security is on.

If WebSphere Application Server administrative security is off, this setting is ignored. If WebSphere
Application Server administrative security is on, but the V3SOAP_Publish_User_Role role is not set to
Everyone, this setting is ignored.

Chapter 35. Administering web services - UDDI registry 3657



If this option is selected, an authorization token is required to complete the request. If this option is
cleared, an authorization token is not required. If this option is cleared and an authorization token is
supplied, the token is ignored and the request is processed as if the default user that is defined in the
UDDI node settings made the request.

Typically, UDDI registries are configured to require authorization for publish API requests.

Information Value
Data type Boolean
Default True (selected)

Authorization for custody transfer:

Specifies whether authorization that uses the authInfo element is required for custody transfer API
requests. This setting is relevant only if the V3SOAP_CustodyTransfer_User_Role role is set to Everyone
and WebSphere Application Server administrative security is on.

If WebSphere Application Server administrative security is off, this setting is ignored. If WebSphere
Application Server administrative security is on, but the V3SOAP_CustodyTransfer_User_Role role is not
set to Everyone, this setting is ignored.

If this option is selected, an authorization token is required to complete the request. If this option is
cleared, an authorization token is not required. If this option is cleared and an authorization token is
supplied, the token is ignored and the request is processed as if the default user that is defined in the
UDDI node settings made the request.

Typically, UDDI registries are configured to require authorization for custody transfer API requests.

Information Value
Data type Boolean
Default True (selected)

UDDI user policy settings:

You can view or edit the user policy settings for a UDDI registry node.

To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id > User policies.

Allow transfer of ownership:

Specifies whether data ownership can be transferred between owners in the UDDI node. When this option
is selected, data ownership can be transferred.

Information Value
Data type Boolean
Default True (selected)

UDDI data custody policy settings:

You can view or edit the data custody settings for a UDDI registry node.

To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id > Data custody
policies.

Transfer token expiration period:

3658 Administering WebSphere applications



Specifies length of time, in minutes, allowed before a transfer token is no longer valid.

If you set this value too high, you might expose the UDDI registry to a risk of misuse.

Information Value
Data type Integer
Default 1440
Range 1 to 2147483647 (for all intents and purposes, unlimited)

UDDI value set policy settings:

You can view or edit the value set policy settings for a UDDI registry node.

To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id > Value set
policies.

Enable checked value sets:

Specifies whether checked value sets are supported. If you clear this option, publish requests of value set
tModel entities that contain a checked keyedReference are rejected.

Information Value
Data type Boolean
Default True (selected)

UDDI node miscellaneous settings:

You can view and edit settings for a UDDI node.

To view this administrative console page, click UDDI > UDDI Nodes > UDDI_node_id > Miscellaneous
policies.

Node generates discoveryURLs:

Specifies whether a UDDI node can establish a policy on whether it generates discoveryURL URLs.

Information Value
Data type Boolean
Default False (cleared)

Node supports HTTP Get Service:

Specifies whether the UDDI node supports an HTTP GET service for access to the XML representations of
UDDI data structures.

Information Value
Data type Boolean
Default True (selected)

URL prefix for V3 GET servlet:

Specifies the prefix for the URL to the Version 3 GET servlet that retrieves the XML representation of a
published entity. This property applies to UDDI Version 3 API requests only.

Chapter 35. Administering web services - UDDI registry 3659



The format of the prefix is http://hostname:port/uddiv3soap/, where uddiv3soap is the context root of the
UDDI Version 3 SOAP servlet.

When a businessEntity entity is published, if Node generates discovery URLs is selected, the
discoveryURL value is generated based on this prefix value. Otherwise, the discoveryURL value is empty.

The UDDI Version 3 specification recommends that you do not enable generation of discoveryURL URLs
because they can affect the use of digital signatures. If you do enable generation of discoveryURL URLs,
do not change the URL prefix later. Otherwise discoveryURL URLs that were generated using the earlier
URL prefix no longer work.

Information Value
Data type URL
Default http://localhost:9080/uddiv3soap/

UDDI registry administrative (JMX) interface
You can use the UDDI registry administrative interface to inspect and manage the runtime configuration of
a UDDI application. You can manage the information about a UDDI node and its activation state, update
properties and policies, set publish tier limits, register UDDI publishers, and control value set support.

You can read and invoke the operations of the UDDI registry administrative interface by using standard
Java Management Extensions (JMX) interfaces. For more information about using JMX administrative
programs, see the related links.

Each WebSphere Application Server UDDI registry application registers an MBean with an MBean
identifier of UddiNode. Client applications can use this MBean to inspect and manage the runtime
configuration of a UDDI application. Management activities include managing the activation state of a
UDDI node, managing information about a UDDI node, updating properties and policies, setting publish tier
limits, registering UDDI publishers, and controlling value set support.

You can read and invoke the UddiNode attributes and operations by using standard JMX interfaces. A
UddiNodeProxy.java client utility class provides a ready-made application to connect to a UddiNode
MBean and perform all the available operations. Example classes are also provided to drive
UddiNodeProxy and demonstrate how to use the various UDDI management data types.

When WebSphere Application Server security is enabled, you can invoke the operations of the UddiNode
MBean only if you are a user in an administrative role. Operations that make updates require the
administrator or operator role. Administrator, operator, configurator and monitor roles can perform get
operations.

Management of UDDI node states and attributes
You can use the UDDI registry administrative interface to manage the information about a UDDI node and
its activation state.

UDDI nodes can be in one of several states, depending on the way the UDDI application is installed. The
UddiNode MBean provides four read-only attributes:

v nodeID

v nodeState

v nodeDescription

v nodeApplicationName

The following MBean operations change the state of the UDDI node:

v activateNode

3660 Administering WebSphere applications



v deactivateNode

v initNode

nodeID
The node ID is the unique identifier for a UDDI node. If the UDDI application is installed as a
default configuration, the node ID is generated automatically. If the UDDI application is installed
manually, the administrator sets the node ID. The node ID must be a valid UDDI key.

String nodeID = uddiNode.getNode();

System.out.println("node ID: " + nodeId);

nodeState
The nodeState attribute can have one of the values in the following table:

Table 345. nodeState attribute values. The table lists different nodeState values along with the English text
associated with each one.

nodeState value English text associated with state

node.state.uninitialized Not initialized

node.state.initialized Initialized

node.state.initPending Initialization pending

node.state.initInProgress Initialization in progress

node.state.initMigrationPending Migration pending

node.state.initMigration Migration in progress

node.state.initValueSetCreationPending Value set creation pending

node.state.initValueSetCreation Value set creation in progress

node.state.activated Activated

node.state.deactivated Deactivated

node.state.unknown Unknown

After a UDDI application is installed as a default configuration,, the UDDI node is in activated
state, that is, ready to receive and process UDDI API requests. The node ID, root key generator,
and some other properties are generated and you cannot change them.

After a UDDI application is installed manually, for example, because you want to specify the UDDI
node ID and root key generator values, when the UDDI application starts, the UDDI node is in
initPending state. In this state, you can update all writable values until you invoke the initNode
operation. The initNode operation loads base tModel entities and value set data, and writes all the
configuration data to the database for the UDDI node. During initialization, the UDDI node is in
initInProgress state. When initialization completes, the state changes momentarily to initialized and
settles at activated. At this point, the state can be switched only between the activated and
deactivated states, using the deactivateNode and activateNode MBean operations.

Each node state value is a message key that can be looked up in the messages.properties
resource bundle. You can retrieve the attribute value by using the getNodeState method of the
UddiNodeProxy class.

1. Invoke the getNodeState method:
String nodeStateKey = uddiNode.getNodeState();

2. Look up translated text from the resource bundle and produce it as output:
String messages = "com.ibm.uddi.v3.management.messages";

ResourceBundle bundle = ResourceBundle.getBundle(messages,Locale.ENGLISH);

String nodeStateText = bundle.getString(nodeStateKey);

System.out.println("node state: " + nodeStateText);

Chapter 35. Administering web services - UDDI registry 3661



nodeDescription
You can get the administrator-assigned description for the UDDI node by using the
getNodeDescription method of the UddiNodeProxy class.

v Invoke the getNodeDescription method and produce output:
String nodeDescription = uddiNode.getNodeDescription();
System.out.println("node description: " + nodeDescription);

nodeApplicationName
You can use the nodeApplicationName attribute to discover where the UDDI application that
corresponds to the UDDI node is installed. The value is a concatenation of the cell, node, and
server names, separated by colons. To retrieve the application location, use the getApplicationId
method of the UddiNodeProxy class.

v Invoke the getApplicationId method and produce output:
String nodeApplicationId = uddiNode.getApplicationId();

System.out.println("node application location: " + nodeApplicationId);

activateNode
Changes the state of the UDDI node to activated, if the UDDI node is currently deactivated.

v Invoke the activateNode operation:
uddiNode.activateNode();

deactivateNode
Changes the state of the UDDI node to deactivated, if the UDDI node is currently activated.

v Invoke the deactivateNode operation:
uddiNode.deactivateNode();

initNode
Initializes the UDDI node. When initialization completes, the UDDI node is in the activated state.

v Invoke the initNode operation:
uddiNode.initNode();

Management of UDDI node configuration properties
You can use the UDDI registry administrative interface to manage the UDDI node runtime behavior by
setting the configuration properties.

UDDI node runtime behavior is affected by the setting of several configuration properties. The UddiNode
MBean provides the following operations to inspect and update the configuration properties:

v getProperties

v getProperty

v updateProperty

v updateProperties

In the samples for WebSphere Application Server, the ManagePropertiesSample class in the UDDI registry
samples demonstrates these operations.

getProperties
Returns a collection of all configuration properties as ConfigurationProperty objects.

1. Invoke the getProperties operation:
List properties = uddiNode.getProperties();

2. Cast each collection member to the ConfigurationProperty object:
if (properties != null) {

for (Iterator iter = properties.iterator(); iter.hasNext();) {
ConfigurationProperty property = (ConfigurationProperty) iter.next();
System.out.println(property);

}
}

3662 Administering WebSphere applications



When you have the ConfigurationProperty objects, you can inspect attributes such as the ID,
value, and type. You can determine whether the property is read-only or required for initialization,
and get the name and description message keys. For example, if you invoke the toString method,
results similar to the following example are returned:

ConfigurationProperty
id: operatorNodeIDValue
nameKey: property.name.operatorNodeIDValue
descriptionKey: property.desc.operatorNodeIDValue
type: java.lang.String
value: uddi:capnscarlet:capnscarlet:server1:default
unitsKey:
readOnly: true
required: true
usingMessageKeys: false
validValues: none

You can use the nameKey and descriptionKey values to look up the translated name and
description for a given locale, using the messages.properties resource in the sample package.

getProperty
Returns the ConfigurationProperty object with the specified ID. Available property IDs are specified
in PropertyConstants with descriptions of the purpose of the corresponding properties.

1. Invoke the getProperty operation:
ConfigurationProperty property =
uddiNode.getProperty(PropertyConstants.DATABASE_MAX_RESULT_COUNT);

2. To retrieve the value of the property, you can use the getValue method, which returns an
Object, but in this case, the property is an integer type, so it is easier to retrieve the value by
using the convenience method getIntegerValue:

int maxResults = property.getIntegerValue();

updateProperty
Updates the value of the ConfigurationProperty object with the specified ID. Available property IDs
are specified in PropertyConstants with descriptions of the purpose of the corresponding
properties. Although you can invoke the setter methods in a ConfigurationProperty object, the only
value that is updated in the UDDI node is the value. To update a property, typically, use the
following steps:

1. Create a ConfigurationProperty object and set its ID:
ConfigurationProperty defaultLanguage = new ConfigurationProperty();
defaultLanguage.setId(PropertyConstants.DEFAULT_LANGUAGE);

2. Set the value:
defaultLanguage.setStringValue("ja");

3. Invoke the updateProperty operation:
uddiNode.updateProperty(defaultLanguage);

updateProperties
Updates several ConfigurationProperty objects in a single request. Set up the
ConfigurationProperty objects in the same way as for the updateProperty operation.

1. Add the updated properties to a list:
List updatedProperties = new ArrayList();

updatedProperties.add(updatedProperty1);
updatedProperties.add(updatedProperty2);

2. Invoke the updateProperties operation:
uddiNode.updateProperties(updatedProperties);

Management of UDDI node policies
You can use the UDDI registry administrative interface to manage policies that affect the UDDI API.

The UddiNode MBean provides the following operations to manage the policies that affect the behavior of
the UDDI API:

Chapter 35. Administering web services - UDDI registry 3663



v getPolicyGroups

v getPolicyGroup

v getPolicy

v updatePolicy

v updatePolicies

In the samples for WebSphere Application Server, the ManagePoliciesSample class in the UDDI registry
samples demonstrates these operations.

getPolicyGroups
Returns a collection of all the policy groups as PolicyGroup objects.

1. Invoke the getPolicyGroups operation:
List policyGroups = uddiNode.getPolicyGroups();

2. Cast each collection member to PolicyGroup:
if (policyGroups != null) {
for (Iterator iter = policyGroups.iterator(); iter.hasNext();) {

PolicyGroup policyGroup = (PolicyGroup) iter.next();
System.out.println(policyGroup);
}

}

Each policy group has an ID, name, and description key, which you can look up in the
messages.properties resource in the sample package. Although the PolicyGroup class does have
a getPolicies method, PolicyGroup objects that are returned by the getPolicyGroups operation do
not contain any Policy objects. Because of this behavior, clients can determine the known policy
groups, and their IDs, without retrieving the entire set of policies in one request. To retrieve the
policies in a policy group, use the getPolicyGroup operation.

getPolicyGroup
Returns the PolicyGroup object with the supplied ID.

1. Convert the policy group ID to a string:
String groupId = Integer.toString(PolicyConstants.REG_APIS_GROUP);

2. Invoke the getPolicyGroup operation:
PolicyGroup policyGroup = uddiNode.getPolicyGroup(groupId);

getPolicy
Returns the Policy object for the specified ID. As with a configuration property, a Policy object has
an ID, name and description keys, type, value, and indicators that specify whether the policy is
read-only or required for node initialization.

1. Convert the policy ID to a string:
String policyId = Integer.toString(

PolicyConstants.REG_AUTHORIZATION_FOR_INQUIRY_API);

2. Invoke the getPolicy operation:
Policy policy = uddiNode.getPolicy(policyId);

updatePolicy
Updates the value of the Policy object with the specified ID. Available policy IDs are specified in
PolicyConstants with descriptions of the purpose of the corresponding policies. Although you can
invoke the setter methods in a Policy object, the only value that is updated in the UDDI node is
the value. To update a policy, typically, use the following steps:

1. Create a Policy object and set its ID:
Policy updatedPolicy = new Policy();
String policyId = Integer.toString(PolicyConstants.REG_SUPPORTS_UUID_KEYS);
updatedPolicy.setId(policyId);

2. Set the value:
updatedPolicy.setBooleanValue(true);

3. Invoke the updatePolicy operation:

3664 Administering WebSphere applications



uddiNode.updatePolicy(updatedPolicy);

updatePolicies
Updates several Policy objects in a single request. Set up the Policy objects in the same way as
for the updatePolicy operation.

1. Add updated policies to a list:
List updatedPolicies = new ArrayList();

updatedPolicies.add(updatedPolicy1);
updatedPolicies.add(updatedPolicy2);

2. Invoke the updatePolicies operation:
uddiNode.updatePolicies(updatedPolicies);

Management of UDDI node tiers
You can use the UDDI registry administrative interface to set publish tier limits, which control the number
of each type of UDDI entity that a publisher can save in the UDDI registry.

A tier has an ID, an administrator-defined name and description, and a set of limits, one for each type of
entity. The UddiNode MBean provides the following operations to manage tiers:

v createTier

v getTierDetail

v getTierInfos

v getLimitInfos

v setDefaultTier

v updateTier

v deleteTier

v getUserCount

In the samples for WebSphere Application Server, the ManageTiersSample class in the UDDI registry
samples demonstrates these operations.

createTier
Creates a new tier, with specified publish limits for each UDDI entity.

1. Set the tier name and description in a TierInfo object.
String tierName = "Tier 100";
String tierDescription = "A tier with all limits set to 100.";

TierInfo tierInfo = new TierInfo(null, tierName, tierDescription);

2. Define Limit objects for each UDDI entity:
List limits = new ArrayList();

Limit businessLimit = new Limit();
businessLimit.setIntegerValue(100);

businessLimit.setId(LimitConstants.BUSINESS_LIMIT);

Limit serviceLimit = new Limit();
serviceLimit.setIntegerValue(100);
serviceLimit.setId(LimitConstants.SERVICE_LIMIT);

Limit bindingLimit = new Limit();
bindingLimit.setIntegerValue(100);
bindingLimit.setId(LimitConstants.BINDING_LIMIT);

Limit tModelLimit = new Limit();
tModelLimit.setIntegerValue(100);
tModelLimit.setId(LimitConstants.TMODEL_LIMIT);

Limit assertionLimit = new Limit();
assertionLimit.setIntegerValue(100);

assertionLimit.setId(LimitConstants.ASSERTION_LIMIT);

Chapter 35. Administering web services - UDDI registry 3665



limits.add(businessLimit);
limits.add(serviceLimit);
limits.add(bindingLimit);
limits.add(tModelLimit);
limits.add(assertionLimit);

3. Create the Tier object:
Tier tier = new Tier(tierInfo, limits);

4. Invoke the createTier operation and retrieve the created tier:
Tier createdTier = uddiNode.createTier(tier);

5. Inspect the generated tier ID of the created tier:
tierId = createdTier.getId();
System.out.println("created tier has ID: " + tierId);

getTierDetail
Returns the Tier object for the given tier ID. The Tier class has getter methods for the tier ID, tier
name and description, as set by the administrator, and the collection of Limit objects, which specify
how many of each UDDI entity type UDDI publishers that are allocated to the tier can publish. The
isDefault method indicates whether the tier is the default tier, that is, the tier that is allocated to
UDDI publishers when auto registration is enabled.

v Invoke the getTierDetail operation:
Tier tier = uddiNode.getTierDetail("2");

updateTier
Updates the tier contents with the supplied Tier object.

1. Update an existing Tier object, which might be newly instantiated, or returned by the
getTierDetail or createTier operations. The following example retains the tier name, description,
and all the limit values except the limit that is updated:

modifiedTier.setName(tier.getName());
modifiedTier.setDescription(tier.getDescription());

Limit tModelLimit = new Limit();
tModelLimit.setId(LimitConstants.TMODEL_LIMIT);
tModelLimit.setIntegerValue(50);

List updatedLimits = new ArrayList();
updatedLimits.add(tModelLimit);

modifiedTier.setLimits(updatedLimits);

2. Invoke the updateTier operation:
uddiNode.updateTier(modifiedTier);

getTierInfos
Returns a collection of lightweight tier descriptor objects (TierInfo) that contain the tier ID, tier
name, tier description, and whether the tier is the default tier.

1. Invoke the getTierInfos operation:
List tierInfos = uddiNode.getTierInfos();

2. Output the content of each TierInfo object:
if (tierInfos != null) {

for (Iterator iter = tierInfos.iterator(); iter.hasNext();) {
TierInfo tierInfo = (TierInfo) iter.next();
System.out.println(tierInfo);

}
}

setDefaultTier
Specifies that the tier with the given tier ID is the default tier. The default tier is the tier that is
allocated to UDDI publishers when auto registration is enabled. Typically, you set this to a tier with
low publish limits to stop casual users from publishing too many entities.

v Invoke the setDefaultTier operation:
uddiNode.setDefaultTier("4");

3666 Administering WebSphere applications



deleteTier
Removes the tier with the given tier ID. Tiers can be removed only if they have no UDDI
publishers assigned to them, and the tier is not the default tier.

1. Invoke the deleteTier operation:
uddiNode.deleteTier("4");

getUserCount
Returns the number of UDDI publishers that are assigned to the tier that is specified by the tier ID.

v Invoke the getUserCount operation:
Integer userCount = uddiNode.getUserCount("4");
System.out.println("users in tier 4: " + userCount.intValue());

getLimitInfos
Returns a collection of Limit objects that represent the limit values for each type of UDDI entity.
Limits are used in Tier objects.

getLimitInfos:

Returns collection of Limit objects representing the limit values for each type of UDDI entity. Limits are
used in Tier objects.

1. Invoke the getLimitInfos operation:
List limits = uddiNode.getLimitInfos();

2. Output the ID and limit value for each Limit object:
for (Iterator iter = limits.iterator(); iter.hasNext();) {

Limit limit = (Limit) iter.next();

System.out.println("limit ID: " + limit.getId() + ", limit value: "
+ limit.getIntegerValue());

}

Management of UDDI publishers
You can use the UDDI registry administrative interface to register UDDI publishers.

Managing UDDI publishers

The UddiNode MBean provides the following operations to manage UDDI publishers:

v createUddiUser

v createUddiUsers

v updateUddiUser

v deleteUddiUser

v getUddiUser

v getUserInfos

v getEntitlementInfos

v assignTier

v getUserTier

v

In the samples for WebSphere Application Server, the ManagePublishersSample class in the UDDI registry
samples demonstrates these operations. An example is provided for each, making use of the
UddiNodeProxy client class.

createUddiUser
Registers a single UDDI publisher in a specified tier with specified entitlements. The UddiUser
class represents the UDDI publisher, and is constructed using a user ID, a TierInfo object that
specifies the tier ID to allocate the UDDI publisher to, and a collection of Entitlement objects that
specify what the UDDI publisher is permitted to do.

Chapter 35. Administering web services - UDDI registry 3667



Tip: To allocate the UDDI publisher default entitlements, set the entitlements parameter to null.

1. Create the UddiUser object:
UddiUser user = new UddiUser("user1", new TierInfo("3"), null);

2. Invoke the createUddiUser operation:
uddiNode.createUddiUser(user);

createUddiUsers
Registers multiple UDDI publishers. The following example shows how to register seven UDDI
publishers with default entitlements in one call.

1. Create TierInfo objects for the tiers that the publishers are allocated to:
TierInfo tier1 = new TierInfo("1");
TierInfo tier4 = new TierInfo("4");

2. Create UddiUser objects for each UDDI publisher, specifying the tier for each publisher:
UddiUser publisher1 = new UddiUser("Publisher1", tier4, null);
UddiUser publisher2 = new UddiUser("Publisher2", tier4, null);
UddiUser publisher3 = new UddiUser("Publisher3", tier4, null);
UddiUser publisher4 = new UddiUser("Publisher4", tier1, null);
UddiUser publisher5 = new UddiUser("Publisher5", tier1, null);
UddiUser cts1 = new UddiUser("cts1", tier4, null);
UddiUser cts2 = new UddiUser("cts2", tier4, null);

3. Add the UddiUser objects to a list:
List uddiUsers = new ArrayList();

uddiUsers.add(publisher1);
uddiUsers.add(publisher2);
uddiUsers.add(publisher3);
uddiUsers.add(publisher4);
uddiUsers.add(publisher5);
uddiUsers.add(cts1);
uddiUsers.add(cts2);

4. Invoke the createUddiUsers operation:
uddiNode.createUddiUsers(uddiUsers);

updateUddiUser
Updates a UDDI publisher with the details in the supplied UddiUser object. Typically, you use this
operation to change the tier of one UDDI publisher or to update the entitlements of a UDDI
publisher. Supply only the entitlements that you want to update; other available entitlements retain
their existing values.

1. Create Entitlement objects with the appropriate permission. The entitlement IDs are found in
EntitlementConstants.

Entitlement publishUuiDKeyGenerator =
new Entitlement(PUBLISH_UUID_KEY_GENERATOR, true);

Entitlement publishWithUuidKey =
new Entitlement(PUBLISH_WITH_UUID_KEY, true);

2. Add the Entitlement objects to a list:
List entitlements = new ArrayList();
entitlements.add(publishUuiDKeyGenerator);
entitlements.add(publishWithUuidKey);

3. Update a UddiUser object with the updated entitlements:
user.setEntitlements(entitlements);

4. Invoke the updateUddiUser operation:
uddiNode.updateUddiUser(user);

getUddiUser
Retrieves details about a UDDI publisher in the form of a UddiUser object. This specifies the UDDI
publisher ID, information about the tier the UDDI publisher is assigned to and the entitlements of
the UDDI publisher.

1. Invoke the getUddiUser operation:
UddiUser user1 = uddiNode.getUddiUser("user1");

2. Output the contents of the UddiUser object:

3668 Administering WebSphere applications



System.out.println("retrieved user: " + user1);

getUserInfos
Returns a collection of UserInfo objects. Each UserInfo object represents a UDDI publisher that is
known to the UDDI node, and the tier that the UDDI publisher is allocated to. To get more details
about a specific UDDI publisher, including the tier ID and entitlements, use the getUddiUser
operation.

1. Invoke the getUserInfos operation:
List registeredUsers = uddiNode.getUserInfos();

2. Output the UserInfo objects:
System.out.println("retrieved registered users: ");
System.out.println(registeredUsers);

getEntitlementInfos
Returns a collection of Entitlement objects. Each entitlement is a property that controls whether a
UDDI publisher has permission to undertake a specified action.

1. Invoke the getEntitlementInfos operation:
List entitlementInfos = uddiNode.getEntitlementInfos();

2. Specify where to find message resources:
String messages = "com.ibm.uddi.v3.management.messages";
ResourceBundle bundle = ResourceBundle.getBundle(messages, Locale.ENGLISH);

3. Iterate through the Entitlement objects, displaying the ID, name, and description:
for (Iterator iter = entitlementInfos.iterator(); iter.hasNext();) {

Entitlement entitlement = (Entitlement) iter.next();

StringBuffer entitlementOutput = new StringBuffer();

String entitlementId = entitlement.getId();
String entitlementName = bundle.getString(entitlement.getNameKey());
String entitlementDescription =

bundle.getString(entitlement.getDescriptionKey());

entitlementOutput.append("Entitlement id: ");
entitlementOutput.append(entitlementId);
entitlementOutput.append("\n name: ");
entitlementOutput.append(entitlementName);
entitlementOutput.append("\n description: ");
entitlementOutput.append(entitlementDescription);

System.out.println(entitlementOutput.toString());
}

deleteUddiUser
Removes the UDDI publisher with the specified user ID from the UDDI registry.

v Invoke the deleteUddiUser operation:
uddiNode.deleteUddiUser("user1");

assignTier
Assigns the UDDI publishers with the supplied IDs to the specified tier. This operationis useful
when you want to restrict several UDDI publishers, for example by assigning them to a tier that
does not allow publishing of any entities.

1. Create a list of publisher IDs:
List uddiUserIds = new ArrayList();

uddiUserIds.add("Publisher1");
uddiUserIds.add("Publisher2");
uddiUserIds.add("Publisher3");
uddiUserIds.add("Publisher4");
uddiUserIds.add("Publisher5");
uddiUserIds.add("cts1");
uddiUserIds.add("cts2");

2. Invoke the assignTier operation:
uddiNode.assignTier(uddiUserIds, "0");

Chapter 35. Administering web services - UDDI registry 3669



getUserTier
Returns information about the tier that a UDDI publisher is assigned to. The returned TierInfo has
getter methods for retrieving the tier ID, tier name, tier description, and whether the tier is the
default tier.

1. Invoke the getUserTier operation:
TierInfo tierInfo = getUserTier("Publisher3");

2. Output the contents of the TierInfo object:
System.out.println(tierInfo);

Management of UDDI node value sets
You can use the UDDI registry administrative interface to inspect and manage the runtime configuration of
a UDDI application. You can manage the information about a UDDI node and its activation state, update
properties and policies, set publish tier limits, register UDDI publishers, and control value set support.

Value sets are represented in a UDDI registry as value set tModel entities, with a keyedReference UDDI
type with the value categorization. Such value sets are backed with a set of valid values. For user-defined
value sets, this data is loaded into the UDDI registry using UddiNode MBean operations, although it is
more convenient to do this using the User defined value set tool.

Each value set can be controlled by policy as being supported or not supported. When a value set is
supported by policy, it can be referenced in UDDI publish requests. The UddiNode MBean provides the
following operations to manage value sets and their data:

v getValueSets

v getValueSetDetail

v getValueSetProperty

v updateValueSet

v updateValueSets

v loadValueSet

v changeValueSetTModelKey

v unloadValueSet

v isExistingValueSet

In the samples for WebSphere Application Server, the ManageValueSetsSample class in the UDDI registry
samples demonstrates these operations.

getValueSets
Returns a collection of ValueSetStatus objects.

1. Invoke the getValueSets operation:
List valueSets = uddiNode.getValueSets();

2. Cast each element to ValueSetStatus and output contents:
for (Iterator iter = valueSets.iterator(); iter.hasNext();) {

ValueSetStatus valueSetStatus = (ValueSetStatus) iter.next();
System.out.println(valueSetStatus);

}

getValueSetDetail
Returns a ValueSetStatus object for the given value set tModel key.

1. Invoke the getValueSetDetail operation:
uddiNode.getValueSetDetail("uddi:uddi.org:ubr:categorization:naics:2002");

2. Retrieve and display the details:
String name = valueSetStatus.getName();
String displayName = valueSetStatus.getDisplayName();
boolean supported = valueSetStatus.isSupported();

3670 Administering WebSphere applications



System.out.println("name: " + name);
System.out.println("display name: " + displayName);
System.out.println("supported: " + supported);

3. Display the value set properties:
List properties = valueSetStatus.getProperties();

for (Iterator iter = properties.iterator(); iter.hasNext();) {

ValueSetProperty property = (ValueSetProperty) iter.next();
System.out.println(property);

}

getValueSetProperty
Returns a property of a value set as a ValueSetProperty object. This operation is mainly for the
administrative console to render properties of a value set as a row in a table. For example, one
such property is the keyedReference property, which indicates whether the value set is checked.

1. Invoke the getValueSetProperty operation:
uddiNode.getValueSetProperty("uddi:uddi.org:ubr:categorization:naics:2002",

ValueSetPropertyConstants.VS_CHECKED);

2. Read and display the boolean value of the property:
boolean checked = valueSetProperty.getBooleanValue();

System.out.println("checked: " + checked);

updateValueSet
Updates the value set status. Only the supported attribute can be updated. All other setter
methods are used by the UDDI application.

1. Create a ValueSetStatus object specifying the tModel key and the updated supported value:
ValueSetStatus updatedStatus = new ValueSetStatus();
updatedStatus.setTModelKey("uddi:uddi.org:ubr:categorization:naics:2002");
updatedStatus.setSupported(true);

2. Invoke the updateValueSet operation:
uddiNode.updateValueSet(updatedStatus);

updateValueSets
Updates the value set status for multiple value sets. Similarly to the updateValueSet operation,
only the supported attribute is updated.

1. Populate the list with updated ValueSetStatus objects:
List valueSets = new ArrayList();

ValueSetStatus valueSetStatus = new ValueSetStatus();
valueSetStatus.setTModelKey("uddi:uddi.org:ubr:categorization:naics:2002");
valueSetStatus.setSupported(false);
valueSets.add(valueSetStatus);

valueSetStatus = new ValueSetStatus();
valueSetStatus.setTModelKey("uddi:uddi.org:ubr:categorizationgroup:wgs84");
valueSetStatus.setSupported(false);
valueSets.add(valueSetStatus);

valueSetStatus = new ValueSetStatus();
valueSetStatus.setTModelKey("uddi:uddi.org:ubr:identifier:iso6523:icd");
valueSetStatus.setSupported(false);
valueSets.add(valueSetStatus);

2. Invoke the updateValueSets operation:
uddiNode.updateValueSets(valueSets);

loadValueSet
Loads values for a value set from a UDDI registry Version 3 or Version 2 taxonomy data file on the
local file system.

Note: There is also a loadValueSet operation that takes a ValueSetData object, but this is only for
use by the user-defined value set tool.

Chapter 35. Administering web services - UDDI registry 3671



1. Invoke the loadValueSet operation:

uddiNode.loadValueSet("/valuesets/myvalueset.txt",
"uddi:cell:node:server:myValueSet");

changeValueSetTModelKey
Allocate any value set values that are allocated to one value set tModel to a new value set tModel.

v Invoke the changeValueSetTModelKey operation, specifying old and new tModel keys:
uddiNode.changeValueSetTModelKey(
"uddi:cell:node:server:myValueSet",
"uddi:cell:node:server:myNewValueSet");

unloadValueSet
Unloads values for a value set with the given tModel key.

v Invoke the unloadValueSet operation:
uddiNode.unloadValueSet("uddi:myValueSet");

isExistingValueSet
Determines whether value set data exists for the given tModel key.

1. Invoke the isExistingValueSet operation and display the result:
boolean exists = uddiNode.isExistingValueSet(

"uddi:uddi.org:ubr:categorization:naics:2002");
System.out.println("NAICS 2002 is a value set: " + exists);

User-defined value set support in the UDDI registry
You can define multiple value sets and add custom value sets to the UDDI Version 3 registry. In UDDI
Version 2, this feature was called custom taxonomy support.

The UDDI Version 3 registry provides the structure and modeling tools to find information in a registry
effectively. Also, the verification of data in a UDDI registry is crucial to its mission of description, discovery
and integration.

You can define multiple value sets to use UDDI. Therefore, multiple classification schemes can be overlaid
on a single UDDI entity. Organizations can use this capability to extend the set of such systems that UDDI
registries support. You are not restricted to a single system, but can employ several different classification
systems simultaneously.

Default value sets are shipped with the product. The UDDI Version 3 registry provides tools to add custom,
or user-defined, value sets. You can use such value sets to categorize UDDI entities more specifically
when they are published, which enhances the capability of client to find specific data.

User-defined value sets can be either checked or unchecked. This is indicated by a keyedReference
element in the categoryBag element of the tModel entity that represents a value set (a categorization
tModel). These keyedReference elements have the tModel key for uddi-org:types and are added to the
categoryBag to further describe the behavior of the categorization tModel, as follows:
checked

Marking a tModel entity with this classification asserts that the entity represents a categorization,
identifier, or namespace tModel entity that has a validation service to check that category values
are present in a specified value set.

unchecked
Marking a tModel entity with this classification asserts that the entity represents a categorization,
identifier, or namespace tModel entity that does not have a validation service.

The following procedure describes how to add user-defined value sets, and display their allowed values in
the UDDI user console value set tree display. Rational Application Developer has a Web Services Explorer

3672 Administering WebSphere applications



user interface that also allows addition and display of custom checked value sets. The publisher of a value
set categorization tModel entity might specify a display name for use in UDDI user console
implementations.

Adding a user-defined value set

To add a user-defined value set to the UDDI registry, use the following procedure:

1. Publish a categorization tModel entity.

2. Load the user-defined value set data.

3. Enable support for the value set by using the administrative console.

To enable support for the value set, you must be a user in an administrative role. This means that you
cannot add user-defined value sets to the UDDI registry without administrator permission.

The checked value set is referenced only when all steps of the procedure are complete. Value set data
must be provided for validating checked value sets.

User consoles might use value set data for unchecked value sets, but it is not a requirement, and is
usually used only for presentation of deprecated value sets, such as unspc-org:unspc, and for compatibility
with earlier versions.

If the value set is checked, any publish requests that have a categoryBag element that contains
keyedReference elements with the new categorization tModel are validated. If there is value set data
corresponding to the categorization tModel entity in the registry database, only valid values are accepted.
If there is no value set data in the database, all values are rejected and the publish request fails. If the
categorization tModel entity is unchecked, all values are allowed, regardless of whether a corresponding
value set is present in the UDDI registry database. The value set tModel entity is not available for use until
the administrator enables support for it by using the administrative console or the JMX interface.

The following procedure provides a suggested approach to add a user-defined value set to the UDDI
registry:
1. Publish the categorization tModel entity with the following values:

keyedReference element values

uddi-org:categorization:types keyValue = categorization

uddi-org:categorization:types keyName = Checked value set and keyValue = checked

or

keyName = Unchecked value set and keyValue =
unchecked

uddi-org:categorization:general_keywords supply the value set display name

2. Load the user-defined value set data into the UDDI registry database using the
UDDIUserDefinedValueSet utility.

3. Use the administrative console to set the status of the value set to supported in the Value set settings.
Alternatively, you can do this directly by using the JMX interface.

The SOAP and Enterprise JavaBeans (EJB) interfaces can use categorization tModel entities as soon as
they are published. However, for the UDDI registry user console, the UDDI application must be restarted,
because the console gathers the list of categorizations to use in the value set tree display when the
application starts.

Publish a checked categorization tModel entity
You publish a checked categorization tModel entity as the first step in the procedure to add a user-defined
value set to the UDDI registry.

Chapter 35. Administering web services - UDDI registry 3673



This topic describes how to publish a checked categorization tModel entity with the keyName “Checked
value set” for a user-defined value set to use.

Publish a tModel entity to the UDDI registry with a categoryBag element that contains the keyedReference
elements shown in the following table.

Table 346. keyedReference elements for a checked categorization tModel entity. The table lists different tModelKey
elements along with their KeyName, KeyValue and additional user notes.
tModelKey KeyName KeyValue Notes

uddi:uddi-org:categorization:types categorization categorization To choose this tModelKey in the
UDDI registry user interface,
select the category type UDDI
Types.

This element indicates that this
tModel entity is a categorization
tModel entity (required).

uddi:uddi-org:categorization:types Checked value set checked To choose this tModelKey in the
UDDI registry user interface,
select the category type UDDI
Types.

This element indicates that use
of the tModel entity is checked
against a list of valid data
(required). If this
keyedReference element is
omitted, or a value of
unchecked is specified, this
indicates that this categorization
is unchecked.

uddi:uddi-
org:categorization:general_keywords

urn:x-
ibm:uddi:customTaxonomy:displayName

user-defined Value Set
displayName

To choose this tModelKey in the
UDDI registry user interface,
select the category type
categorization:
general_keywords.

This element indicates special
use of the general keywords
value set, with a proprietary
uniform resource name (URN)
as the keyName value, defines
a name for the user-defined
value set that is intended for
use in user console
implementations where the full
tModel name might be too long.
The value can be 1-255
characters (inclusive) long.

You can use the displayName value to give a value set a label that is meaningful to users, that is greater
than 8 characters, and that is different to the published tModelName, which might be as long as 255
characters. The UDDI user console can display this label in a value set tree or in a drop-down list of
available value sets. The following diagram shows an example:

3674 Administering WebSphere applications



It is advisable to specify a unique name for urn:x-ibm:customTaxonomy:displayName to avoid confusion
when it is displayed in user interfaces.

To publish a new categorization tModel that uses SOAP, use the following message:
<save_tModel generic=“3.0” xmlns=“urn:uddi-org:api_v3”>
<authInfo></authInfo>>
<tModel tModelKey=“”“”>
<name>Natural Foods tModel</name>
<categoryBag>
<keyedReference tModelKey=“uddi:uddi.org:categorization:types”
keyName=“categorization” keyValue=“categorization”/>

<keyedReference tModelKey=“uddi:uddi.org:categorization:types”
keyName=“Checked value set” keyValue=“checked”/>

<keyedReference tModelKey=“uddi:uddi.org:categorization:general_keywords”
keyName=“urn:x-ibm:uddi:customTaxonomy:displayName”
keyValue=“Natural Foods”/>

</categoryBag>
</tModel>

</save_tModel>

Tip: To specify an unchecked categorization, change the keyName value from “Checked value set” to
“Unchecked value set” and change the keyValue value from checked to unchecked. Alternatively, omit
that keyedReference element completely.

Load user-defined value set data
You can use the UDDIUserDefinedValueSet utility to load value set data into the UDDI registry, assign
existing value set data to another tModel entity, and unload existing value set data. You load value set
data as a step in the procedure to add a user-defined value set to the UDDI registry.

Format of the value set data file

Value set data is identified by a unique code value, an optional description, and a parent code that
specifies its relationship with other code values. Value set data must adhere to this format.

Figure 56. Use of the display name in the UDDI user console

Chapter 35. Administering web services - UDDI registry 3675



You must save the file in UTF-8 format.

Table 347. Value set data format. The table lists the different value set column names, shows their maximum
character lengths and provides a description of each one.

Column name Maximum length Description of use

code 765 Unique value in the value set, which is used for validation

description 765 Typically used by UDDI user consoles and optionally used in the keyedReference
element as the keyName value

parentcode 765 Indicates the existing code that is the logical parent of this code, and is used in tree
displays

Typically, columns are delimited in the value set data file by number (#) characters, as shown in the
following example:
00#Food#00
10#Fruit#00
101#Apples#10
102#Oranges#10
103#Pears#10
1031#Anjou#103
1032#Conference#103
1033#Bosc#103
104#Pomegranates#10
20#Vegetables#00
201#Carrots#20
202#Potatoes#20
203#Peas#20
204#Sprouts#20

In the example, Food is the description of the root node and it has the child nodes Fruit and Vegetables;
the parentcode values of both these child nodes are the same as the code value of Food.

The value set data in the example file can then be rendered in a tree, as shown in the following example:
Food
Fruit
Apples
Oranges
Pears
Anjou
Conference
Bosc

Pomegranates
Vegetables
Carrots
Potatoes
Peas
Sprouts

UDDIUserDefinedValueSet utility

You can use the UDDIUserDefinedValueSet utility to load value set data into the UDDI registry, assign
existing value set data to another tModel entity, and unload existing value set data. The utility also
supports custom taxonomy files that are used in UDDI Version 2.

This utility uses the UDDI registry JMX interface and therefore requires a number of connection
parameters.

Usage:

UDDIUserDefinedValueSet ’{’function’}’ [options]

Functions:
-load <path> <key> Load value set data from specified file
-newKey <oldKey> <newKey> Move value set to a new tModel
-unload <key> Unload existing value set

3676 Administering WebSphere applications



Options:
-properties <path> Specify location of configuration file
-host <host name> Application Server host
-port <port> SOAP Lister port number
-node <node name> Node running a UDDI server
-server <server name> Server with UDDI deployed
-columnDelimiter <delim> Character delimiter to denote field end
-stringDelimiter <delim> Character delimiter to denote strings

Connector security parameters
-userName <name>
-password <password>
-trustStore <path>
-trustStorePassword <password>
-keyStore <name>
-keyStorePassword <password>

Ensure that the command window that you run the UDDIUserDefinedValueSet utility from uses a suitable
code page and font to display the characters that are in the value set name. If you use an incorrect code
page or font, a successful load might result in unclear messages, and it might be difficult to use the unload
and newKey functions.

The UDDIUserDefinedValueSet script is in the app_server_root/bin directory.

If you do not supply any connection parameters, a connection is sought on the local host using the default
application server SOAP port number.

Command arguments are not case sensitive.

Optionally, you can use the properties parameter to specify a configuration file. This configuration file
determines optional properties that you can also specify on the command line. Properties that are
specified on the command line override the values in the configuration file. These properties are largely
JMX connection parameters and security parameters.

Typically, you use the stringDelimiter parameter when a description value contains the same character as
the column delimiter character. For example, if the columnDelimiter parameter is set to a comma (,) and
there is a value set description value of “Fruits, citrus”, to include this description in the value set data file,
set the stringDelimiter parameter to quotation marks (") and enclose the description in quotes, for example,
"Fruits, citrus". Note that you must set a backslash (\) as an escape character to show that the literal
character is used.

If you attempt to load a value set to a tModel entity that has existing value set data, a warning message is
displayed. To override this warning, you can use the override argument. You also require this argument
when you move value set data to a new tModel entity by using the newKey function when the tModel
entity is checked, and when you unload value set data for a checked tModel entity.

Table 348. Command line arguments and properties. The table lists different command line arguments and their
properties and contains a comment on each one.

Command line arguments
and example data

Property and example data Comments

-columnDelimiter # column.delimiter=# The column delimiter that is used in value set data files.

-stringDelimiter \" string.delimiter=\" The field delimiter. This value must be different from the
column.delimiter value.

-host ibm.com host=ibm.com The host name of the system that is running the application
server

-port 8880 port=8880 The SOAP port number of the application server.

-node ibmNode node=ibmNode The name of the node that runs the server with the UDDI
registry.

-server server1 server=server1 The server that runs the UDDI registry.

Chapter 35. Administering web services - UDDI registry 3677



Table 348. Command line arguments and properties (continued). The table lists different command line arguments
and their properties and contains a comment on each one.

Command line arguments
and example data

Property and example data Comments

-userName ibmuser security.username=ibmuser The user name. This value is required if WebSphere
Application Server security is turned on.

-password mypassword security.password=mypassword The password.

-trustStore /TrustStoreLocation security.truststore=/
TrustStoreLocation

The truststore file location.

-keyStore ibmkeystore security.keystore=ibmkeystore The keystore name.

-trustStorepassword trustpass security.truststore.password=trustpass The truststore password

-keyStorePassword keypass security.keystore.password=keypass The keystore password.

Usage examples

Load value set data for a tModel entity on the local UDDI registry, using the percent sign as a column
marker in the valuesetdata.txt file.

Move value set data from one checked tModel entity to another on a UDDI registry in a network
deployment configuration.

Unload a value set from a tModel entity from a server with security enabled. Supply the connection and
security parameters in the file myproperties.properties, but supply the server and password arguments on
the command line. Arguments that are supplied on the command line augment or override the arguments
in the properties file.

Enable support for a user-defined value set
You can enable support for the value set by using the administrative console. You do this as part of the
procedure to add a user-defined value set to the UDDI registry.

To enable support for the value set, you must be a user in an administrative role. This means that you
cannot add user-defined value sets to the UDDI registry without administrator permission.

Use the following steps in the administrative console:

1. Click UDDI > UDDI Nodes > node_name > [Additional properties] Value sets.

2. Select the value set.

3. Click Enable Support.

Validation and error handling for user-defined value sets
The UDDI registry user console performs validation while a save tModel entity request is built, that is,
before the publish occurs.

For example, if you try to add two customTaxonomy:displayName keyedReference elements, the following
message is displayed:
Advice: Only one ’urn:x-ibm:uddi:customTaxonomy:displayName’ key name is
allowed for the ’Other’ taxonomy.

If a keyedReference element that contains a keyName value that starts with urn:x-
ibm:uddi:customTaxonomy: is followed by anything other than displayName, the following message is
displayed:
Advice: Only key name values of ’urn:x-ibm:uddi:customTaxonomy:displayName’
are supported.

3678 Administering WebSphere applications



For requests where the save_tModel entity message might have multiple tModel entities, if any one of the
tModel entities is a categorization tModel entity and it fails validation, the request fails with a
UDDIInvalidValueException plus additional information to explain the cause, and none of the tModel
entities is published. For example:
E_invalidValue (20200) A value that was passed in a keyValue attribute did not
pass validation. This applies to checked categorizations, identifiers and
other validated code lists. The error text will clearly indicate the key and
value combination that failed validation. Invalid ’customTaxonomy:dbKey’
keyValue [naics] in keyedReference. KeyValue already in use by
tModelKey[UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2]

UDDI Utility Tools
The UDDI Utility Tools is a suite of functions that you can use to migrate, move, or copy UDDI Version 2
entities, including child entities and their respective Version 2 entity keys, into a Version 3 UDDI registry.

To use the UDDI Utility Tools suite, run the UDDIUtilityTools.jar file. This file is in the app_server_root/
UDDIReg/scripts directory. Alternatively, you can invoke all the functions of UDDI Utility Tools through the
supplied public Java API.

The UDDI Utility Tools suite that is supplied in this release has the same functions as the version that is
supplied in WebSphere Application Server Version 6.1. However, all UDDI Utility Tools functions in this
release use the UDDI Version 2 API. Note that Version 2 API does not support publisher-assigned keys.

You can use the UDDI Utility Tools to export from Version 2 and 3 registries (supplying only the Version 2
representation of the UDDI entity key) and import into the Version 3 registry, using Version 2 API types.
Entities from a Version 3 registry are exported as Version 2 entities, so elements such as digital signatures
are not present. See the topic about saving UDDI Version 3 entities with a supplied key for an example of
how to use the Version 3 API to assign your own keys to Version 3 entities.

The UDDI Version 3 Publish API supports publisher-assigned keys, and to promote entities between
Version 3 registries, you use normal API functions.

The UDDI Utility Tools suite also has the following uses:

v You can search and select entities from a source UDDI registry by specifying Version 2 keys or search
criteria.

v You can publish canonical tModel entities in a UDDI registry, including child entities.

v You can persist UDDI (Version 2) entities in an intermediate XML representation so that you can
customize and copy those entities to multiple target UDDI registries, by specifying Version 2 keys.

v You can update existing entities in a target UDDI registry, including child entities.

v You can delete selected entities from a target UDDI registry by specifying Version 2 keys.

The UDDI Utility Tools suite has five main functions:
Export

The export function gets a list of UDDI entities from a specified registry and writes them to the
UDDI entity definition file, using the specified entity types and keys. The entity type for each key
can be business, service, bindingTemplate, or tModel. The entity definition file contains XML that
exactly describes each of the specified entities, according to the UDDI Utility Tools schema, which
includes the UDDI Version 2 schema. The UDDI entity definition file separates entities by type,
and automatically detects and records tModel entities that the specified entities reference. You can
use the “referenced tModels” section of the file to ensure that a target registry includes any
referenced tModel entities before you import new entities to that registry.

Import
The import function detects whether a list of UDDI entities already exist in the target registry and,
if they do not, create a minimal entity, or stub, with the specified key. The UDDI entities can be
supplied through a UDDI entity definition file, or programmatically in a container object. The

Chapter 35. Administering web services - UDDI registry 3679



entities are then published, updating the stubs with the supplied data, and overwriting or ignoring
existing entities, as specified. Note that the original key is maintained throughout.

Promote
The promote function combines the export and import steps such that the specified entities are
extracted (by key) from the source registry and then imported into the target registry in a single
logical step. Optionally, you can generate a UDDI entity definition file.

Delete The delete function deletes the specified entities from the target UDDI registry. The entities to
delete are specified as an entity type, or a list of entity types, and keys, in the same way as for the
export function.

Find matching entities
The find matching entities function finds a set of entities that match the search criteria and
generates a list of entity keys. The search criteria are UDDI Inquiry API objects for each of the
various entity types. You can use the resulting list of entity keys as input to the export, promote,
and delete functions.

Note: This function is available through only the programmatic API.

The following diagram shows relationship between the functions, their input and output, and the
source and target UDDI registries:

UDDI Utility Tools prerequisites
Before you use the UDDI Utility Tools, ensure that the required .jar files are available.

Ensure that the following .jar files are available to the UDDI Utility Tools. You must specify the locations of
the .jar files in the class path in the UDDI Utility Tools properties file:

UDDIUtilityTools.jar
This file is the UDDI Utility Tools .jar file and is in the app_server_root/UDDIReg/scripts directory.

com.ibm.uddi.jar
This file contains the UDDI4J classes and is in the app_server_root/plugins directory.

3680 Administering WebSphere applications



j2ee.jar
This file contains some required Java platform for enterprise applications classes, and is in the
app_server_root/lib directory.

com.ibm.ws.runtime.jar
This file is the Apache SOAP implementation and is in the app_server_root/plugins directory.

DbDriver
This driver is needed for the UDDIUtilityTool to connect to your target database. See the following
table for the values you must specify for your chosen database:

Table 349. DbDriver values for databases. The table details the values needed to connect to different databases.

DB2 Apache Derby Oracle

DBDriverLocation for
class path

DB2_HOME/db2java.zip app_server_root/derby/lib/
derbyclient.jar

ORACLE_HOME/jdbc/lib/
ojdbc6.jar

Driver

com.ibm.db2.jdbc.app.DB2Driver, or
com.ibm.db2.jcc.DB2Driver for a remote
DB2 database.

You can also set up a local alias to the
remote database by using the DB2
client.

com.ibm.db2.jcc.DB2Driver oracle.jdbc.OracleDriver

URL jdbc:db2://host:database_name jdbc:db2j:net://host:1527/
database_name

jdbc:oracle:thin:@host:1521:
database_name

where:

v app_server_root is the directory location of WebSphere Application Server.

v DB2_HOME is the directory location of DB2, for example c:\Program Files\SQLLIB\java12\

v ORACLE_HOME is the directory location of Oracle, for example c:\oracle\ora92\

v database_name is the name of the database. For Apache Derby, ensure that
database_name includes the path to the database, for example profile_root/databases/
com.ibm.uddi/UDDI30

Notes:

v For Apache Derby, make the database network-enabled so that it can handle multiple
connections. For further details, refer to the section about managing the Derby Network
Server in the Derby Server and Administration Guide.

v For DB2, add DB2_HOME/sqllib/lib to your LD_LIBRARY_PATH and
LIBPATH environment variables.

The Security provider configuration section in the configuration properties file shows the location of the
default DummyClientTrustFile.jks file. If you use your own truststore, ensure that the location is placed
here.

The UDDI Utility Tools use UDDI Version 2 SOAP Inquiry and Publish interfaces. These APIs are
protected, as described in the topic about access control for UDDI registry interfaces. The UDDI Utility
Tools also access the UDDI registry database through the database driver, and access to the database is
controlled by the database management system.

UDDI Utility Tools configuration file
Configuration data for UDDI Utility Tools is in a configuration properties file, which describes the runtime
environment, UDDI and database locations and access information, logging information, security
configuration, entity definition file location, and other flags to control whether referenced entities can be
imported, overwritten, or both.

Chapter 35. Administering web services - UDDI registry 3681



A sample configuration properties file, UDDIUtilityTools.properties, is supplied with UDDI Utility Tools. By
default, this file is in the app_server_root/UDDIReg/scripts directory. If you do not specify a properties
path, by default, the configuration properties file is searched for in the current directory.

To set up and use the configuration file, use the following procedure:

1. Modify the sample configuration properties file:

v Set the class path, which must include the current directory (.), the UDDIUtilityTools.jar, and all the
dependent jars, as listed in “UDDI Utility Tools prerequisites” on page 3680. The class path must
include the database driver JAR file, for example, db2java.zip.

v If you are configuring a Java Secure Socket Extension (JSSE) provider, add the .jar file that
contains the provider to the class path. To configure a JSSE provider, set the jsse.provider
property. The default value is com.ibm.jsse.IBMJSSEProvider. To specify the Federal Information
Processing Standard (FIPS) JSSE provider, set the jsse.provider property to
com.ibm.fips.jsse.IBMJSSEFIPSProvider.

v Set other properties as required. For details, see the comments in the sample
UDDIUtilityTools.properties file.

v Change localhost to the name of your server.

v Change the port number 9080 to your internal HTTP port.

2. When you run UDDI Utility Tools, specify the modified configuration properties file.

The following example shows the sample configuration properties file.
##############################################
# Runtime environment #
# (if invoking using java -jar...) #
# "X Y" required around paths with spaces. #
# Replace WAS_HOME with your WebSphere #
# Application Server home path. #
# db2java.zip is for DB2 - replace this with #
# appropriate database driver file. #
##############################################
classpath=.:WAS_HOME/UDDIReg/scripts/UDDIUtilityTools.jar:
WAS_HOME/plugins/com.ibm.ws.runtime.jar:WAS_HOME/plugins/com.ibm.uddi.jar:
WAS_HOME/dev/javaEE/j2ee.jar:/QIBM/UserData/Java400/ext/db2_classes.jar

##############################################
# SOAP entry points for source UDDI #
##############################################
fromInquiryURL=http://localhost:9080/uddisoap/inquiryapi
fromGetURL=http://localhost:9080/uddisoap/get

##############################################
# SOAP entry points for target UDDI #
##############################################
toInquiryURL=http://localhost:9080/uddisoap/inquiryapi
toPublishURL=http://localhost:9080/uddisoap/publishapi

##############################################
# UDDI registry user information #
# #
# Note: This information must match the user #
# information that was used to publish the #
# entities on the target UDDI registry. #
##############################################
userID=UNAUTHENTICATED
password=NONE

##############################################
# Configuration for destination UDDI DB #
# Userid and Password must have authority to #
# the iSeries server and DB #
##############################################
dbDriver=com.ibm.db2.jdbc.app.DB2Driver
dbUrl=jdbc:db2:localhost/ibmudi30
dbUser=iSeriesUserProfile
dbPasswd=iSeriesUserPassword

##############################################

3682 Administering WebSphere applications



# Security provider configuration #
##############################################
# Indicates whether security is required on the target registry
secure.connection=true

# The location of the truststore if security is required
trustStore.fileName=TrustFile.jks

# The password for the trust store
trustStore.password=WebAS

# The JSSE Provider class name
jsse.provider=com.ibm.jsse.IBMJSSEProvider

##############################################
# Trace and message logging configuration #
##############################################
# detail level of message output (all functions)
verbose=true

# detail level of trace output.
# 1: severe
# 2: normal
# 3: detail
traceLevel=3

# path to message log file (relative or absolute)
messageLogFileName=logs/messages.log

# path to trace log file (relative or absolute)
traceLogFileName=logs/trace.log

##############################################
# Miscellaneous Options #
##############################################
# indicates whether existing entities are overwritten (import/promote)
# Note: tModels in referencedTModels section are never overwritten,
# regardless of this setting. To overwrite tModels, they must
# be present in the tModels section.
overwrite=false

# indicates whether referenced entities are imported (import/promote)
importReferencedEntities=true

# location of entity definition file, used for (export/import)
UddiEntityDefinitionFile=definitions/entities01.xml

# namespace prefix to use in definition file (export)
namespacePrefix=promote

UDDI entity definition file
The entity definition file contains XML that exactly describes each of the specified entities, according to the
UDDI Utility Tools schema.

You can create a UDDI entity definition file in three ways:

v Use the export or promote functions in UDDI Utility Tools to generate a file.

v Modify a file that was generated by using the export function.

v Create a file manually.

The extension to the uddi:tModel type to add a deleted attribute is not currently used in UDDI Utility Tools.

The file is validated for form and compliance with the UDDI Utility Tools schema, shown here:
<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema id="uddiPromote" attributeFormDefault="unqualified"
elementFormDefault="qualified" targetNamespace=
"http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:uddi="urn:uddi-org:api_v2"
xmlns="http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools"
xmlns:promote="http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools">

<xsd:import namespace="http://www.w3.org/XML/1998/namespace"

Chapter 35. Administering web services - UDDI registry 3683



schemaLocation="xml.xsd" />
<xsd:import namespace="urn:uddi-org:api_v2" schemaLocation="uddi_v2.xsd" />

<!-- define a type to represent the state of a tModel -->
<xsd:simpleType name="tModelDeleted">
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="true" />
<xsd:enumeration value="false" />
</xsd:restriction>
</xsd:simpleType>

<!-- extend tModel with additional attribute of type tModelDeleted -->
<!-- This is restricted to values true or false -->
<xsd:complexType name="tModel">
<xsd:complexContent>
<xsd:extension base="uddi:tModel">
<xsd:attribute name="deleted" type="promote:tModelDeleted"

use="optional" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<!-- Top level element definitions -->
<xsd:element name="uddiEntities" type="promote:uddiEntities" />
<xsd:complexType name="uddiEntities">
<xsd:sequence>
<xsd:element ref="promote:tModels" minOccurs="0" maxOccurs="1" />
<xsd:element ref="promote:businesses" minOccurs="0" maxOccurs="1" />
<xsd:element ref="promote:services" minOccurs="0" maxOccurs="1" />
<xsd:element ref="promote:bindings" minOccurs="0" maxOccurs="1" />
<xsd:element ref="promote:referencedTModels" minOccurs="0"

maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

<xsd:element name="businesses" type="promote:businesses" />
<xsd:complexType name="businesses">
<xsd:sequence>
<xsd:element ref="uddi:businessEntity" minOccurs="0"

maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:element name="tModels" type="promote:tModels" />
<xsd:complexType name="tModels">
<xsd:sequence>
<xsd:element ref="uddi:tModel" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:element name="services" type="promote:services" />
<xsd:complexType name="services">
<xsd:sequence>
<xsd:element ref="uddi:businessService" minOccurs="0"

maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:element name="bindings" type="promote:bindings" />
<xsd:complexType name="bindings">
<xsd:sequence>
<xsd:element ref="uddi:bindingTemplate" minOccurs="0"

maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:element name="referencedTModels" type="promote:referencedTModels" />
<xsd:complexType name="referencedTModels">
<xsd:sequence>
<xsd:element ref="uddi:tModel" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

3684 Administering WebSphere applications



UDDI entity definition file example for canonical tModel entities

You can use UDDI Utility Tools to create new UDDI entities in a target UDDI registry. A typical example of
this is to introduce a new canonical tModel entity that has a publicly known tModel key.

The following example entity definition file following shows the five main sections for tModels, businesses,
services, bindings, and referencedTModels:
<?xml version="1.0" encoding="UTF-8"?>
<promote:uddiEntities xmlns="urn:uddi-org:api_v2" xmlns:promote=
"http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools">

<!-- tModels -->
<promote:tModels>

<tModel tModelKey="uuid:ee3966a8-faa5-416e-9772-128554343571" >
<name>http://schemas.xmlsoap.org/ws/2002/07/policytmodel</name>
<description>WS-PolicyAttachment policy expression</description>

</tModel>

<tModel tModelKey="uuid:ad61de98-4db8-31b2-a299-a2373dc97212" >
<name>uddi-org:wsdl:address</name>

<description xml:lang="en">
This tModel is used to specify the URL fact that the address must be obtained
from the WSDL deployment file.

</description>
<overviewDoc>
<overviewURL>

http://www.oasis-open.org/committees/uddi-spec/doc/tn/
uddi-spec-tc-tn-wsdl-v2.htm#Address

</overviewURL>
</overviewDoc>

</tModel>

</promote:tModels>

<!-- businesses -->
<promote:businesses>
</promote:businesses>

<!-- services -->
<promote:services>
</promote:services>

<!-- bindings -->
<promote:bindings>
</promote:bindings>

<!-- referenced tModels -->
<promote:referencedTModels>
</promote:referencedTModels>

</promote:uddiEntities>

UDDI Utility Tools at a command prompt
You can start UDDI Utility Tools at a command prompt. In some situations, there are prerequisites before
you run the command.

Ensure that you are using the correct level of Java code by setting the PATH statement to include the
Java code that is supplied with WebSphere Application Server. For example, from the command line, type:

Use one of the following approaches to start UDDI Utility Tools:

v Enter the following command and use a specified properties file that sets up class path and other
parameters:

java - jar UDDIUtilityTools.jar {function} [options]

Chapter 35. Administering web services - UDDI registry 3685



Note: Before you run UDDIUtilityTools.jar from the command line, ensure that you edit the
UDDIUtilityTools.properties file. If you save this properties file in a different directory from the
UDDIUtilityTools.jar file, specify the location of the properties file as part of the command line
arguments.

v Enter the following command, where CommandLineProcessor is the class that processes command line
arguments for UDDI Utility Tools, sets up the configuration and invokes the appropriate function:

java CommandLineProcessor

Usage of UDDIUtilityTools.jar:
java -jar UDDIUtilityTools.jar {function} [options]

Functions:
-promote <entity source> Promote entities between registries
-export <entity source> Extract entities from a registry to XML
-delete <entity source> Delete entities from a registry
-import Create entities from XML to a registry

where <entity source> is one of:
-tmodel|-business|-service|-binding <key> Specify a single entity type and key
-keysFile | -f <filename> Specify a file that contains entity types and keys

Options:
-properties <filename> Specify the path to a configuration file
-overwrite | -o Overwrite an entity if it already exists
-log | -v Output verbose messages
-definitionFile <filename> Specify the path to a UDDI entity definition file
-importReferenced Import entities that are referenced by source entities

The following command-line options override property settings in the configuration file:

v overwrite

v log

v definitionFile

v importReferenced

Examples
java -jar UDDIUtilityTools.jar -promote -keysFile /uddikeys.txt

Export a single business to the entity definition file that is specified in a properties file in the current
directory.
java -jar UDDIUtilityTools.jar -export
-business 28B8B928-2B2E-4EC9-A647-1E40651E4752

Export a single business to the entity definition file that is specified in a properties file in the current
directory and use a keys file to specify the entities to export.
java -jar UDDIUtilityTools.jar -export -keysFile /myKeyFiles/keyFile01.txt

Export a single business to the entity definition file that is specified in a properties file in the current
directory and use a keys file to specify the entities to export. Also, display verbose output on the command
line.
java -jar UDDIUtilityTools.jar -export -keysFile /myKeyFiles/keyFile02.txt -v

Import the contents of the default entity definition file that is specified in a UDDIUtilityTools.properties file in
the current directory.
java -jar UDDIUtilityTools.jar -import

Import the contents of the default entity definition file that is specified in a UDDIUtilityTools.properties file in
the current directory and import referenced tModel entities into the target registry.
java -jar UDDIUtilityTools.jar -import -importReferenced

3686 Administering WebSphere applications



Import the entities from an entity definition file at the specified location.
java -jar UDDIUtilityTools.jar -import -definitionFile /myEDFs/entities01.xml

Import the entities from the default entity definition file including referenced tModel entities. The overwrite
options specifies that any entities, excluding referenced tModel entities that are found in the target registry,
are overwritten.
java -jar UDDIUtilityTools.jar -import -overwrite -importReferenced

Promote a single service from a source to a target registry using the properties file at a specified location.
java -jar UDDIUtilityTools.jar -promote
-service 67961D67-330F-4F14-8210-E74A58E710F3
-properties /UUT/myUUTProps.properties

Promote a set of entities that is specified in a keys file.
java -jar UDDIUtilityTools.jar -promote -keysFile /myKeyFiles/keyFile03.txt

Promote a set of entities that is specified in a keys file and overwrite existing entities in the target registry.
java -jar UDDIUtilityTools.jar -promote -keysFile /myKeyFiles/keyFile04.txt
-overwrite

Promote a set of entities that is specified in a keys file, including referenced tModel entities.
java -jar UDDIUtilityTools.jar -promote -keysFile /myKeyFiles/keyFile05.txt
-importReferenced

Promote a set of entities that is specified in a keys file, but also create an entity definition file that contains
the promoted entities.
java -jar UDDIUtilityTools.jar -promote -keysFile /myKeyFiles/keyFile06.txt
-definitionFile /myEDFs/entities02.xml

Logically delete a single tModel entity. You cannot physically delete tModel entities.
java -jar UDDIUtilityTools.jar -delete
-tModel UUID:1E2B9D1E-E53D-4D36-9D46-6CCC176C466A

Delete all the entities that are specified in the keys file. Except for tModel entities, all other entities are
physically deleted from the target registry.
java -jar UDDIUtilityTools.jar -delete -keysFile /myKeyFiles/keyFile04.txt

A keys file example

The following example shows the keys to export, promote, or delete from the target registry:
#
# Keys of entities to be exported, promoted from source registry or deleted
# from target registry
#
# Note: keys must be comma separated and on SAME line
# Note: property names are case sensitive. (’tmodels=’ are ignored)

businesses=97C77097-AC6C-4CA0-A6C4-452F7045C470,
4975E949-581F-4FCA-AD5F-E08280E05F9F
services=BB3864BB-1578-4833-8179-14391F14791F
bindings=
tModels=273F1727-7BFF-4FB5-A1FD-BA5C45BAFD9C

If the importReferenced property is set to true, the list of tModel entities in the referencedTModels section
is imported to the target registry. If the referencedTModel is new, minimal entities are created. If the
referencedTModel already exists, it is never overwritten, regardless of the overwrite property value. This
approach prevents commonly referenced tModel entities, such as categorization tModel entities, from
being updated unnecessarily.

Chapter 35. Administering web services - UDDI registry 3687



If you want to update a referencedTModel, you must manually move the referencedTModel definition to
the tModel entities section in the entity definition file and set overwrite to true.

UDDI Utility Tools log files:

The following examples show the contents of two log files that are produced by running UDDI Utility Tools.
The examples include some comments in square brackets and in italics to highlight important points in the
log file.

The following file is the messages.log file, which shows successful and unsuccessful operations for export,
import, and delete functions:
[29/07/04 17:39:57:531 BST] CWUDU0002I: ******Starting UDDI Utility Tools *******
[timestamp and eyecatcher indicate when tool is run]
[29/07/04 17:39:57:531 BST] CWUDU0009I: Exporting entities...
[29/07/04 17:39:57:531 BST] CWUDU0015I: Exported 14 entities.
[29/07/04 17:39:57:531 BST] CWUDU0029I: Serializing...
[29/07/04 17:39:57:531 BST] CWUDU0030I: Serialized entities.
[29/07/04 17:39:57:531 BST] CWUDU0016I: Importing entities...
[29/07/04 17:39:57:531 BST] CWUDU0124I: Created tModel minimal entity with
tModelKey [uuid:667e2766-4781-4151-b3a0-809f7180a096].
[29/07/04 17:39:57:531 BST] CWUDU0121I: Created business minimal entity with
businessKey [263f5526-8708-4834-9f5d-8f8c878f5d6e].
[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with
serviceKey [0af2a30a-be70-401f-a027-331a6c332712].
[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with
serviceKey [61012761-d02c-4c70-ae98-435ffd4398f9].
[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal
entity with bindingKey [f97af9f9-7cb7-47bd-8b90-b55e4db590df].
[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal
entity with bindingKey [17e4c017-d273-43ec-af4a-f9b841f94a30].
[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal
entity with bindingKey [9e2c239e-3b30-40a9-9c25-ce64edce25b9].
[29/07/04 17:39:57:531 BST] CWUDU0121I: Created business minimal entity with
businessKey [49bb6949-4b0e-4e81-88a7-e26bfbe2a7f1].
[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with
serviceKey [003d2b00-f6c0-4071-8b84-f235a2f28445].
[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal
entity with bindingKey [df1019df-2d2f-4f32-bf18-4f21274f1835].
[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal
entity with bindingKey [b229aeb2-f2b1-4115-a06f-536753536f10].
[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with
serviceKey [84d8e584-2510-4099-9b2a-6023f1602a0a].
[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal
entity with bindingKey [62a9a762-7fff-4f7a-8463-af0c79af63ee].
[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal
entity with bindingKey [e08654e0-b212-42c0-bcf3-655e9765f392].
[29/07/04 17:39:57:531 BST] CWUDU0115I: Imported 7 entities and 0 referenced
entities.
[this kind of message indicates that the operation worked!]
[29/07/04 17:39:57:531 BST] CWUDU0002I: ****** Starting UDDI Utility Tools ******
[29/07/04 17:39:57:531 BST] CWUDU0023I: Deleting entities...
[29/07/04 17:39:57:531 BST] CWUDU0028I: Deleted 7 entities.

Note: This topic references one or more of the application server log files. As a recommended alternative,
you can configure the server to use the High Performance Extensible Logging (HPEL) log and trace
infrastructure instead of using SystemOut.log , SystemErr.log, trace.log, and activity.log files on
distributed and IBM i systems. You can also use HPEL in conjunction with your native z/OS logging
facilities. If you are using HPEL, you can access all of your log and trace information using the
LogViewer command-line tool from your server profile bin directory. See the information about using
HPEL to troubleshoot applications for more information on using HPEL.

The following log file shows a typical trace log file entry for an export:
[29/07/04 17:39:57:531 BST] ********** Starting UDDI Utility Tools **********
[eyecatcher and timestamp indicate when tool is run]
[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.PromoterAPI.setUddiEntities()
[the ’>’ indicates entry to the constructor of this class]
[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.export.KeyFileReader()
[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader()
loaded tModel keys

3688 Administering WebSphere applications



[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader()
loaded business keys
TransformConfiguration:
nameSpacePrefix=promote
uddiEntityDefinitionFile=/temp/MigToolFiles/Results/Promote_api_EDF_1.xml

ExportConfiguration:
fromGetURL=http://yottskry:9080/uddisoap/
fromInquiryURL=http://yottskry:9080/uddisoap/inquiryAPI

ImportConfiguration:
overwrite=true
uddiEntityDefinitionFile=/temp/MigToolFiles/Results/Promote_api_EDF_1.xml
importReferencedEntities=true

PublishConfiguration:
toInquiryURL=http://davep:9080/uddisoap/inquiryAPI
toPublishURL=http://yottskry:9080/uddisoap/publishAPI
userID=Publisher1
trustStoreFileName=/WebSphere600/AppServer/etc/DummyClientTrustFile.jks
secureConnection=false

DatabaseConfiguration:
dbDriver=com.ibm.db2.jcc.DB2Driver
dbURL=jdbc:db2:LOC1
dbUser=db2admin

LoggerConfiguration:
messageStream=null
messageLogFileName=/temp/MigToolFiles/logs/message.log
traceLogFileName=/temp/MigToolFiles/logs/trace.log
traceLevel=3
verbose=true

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.PromoterAPI()
[29/07/04 17:39:57:531 BST] ********** Starting UDDI Utility Tools **********
[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.PromoterAPI.setUddiEntities()
[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.export.KeyFileReader()
[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader()
loaded tModel keys
[ log entries without a ’>’ or ’<’ are status messages only ]
[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader()
loaded business keys
[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader()
loaded service keys
[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader()
loaded binding keys
[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.UddiEntityKeys()
[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.UddiEntityKeys()
[the ’<’ indicates exit from the constructor]
[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader()
removed duplicate, empty and null keys
[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.export.KeyFileReader()
[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.PromoterAPI.setUddiEntities()
[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.PromoterAPI.deleteEntities()
[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.publish.EntityDeleter()
[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.publish.EntityDeleter()
[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.UDDIClient()
[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.UDDIClient() client type: 1

UDDI Utility Tools through the API
UDDI Utility Tools provides a public API to functions to export, import, promote, find, and delete UDDI
entities. To invoke these functions, use the PromoterAPI class.

Typically, you use these functions through the PromoterAPI class for the following uses:
v Create a Configuration object and populate it from a Properties object or from a configuration properties

file.
v Create a PromoterAPI object, passing the Configuration object in the constructor.
v For keys based functions (export, delete, and promote), set the keys by supplying a UDDIEntityKeys

object, the location of the keys file, or, for one entity, by specifying an entity type and a key value.

Chapter 35. Administering web services - UDDI registry 3689



v Invoke the corresponding method for the function required: exportEntities, promoteEntities(boolean),
importEntities, deleteEntities, or extractKeysFromInquiry(FindTModel, FindBusiness, FindService,
FindBinding, FindRelatedBusinesses).

The samples for WebSphere Application Server include sample code for UDDI Utility Tools that
demonstrates use of the API classes.

Note: The low-level UDDI Utility Tools API classes and methods, such as BusinessStub and ServiceStub,
are deprecated in WebSphere Application Server Version 6.0. These APIs are replaced with the
high-level PromoterAPI interface in the com.ibm.uddi.promoter package. Refer to the API
documentation for details.

Save UDDI Version 3 entities with a supplied key
The following example shows how to save a Version 3 business entity with a defined key. You might do
this after you use UDDI Utility Tools to export from a Version 3 registry, because entities from a Version 3
registry are exported as Version 2 entities, so elements such as digital signatures are not present.
<?xml version="1.0" encoding="UTF-8"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
<Body>
<save_business xmlns="urn:uddi-org:api_v3">
<authInfo>a399c4a3-6387-47cd-a1bd-91f7bb91bdd7</authInfo>
<businessEntity businessKey="uddi:mycompany-p1.com:computers">
<name xml:lang="en">WithKey</name>

</businessEntity>
</save_business>

</Body>
</Envelope>

UDDI Utility Tools limitations and resolutions
For some limitations with the UDDI Utility Tools, there are actions to resolve each issue.

v You attempt to run UDDI Utility Tools, but you get the following error:
java.lang.noClassDefFoundError: com/ibm/uddi/promoter/CommandLineProcessor

– Ensure that you have edited the supplied properties file, UDDIUtilityTools.properties and that the
file contains appropriate values for your environment. For details of the files that are required on the
classpath, and an example properties file, see the topics about UDDI Utility Tools prerequisites and
the UDDI Utility Tools configuration file.

– Ensure that you use the level of Java code that is supplied with WebSphere Application Server.

v PublisherAssertions are not supported and are not promoted.

To resolve this issue, after you promote the businesses that are related, recreate the publisherAssertion
relationship.

v Referenced businesses in service projections are not added automatically to the entity definition file in
the same manner as referenced tModel entities.

To resolve this issue, add the referenced business that owns the projected service to the entity definition
file. If the business is not present in the target registry, place it before the owning business of the
service in the entity definition file.

v Cycle detection for service projections are not detected in the same manner as for referenced tModel
entities.

To resolve this issue, if a circular reference is present between two or more service projections, break
the cycle by removing one of the projections temporarily, perform the import, and update the changed
entity to establish the cycle again in the target registry.

v The tModel entities that are deleted, in the logical sense, in the source registry are imported and
promoted as undeleted in the target registry. This is because, in the UDDI Version 2 specification, the
deleted state of tModel entities is not exposed as API calls.

To resolve this issue, after importing the tModel entity, perform a delete, using the UDDI Utility Tools
delete function, or any other UDDI registry API access method.

3690 Administering WebSphere applications



v BindingTemplates that are referenced by hostingRedirectors are not added automatically to the entity
definition file in the same manner as referenced tModel entities.

To resolve this issue, add the referenced bindingTemplate to the entity definition file.

v Businesses that are referenced by an owningBusiness keyedReference are not added automatically to
the entity definition file.

To resolve this issue, import the referenced business into the target registry before importing the tModel
that references it.

v With an embedded Apache Derby database, the import and promote functions are not supported when
referencing a target registry.

To resolve this issue, make the embedded Apache Derby database network-enabled. For information
about configuring network Apache Derby, refer to the section about managing the Derby Network Server
in the Derby Server and Administration Guide.

The export and delete functions when referencing a source registry with an embedded Apache Derby
database are supported.

v Some combinations of command-line arguments are not validated and prevented. For example, it is
possible to specify -import with -keysFile path_to_file in the same command, although the
-keysFile option is ignored.

Chapter 35. Administering web services - UDDI registry 3691

http://db.apache.org/derby/manuals/index.html#docs_10.3


3692 Administering WebSphere applications



Chapter 36. Administering Work area

This page provides a starting point for finding information about work areas, a WebSphere extension for
improving developer productivity.

Work areas provide a capability much like that of global variables. They enable efficient sharing of
information across a distributed application.

For example, you might want to add profile information as each customer enters your application. By
placing this information in a work area, it is available throughout your application, eliminating the need to
hand-code a solution or to read and write information to a database.

Managing the UserWorkArea partition

Managing the UserWorkArea partition
Before you begin

For an application to take advantage of work areas, the work area service must be enabled for both clients
and servers. On a server the service is disabled by default. On the client, the service is enabled by
default.

For an application to take advantage of the default partition, the UserWorkArea partition, this partition must
be enabled by enabling the work area service for both clients and servers. The work area service on a
server is disabled by default and the work area service on a client is enabled by default. Note that rather
than using this default work area partition, a user can create their own work area partition using the Work
area partition service.

About this task

Applications can set maximum sizes on each work area that is sent or received. By default, the maximum
size of a work area that is sent by a client and received, then possibly resent, by a server is 32,768 bytes.
The maximum size that you can specify is determined by the maximum value expressible in the Java
Integer data type, 2,147,483,647. The smallest maximum size that you can specify is 1. Using a maximum
size of 1 byte effectively means that no requests associated with the work area can leave the system or
enter another system. A value of 0 means that no limit is imposed. A value of -1 means that the default
value is to be honored. The default value is also used if an invalid value or a malformed property is
specified. You can change this size as described in this topic.

Procedure
1. Enable or disable the use of the UserWorkArea partition on a server: The work area service is disabled

by default on servers but enabled by default on the client

a. Start the administrative console.

b. Select Servers > Server Types > WebSphere application servers > server_name > Business
Process Services > Work area service.

c. Select or clear the Startup check box. This specifies whether or not the server should
automatically start the work area service when the server starts.

d. Save the new configuration and restart the server to apply the new configuration.

2. Enable (or disable) the UserWorkArea partition on a client: Set the
com.ibm.websphere.workarea.enabled property to TRUE or FALSE before starting the client. For
example, to disable the work area service, when invoking the launchClient script found in the
app_server_root/bin directory, add the following system property to the launchClient invocation:
-CCDcom.ibm.websphere.workarea.enabled=false

© Copyright IBM Corp. 2012 3693



Alternatively, this property can be set in a property file that is used by the launchClient script. Refer to
the Running a Java EE client application with launchClient article for additional information.

3. Manage the size of the work areas that this server can send and the number of work areas that this
server can accept.

a. Start the administrative console.

b. Select Servers > Server Types > WebSphere application servers > server_name > Business
Process Services > Web container.

v To change the send size or receive size on the work area service (namely the "UserWorkArea"
partition):

– Select Work area service.

v To change the send size or receive size on a user defined partition:

– Select Work area partition service.

– Select a partition.

c. Enter a new value in the Maximum send size field to modify the size of the work area that this
server can send, or enter a new value in the Maximum receive size field to modify the size of the
work area that this server can accept.

d. Save the new configuration and restart the server to apply the new configuration.

4. Change the size of the work area that can be sent by a client. This step only applies to the
UserWorkArea partition on the client. To set the maximum send or receive size on a user defined
partition, you must set these values when creating the partition on the client. For more information on
creating a partition on a client, see the client section in the Configuring work area partitions topic. To
change the size of the work area that can be sent by a client, set the
com.ibm.websphere.workarea.maxSendSize property to the desired number of bytes before starting
the client. You can set the maximum send size as follows:

v Set the maximum send size when invoking the launchClient invocation script found in the
$WAS_HOME/bin directory. For example, to set the maximum size to 10,000 bytes, add the following
system properties to the launchClient invocation as needed:
-CCDcom.ibm.websphere.workarea.maxSendSize=10000

v Set the maximum send size propery, com.ibm.websphere.workarea.maxSendSize, in a property file
that is used by the launchClient script. Refer to the Running a Java EE client application with
launchClient article for additional information.

Because the UserWorkArea partition is defined as unidirectional, for example, context only propagates
on outbound calls and not on the return of those calls, the maximum receive size is ignored.

Accessing the UserWorkArea partition
About this task

The work area service provides a JNDI binding to an implementation of the UserWorkArea interface under
the name java:comp/websphere/UserWorkArea. This is the default work area partition, namly the
"UserWorkArea" partition. It is created and bound into JNDI naming automatically, as long as it is enabled
as defined in Enabling the work area service (UserWorkArea partition). Applications that need to access
UserWorkArea partition can perform a lookup on that JNDI name, as shown in the following code example:

Example
import com.ibm.websphere.workarea.*;
import javax.naming.*;

public class SimpleSampleServlet {
...

InitialContext jndi = null;
UserWorkArea userWorkArea = null;
try {

3694 Administering WebSphere applications



jndi = new InitialContext();
userWorkArea = (UserWorkArea)jndi.lookup(

"java:comp/websphere/UserWorkArea");
}
catch (NamingException e) { ... }

}

Rather than using this default work area partition, a user has the option to create their own work area
partition using the Work area partition service.

What to do next

The next step is to use the begin method to create a new work area and associate it with the calling
thread, as described in the Beginning a new work area article.

Managing local work with a work area

Managing local work with a work area
Before you begin

Be sure that your client has a reference to the UserWorkArea interface, as described in the Accessing the
UserWorkArea partition topic, or a reference to a user defined partition, as defined in the Accessing a user
defined work area partition topic. The following steps use the UserWorkArea partition as an illustration.
However a user defined partition can be used in the exact same way.

About this task

In a business application that uses work areas, server objects typically retrieve the work area properties
and use them to guide local work.

Procedure
1. Retrieve the name of the active work area to determine whether the calling thread is associated with a

work area.

Applications use the getName method on the UserWorkArea interface to retrieve the name of the
current work area. If the thread is not associated with a work area, the getName method returns null.
In the following code example, the name of the work area corresponds to the name of the class in
which the work area was begun.
public class SimpleSampleBeanImpl implements SessionBean {

...

public String [] test() {
// Get the work-area reference from JNDI.
...

// Retrieve the name of the work area. In this example,
// the name is used to identify the class in which the
// work area was begun.
String invoker = userWorkArea.getName();
...

}
}

2. Overriding work area properties. Server objects can override client work area properties by creating
their own, nested work area. Refer to the Overriding work area properties article for more information.

3. Retrieve properties from a work area by using the get method.

The get method is intentionally lightweight; there are no declared exceptions to handle. If there is no
active work area, or if there is no such property set in the current work area, the get method returns
null.

Chapter 36. Welcome to administering Work area 3695



Important: The get method can raise a NotSerializableError in the relatively rare scenario in which
CORBA clients set composed data types and invoke enterprise-bean interfaces.

The following example shows the retrieval of the site-identifier and priority properties by the
SimpleSampleBean. Notice that one property was set into an outer work area by the client and the
other property was set into the nested work area by the server-side bean; the nesting is transparent to
the retrieval of the properties.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");
try {

userWorkArea.set("company",
SimpleSampleCompany.London_Development);

}
catch (NotOriginator e) {
}

SimpleSampleCompany company =
(SimpleSampleCompany) userWorkArea.get("company");

SimpleSamplePriority priority =
(SimpleSamplePriority) userWorkArea.get("priority");

...
}

}

4. Optional: Retrieve a list of all the keys visible from a work area.

The UserWorkArea interface provides the retrieveAllKeys method for retrieving a list of all the keys
visible from a work area. This method takes no arguments and returns an array of strings. The
retrieveAllKeys method returns null if there is no work area associated with the thread. If there is an
associated work area that does not contain any properties, the method returns an array of size 0.

5. Query the mode of a work area property using the getMode method.

The UserWorkArea interface provides the getMode method determine the mode of a specific property.
This method takes the property's key as an argument and returns the mode as a PropertyModeType
object. If the specified key does not exist in the work area, the method returns
PropertyModeType.normal, indicating that the property can be set and removed without error.

6. Optional: Delete a work area property.

The UserWorkArea interface provides the remove method to delete a property from the current scope
of a work area. If the property was initially set in the current scope, removing it deletes the property. If
the property was initially set in an enclosing work area, removing it deletes the property until the
current scope is completed. When the current work area is completed, the deleted property is restored.

The remove method takes the property's key as an argument. Only properties with the modes normal
and read-only can be removed. Attempting to remove a fixed property creates the PropertyFixed
exception. Attempting to remove properties in work areas that originated in other processes creates the
NotOriginator exception.

Example

The server side of the SimpleSample application example, which is included in the Developing applications
that use work areas topic, accepts remote invocations from clients. With each remote call, the server also
gets a work area from the client if the client has created one. The work area is propagated transparently.
None of the remote methods includes the work area on its argument list.

In the example application, the server objects use the work area interface for demonstration purposes only.
For example, the SimpleSampleBean intentionally attempts to write directly to an imported work area,
which creates the NotOriginator exception. Likewise, the bean intentionally attempts to mask the read only

3696 Administering WebSphere applications



SimpleSampleCompany, which triggers the PropertyReadOnly exception. The SimpleSampleBean also
nests a work area and successfully overrides the priority property before invoking the
SimpleSampleBackendBean. A true business application would extract the work area properties and use
them to guide the local work. The SimpleSampleBean mimics this by writing a message that function is
denied when a request emanates from a sales environment.

Work area service settings
Use this page to manage the work area service.

The work area service manages the scope and implicit propagation of application context. The work area
service panel in the administrative console configures the UserWorkArea partition only and has no effect
on the work area partition service panel.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Business Process Services > Work area service.

For additional information about work area, see the com.ibm.websphere.workarea package in the
Application Programming Interfaces (API) documentation. The generated API documentation is available in
the information center table of contents from the path Reference > >Programming interfaces > APIs -
Application Programming Interfaces.

Enable service at server startup:

Specifies whether the server attempts to start the work area service.

Selected
When the application server starts, it attempts to start the work area service automatically.

Cleared
The server does not try to start the work area service. If work areas are used on this application
server, the system administrator must start the service manually or select this property and then
restart the server.

Maximum send size:

Specifies the maximum size of data that can be sent within a single work area.

Information Value
Data type Integer
Units Bytes
Default 10000
Range -1, 0 (no limit) and 1 to 2147483647

The following values are also used to define the maximum send size.

Information Value
Default -1
No limit 0

Maximum receive size:

Specifies the maximum size of data that a single work area can receive.

Information Value
Data type Integer
Units Bytes

Chapter 36. Welcome to administering Work area 3697



Information Value
Default 10000
Range -1, 0 (no limit) and 1 to 2147483647

The following values are also used to define the maximum receive size.

Information Value
Default -1
No limit 0

Enable Web service propagation:

Specifies whether the work area is propagated on Web service requests. This option is disabled by
default.

Overriding work area properties
About this task

Work areas are inherently associated with the process that creates them. In the sample application, the
client begins a work area and sets into it the site-identifier and priority properties. This work area is
propagated to the server when the client makes a remote invocation.

Applications nest work areas in order to temporarily override properties imported from a client process.
The nesting mechanism is automatic; invoking begin on the UserWorkArea interface from within the scope
of an existing work area creates a nested work area that inherits the properties from the enclosing work
area. Properties set into the nested work area are strictly associated with the process in which the work
area was begun; the nested work area must be completed within the process that created them. If a work
area is not completed by the creating process, the work-area facility terminates the work area when the
process exits. After a nested work area is completed, the original view of the enclosing work area is
restored. However, the view of the complete set of work areas associated with a thread cannot be
decomposed by downstream processes.

Applications set properties into a work area using property modes in ensure that a particular property is
fixed (not removable) or read-only (not overrideable) within the scope of the given work area.

Example

In the following code example, the server-side sample bean attempts to write directly to the imported work
area; because the UserWorkArea partition is not defined to be bidirectional, this action is not permitted,
and the NotOriginator exception is thrown. When the UserWorkArea partition is not defined as
bidirectional, the sample bean must begin its own work area in order to override any imported properties,
as shown in the second code example. If a work area in a user defined partition is used and is defined as
bidirectional, this bean can set context into the work area before beginning another work area. This
context set in the bidirectional case propagates back to the caller. Refer to the Work area partition service
article for additional information.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...
String invoker = userWorkArea.getName();

try {
userWorkArea.set("key", "value");

}
catch (NotOriginator e) {

3698 Administering WebSphere applications



}
...

}
}

The following code example demonstrates beginning a nested work area, using the name of the creating
class to identify the nested work area.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...
String invoker = userWorkArea.getName();
try {

userWorkArea.set("key", "value");
}
catch (NotOriginator e) {
}

// Begin a nested work area. By using the name of the creating
// class as the name of the work area, we can avoid having
// to explicitly set the name of the creating class in
// the work area.
userWorkArea.begin("SimpleSampleBean");

...
}

}

In the example application, the client sets the site-identifier property as read-only; that guarantees that the
request is always associated with the client's company identity. A server cannot override that value in a
nested work area. In the following code example, the SimpleSampleBean attempts to change the value of
the site-identifier property in the nested work area it created.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

String invoker = userWorkArea.getName();
try {

userWorkArea.set("key", "value");
}
catch (NotOriginator e) {
}

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");

try {
userWorkArea.set("company",

SimpleSampleCompany.London_Development);
}
catch (NotOriginator e) {
}
...

}
}

retrieveAllKeys method
About this task

The UserWorkArea interface provides the retrieveAllKeys method for retrieving a list of all the keys visible
from a work area. This method takes no arguments and returns an array of strings. The retrieveAllKeys

Chapter 36. Welcome to administering Work area 3699



method returns null if there is no work area associated with the thread. If there is an associated work area
that does not contain any properties, the method returns an array of size 0.

For additional information about work area, see the com.ibm.websphere.workarea package in the API
documentation. The generated API documentation is available in the information center table of contents
from the path Reference > APIs - Application Programming Interfaces.

Managing local work with a work area

Managing local work with a work area
Before you begin

Be sure that your client has a reference to the UserWorkArea interface, as described in the Accessing the
UserWorkArea partition topic, or a reference to a user defined partition, as defined in the Accessing a user
defined work area partition topic. The following steps use the UserWorkArea partition as an illustration.
However a user defined partition can be used in the exact same way.

About this task

In a business application that uses work areas, server objects typically retrieve the work area properties
and use them to guide local work.

Procedure
1. Retrieve the name of the active work area to determine whether the calling thread is associated with a

work area.

Applications use the getName method on the UserWorkArea interface to retrieve the name of the
current work area. If the thread is not associated with a work area, the getName method returns null.
In the following code example, the name of the work area corresponds to the name of the class in
which the work area was begun.
public class SimpleSampleBeanImpl implements SessionBean {

...

public String [] test() {
// Get the work-area reference from JNDI.
...

// Retrieve the name of the work area. In this example,
// the name is used to identify the class in which the
// work area was begun.
String invoker = userWorkArea.getName();
...

}
}

2. Overriding work area properties. Server objects can override client work area properties by creating
their own, nested work area. Refer to the Overriding work area properties article for more information.

3. Retrieve properties from a work area by using the get method.

The get method is intentionally lightweight; there are no declared exceptions to handle. If there is no
active work area, or if there is no such property set in the current work area, the get method returns
null.

Important: The get method can raise a NotSerializableError in the relatively rare scenario in which
CORBA clients set composed data types and invoke enterprise-bean interfaces.

3700 Administering WebSphere applications



The following example shows the retrieval of the site-identifier and priority properties by the
SimpleSampleBean. Notice that one property was set into an outer work area by the client and the
other property was set into the nested work area by the server-side bean; the nesting is transparent to
the retrieval of the properties.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");
try {

userWorkArea.set("company",
SimpleSampleCompany.London_Development);

}
catch (NotOriginator e) {
}

SimpleSampleCompany company =
(SimpleSampleCompany) userWorkArea.get("company");

SimpleSamplePriority priority =
(SimpleSamplePriority) userWorkArea.get("priority");

...
}

}

4. Optional: Retrieve a list of all the keys visible from a work area.

The UserWorkArea interface provides the retrieveAllKeys method for retrieving a list of all the keys
visible from a work area. This method takes no arguments and returns an array of strings. The
retrieveAllKeys method returns null if there is no work area associated with the thread. If there is an
associated work area that does not contain any properties, the method returns an array of size 0.

5. Query the mode of a work area property using the getMode method.

The UserWorkArea interface provides the getMode method determine the mode of a specific property.
This method takes the property's key as an argument and returns the mode as a PropertyModeType
object. If the specified key does not exist in the work area, the method returns
PropertyModeType.normal, indicating that the property can be set and removed without error.

6. Optional: Delete a work area property.

The UserWorkArea interface provides the remove method to delete a property from the current scope
of a work area. If the property was initially set in the current scope, removing it deletes the property. If
the property was initially set in an enclosing work area, removing it deletes the property until the
current scope is completed. When the current work area is completed, the deleted property is restored.

The remove method takes the property's key as an argument. Only properties with the modes normal
and read-only can be removed. Attempting to remove a fixed property creates the PropertyFixed
exception. Attempting to remove properties in work areas that originated in other processes creates the
NotOriginator exception.

Example

The server side of the SimpleSample application example, which is included in the Developing applications
that use work areas topic, accepts remote invocations from clients. With each remote call, the server also
gets a work area from the client if the client has created one. The work area is propagated transparently.
None of the remote methods includes the work area on its argument list.

In the example application, the server objects use the work area interface for demonstration purposes only.
For example, the SimpleSampleBean intentionally attempts to write directly to an imported work area,
which creates the NotOriginator exception. Likewise, the bean intentionally attempts to mask the read only
SimpleSampleCompany, which triggers the PropertyReadOnly exception. The SimpleSampleBean also
nests a work area and successfully overrides the priority property before invoking the

Chapter 36. Welcome to administering Work area 3701



SimpleSampleBackendBean. A true business application would extract the work area properties and use
them to guide the local work. The SimpleSampleBean mimics this by writing a message that function is
denied when a request emanates from a sales environment.

Work area service settings
Use this page to manage the work area service.

The work area service manages the scope and implicit propagation of application context. The work area
service panel in the administrative console configures the UserWorkArea partition only and has no effect
on the work area partition service panel.

To view this administrative console page, click Servers > Server Types > WebSphere application
servers > server_name > Business Process Services > Work area service.

For additional information about work area, see the com.ibm.websphere.workarea package in the
Application Programming Interfaces (API) documentation. The generated API documentation is available in
the information center table of contents from the path Reference > >Programming interfaces > APIs -
Application Programming Interfaces.

Enable service at server startup
Specifies whether the server attempts to start the work area service.

Selected
When the application server starts, it attempts to start the work area service automatically.

Cleared
The server does not try to start the work area service. If work areas are used on this application
server, the system administrator must start the service manually or select this property and then
restart the server.

Maximum send size
Specifies the maximum size of data that can be sent within a single work area.

Information Value
Data type Integer
Units Bytes
Default 10000
Range -1, 0 (no limit) and 1 to 2147483647

The following values are also used to define the maximum send size.

Information Value
Default -1
No limit 0

Maximum receive size
Specifies the maximum size of data that a single work area can receive.

Information Value
Data type Integer
Units Bytes
Default 10000
Range -1, 0 (no limit) and 1 to 2147483647

The following values are also used to define the maximum receive size.

3702 Administering WebSphere applications



Information Value
Default -1
No limit 0

Enable Web service propagation
Specifies whether the work area is propagated on Web service requests. This option is disabled by
default.

Overriding work area properties
About this task

Work areas are inherently associated with the process that creates them. In the sample application, the
client begins a work area and sets into it the site-identifier and priority properties. This work area is
propagated to the server when the client makes a remote invocation.

Applications nest work areas in order to temporarily override properties imported from a client process.
The nesting mechanism is automatic; invoking begin on the UserWorkArea interface from within the scope
of an existing work area creates a nested work area that inherits the properties from the enclosing work
area. Properties set into the nested work area are strictly associated with the process in which the work
area was begun; the nested work area must be completed within the process that created them. If a work
area is not completed by the creating process, the work-area facility terminates the work area when the
process exits. After a nested work area is completed, the original view of the enclosing work area is
restored. However, the view of the complete set of work areas associated with a thread cannot be
decomposed by downstream processes.

Applications set properties into a work area using property modes in ensure that a particular property is
fixed (not removable) or read-only (not overrideable) within the scope of the given work area.

Example

In the following code example, the server-side sample bean attempts to write directly to the imported work
area; because the UserWorkArea partition is not defined to be bidirectional, this action is not permitted,
and the NotOriginator exception is thrown. When the UserWorkArea partition is not defined as
bidirectional, the sample bean must begin its own work area in order to override any imported properties,
as shown in the second code example. If a work area in a user defined partition is used and is defined as
bidirectional, this bean can set context into the work area before beginning another work area. This
context set in the bidirectional case propagates back to the caller. Refer to the Work area partition service
article for additional information.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...
String invoker = userWorkArea.getName();

try {
userWorkArea.set("key", "value");

}
catch (NotOriginator e) {
}
...

}
}

The following code example demonstrates beginning a nested work area, using the name of the creating
class to identify the nested work area.

Chapter 36. Welcome to administering Work area 3703



public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...
String invoker = userWorkArea.getName();
try {

userWorkArea.set("key", "value");
}
catch (NotOriginator e) {
}

// Begin a nested work area. By using the name of the creating
// class as the name of the work area, we can avoid having
// to explicitly set the name of the creating class in
// the work area.
userWorkArea.begin("SimpleSampleBean");

...
}

}

In the example application, the client sets the site-identifier property as read-only; that guarantees that the
request is always associated with the client's company identity. A server cannot override that value in a
nested work area. In the following code example, the SimpleSampleBean attempts to change the value of
the site-identifier property in the nested work area it created.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

String invoker = userWorkArea.getName();
try {

userWorkArea.set("key", "value");
}
catch (NotOriginator e) {
}

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");

try {
userWorkArea.set("company",

SimpleSampleCompany.London_Development);
}
catch (NotOriginator e) {
}
...

}
}

retrieveAllKeys method
About this task

The UserWorkArea interface provides the retrieveAllKeys method for retrieving a list of all the keys visible
from a work area. This method takes no arguments and returns an array of strings. The retrieveAllKeys
method returns null if there is no work area associated with the thread. If there is an associated work area
that does not contain any properties, the method returns an array of size 0.

For additional information about work area, see the com.ibm.websphere.workarea package in the API
documentation. The generated API documentation is available in the information center table of contents
from the path Reference > APIs - Application Programming Interfaces.

3704 Administering WebSphere applications



Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program, or
service is not intended to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of IBM's intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by IBM, is the user's
responsibility.

APACHE INFORMATION. This information may include all or portions of information which IBM obtained
under the terms and conditions of the Apache License Version 2.0, January 2004. The information may
also consist of voluntary contributions made by many individuals to the Apache Software Foundation. For
more information on the Apache Software Foundation, please see http://www.apache.org. You may obtain
a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to:

IBM Director of Intellectual Property & Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

© Copyright IBM Corp. 2012 3705



3706 Administering WebSphere applications



Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. For
a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site
(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2012 3707

http://www.ibm.com/legal/copytrade.shtml


3708 Administering WebSphere applications



Index

A
active key history 1917
addExternalBundleRepository command 1064, 1112
addLocalRepositoryBundle command 1055, 1113
addOSGiExtension command 1020, 1114
addOSGiExtensions command 1022, 1115
administered subscribers 3084, 3107, 3108, 3109,

3129, 3170
administrative authorization

fine-grained security
administrative console 1770

administrative authorization group
fine-grained security

administrative console 1768
administrative group roles 1748
administrative roles 1687

authorization access 1745
administrative security

fine-grained security 1754
heterogeneous environments 1772
single-server environments 1772

algorithm mapping 3512
algorithm URIs 3510
Apache Derby 322
APIs

programmatic outbound configurations
JSSEHelper 1850

single sign-on 1474
application bundles 1085, 1107
applications

security 1184
security propagation 1745

attribute mapping
federated repositories 1333

audit encryption keystores and certificates 1956
audit event factories

configuration 1951
for security auditing 1950

audit monitor 1943
audit reader

usage 1959
audit service providers 1946
audits

web services security
runtime environment 3287

authentication
configuration 1630
default token 1588
JAAS 1554
Kerberos 1449

message protection 3374
setting up 1457

Kerberos tokens
web services security 3371

LTPA tokens
web services security 3304

message-layer authentication 1465, 1641

authentication (continued)
settings

cache 1263
single sign-on 1472

LTPA cookies 1473
SPNEGO 1480

alias host name usage 1498
HTTP requests 1485

Username tokens
web services security 3304

users 1264
authentication alias 1030, 1078
authentication cache

configuration 1601
authentication mechanisms 1445, 1465
authentication protocol support 1638
authorization

administrative roles 1679
naming service 1679
resource access 1678
running identity mapping 1571
technology 1678

authorization providers 1691
built-in providers 1711

authorization roles 1685

B
bindings

client bindings configuration 3394
client configurations 3394
configuration 3412

clients 3577
servers 3577

provider configurations 3394
reassigning to policy sets 2797
server security configuration

administrative console 3579
STS 3384

Blueprint resource references 1026, 1078
bundle cache 1066, 1080, 1082
bundle download 1008, 1048, 1066, 1082, 1094
bundle repositories 1050, 1051, 1053, 1060, 1061,

1064, 1092, 1093, 1095, 1096, 1105, 1122
bundle symbolic name 1041, 1059, 1129
bundle version 1008, 1009, 1059, 1129
business-level applications 1009, 1013, 1015, 1026

C
CEA 143

administering applications 143
cluster configuration 146
hosting 2583, 2586
proxy servers 2587
servlet configuration 143

© Copyright IBM Corp. 2012 3709



certificate expiration monitoring
configuration 1910

certificate requests
extraction 1892

certificate revocation list 3551
certificate signers

clients
auto-exchange prompt change 1901

utilities
signer retrieval 1899

certificate stores
configuration

generator bindings 3544
certificates 1874

authority request creation 1884
certificate replacement 1881
configuration

example 1631, 1632
exporting 1893
extraction 1898
from certificate authorities 1893, 1896
importing 1895
replacement 1897
self-signed certificates 1880
signer certificate extraction 1898
signer certificates

adding to keystore files 1904
signer exchange 1909

checked value sets 3659
client policies 3197, 3204, 3206, 3207
collection certificate stores 3546

client configuration
administrative console 3573

configuration
consumer bindings 3553

collection certificates
configuration

cells 3555
servers 3555

commands
FileRegistryCommands 1347
signer retrieval 1807, 1817
Tivoli Access Manager configuration 1733

communications
security 1773

composite bundle extensions 1013, 1017, 1018,
1026, 1030, 1048

composite bundles 1008, 1009, 1013, 1015, 1017,
1018, 1020, 1021, 1022, 1025, 1026, 1030, 1041,
1048, 1051, 1053, 1055, 1076, 1078, 1085, 1091,
1095, 1096, 1105, 1107, 1108, 1109, 1113, 1114, 1115,
1126, 1127

composition units 1008, 1015, 1017, 1018, 1021,
1025, 1048, 1071, 1073, 1100, 1126, 1127

maintaining 1012
managing extensions 1091
modifying configuration 1026, 1030, 1041
updating 1013

configuration aliases
mapping 318

configuration files
clients

ssl.client.props 1861
ConfigurationProperty object 3662
connection factories

automatic configuration 1534
manual configuration 1533

connection pools
settings 181, 767, 791, 818

context
caller 447, 465

context objects
fields 1931, 1939

cookies
settings 2685

CORBA naming service groups 1748
createJAXWSHandler command 3184
createJAXWSHandlerList command 3190
createWSNAdministeredSubscriber command 3166
createWSNService command 3152
createWSNServicePoint command 3159
createWSNTopicDocument command 3177
createWSNTopicNamespace command 3172
cryptographic keys

enabling
hardware devices 3562

hardware devices
web services security 3561

web services security
hardware devices 3562

cryptographic keystores
for hardware 1872

CSIV2 1638
client configuration 1625
configuration 1609
inbound communications 1603

custom login migration
CustomLoginServlet class 1175

custom object pools
settings 988

custom properties
settings 275
web services security 3268, 3270

custom repository
federated repositories 1333

D
data access

administering applications 177
data sources

configuration 1394
settings 263

databases
Apache Derby 322
settings 2695

default bindings
cells 2796
servers 2796

3710 Administering WebSphere applications



default collection certificate stores
configuration

administrative console 3575
delegations 1708
deleteJAXWSHandler command 3187
deleteJAXWSHandlerList command 3192
deleteWSNAdministeredSubscriber command 3168
deleteWSNService command 3155
deleteWSNServicePoint command 3162
deleteWSNTopicDocument command 3179
deleteWSNTopicNamespace command 3174
demand-based publishers 3085, 3089, 3093, 3096,

3152
deployment manifest files

exporting 1068
deployment manifest files

exporting 1069, 1070
importing 1068, 1071, 1073, 1074, 1094, 1118

directory
installation

conventions 176, 180, 219, 361, 366
distributed cache

synchronous update 3323
token recovery 3323
web services security

administrative console 3367
domain keys 3654, 3655
durable subscriptions 3080, 3123, 3125, 3127
dynamic annotations

servlet security 1707
dynamic cache service

administering 327
settings 329
usage 327

dynamic group support
directory servers 1293
Tivoli Directory Server 1294

dynamic groups
LDAP 1441
nested groups 1441

dynamic member attributes 1438
federated repositories 1437

dynamic roles
caching properties 1721

E
EBA assets 1008, 1009, 1048, 1068, 1071, 1073,

1094
EBA files 1030
editCompUnit command 1012, 1041
EJB message destinations 1026, 1086
EJB references 1026, 1030, 1087
EJB resource references 1026, 1088
EJB security

authentication protocol 1634
emitters

interfaces
base generic emitters 1948, 1950

encryption information 3477

endpoint security
configuration management 1856

endpoint URL information
configuration

for HTTP bindings 2713
JMS bindings 2715

HTTP 2714
enterprise identity mapping 1475

configuration 1527
connection factories 1530
deployment 1536
prerequisite applications 1526

Enterprise JavaBeans (EJB)
container interoperability 379
container system properties 372
containers 369
deployment 363

overview 364
enterprise beans

deployment 361
managing containers 368
settings 361

containers 370
troubleshooting

EJBDEPLOY relationships 366
entity beans

administering 367
entity definition files 3685, 3690
entity types 1400, 1402
event type filters 1937
exportDeploymentManifest command 1070, 1117

F
federated repository wizard 1340
FileRegistrySample.java 1304
files

rrdSecurity.props file 3560
SAMLIssuerConfig.properties file 3399

G
generic events

interface
example 1938

global security
custom properties 1228

adding 1227
deleting 1229

group attribute definitions
configurations 1431

H
HTTP basic authentication 3268
HTTP session management

custom properties 2686
settings 2680

HTTP sessions
recovering 2682
tracking configuration 2682

Index 3711



HTTP SSL configuration 3266

I
IBM Optim pureQuery Runtime 421
identity assertions

configuration 1630
downstream servers 1639
trust validation 1640

identity mapping
custom login module 1578
inbound configuration 1573
outbound configuration 1580

importDeploymentManifest command 1074, 1118
inbound transports

configuration 1616
interfaces

generic event factories
example 1952

interoperating
previous versions 1168

J
JAAS 1554

application login customization 1570
custom login module development 1558
identify assertion enablement 1570
Kerberos login modules

system updates 3381
web authentication 1556

JACC 1692
ContextID format 1695
external provider enablement 1715
interface support 1729
policy context handlers 1695
policy propagation 1696
provider implementation class registration 1697
providers 1694

JAR files
configuration 1531
shared libraries 1532

Java 2 security 1184
access control exception 1193
policy files 1189

Java Servlet 3.0
security support 1706

Java thin clients
migration 1180

JAX-RPC
administration

message-level security 3414
clients 3076
consumer binding

applications 3431
encryption methods

message confidentiality protection 3475, 3499
generator signing configuration

message integrity 3415
handlers 3096

JAX-RPC (continued)
key information

consumer bindings 3497
generator bindings 3495

key information configuration
applications 3435

key locators
cell 3535
configuration 3526
consumer bindings 3533
server 3535

message authenticity protection
token consumers 3466

message integrity protection
consumer signing 3430

message-level security
cells 3489
for applications 3415
servers 3489

secure messages
request consumers 3415
request generators 3414
response consumers 3415
response generators 3414

signing information
consumer bindings 3492
generator bindings 3416, 3489

token consumers
message authenticity protection 3514

token generators
message authenticity protection 3503

web services security
configuration 3523

JAX-RPC
applications 3076, 3084
clients 3076
consumer applications 3076
handler lists 3093, 3096, 3105
handlers 3105
WS-Notification services 3084, 3093, 3152

JAX-RPC web services
HTTP basic authentication

administrative console 3267
JAX-RS

deployment 3253
planning 3239
RESTful services 3239

JAX-WS
administration

message-level security 3287
application deployment model 2704
asynchronous response servlet usage 3597
clients 3083
default bindings

web services security 3413
handler classes 3186
handler configuration 3070, 3084, 3116, 3117,

3118, 3119, 3186
handler list object 3191, 3194
handler lists 3071, 3084, 3085, 3099, 3101, 3117,

3120, 3121, 3123

3712 Administering WebSphere applications



JAX-WS (continued)
invocation

HTTP transports 3597
Kerberos token

policy sets 3372
listeners

JMS asynchronous response message 3599
third-party engine 2706
web services invocation

SAOP over JMS transports 3599
WS-Notification client applications 3130
WS-Notification services 3152

JAX-WS
clients 3074, 3076, 3130
consumer applications 3076
handler classes 3184
handler configuration 3184, 3187
handler list object 3192
handler lists 3070, 3116
WS-Notification client applications 3076
WS-Notification services 3084, 3085

JDBC
provider configuration 250
provider settings 252

JMX
scheduler configuration 1146

JNDI
configuration

bindings 973
JPA

administering 411
configuration 411
default settings 419

JSF files
deployment 2619

JSP engine 2663
JSP engine parameters

configuration 2661
JSP files

backing up 2676
deployment 2619
recovering 2676
troubleshooting 2672

K
key

locators 3528
key generation classes

development
example 1923

key generation retrieval
from key set groups 1922

key generators 3646
key information 3438

consumer bindings
applications 3446

key information references 3433
key management

cryptographic usage 1915
key managers 1878

key managers (continued)
X.509 certificate identities 1786

key set groups 1925
configuration creation 1921

key sets 1918
configuration creation 1916

key spaces 3646
keyGenerator requests 3655
keys 3461

locator configuration
administrative console 3576

keystore configurations
preexisting keystore files 1871
remote management 1873

keystore files 1874
signer exchange 1909

keystores
internal password records

recreating .kdb files 1871

L
LDAP

adding users 1289
advanced LDAP settings 1280
bindings 1297
directory servers 1286
key set groups 1448
key sets 1448
performance 1407
search filters 1283
security failover 1442
settings 1363
stand-alone registry settings 1275
user group memberships 1290

LDAP attributes
federated repositories 1427

LDAP entity types 1423, 1428
federated repositories 1422

listAvailableOSGiExtensions command 1018, 1024,
1121

listeners
endpoints

overview 2728
services

overview 2728
listExternalBundleRepositories command 1062, 1119
listLocalRepositoryBundles command 1055, 1119
listOSGiExtensions command 1023, 1120
listWSNAdministeredSubscribers command 3169
local operating system wizard 1271
login configuration

WSLogin 1581
login mappings 3563
LogViewer command-line tool 3125
LTPA 1447

keys 1448
single sign-on 1473

enablement 3560

Index 3713



M
mail providers

configuration 479
settings 481

mail sessions
configuration 483

manifest files 1068, 1071, 1073, 1094
mappings

ports 2711
member attributes 1424, 1430, 1435

federated repository 1433
message destination references 1086
message-driven bean (MDB) listeners

binding to an MDB 1097
messages

asynchronous response listener usage 3598
authenticity protection

for applications 3448
endpoint management 228
inbound configuration 1623
outbound configuration 1624

methods
encryption

message confidentiality protection 3487, 3499,
3501

modifyExternalBundleRepository command 1064, 1122
modifyJAXWSHandler command 3186
modifyJAXWSHandlerList command 3191

N
name servers

configuration 981
namespace bindings 975
naming

settings
binding types 975
CORBA object bindings 979
EJB bindings 978
indirect lookup bindings 980
string bindings 977

naming roles
user assignment 1750

naming servers
settings 981

nested group support
directory servers 1293
Tivoli Directory Server 1294

new administrative authorization groups 1766, 1767
nonce

cache distribution 3526
configuration 3525

applications 3570
servers 3569
web services security tokens 3568

notification producers 3107, 3108, 3129, 3166, 3169,
3170

NotificationBroker applications 3066, 3067, 3082,
3115

NotificationBroker endpoints 3068

notifications 1913
security audit subsystem failures 1942

O
OASIS Standard 3177
object pool managers 984

MBeans 990
object pool services

settings 989
object pools

MBeans 990
resources for learning 989
settings 987
usage 983

objects
caching properties 1722

ORB
administering 991
custom properties 995
Java

character code set conversions 1004
settings

services 991
OSGi application console 1077, 1083, 1084, 1098,

1099, 1103, 1104
OSGi applications 1013, 1048
OSGi bundles 1066
OSGi frameworks 1077, 1083, 1084, 1098, 1099,

1103, 1104
outbound invocation handling 3070, 3071, 3116, 3117,

3118, 3120, 3121, 3184, 3186, 3190, 3191
outbound transports

configuration 1620

P
part references 3425
personal certificate requests 1890
personal certificates 1886
policies

configuration
custom properties 2845
WS-Addressing 2809
WS-Security 2828

Java 2 security migration 1176
web services 2848

Policy object 3663
policy sets 3197, 3200, 3204, 3207, 3209

attaching to service artifacts 2800
bindings 2798
disabling policies 2848
enabling policies

administrative console 2847
importing 2782
Kerberos

sample bindings 3381
STS 3384
system 3336
system configuration

administrative console 3339

3714 Administering WebSphere applications



policy sets (continued)
system definition

administrative console 3340
trust service

request protection 3305
web services security 3291

policy sets 3068, 3072, 3074, 3076, 3089
port retrieval 1903
portlet container

settings 1131
portlet fragment caching

configuration 340
wsadmin tool 343

principal mapping
global sign-on configuration 1549

profiles
certificate options 1799

programmatic login migration 1172
properties

rrdSecurity.props file 3560
SAMLIssuerConfig.properties file 3399
web services security 3532

properties files
group.props file 1322
users.props file 1322

property extensions
DB2 1392

protection wizard 1202
protocol providers

settings 482
proxy servers

third-party HTTP reverse servers 1466
publisher assertions 3652
publisher registrations 3127

R
RAR

bean validation 205
installation 156, 158

realms
configuration settings 1331
security 1194

registries
custom user registry development 1322
federated repositories 1420
LDAP 1272, 1297

stand-alone LDAP 1440
user group memberships 1290

local operating systems 1268, 1269
selecting 1265

reliable messaging 3211, 3213, 3215, 3216, 3218,
3219, 3224

sequences 3225, 3230
reliable messaging applications 3216
reliable messaging policies 3218
reliable notification 3074, 3075, 3076
removeExternalBundleRepository command 1063,

1123
removeLocalRepositoryBundle command 1056, 1124
removeLocalRepositoryBundles command 1058, 1125

removeOSGiExtension command 1021, 1126
removeOSGiExtensions command 1025, 1127
reports

security configuration 1224
repositories 1405

custom 1414
federated 1330, 1338, 1341, 1342, 1349, 1414

attribute mapping 1401
changing passwords 1336
configurations 1403
custom adapters 1411, 1412, 1413, 1415
custom repository 1333
entity types 1398
entry mapping 1395
external repositories 1373
file details 1334
LDAP 1351, 1353, 1354, 1356, 1359
limitations 1335
performance 1406
property extensions 1374, 1387
realm management 1328
user registries 1417

file-based 1341
certificate 1342

LDAP 1350
replication 1405
selecting 1265

request receiver bindings 3583
request sender bindings 3582
resource adapter archive

installation 156
resource adapters

configuration 214
installation 157

resource environment entries 491
administering 488
configuration 488

resource environment providers 489
settings 489

resource environment reference bindings 1086, 1108
resource environment references 1026, 1030, 1086,

1108
resource references 1026, 1030, 1041, 1078
response receiver bindings 3585
response sender bindings 3584
RESTful applications

HTTP headers 3245
HTTP response codes 3245
media types definitions 3246
parameter definitions 3249
resource definitions 3240
resource methods definition 3243
URI pattern definitions 3241

role-based policy framework 1723
RRD applications

administering 2677, 2679
RunAs role 1026, 1030, 1101

Index 3715



S
SAML

message-level tokens 3382
secure messages 3382
token propagation 3257
tokens

attribute creation 3261
wsadmin commands 3410

user attributes 3262
SAML applications

deployment 3257
SAS

client configuration 1625
scheduler daemon 1138
schedulers

calendars 1135
configuration 1140
creating databases 1149
creating tables

administrative console 1156
using DDL files 1160
using scripting 1157
using the administrative console 1156

managing 1138
settings 1144
table definition 1154

scoping security context tokens 3215
SDO repository 3062, 3093, 3152, 3155
security

administrative 1182
applications 1184
coexisting 1167
custom properties 1202, 1222
domains 1256, 1262
enabling 1167, 1180
interoperating 1167
migrating 1167
multiple domains

copying 1252
creating 1249
deleting 1252
inbound trusted realms 1255

realm names 1262
realms 1194, 1262
settings

add key alias references 1918
add signer certificates 1904
administrative user password 1339
administrative user roles 1746
advanced LDAP 1280
audit event factories 1951
audit notifications 1944
audit record encryption 1957
audit record keystore files 1959
audit record signing configurations 1958
audit service providers 1946
authentication cache 1263
authentication protocol for client

configurations 1626
certificate expiration management 1911
certificate requests 1885

security (continued)
settings (continued)

CSIV2 communications 1602
CSIV2 inbound communications 1605
CSIV2 outbound communications 1610
CSIV2 outbound transport communications 1621
CSIV2 transport inbound communications 1618
custom properties 1222
dynamic member attributes 1439
dynamic outbound endpoint SSL

configuration 1857
entity types 1401, 1403
entry mapping repository 1397
event type filters 1936
external authorization providers 1711
global security 1196
group attribute definitions 1431, 1432
JACC providers 1712
key managers 1879
key set groups 1926
key sets 1919
keystore files 1875
LDAP entity types 1426, 1429
local operating system 1270
member attributes 1436
naming service users 1746
notifications 1914
personal certificate requests 1890
property extension repositories 1378
quality of protection 1859
reference 1406
SAS authentication protocol 1630
SAS inbound transport communications 1620
SAS outbound transport communications 1623
self-signed certificates 1887
signer certificates 1906
single sign-on 1538
SSL 1824
stand-alone custom registries 1301
stand-alone LDAP registry 1275
Tivoli Access Manager JACC providers 1719
trust and key managers 1840
trust association interceptors 1472
trust associations 1471
trust managers 1841

setup 1167
testing 1223

security annotations 1703
security attributes

default authorization token 1592
default propagation token 1595
default single sign-on 1600
propagation 1584, 1589

security audit data
protection 1953

security auditing
context objects 1939

security auditing subsystems
enablement 1929

security audits 1930
default service provider configuration 1945

3716 Administering WebSphere applications



security audits (continued)
event type filter creation 1935
events 1935
infrastructure 1928
record encryption 1954
records signing 1955
third-party service providers

configuration 1949
Security Configuration wizard 1224
security context tokens 3215
security domains 1233

configuration 1230
service endpoints

attachments
administrative console 3348

service integration bus topic spaces 3067, 3076, 3110
service provider applications 3072
service provider policies 3197, 3204
servlet caching

configuration 339
sesions

configuration 479
showExternalBundleRepository command 1065, 1128
showLocalRepositoryBundle command 1059, 1129
showWSNAdministeredSubscriber command 3170
showWSNService command 3158
showWSNServicePoint command 3165
showWSNTopicDocument command 3181
showWSNTopicNamespace command 3176
signer certificates 1905

exchange 1908
extraction 1899

signing information 3419
single sign-on

configuration 1547
RMI_OUTBOUND 1582
Tivoli Access Manager 1537
trust associations 1547

enterprise identity mapping 1524
HTTP requests 1480
principle mapping 1476
web user authentication 1477

SIP
administering applications 2539
container configuration 2539
custom properties 2540, 2567
deployment 2537

wsadmin scripting 2538
DNS 2554
failover 2562
routers 2565, 2581

configuring 2563
settings 2566, 2567

settings 2555, 2566, 2567
stack settings 2558
startup order 2567
timers 2559, 2561, 2562

SOAP
secure conversation 3307

SQLJ profiles 170
SSL 1774, 1824

SSL (continued)
alias selection 1853
application server 1794
CA client creation 1868
central management 1793
certificate expiration monitoring 1809
certificate management 1813, 1822
certificates

iKeyman usage 1812
client authentication enablement 1854
client certificate authentication 1826
cluster isolation 1794
configuration creation 1818
configurations 1780
custom key manager creation 1844
custom trust decisions

custom trust managers 1843
custom trust managers 1838
default chained certificates 1801
dynamic configuration associations 1849
dynamic configuration updates 1812
dynamic inbound and outbound endpoints 1857
dynamic outbound selections 1792
inbound endpoints 1854
inbound scope associations 1852
key management 1822
keystore configurations 1790
nodes 1794
outbound scope associations 1852
programmatic outbound configurations 1850
remote ports

signer retrieval 1902
replacement certificates

cells 1883
nodes 1882

scopes 1823
secure installations 1805

stand-alone custom registries 1300
configuration 1299

Stand-alone custom registry wizard 1303
Stand-alone LDAP registry wizard 1278
startup beans 2589

enabling 2590
startup beans services

settings 2591
static roles

caching properties 1721
SubscriptionManager endpoints 3071
system policy sets 3341
system properties

Enterprise JavaBeans (EJB) 372
system-dependent configuration 1724

T
targets

trust service
administrative console 3362

trust service endpoint configuration
administrative console 3361

Index 3717



TCP/IP transports
virtual private network

example 1633
tier IDs 3665
tier limits 3646
Tier object 3665
timer managers

configuration 7
settings 9

timer service
configuration 380

Tivoli Access Manager 1700
administrative role changes

propagation 1751
administrative user creation 1718
authentication

node migration 1179
authorization server configuration 1726
configuration

web servers 1546
embedded enablement 1733

administrative console 1744
group configuration 1725
JACC 1718

provider configuration properties 1721
JACC provider enablement 1731
JACC providers 1698

administrative console 1716
unconfiguration 1744

Java EE resource access 1711
logs 1727
role-based security 1697
security roles 1724
security users 1724
single sign-on 1537, 1540, 1541
trusted user accounts 1544
utilities

EAR file migration 1752
Tivoli Directory Server

group support 1294
tModel entities 3650, 3674, 3675
token consumers 3518
token generators 3507
token providers

security context
administrative console 3353, 3355

tokens
consumer configuration

secure conversation 3324
derived key 3315
generator configuration

secure conversation 3324
pluggable configuration

administrative console 3586
security context 3329

disabling submission draft levels 3356
topic namespace documents 3084, 3113, 3114, 3181
topic spaces 3062
transactional recoverable messaging 3220
transforms 3427
trust anchors 3539

trust anchors (continued)
configuration

cells 3543
consumer bindings 3541
generator bindings 3537
servers 3543

trust association interceptors 1472
trust association migration 1170
trust associations 1467
trust managers 1841

X.509 certificate identities 1784
trust service 3326

attachment configuration
administrative console 3345

attachments 3349
targets 3363
token custom properties 3356
token providers 3360

trusted IDs
configuration

cells 3556
servers 3556

evaluators 3557

U
UDDI

authentication tokens 3646
authorization tokens 3657
discoveryURL 3659

UDDI entities 3683
UDDI node services 3646
UDDI publishers 3646, 3652, 3653, 3654, 3655, 3667
UDDI registry 3603, 3625, 3626, 3636, 3642, 3644

application development 3660
configuring 3611, 3621, 3642
databases 3603, 3606, 3608, 3609, 3610, 3616,

3618, 3619, 3620, 3628, 3630, 3631, 3632, 3633,
3637, 3638, 3640, 3645

UDDI registry application 3614, 3624
UDDI registry nodes 3603, 3614, 3624, 3645, 3646,

3650, 3659, 3660
customizing 3615
default 3604, 3605
managing 3633, 3662, 3663, 3670

UDDI services 3642
UDDI Utility Tools 3679, 3680, 3682, 3685, 3688,

3689, 3690
UDDIUserDefinedValueSet utility 3675
user-defined value sets 3672, 3675
UUID keys 3654, 3655, 3656

V
value set data 3675
value sets 3650, 3651, 3659, 3670, 3672, 3674, 3675,

3678
virtual hosts 1026, 1030, 1107

3718 Administering WebSphere applications



W
web application bundles 1085, 1107
web applications

administering 2629
settings

asynchronous request dispatching 2677, 2678
web container

custom properties 2632
settings 2630
troubleshooting 2655

web module message destinations 1026, 1108
web module resource references 1026, 1109, 1111
web services

administering
deployed applications 2727

client bindings 2710
client bindings configuration 2709
clients

port information 2712
deployment 2700
planning 2699
secure conversation

standard 3325
secure conversations 3310, 3311

client cache 3313
settings

options to perform web services
deployment 2701

publish WSDL compressed files 2720
trust service

configurations 3313
trust standard 3338

web services applications
application server deployment 2700
deployment

for clients 2708
web services security

administration 3265
binding configuration 3412
client security bindings 3464
configuration

JAX-RPC 3523
cryptographic device enablement 3561
default policy sets 2778
hardware cryptographic devices

configuration 3562
HTTP outbound transport communications

administrative console 3265
Java properties 3266

mixed cluster environment 3316
properties 3532
runtime configuration updates 3366
secure conversations

distributed cache 3317
security context tokens 3318
session affinity 3317

security context tokens
reliable messaging 3321

server security bindings 3465
server-side collection certificates

administrative console 3574

web services security (continued)
settings

algorithm mapping configurations 3513
algorithm URI configuration 3511
callback handler 3457
certificate revocation list configurations 3552
collection certificate store configurations 3547
encryption information configuration 3478, 3484
key configuration 3462
key information configuration 3439
key information reference configuration 3434
key locator configurations 3529
login bindings configuration 3580
part reference configuration 3426
request consumer (receiver) binding

configuration 3472
request generator (sender) binding

configuration 3453
response consumer (receiver) binding

configuration 3473
response generator (sender) binding

configuration 3455
security cache 3369
signing information configuration 3420
system policy sets 3343
token consumers 3519
token generator configurations 3508
transforms 3428
trust anchors 3540
trust service attachments 3352
trust service targets 3365
trust service token providers 3357
trusted ID evaluator configurations 3558
web services runtime updates 3367
web services security property

configurations 3532
X.509 certificate configurations 3550

WebSEAL
configuration 1545
single sign-on 1537

work manager
settings 13

WS-MetadataExchange 3197, 3209
WS-MetadataExchange requests 3209
WS-Notification

clients 3074, 3075, 3076, 3110, 3130
configuration 3075, 3076, 3085, 3093, 3152
consumers 3074
resources 3083, 3151
service clients 3089
service points 3076, 3099, 3101, 3103, 3106, 3159
subscriptions 3080, 3123, 3125, 3127
web service interfaces 3085, 3089

WS-Notification
applications 3067
clients 3111
consumers 3076
publishers 3127
resources 3084
service clients 3072
service points 3084, 3105

Index 3719



WS-Notification service role 3085, 3089
WS-Notification standard 3059, 3060, 3128, 3195
WS-Policy 3197
WS-ReliableMessaging 2807, 3220, 3222

administering 3211, 3213, 3215, 3219, 3221
policy sets 2808, 3211, 3213, 3215, 3216, 3218,

3223
sequences 3227, 3232

WS-ReliableMessaging policy 3074
WS-ReliableMessaging standard 3074, 3076
WS-SecureConversation 3215
WS-Security standard 3068, 3076, 3093, 3096, 3105
WS-Topics standard 3113
WS-Topics standard 3113, 3177
wsadmin commands

repository setup 1380
self-issued SAML tokens 3410
web services deployment

wsdeploy 2703

wsadmin commands (continued)
wsdeploy 2703

WSDL
file publication 2719

using URLs 2721
wsimport command 3082, 3115

X
x.509 certificates 3549
XML digital signatures

configuration
Version 5.x web services 3563

XML encryption
configuration

Version 5.x web services 3580

3720 Administering WebSphere applications


	Contents
	How to send your comments
	Using this PDF
	Chapter 1. Administering ActivitySessions
	Administering applications that use ActivitySessions
	Enabling or disabling the ActivitySession service
	Configuring the default ActivitySession timeout for an application server
	ActivitySession service settings
	Enable service at server startup
	Default timeout



	Chapter 2. Administering Application profiling
	Managing application profiles

	Chapter 3. Administering Asynchronous beans
	Administering asynchronous beans
	Configuring timer managers
	Timer manager collection

	Configuring work managers
	Work manager collection



	Chapter 4. Administering with the batch administrative console help files
	Job scheduler job class settings
	Name
	Maximum execution time
	Maximum concurrent jobs
	Maximum class space
	Maximum file age
	Maximum jobs
	Maximum job age
	Description

	Job scheduler job class collection
	Name
	Description

	Job scheduler classification rule settings
	Order
	Classification rule

	Subexpression builder settings
	Select operand
	Operator
	Value
	Subexpression builder
	Append

	Custom property collection for the job scheduler
	Name
	Value
	Description

	Custom property settings for the job scheduler
	Name
	Value
	Description

	Job scheduler configuration
	Scheduler hosted by
	Database schema name
	Data source JNDI name
	Endpoint job log location
	Record usage data in scheduler database

	WebSphere grid endpoints
	Name
	Datasource JNDI name

	Welcome to the job management console
	View jobs
	Job ID
	Submitter
	Last update
	State
	Node
	Application server
	Group

	View job log
	Refresh
	Download
	Back

	Submit a job
	Local file system
	Job repository
	Substitution properties
	Delay submission

	View saved jobs
	Name

	View saved job content
	Back

	Save a job
	Job name
	xJCL path
	Replace the job if the specified job name exists

	View schedules
	Name
	Submitter
	Start date and time
	Interval

	Create a schedule
	Step 1: Create schedule
	Step 2: Specify job
	Step 2.1: Specify substitution properties
	Step 3: Confirm create schedule

	Update schedule
	Schedule
	Job


	Chapter 5. Administering Client applications
	Deploying client applications
	Deploying applet client code
	Running an ActiveX client application
	Starting an ActiveX application and configuring service programs
	Starting an ActiveX application and configuring non-service programs
	setupCmdLineXJB.bat, launchClientXJB.bat and other ActiveX batch files

	Deploying and running a Java EE client application
	Deploying a Java EE client application
	Running a Java EE client application with launchClient
	Downloading and running a Java EE client application using Java Web Start

	Running the IBM Thin Client for Enterprise JavaBeans (EJB)
	Running Java thin client applications
	Running a Java thin client application on a client machine
	Running a Java thin client application on a server machine


	Managing resources for Java EE client applications
	Updating data source and data source provider configurations with the Application Client Resource Configuration Tool
	Updating URLs and URL provider configurations for application clients
	Updating mail session configurations for application clients
	Updating Java Message Service provider, connection factories, and destination configurations for application clients
	Updating WebSphere MQ as a Java Message Service provider, and its JMS resource configurations, for application clients
	Updating resource environment entry and resource environment provider configurations for application clients
	Removing application client resources
	clientUpgrade script


	Chapter 6. Administering Communications Enabled Applications
	Administering communications enabled applications
	Configuring services for communications enabled applications
	CEA settings
	CEA custom properties

	Configuring communications enabled applications in a cluster


	Chapter 7. Administering Data access resources
	Deploying data access applications
	Available resources
	Select
	JNDI name
	Scope
	Description

	Map data sources for all 1.x CMP beans
	Select
	EJB
	EJB Module
	URI
	JNDI name
	User name

	Map default data sources for modules containing 1.x entity beans
	Select
	EJB Module
	URI
	JNDI name
	User name

	Map data sources for all 2.x CMP beans settings
	Set Multiple JNDI names
	Set Authorization Type
	Modify Resource Authentication Method
	Select
	EJB
	EJB Module
	URI
	Target resource JNDI name
	Resource authorization

	Map data sources for all 2.x CMP beans
	Set Multiple JNDI Names
	Set Authorization Type
	Modify Resource Authentication Method
	Select
	EJB Module
	URI
	JNDI name
	Resource authorization
	Extended Datasource Properties


	Installing a resource adapter archive
	Installing resource adapters embedded within applications
	Install RAR
	Scope
	Local file system
	Remote file system


	Deploying SQLJ applications
	Deploying SQLJ applications that use container-managed persistence (CMP)
	Deploying SQLJ applications that use container-managed persistence (CMP) with the ejbdeploy tool

	Deploying SQLJ applications that use bean-managed persistence, servlets, or sessions beans
	Customizing and binding profiles for Structured Query Language in Java (SQLJ) applications
	Customizing and binding SQLJ profiles with the db2sqljcustomize tool
	SQLJ profiles and pureQuery bind files settings
	Download SQLJ profile group
	Review results

	Using embedded SQLJ with the DB2 for z/OS Legacy driver
	Directory conventions

	Administering data access applications
	Configuring Java EE Connector connection factories in the administrative console
	Configuring connection factories for resource adapters within applications
	Directory conventions
	Connection pool settings
	Connection pool advanced settings
	Connection pool (Version 4) settings
	J2C Connection Factories collection
	Connection factory JNDI name practices

	Establishing custom finder SQL dynamic enhancement server-wide
	Establishing custom finder SQL dynamic enhancement on a set of beans
	CMP connection factories collection
	Name
	JNDI Name
	Description
	Category
	CMP connection factory settings

	Configuring resource adapters
	Resource adapters collection

	Updating a stand-alone resource adapter archive
	RARUpdate command group

	Mapping resource manager connection factory references to resource factories
	Managing messages with message endpoints
	Manage message endpoints

	Configuring a JDBC provider and data source
	Data source minimum required settings, by vendor
	Configuring a JDBC provider using the administrative console
	Configuring a data source using the administrative console
	ResourceManagement command group for the AdminTask object
	Creating and configuring a JDBC provider and data source using the JMX API
	Using the DB2 Universal JDBC Driver to access DB2 for z/OS
	Configuring Oracle Real Application Cluster (RAC) with the application server
	Configuring client reroute for applications that use DB2 databases
	Configuring client affinities for applications that use DB2 databases
	Verifying a data source connection
	Test connection service
	Testing a connection with the administrative console
	Testing a connection using wsadmin

	Configuring connection validation timeout
	Resource references
	Set multiple JNDI names
	Modify Resource Authentication Method
	Extended Properties
	Select
	Module
	Bean
	URI
	Resource Reference
	Target Resource JNDI name
	Login configuration

	Mapping-configuration alias
	Select a J2C authentication alias
	Considerations for isolated resource providers
	Implicitly set client information
	Enabling client information tracing with the administrative console
	About Apache Derby
	Managing resources through JCA lifecycle management operations
	JCA life cycle management



	Chapter 8. Administering Dynamic caching
	Administering the dynamic cache service
	Using the dynamic cache service
	Dynamic cache service settings
	Configuring dynamic cache (DynaCache) to use the WebSphere eXtreme Scale dynamic cache provider
	Configuring servlet caching
	Configuring portlet fragment caching
	Configuring portlet fragment caching with the wsadmin tool
	Configuring caching for Struts and Tiles applications
	Configuring dynamic cache disk offload
	Configuring Edge Side Include caching
	Configuring external cache groups

	Disabling template-based invalidations during JSP reloads
	Dynamic cache provider for the JPA 2.0 second level cache


	Chapter 9. Administering EJB applications
	Deploying EJB 3.x enterprise beans
	EJB module settings
	URI
	Alternate deployment descriptor
	Starting weight

	Directory conventions

	Deploying EJB modules
	EJB 3.0 and EJB 3.1 deployment overview
	EJBDEPLOY relationships – troubleshooting tips
	Directory conventions

	Administering entity beans
	Enterprise beans back up and recovery best practices

	Managing EJB containers
	EJB containers
	EJB container settings
	Passivation directory
	Inactive pool cleanup interval
	Default data source JNDI name
	Enable stateful session bean failover using memory-to-memory replication
	Initial state

	EJB container system properties
	Changing enterprise bean types to initialize at application start time using the administrative console
	Changing applications to WebSphere “version specific” setRollbackOnly behavior
	EJB cache settings
	Cleanup interval
	Cache size

	Container interoperability

	Configuring a timer service
	Caching data for a timer service
	Configuring the timer service using scripting
	EJB timer service settings
	Persistent EJB timer configuration
	Use internal EJB timer service scheduler instance
	Use custom scheduler instance
	Data source JNDI name
	Data source alias
	Table prefix
	Poll interval
	Number of timer threads
	Scheduler JNDI name
	Non-persistent EJB timer configuration
	Maximum number of retries
	Time interval between retries
	Share thread pool configured for persistent timers
	Create a separate thread pool for non-persistent timers
	Number of timer threads


	Managing message-driven beans
	Managing messages with message endpoints
	Managing message listener resources for message-driven beans
	Configuring the message listener service
	Administering listener ports


	Administering applications that use the Java Persistence API
	Configure JPA to work in your environment
	Configuring a JDBC provider and data source
	Configuring the default JTA and non-JTA data source JNDI names
	Associating persistence providers and data sources
	Configuring persistence provider support in the application server
	Task overview: IBM Optim pureQuery Runtime

	Configuring OpenJPA caching to improve performance


	Chapter 10. Administering Internationalization service
	Task overview: Globalizing applications
	Globalization
	Working with locales and character encodings
	Language versions offered by this product
	Globalization: Resources for learning

	Task overview: Internationalizing interface strings (localizable-text API)
	Identifying localizable text
	Creating message catalogs
	Composing language-specific strings
	Localization API support
	LocalizableTextFormatter class
	Creating a formatter instance
	Setting optional localization values
	Generating localized text

	Preparing the localizable-text package for deployment
	LocalizableTextEJBDeploy command


	Task overview: Internationalizing application components (internationalization service)
	Internationalization service
	Assembling internationalized applications
	Setting the internationalization type for servlets
	Configuring container internationalization for servlets
	Setting the internationalization type for enterprise beans
	Configuring container internationalization for enterprise beans

	Using the internationalization context API
	Gaining access to the internationalization context API
	Accessing caller locales and time zones
	Accessing invocation locales and time zones
	Internationalization context API: Programming reference

	Administering the internationalization service
	Enabling the internationalization service for servlets and enterprise beans
	Enabling the internationalization service for EJB clients
	Internationalization service settings
	Internationalization service errors



	Chapter 11. Administering Mail, URLs, and other Java EE resources
	Configuring mail providers and sessions
	Mail provider collection
	Name
	Scope
	Description

	Mail provider settings
	Scope
	Name
	Description
	Isolate this mail provider
	Class path

	Protocol providers collection
	Protocol
	Class name
	Type

	Protocol providers settings
	Scope
	Protocol
	Class name
	Type

	Mail session collection
	Name
	Scope
	Provider
	JNDI Name
	Description
	Category

	Mail session configuration settings
	Scope
	Provider
	Create New Provider
	Name
	JNDI name
	Description
	Category
	Enable debug mode
	Enable strict Internet address parsing
	Outgoing Mail Properties
	Incoming Mail Properties


	Administering URLs
	URL provider collection
	Name
	Scope
	Description

	URL provider settings
	Scope
	Name
	Description
	Class path
	Stream handler class name
	Protocol

	URL configurations collection
	Name
	JNDI Name
	Scope
	Provider
	Description
	Category

	URL configuration settings
	Scope
	Provider
	Create New Provider
	Name
	JNDI Name
	Description
	Category
	Specification


	Administering resource environment entries
	Configuring new resource environment entries to map logical environment resource names to physical names
	Resource environment providers and resource environment entries
	Resource environment provider collection
	Resource environment entries collection
	Referenceables collection
	Resource environment references



	Chapter 12. Administering Messaging resources
	Managing messaging with the default messaging provider
	Configuring resources for the default messaging provider
	Listing JMS resources for the default messaging provider
	Configuring JMS resources for point-to-point messaging
	Configuring JMS resources for publish/subscribe messaging
	Configuring a unified connection factory for the default messaging provider
	Configuring a queue connection factory for the default messaging provider
	Configuring a topic connection factory for the default messaging provider
	Configuring a queue for the default messaging provider
	Configuring a topic for the default messaging provider
	Configuring an activation specification for the default messaging provider
	Deleting JMS resources for the default messaging provider
	Configuring JMS connection factory properties for durable subscriptions
	Configuring JMS activation specification properties for durable subscriptions
	Enabling a provider to stream messages to cloned durable subscriptions
	Enabling CMP entity beans and messaging engine data stores to share database connections
	Configuring a connection to a non-default bootstrap server
	Protecting an MDB or SCA application from system resource problems
	Sample JMS 1.1 application client

	Interoperating with a WebSphere MQ network
	Using WebSphere MQ links to connect a bus to a WebSphere MQ network
	Using a WebSphere MQ server to integrate WebSphere MQ queues into a bus

	Configuring the messaging engine selection process for JMS applications
	Managing messages and subscriptions for default messaging JMS destinations
	Managing messages on message points

	Using JMS from stand-alone clients to interoperate with service integration resources
	Using JMS to connect to a WebSphere Application Server default messaging provider messaging engine
	Securing JMS client and JMS resource adapter connections
	Adding tracing and logging for stand-alone clients

	Using JMS from a third party application server to interoperate with service integration resources
	Deploying the Resource Adapter for JMS with WebSphere Application Server to a third party application server
	Deploying inbound connections for the Resource Adapter for JMS with WebSphere Application Server


	Managing messaging with the WebSphere MQ messaging provider
	Installing WebSphere MQ to interoperate with WebSphere Application Server
	Configuring the WebSphere MQ messaging provider with native libraries information
	Maintaining the WebSphere MQ resource adapter

	Listing JMS resources for the WebSphere MQ messaging provider
	Configuring JMS resources for the WebSphere MQ messaging provider
	Creating an activation specification for the WebSphere MQ messaging provider
	Configuring an activation specification for the WebSphere MQ messaging provider
	Migrating a listener port to an activation specification for use with the WebSphere MQ messaging provider
	Creating a connection factory for the WebSphere MQ messaging provider
	Configuring a unified connection factory for the WebSphere MQ messaging provider
	Configuring a queue connection factory for the WebSphere MQ messaging provider
	Configuring a topic connection factory for the WebSphere MQ messaging provider
	Configuring a queue for the WebSphere MQ messaging provider
	Configuring a topic for the WebSphere MQ messaging provider
	Configuring custom properties for WebSphere MQ messaging provider JMS resources

	Configuring properties for the WebSphere MQ resource adapter
	Configuring custom properties for the WebSphere MQ resource adapter

	Disabling WebSphere MQ functionality in WebSphere Application Server

	Managing messaging with a third-party messaging provider
	Managing messaging with a third-party JCA 1.5 or 1.6-compliant messaging provider
	Configuring an activation specification for a third-party JCA resource adapter
	Configuring an administered object for a third-party JCA resource adapter

	Managing messaging with a third-party non-JCA messaging provider
	Defining a third-party non-JCA messaging provider
	Listing JMS resources for a third-party non-JCA messaging provider
	Configuring JMS resources for a third-party non-JCA messaging provider


	Managing message-driven beans
	Managing messages with message endpoints
	Managing message listener resources for message-driven beans
	Configuring the message listener service
	Administering listener ports



	Chapter 13. Administering naming and directory
	Configuring namespace bindings
	Name space binding collection
	Name
	Scope
	Binding type

	Specify binding type settings
	Binding type

	String binding settings
	Scope
	Binding type
	Binding identifier
	Name in name space
	String value

	EJB binding settings
	Scope
	Binding type
	Binding identifier
	Name in name space
	Enterprise bean location
	Server
	JNDI name

	CORBA object binding settings
	Scope
	Binding type
	Binding identifier
	Name in name space
	Corbaname URL
	Federated context

	Indirect lookup binding settings
	Scope
	Binding type
	Binding identifier
	Name in name space
	Provider URL
	JNDI name
	Initial context factory name


	Configuring name servers
	Name server settings
	Name
	Initial state



	Chapter 14. Administering Object pools
	Using object pools
	Object pool managers
	Object pool managers collection
	Name
	JNDI name
	Scope
	Description
	Category
	Object pool managers settings

	Object pool service settings
	Enable service at server startup

	Object pools: Resources for learning
	MBeans for object pool managers and object pools


	Chapter 15. Administering Object Request Broker (ORB)
	Administering Object Request Brokers
	Object Request Broker service settings
	Request timeout
	Request retries count
	Request retries delay
	Connection cache maximum
	Connection cache minimum
	ORB tracing
	Locate request timeout
	Force tunneling
	Tunnel agent URL
	Pass by reference

	Object Request Broker custom properties
	com.ibm.CORBA.BootstrapHost
	com.ibm.CORBA.BootstrapPort
	com.ibm.CORBA.ConnectTimeout
	com.ibm.CORBA.ConnectionInterceptorName
	com.ibm.CORBA.enableLocateRequest
	com.ibm.CORBA.FragmentSize
	com.ibm.CORBA.ListenerPort
	com.ibm.CORBA.LocalHost
	com.ibm.CORBA.numJNIReaders
	com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.JNIReaderPoolImpl
	com.ibm.CORBA.RasManager
	com.ibm.CORBA.ServerSocketQueueDepth
	com.ibm.CORBA.ShortExceptionDetails
	com.ibm.CORBA.WSSSLClientSocketFactoryName
	com.ibm.CORBA.WSSSLServerSocketFactoryName
	com.ibm.websphere.orb.threadPoolTimeout
	com.ibm.websphere.threadpool.strategy.implementation
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.calcinterval
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.lruinterval
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.outqueues
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.statsinterval
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.workqueue
	com.ibm.ws.orb.services.lsd.EnableSecurityServiceCheck
	com.ibm.ws.orb.services.lsd.SecurityServiceCheckInterval
	com.ibm.ws.orb.services.lsd.SecurityServiceCheckRetry
	com.ibm.ws.orb.services.redirector.MaxOpenSocketsPerEndpoint
	com.ibm.ws.orb.services.redirector.RequestTimeout
	com.ibm.ws.orb.transport.SSLHandshakeTimeout
	com.ibm.ws.orb.transport.useMultiHome
	javax.rmi.CORBA.UtilClass

	Character code set conversion support for the Java Object Request Broker service


	Chapter 16. Administering OSGi applications
	Updating bundle versions for an EBA asset
	Updating bundle versions for an EBA asset using the editAsset command

	Maintaining an OSGi composition unit
	Updating an OSGi composition unit
	Updating an OSGi composition unit by using the editCompUnit command

	Adding or removing extensions for an OSGi composition unit
	Adding or removing extensions for an OSGi composition unit using wsadmin commands

	Modifying the configuration of an OSGi composition unit
	Modifying the configuration of an OSGi composition unit by using wsadmin commands


	Checking the bundle download status of an EBA asset
	Checking the update status of an OSGi composition unit
	Administering bundle repositories
	Moving bundles from an OSGi application to a bundle repository
	Administering bundles in the internal bundle repository
	Administering bundles in the internal bundle repository using wsadmin commands

	Administering links to external bundle repositories
	Administering links to external bundle repositories using wsadmin commands

	Interacting with the OSGi bundle cache

	Exporting and importing a deployment manifest file
	Exporting a deployment manifest
	Exporting a deployment manifest using the exportDeploymentManifest command

	Importing a deployment manifest
	Importing a deployment manifest using the importDeploymentManifest command


	OSGi applications administrative console panels
	Add extensions [Collection]
	Add extensions [Settings]
	Application OSGi frameworks [Collection]
	Blueprint resource references [Settings]
	Bundle cache [Collection]
	Bundle cache [Settings]
	Bundle details [Settings]
	Bundles in OSGi framework [Collection]
	Context root for web modules [Settings]
	EJB JNDI names [Settings]
	EJB message destination references [Settings]
	EJB references [Settings]
	EJB resource references [Settings]
	Extensions for this composition unit [Collection]
	Extensions for this composition unit [Settings]
	External bundle repositories [Collection]
	External bundle repositories [Settings]
	Import a deployment manifest into this application [Settings]
	Internal bundle repository [Collection]
	Internal bundle repository [Settings]
	Listeners for message-driven beans [Settings]
	Package details [Settings]
	Packages in bundle [Collection]
	Packages in OSGi framework [Collection]
	Preview bundle versions update [Settings]
	Preview composition unit upgrade [Settings]
	RunAs roles for users [Collection]
	Security role to user or group mapping [Settings]
	Service details [Settings]
	Services in bundle [Collection]
	Services in OSGi framework [Collection]
	Update bundle versions in this application [Settings]
	Upload bundle [Settings]
	Virtual hosts for web modules [Settings]
	Web module message destination references [Settings]
	Web module resource references [Settings]
	Web module resource references: Available resources [Collection]

	OSGiApplicationCommands: OSGi Applications administrative commands for the AdminTask object
	addExternalBundleRepository command
	addLocalRepositoryBundle command
	addOSGiExtension command
	addOSGiExtensions command
	exportDeploymentManifest command
	importDeploymentManifest command
	listExternalBundleRepositories command
	listLocalRepositoryBundles command
	listOSGiExtensions command
	listAvailableOSGiExtensions command
	modifyExternalBundleRepository command
	removeExternalBundleRepository command
	removeLocalRepositoryBundle command
	removeLocalRepositoryBundles command
	removeOSGiExtension command
	removeOSGiExtensions command
	showExternalBundleRepository command
	showLocalRepositoryBundle command


	Chapter 17. Administering Portlet applications
	Portlet container settings and custom properties
	Portlet container settings
	Enable portlet fragment cache

	Portlet container custom properties
	Portlet and PortletApplication MBeans


	Chapter 18. Administering Scheduler service
	Installing default scheduler calendars
	Scheduler calendars
	Installing default scheduler calendars
	Uninstalling default scheduler calendars

	Example: Using default scheduler calendars

	Managing schedulers
	Managing schedulers
	Scheduler daemon
	Example: Stopping and starting scheduler daemons using Java Management Extensions API
	Example: Dynamically changing scheduler daemon poll intervals using Java Management Extensions API
	Configuring schedulers
	Configuring scheduler default transaction isolation
	Configuring schedulers using the administrative console
	Configuring schedulers using Java Management Extensions
	Creating a scheduler resource reference

	Creating the database for schedulers
	Creating scheduler databases
	Scheduler table management functions
	Scheduler table definition
	Creating scheduler tables using the administrative console
	Creating scheduler tables using scripting and Java Management Extensions
	Creating scheduler tables using DDL files



	Chapter 19. Administering application security
	Setting up, enabling and migrating security
	Migrating, coexisting, and interoperating – Security considerations
	Interoperating with previous product versions
	Migrating trust association interceptors
	Migrating Common Object Request Broker Architecture programmatic login to Java Authentication and Authorization Service (CORB
	Migrating from the CustomLoginServlet class to servlet filters
	Migrating Java 2 security policy
	Migrating with Tivoli Access Manager for authentication enabled
	Migrating Java thin clients that use the password encoding algorithm

	Enabling security
	Administrative security
	Application security
	Java 2 security
	Enabling security for the realm
	Testing security after enabling it
	Security Configuration Wizard
	Security configuration report
	Adding a new custom property in a global security configuration or in a security domain configuration
	Modifying an existing custom property in a global security configuration or in a security domain configuration
	Deleting an existing custom property in a global security configuration or in a security domain configuration


	Configuring multiple security domains
	Multiple security domains
	Creating new multiple security domains
	Deleting multiple security domains
	Copying multiple security domains
	Configuring inbound trusted realms for multiple security domains
	Configure security domains
	Name
	Description
	Assigned Scopes
	Application Security:
	Enable application security
	Java 2 security:
	Use global security settings
	Customize for this domain
	Use Java 2 security to restrict application access to local resources
	Warn if applications are granted custom permissions
	Restrict access to resource authentication data
	User Realm:
	Trust Association:
	Interceptors
	Enable trust association
	SPNEGO Web Authentication:
	RMI/IIOP Security:
	CSIv2 inbound communications
	CSIv2 outbound communications
	JAAS Application logins
	Use global and domain-specific logins
	JAAS System Logins:
	System Logins
	JAAS J2C Authentication Data:
	Use global and domain-specific entries
	Java Authentication SPI (JASPI)
	Authentication Mechanism Attributes:
	Authorization Provider:
	Custom properties
	Web Services Bindings

	External realm name
	External realm name

	Trust all realms
	Trust all realms (including those external to this cell)
	Trust realms as selected
	Add External Realm...

	Security domains collection
	Maximum rows
	Retain filter criteria
	Copy selected domain
	Copy global security

	Authentication cache settings
	Enable authentication cache
	Cache timeout:
	Initial cache size:
	Maximum cache size
	Use basic authentication cache keys (password one-way hashed):


	Authenticating users
	Selecting a registry or repository
	Configuring local operating system registries
	Configuring Lightweight Directory Access Protocol user registries
	Configuring stand-alone custom registries
	Managing the realm in a federated repository configuration
	Standalone Lightweight Directory Access Protocol registries

	Selecting an authentication mechanism
	Lightweight Third Party Authentication
	Configuring LTPA and working with keys
	Kerberos (KRB5) authentication mechanism support for security
	Setting up Kerberos as the authentication mechanism for WebSphere Application Server
	RSA token authentication mechanism
	Configuring the RSA token authentication mechanism
	Simple WebSphere authentication mechanism (deprecated)
	Message layer authentication

	Integrating third-party HTTP reverse proxy servers
	Trust associations
	Trust association settings
	Trust association interceptor collection
	Trust association interceptor settings

	Single sign-on for authentication
	Single sign-on for authentication using LTPA cookies
	Using a WebSphere Application Server API to achieve downstream web single sign-on with an LtpaToken2 cookie
	Enterprise Identity Mapping
	Global single sign-on principal mapping for authentication

	Implementing single sign-on to minimize web user authentications
	Single sign-on for HTTP requests using SPNEGO web authentication
	Creating a single sign-on for HTTP requests using SPNEGO Web authentication
	Creating a single sign-on for HTTP requests using the SPNEGO TAI (deprecated)
	Configuring single sign-on capability with Enterprise Identity Mapping
	Configuring single sign-on capability with Tivoli Access Manager or WebSEAL

	Configuring administrative authentication
	Java Authentication and Authorization Service
	Java Authentication and Authorization Service authorization

	Using the Java Authentication and Authorization Service programming model for web authentication
	Developing custom login modules for a system login configuration for JAAS

	Performing identity mapping for authorization across servers in different realms
	Configuring inbound identity mapping
	Configuring outbound identity mapping to a different target realm

	Security attribute propagation
	Default authentication token

	Propagating security attributes among application servers
	Using the default authorization token to propagate security attributes
	Using the default propagation token to propagate security attributes
	Using the default single sign-on token with default or custom token factory to propagate security attributes

	Configuring the authentication cache
	Configuring Common Secure Interoperability Version 2 (CSIV2) inbound and outbound communication settings
	Configuring Common Secure Interoperability Version 2 inbound communications
	Configuring Common Secure Interoperability Version 2 outbound communications
	Configuring inbound transports
	Configuring outbound transports
	Configuring inbound messages
	Configuring outbound messages
	Common Secure Interoperability Version 2 and Security Authentication Service (SAS) client configuration
	Example 1: Configuring basic authentication and identity assertion
	Example 2: Configuring basic authentication, identity assertion, and client certificates
	Example 3: Configuring client certificate authentication and RunAs system
	Example 4: Configuring TCP/IP transport using a virtual private network

	Authentication protocol for EJB security
	Authentication protocol support
	Common Secure Interoperability Version 2 features
	Identity assertion to the downstream server
	Identity assertions with trust validation
	Message layer authentication

	Using Microsoft Active Directory for authentication
	Authentication using Microsoft Active Directory
	Groups spanning domains with Microsoft Active Directory
	Microsoft Active Directory Global Catalog
	Options for finding group membership within a Microsoft Active Directory forest
	Authenticating users with LDAP registries in a Microsoft Active Directory forest

	SAML web single sign-on
	SAML single sign-on scenarios, features, and limitations
	Enabling your system to use the SAML web single sign-on (SSO) feature
	Configuring single sign-on (SSO) partners
	SAML web single sign-on (SSO) trust association interceptor (TAI) custom properties
	Adding SAML web single sign-on (SSO) trust association interceptor (TAI) using the wsadmin command-line utility
	Deleting SAML web single sign-on (SSO) identity provider (IdP) partner using the wsadmin command-line utility
	Deleting SAML web single sign-on (SSO) trust association interceptor (TAI) using the wsadmin command-line utility
	Exporting SAML web service provider metadata using the wsadmin command-line utility
	Importing SAML identity provider (IdP) partner metadata using the wsadmin command-line utility
	Displaying SAML identity provider (IdP) partner configuration using the wsadmin command-line utility
	Displaying SAML web single sign-on (SSO) trust association interceptor (TAI) configuration using the wsadmin command-line uti


	Authorizing access to resources
	Authorization technology
	Administrative roles and naming service authorization
	Role-based authorization
	Administrative roles
	Authorization providers
	Delegations

	Authorizing access to Java EE resources using Tivoli Access Manager
	Using the built-in authorization provider
	Enabling an external JACC provider

	Authorizing access to administrative roles
	Administrative user roles settings and CORBA naming service user settings
	Administrative group roles and CORBA naming service groups
	Assigning users to naming roles
	Propagating administrative role changes to Tivoli Access Manager
	migrateEAR utility for Tivoli Access Manager
	Assigning users from a foreign realm to the admin-authz.xml

	Fine-grained administrative security
	New Administrative Authorization Group
	Administrative Authorization Group collection

	Creating a fine-grained administrative authorization group using the administrative console
	Editing a fine-grained administrative authorization group using the administrative console
	Fine-grained administrative security in heterogeneous and single-server environments

	Securing communications
	Secure communications using Secure Sockets Layer (SSL)
	SSL configurations
	Keystore configurations for SSL
	Dynamic outbound selection of Secure Sockets Layer configurations
	Central management of SSL configurations
	Secure Sockets Layer node, application server, and cluster isolation
	Certificate options during profile creation
	Default chained certificate configuration in SSL
	Dynamic configuration updates in SSL
	Certificate management using iKeyman prior to SSL
	Certificate management in SSL
	Using the retrieveSigners command in SSL to enable server to server trust

	Creating a Secure Sockets Layer configuration
	SSL certificate and key management
	SSL configurations for selected scopes
	SSL configurations collection
	SSL configuration settings
	Secure Sockets Layer client certificate authentication
	Certificate authority (CA) client configuration
	Certificate authority (CA) client configuration collections
	Creating a chained personal certificate in SSL
	Recovering deleted certificates in SSL
	Renewing a certificate in SSL
	Revoking a CA certificate in SSL
	Using a CA client to create a personal certificate to be used as the default personal certificate
	Creating a CA certificate in SSL
	Developing the WSPKIClient interface for communicating with a certificate authority
	Creating a custom trust manager configuration for SSL
	Creating a custom key manager for SSL
	Associating a Secure Sockets Layer configuration dynamically with an outbound protocol and remote secure endpoint
	Quality of protection (QoP) settings
	ssl.client.props client configuration file

	Creating a CA client in SSL
	Deleting a CA client in SSL
	Viewing or modifying a CA client in SSL
	Creating a keystore configuration for a preexisting keystore file
	Recreating the .kdb keystore internal password record
	Configuring a hardware cryptographic keystore
	Managing keystore configurations remotely
	Keystores and certificates collection
	Key store settings
	Key managers collection
	Key managers settings

	Creating a self-signed certificate
	Replacing an existing personal certificate
	Creating a new SSL certificate to replace an existing one in a node
	Creating new SSL certificates to replace existing ones in a cell

	Creating a certificate authority request
	Certificate request settings
	Personal certificates collection
	Self-signed certificates settings
	Personal certificate requests collection
	Personal certificate requests settings
	Extract certificate request
	Receiving a certificate issued by a certificate authority
	Replace a certificate

	Extracting a signer certificate from a personal certificate
	Extract certificate
	Extract signer certificate
	Retrieving signers using the retrieveSigners utility at the client
	Changing the signer auto-exchange prompt at the client

	Retrieving signers from a remote SSL port
	Retrieve from port

	Adding a signer certificate to a keystore
	Add signer certificate settings
	Signer certificates collection
	Signer certificate settings

	Adding a signer certificate to the default signers keystore
	Exchanging signer certificates
	Keystores and certificates exchange signers

	Configuring certificate expiration monitoring
	Manage certificate expiration settings
	Notifications
	Notifications settings

	Key management for cryptographic uses
	Creating a key set configuration
	Active key history collection
	Add key alias reference settings
	Key sets collection
	Key sets settings

	Creating a key set group configuration
	Example: Retrieving the generated keys from a key set group
	Example: Developing a key or key pair generation class for automated key generation
	Key set groups collection
	Key set groups settings


	Auditing the security infrastructure
	Enabling the security auditing subsystem
	Security Auditing detail
	Context object fields

	Creating security auditing event type filters
	Auditable security events
	Event type filter settings
	Event type filters collection
	Example: Generic Event Interface
	Context objects for security auditing
	Context object fields

	Configuring security audit subsystem failure notifications
	Audit monitor collection
	Audit notification settings

	Configuring the default audit service providers for security auditing
	Audit service provider collection
	Audit service provider settings
	Example: Base Generic Emitter Interface

	Configuring a third party audit service providers for security auditing
	Example: Base Generic Emitter Interface

	Configuring audit event factories for security auditing
	Audit event factory configuration collection
	Audit event factory settings
	Example: Generic Event Factory Interface

	Protecting your security audit data
	Encrypting your security audit records
	Signing your security audit records
	Audit encryption keystores and certificates collection
	Audit record encryption configuration settings
	Audit record signing configuration settings
	Audit record keystore settings

	Using the audit reader


	Chapter 20. Administering Service integration
	Enabling or disabling service integration notification events
	Administering service integration buses
	Configuring buses
	Creating a bus
	Adding buses
	Configuring bus properties
	Listing the buses
	Displaying the topology of a service integration bus
	Deleting a bus
	Configuring the members of a bus
	Administering bootstrap members for a bus
	Configuring messaging engines
	Configuring bus destinations
	Connecting buses
	Defining outbound chains for bootstrapping
	Defining outbound chains for WebSphere MQ interoperation

	Operating buses
	Displaying the runtime properties of a messaging engine
	Displaying the runtime properties of a service integration bus link
	Managing messages on message points

	Managing service integration buses with administrative commands

	Administering messaging engines
	Configuring messaging engines
	Configuring messaging engine properties
	Listing the messaging engines in a bus
	Removing a messaging engine from a bus
	Listing the messaging engines defined for a server bus member
	Creating the database, schema and user ID for a messaging engine
	Configuring service integration bus links

	Starting a messaging engine
	Stopping a messaging engine
	Displaying the runtime properties of a messaging engine
	Displaying the runtime properties of a service integration bus link
	Managing messaging engines with administrative commands

	Administering message stores
	Administering file stores
	Configuring file store attributes for a messaging engine
	Backing up and restoring a messaging engine file store

	Administering data stores
	Configuring a messaging engine to use a data store
	Backing up and restoring a messaging engine data store
	Emptying the data store for a messaging engine
	Sharing connections to benefit from one-phase commit optimization
	Configuring messaging engine and server behavior when a data store connection is lost
	Data store tables
	Altered database tables
	Database privileges

	Avoiding message store errors when creating a messaging engine
	Avoiding errors when creating a messaging engine with a file store or a data store by using the wsadmin tool

	Administering bus destinations
	Configuring bus destinations
	Listing bus destinations
	Creating a bus destination
	Configuring bus destination properties
	Configuring mediations
	Configuring a destination forward routing path
	Configuring a destination reverse routing path
	Configuring context properties for a bus destination
	Administering destination roles
	Deleting a bus destination
	Resetting a destination

	Managing bus destinations with administrative commands
	Configuring message points
	Listing message points for a messaging engine
	Listing message points for a bus destination
	Configuring a message point

	Managing messages on message points
	Listing messages on a message point
	Deleting messages on a message point

	Administering durable subscriptions
	Listing subscriptions
	Stopping active subscribers for durable subscriptions
	Deleting durable subscriptions


	Administering mediations
	Securing mediations
	Configuring an alternative mediation identity for a mediation handler
	Configuring the bus to access secured mediations
	Configuring a bus to run mediations in a multiple security domain environment

	Configuring mediations
	Installing a mediation
	Configuring a new mediation
	Deleting a mediation
	Modifying the properties of a mediation
	Adding mediation context information
	Listing mediation context properties
	Configuring mediation context properties
	Deleting mediation context information
	Configuring the mediation thread pool
	Setting tuning properties for a mediation
	Mediating a destination
	Unmediating a destination

	Configuring mediation points
	Configuring a mediation point
	Listing mediation points for a bus destination
	Listing mediation points for a messaging engine

	Managing mediations with administrative commands
	Operating mediations at mediation points
	Starting a mediation
	Stopping a mediation
	Restarting a mediation that has stopped on error

	Administering messages on mediation points
	Listing messages at a mediation point
	Deleting messages on a mediation point

	Example: Using mediations to trace, monitor and log messages


	Chapter 21. Administering Session Initiation Protocol (SIP) applications
	Deploying SIP applications
	Deploying SIP applications through the console
	Deploying SIP applications through scripting

	Administering SIP applications
	Configuring the SIP container
	Enabling Session Initiation Protocol (SIP) flow token security
	SIP container custom properties
	Using DNS procedures to locate SIP servers
	SIP container settings
	SIP stack settings
	SIP timers settings
	Configuring SIP timers
	Performing controlled failover of SIP applications

	Configuring SIP application routers
	SIP application router collection
	SIP application router settings
	Default application router rule settings

	Configuring multihomed hosting
	Multihomed hosting

	Configuring multiple proxy servers using a load balancer in a multihomed environment


	Chapter 22. Administering Startup beans
	Using startup beans
	Enabling startup beans in the administrative console
	Startup beans service settings
	Enable service at server startup



	Chapter 23. Administering Transactions
	Administering the transaction service
	Configuring transaction properties for an application server
	Transaction service settings
	Transaction service custom properties

	Managing active and prepared transactions
	Managing active and prepared transactions by using wsadmin scripting

	Managing transaction logging for optimum server availability
	Configuring transaction aspects of servers for optimum availability
	Moving a transaction log from one server to another
	Restarting an application server on a different host

	Displaying transaction recovery audit messages
	Delaying the cancelling of transaction timeout alarms
	Removing entries from the transaction partner log


	Chapter 24. Administering web applications
	Deploying JavaServer Pages and JavaServer Faces files
	JSP class loading settings
	JavaServer Pages (JSP) runtime reloading settings
	JSP and JSF option settings
	Web module
	URI
	JSP enable class reloading
	JSP reload interval in seconds
	Sun Reference Implementation 1.2
	MyFaces 2.0

	JSP run time compilation settings
	Provide options to compile JavaServer Pages settings
	Web module
	URI
	JSP class path
	Use full package names
	JDK source level
	Disable JSP runtime compilation


	Administering web applications
	Modifying the default web container configuration
	Web container settings
	Programmatic session cookie configuration collection
	Web container custom properties
	Web module deployment settings
	Context root for web modules settings
	Environment entries for web modules settings
	Web container troubleshooting tips
	Disabling servlet pooling: Best practices and considerations
	JavaServer Pages specific web container custom properties

	Configuring JSP engine parameters
	JSP engine
	JSP engine configuration parameters
	JavaServer Pages troubleshooting tips

	Backing up and recovering servlets
	Backing up and recovering JavaServer Pages files
	Administering RRD applications
	Asynchronous request dispatching settings
	Asynchronous request dispatching settings


	Asynchronous request dispatching settings
	Asynchronous request dispatching settings
	Allow Asynchronous Request Dispatching
	Asynchronous include timeout
	Maximum expired requests per minute
	Maximum memory size of results store


	Administering RRD applications
	Configuring HTTP sessions
	Configuring session management by level
	Session management settings
	Session recovery support

	Configuring session tracking
	Session tracking options
	Serializing access to session data
	Cookie settings
	Session management custom properties

	Configuring session tracking for Wireless Application Protocol (WAP) devices
	Configuring for database session persistence
	Switching to a multi-row schema
	Configuring tablespace and page sizes for DB2 session databases
	Creating a table for session persistence
	Database settings

	Configuring write contents
	Configuring write frequency


	Chapter 25. Administering web services
	Planning to use web services
	Deploying web services
	Deploying web services applications onto application servers
	Provide options to perform the web services deployment settings
	wsdeploy command
	JAX-WS application deployment model

	Using a third-party JAX-WS web services engine
	Deploying web services client applications
	Making deployed web services applications available to clients
	Configuring web services client bindings
	Configuring endpoint URL information for HTTP bindings
	Configuring endpoint URL information for JMS bindings
	Configuring endpoint URL information to directly access enterprise beans
	Publishing WSDL files using the administrative console
	Publishing WSDL files using a URL

	Running an unmanaged web services JAX-RPC client
	Running an unmanaged web services JAX-WS client
	Testing web services-enabled clients

	Administering deployed web services applications
	Overview of service and endpoint listeners
	Administration of service and endpoint listeners
	Viewing service providers at the cell level using the administrative console
	Service providers collection at the cell level

	Viewing service providers at the application level using the administrative console
	Service providers collection at the application level

	Viewing the detail of a service provider and managing policy sets using the administrative console
	Service provider settings

	Managing policy sets and bindings for service providers at the application level using the administrative console
	Service provider policy sets and bindings collection

	Viewing WSDL documents for service providers using the administrative console
	Viewing service clients at the cell level using the administrative console
	Service client collection at the cell level

	Viewing service clients at the application level using the administrative console
	Service clients collection at the application level

	Viewing detail of a service client and managing policy sets using the administrative console
	Service client settings

	Managing policy sets and bindings for services references using the administrative console
	Service reference settings

	Managing policy sets and bindings for service clients at the application level using the administrative console
	Service client policy set and bindings collection

	Viewing web services deployment descriptors in the administrative console
	Configuring the scope of a JAX-RPC web services port
	Web services implementation scope

	Suppressing the compensation service
	JAX-WS timeout properties

	Managing policy sets using the administrative console
	Viewing policy sets using the administrative console
	Creating policy sets using the administrative console
	WS-I RSP default policy sets
	SecureConversation default policy sets
	WS-ReliableMessaging default policy sets
	WSAddressing default policy set
	Web Services Security default policy sets
	WSTransaction default policy sets
	WSHTTPS default policy set
	Copy of default policy set and bindings settings

	Importing policy sets using the administrative console
	Import policy sets from default repository settings
	Import policy sets from a selected location settings

	Modifying policy sets using the administrative console
	Deleting policy sets using the administrative console
	Defining and managing policy set bindings
	Importing policy set bindings using the administrative console
	Web services policy set bindings
	Defining and managing service client or provider bindings
	Export policy sets bindings settings
	Copy policy set binding settings
	Deleting policy set bindings
	Creating application specific bindings for policy set attachment
	Modifying default bindings at the server level for policy sets
	Reassigning bindings to policy sets attachments
	Policy set bindings settings
	Web Services Addressing policy set binding

	Attaching a policy set to a service artifact
	Managing policies in a policy set using the administrative console
	Adding policies to policy sets using the administrative console
	Deleting policies from policy sets using the administrative console
	Modifying policies using the administrative console
	Enabling policies for policy sets using the administrative console
	Disabling policies from policy sets using the administrative console
	Web services policies

	Exporting policy sets using the administrative console
	Implementing policy sets for unmanaged clients
	Application policy sets collection
	Name
	Editable
	Description

	Application policy set settings
	Policy set name
	Description
	Policies
	Policies - Policy
	Policies - State
	Policies - Description
	Additional properties – Attached deployed assets

	Search attached applications collection
	Name

	Web services policy sets
	Overview of migrating policy sets and bindings


	Chapter 26. Administering web services - bus-enabled web services
	Enabling web services through the service integration bus
	Installing and configuring the SDO repository
	Configure the SDO repository for a single server, and to use the embedded Derby database
	Configure the SDO repository for a single server, and to use a database other than embedded Derby
	The SDO repository uninstall script
	Bus-enabled web services installation files and locations

	Configuring web services for a service integration bus
	Making an internally-hosted service available as a web service
	Making an externally-hosted web service available internally

	Administering the bus-enabled web services resources
	Creating a new endpoint listener configuration
	Working with JAX-RPC handlers and clients
	Working with mediations
	Creating a new UDDI reference

	Creating a new WS-Security binding
	Modifying an existing WS-Security binding
	Deleting WS-Security bindings

	Creating a new WS-Security configuration
	Modifying an existing WS-Security configuration
	Deleting WS-Security configurations

	Passing SOAP messages with attachments through the service integration bus
	Locating an attachment by using swaref
	SOAP Messages with Attachments: WSDL examples
	Supporting bound attachments: WSDL examples



	Chapter 27. Administering web services - Invocation framework (WSIF)
	Administering WSIF
	Enabling a WSIF client to invoke a web service through JMS
	Configuring resources for the default messaging provider
	Configuring JMS resources for the WebSphere MQ messaging provider
	Managing messaging with a third-party messaging provider

	wsif.properties file - Initial contents


	Chapter 28. Administering web services - Notification (WS-Notification)
	Using WS-Notification for publish and subscribe messaging for web services
	Accomplishing common WS-Notification tasks
	WS-Notification roles and goals
	WS-Notification
	Using a script to get up and running quickly with WS-Notification
	Configuring a WS-Notification service for use only by WS-Notification applications
	Providing access for WS-Notification applications to an existing bus topic space
	Securing WS-Notification
	Configuring JAX-WS handlers
	Applying a JAX-WS handler list to a WS-Notification service
	Configuring a Version 7.0 WS-Notification service with Web service QoS
	Configuring WS-Notification for reliable notification
	Migrating a Version 6.1 WS-Notification configuration from WebSphere Application Server Version 6.1 to Version 7.0 or later
	Preparing a migrated Version 6.1 WS-Notification configuration for reliable notification
	Interacting at run time with WS-Notification
	Publishing the WSDL files for a WS-Notification application to a compressed file

	Configuring WS-Notification resources
	Configuring WS-Notification resources by using the administrative console
	Interacting at run time with WS-Notification
	Configuring a JAX-WS client to resolve a WS-Notification service WSDL without following web links



	Chapter 29. Administering web services - Policy (WS-Policy)
	Using WS-Policy to exchange policies in a standard format
	Configuring a service provider to share its policy configuration
	Configuring a service provider to share its policy configuration using wsadmin scripting

	Configuring the client policy to use a service provider policy
	Configuring the client policy to use a service provider policy by using wsadmin scripting
	Configuring the client policy to use a service provider policy from a registry

	Configuring security for a WS-MetadataExchange request


	Chapter 30. Administering web services - Reliable messaging (WS-ReliableMessaging)
	Administering reliable web services
	Configuring a WS-ReliableMessaging policy set by using the administrative console
	Configuring a WS-ReliableMessaging policy set by using the wsadmin tool
	Configuring WS-SecureConversation to work with WS-ReliableMessaging

	Attaching and binding a WS-ReliableMessaging policy set to a web service application by using the administrative console
	Attaching and binding a WS-ReliableMessaging policy set to a web service application by using the wsadmin tool

	Configuring endpoints to only support clients that use WS-ReliableMessaging
	Providing transactional recoverable messaging through WS-ReliableMessaging
	WS-ReliableMessaging - administrative console panels
	WS-ReliableMessaging settings
	WS-ReliableMessaging policy binding
	Reliable messaging state settings
	Message store collection
	Outbound sequence collection
	Outbound sequences settings
	Outbound message collection
	Message settings
	Inbound sequence collection
	Inbound sequences settings
	Inbound message collection
	Acknowledgement state collection
	Export messages settings
	WS-Notification Service client settings



	Chapter 31. Administering web services - RESTful services
	Planning JAX-RS web applications
	Planning to use JAX-RS to enable RESTful services
	Defining the resources in RESTful applications
	Defining the URI patterns for resources in RESTful applications
	Defining resource methods for RESTful applications
	Defining the HTTP headers and response codes for RESTful applications
	Defining media types for resources in RESTful applications
	Defining parameters for request representations to resources in RESTful applications
	Defining exception mappers for resource exceptions and errors

	Deploying JAX-RS web applications

	Chapter 32. Administering web services - Security (WS-Security)
	Deploying applications that use SAML
	Propagating SAML tokens
	Creating SAML attributes in SAML tokens
	SAML user attributes

	Establishing security context for web services clients using SAML security tokens

	Administering Web Services Security
	Configuring HTTP outbound transport level security with the administrative console
	HTTP SSL Configuration collection

	Configuring HTTP outbound transport level security using Java properties
	Configuring HTTP basic authentication for JAX-RPC web services with the administrative console
	HTTP basic authentication collection

	Configuring custom properties to secure web services
	Web services security custom properties
	Web services security generic security token login module custom properties
	Web services security SAML token custom properties

	Administering message-level security for JAX-WS web services
	Auditing the Web Services Security runtime
	Securing web services using policy sets
	Configuring the username and password for WS-Security Username or LTPA token authentication
	Securing requests to the trust service using system policy sets
	Configuring the Kerberos token for Web Services Security
	Securing messages using SAML
	Configuring default Web Services Security bindings
	General JAX-WS default bindings for Web Services Security

	Administering message-level security for JAX-RPC web services
	Securing messages using JAX-RPC at the request and response generators
	Securing messages using JAX-RPC at the request and response consumers
	Configuring message-level security for JAX-RPC at the application level
	Configuring message-level security for JAX-RPC at the server or cell level
	Configuring Web Services Security using JAX-RPC at the platform level
	Enabling or disabling single sign-on interoperability mode for the LTPA token

	Enabling cryptographic keys stored in hardware devices for Web Services Security
	Enabling hardware cryptographic devices for Web Services Security

	Configuring XML digital signature for Version 5.x web services with the administrative console
	Login mappings collection
	Login mapping configuration settings
	Configuring nonce using Web Services Security tokens
	Configuring trust anchors using the administrative console
	Configuring the client-side collection certificate store using the administrative console
	Configuring the server-side collection certificate store using the administrative console
	Configuring default collection certificate stores at the server level in the WebSphere Application Server administrative cons
	Configuring key locators using the administrative console
	Configuring the security bindings on a server acting as a client using the administrative console
	Configuring the server security bindings using the administrative console

	Configuring XML encryption for Version 5.x web services with the administrative console
	Login bindings configuration settings
	Request sender binding collection
	Request receiver binding collection
	Response sender binding collection
	Response receiver binding collection
	Configuring pluggable tokens using the administrative console



	Chapter 33. Administering web services - Transaction support (WS-Transaction)
	Using WS-Transaction policy to coordinate transactions or business activities for web services
	Configuring a JAX-WS client for WS-Transaction context
	Configuring a JAX-WS web service for WS-Transaction context
	Configuring a WS-Transaction policy set by using wsadmin scripting
	Configuring Web Services Transaction support in a secure environment
	Configuring an intermediary node for web services transactions
	Example: Configuring IBM HTTP server as an intermediary node for web services transactions

	Enabling WebSphere Application Server to use an intermediary node for web services transactions
	Configuring a server to use business activity support


	Chapter 34. Administering web services - Transports
	Invoking JAX-WS web services asynchronously using the HTTP transport
	Using the JAX-WS asynchronous response servlet
	Using the JAX-WS asynchronous response listener

	Invoking JAX-WS web services asynchronously using the SOAP over JMS transport
	Using the JAX-WS JMS asynchronous response message listener


	Chapter 35. Administering web services - UDDI registry
	Administering the UDDI registry
	Setting up and deploying a new UDDI registry
	Setting up a default UDDI node with a default data source
	Setting up a default UDDI node
	Setting up a customized UDDI node
	Using the UDDI registry installation verification test (IVT)
	Changing the UDDI registry application environment after deployment

	Removing a UDDI registry node
	Reinstalling the UDDI registry application
	Creating a DB2 distributed database for the UDDI registry
	Creating a DB2 for i database for the UDDI registry
	Creating an Apache Derby database for the UDDI registry
	Creating an Oracle database for the UDDI registry

	Applying an upgrade to the UDDI registry
	Configuring SOAP API and GUI services for the UDDI registry
	Managing the UDDI registry
	Backing up and restoring the UDDI registry database
	UDDI node collection

	UDDI registry administrative (JMX) interface
	Management of UDDI node states and attributes
	Management of UDDI node configuration properties
	Management of UDDI node policies
	Management of UDDI node tiers
	Management of UDDI publishers
	Management of UDDI node value sets

	User-defined value set support in the UDDI registry
	Publish a checked categorization tModel entity
	Load user-defined value set data
	Enable support for a user-defined value set
	Validation and error handling for user-defined value sets

	UDDI Utility Tools
	UDDI Utility Tools prerequisites
	UDDI Utility Tools configuration file
	UDDI entity definition file
	UDDI Utility Tools at a command prompt
	UDDI Utility Tools through the API
	Save UDDI Version 3 entities with a supplied key
	UDDI Utility Tools limitations and resolutions



	Chapter 36. Administering Work area
	Managing the UserWorkArea partition
	Managing the UserWorkArea partition
	Accessing the UserWorkArea partition
	Managing local work with a work area
	Managing local work with a work area
	Work area service settings
	Overriding work area properties
	retrieveAllKeys method


	Managing local work with a work area
	Managing local work with a work area
	Work area service settings
	Enable service at server startup
	Maximum send size
	Maximum receive size
	Enable Web service propagation

	Overriding work area properties
	retrieveAllKeys method


	Notices
	Trademarks and service marks
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X


